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Abstract 

We extend the damped Zaremba-Kohn model (dZK) for long-range dispersion interaction between a molecule and a planar 

surface [J. Tao, H. Tang, A. Patra, P. Bhattarai, and J. P. Perdew, Phys. Rev. B 97, 165403 (2018)] to molecules adsorbed on 

a curved cylindrical surface, and employ this extended model as an additive correction to the semilocal density functionals 

PBE and SCAN. The resulting PBE-vdW-dZK and SCAN-vdW-dZK are applied to two systems, NH3 and NO2 molecules 

adsorbed on a single-wall carbon nanotube (CNT), for calculations of binding energies and equilibrium distances. For 

comparison, the results from vdW nonlocal functionals, such as SCAN+rVV10 and PBE+rVV10, are also presented. The 

binding energies from PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and SCAN-vdW-dZK are about 70-115meV for the 

system of CNT+NH3 and 300-500meV for the system of CNT+NO2. The results from PBE-vdW-dZK and SCAN-vdW-dZK 

are closer to each other than those from PBE+rVV10 and SCAN+rVV10 are. The relatively closer results from PBE-vdW-

dZK and SCAN-vdW-dZK indicate the consistency of our developed vdW-dZK model for cylindrical surfaces. All methods, 

including PBE, SCAN, PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and SCAN-vdW-dZK, give approximately the same 

binding energy differences between two adsorption configurations (types I and II) for the two systems. This implies that the 

two adsorption sites have approximately the same adsorption stability. The exponent of the vdW interaction power law from 

our vdW-dZK model for the two systems is about 0 at short distance, largely due to the damping factor, and tends slowly to 

−4 ~ − 4.5 at distances 𝐷 about 20-50 Å. This feature is very similar to the one calculated with random-phase approximation 

and renormalization group approaches, supporting the applicability of our methods. Our developed vdw-dZK method provides 

a highly efficient and reliable method for large systems with cylindrical surfaces, such as vdW interactions with nanotubes. 

 

INTRODUCTION 

van der Waals (vdW) interactions are considered to be only a small contribution to the total energy 

[1, 2]. However, they are a key factor in describing the binding properties in a majority of molecular 

systems and materials. Although vdW interaction generally includes all intermolecular interactions, it 

more specifically (and everywhere here) refers to the London dispersion interaction [3,4], a universal 

interaction between any pair of objects made of electrons. vdW interactions are strongly nonlocal, 

extending to distances exceeding 10 nm (or 100 Å) in nanoscale materials [5]. London-dispersion-based 

vdW interaction can be negligible in most solid systems; however, it has non-negligible effects in alkali 

metals [6], and plays a significant role in molecular complexes, molecular crystals, layered materials, 

surface adsorptions, and many biosystems. Its influence ranges from drug binding in proteins and double-

helix stability in DNA [7] to pedal adhesion in geckos [8,9] and cohesion in asteroids [10,11]. While the 

importance of understanding and modeling vdW interactions in realistic systems can hardly be 

overemphasized, our ability to accurately model vdW interactions from first principles is severely 
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impeded by the high computational cost of the high-level methods. The adiabatic connection fluctuation-

dissipation (ACFD) theorem [12,13], or (after simplifying the interacting density response function) the 

random phase approximation (RPA) [14,15], plays a central role in understanding the exact treatment of 

vdW interactions. However, the literature clearly lends support to the view that the ACFD or RPA based 

methods are not computationally efficient for large systems with over several hundreds of atoms per 

supercell. Therefore, many more efficient approaches (DFT-vdW) have been developed within the 

framework of density functional theory (DFT), as long-range additive corrections to semilocal 

approximations to the density functional for the exchange-correlation energy. These include the vdW-DF 

family [16-22], VV10 (Vydrov and Van Voorhis) [23] and rVV10 [24], DFT+D series [25, 26], and 

Tkatchenko-Scheffler (TS) methods [27-29]. These broadly support the view that DFT-vdW combined 

methods are perhaps one of the most efficient ways to include vdW interactions. 

Carbon is a remarkable element showing a variety of stable forms [30] ranging from 3D 

semiconducting diamond to 2D semimetallic graphite to 1D conducting and semiconducting carbon 

nanotubes to 0D fullerenes, which show many interesting properties. Single-walled carbon nanotubes 

[31] (CNTs) are promising materials and building blocks for future nanoelectronics [32-34], due to their 

large surface area to volume ratios, unique electronic properties, as well as high chemical and mechanical 

stabilities. 

Kong et al. [35] established a connection between the electrical conductivity of single-walled 

CNTs and their exposure to gaseous molecules such as NO2 and NH3. Inspired by their work, Chang et. 

al. [36] carried out a detailed study of the adsorption of NH3 and NO2 on CNTs. They emphasized 

designing the geometry and computing the binding energy, equilibrium distances, and charge transfers. 

However, they only took the local density functional (LDA) [37] into consideration and implemented 

double-numerical basis functions (DND) to compute the binding energies and equilibrium distances. 

Unfortunately, LDA does not correctly capture the medium and long-range interactions, and therefore 

the functional approximations needed to be modified. This realization motivated us to investigate the 

binding energies and equilibrium distances using GGA and meta-GGA functionals, i.e., Perdew-Burke-

Ernzerhof (PBE) [38] and the strongly constrained and appropriately normed (SCAN) meta-generalized 

gradient approximation (meta-GGA) [39]. 

          A natural question arises regarding the vdW interaction relating to nanotubes: to what extent does 

the vdW energy expression change from a flat to a cylindrical surface? Emig et al. [40], starting from the 

path integral representation, derived the exact Casimir force between a plate and a cylinder. They found 

the force has an unexpectedly weak decay at large plate-cylinder separations, due to transverse magnetic 

modes. Rajter et al. [41] derived the formulas of vdW interactions for plate-cylinder, cylinder-cylinder 

systems, based on the Lifshitz theory. Starting from the vdW interaction between two separated semi-

infinite half spaces, they then treated the half space as a composite of cylinder bundles and derived the 

vdW interactions for plate-cylinder and cylinder-cylinder systems. Their formulas can apply to systems 

made of metallic, semiconducting, and dielectrically isotropic or anisotropic materials, such as 

semiconducting or metallic carbon nanotubes. In general, vdW interactions are remarkably sensitive to 

the geometry and electronic structure of a given system.  In this work, by using classical electrostatics 

starting from a dipole outside a cylindrical surface, we put forth a derivation of an expression for vdW 
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energy between a particle and a cylinder. The particle-cylinder system is a prototype for molecules 

adsorbed to nanotubes. By using the developed formula, we compute the binding energies and 

equilibrium distances using our vdW model for NO2 and NH3 molecules adsorbed on CNTs. The present 

work is an extension of our developed damped Zaremba-Kohn model (vdW-dZK) model, which starts 

from a formula for the vdW interaction of a distant atom with a planar solid surface [42], both with 

known properties, damps this formula at short range, and then treats an adsorbed molecule or atomic 

layer as a collection of renormalized atoms. The vdW-dZK model has previously been successfully 

applied to study the physisorption of graphene and thiophene on metals [43-45] and graphene adsorbed 

on layered materials [46]. We also compare our results with GGA and meta-GGA combined with rVV10 

[23, 24]. In the present work as in other DFT-vdW approaches, the semilocal density functional provides 

the short- to intermediate range interactions, while the fully nonlocal vdW term provides the 

intermediate- to long-range interactions, each term doing what it can do best. 

 

FIG. 1.  Schematic diagram of an interacting system consisting of a dipole and a dielectric cylinder. The origin of 

the coordinate system is at the center of the dipole. The cylinder has a relative dielectric constant 𝜀 and a radius 

𝑎. The relative dielectric constant of the surrounding vacuum is 𝜀𝑣 = 1.         

 

THEORETICAL METHODS 

The adsorbed molecules we study here have permanent dipole moments that interact with the 

static charge densities they induce in the carbon nanotube substrate. That effect is already correctly 

included via the Hartree electrostatic energy in the approximate density functional calculations we 

present here. But time-dependent fluctuations of the electron densities around their static averages give 
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rise to fluctuating dipole moments whose interaction creates the long-range dispersion attraction that is 

missing from semilocal approximations to the density functional for the exchange-correlation energy. 

Just as the Zaremba-Kohn treatment of the dispersion interaction starts from the interaction of a static 

dipole with a planar surface, we will start here from the interaction of a static dipole with a curved 

cylindrical surface. (The planar surface will emerge as the infinite-radius limit of the cylindrical surface, 

to make contact with Zaremba-Kohn theory.) 

We start by calculating a dipole moment 𝑝, 𝑝 = 𝑞𝑙, in front of a dielectric cylinder with a radius 

a. The distance from the positive charge to the surface of the cylinder is denoted D. Consequently, 𝜌 is 

defined as 𝐷 + 𝑎. The direction of the dipole is perpendicular to the longitudinal central axis of the 

cylinder and pointed towards the cylinder. The origin of the coordinate system is at the center of the 

dipole, as shown in Fig. 1. Note that the dipole moment 𝑝 here should be understood as an instantaneous 

dipole moment, not a permanent one. This means that  𝑝 (hence  𝑞 and  𝑙 ) is time dependent. The average 

of this dipole moment over a long period of time should be zero. However, the time average of 𝑝2 (or 

𝑞2𝑙2) is not zero and will give the dispersion interaction. Since the vdW interaction is the interaction 

between fluctuating dipoles (or multipoles) at the electrostatic limit, we start from calculating the 

electrostatic interaction energy between a static dipole and the cylindrical surface.       

The electrostatic interaction energy, 𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐 , between the dipole moment 𝑝 = 𝑞𝑙 and the charge 

density it induces in the dielectric cylinder can be calculated as a sum of two parts 𝐸1 and 𝐸2, where the 

first part 𝐸1 corresponds to the total electrostatic potential energy of the positive charge in the dipole 

moment 𝑝 interacting with all the image charges residing inside the cylinder, and similarly, the second 

part 𝐸2 corresponds to that of the negative charge in the dipole moment 𝑝 interacting with all the image 

charges inside the cylinder.  

The electric potential at a position 𝑟, produced solely by a point charge 𝑞 located at a position 𝑟′ 

outside of a cylinder, is given by the following Green’s function, 

                                            𝐺0(𝑟, 𝑟
′) =

𝑞

𝜀𝑣|𝑟 − 𝑟′|
 ,                                                        (1)  

where 𝜀𝑣 is the relative dielectric constant of the vacuum surrounding the cylinder (𝜀𝑣 = 1). All units are 

in atomic units unless otherwise specified. Eq. (1) can be expanded in cylindrical coordinates (𝜌, 𝑧, 𝜙), 

where the 𝑧 axis is the central axis of the cylinder [47, 48], as 

𝐺0(𝑟, 𝑟
′) =

4𝑞

𝜋𝜀𝑣
∫ 𝑑𝑘 𝑐𝑜𝑠𝑘(𝑧 − 𝑧′) [

1

2
𝐼0(𝑘𝜌<)𝐾0(𝑘𝜌>)     

∞

0

+ ∑ 𝐼𝑚(𝑘𝜌<)𝐾𝑚(𝑘𝜌>)

∞

𝑚=1

𝑐𝑜𝑠 𝑚(𝜙 − 𝜙′)]  ,                                (2) 

where 𝐼𝑚 and 𝐾𝑚 are the modified Bessel functions of m-th order. These functions are defined, and their 

limits at small and large argument are presented, in Ref. [48].  𝜌< or 𝜌> indicates the smaller or larger 

radial coordinate of the source and field points. 𝑘 denotes a variable in the integration. 𝜙 and 𝜙′ are the 
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azimuth angles relating to the field and source points, respectively. 𝑧 and 𝑧′ are the z-coordinates of the 

field and source points, respectively. Using the above result and applying boundary conditions, the 

general form of the electric potential outside the cylinder, produced only by the image charges residing 

inside the cylindrical medium, is given by (see Eq. (30) of Ref. [48]),  

𝐺(𝑟, 𝑟′) =
−2

𝜋𝜀𝑣
∫ 𝑑𝑘 𝑐𝑜𝑠 𝑘(𝑧 − 𝑧′) [ ∑ 𝑞𝑚(𝑘)

𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
𝐾𝑚(𝑘𝜌<)𝐾𝑚(𝑘𝜌>)

+∞

𝑚=−∞

𝑐𝑜𝑠 𝑚(𝜙 − 𝜙′)]
∞

0

 . (3) 

Here a charge 𝑞 at position 𝑟′⃑⃑  ⃑ outside the cylinder produces image charges inside the cylinder which in 

turn create a potential at 𝑟  outside the cylinder. In Eq. (3), 𝑞𝑚(𝑘) is a constant to satisfy the boundary 

conditions. It is expressed as 

                      𝑞𝑚(𝑘) =
𝑞(𝜀 − 𝜀𝑣)

𝜀 − 𝜀𝑣 ℎ𝑚(𝑘)
 ,         𝑚 = 0, ±1,±2,… ,±∞,                           (4) 

with  

                                   ℎ𝑚(𝑘) =
𝐼𝑚(𝑘𝑎)𝐾′

𝑚(𝑘𝑎)

𝐼′𝑚(𝑘𝑎)𝐾𝑚(𝑘𝑎)
 ,                                                             (5) 

 

where 𝜀 is the relative dielectric constant of the cylinder. From Eq. (2) to Eq. (3), the symmetry properties 

of the modified Bessel function (i.e., 𝐼−𝑚(𝑥) = 𝐼𝑚(𝑥) and 𝐾−𝑚(𝑥) = 𝐾𝑚(𝑥)) are used. Please note that 

Eqs. (2) and (3) are expressed in a cylindrical coordinate system as in Ref. 48. This is different from the 

coordinate system in figure 1. However, 𝜌< or 𝜌> in Eqs. (2) and (3) is related to  𝜌 (𝜌+ or 𝜌−) in figure 

1.  𝜌+ is the distance between the positive charge and the central axis of the cylinder and 𝜌+ = 𝜌 = 𝐷 +

𝑎, and similarly,  𝜌− is the distance between the negative charge and the central axis of the cylinder and 

𝜌− = 𝜌 + 𝑙 = 𝐷 + 𝑎 + 𝑙, as can be seen in figure 1. We will use Eq. (3) to calculate 𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐 , which 

includes  𝐸1 and 𝐸2. In figure 1, since the source or field point is either the positive or the negative charge, 

and the source and field points are on the same line perpendicular to the central axis of the cylinder, it 

follows that, in Eq. (3), we have  𝑧 = 𝑧′ and 𝜙 = 𝜙′ , and Eq. (3) is simplified as  

𝐺(𝑟, 𝑟′) =
−2

𝜋𝜀𝑣
∫ 𝑑𝑘 [ ∑ 𝑞𝑚(𝑘)

𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
𝐾𝑚(𝑘𝜌<)𝐾𝑚(𝑘𝜌>)

+∞

𝑚=−∞

] .                    (6)
∞

0

 

In figure 1, the location of the positive charge in the dipole is 𝑍 = 𝑙 2⁄ , while that of the negative 

charge is 𝑍 = −𝑙 2⁄ . With Eq. (6), the total electric potential 𝑉𝑍=𝑙 2⁄  at the location of the positive charge 

of the dipole, produced by all image charges associated with both the positive and negative charges in 

the dipole, is expressed as  
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𝑉𝑍=𝑙 2⁄ =
−2

𝜋
∫ 𝑑𝑘

∞

0

{[ ∑ 𝑞𝑚(𝑘)
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
[𝐾𝑚(𝑘𝜌)]2

∞

𝑚=−∞

]

+ [ ∑ (−𝑞𝑚(𝑘))
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
𝐾𝑚(𝑘𝜌)𝐾𝑚(𝑘𝜌 + 𝑘𝑙)

∞

𝑚=−∞

]},                    (7)  

where the first square bracket term is the contribution from the image charges associated with the positive 

charge of the dipole and is obtained by letting both 𝜌< and 𝜌> equal  𝜌+ (note 𝜌+ = 𝜌) in Eq. (6). Note 

that for the first square bracket term, both the field point and the source point are at the location where 

the positive charge resides. The second bracket term in Eq. (7) is the contribution from the image charges 

associated with the negative charge and is obtained by letting 𝜌< = 𝜌+ = 𝜌 and 𝜌> = 𝜌− = 𝜌 + 𝑙 in Eq. 

(6). Note that for the second square bracket term, the field point is at the location where the positive 

charge resides, and the source point is at the location where the negative charge resides. Because the 

second square bracket term in Eq. (7) is associated with the negative charge, there is a negative sign in 

front of 𝑞𝑚(𝑘). In the derivation of Eq. (7), 𝜀𝑣 = 1 is used. So, we have  

𝐸1 = 𝑞 𝑉𝑍=𝑙 2⁄ =
−2𝑞

𝜋
∫ 𝑑𝑘

∞

0

[ ∑ 𝑞𝑚(𝑘)
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
[𝐾𝑚(𝑘𝜌)]2

∞

𝑚=−∞

]

+
2𝑞

𝜋
∫ 𝑑𝑘

∞

0

 [ ∑ 𝑞𝑚(𝑘)
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
𝐾𝑚(𝑘𝜌)𝐾𝑚(𝑘𝜌 + 𝑘𝑙)

∞

𝑚=−∞

].            (8) 

Similarly,  

                     𝐸2 = −𝑞𝑉𝑍=−𝑙 2⁄

=
2𝑞

𝜋
∫ 𝑑𝑘

∞

0

[ ∑ −𝑞𝑚(𝑘)
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
[𝐾𝑚(𝑘𝜌 + 𝑘𝑙)]2

∞

𝑚=−∞

]

+
2𝑞

𝜋
∫ 𝑑𝑘

∞

0

[ ∑ 𝑞𝑚(𝑘)
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
𝐾𝑚(𝑘𝜌)𝐾𝑚(𝑘𝜌 + 𝑘𝑙)

∞

𝑚=−∞

].               (9) 

           The electrostatic interaction energy 𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐  is expressed as,  

𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐸1 + 𝐸2 =

−2𝑞

𝜋
∫ 𝑑𝑘 ∑ 𝑞𝑚(𝑘)

𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
[𝐾𝑚(𝑘𝜌) − 𝐾𝑚(𝑘𝜌 + 𝑘𝑙)]2

∞

𝑚=−∞

∞

0

,   (10) 

which properly vanishes ~(𝑞𝑙)2 when 𝑞𝑙 → 0. From this result, the total final vdW energy between the 

instantaneous dipole and the cylinder can be evaluated as (the full derivation can be found in the 

Appendix), 

            𝐸𝑣𝑑𝑊 = −
2

𝜋
∑ ∫ 𝑑𝑘 ∫ 𝑑𝑢 𝛼1(𝑖𝑢) 𝜉𝑚(𝑘, 𝜌) 𝛤𝑚(𝑢, 𝑘) 

∞

0

∞

0

∞

𝑚=−∞

 (
𝐷

𝐷 + 𝑏̅
)
2

                    (11) 
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In Eq. (11), the damping function (
𝐷

𝐷+𝑏̅
)
2

 is added to correct the spurious divergence as 𝐷 → 0.  

𝑏̅ is a cutoff parameter and will be discussed in the following paragraphs. The function 𝜉𝑚(𝑘, 𝜌) is 

defined as  

                                                      𝜉𝑚(𝑘, 𝜌) =
𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
[𝐾𝑚

′ (𝑘𝜌) 𝑘]2 .                                          (12) 

In Eq. (11),  𝛤𝑚(𝑢, 𝑘) is defined as  

                                                  𝛤𝑚(𝑢, 𝑘)  =
𝜀(𝑖𝑢) − 1

𝜀(𝑖𝑢) − ℎ𝑚(𝑘)
  ,                                                      (13) 

 

and  𝛼1(0),  𝑏̅,  𝜔1, and  𝜔𝑝 will be defined in the next two paragraphs. Eq. (11), along with Eqs. (5), 

(12), and (13), are the working equations for our calculations. As will be shown in the Results and 

Discussion section, Eq. (11) varies as 𝐷−4.5 around 𝐷 = 50Å, and as 𝐷0 when 𝐷 → 0.  

 

A (𝑛,𝑚) CNT can be semiconducting or metallic, dependent on tube chirality. The armchair 

(𝑛, 𝑛) CNTs are usually metallic and their longitudinal polarizabilities or dielectric constants are 

extremely large [49, 50] whereas the (𝑛, 0) zigzag CNTs can be semiconducting or semimetallic. The 

semiconducting and metallic nanotubes have similar dielectric responses in the direction perpendicular 

to the tube axis, while their responses along the tube axis are very different [50]. In principle, our method 

can apply to any nanotube, whether metallic or semiconducting, as long as the dielectric function of the 

tube can be properly approximated. As a simplest model, the dielectric response of a metallic nanotube 

can be modeled as that of a free-electron gas. Since the nanotube considered in this work is 

semiconducting, we use the modified Penn model to express the dynamic dielectric function, 𝜀(𝑖𝑢), of 

the semiconducting cylinder [51,52]. It reads 

 

𝜀(𝑖𝑢) = 1 +
𝜔𝑝

2

𝑢2
[
(1 − Δ2)𝑦

𝑃
−

𝜔𝑔
2 − (𝜔𝑔

2 + 𝑢2)Δ2

2𝑢√𝜔𝑔
2 + 𝑢2

ln
𝐼+
𝐼−

]

+
2𝜔𝑝

2Δ

𝑢2
{
𝜔𝑔

𝑢
[tan−1 (

𝜔𝑔𝑃

𝑢
) − tan−1 (

𝜔𝑔

𝑢
)] +

1

𝑃
− 1} .             (14) 

 

Here, 𝐼± = [(1 + 𝑦2)(1 + 𝑢2 𝜔𝑔
2)⁄ ]

1 2⁄
± 𝑢𝑦 𝜔𝑔⁄ ,  𝑦 = 1 Δ⁄ ,  and 𝑃 = (1 + 𝑦2)1 2⁄ . 𝜔𝑔 is the 

effective energy gap, which is defined below, and Δ = 𝜔𝑔 (4𝜀𝐹)⁄  with 𝜀𝐹 = (3𝜋2 𝑛𝑛𝑎𝑛𝑜𝑡𝑢𝑏𝑒)
2 3⁄ 2⁄ , with  

𝑛𝑛𝑎𝑛𝑜𝑡𝑢𝑏𝑒 defined in the second paragraph after Eq. (15). This model dielectric function has been used 

to study physical adsorption [51, 53, 54]. The effective energy gap 𝜔𝑔 is related to the static dielectric 

function 𝜀(0) via the Penn model [55], 

 

𝜀(0) = 1 +
2𝜔𝑝

2

3𝜔𝑔
2
[(1 + Δ2)1 2⁄ − Δ].         (15) 

 

Since the accurate 𝜀(0) from a high-level ab initio calculation contains important hybridization, 

inhomogeneity, and exciton effects, which can be carried over to our model via the Penn model, the 

model dielectric function is expected to work well for semiconductors [54]. For a (10,0) semiconducting 
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CNT, the average static dielectric function is evaluated as 𝜀(0) = 12.91 from the data in ref. [50, 56]. 

𝜔𝑔 is determined to be 0.289 atomic unit by Eq. (15). 

In the derivation of Eq. (11), the case of a cylinder with a large radius  𝑎 is considered and an 

analogy to the flat-surface Zaremba-Kohn formula is also made (details see Appendix). This leads to Eq. 

(11) having features of the Zaremba-Kohn formula. However, Eq. (11) is a modification to a curved 

cylindrical surface. We call our model vdW-dZK (damped Zaremba-Kohn). Based on the estimated 

reference values (see Table 1), the cutoff parameter 𝑏̅ is fitted by optimizing the mean errors (ME), root 

mean squared errors (RMSE), mean absolute errors (MAE), and mean absolute percentage errors 

(MAPE), and consequently chosen by an "eyeball estimation" to be 1.7 Bohr (0.899 Å) for the PBE 

functional and 4.5 Bohr (2.38 Å) for the SCAN functional. A larger 𝑏̅ results in a damping factor that 

turns on the long-range dispersion only at larger D. Note that the cutoff parameter 𝑏̅ is relatively large 

for SCAN, due to the capture of intermediate correlations by SCAN. This is consistent with our previous 

work on layered materials, where 𝑏̅ was relatively larger for SCAN-vdW-dZK than PBE-vdW-dZK. 

The diameter of a (𝑛,𝑚) nanotube can be found as 𝑑 =
√3 𝑎𝐶−𝐶

𝜋
√𝑚2 + 𝑚𝑛 + 𝑛2  [31], where 

𝑎𝐶−𝐶 is the nearest C-C distance (1.42 Å) [31]. Accordingly, the radius 𝑎 = 𝑑/2  of the (10,0) nanotube 

is 7.398 Bohr (3.915 Å). We treat NH3 and NO2 molecules interacting with a nanotube as a collection of 

renormalized atoms (see Ref. [45] for details). Each atom has its renormalized static polarizability 𝛼1(0) 

[45,57]. For example, the renormalized static polarizability is 5.034 atomic units for N and 3.052 atomic 

units for H in the NH3 molecule, while it is 7.988 atomic units for N and 5.824 atomic units for O in the 

NO2 molecule. The dynamic polarizability of each renormalized atom is calculated as 𝛼1(𝑖𝑢) =

𝛼1(0)
𝜔1

2

(𝜔1
2+𝑢2)

 with 𝜔1 = √4𝜋
𝑛𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

3
. where  𝑛𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒is the average valence electron density within 

the molecule [44, 45]. Furthermore, 𝜔𝑝 = √4𝜋𝑛𝑛𝑎𝑛𝑜𝑡𝑢𝑏𝑒. The carbon nanotube can be formed by rolling 

up a graphene sheet. The average electron density of the carbon nanotube can be approximated as that of 

the graphene sheet and is 𝑛𝑛𝑎𝑛𝑜𝑡𝑢𝑏𝑒 =
8

[(
2.46

0.529
)
2
×

√3

2
×3.4]

= 0.126 atomic unit [43, 44]. 

Although individual factors in the integrand of Eq. (11) are highly divergent as 𝑘 → 0, the 

integrand itself has only a weak 1 ln 𝑘⁄  divergence as 𝑘 → 0, and decays like 𝑒−2𝑘(𝜌−𝑎) as 𝑘 → ∞. In the 

evaluation of Eq. (11), the integral over 𝑢 is performed first; followed by the integral over 𝑘 and then the 

summation over 𝑚. It is found that for distances 𝐷 ranging from 2.1 to 10.1 Bohr (1.11 Å to 5.34 Å), the 

results obtained from the 𝑘 grid of (0.001, 40, 0.001) and the 𝑚 range of (0, 20, 1) deviate from those 

from the 𝑘 grid of (0.001, 46, 0.001) and the 𝑚 range of (0, 40, 1) by less than 0.03%. Note that we 

adopted the notation (𝑥𝑚𝑖𝑛,  𝑥𝑚𝑎𝑥,  𝑥𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡) to describe the computation grids where 𝑥𝑚𝑖𝑛 is the 

starting point, 𝑥𝑚𝑎𝑥 is the ending point, and 𝑥𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 is the increment. Within the same distance range, 

the results from the 𝑘 grid of (0.001, 40, 0.001) and the 𝑚 range of (0, 20, 1) are the same as those from 

the 𝑘 grid of (0.001, 20, 0.001) and the 𝑚 range of (0, 20, 1). Furthermore, within the same distance 

range, when using a denser 𝑘 grid, the results from the 𝑘 grid of (0.0001, 40, 0.0001) and the 𝑚 range of 

(0, 20, 1) are different from those from the 𝑘 grid of (0.001, 40, 0.001) and the 𝑚 range of (0, 20, 1) by 

less than 0.2%. The above tests are done for the 𝑢 grid of (0.01, 30, 0.01). At the 𝑘 grid of (0.001, 40, 
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0.001) and the 𝑚 range of (0, 20, 1), when using the 𝑢 grid of (0.001, 50, 0.001), the deviation is less 

than 0.07%. For computational efficiency, we use the 𝑘 grid of (0.001, 40, 0.001), the 𝑚 range of (0, 20, 

1) and the 𝑢 grid of (0.01, 30, 0.01) for the rest of the calculations. Since the equilibrium distances of the 

systems studied here are within this distance range, the results obtained here show acceptable 

convergence.  

The form of the vdW-dZK Eq. (11) for a conducting cylindrical surface is very different from the 

expressions we obtained before for a flat metallic surface [43, 44] or a flat semiconducting layered 

material surface [46], although they all bear the same physics of the Zaremba-Kohn formula [42]. Only 

the dipolar effect is included in Eq. (11). High order terms, such as quadrupole terms, are very 

complicated and not included. Similar to the formula for a finite thickness semiconducting layered 

material surface slab, the multiple image effects are included in Eq. (11), however, through a complicated 

form with the modified Bessel functions. The parameter 𝑚 can be regarded as an image index. However, 

the complicated form in Eq. (11) reflects the complexity of the shape and distribution of the images in 

the cylinder.                  

 

 

RESULTS AND DISCUSSION 

The (10,0) CNT is shown in Fig. 2. It is modelled by making a supercell (enclosed by faint lines 

in Fig. 2) of eight layers of carbon along the tube axis so that 80 atoms are included in the cell. The size 

of the supercell is about 28 × 30 × 8 Angstroms. The CNT is constructed with a nearest carbon-carbon 

distance of 1.42 Å, then one NH3 molecule is placed near the tube wall. Two rotational geometries are 

considered, as shown in Figs. 2a and 2b denoted type I and type II. The setup for the CNT + NO2 system 

is similar. Two geometries of CNT + NO2 are also considered, type I and type II, as shown in Figs. 2c 

and 2d, respectively. 
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FIG. 2. (10,0) CNTs with adsorbed NH3 or NO2 molecules. a) Top view of the NH3 molecule attached to the CNT in Type I 

geometry. b) In Type II geometry. c) Side view of the NO2 molecule attached to the CNT when the plane of the NO2 is parallel 

to the axis of the CNT (Type I). d) Side view of the NO2 molecule attached to the CNT when the plane of the NO2 is 

perpendicular to the axis of the CNT (Type II). 

All DFT calculations are done in the Vienna Ab initio Software Package (VASP) [58] with 

projector augmented wave (PAW) pseudopotentials [59, 60]. The 1.42 Å carbon-carbon nearest-neighbor 

distance is a starting value and the nucleus of the N atom (or O atom) of the molecule is initially placed 

3 Å straight above the nearest carbon atom of the tube wall, see Fig. 2. First, the molecule-tube structure 

is relaxed. Then, from the relaxed structure, the distance between molecule and tube is varied and the 

DFT binding energies at different distances are calculated so that the DFT curves of binding energy vs. 

distance are obtained. For the vdW energy calculations of the renormalized N atom (or O atom) in the 

molecule, the distance 𝐷 is the distance between the nucleus of the N atom (or O atom) in the molecule 

and that of the nearest carbon atom. For the renormalized H atoms in the molecules, 𝐷 is the distance 

between the nucleus of the H atom and the surface of a cylinder with the radius of the carbon nanotube. 

The energy cutoff is 580 eV. The k-point mesh is 1 × 1 × 3. The structure optimization is conducted with 

all forces less than 0.01eV/Å. The binding energy is defined as the total energy of the molecule-nanotube 

structure after subtraction of the energy of the separated CNT and the energy of the separated molecule. 

Several Python scripts are written to compute the vdW energies using Eq. (11) for different distances, 

and the results are then combined with the DFT results to get the total binding energy curve, whose 

minimum is the equilibrium point, hence the equilibrium binding energy Eb and the equilibrium distance 

Deq. The flow chart of the computational process is shown in Fig. 3. For comparison, the results from the 

SCAN+rVV10 and PBE+rVV10 calculations are also presented in Table I. 
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FIG. 3. Flow chart of the computational process for the vdW interaction energies, DFT energies, and total energies 

for the developed PBE-vdW-dZK and SCAN-vdW-dZK methods. 

 

 

 

TABLE I.   The binding energies 𝐸𝑏 (meV) and equilibrium distances 𝐷𝑒𝑞 (Angstrom) calculated from different 

methods for NH3 and NO2 molecules adsorbed on a (10,0) single-wall carbon nanotube. 

 Ref. 
(estimated here) 

SCAN SCAN+rVV10 SCAN-vdW-dZK PBE PBE+rVV10 PBE-vdW-dZK 

 𝐸𝑏  
 

𝐸𝑏  𝐷𝑒𝑞  𝐸𝑏  𝐷𝑒𝑞  𝐸𝑏  𝐷𝑒𝑞  𝐸𝑏  𝐷𝑒𝑞  𝐸𝑏  𝐷𝑒𝑞  𝐸𝑏  𝐷𝑒𝑞  

Type I CNT 

+ NH3 

-100 -43.3 3.38 -80.5 3.27 -103.4 3.22 -18.5 3.77 -70.8 3.44 -114.2 3.26 

Type II CNT 

+ NH3 

-100 -47.7 3.39 -84.2 3.31 -107.8 3.22 -18.4 3.77 -70.48 3.45 -113.8 3.26 

              

Type I CNT 

+ NO2 

-500 -354.3 2.70 -423.2 2.64 -486.0 2.58 -211.1 3.06 -309.3 2.80 -441.3 2.59 

Type II CNT 

+ NO2 

-500 -339.2 2.76 -402.7 2.69 -462.4 2.62 -207.7 3.16 -296.8 2.86 -422.3 2.62 

 

As can be seen from Table I, PBE captures no long-range and very little intermediate-range vdW 

interaction and yields an unphysically weak binding energy (~ -18.5 meV for CNT + NH3 and -210 meV 

for CNT + NO2). Furthermore, it results in a relatively large equilibrium distance of about 3.77 Å for 

CNT + NH3 and about 3.06 Å for CNT + NO2. SCAN is designed to satisfy all 17 exact constraints that 
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a meta-GGA functional can satisfy and can capture intermediate range (on the length scale of about 3 Å) 

vdW interactions about right. Thus, SCAN gives a better description than does PBE. SCAN yields about 

half of the binding energies, compared with the reference, and shorter equilibrium distances than PBE 

does. Since it has been proven that SCAN is much more accurate than previous semilocal DFT methods, 

especially for geometrical and mechanical properties of materials, the equilibrium distances from SCAN 

should be closer to the real ones than those from PBE are. This is also consistent with the results we 

obtained in our layered material work [46].  

As semilocal functionals, neither PBE nor SCAN include long-range vdW interactions. By adding 

the long-range vdW corrections (rVV10 or vdW-dZK) to PBE or SCAN, much better binding energies 

are achieved. This shows the significance of vdW energy in computing the total binding energy in the 

systems considered here. However, since the molecule-nanotube systems considered here are relatively 

large (>80 atoms), there is no high-level computational result in the literature, to the authors’ best 

knowledge. The available binding energies Eb and equilibrium distance Deq for NH3 and NO2 molecules 

adsorbed on carbon nanotubes from the literature are calculated with LDA, PBE+D, or vdW-DF 

functionals. For CNT+NH3, Ref. [61] gives Eb = -0.15eV and Deq = 2.99  Å with LDA. Ref. [62] gives 

Eb = -0.14eV and Deq = 3.08  Å with LDA. Ref. [36] gives Eb = -0.18eV and Deq = 2.90  Å with LDA.  

However, Ref. [63] gives Eb = -0.043eV and Deq = 3.50  Å with vdW-DF.  For CNT+NO2, Refs. [36, 61, 

64] show that the binding energy ranges from -0.34 to -0.79 eV, and the equilibrium distance ranges from 

1.93 to 2.61 Å . However, Ref. [63] gives Eb = -0.26eV and Deq = 3.20 Å with PBE+D. Based on these 

data, we estimate average values of binding energies for the two systems. The estimated values of binding 

energies are also listed in Table I. The estimated references listed here can only serve as a rough guideline. 

Nevertheless, the results shown in Table I give a clear trend, from which we can find some physically 

relevant clues.  

For NH3 adsorbed on the carbon nanotube, the two adsorption configurations (Types I and II) 

have very similar binding energies. The predicted values of the binding energies using SCAN, 

SCAN+rVV10, and SCAN-vdW-dZK are slightly smaller for Type I than for Type II, while the predicted 

values of the binding energies using PBE, PBE+rVV10 and PBE-vdW-dZK are slightly larger for Type 

I than for Type II. For NO2 adsorbed on the nanotube, the predicted binding energies (about 200-500meV) 

are higher than the case of CNT+NH3. It was reported [36] that CNTs respond more quickly and 

sensitively to NO2 gas than to NH3 gas. This is clearly illustrated by stronger binding energy from NO2 

than from NH3. All methods in Table I predict that the binding energies from type I are slightly larger 

than those from type II for CNT+NO2. However, the differences in binding energies between the two 

configurations for both CNT+NH3 and CNT+NO2 are very small, indicating similar binding stability 

between the two configurations [36]. Moreover, the values of the binding energies are relatively small 

(≤ 500 meV) for both CNT+NH3 and CNT+NO2, indicating that the adsorption of the two molecules on 

nanotubes is physisorption.  

With the combinations of the long-range vdW functional rVV10, both PBE and SCAN 

significantly improve in their descriptions for binding energies. However, PBE+rVV10 produces about 

15% and 25% lower binding energies than SCAN+rVV10 does for CNT+NH3 and CNT+NO2, 

respectively. SCAN+rVV10 delivers a generally improved description for many systems. However, 
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SCAN+rVV10 has some serious issues, including the overestimated equilibrium mass density in liquid 

water [65], inaccurate structural and mechanical properties in PPTA [66], overestimated binding energies 

of thiophene molecule adsorbed on metal surfaces [45] and graphene adsorbed on transition metal 

dichalcogenide multilayer materials [46], and inconsistent errors of overbinding and underbinding in 

different 2D materials [67]. The drawback of SCAN+rVV10 may be due to its imperfect balance of 

interactions at the intermediate range. At present, although the results of SCAN+rVV10 seem very 

reasonable, it is hard to determine its accuracy, due to the shortage of accurate reference data. The same 

imperfect balance of interactions at the intermediate range also exists in PBE+rVV10. This leads to the 

limited accuracy of PBE+rVV10.  

 
When combined with the developed vdW-dZK method, both PBE and SCAN improve in their 

descriptions of adsorption for CNT+NH3 and CNT+NO2 significantly. As can be seen in Table I, SCAN-

vdW-dZK and PBE-vdW-dZK give approximately the same results for CNT+NH3. For CNT+NO2, 

although PBE-vdW-dZK gives about 10% lower binding energies than does SCAN-vdW-dZK, the results 

of binding energies from SCAN-vdW-dZK and PBE-vdW-dZK are the closest to each other. This also 

shows the consistency of our developed SCAN-vdW-dZK and PBE-vdW-dZK methods. Based on this 

consistency, it seems that the results from SCAN-vdW-dZK and PBE-vdW-dZK are closer to the real 

ones. There are still gaps between the results of SCAN-vdW-dZK and PBE-vdW-dZK and the estimated 

reference in table I. However, since the estimated references are averages of limited data from the 

literature, the references present just a rough guideline, not an accurate one.                            

Ambrosetti et al. [68] have shown nontrivial variations of power-laws of the vdW interactions in 

systems of atoms or small molecules and 2D thin metallic or finite-gap substrates with RPA-like and 

CDH (coupled dipolar Hamiltonian) treatments for substrate responses. They provided evidence to 

support the claim that the power laws of vdW interactions substantially deviate from the standard 

pairwise predictions. The power-law exponent 𝑃(𝐷) is defined as 𝑃(𝐷) = 𝑑(𝑙𝑜𝑔|𝐸𝑣𝑑𝑤|) 𝑑 log𝐷 ⁄ , and 

is a decaying function of separation D. We also calculate the vdW interaction energy power laws from 

our vdW-dZK model for the CNT+NH3 and CNT+NO2 systems. Fig. 4 shows the vdW power-law 

exponent from our vdW-dZK model as a function of 𝐷. It shows that the vdW-dZK exponent is zero at 

small 𝐷. The behavior of the power law exponent at small distance (< 10 Å) is more influenced by the 

damping function. At distances 𝐷 about 20 Å, the exponent is about -4.0 and at distances 𝐷 about 50 Å, 

the exponent is about -4.5, clearly keeping away from the pairwise limit -5. This feature is very similar 

to the one calculated by Ambrosetti et al., see the second curve in the upper figure of FIG. 2 in Ref. [68], 

where the lattice constant of the carbon atom chain is 1.4 Å, very close to that of the carbon nanotube. In 

Ref. [68], the results are obtained from RPA and RG (renormalization group) approaches. The similarity 

between our results and that of Ref. [68] provides support to our methods. The finite (~3.9Å) radius of 

the carbon nanotube and the damping factor are also at play in our results. 
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FIG. 4. vdW interaction energy power law exponents from the vdW-dZK model for (a) NH3 and (b) NO2 molecules adsorbed 

on CNT as a function of adsorption distance D.   

SUMMARY 

We have developed a vdW interaction model for molecules adsorbed on curved cylindrical 

conducting surfaces, and have combined this model with the semilocal density functionals PBE and 

SCAN. The resulting PBE-vdW-dZK and SCAN-vdW-dZK are applied to NH3 and NO2 adsorbed on 

carbon nanotubes. The results from PBE-vdW-dZK and SCAN-vdW-dZK are also compared with those 

from vdW nonlocal functionals, such as SCAN+rVV10 and PBE+rVV10. The PBE functional captures 

almost no vdW interaction and underestimates the binding energies for the two systems. Even without 

the inclusion of long-range vdW interactions, SCAN can capture intermediate vdW interactions and gives 

much improved binding energies. When combined with the vdW-dZK model and vdW functional rVV10, 

both PBE and SCAN improve their descriptions for these systems in which vdW interaction is important.  

Generally speaking, the binding energies from PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and 

SCAN-vdW-dZK are roughly the same, about 70-115meV for CNT+NH3 and 300-490meV for 

CNT+NO2, respectively. The results from PBE-vdW-dZK and SCAN-vdW-dZK are closer to each other 

than are those of PBE+rVV10 and SCAN+rVV10. For CNT+NH3, PBE-vdW-dZK and SCAN-vdW-

dZK give binding energies of about 103-114 meV. For CNT+NO2, PBE-vdW-dZK and SCAN-vdW-dZK 

give binding energies of about 422-490 meV. Comparatively, for CNT+NH3, PBE+rVV10 and 

SCAN+rVV10 give binding energies of about 70-80meV, while for CNT+NO2, they give about 300-

420meV. The relatively closer results from PBE-vdW-dZK and SCAN-vdW-dZK indicate the 

consistency of our developed vdW-dZK model for curved surfaces. Due to the relatively large systems 

(>80 atoms) considered here, there is no high-level computational result. The available reference data 

from the literature can just serve as a rough guideline for the binding energies of the systems, and more 

reliable reference values would yield a more reliable damping factor 𝑏̅ in Eq. (11). However, our vdW-

dZK combined with PBE and SCAN gives results closer to this guideline than other methods considered 

here. It seems that the results from PBE-vdW-dZK and SCAN-vdW-dZK could be more realistic.  All 

methods, including PBE, SCAN, PBE+rVV10, SCAN+rVV10, PBE-vdW-dZK, and SCAN-vdW-dZK, 

give approximately the same binding energies for the two adsorption configurations (types I and II) for 

the two systems. This may imply that the two-adsorption sites have approximately the same adsorption 

stability.  

The exponent of the vdW interaction power law from our vdW-dZK model for CNT+NH3 and 

CNT+NO2 systems is about 0 at short distance, largely due to the damping factor. At distances 𝐷 about 

20-50 Å, the exponent is about -4.0 ~ -4.5, and not the pairwise limit -5. This feature is very similar to 

the one calculated by RPA and RG (renormalization group) approaches. This similarity provides further 

support to our methods.    
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APPENDIX 

In this appendix, we present the derivation of Eq. (11). The starting point to derive Eq. (11) is the 

general form of the electric potential produced by the image charge residing inside the cylindrical 

medium. It is given by Eq. (6). The electrostatic interaction energy 𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐 , between the dipole and the 

cylinder, is given by Eq. (10).   

With the expression for 𝑞𝑚(𝑘) in Eq. (4) (with 𝜀𝑣 = 1) and the condition 𝑙 ≪ 𝜌 ,  Eq. (10) can 

be written as   

 

   𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐   =

−2𝑞2𝑙2

𝜋
∑ ∫ 𝑑𝑘

𝜀 − 1

𝜀 − ℎ𝑚(𝑘)

∞

0

∞

𝑚=−∞

𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
[𝐾𝑚

′ (𝑘𝜌)𝑘]2  

=
−2𝑞2𝑙2

𝜋
∑ ∫ 𝑑𝑘 𝜉𝑚(𝑘, 𝜌)

𝜀 − 1

𝜀 − ℎ𝑚(𝑘)

∞

0

∞

𝑚=−∞

  ,                                    (A1) 

 

where the function 𝜉𝑚(𝑘, 𝜌) is defined in Eq. (12).  

 

When the radius of the cylinder becomes large, 𝑎 → ∞, the cylinder becomes a flat surface with 

infinite thickness. The problem becomes one in which an instantaneous dipole interacts with a flat surface 

of a solid. For this situation, when the distance 𝐷 between the dipole and the surface is large, the vdW 

interaction energy is given by the Zaremba-Kohn formula as [42], 

 

 

   𝐸𝑍𝐾  = −
1

4𝜋𝐷3
∫ 𝑑𝑢 𝛼1(𝑖𝑢)

𝜀(𝑖𝑢) − 1

𝜀(𝑖𝑢) + 1

∞

0

 (A2) 

 

where 𝜀(𝑖𝑢) is the dynamic dielectric constant of the surface, and 𝛼1(𝑖𝑢) is the dynamic dipolar 

polarizability of the adsorbate. The time average of Eq. (A1) will lead to Eq. (A2) at large 𝑎 and large 𝐷. 

With the asymptotic expressions for the modified Bessel functions [69], i.e., when  𝑥 → ∞, 𝐼𝑚(𝑥) →

𝑒𝑥 √2𝜋𝑥⁄  and  𝐾𝑚(𝑥) → 𝑒−𝑥√𝜋 (2𝑥)⁄  , it can be shown that ℎ𝑚(𝑘) → −1 as 𝑎 → ∞. Besides, we have 

 

𝑙𝑖𝑚
𝑎→∞

𝐼𝑚(𝑘𝑎)

𝐾𝑚(𝑘𝑎)
→

𝑒2𝑘𝑎

𝜋
   ,                                                                         (A3) 

 

𝑙𝑖𝑚
𝑎→∞

[𝐾𝑚
′ (𝑘𝜌)]2 →

𝜋

2𝑘𝜌
𝑒−2𝑘𝜌 =

𝜋

2𝑘(𝐷 + 𝑎)
𝑒−2𝑘(𝐷+𝑎) .                   (A4) 

 

When  𝑎 → ∞ and 𝐷 → ∞, Eq. (A1) becomes  
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 𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐   ~ 

−2𝑞2𝑙2

𝜋

1

8𝐷3

𝜀 − 1

𝜀 + 1
= −

𝑞2𝑙2

4𝜋𝐷3

𝜀 − 1

𝜀 + 1
  ,                                        (A5)   

 

taking a form similar to that of Eq. (A2). The time average of Eq. (A5) can be written as  

 

〈𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐 〉𝑡  ~ 

−2〈𝑞2𝑙2〉𝑡
𝜋

1

8𝐷3

𝜀 − 1

𝜀 + 1
= −

1

4𝜋𝐷3
〈𝑞2𝑙2〉𝑡

𝜀 − 1

𝜀 + 1
 ,                 (A6)  

 

where the symbol 〈𝑋〉𝑡 represents the time average of quantity 𝑋(𝑡).  Since Eq. (A6) is equivalent to Eq. 

(A2), this means that  〈𝑞2𝑙2〉𝑡
𝜀−1

𝜀+1
  is equivalent to ∫ 𝑑𝑢 𝛼1(𝑖𝑢)

𝜀(𝑖𝑢)−1

𝜀(𝑖𝑢)+1

∞

0
.  We generalize this equivalence 

to a finite 𝑎 and 𝐷, and write the time average of Eq. (A1) as 

 

  𝐸𝑣𝑑𝑊 = 〈𝐸𝑑𝑖𝑝𝑜𝑙𝑒
𝑠𝑡𝑎𝑡𝑖𝑐 〉𝑡 = −

2

𝜋
∑ ∫ 𝑑𝑘 ∫ 𝑑𝑢 𝛼1(𝑖𝑢) 𝜉𝑚(𝑘, 𝜌) 𝛤𝑚(𝑢, 𝑘) 

∞

0

∞

0

∞

𝑚=−∞

            (A7) 

 

where 𝛼1(𝑖𝑢) is defined after Eq. (13). Note that although 𝜀 in Eq. (A1) is time-independent under the 

electrostatic limit, it should be understood as frequency-dependent, as shown in Eq. (A7). The frequency 

dependent dielectric function is defined in the main text.  
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