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Microscopic characterization of Ising conformal field theory in Rydberg chains
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Rydberg chains provide an appealing platform for probing conformal field theories (CFTs) that capture
universal behavior in a myriad of physical settings. Focusing on a Rydberg chain at the Ising transition separating
charge density wave and disordered phases, we establish a detailed link between microscopics and low-energy
physics emerging at criticality. We first construct lattice incarnations of primary fields in the underlying Ising
CFT including chiral fermions, a nontrivial task given that the Rydberg chain Hamiltonian does not admit an
exact fermionization. With this dictionary in hand, we compute correlations of microscopic Rydberg operators,
paying special attention to finite, open chains of immediate experimental relevance. We further develop a method
to quantify how second-neighbor Rydberg interactions tune the sign and strength of four-fermion couplings in
the Ising CFT. Finally, we determine how the Ising fields evolve when four-fermion couplings drive an instability
to Ising tricriticality. Our results pave the way to a thorough experimental characterization of Ising criticality in
Rydberg arrays, and can inform the design of novel higher-dimensional phases based on coupled critical chains.
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I. INTRODUCTION

Conformal field theory (CFT) plays a vital role in many
branches of physics including condensed matter, statistical
mechanics, high energy, and quantum gravity [1,2]. CFTs
describe systems that enjoy invariance under conformal
space-time transformations that strongly constrain physical
properties. These constraints are particularly powerful in one-
dimensional quantum and two-dimensional classical systems,
allowing universal behavior to be extracted from algebraic
relations. In many cases of interest, the CFT here is “rational”
and can be characterized by a finite set of “primary” fields
and states [1]. All other fields and states are found by acting
with the generators of conformal and other symmetries. On
the experimental front, CFTs capture low-energy physics in a
wide variety of platforms ranging from quantum-critical spin
chains (e.g., Refs. [3,4]) to edge states of topological phases
of matter (e.g., Ref. [5]).

Laser-excited Rydberg atoms trapped in optical tweezer
arrays offer a route towards investigating CFTs with unprece-
dented depth via analog quantum simulation [6,7]. These
systems benefit from exceptional coherence, exquisite tun-
ability, configurable atom array geometry, and site-resolved
readout. Moreover, Rydberg atoms exhibit strong induced
dipole-dipole interactions that catalyze a rich set of accessi-
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ble phases and transitions [§—10]; indeed, even the simplest
linear chain architecture features quantum phase transitions
described by Ising and tricritical Ising CFTs [11-13] (as
well as a Zj transition [14,15]). Initial experimental for-
ays into Rydberg-array quantum criticality have focused on
Kibble-Zurek effects [16,17] that describe excitations created
upon dynamically sweeping across a quantum phase transi-
tion, revealing critical exponents of the associated universality
classes [10,18].

Interrogating Rydberg arrays tuned precisely to critical-
ity promises to reveal the more complete structure of CFTs.
For instance, can one directly measure critical correlations
of fields that capture low-energy physics, and in doing so
read off their scaling dimensions? How do edge terminations,
naturally relevant for experiment, impact correlations of mi-
croscopic quantities? Do irrelevant perturbations away from
“pure” CFT fixed-point theories produce measurable signa-
tures? Aside from fundamental interest, this line of inquiry
can provide valuable benchmarking for quantum simulation,
inform blueprints for exotic phases of matter based on cou-
pled critical chains [19-21], and perhaps even advance formal
understanding of CFTs (e.g., in the realm of nonequilibrium
dynamics or their connection [22] to scar states [8,23]).

Addressing such questions requires understanding how
physical microscopic Rydberg degrees of freedom map to

©2021 American Physical Society
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FIG. 1. Phase diagram of the Rydberg-chain Hamiltonian
[Eq. (1)] with V; = oco. Upon decreasing V,, the second-order Ising
transition (solid line) separating the disordered and Z, CDW phases
evolves into a tricritical Ising (TCI) point before turning first order
(dashed line). We color the second-order line green and blue to,
respectively, indicate positive and negative TT coefficients u that
characterize four-fermion interactions in the Ising CFT; see Fig. 5
for more details. Additional phases appear beyond the range of
parameters displayed but are not relevant for this paper.

emergent low-energy CFT fields. In some models, deriving
such a correspondence can be straightforward. The canoni-
cal transverse-field Ising model, which as the name indicates
displays a quantum critical point described by the Ising CFT,
provides a classic example: Jordan-Wigner fermionization ex-
poses the free-fermion nature of the problem and facilitates a
precise mapping between microscopic spins and low-energy
fermions that famously emerge in the Ising CFT.

In this paper we pursue an analogous dictionary for the
Ising CFT governing the phase transition between charge den-
sity wave and trivial phases in a Rydberg chain; see the phase
diagram in Fig. 1. Finding lattice counterparts of operators
in the field theory is not so simple here for two deeply inter-
twined reasons. Unlike the transverse-field Ising problem, the
Rydberg chain does not admit a known exact mapping to a
local fermion model. At and near this transition, the chain is
not even integrable, much less free fermion. Moreover, the Z,
symmetry spontaneously broken in the ordered phase is not a
simple internal symmetry (again unlike transverse-field Ising),
but rather corresponds to translation by a single site. A similar
situation occurs in the antiferromagnetic Ising chain with both
transverse and longitudinal fields [24]. The longitudinal field
explicitly breaks the internal Z, symmetry, thus spoiling the
usual Jordan-Wigner mapping and leaving single-site transla-
tion as the symmetry that sharply distinguishes ordered and
disordered phases.

We show how to overcome these difficulties for a Rydberg
chain. In particular, we analytically construct microscopic in-
carnations of both bosonic and fermionic Ising CFT fields and
verify the mappings using exact diagonalization. As a bonus,
our techniques allow us to identify lattice operators that map
to fermion fields in the antiferromagnetic Ising model as well.

Armed with this dictionary, we develop a microscopic
characterization of Ising criticality in Rydberg chains from
several angles. First, although our mappings immediately
predict long-distance power-law behavior of microscopic Ry-

dberg operators in periodic chains, edge effects operative in
more experimentally accessible open chains can (and do in
this case) strongly modify correlations. We use results from
CFT with fixed boundary conditions to quantify open-chain
correlations of microscopic operators, providing key input for
near-term experiments. Second, the continuous Ising transi-
tion populates a one-dimensional line in the two-dimensional
phase diagram from Fig. 1. We show how moving along this
line (by modulating the external parameters at which Ising
criticality appears) tunes the sign and strength of four-fermion
interactions in the CFT. Moreover, we argue that these inter-
actions, while formally irrelevant at weak coupling, have a
visible effect on finite-size open-chain correlations, provid-
ing an experimental window into quantifying perturbations
to vanilla CFT theories. Third, the continuous Ising transi-
tion line eventually terminates at a quantum critical point
described by a tricritical Ising CFT (driven by strong four-
fermion interactions). We track the evolution of Ising CFT
fields upon approaching the tricritical Ising point and establish
a partial dictionary linking microscopic Rydberg operators to
tricritical Ising fields. We anticipate that our results will pave
the way to detailed experimental characterization of Ising
criticality, and quantum criticality more broadly, in Rydberg
arrays.

The remainder of the paper is organized as follows.
Section II reviews the Rydberg-chain model that we study
throughout. Section IIT A surveys the Ising CFT, Sec. III B
develops the dictionary linking microscopic Rydberg oper-
ators to Ising CFT fields, and Sec. IIIC briefly discusses
implications for the antiferromagnetic Ising chain. Section IV
explores the microscopic origin of four-fermion interactions
in the field-theory action. In Sec. V we quantify microscopic
Rydberg correlations in an open chain, where edge effects
play a pivotal role, and propose a scheme for locating the
critical point using finite open chains. Section VI studies the
approach to the tricritical Ising CFT driven by four-fermion
interactions, and, finally, Sec. VII provides a summary and
experimental outlook.

II. MODEL AND PHASE DIAGRAM

We consider a Rydberg chain governed by the Hamiltonian
H = Z [ (bj + b)) — Anj + Vinjnjy + vzn,-nm] (1)

Here b; is a canonical hard-core boson operator and n; = b;b I
is the associated number operator; n; = 0 and 1, respectively,
correspond to the ground state and Rydberg excited state for
the atom at site j. The first two terms in H describe (within the
rotating-wave approximation) atoms driven at Rabi frequency
2 with detuning A from the Rydberg state. The V; term
encodes nearest-neighbor induced dipole-dipole interactions.
Unless specified otherwise, we take V; — +o00. This limit
energetically enforces the nearest-neighbor Rydberg blockade
constraint n;n4; = 0, precluding two nearest-neighbor atoms
from simultaneously entering the Rydberg state. Finally, the
V, term in Eq. (1) encodes subdominant induced dipole-dipole
interactions among second-nearest neighbors. We allow V,
to take either sign in our analysis. Although the most natu-
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TABLE 1. Symmetry properties of the microscopic Rydberg
chain operators (upper rows) and CFT fields (lower rows) that
describe low-energy physics at Ising criticality. For brevity we sup-
pressed the position coordinate x for the CFT fields; note, however,
that R, additionally sends x — —x.
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ral physical regime corresponds to V, > 0, negative V, < 0
may also be realizable (as discussed in Sec. VII). Rydberg
chains naturally host a rapidly decaying V, oc r—° interaction;
we drop interactions beyond next-nearest neighbor. The full
Hamiltonian preserves bosonic time reversal 7 and, with suit-
able boundary conditions, translation by one lattice site 7
and reflection R, about a site. Table I (upper rows) specifies
the action of these symmetries on microscopic Rydberg-chain
operators.

The model in Eq. (1) was introduced by Fendley, Sengupta,
and Sachdev [11] as a quantum-chain limit of Baxter’s hard-
square model [25]. It was further explored via large-scale
numerics in Refs. [14,26-28] (see also Refs. [13,15,24]). Fig-
ure 1 reproduces the phase diagram as a function of A/<2 and
V, /€2 over the range of couplings relevant for this paper. Two
phases appear: The first is a disordered, symmetric gapped
state that smoothly connects to the trivial boson vacuum with
no Rydberg excitations. Negative detuning (A < 0) and re-
pulsive second-neighbor interactions (V, > 0) naturally favor
such a state. The second is a twofold-degenerate Z,-ordered
charge density wave (CDW) promoted by either positive de-
tuning (A > 0) or second-neighbor attraction (V, < 0), both
of which favor maximal packing of Rydberg excitations sub-
ject to nearest-neighbor Rydberg blockade. Each of the two
CDW ground states accordingly exhibits enhanced Rydberg-
excitation probability on every other site, quantified by

(nj) = ao + az (=1 @)

for nonuniversal ag, a, constants. Importantly, the CDW
ground states are exchanged under 7, but preserve sz. The
broader phase diagram features additional phases (not shown)
including a threefold-degenerate charge density wave and in-
commensurate order; see Refs. [11,14,26-28].

The nature of the transition separating the disordered and
CDW phases evolves nontrivially as one moves along the
phase boundary in Fig. 1. The solid line, which includes the
physically relevant V, > 0 regime, corresponds to a continu-
ous Ising transition, with translation 7, playing the role of the
global Z, spin-flip symmetry familiar from the Ising model.
We determined the location of this portion of the phase bound-
ary via a standard scaling collapse of the rescaled energy gap
LEg,, vs A (here and below L denotes the number of sites)
obtained from exact diagonalization of a Rydberg chain with

periodic boundary conditions [11]. At

Vs 1(1+«/§>

— =Vrcr=—= 5

Q 2

the continuous transition evolves into a tricritical Ising point
(labeled “TCT” in Fig. 1). The location of the tricritical point
is known exactly because the chain is integrable here [29]; its
Hamiltonian can be expressed in terms of the Temperley-Lieb
algebra and is sometimes known as the golden chain [30].
The transition at still more negative V, /<2 becomes first order
(dashed line in Fig. 1) [11]. Its location is also known from
integrability to be at

5/2

3

Va

A AN’ _
— — — ] +1 (first-order line) (4)

1
Q 2| Q
for V,/Q2 < Vrcr.

III. OPERATOR DICTIONARY AT ISING CRITICALITY

We here begin an in-depth exploration into the continuous
Ising transition separating the disordered phase from the Z,-
ordered CDW along the solid line in Fig. 1. In this section
we first review the Ising CFT, then derive a mapping between
CFT fields and microscopic Rydberg operators, and finally
comment on implications of this mapping for the antiferro-
magnetic transverse-field Ising model.

A. Ising CFT review

The continuous Ising transition line is described by a CFT
with central charge ¢ = % [31,32]. In the CFT, the local Z,
CDW order parameter that condenses on the ordered side
of the transition corresponds to a “spin field” o. The CFT
exhibits a Kramers-Wannier duality as does the Ising lattice
model, with the dual of the spin field known as the disorder
field u. The disordered phase on the other side of the transi-
tion can be understood as arising from condensation of this
disorder field, which is nonlocal in terms of the original spin
field. Both o and p are Hermitian fields of scaling dimension
é that satisfy

o (p(') = sgn(x — X))o (x). ®

where x and x" are spatial coordinates, and sgn(x — x') = 1
if x> x" and —1 if x < x’. Right- and left-moving emer-
gent Majorana fermions yg,;, with dimension % follow upon
combining order and disorder fields via the operator product
expansion (with spatially dependent coefficients omitted)

ou~yr+yr+---, (6)

where the ellipsis denotes descendant operators. Consistent

with Eq. (5), o and p enact sign changes on the fermions:
o (x")yr/L(x) = sgn(x’ — x)yg/L(x)o (x'),
/ / / (7)
(X yr/L(x) = sgn(x — x" )yr/L (X)) (x’).

The above fields and their descendants capture the low-
energy physics at and near Ising criticality. In particular, in
terms of the dimension-1 Majorana-fermion mass term

€ = IyRYL ®)
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and dimension-2 kinetic energies

T = —i:yr0yVR: T =iy oy, 9)

where colons indicate normal ordering, the low-energy Hamil-
tonian can be written as

H:/[me+u(T+T)+uTT]. (10)

The pure CFT Hamiltonian corresponds to setting m = u = 0.
The TT operator has dimension 4, and is the least irrelevant
operator that preserves the self-duality and Z, symmetry of
the Ising CFT.! Ising criticality thus persists for sufficiently
small u while keeping m = 0. Section IV discusses in detail
the effects of including this term. Resurrecting m # O shifts
the system into either the disordered phase or Z, CDW de-
pending on the sign of m.

B. Lattice operators

Next we pursue a dictionary linking microscopic oper-
ators to the CFT fields defined above. In the canonical
transverse-field Ising model, exact solvability aided by the
Jordan-Wigner transformation enables a straightforward al-
gorithmic identification of microscopic order and disorder
operators as well as fermions. For a brief review, see
Appendix A. An exact solution to Eq. (1) at the continuous
Ising transition is, by contrast, unknown. We can nevertheless
obtain the desired dictionary using analytic arguments bol-
stered by numerics.

First we expand the boson number operator at criticality

as?

nj~ () +co(=1)o +coe + -+, (11)

where (n) is the (generically nonzero) ground-state expecta-
tion value of nj, ¢, . are constants, and the ellipsis denotes
subleading terms with higher scaling dimension. The ¢, term
reflects the fact that condensing o generates Z, CDW order
[recall Eq. (2)]. As for ¢, observe that adding a term o< in
to the critical Hamiltonian [i.e., shifting A in Eq. (1)] moves
the system off of criticality; thus n; must contain the fermion
bilinear ¢ in its low-energy expansion. We can isolate o as the
leading contribution by defining

6= (=1Y (nj = (m) ~ coo 4+ (12)
and similarly isolate ¢ through

Eipip = (nj+njpn) —2(n) ~2ce+--- . (13)

'When u < 0, TT is dangerously irrelevant in the sense that the
long-distance IR physics is sensitive to the UV cutoff.

>The Hermitian operator b; + b; has identical symmetry properties
to n;, and thus exhibits a low-energy expansion of the same form (of
course with different coefficients). The Hermitian operator i(b; — b})
is odd under time reversal but even under R,. In the Heisenberg
picture, we therefore obtain i[b;(t) — b; @]~ (=1) 80 +---, im-
plying i(b; — b;) ~ i(—=1)/[o, H] for the Schrodinger picture that we
typically employ in this paper. We focus on the number operator
rather than creation and annihilation operators due to ease of mea-
surement.

<0:0 (;Aj>
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FIG. 2. Numerical verification of power-law scaling for the mi-
croscopic operators (a) 6; and (b) &4/, predicted by Egs. (12) and
(13), respectively. Data were obtained using exact diagonalization on
a periodic length L = 30 chain at Ising criticality with V, = 0. Gray
lines are fits to the expected power law, c (8 j)722, where c is the
only fitting parameter and A is the expected scaling dimension. The
horizontal axis corresponds to the adjusted lattice distance between
the operators: 8 = £ sin T2 ~ A j [33].

Exact diagonalization numerics plotted in Fig. 2 support
the identifications in Egs. (12) and (13) by demonstrating
power-law correlations consistent with the % and 1 scaling
dimensions for the CFT fields o and ¢, respectively. [The
even-odd effect in Fig. 2(b) arises from a (—1)/9,0 term (with
scaling dimension %) allowed in the ellipsis from Eq. (13).]
For a microscopic counterpart of the disorder field p, we
introduce a nonlocal operator fi; that flips Z, CDW order to

the left of site j via a partial translation:

; Nit1, l<]
Rjnipi; =), i=j (14)
n;, i> J

In effect, f1; removes the site j to accommodate the translated
sites; mapping the number operator 7; to its expectation value
(n) makes this action as nonviolent as possible. This definition
presumes an infinite number of sites, though we explain below
how to treat a finite system size.

To precisely define /i ;, we introduce operators S/, that
swap sites j and j + 1,

Sjvi2 Injnjpr) = Injng), (15)
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along with an operator
¢j =10;) (¥l
V) = /1= () 10;) = V/n) 1) (16)

that implements the i = j case in Eq. (14). In particular, ¢;
disentangles site j from the rest of the chain by first projecting
onto the “typical” quantum state |/;), which has a sign struc-
ture favored by 2 > 0 and an average occupation number (n),
and then parking the disentangled site into the n; = O state.
Putting these pieces together, we arrive at

bj=---8; 528 308-128;. (17)

We then can define the operator [, to enact a single-site
translation to the right.

We expect that with these definitions, lattice and CFT op-
erators are related via

Py~ cup - (18)

(Although f1; is not Hermitian, time-reversal symmetry re-
quires that the prefactor ¢, is real.) Exact diagonalization
results shown in Fig. 3(a) confirm that ft; indeed exhibits
power-law correlations consistent with the CFT field n. We
measure the combination ﬂjﬂj = ;;Si+1/2 ...8j_12¢;. This
combination does make sense on finite lattices, and so here
we utilize periodic boundary conditions for L = 30 sites.

The product of lattice order and disorder operators [1;5;
exhibits the following simple off-site commutation relations:

oA O, <
Hioj = {"‘6—]‘&1" j>i (19)
Let us denote the onsite commutator as

7 = ilf1j, 6,1 = ift;(65-1 + 6)). (20)

and further define
Vi = iRV RT = [1;_1(6j_1 + 6)). 2D

Here we used T,R, = R, TXT and the decomposition 7, = fl.
As the notation suggests, y;, y; constitute lattice counterparts
of the CFT fermion fields yg,; that arise from products of
order and disorder operators.

Symmetry partially constrains the form of this UV-IR rela-
tion. Time reversal swaps yg <> y; in the CFT, implying

yi~ et yrte e,
pi~elyr—e Pyt (22)
for real «, 8. Recalling that R, also swaps right and left

movers and identifying 7, ~ u(oco), we can insert Eq. (22)
into the left and middle parts of Eq. (21) to infer that

Royr(—X)R, = —ie Py (x)u(00),

RyL(=x)Ry = ie" " Pyg(x)p(00). (23)
Reflections must preserve Hermiticity of yg,.; since u(c0) an-

ticommutes with yz/z(x), this condition requires e = se i@
for some sign s = £1. Equation (22) then reduces to

yi~ e vrte vt

pi~se g — e )+ (24)

@ :j-Lp

® .-

O

6_34]

v 7aj)l
0.100

0.010

0.001

©

FIG. 3. Correlation functions (a) (ﬂgﬂM), (b) (if/JyA_,), and
(©) (y(;f va,) obtained for a periodic L = 30 chain at Ising critical-
ity with V, = 0. The horizontal axes are adjusted lattice distances:
Sej = f sin 7(Aj +¢€) ~ Aj [33]. Data from (a) and (b) verify the
power-law scaling predicted by Eqgs. (17), (20), and (21).

The lattice operators y;, 7; on the left side are not Hermitian,
and so it appears that general arguments do not enable deter-
mination of the remaining parameters s, o.

Nevertheless, Eq. (24) implies that (if/;yj/) generically
exhibits power-law correlations with scaling dimension %
whereas for (i)?f)?,v) and (iy; y;) the leading power-law con-
tributions from right- and left-moving pieces exactly cancel.
Numerics presented in 3(b) and 3(c) indeed show that (if/jT Vi)
obeys the predicted power-law correlations (decay exponent
of 1) while (if/;f/jf) and (iy;' ;) decay with a subleading
power law (decay exponent of 2). We attribute the observed
subleading power law to terms represented by the ellipses
of Eq. (24) involving d,yg,.. Other fermion correlation func-
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tions are given by the exact microscopic relations (i;”/(; Yaj) =
iy, 7o-aj) and (yg vas) = —(7) P-a;)-

The lower rows of Table I summarize the symmetry
transformations for the CFT fields o, w, and yg,; that are
compatible with the preceding dictionary. In the final column
we include a dual Z, symmetry, labeled Z$"!, preserved by
the CFT, which sends © — —pu but leaves ¢ invariant.

C. Application to the antiferromagnetic
transverse-field Ising model

The preceding analysis also has interesting implications
for the antiferromagnetic transverse-field Ising model. Upon
setting A = V; and V, = 0 and identifying Pauli matrices

Zj=2n;—1, X;=b;+bl, (25)
the Rydberg Hamiltonian in Eq. (1) reduces to an antiferro-
magnetic transverse-field Ising model,

Hrev = Z JZ;Zjy1 — h X)), (26)
J
with h, = —Q/2 and J = V; /4. In this fine-tuned limit the
Hamiltonian preserves a Z, Ising spin-flip symmetry that
sends Z; — —Z; as well as T, Ry, and 7. The antiferromag-
netic ordered phase appearing at J > h, spontaneously breaks
both the Ising spin-flip and translation symmetries.

For any choice of couplings Hrgpy can be written exactly as
a bilinear in the familiar Jordan-Wigner fermions assembled
from order and disorder operators associated with the local
Ising Z; — —Z; spin-flip symmetry. Explicit expressions are
given in Eq. (A4). At Ising criticality, these fermions map
onto continuum CFT fields yg,., as described in thousands
of papers (which for compactness we will not reference).
Because the antiferromagnetically ordered state also breaks
translation symmetry, so do the microscopic operators y;, y;
constructed in Egs. (20) and (21). We have indeed verified
that the power-law correlations shown in 3(b) and 3(c) per-
sist with parameters appropriate for the Ising model. The
antiferromagnetic transverse-field Ising chain thus admits two
sets of microscopic fermions, one associated with local Ising
symmetry, and the other with translation symmetry. Both map
to equivalent continuum fermions at criticality.

The interesting wrinkle is that the well-known Jordan-
Wigner fermions become confined when supplementing
Eq. (26) with a uniform longitudinal-field term —h; ) iZj,
as arises when A # V| in Rydberg language. Such a term
explicitly breaks Ising spin-flip symmetry. A sharp continu-
ous Ising transition nevertheless survives (at a value of h,/J
changing with A,) because the Hamiltonian continues to pre-
serve the spontaneously broken translation symmetry [24].
Thus, even though the longitudinal field is relevant at the
ferrogmagnetic transition, it is irrelevant at the antiferromag-
netic one. In the presence of this term, the Jordan-Wigner
fermions are confined because their strings do not commute
with the longitudinal field. The Hamiltonian cannot even be
written locally in terms of the Jordan-Wigner fermions. Our
microscopic y;, y; operators, however, generate the “correct”
power-law-correlated low-energy fermions at the transition
even when A, # 0.

IV. FOUR-FERMION INTERACTIONS AT ISING
CRITICALITY

Here we will discuss four-fermion interactions encoded by
the uTT term in Eq. (10), assuming a critical Rydberg chain
with m = 0. In particular, we determine how the strength of
the four-fermion interaction changes as one moves along the
critical Ising line.

One gains valuable intuition by writing

ufTT%%/g(x+8x)s(x)+-~-, 27
o 8x

where §x is a microscopic length, ¢ is the fermion bilinear
from Eq. (8), and the ellipsis represents fermion bilinears and
an unimportant constant. The derivation of Eq. (27) follows
by expanding &(x + 8x) = iyr(x + 8x)yL(x + 8x) to O(6x?).
From the form on the right side, it is clear that turning on suf-
ficiently large u < O catalyzes an instability with (¢) # 0, in
turn gapping the critical theory by spontaneously generating
a nonzero mass m # 0 with arbitrary sign. Since the sign of
m dictates whether the system enters the Z, CDW or trivial
phase, we conclude that large u < O renders the continuous
Ising transition first order, in harmony with the exact results
in Eq. (4). Conversely, u > 0 opposes mass generation.

We now argue that the sign and strength of u are deter-
mined primarily by the second-neighbor interaction strength
V, at which one accesses Ising criticality; i.e., u can be varied
by moving along the continuous Ising line in Fig. 1. On a
qualitative level, inserting Eq. (11) into the V, interaction
naturally recovers the u term as written on the right side of
Eq. (27). We can alternatively exploit the identity

Vs
V2 ann]+2

which follows from Egs. (20) and (21) upon dropping terms
that are trivial due to the nearest-neighbor Rydberg blockade,
to recover the u term as written on the left side of Eq. (27).
Indeed, expanding y;, 7; in terms of yg,; in Eq. (28) yields
TT as the leading four-fermion interaction. This analysis sug-
gests that moving along the continuous Ising transition line in
the V, < 0 direction realizes Eq. (10) with increasingly large
u < 0, eventually giving way to a first-order transition con-
sistent with the established phase diagram [11] reproduced in
Fig. 1. Moving along the Ising transition line in the physically
relevant V, > 0 direction instead yields Eq. (10) with increas-
ingly large u# > 0 that disfavors spontaneous mass generation.
Note, however, that u is generically nonzero even with V, = 0
since the chain remains interacting due to nearest-neighbor
Rydberg blockade.

Although uTT has scaling dimension 4 and is therefore ir-
relevant under RG, this interaction still influences the physics
at finite energy density or finite system sizes. For a more
quantitative treatment, we examine the excitation spectrum
versus momentum k for an L = 16 site chain (with periodic
boundary conditions) tuned to the continuous Ising transi-
tion line at various V, values. Black dots in Fig. 4 present
exact diagonalization data for a Rydberg chain at V, = 0.
Accompanying red dots represent simulations for the criti-
cal antiferromagnetic transverse-field Ismg model [Eq. (26)
with J = h,, denoted hereafter by H. FIM] which provides

Z(zy, YT v, (28)
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O Ising @ Rydberg

FIG. 4. Energy spectrum versus momentum for a periodic L =
16 Rydberg chain tuned to Ising criticality with V, = 0. For com-
parison we also show the corresponding spectrum for the critical
antiferromagnetic transverse-field Ising model, which realizes the
noninteracting limit of the Ising CFT with u =0 [Eq. (10)]. As
described in the text, the slight reduction in the Rydberg energies
near the middle of the plot suggests that the critical Rydberg chain at
V, = 0 retains weak four-fermion interactions with # < 0.

an illuminating comparison given that the latter realizes a
free-fermion theory with u = 0. Both the Rydberg chain and
transverse-field Ising model admit a unique ground state |/)
carrying zero momentum and a first excited state |o) that
follows from acting the CFT field o on |I) and thus carries
momentum 7. Here and below the spectrum for HTJF:I;I:/I has
been shifted and rescaled to match the energies of the |I) and
|o) states for the Rydberg chain.

Consider for the moment the noninteracting limit of the
CFT, i.e., with u = 0, realized by HTJFZIK/X[ There, low-energy
excitations about the states |/) and |o) follow simply by
adding an even number of free-fermion modes. Fermions
added to the ground state |I) obey antiperiodic boundary

conditions, yielding momenta quantized to ZT” X (Z + %).
Fermions added to |o) obey periodic boundary conditions
[which stem from Eq. (7)] and instead exhibit momenta quan-
tized to ZT” X Z. Starting from either |I) or |o), adding a pair
of fermions carrying appropriately quantized momenta k; and
ky adds energy v(|k;| + |k2|) and momentum k; + k,, where
positive and negative momenta, respectively, correspond to
right and left movers. Importantly, turning on uTT inter-
actions shifts the excitation energy for counterpropagating
fermion pairs: their energy increases for u > 0 and decreases
for u < 0 by an amount dependent on the chiral fermion
kinetic energies (K., Kg). The energy shift (in first-order per-
turbation theory) for descendants of |) and |o) is

desc. of |I),

(Kp — 1/48)(Kg — 1/48)
OF u{ ’ A desc. of |o). (29)

(KL 4+ 1/24)(Kg + 1/24)

Here K; r are the kinetic energy contributions to a state from
the left- and right-moving fermion modes, in units of 27 v /L.
For instance, the |¢) state (labeled in Fig. 4) contains right-
and left-moving fermions with energies K; = Kg = % and are
thus susceptible to energy shifts oc 0.23u. By contrast, the
states near k = 7 connected to |o) by solid lines in Fig. 4
involve one chiral fermion with unit energy; these states have
(Kr, Kg) = (1,0) or (0,1) and are only very weakly affected
by u. Figure 4 thus indicates that at V, = 0, the critical Ryd-
berg chain retains weak four-fermion interactions with u < 0.

Figure 5, black dots, shows the excitation spectrum for
a critical Rydberg chain with (a) V, = @, (b) V, = 0.25%2,
and (c) attractive V, = —2. Red dots once again correspond
to the critical antiferromagnetic transverse-field Ising model
H{F:lﬁ,[ Comparing the black and red spectra near 0 and =&
momentum in Fig. 5(a), we see that the excitation energies are
enhanced for the Rydberg chain relative to the noninteracting
Ising model, as expected if the repulsive V5 delivers a uT T
interaction with u > 0. In Fig. 5(b) the two spectra agree fairly

EjQ EjQ EjQ
B 9YO BB°.V.%B B 9YY B8Y T Y@  F.O¥iEHT.T.Y
8'°8 68 O O 8 5006 000 © © &  $5M0ogH vi0 8
. . . . 08 . 15 ® o o o o
osive © O & opiee © © o ostios etotoe
) 150

0.2 0.4
0.1 0.2

k/n
0.5 1.0 0.

O Ising Ising 13=0.26 J O Ising
@® Rydberg V,-+0

(a)

@ Rydberg V,-0.25 0

k/n —= k/n
1.0 0.5 1.0

O Ising

Ising 13=0 Ising 13=-0.35J

@ Rydberg V,--0
(©

FIG. 5. Excitation spectrum versus momentum for a periodic L = 16 Rydberg chain at Ising criticality with (a) V,/Q = 1, (b) V,/Q = 0.25,
and (c) V,/Q2 = —1. Overlaid for comparison are the spectra for the critical transverse-field antiferromagnetic Ising model from Eq. (30)
without (red circles) and with (blue diamonds) three-spin interactions, i.e., A = 0 and A3 # 0, respectively. The three-spin interactions produce
TT interactions in the Ising CFT with coefficient u o A3; choosing A3 that best matches the low-energy part of the Rydberg spectrum allows
one to infer the evolution of 7T interactions in the critical Rydberg chain. Blue diamonds were obtained with the optimal A3 and indicate that
the Rydberg chain exhibits four-fermion interactions with # > 0 in (a), u & 0 in (b), and u < 0 in (c), as illustrated by the color coding of the

continuous Ising line in Fig. 1.
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v/Q

V,y/0
-1.5-1.0-0.5 0.5 1.0 1.5

FIG. 6. Fermion velocity v in the low-energy Ising CFT Hamil-
tonian [Eq. (10)] versus V, for a critical Rydberg chain. The velocity
is calculated from the slope of the lines near the |o) state in Fig. 5,
but for a larger system size with L = 28 sites (for which finite-size
effects are negligible).

well, suggesting u ~ 0, while in Fig. 5(c) the Rydberg chain
excitation energies are reduced, as expected for u < 0.
To probe further, we perturb the critical TFIM via

H = Hygy + 43 ) (Xj1ZiZj + Zim1ZiXje). (30)
J

Reference [34] introduced the ferromagnetic counterpart of
Eq. (30), motivated in part by connections to supersymme-
try. Despite the rather different underlying microscopics, this
interacting model and the Rydberg-chain Hamiltonian are
expected to display common low-energy properties. The inter-
action term preserves self-duality, thereby precluding explicit
mass generation, but, upon expanding in terms of low-energy
Majorana-fermion fields, produces a uTT term in the CFT
with u = 51243 [35]. Indeed, for a suitable value of A3, one
recovers the tricritical Ising point. We can thereby quantita-
tively estimate the strength of #7T T interactions in the critical
Rydberg chain by deducing the A3 coupling strength that
yields good agreement between the low-energy spectra for the
two models.

The green data points in Fig. 5 were obtained from Eq. (30)
using (a) A3 = 0.26J, (b) A3 =0, and (c) A3 = —0.35J. In
all three cases the low-energy parts of the spectra indeed
match those of the corresponding Rydberg chain quite well.
As the energy increases, departures become more significant.
The discrepancies can be attributed to additional irrelevant
interactions that we did not consider, e.g., corrections to linear
dispersion. Figure 5 thus substantiates the qualitative argu-
ments provided earlier: Moving along the critical Ising line
engenders uTT interactions with u > 0 along the repulsive
V, > 0 direction and u# < 0 along the attractive V, < 0 direc-
tion, with u vanishing near V, = 0.25€2. The color coding of
the second-order line in Fig. 1 illustrates this dependence.

The dimensionless interaction strength in the Ising CFT
is set by &1 = uh? /v, where A is a momentum cutoff and
v is the fermion velocity. When & becomes of order unity,
the nominally irrelevant four-fermion interactions can induce
nonperturbative effects (as indeed happens upon approaching
the tricritical Ising point). If microscopic terms responsible
for uTT interactions also sharply enhance the velocity v,
then & can remain small even with superficially “strong” in-
teractions. Such a scenario plays out in certain interacting
self-dual Majorana chains reviewed in Ref. [36], for which

dramatic upward velocity renormalization suppresses interac-
tion effects except at extremely strong microscopic fermion
interaction strengths [35]. Downward renormalization of v
would instead promote nonperturbative interaction effects. To
investigate velocity renormalization effects in the Rydberg
chain, we extract v from the lowest-lying excitations near
momentum 5 at various V, values along the continuous Ising
transition line. More precisely, in Figs. 4 and 5, v follows
from the slope of the solid lines emanating from k = m; as
noted above, the associated energies are not influenced by u,
and thus this procedure backs out the velocity present in the
noninteracting part of the Hamiltonian. Figure 6 shows the
resulting velocity v as a function of V,. Over the V, range
shown, v varies by roughly an order of magnitude. Perhaps
most notably, the reduction in v at V, > 0 is expected to boost
uTT interaction effects in the physically relevant repulsive
regime.

V. OPEN RYDBERG CHAINS

A. Critical correlations induced by open-boundary conditions

In previous sections, we either assumed an infinite chain
or (in our numerics) invoked periodic boundary conditions.
Although periodic boundary conditions could be realized by
arranging the atoms in a circle, finite chains with open-
boundary conditions are more naturally accessible to Rydberg
array experiments. Our goal here is to quantify how open
boundaries affect correlations of microscopic Rydberg chain
operators at Ising criticality.

Open boundaries explicitly break the translation symme-
try 7, that distinguishes the CDW and trivial phases; i.e.,
the edges act as Z, symmetry-breaking fields. Thus, only
time reversal 7 and reflection remain as good symmetries.
The latter is site centered (R,) for L odd and bond centered
(R, = Rﬂ;‘l) for L even, leading to a pronounced even-odd
effect in system size as we will see below. This reduction
in symmetry injects considerable nuance into the problem.
Edge effects cause 6; and the field o to acquire a nonzero,
position-dependent expectation value in the ground state even
along the continuous Ising transition line in Fig. 1. More-
over, CFT self-duality changes the boundary conditions and
therefore is broken here. Since this duality swaps ¢ <> u and
sends ¢ — —¢, its breaking implies that ¢ also takes on a
nonzero, position-dependent ground-state expectation value.
The loss of translation symmetry generically renders expecta-
tion values of the fermion kinetic energies 7, T (among other
operators) position dependent as well.

Open-boundary conditions further nonuniversally amend
the link between lattice operators and CFT fields. Under the
appropriate reflection, R, or R), Table I implies that the fields
o, ¢ transform as

\LA! _
Reflection : o) = (1ol = x), (31
e(x) > (L —x).

Enforcing only 7 and reflection symmetries, we obtain the
following generalization of Eq. (11):

nj~crj+co (1Yo e g4, (32)
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TABLE II. One-point and equal-time two-point CFT o and ¢ correlation functions for boundary conditions appropriate for odd L [left

column, labeled (+)] and even L [right column, labeled (—)]. In the second row p(x,y) = [sin(’%)/ sin((22)1?, and in the last row the “c

[P L]

2

subscript indicates a connected correlator, e.g., (e(X)e()) 1y = (€(X)e()) 1) — (X)) 1) (D)) (4)-

CFT correlators for odd L

CFT correlators for even L

o (X)) = (2/sinx)"/B

o(X)o) ) = P+ p~ 2 /(4sinx siny)'/E
£(x)) 4y = 1/(2sinx)

£(X)EY)) (1) = (sinxsiny)/(cosx — cos y)*

(
(
(
(

(a(x)>(,) = COoSx <U(x))(+)
(o(x)o () ) = (I —|cosx —cosyl) (o (x)o(¥),
() = (e()) s, — (N
(e@eM) ) = ((X)e()) (4 — 4sinxsiny

where all coefficients are real and satisfy ¢y, ; = ¢o,7—j41 for
a =1, 0, . Sufficiently far from the edges, these position-
dependent coefficients must tend to uniform values appro-
priate for a translation-invariant system. Here we will boldly
postulate that the ¢, ;’s are uniform throughout the chain and
simply replace ¢, j — ¢, in what follows. Equation (32) then
reduces to the form in Eq. (11); however, ¢; should not be
interpreted as the mean Rydberg occupation number since
o, ¢ take on nonuniform expectation values. To isolate o or
¢ in this case, it is useful to consider variations on Egs. (12)
and (13) that do not reference the (now position-dependent)
mean Rydberg occupation number. In particular, we utilize a
bond-centered CDW order parameter

61 = (1Y (1 = nj) ~2e00 4 (33)
and define
é?—a:?/z =n;+nj ~ 20 + 206 + co(— 1Yo + -+ . (34)

We displayed the subleading 9,0 term since including it
substantially improves agreement with the numerics below.
Note that to isolate ¢ to leading order, we need to consider
é']?j“:‘f/z — 2¢;. With Egs. (33) and (34) in hand, computing
correlation functions in the CFT allows us to back out physical
correlations of microscopic Rydberg-chain operators.

Open boundaries act as Z, symmetry-breaking fields, as
noted above, that impose fixed boundary conditions

fox=0)) = (=" o(x=1L)) #0. (33)

The (—1):*! factor on the right side follows from reflection
symmetry [Eq. (31)]. In Appendix B, we review the CFT
calculation for one-point and equal-time two-point o and ¢
correlation functions subject to fixed boundary conditions; Ta-
ble II summarizes the results. For convenience, the correlators
listed there are evaluated with space rescaled such that the
chain lives on the interval 0 < x < 7. When the positions are
close to the middle of the chain, then the connected two-point
correlators reproduce the periodic lattice correlators to leading
order: (0(x)0 (¥)) (1) = (8x — 8y)~"/* and (e(x)e(y)) () ~
(8x — 8y)~2 where x = 7 +dxandy = 7 + 8y with |8x] < 1
and |8y| < 1 (which can only be achieved in the long chain
limit).

To compare these CFT results with lattice numerics, we
must relate the continuum position x used in the CFT to lattice
coordinates. A subtlety occurs for the leftmost and rightmost
bonds of the chain. They cannot correspond to the positions
x = 0 and 7 since, according to Table II, (o) diverges there.
We therefore augment each end of the open chain with an extra
(ficitious) pair of sites, labeled j = —1, 0 on the left side and

j =L+ 1,L+ 2 on the right, that seed CDW order into the
system from the edges. We park these auxiliary sites into fixed
configurations n_; =1, ng=0 and n.y; =0, np 4o =1 as
illustrated in Fig. 7. Importantly, this assignment preserves
reflection symmetry, and in the V, = 0 limit does not affect
the Hamiltonian for the physical sites. Continuum coordinates
x =0, r are then associated with the outermost bonds of
the enlarged (L + 4)-site system. The physical bond j 4 1/2

(with j =1,..., L — 1) of the chain thereby corresponds to a
continuum coordinate
Jj+1
i =a|——]|. 36
Xj+1/2 N<L+2> (36)

Note that this change of coordinates rescales the CFT fields
in Table II by ¢ — ¢(L%)_A¢ [Eq. (B2)], where A, = §
and A, = 1 for ¢ = o, ¢. This rescaling is necessary for the
coefficients ¢4 with ¢ =1, o, & to asymptote to a constant as
L — oo.

We are now in position to evaluate correlators of micro-
scopic Rydberg operators. Blue data points in Figs. 8 and
9 present 07219, and &%, correlators obtained using ex-
act diagonalization for L =27 (left columns) and L = 28
(right columns) with V, = 0. These lattice results can now
be compared with the CFT results using Egs. (33) and (34)
and replacing x with x;;,, given in Eq. (36); for example,
6]‘?:3‘;‘}2 ~ 2¢,0(xj41/2). Overlaid in gray in Figs. 8 and 9 are
fits to the corresponding CFT formulas with ¢; . , as three fit-
ting parameters, one set for each system size. ¢, is obtained by
fitting to (67719,) in Figs. 8(a) and 8(b) (separately for L = 27
and 28). The same ¢, is used to also obtain ¢; and c, by fitting
to (é?'ﬁ /2> in Figs. 9(a) and 9(b). For the connected two-point
é';ff? /o correlators, we set ¢, = 0 for simplicity since we do

not have CFT expressions for (o¢); we thus do not capture

, j+1
e =\ Ty

@0 00 000 ®
I Jorg+1l L-1 L|L+1-L+2

Physical sites

Tr =T

z=0

“Ye

-1 0

FIG. 7. Physical sites of an open Rydberg chain augmented by
a pair of fictitious boundary sites (red) on each end. Solid (open)
augmented sites are parked into n = 1 (n = 0) states, thereby seeding
CDW order into the chain from the edges. The rescaled boundary
coordinates x = 0 and & in the CFT, respectively, correspond to
the left and right fictitious bonds; the continuum coordinate x;1/,
associated with bond j + 1/2 is then given by Eq. (36).
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<—O']»+J/z ) (_(;_17)?12:1>
0.72
0.70 0.6
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FIG. 8. (a), (b) One-point and (c)—(f) two-point correlators of the microscopic bond-centered CDW order parameter 6}’1‘}‘;2 [Eq. (33)]
for open Rydberg chains at Ising criticality with V, = 0. Panels (e) and (f) display connected two-point correlators. Blue points result from
exact diagonalization of open L = 27 (left column) and L = 28 (right column) Rydberg chains. Gray lines are obtained from the low-energy
expansion in Eq. (33) and the CFT expressions in Table II, with a single fitting parameter ¢, for each L.

the (o ¢) cross terms that are responsible for the zigzagging of
blue data points in Figs. 9(c) and 9(d).

The agreement with CFT predictions is rather striking and
supports the validity of our treatment that approximated the
coefficients in Eq. (32) as position independent. Notice that
edge effects induce O(1) expectation values for both the CDW
order parameter &}’i‘i‘}z and éz’f‘:‘f /o~ As Fig. 10 illustrates for
L = 27, turning on second-neighbor repulsion (V, > 0) in the
open chain further boosts the CDW order parameter and yields
a sharper upturn at the edges. The fits represented by solid
lines nevertheless continue to demonstrate good agreement
between numerics and CFT predictions for both one- and
two-point 6}’:2‘}‘}2 correlators, provided the operators are not
within a few lattice sites of the boundary.

While less physically relevant, it is instructive to explore
the effects of second-neighbor attraction (V, < 0) on open-
chain correlations. Figure 11 shows the evolution of the
microscopic CDW order parameter for L = 27 with increas-

ing second-neighbor attraction. Two trends appear: attraction
suppresses (—6}3‘?{‘}2) throughout the chain and produces a
downturn in the expectation value at the edges. The latter
feature stands in stark contrast to the upturn present both in
our simulations with V, > 0 and in the CFT calculation of (o)
with fixed boundary conditions, suggesting the emergence of
nonuniversal boundary physics.

Revisiting the enlarged (L + 4)-site open chain provides
further insight into this boundary conundrum. We expect that
the L physical sites in the center conform best to fixed-
boundary-condition CFT predictions when one starts from
an enlarged open chain governed by a uniform Hamiltonian
and then freezes the outer auxiliary sites to seed CDW order.
Displaying only the A and V, terms for the first three sites in
the enlarged chain, the uniform Hamiltonian is

Hentarged = —A(n_y +ng +ny) +Von_ing +--- . (37)
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FIG. 9. (a), (b) One-point and (c), (d) connected two-point correlators of the microscopic operator & e
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[Eq. (34)] for open Rydberg

chains at Ising criticality with V, = 0. Blue points are exact diagonalization data for L = 27 (left column) and L = 28 (right column) Rydberg
chains, and gray squares are fits obtained from the low-energy expansion in Eq. (34) and the CFT expressions in Table II. For the fits in (a) and
(b), we use the same ¢, as in Fig. 8 along with two additional free parameters c; and ¢, for each L. For (c) and (d) we use the same ¢, c, fitting
parameters from (a) and (b) but set ¢, = 0 for simplicity; we thus do not capture the oscillatory structure, though the fits nevertheless track the
exact diagonalization data fairly well. In (d), the blue and gray diamonds (squares) are used to specify that (e¢), is negative (positive).

Projection of the auxiliary sites to n_; = 1 and ny = 0 yields
(up to a constant)

Henlarged —> —(A=Vo)ng +---. (38)

When V, = 0, we see that the resulting effective Hamiltonian
for the L physical sites is unmodified by the frozen auxiliary
sites as noted earlier. When V, # 0, however, the outermost
frozen auxiliary sites shift the detuning on physical sites 1, L

~bond ~bond
)
o e 0.100
l® [ )
09F 0.010
08k S 7 0.001
L -4
0.71 10
w j

(a)

from A to A —V,. This line of reasoning suggests that the
CFT analysis more naturally describes a chain with nonuni-
form detuning given by A insites 2,...,L—1and A -V,
in sites 1, L. As one sanity check, simulations of a chain with
uniform detuning (as we carried out above) would overshoot
the optimal A in the outer sites for V, > 0 but undershoot
the optimal A for V, < 0. Figure 1 implies that overshooting
and undershooting moves the edges locally toward the ordered

~bond

<O’mid —d/‘Z T mid +d/2>6

U [T S T SN T T S ST S SN (N TN T T SO (N S T S T | d
5 10 15 20 25

(b)

A bond

FIG. 10. (a) One-point and (b) two-point connected correlators of 6719, [Eq. (33)] for an open L = 27 Rydberg chains at Ising criticality
with varying second-neighbor repulsion V, > 0. Dots are exact diagonalization data while lines are fits to CFT predictions, similar to Fig. 8,
with a single free parameter ¢, for each V,. Second-neighbor repulsion boosts the one-point correlator and produces a sharper upturn at the
edges, but the data nevertheless continue to qualitatively (and for the most part quantitatively) track CFT predictions.
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FIG. 11. Exact diagonalization results for (—=672}9,) [Eq. (33)]
in an open L = 27 Rydberg chains at Ising criticality with varying
second-neighbor attraction V, < 0. The downward curvature ap-
pearing at V, < 0 disagrees qualitatively with CFT predictions for
(o), signaling nonuniversal boundary physics induced by second-
neighbor attraction. These boundary effects can be offset by
modifying the detuning on the outermost sites; see main text and
Fig. 12.

and disordered phases, respectively; one would then expect
enhanced edge CDW order for V, > 0 but suppressed edge
CDW order for V, < 0, precisely as seen in Figs. 10 and 11.

For additional support, Fig. 12 (dots) presents one-point
679, and &% ) correlators for L =27 with detuning for
sites 1, L shifted to A — V,. The characteristic upturn in the
CDW order parameter predicted by the CFT is now evident
for both repulsive and attractive V,. Moreover, the numerical
data can be reasonably fit to the CFT for both signs of V;
as demonstrated by the solid lines [Fig. 12(a)] and squares
[Fig. 12(b)]. Still better fits may be possible if one treats the
detuning on sites 1, L as adjustable parameters, though we will
not go down that route for the sake of simplicity.

Finally, inspection of Fig. 12(b) reveals a curious fea-
ture: Upon changing V, from attractive to repulsive, the
edge-induced é';f‘ﬁ /» expectation value flattens considerably
[contrary to the CDW order parameter in Fig. 12(a)]. In fact
at V,/Q2 = +1 the dominant source of spatial variation by far
originates from the ¢, (—1)7/ 3,0 contribution to Eq. (34) rather
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FIG. 13. Optimal ¢, and c, fitting parameters (as obtained in
Fig. 12) for an open, critical L = 27 Rydberg chain with detuning
shifted from A — A —V, on sites 1 and L. Whereas ¢, varies
modestly over the V,/Q window shown, ¢, varies by more than a
factor of 30. The latter variation relates to the flattening of the curves
in Fig. 12(b) as V, varies from attractive to repulsive, and reflects
four-fermion interactions in the Ising CFT (Sec. IV).

than the more relevant 2c.¢ piece. For a deeper look, Fig. 13
plots the optimal ¢, and c, fitting parameters for second-
neighbor interaction ranging from V,/Q2 = —1to V,/Q2 = +1.
While ¢, varies modestly over this range, c, changes by more
than a factor of 30. Thus, second-neighbor interactions ef-
fectively freeze-out the contribution from the CFT field ¢ for
V> > 0 but enhance its contribution for V, < 0.

This behavior arises naturally from the four-fermion inter-
actions [uTT in Eq. (10)] analyzed in Sec. I'V. This analysis
suggests that the one-point ¢ correlator presented in Table II
would be reduced by four-fermion interactions generated
with second-neighbor repulsion but enhanced with second-
neighbor attraction. Namely, as expressed on the right side of
Eq. (27), uTT interactions clearly either promote or suppress
the one-point (g) correlator induced by fixed boundary con-
ditions in the CFT, depending on the sign of u. Suppose that
(&) exact denotes the exact correlator including uTT effects. Let
us further assume that (€)exact = K {€)free, Where (€)gee 1S the
result from Table II that neglected interactions, and « is a scale
factor that varies along the continuous Ising line. Equation

~bare
(€ )

(®)

7112 correlators for an open, critical L = 27 Rydberg chain with detuning shifted from A — A —V;

on sites 1 and L. Dots represent exact diagonalization data; lines in (a) and open squares in (b) are fits to CFT predictions, similar to Figs. 8—
10, with three fitting parameters (c,, ¢;, ¢.) for each V,. (a) Demonstrates that the shifted detuning on the outermost sites counteracts the
nonuniversal boundary effects visible in Fig. 11, resulting in upward curvature for all V, shown. Reasonable agreement with CFT predictions
then follows in both (a) and (b). The data in (b) flatten considerably upon varying V, from attractive to repulsive; see also Fig. 13.
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(34) would then ideally yield

Ab: ~
(8% 2) — 2¢r = 264 (&) exact

= ZCSK <8)free
= 26‘2” (&) free- (39)

Crucially, the effective parameter ¢ extracted based on a

fit to (&)fee, as we pursued in this section, implicitly con-
tains the scale factor « reflecting interaction effects. (In the
notation from this paragraph, Fig. 13 actually displays ccff.)
The dramatic evolution of (é?fﬁ /2) observed in our open-chain
simulations thus can be viewed as an interaction effect in the
effective CFT description given the variation of u with V,

along the Ising transition line.

B. Locating the critical point

In this section, we address how one could experimen-
tally determine the critical detuning A, to reach criticality.
In classical simulation of critical systems, critical points are
typically located via a scaling collapse or curve crossing of
some rescaled observable. For systems with periodic bound-
ary conditions, popular observables include a susceptibility,
correlation length, or Binder cumulant. That is, one of these
observables is plotted versus a tuning parameter (e.g., temper-
ature or the detuning A) for different system sizes; the data
are then rescaled such that it collapses (for a range of tuning
parameters) or crosses (at the critical point) for different large
system sizes [37].

For open Rydberg chains, the edges explicitly break
translation symmetry, yielding a charge density wave order
parameter that is pinned near the boundaries and slowly de-
cays into the bulk as seen in Fig. 10. It is therefore useful to
consider a scheme that is optimized for open Rydberg chains.
We propose to locate the critical point by measuring a curve
crossing of an appropriately rescaled order parameter at the
midpoint of an odd-L chain, (61"’7;‘1). [For even-L chains the
order parameter vanishes by symmetry in the center; recall
Fig. 8(b).] This approach leverages translation symmetry-
breaking by the boundaries as a feature: it allows us to locate
the critical point using a simple one-point correlator that is
diagonal in the number basis and thus easy to measure.

For large odd-integer chain lengths L — oo, the midpoint
correlator scales at criticality as (6575‘“1) ~ L~18 A crude
curve crossing can therefore be obtained from (6;’%“1) L'/8,
This result follows because the leftmost nontrivial bond, be-
tween the virtual site j = 0 and physical site j = 1, is fixed
to an O(1) value at the boundary. From Table II, the CFT
correlator for this bond is (o (x1/2)) = (2/ sin xl/z)l/g. A more
accurate curve crossing therefore can be obtained from the

3Technically, cgff = c.k varies with V, due to a combination of

changes in « and c.. Variation in ¢, can have a trivial origin unrelated
to interactions, e.g., the lattice operator é_‘;ﬂr’f » can have a smaller
overlap with the CFT field ¢ as V, increase simply due to curvature
in the phase boundary of Fig. 1. We expect, however, that the latter
effect is O(1), in contrast to the dramatic change in ¢ (again, by

more than a factor of 30!) evident in Fig. 13.

Vol =0
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L+2 .9
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-1.0

(d)

FIG. 14. The midpoint correlator from Eq. (40) for increasing
odd-integer length L versus detuning A for open Rydberg chains
with (a) V, =0 and (b) V, = Q. The correlator is rescaled so that
the curves cross at the critical detuning A, (vertical dashed lines).

following rescaling:
(o) sin ™8 (xy ), (40)

where x1, = LL+2 from Eq. (36). In Fig. 14, we verify that
the curves of different odd-L chains with V, > 0 indeed cross
near the critical point (vertical dashed lines) calculated from
scaling collapses on periodic chains; notably, the crossings
hold for both (a) V,/22 = 0 and (b) V,/2 = 1. We consider
only length increments by 4 (rather than 2) because of a very
slight “even-odd” effect between L =1 and L = 3 (mod 4)

chain lengths.

VI. APPROACH TO TRICRITICALITY

Figures 5(c) and 12 revealed a pronounced deformation
of the critical Rydberg chain spectrum induced by second-
neighbor attraction (V5 < 0) and the accompanying uTT
interactions in the CFT. As we elucidate below, this defor-
mation reflects proximity to the tricritical Ising (TCI) point
in Fig. 1. Tracking the spectral evolution upon approaching
tricriticality yields useful insight into the relation between
Ising and TCI theories, both at the CFT and microscopic
levels.

The TCI point is described by a ¢ = 17—0 CFT with six

primary fields of chiral dimensions O, %, %, %, %, and %
[38,39]. Which combinations of left- and right-moving fields
are realized in the low-energy limit of a critical lattice model

varies with model. We find that that the combinations of right
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TABLE III. Correspondence between tricritical Ising (TCI) and
Ising CFT fields, along with their scaling dimensions. That is, upon
moving along the continuous Ising line in Fig. 1 towards the TCI
point, Ising fields in the right column evolve into the TCI fields in
the same row of the left column. This correspondence enables us
to obtain a partial dictionary linking microscopic Rydberg operators
and tricritical Ising CFT as described in the main text.

TCI Ising

A, = 3/40 A, =1/8
A, =1/5 A, =1

A, =7/10 Ay =172
Ay =7/8 Ag gese = 1/8+2
Ae’ =6/5 ATT=4
Ag=3/2 AV/desc:l/z'i_1

and left movers appearing in the Rydberg chain must have
spins, given by the difference in right- and left-moving scaling
dimensions, that are either integer (yielding local bosons) or
half-integer (yielding fermions). Table III, left column, lists
the scaling dimensions of some of those we identify in the
finite-size spectrum below. There are four spinless bosonic
fields listed there. The o field is the analog of the Ising
spin field, with dimension % = % + %. The o’ field is a
less-relevant operator also breaking the Z, symmetry, and
is of dimension % = ]7—6 + ]lé. The field ¢ of dimension % =
% + % is the lowest-dimension nontrivial operator invariant
under the Z, symmetry. Perturbing by it moves away from
the transition lines in Fig. 1, as it is odd under the CFT self-
duality. The operator &’ of dimension g = g + % is self-dual
and Z, invariant, so perturbing by it drives the system along
the transition lines, with different signs corresponding to the
different directions. The fermionic field v is the TCI analog of
the Ising fermion, but a key distinction is that it is not a purely

chiral operator, being of dimension -~ = & + % The other

10 — 10
fermionic field G of dimension % is purely chiral or antichiral,
although presumably what is observed on the lattice is a sum
of the two. [See Ref. [34] for a more in-depth discussion
for the Hamiltonian in Eq. (30).] The chiral and antichiral
parts generate the left-and right-moving supersymmetries in

the CFT.

A. Connection to Ising CFT

One of the many profound consequences of conformal
symmetry in two space-time dimensions is that the spectrum
of the associated 1D quantum Hamiltonian is determined ex-
actly by the scaling dimension of the operators creating the
states. This fact allows a direct probe of the CFT from the
lattice. Namely, for a length-L periodic chain described in
the low-energy limit by some CFT with central charge c, the
energies E, are given approximately by [30,40,41]

E L+2”v(A C) (41
n = € —— n— T~ )

L 12
The universal quantity A, is the scaling dimension of the CFT
field that yields the corresponding energy eigenstate (labeled
by n) when acting on the ground state. (A, should not be
confused with the detuning A in the Rydberg Hamiltonian).

The other quantities are nonuniversal: ey is an energy density,
while v is a velocity. A critical Rydberg chain at V, =0
conforms well to the ¢ = % Ising CFT with only small uTT
corrections to the energies for finite system sizes, as shown in
Fig. 5(b). Equation (41) allows us to associate energy levels
in that limit with the constituent Ising CFT fields. At the TCI
point [Eq. (3)] occurring at V,/Q2 ~ —1.67, Eq. (41) instead
relates the energy levels to tricritical Ising fields. As V,/2 is
tuned from O to the TCI point, for finite-sized systems the
uTT corrections increase and there is a crossover between
the Ising and TCI CFT energy-level predictions. Monitoring
the energy levels for the finite-sized critical chain as V, varies
from O to the TCI point thereby reveals the mapping between
fields for the two CFTs.

In particular, we track A, as a function of V, by computing
the energy levels using exact diagonalization and then fitting

to Eq. (41). For the central charge, we set ¢ = % for all V,
7

along the continuous Ising line but set ¢ = 15 exactly at the
TCI point. The constants v and ey depend nonuniversally on
V,, but we can determine both using a pair of energies with
known A,. For the first energy we choose the state with
momentum k£ = 0 and dimension A = O for even L; for the
second we choose the k = w — 37 /L state with A = % for
odd L. That is, we find v and ¢( such that the lowest-energy
state for those momenta and system sizes have the correspond-
ing A, value. This choice is convenient since both the Ising
and TCI theories exhibit fields with dimension 0 and %, hence,
the values of A, for the above pair of states can (and do)
evolve trivially as the system marches toward tricriticality.

Figure 15 shows the resulting values of A, versus momen-
tum for (a) L = 28 and (b) L = 27, with V, values ranging
from O to the TCI point; Fig. 16 displays the L = 28,k = O en-
ergies for additional clarity. At V, = O (purple) one can clearly
identify the Ising primary fields I, o, ¢ as well as their de-
scendants. Similarly, at tricriticality (red) one can identify the
fields from the left column of Table III and their descendants,
in agreement with those found in Ref. [30]. Data points at
intermediate V, indicate that the fields morph into one another
as follows (and summarized in Table III): The o, ¥, and &
fields from the ¢ = % line respectively evolve into o, 1, and ¢
from the TCI theory, evading a potential notational nightmare.
The Ising field 7T evolves into the TCI field &’. Notice that
the former irrelevant perturbation thus becomes relevant in the
TCI theory, as expected given that accessing the TCI point
requires fine tuning two relevant parameters rather than one.
Finally, the TCI fields o and G evolve from descendants of o
and v in the Ising CFT.

B. Lattice operators

The above Ising-TCI dictionary allows us to identify mi-
croscopic incarnations of some of the TCI fields. Precisely,
the lattice operators that map onto the Ising fields o (and
its dual w), &, and ¥ yield the corresponding TCI fields
when couplings are tuned to the TCI point [Eq. (3)]. Fig-
ures 17(a)-17(d) present correlators of these lattice operators
evaluated at tricriticality for an L = 30 chain with periodic
boundary conditions. Figures 17(a), 17(b), and 17(c), respec-
tively, correspond to the bond-centered CDW order parameter
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FIG. 15. Rescaled energy spectrum A, from Eq. (41) versus momentum along the critical Ising line, starting from V, = 0 (long purple
bars) and terminating at the tricritical Ising (TCI) point V, = V,/! &~ —1.67 (short red bars). See text for how we fix parameters in Eq. (41).
The data were obtained from exact diagonalization of periodic Rydberg chains with (a) even length L = 28 and (b) odd length L = 27. Since
A, is the dimension of the CFT field associated with a given energy level, these plots reveal how Ising CFT fields morph into TCI fields upon
approaching tricriticality, leading to the correspondence summarized in Table II1.

A bond

6%, [Bq. (33),* 2; [Eq. (17)], and &1, [Eq. (13)]

sions A, = Ay, = f—o for Figs. 17(a) and 17(b) and A, = %
These cases confirm the power laws, with scaling dimen-

for 17(c), expected from the associated ¢ = 17—0 fields. Fig-

effect that muddies somewhat the power-law correlations arising
from the ¢ = % o field.

“We show results for the bond-centered CDW order parameter
rather than Eq. (12) since the latter exhibits a pronounced even-odd
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FIG. 16. Same as Fig. 15(a), but versus coupling and only show-
ing k = 0 data. This view illustrates that the Ising fields associated
with A;7 =4 and A, = 3, respectively, evolve into TCI fields asso-
ciated with A, = 2 and A, =2+ 1/5.

ure 17(d) presents (1')70T vaj) [Egs. (20) and (21)], which we
predict displays power-law correlations with scaling dimen-
sion Ay = % associated with the ¢ = ]7—0 Y fermion field.
Here the data are less conclusive, however, presumably due
to finite-size effects. We speculate that o’ and G appear as
subleading terms in the low-energy expansion of 6}’?‘}‘}2 and
Yj» 7j» though we will not attempt to pinpoint their lattice
counterparts.

The dimension-g CFT field ¢’ corresponds to a perturba-
tion that moves the chain away from the TCI point and into an
adjacent part of the phase boundary in Fig. 1. Since the exact
first-order line is known from integrability [recall Eq. (4)], we
can precisely determine a lattice operator with ¢’ as its leading

~bond  ~bond

low-energy contribution. Consider first

(1
&) = —nj+ (n))

Vs
+ | — (mj_1hjy1 — (nj_1njir)), (42)
A )y

where

~ 0.917 (43)

W\ 9+5V5
A Jpep 22

is the derivative of Eq. (4) evaluated at the TCI point. The
sum »_ j 531) encodes the proper ratio of detuning and second-
neighbor interaction that nudges a tricritical Rydberg chain
into the first-order line. Accordingly, the leading slowly vary-
ing part of é;l) is ¢’. The expansion of & i also, however,
contains an oscillatory (—1)/c term involving a field with
much smaller scaling dimension. This term does not con-
tribute to the sum, but will dominate correlation functions of
the local operator. We can distill this unwanted term away by
coarse graining via

(2= 16 +52) @
The expansion of this coarse-grained operator, however, in-
volves an oscillatory (—1)/9,0 term, and even with the extra
derivative, 9,0 still has a smaller scaling dimension than &’.
An additional coarse-graining step is thus needed to to isolate
¢’ as the leading contribution, namely,

o 122 A N
&= 32 p 8 ) ~eee' o (45)

(& 410

« 6j—2/5
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FIG. 17. Correlation functions of various microscopic operators obtained from exact diagonalization of a periodic L = 30 Rydberg chain

tuned to the tricritical Ising (TCI) point. (a), (b), (c), (e) Verify power-law scaling of the microscopic operators &

5bond 1, 2, and &', respectively

defined in Eqs. (33), (17), (13), and (45), predicted by our mapping to ¢ = % CFT fields. (d) Presents correlations for lattice operators defined

in Egs. (20) and (21), which are predicted to map onto TCI fermions with dimension A, =

|7—0; here the data do not clearly exhibit such

power-law behavior, possibly due to finite-size effects. In the horizontal axes, 4 j and §. j are defined as in Figs. 2 and 3.
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for some nonuniversal ¢, coefficient. Figure 17(e) demon-

strates that é’] indeed exhibits power-law correlations with

scaling dimension g, in line with this expansion. Although the
coefficient of the power-law fit is small, we have verified that
the coefficient does not significantly depend on system size
for any of the power-law decays in Figs. 2, 3, or 17.

VII. DISCUSSION

Motivated in part by near-term experimental prospects,
we have developed a detailed microscopic characterization of
Ising criticality in Rydberg chains. One of our main results
was constructing a set of lattice operators that yield bosonic
CFT fields o, u, e and fermionic CFT fields yg,. as the
leading contribution to their low-energy expansions. Devising
microscopic counterparts of the disorder field u and fermions
yr/1 Was particularly nontrivial given the nononsite nature of
the relevant Z, symmetry combined with the lack of exact
fermionizability for the Rydberg chain Hamiltonian.

This dictionary enables CFT results to be readily translated
into measurable predictions involving physical microscopic
Rydberg operators. These predictions become particularly
clear cut for Rydberg arrays defined on a ring, as real-
ized in Refs. [42,43], thereby emulating periodic boundary
conditions: two-point correlation functions of microscopic
operators yield power laws associated with the leading CFT
field in their expansion. Such measurements would directly
reveal the field content of the CFT and the associated scaling
dimensions, arguably constituting a major achievement for
quantum simulation.

Site-resolved measurements of the Rydberg occupation
numbers n; would suffice for backing out correlations of the
microscopic operators G; (or 6;’};1}‘}2) and &;4,> that map to
CFT fields o and ¢, as these operators are local and diagonal
in the n; basis. Correlation functions of the nonlocal, off-
diagonal operators fi; and y;, #;, which map to CFT fields p
and yg,r, could be measured using the classical shadow tech-
nique [44]. This technique involves making measurements in
the occupation-number basis after applying a random unitary
evolution [44,45], from which the desired correlation func-
tions can then be calculated.

Due to edge effects, linear Rydberg chains exhibit more
nuanced critical behavior that we nevertheless showed could
also be captured, with reasonable accuracy, using results from
Ising CFT subject to fixed boundary conditions. Even one-
point correlators are rich here. Translation symmetry breaking
by the boundaries induces a nontrivial ground-state expecta-
tion value of the charge density wave order parameter 6}91'{‘/‘2,
which decays (slowly) into the bulk of the chain with a spatial
profile governed by the CFT. In Sec. VB, we showed how
this edge effect can be utilized to experimentally determine
the location of the critical point. We further argued that the
expectation value of the lattice operator é‘,’f‘ﬁ /» manifests four-
fermion interactions in the Ising CFT that can be tuned in both
sign and strength by moving along the continuous Ising line in
Fig. 1. Specifically, these interactions produce an effective en-
hancement (with attractive V,) or suppression (with repulsive
V,) of contributions to the expectation value arising from the
CFT field ¢. This effect is pronounced even if one restricts to
the physically natural V, > 0 regime (recall Fig. 13) and can

be probed by tracking the characteristic flattening of éb’f‘f 1’
[Fig. 12(b)] upon accessing the Ising transition at progres-
sively larger V, /2 values.

Realizing these predictions in practice requires not only
tuning Hamiltonian parameters to criticality, but also initializ-
ing into the associated low-energy subspace. The most natural
way of preparing target states in Rydberg experiments is to
begin with a Hamiltonian whose ground state(s) can be easily
prepared and then adiabatically deform to the desired final
Hamiltonian [8]. In our context, one can initialize a Rydberg
chain with all atoms in the n; = 0 configuration, which is the
ground state for H [Eq. (1)] with A <0, 2 =0, and V, > 0;
critical states can then be prepared by adiabatically tuning €2
and A. Since the gap at criticality scales like the inverse chain
length, maintaining adiabaticity requires evolution times pro-
portional to system size. Our CFT predictions could be used to
benchmark how well the Rydberg quantum simulator prepares
critical ground states.

The V, < 0 regime may be realizable using an alterna-
tive adiabatic preparation scheme. Suppose that we again
initialize the n; =0 state, which is the highest-energy
Rydberg-constrained (n;n;4; = 0) state of H with A >V, >
0 and 2 = 0. This state is also the ground state of the
Rydberg-constrained H* = —H with A®f = —A <0 and
fof = —V2 < 0. One could then prepare a critical state with
V5T < 0 by adiabatically tuning A and Q. However, the Ry-
dberg constraint then becomes a dynamical constraint due to
Vet~ 26V < 0 being large and negative. That is, H° has
lower-energy states (than the desired critical state) that violate
the Rydberg constraint, but the evolution into these unwanted
states is slow in the VT — —oo limit. More work is necessary
to determine the validity of this approximation.

Our work additionally paves the way to more forward-
looking investigations of criticality in Rydberg chains. For
instance, it would be interesting to develop a similar micro-
scopic understanding of other quantum critical points in the
phase diagram. Real-time tunability further suggests tantaliz-
ing opportunities for exploring nonequilibrium dynamics in
CFTs. Finally, one can exploit insights gained here to study
two-dimensional arrays assembled from coupled critical Ry-
dberg chains, which we will pursue in a sequel to this work
to uncover fractionalized phases relevant for fault-tolerant
quantum computation.
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APPENDIX A: OPERATOR-CFT FIELD MAPPING IN THE
TRANSVERSE-FIELD ISING MODEL

Here we briefly review the standard mapping between mi-
croscopic spin operators and CFT fields in the transverse-field
Ising model:

H=>"(JZ;Zj; — hX;). (A1)
J

In terms of microscopic order and disorder operators
6; =12, (A2)

fjp=...X;2X;1X;, (A3)
exact microscopic Majorana fermion operators follow as
V= %i[ﬂj» 6il=...X;2X;1Y},

o (A4)
Iﬂj = lelﬂ'_ijC =.. .Xj_2Xj_1Zj.

Here R, denotes x — —x reflection symmetry and C = [ | iXj
implements the Ising spin-flip symmetry. We have written
the middle parts of Eq. (A4) in a way that parallels our
definition of microscopic operators that map to low-energy
fermions in the Rydberg model; recall Eqgs. (20) and (21).
The Hamiltonian expressed in terms of Majorana fermions
becomes quadratic,

H = "(il¥11 — higy; ), (A5)
J

and can therefore be solved exactly at any h/J. At the Ising
transition occurring when h = J, the microscopic operators
above relate to Ising CFT fields according to the dictionary

6 i~ o, i j M,

Vi~ yL+vre Wi~ vL— YR (A6)

APPENDIX B: OPEN-BOUNDARY CFT CALCULATIONS

This Appendix sketches the calculation of the open-
boundary CFT correlation functions listed in Table II. After
rescaling space so that the chain lives on the interval 0 <
x < m, the relevant space-time (7,x) populates an infinite

strip, with imaginary time t running from —oo to +0co. We
label the boundary conditions for the infinite strip, specified
by Eq. (35), as (+) for odd L and (—) for even L. We map
the infinite strip to the upper-half plane via the conformal
transformation

THix=z— w(i) =¢ (B1)

illustrated in Figs. 18(a) and 18(b). Under this transformation,
the boundary lines at x = 0 and =, respectively, map to the
positive and negative real axis. Equation (35) then dictates
that the real axis exhibits a homogeneous boundary condition
(which we label [+]) for odd L but a piecewise homogeneous
boundary condition with a jump at x = 0 (which we label [—])
for even L. In two dimensions, conformal invariance requires
that correlation functions transform under Eq. (B1) as

(@) Bc) = 1w'(@)* (dw(2))pe;
=" (¢p(e"™)) ¢y »

w'(z1)]* [w'(z2)]

X (@ (w(z1))p(w(z2))) ey

— e(f1+f2)A¢ <¢(e'f1+ixl )¢(en+ix2 ))[BC] 3
(B2)

(#(z1)¢P(22)) B0)

where A is the scaling dimension of field ¢. Subscripts (BC)
and [BC] indicate that the correlator is evaluated with bound-
ary conditions applicable for the infinite strip and upper-half
plane, respectively.

The n-point correlation functions (¢(z1)...®(z,)) on the
upper-half plane are the same as the 2n-point correlation func-
tions (p(z1)P(Z1) - - - Pu(24)Pn(Z,)) on the infinite 2D plane
[see Figs. 18(b) and 18(c)] [31]. Results for the Ising CFT
with fixed homogeneous and piecewise homogeneous bound-
ary conditions appear in Ref. [46]. For fixed homogeneous
boundary conditions appropriate for odd L, one-point and
two-point o correlations read as

(0(@))14) = 2" [2Im(z)] "%,
(V4 + ,0’1/4)1/2 (B3)

(o(z1)o(22)) 4 = [Im(z))Im(z2)]'/8

with

- 12
21— 22

p(z1,20) = (B4

i1 —22
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General n-point ¢ correlations take the compact form

(ez)e(z2) ... @)y = 1" Pf( (BS)

W, — wb>’
where Pf denotes the Pfaffian of the 2n x 2rn matrix de-
fined using (wy, ..., wa,) = (21,21, - - - » Zn» Zn)- (The Pfaffian
equals a square root of the determinant.) Correlations for
piecewise homogeneous boundary conditions appropriate for
even L are related to those above as follows. For spin fields,

Re(z)
|zl
(o(z1)0 (Zz)>[—]

(0@ =

(G (Z)) [+] >

1 1
= [Re(lez) + =lzi — 22l(lz1 — 22| — |21 — Zzl)}
|z122] 2

x (0 (z1)o(z2))47 » (B6)

while defining w; = w; for j < 2n along with wy,4+; = 0 and
Wapt2 = ¢ yields

1
(e(z)e(z2) . o)y = 1" Jim ¢ PF(———). (BY)
{00 w

a b

Equations (B2) allow extraction of correlation functions on
the original infinite strip; for instance, we obtain

1/8
o+ = e, = (=) ®@8)
(+) [+] sinx
and similarly find the one- and equal-time two-point corre-
lators provided in Table II. For brevity in Table II, we set
7 = 0 and abuse the notation to write, e.g., (0 (x))4, instead
of (o (T +ix)) )
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