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Abstract

We extend the damped Zaremba-Kohn model (dZK) for long-range dispersion interaction between a molecule and a planar
surface [J. Tao, H. Tang, A. Patra, P. Bhattarai, and J. P. Perdew, Phys. Rev. B 97, 165403 (2018)] to molecules adsorbed on
a curved cylindrical surface, and employ this extended model as an additive correction to the semilocal density functionals
PBE and SCAN. The resulting PBE-vdW-dZK and SCAN-vdW-dZK are applied to two systems, NHz and NO, molecules
adsorbed on a single-wall carbon nanotube (CNT), for calculations of binding energies and equilibrium distances. For
comparison, the results from vdW nonlocal functionals, such as SCAN+rVV10 and PBE+rVV10, are also presented. The
binding energies from PBE+rvVV10, SCAN+rVV10, PBE-vdW-dZK, and SCAN-vdW-dZK are about 70-115meV for the
system of CNT+NH3 and 300-500meV for the system of CNT+NO,. The results from PBE-vdW-dZK and SCAN-vdW-dZK
are closer to each other than those from PBE+rVV10 and SCAN+rVV10 are. The relatively closer results from PBE-vdW-
dZK and SCAN-vdW-dZK indicate the consistency of our developed vdW-dZK model for cylindrical surfaces. All methods,
including PBE, SCAN, PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and SCAN-vdW-dZK, give approximately the same
binding energy differences between two adsorption configurations (types I and II) for the two systems. This implies that the
two adsorption sites have approximately the same adsorption stability. The exponent of the vdW interaction power law from
our vdW-dZK model for the two systems is about 0 at short distance, largely due to the damping factor, and tends slowly to
—4 ~ — 4.5 at distances D about 20-50 A. This feature is very similar to the one calculated with random-phase approximation
and renormalization group approaches, supporting the applicability of our methods. Our developed vdw-dZK method provides
a highly efficient and reliable method for large systems with cylindrical surfaces, such as vdW interactions with nanotubes.

INTRODUCTION

van der Waals (vdW) interactions are considered to be only a small contribution to the total energy
[1, 2]. However, they are a key factor in describing the binding properties in a majority of molecular
systems and materials. Although vdW interaction generally includes all intermolecular interactions, it
more specifically (and everywhere here) refers to the London dispersion interaction [3,4], a universal
interaction between any pair of objects made of electrons. vdW interactions are strongly nonlocal,
extending to distances exceeding 10 nm (or 100 A) in nanoscale materials [5]. London-dispersion-based
vdW interaction can be negligible in most solid systems; however, it has non-negligible effects in alkali
metals [6], and plays a significant role in molecular complexes, molecular crystals, layered materials,
surface adsorptions, and many biosystems. Its influence ranges from drug binding in proteins and double-
helix stability in DNA [7] to pedal adhesion in geckos [8,9] and cohesion in asteroids [10,11]. While the
importance of understanding and modeling vdW interactions in realistic systems can hardly be
overemphasized, our ability to accurately model vdW interactions from first principles is severely
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impeded by the high computational cost of the high-level methods. The adiabatic connection fluctuation-
dissipation (ACFD) theorem [12,13], or (after simplifying the interacting density response function) the
random phase approximation (RPA) [14,15], plays a central role in understanding the exact treatment of
vdW interactions. However, the literature clearly lends support to the view that the ACFD or RPA based
methods are not computationally efficient for large systems with over several hundreds of atoms per
supercell. Therefore, many more efficient approaches (DFT-vdW) have been developed within the
framework of density functional theory (DFT), as long-range additive corrections to semilocal
approximations to the density functional for the exchange-correlation energy. These include the vdW-DF
family [16-22], VV10 (Vydrov and Van Voorhis) [23] and rVV10 [24], DFT+D series [25, 26], and
Tkatchenko-Scheffler (TS) methods [27-29]. These broadly support the view that DFT-vdW combined
methods are perhaps one of the most efficient ways to include vdW interactions.

Carbon is a remarkable element showing a variety of stable forms [30] ranging from 3D
semiconducting diamond to 2D semimetallic graphite to 1D conducting and semiconducting carbon
nanotubes to 0D fullerenes, which show many interesting properties. Single-walled carbon nanotubes
[31] (CNTs) are promising materials and building blocks for future nanoelectronics [32-34], due to their
large surface area to volume ratios, unique electronic properties, as well as high chemical and mechanical
stabilities.

Kong et al. [35] established a connection between the electrical conductivity of single-walled
CNTs and their exposure to gaseous molecules such as NO2 and NHz. Inspired by their work, Chang et.
al. [36] carried out a detailed study of the adsorption of NH3 and NO> on CNTs. They emphasized
designing the geometry and computing the binding energy, equilibrium distances, and charge transfers.
However, they only took the local density functional (LDA) [37] into consideration and implemented
double-numerical basis functions (DND) to compute the binding energies and equilibrium distances.
Unfortunately, LDA does not correctly capture the medium and long-range interactions, and therefore
the functional approximations needed to be modified. This realization motivated us to investigate the
binding energies and equilibrium distances using GGA and meta-GGA functionals, i.e., Perdew-Burke-
Ernzerhof (PBE) [38] and the strongly constrained and appropriately normed (SCAN) meta-generalized
gradient approximation (meta-GGA) [39].

A natural question arises regarding the vdW interaction relating to nanotubes: to what extent does
the vdW energy expression change from a flat to a cylindrical surface? Emig et al. [40], starting from the
path integral representation, derived the exact Casimir force between a plate and a cylinder. They found
the force has an unexpectedly weak decay at large plate-cylinder separations, due to transverse magnetic
modes. Rajter et al. [41] derived the formulas of vdW interactions for plate-cylinder, cylinder-cylinder
systems, based on the Lifshitz theory. Starting from the vdW interaction between two separated semi-
infinite half spaces, they then treated the half space as a composite of cylinder bundles and derived the
vdW interactions for plate-cylinder and cylinder-cylinder systems. Their formulas can apply to systems
made of metallic, semiconducting, and dielectrically isotropic or anisotropic materials, such as
semiconducting or metallic carbon nanotubes. In general, vdW interactions are remarkably sensitive to
the geometry and electronic structure of a given system. In this work, by using classical electrostatics
starting from a dipole outside a cylindrical surface, we put forth a derivation of an expression for vdW

Page 2 of 20



energy between a particle and a cylinder. The particle-cylinder system is a prototype for molecules
adsorbed to nanotubes. By using the developed formula, we compute the binding energies and
equilibrium distances using our vdW model for NO> and NH3 molecules adsorbed on CNTs. The present
work is an extension of our developed damped Zaremba-Kohn model (vdW-dZK) model, which starts
from a formula for the vdW interaction of a distant atom with a planar solid surface [42], both with
known properties, damps this formula at short range, and then treats an adsorbed molecule or atomic
layer as a collection of renormalized atoms. The vdW-dZK model has previously been successfully
applied to study the physisorption of graphene and thiophene on metals [43-45] and graphene adsorbed
on layered materials [46]. We also compare our results with GGA and meta-GGA combined with rVV10
[23, 24]. In the present work as in other DFT-vdW approaches, the semilocal density functional provides
the short- to intermediate range interactions, while the fully nonlocal vdW term provides the
intermediate- to long-range interactions, each term doing what it can do best.

FIG. 1. Schematic diagram of an interacting system consisting of a dipole and a dielectric cylinder. The origin of
the coordinate system is at the center of the dipole. The cylinder has a relative dielectric constant € and a radius
a. The relative dielectric constant of the surrounding vacuum is €, = 1.

THEORETICAL METHODS

The adsorbed molecules we study here have permanent dipole moments that interact with the
static charge densities they induce in the carbon nanotube substrate. That effect is already correctly
included via the Hartree electrostatic energy in the approximate density functional calculations we
present here. But time-dependent fluctuations of the electron densities around their static averages give
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rise to fluctuating dipole moments whose interaction creates the long-range dispersion attraction that is
missing from semilocal approximations to the density functional for the exchange-correlation energy.
Just as the Zaremba-Kohn treatment of the dispersion interaction starts from the interaction of a static
dipole with a planar surface, we will start here from the interaction of a static dipole with a curved
cylindrical surface. (The planar surface will emerge as the infinite-radius limit of the cylindrical surface,
to make contact with Zaremba-Kohn theory.)

We start by calculating a dipole moment p, p = ql, in front of a dielectric cylinder with a radius
a. The distance from the positive charge to the surface of the cylinder is denoted D. Consequently, p is
defined as D + a. The direction of the dipole is perpendicular to the longitudinal central axis of the
cylinder and pointed towards the cylinder. The origin of the coordinate system is at the center of the
dipole, as shown in Fig. 1. Note that the dipole moment p here should be understood as an instantaneous
dipole moment, not a permanent one. This means that p (hence q and [) is time dependent. The average
of this dipole moment over a long period of time should be zero. However, the time average of p? (or
q?1?) is not zero and will give the dispersion interaction. Since the vdW interaction is the interaction
between fluctuating dipoles (or multipoles) at the electrostatic limit, we start from calculating the
electrostatic interaction energy between a static dipole and the cylindrical surface.

The electrostatic interaction energy, E gfggllg, between the dipole moment p = gl and the charge

density it induces in the dielectric cylinder can be calculated as a sum of two parts E; and E,, where the
first part E; corresponds to the total electrostatic potential energy of the positive charge in the dipole
moment p interacting with all the image charges residing inside the cylinder, and similarly, the second
part E;, corresponds to that of the negative charge in the dipole moment p interacting with all the image
charges inside the cylinder.

The electric potential at a position 7, produced solely by a point charge g located at a position 7’
outside of a cylinder, is given by the following Green’s function,

> - q
G r, N = — =, 1
o) = ™
where ¢, is the relative dielectric constant of the vacuum surrounding the cylinder (¢, = 1). All units are
in atomic units unless otherwise specified. Eq. (1) can be expanded in cylindrical coordinates (p, z, ¢),

where the z axis is the central axis of the cylinder [47, 48], as

4q

TE,

6077 = 2 [ ak cosk(z ) [% To(kp<)Ko(kps)
0
+ ) In(kp K (kps) cos m(h — ¢'>] , @

where I,,, and K,,, are the modified Bessel functions of m-th order. These functions are defined, and their
limits at small and large argument are presented, in Ref. [48]. p. or ps indicates the smaller or larger
radial coordinate of the source and field points. k denotes a variable in the integration. ¢ and ¢’ are the
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azimuth angles relating to the field and source points, respectively. z and z' are the z-coordinates of the
field and source points, respectively. Using the above result and applying boundary conditions, the
general form of the electric potential outside the cylinder, produced only by the image charges residing
inside the cylindrical medium, is given by (see Eq. (30) of Ref. [48]),

Ly (ka)
K (ka)

2 [® bk
G, 7)) = Ef dk cos k(z — z") [ z qm (k) Kin(kp) K (kps) cos m(¢p — ¢")|. 3)
vJo =

Here a charge g at position 7' outside the cylinder produces image charges inside the cylinder which in
turn create a potential at 7 outside the cylinder. In Eq. (3), g,,(k) is a constant to satisfy the boundary
conditions. It is expressed as

m(l) = 25

EEEE——— m=20,=+1,+12,..., +oo, 4
— & hm(k) ( )

with
L (ka)K'p, (ka)
I'y(ka) Ky (ka) '

hin (k) = (5)

where ¢ is the relative dielectric constant of the cylinder. From Eq. (2) to Eq. (3), the symmetry properties
of the modified Bessel function (i.e., I_,,(x) = I,,(x) and K_,,,(x) = K,,(x)) are used. Please note that
Egs. (2) and (3) are expressed in a cylindrical coordinate system as in Ref. 48. This is different from the
coordinate system in figure 1. However, p. or p- in Egs. (2) and (3) is related to p (p, or p_) in figure
1. p, 1is the distance between the positive charge and the central axis of the cylinderand p, = p =D +
a, and similarly, p_ is the distance between the negative charge and the central axis of the cylinder and
p-=p+1=D+a+l, as can be seen in figure 1. We will use Eq. (3) to calculate E3jatc, which
includes E; and E,. In figure 1, since the source or field point is either the positive or the negative charge,
and the source and field points are on the same line perpendicular to the central axis of the cylinder, it
follows that, in Eq. (3), we have z = z" and ¢ = ¢, and Eq. (3) is simplified as

o2 [ O I (ka)
66 ) = = | d [ Dm0 s Kn(kp Ko (kps) | ©)

m=—oo

In figure 1, the location of the positive charge in the dipole is Z = [/2, while that of the negative
charge is Z = —1/2. With Eq. (6), the total electric potential V;—,; /, at the location of the positive charge
of the dipole, produced by all image charges associated with both the positive and negative charges in
the dipole, is expressed as
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where the first square bracket term is the contribution from the image charges associated with the positive
charge of the dipole and is obtained by letting both p. and ps. equal p, (note p, = p) in Eq. (6). Note
that for the first square bracket term, both the field point and the source point are at the location where
the positive charge resides. The second bracket term in Eq. (7) is the contribution from the image charges
associated with the negative charge and is obtained by letting p. = p, = pand p> = p_ = p + L in Eq.
(6). Note that for the second square bracket term, the field point is at the location where the positive
charge resides, and the source point is at the location where the negative charge resides. Because the
second square bracket term in Eq. (7) is associated with the negative charge, there is a negative sign in
front of q,,,(k). In the derivation of Eq. (7), &, = 1 is used. So, we have

m=—0o
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The electrostatic interaction energy Egi50)5 is expressed as,

Ly (ka)

K, (ka )[ Km(kp) — Kin(kp + kD)]?, (10)

BESs = BBy = | ak Z an(k)

which properly vanishes ~(ql)? when gl — 0. From this result, the total final vdW energy between the
instantaneous dipole and the cylinder can be evaluated as (the full derivation can be found in the
Appendix),

2
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2
In Eq. (11), the damping function (ﬁ) is added to correct the spurious divergence as D — 0.
b is a cutoff parameter and will be discussed in the following paragraphs. The function &,,(k, p) is

defined as

Ly(ka)
In Eq. (11), I;,,(u, k) is defined as
e(iu)—1
Ln(u, k) = (13)

e(iu) — h,, (k) ’

and a,(0), b, w,, and wy, will be defined in the next two paragraphs. Eq. (11), along with Egs. (5),
(12), and (13), are the working equations for our calculations. As will be shown in the Results and
Discussion section, Eq. (11) varies as D~*5 around D = 504, and as D® when D — 0.

A (n,m) CNT can be semiconducting or metallic, dependent on tube chirality. The armchair
(n,n) CNTs are usually metallic and their longitudinal polarizabilities or dielectric constants are
extremely large [49, 50] whereas the (n,0) zigzag CNTs can be semiconducting or semimetallic. The
semiconducting and metallic nanotubes have similar dielectric responses in the direction perpendicular
to the tube axis, while their responses along the tube axis are very different [50]. In principle, our method
can apply to any nanotube, whether metallic or semiconducting, as long as the dielectric function of the
tube can be properly approximated. As a simplest model, the dielectric response of a metallic nanotube
can be modeled as that of a free-electron gas. Since the nanotube considered in this work is
semiconducting, we use the modified Penn model to express the dynamic dielectric function, e(iu), of
the semiconducting cylinder [51,52]. It reads

w2 [(1 — A2 w? — (w2 +u?)A? |
u P 2u /w2 + u? I
20pA (wy w, P ) 1
0t () s ()] 4321}
+ u? {u[an u an <u) +P (14

Here, I, = [(1+y?)(1 + uz/a)gz)]l/2 tuy/wy;, y=1/A, and P = (1+y?)¥?. w, is the
effective energy gap, which is defined below, and A = w,/(4¢&r) with & = (372 Npanoruve)? /2, with
Npanotuve defined in the second paragraph after Eq. (15). This model dielectric function has been used
to study physical adsorption [51, 53, 54]. The effective energy gap w, is related to the static dielectric
function £(0) via the Penn model [55],

B 2w} .
e(0)=1+ 3—0)5[(1 +AD)YZ Al (15)

Since the accurate €(0) from a high-level ab initio calculation contains important hybridization,

inhomogeneity, and exciton effects, which can be carried over to our model via the Penn model, the
model dielectric function is expected to work well for semiconductors [54]. For a (10,0) semiconducting

Page 7 of 20



CNT, the average static dielectric function is evaluated as £(0) = 12.91 from the data in ref. [50, 56].
wyg is determined to be 0.289 atomic unit by Eq. (15).

In the derivation of Eq. (11), the case of a cylinder with a large radius a is considered and an
analogy to the flat-surface Zaremba-Kohn formula is also made (details see Appendix). This leads to Eq.
(11) having features of the Zaremba-Kohn formula. However, Eq. (11) is a modification to a curved
cylindrical surface. We call our model vdW-dZK (damped Zaremba-Kohn). Based on the estimated
reference values (see Table 1), the cutoff parameter b is fitted by optimizing the mean errors (ME), root
mean squared errors (RMSE), mean absolute errors (MAE), and mean absolute percentage errors
(MAPE), and consequently chosen by an "eyeball estimation" to be 1.7 Bohr (0.899 A) for the PBE
functional and 4.5 Bohr (2.38 A) for the SCAN functional. A larger b results in a damping factor that
turns on the long-range dispersion only at larger D. Note that the cutoff parameter b is relatively large
for SCAN, due to the capture of intermediate correlations by SCAN. This is consistent with our previous
work on layered materials, where b was relatively larger for SCAN-vdW-dZK than PBE-vdW-dZK.

The diameter of a (n, m) nanotube can be found as d = %\/ m? + mn +n? [31], where

ac_c is the nearest C-C distance (1.42 A) [31]. Accordingly, the radius a = d/2 of the (10,0) nanotube
is 7.398 Bohr (3.915 A). We treat NH3 and NO» molecules interacting with a nanotube as a collection of
renormalized atoms (see Ref. [45] for details). Each atom has its renormalized static polarizability a, (0)
[45,57]. For example, the renormalized static polarizability is 5.034 atomic units for N and 3.052 atomic
units for H in the NH3 molecule, while it is 7.988 atomic units for N and 5.824 atomic units for O in the
NO:; molecule. The dynamic polarizability of each renormalized atom is calculated as a;(iu) =

2
a,(0) (a)za)#z) with w; = ’47‘[ W where Ny,oiecutels the average valence electron density within
1
the molecule [44, 45]. Furthermore, wy, = /4Ny anotupe- The carbon nanotube can be formed by rolling

up a graphene sheet. The average electron density of the carbon nanotube can be approximated as that of
8 . .
————=—= 0.126 atomic unit [43, 44].
. 2 V3 °
|Gaas) x5x34]

Although individual factors in the integrand of Eq. (11) are highly divergent as k — 0, the

the graphene sheet and is 1, 4notube =

integrand itself has only a weak 1/In k divergence as k — 0, and decays like e "2¥(P~® a5 k — oo. In the
evaluation of Eq. (11), the integral over u is performed first; followed by the integral over k and then the
summation over m. It is found that for distances D ranging from 2.1 to 10.1 Bohr (1.11 A to 5.34 A), the
results obtained from the k grid of (0.001, 40, 0.001) and the m range of (0, 20, 1) deviate from those
from the k grid of (0.001, 46, 0.001) and the m range of (0, 40, 1) by less than 0.03%. Note that we
adopted the notation (Xuin, Xmaxs Xincrement) t0 describe the computation grids where x,,;, is the
starting point, X, 1S the ending point, and X;;,crements 1S the increment. Within the same distance range,
the results from the k grid of (0.001, 40, 0.001) and the m range of (0, 20, 1) are the same as those from
the k grid of (0.001, 20, 0.001) and the m range of (0, 20, 1). Furthermore, within the same distance
range, when using a denser k grid, the results from the k grid of (0.0001, 40, 0.0001) and the m range of
(0, 20, 1) are different from those from the k grid of (0.001, 40, 0.001) and the m range of (0, 20, 1) by
less than 0.2%. The above tests are done for the u grid of (0.01, 30, 0.01). At the k grid of (0.001, 40,
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0.001) and the m range of (0, 20, 1), when using the u grid of (0.001, 50, 0.001), the deviation is less
than 0.07%. For computational efficiency, we use the k grid of (0.001, 40, 0.001), the m range of (0, 20,
1) and the u grid of (0.01, 30, 0.01) for the rest of the calculations. Since the equilibrium distances of the
systems studied here are within this distance range, the results obtained here show acceptable
convergence.

The form of the vdW-dZK Eq. (11) for a conducting cylindrical surface is very different from the
expressions we obtained before for a flat metallic surface [43, 44] or a flat semiconducting layered
material surface [46], although they all bear the same physics of the Zaremba-Kohn formula [42]. Only
the dipolar effect is included in Eq. (11). High order terms, such as quadrupole terms, are very
complicated and not included. Similar to the formula for a finite thickness semiconducting layered
material surface slab, the multiple image effects are included in Eq. (11), however, through a complicated
form with the modified Bessel functions. The parameter m can be regarded as an image index. However,
the complicated form in Eq. (11) reflects the complexity of the shape and distribution of the images in
the cylinder.

RESULTS AND DISCUSSION

The (10,0) CNT is shown in Fig. 2. It is modelled by making a supercell (enclosed by faint lines
in Fig. 2) of eight layers of carbon along the tube axis so that 80 atoms are included in the cell. The size
of the supercell is about 28 X 30 X 8 Angstroms. The CNT is constructed with a nearest carbon-carbon
distance of 1.42 A, then one NH3 molecule is placed near the tube wall. Two rotational geometries are
considered, as shown in Figs. 2a and 2b denoted type I and type I1. The setup for the CNT + NOz system
is similar. Two geometries of CNT + NO; are also considered, type I and type II, as shown in Figs. 2¢
and 2d, respectively.
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FIG. 2. (10,0) CNTs with adsorbed NH3 or NO, molecules. a) Top view of the NH3 molecule attached to the CNT in Type I
geometry. b) In Type II geometry. ¢) Side view of the NO» molecule attached to the CNT when the plane of the NO; is parallel
to the axis of the CNT (Type I). d) Side view of the NO, molecule attached to the CNT when the plane of the NO is
perpendicular to the axis of the CNT (Type 1I).

All DFT calculations are done in the Vienna Ab initio Software Package (VASP) [58] with
projector augmented wave (PAW) pseudopotentials [59, 60]. The 1.42 A carbon-carbon nearest-neighbor
distance is a starting value and the nucleus of the N atom (or O atom) of the molecule is initially placed
3 A straight above the nearest carbon atom of the tube wall, see Fig. 2. First, the molecule-tube structure
is relaxed. Then, from the relaxed structure, the distance between molecule and tube is varied and the
DFT binding energies at different distances are calculated so that the DFT curves of binding energy vs.
distance are obtained. For the vdW energy calculations of the renormalized N atom (or O atom) in the
molecule, the distance D is the distance between the nucleus of the N atom (or O atom) in the molecule
and that of the nearest carbon atom. For the renormalized H atoms in the molecules, D is the distance
between the nucleus of the H atom and the surface of a cylinder with the radius of the carbon nanotube.
The energy cutoff is 580 eV. The k-point mesh is 1 X 1 X 3. The structure optimization is conducted with
all forces less than 0.01eV/A. The binding energy is defined as the total energy of the molecule-nanotube
structure after subtraction of the energy of the separated CNT and the energy of the separated molecule.
Several Python scripts are written to compute the vdW energies using Eq. (11) for different distances,
and the results are then combined with the DFT results to get the total binding energy curve, whose
minimum is the equilibrium point, hence the equilibrium binding energy E» and the equilibrium distance
Dey. The flow chart of the computational process is shown in Fig. 3. For comparison, the results from the
SCAN+rVV10 and PBE+rVV10 calculations are also presented in Table 1.
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FIG. 3. Flow chart of the computational process for the vdW interaction energies, DFT energies, and total energies
for the developed PBE-vdW-dZK and SCAN-vdW-dZK methods.

TABLE L. The binding energies Ej}, (meV) and equilibrium distances D, (Angstrom) calculated from different
methods for NH3; and NO, molecules adsorbed on a (10,0) single-wall carbon nanotube.

Ref. SCAN SCAN+rVV10 SCAN-vdW-dZK PBE PBE+rVV10 PBE-vdW-dZK
(estimated here)
Eb Eb Deq Eb Deq Eb Deq Eb Deq Eb Deq Eb Deq
Type I CNT -100 -43.3 3.38 -80.5 3.27 -103.4 3.22 -18.5 3.77 -70.8 3.44 -114.2 3.26
+ NH3
Type I CNT -100 -47.7 3.39 -84.2 3.31 -107.8 3.22 -18.4 3.77 -7048 3.45 -113.8 3.26
+ NH3
Type ICNT -500 -354.3 2.70 -423.2 2.64 -486.0 2.58 -211.1 3.06 -309.3 2.80 -441.3 2.59
+ NO2
Type I CNT -500 -339.2 2.76 -402.7 2.69 -462.4 2.62 -207.7  3.16  -296.8  2.86 -422.3 2.62
+ NO2

As can be seen from Table I, PBE captures no long-range and very little intermediate-range vdW
interaction and yields an unphysically weak binding energy (~ -18.5 meV for CNT + NH3 and -210 meV
for CNT + NO»). Furthermore, it results in a relatively large equilibrium distance of about 3.77 A for
CNT + NH; and about 3.06 A for CNT + NO». SCAN is designed to satisfy all 17 exact constraints that
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a meta-GGA functional can satisfy and can capture intermediate range (on the length scale of about 3 A)
vdW interactions about right. Thus, SCAN gives a better description than does PBE. SCAN yields about
half of the binding energies, compared with the reference, and shorter equilibrium distances than PBE
does. Since it has been proven that SCAN is much more accurate than previous semilocal DFT methods,
especially for geometrical and mechanical properties of materials, the equilibrium distances from SCAN
should be closer to the real ones than those from PBE are. This is also consistent with the results we
obtained in our layered material work [46].

As semilocal functionals, neither PBE nor SCAN include long-range vdW interactions. By adding
the long-range vdW corrections (rVV10 or vdW-dZK) to PBE or SCAN, much better binding energies
are achieved. This shows the significance of vdW energy in computing the total binding energy in the
systems considered here. However, since the molecule-nanotube systems considered here are relatively
large (>80 atoms), there is no high-level computational result in the literature, to the authors’ best
knowledge. The available binding energies E» and equilibrium distance D, for NH3 and NO2 molecules
adsorbed on carbon nanotubes from the literature are calculated with LDA, PBE+D, or vdW-DF
functionals. For CNT+NH3, Ref. [61] gives Ep = -0.15¢V and Do, = 2.99 A with LDA. Ref. [62] gives
Ep=-0.14eV and D., = 3.08 A with LDA. Ref. [36] gives E» = -0.18eV and D, =2.90 A with LDA.
However, Ref. [63] gives E» =-0.043e¢V and De, = 3.50 A with vdW-DF. For CNT+NOg, Refs. [36, 61,
64] show that the binding energy ranges from -0.34 to -0.79 eV, and the equilibrium distance ranges from
1.93to 2.61 A . However, Ref. [63] gives Ej = -0.26eV and D, = 3.20 A with PBE+D. Based on these
data, we estimate average values of binding energies for the two systems. The estimated values of binding
energies are also listed in Table I. The estimated references listed here can only serve as a rough guideline.
Nevertheless, the results shown in Table I give a clear trend, from which we can find some physically
relevant clues.

For NH3 adsorbed on the carbon nanotube, the two adsorption configurations (Types I and II)
have very similar binding energies. The predicted values of the binding energies using SCAN,
SCAN+rVV10, and SCAN-vdW-dZK are slightly smaller for Type I than for Type II, while the predicted
values of the binding energies using PBE, PBE+rVV10 and PBE-vdW-dZK are slightly larger for Type
I than for Type 1= For NOz adsorbed on the nanotube, the predicted binding energies (about 200-500meV)
are higher than the case of CNT+NHs;. It was reported [36] that CNTs respond more quickly and
sensitively to NO» gas than to NH3 gas. This is clearly illustrated by stronger binding energy from NO>
than from NH3. All methods in Table I predict that the binding energies from type I are slightly larger
than those from type II for CNT+NO.. However, the differences in binding energies between the two
configurations for both CNT+NH3 and CNT+NO; are very small, indicating similar binding stability
between the two configurations [36]. Moreover, the values of the binding energies are relatively small
(£ 500 meV) for both CNT+NH3 and CNT+NO», indicating that the adsorption of the two molecules on
nanotubes is physisorption.

With the combinations of the long-range vdW functional rVV10, both PBE and SCAN
significantly improve in their descriptions for binding energies. However, PBE+rVV10 produces about
15% and 25% lower binding energies than SCAN+rVV10 does for CNT+NH3 and CNT+NO,,
respectively. SCAN+rVV10 delivers a generally improved description for many systems. However,
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SCAN+rVV10 has some serious issues, including the overestimated equilibrium mass density in liquid
water [65], inaccurate structural and mechanical properties in PPTA [66], overestimated binding energies
of thiophene molecule adsorbed on metal surfaces [45] and graphene adsorbed on transition metal
dichalcogenide multilayer materials [46], and inconsistent errors of overbinding and underbinding in
different 2D materials [67]. The drawback of SCAN+rVV10 may be due to its imperfect balance of
interactions at the intermediate range. At present, although the results of SCAN+rVVI10 seem very
reasonable, it is hard to determine its accuracy, due to the shortage of accurate reference data. The same
imperfect balance of interactions at the intermediate range also exists in PBE+rVV10. This leads to the
limited accuracy of PBE+rVV10.

When combined with the developed vdW-dZK method, both PBE and SCAN improve in their
descriptions of adsorption for CNT+NH3 and CNT+NO: significantly. As can be seen in Table I, SCAN-
vdW-dZK and PBE-vdW-dZK give approximately the same results for CNT+NH3. For CNT+NO,,
although PBE-vdW-dZK gives about 10% lower binding energies than does SCAN-vdW-dZK, the results
of binding energies from SCAN-vdW-dZK and PBE-vdW-dZK are the closest to each other. This also
shows the consistency of our developed SCAN-vdW-dZK and PBE-vdW-dZK methods. Based on this
consistency, it seems that the results from SCAN-vdW-dZK and PBE-vdW-dZK are closer to the real
ones. There are still gaps between the results of SCAN-vdW-dZK and PBE-vdW-dZK and the estimated
reference in table I. However, since the estimated references are averages of limited data from the
literature, the references present just a rough guideline, not an accurate one.

Ambrosetti et al. [68] have shown nontrivial variations of power-laws of the vdW interactions in
systems of atoms or small molecules and 2D thin metallic or finite-gap substrates with RPA-like and
CDH (coupled dipolar Hamiltonian) treatments for substrate responses. They provided evidence to
support the claim that the power laws of vdW interactions substantially deviate from the standard
pairwise predictions. The power-law exponent P(D) is defined as P(D) = d(log|E,qw|)/d logD , and
is a decaying function of separation D. We also calculate the vdW interaction energy power laws from
our vdW-dZK model for the CNT+NH3; and CNT+NO> systems. Fig. 4 shows the vdW power-law
exponent from our vdW-dZK model as a function of D. It shows that the vdW-dZK exponent is zero at
small D. The behavior of the power law exponent at small distance (< 10 A) is more influenced by the
damping function. At distances D about 20 A, the exponent is about -4.0 and at distances D about 50 A,
the exponent is about -4.5, clearly keeping away from the pairwise limit -5. This feature is very similar
to the one calculated by Ambrosetti et al., see the second curve in the upper figure of FIG. 2 in Ref. [68],
where the lattice constant of the carbon atom chain is 1.4 A, very close to that of the carbon nanotube. In
Ref. [68], the results are obtained from RPA and RG (renormalization group) approaches. The similarity
between our results and that of Ref. [68] provides support to our methods. The finite (~3.94) radius of
the carbon nanotube and the damping factor are also at play in our results.
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FIG. 4. vdW interaction energy power law exponents from the vdW-dZK model for (a) NH3 and (b) NO, molecules adsorbed
on CNT as a function of adsorption distance D.

SUMMARY

We have developed a vdW interaction model for molecules adsorbed on curved cylindrical
conducting surfaces, and have combined this model with the semilocal density functionals PBE and
SCAN. The resulting PBE-vdW-dZK and SCAN-vdW-dZK are applied to NH3 and NO» adsorbed on
carbon nanotubes. The results from PBE-vdW-dZK and SCAN-vdW-dZK are also compared with those
from vdW nonlocal functionals, such as SCAN+rVV10 and PBE+rVV10. The PBE functional captures
almost no vdW interaction and underestimates the binding energies for the two systems. Even without
the inclusion of long-range vdW interactions, SCAN can capture intermediate vdW interactions and gives
much improved binding energies. When combined with the vdW-dZK model and vdW functional rVV 10,
both PBE and SCAN improve their descriptions for these systems in which vdW interaction is important.
Generally speaking, the binding energies from PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and
SCAN-vdW-dZK are roughly the same, about 70-115meV for CNT+NH3 and 300-490meV for
CNT+NOg, respectively. The results from PBE-vdW-dZK and SCAN-vdW-dZK are closer to each other
than are those of PBE+rVV10 and SCAN+rVV10. For CNT+NH3, PBE-vdW-dZK and SCAN-vdW-
dZK give binding energies of about 103-114 meV. For CNT+NO;, PBE-vdW-dZK and SCAN-vdW-dZK
give binding energies of about 422-490 meV. Comparatively, for CNT+NH3, PBE+rVV10 and
SCAN+rVV10 give binding energies of about 70-80meV, while for CNT+NO,, they give about 300-
420meV. The relatively closer results from PBE-vdW-dZK and SCAN-vdW-dZK indicate the
consistency of our developed vdW-dZK model for curved surfaces. Due to the relatively large systems
(>80 atoms) considered here, there is no high-level computational result. The available reference data
from the literature can just serve as a rough guideline for the binding energies of the systems, and more
reliable reference values would yield a more reliable damping factor b in Eq. (11). However, our vdW-
dZK combined with PBE and SCAN gives results closer to this guideline than other methods considered
here. It seems that the results from PBE-vdW-dZK and SCAN-vdW-dZK could be more realistic. All
methods, including PBE, SCAN, PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and SCAN-vdW-dZK,
give approximately the same binding energies for the two adsorption configurations (types I and II) for
the two systems. This may imply that the two-adsorption sites have approximately the same adsorption
stability.

The exponent of the vdW interaction power law from our vdW-dZK model for CNT+NH;3 and
CNT+NO: systems is about 0 at short distance, largely due to the damping factor. At distances D about
20-50 A, the exponent is about -4.0 ~ -4.5, and not the pairwise limit -5. This feature is very similar to
the one calculated by RPA and RG (renormalization group) approaches. This similarity provides further
support to our methods.
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APPENDIX

In this appendix, we present the derivation of Eq. (11). The starting point to derive Eq. (11) is the
general form of the electric potential produced by the image charge residing inside the cylindrical

medium. It is given by Eq. (6). The electrostatic interaction energy E gf;}gllg, between the dipole and the
cylinder, is given by Eq. (10).

With the expression for g, (k) in Eq. (4) (with &, = 1) and the condition [ < p, Eq. (10) can
be written as

—2qzl2 = e—1 I,(ka)
static _ m ’ 2
Egipote = E j dk € — h,, (k) K (ka) [Km (kp)k]

_2 zlz had
S fdkfm(kp)

m=—oo

—1 Al
() S

where the function &, (k, p) is defined in Eq. (12).

When the radius of the cylinder becomes large, a — oo, the cylinder becomes a flat surface with
infinite thickness. The problem becomes one in which an instantaneous dipole interacts with a flat surface
of a solid. For this situation, when the distance D between the dipole and the surface is large, the vdW
interaction energy is given by the Zaremba-Kohn formula as [42],

1 (00}
EZK = ——f du a4 (iu)
4nD3 ),

e(iu) —1

e(iu) +1 (A2)

where e(iu) is the dynamic dielectric constant of the surface, and @, (iu) is the dynamic dipolar
polarizability of the adsorbate. The time average of Eq. (A1) will lead to Eq. (A2) at large a and large D.
With the asymptotic expressions for the modified Bessel functions [69], i.e., when x — oo, [, (x) —

e*/V2nx and K,,(x) » e *\/m/(2x) , it can be shown that h,,(k) - —1 as a — oo. Besides, we have

I,(ka) e?ke

(52/210 K,,(ka) " (A3)
yis T

. K! 2 = ,—2kp — —2k(D+a) ) A4

Lim [Km (kp)] T TOFTN (A4)

When a — o0 and D — oo, Eq. (A1) becomes
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(A5)
taking a form similar to that of Eq. (A2). The time average of Eq. (A5) can be written as

—2(q?1?) 1 e—1 1 (G212) £—
m  8D3e+1  4mp3 1t

1
: (A6)

Estatic ~
(Eq z e+1

ipole

where the symbol (X), represents the time average of quantity X(t). Since Eq. (A6) is equivalent to Eq.
e(iu)—-1
s(iw)+1°

(A2), this means that (q21?), E is equivalent to | OOO du a, (iu) We generalize this equivalence

to a finite a and D, and write the time average of Eq. (A1) as

Fuaw = Eifgicre == Y | k[ duey(@) gnlep) wh)  @7)
e 70 0

where a4 (iu) is defined after Eq. (13). Note that although ¢ in Eq. (A1) is time-independent under the
electrostatic limit, it should be understood as frequency-dependent, as shown in Eq. (A7). The frequency
dependent dielectric function is defined in the main text.
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