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CUBIC SURFACES OF CHARACTERISTIC TWO

ZHIBEK KADYRSIZOVA, JENNIFER KENKEL, JANET PAGE, JYOTI SINGH,
KAREN E. SMITH, ADELA VRACIU, AND EMILY E. WITT

Abstract. Cubic surfaces in characteristic two are investigated from the point
of view of prime characteristic commutative algebra. In particular, we prove
that the non-Frobenius split cubic surfaces form a linear subspace of codimen-
sion four in the 19-dimensional space of all cubics, and that up to projective
equivalence, there are finitely many non-Frobenius split cubic surfaces. We ex-
plicitly describe defining equations for each and characterize them as extremal

in terms of configurations of lines on them. In particular, a (possibly singular)
cubic surface in characteristic two fails to be Frobenius split if and only if no
three lines on it form a “triangle”.

1. Introduction

Cubic surfaces have fascinated mathematicians for nearly two centuries, going
back at least to Cayley and Salmon’s 1849 discovery of their famous twenty-seven
lines. Yet new discoveries about cubic surfaces continue to emerge. For example,
Dolgachev and Duncan recently described the automorphism groups of smooth
cubic surfaces in prime characteristic, including a detailed investigation in the oft-
overlooked case where the ground field has characteristic two (see [DD19]).

In this paper, we study cubic surfaces, including the singular ones, through the
special lens of characteristic p commutative algebra, focusing on the especially in-
teresting case where the ground field has characteristic two. More specifically, we
study when cubic surfaces are Frobenius split (in the sense of [MR85]) or equiva-
lently, when their homogeneous coordinate rings are F -pure (in the sense of [HR76]).
We show that the vast majority of cubic surfaces in characteristic two are Frobe-
nius split. Indeed, we explicitly classify the finitely many non-F -pure cubic surfaces
(including the singular ones) up to projective change of coordinates, both by giving
explicit equations, and in terms of the configuration of lines on them. (Smooth
cubic surfaces of characteristic p > 2 are always Frobenius split by [Har98, 5.5].
See Remark 4.6 for a new proof deducing this from the main theorem of [Bea90].)
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6252 ZHIBEK KADYRSIZOVA ET AL.

To state our results more precisely, fix an algebraically closed field of character-
istic two. First, recall that the set of all cubic surfaces in P

3 is parametrized by
the nineteen-dimensional projective space of all cubic forms in four variables. Most
cubic surfaces in this family are Frobenius split: the set of cubic surfaces that are
not form a fifteen-dimensional linear subspace of this P19—hence, a proper Zariski
closed set of codimension four. For details, see Proposition 3.1.

Next, up to projective linear change of coordinates, we show in Theorem 4.1 that
there are precisely five isomorphism types of non-Frobenius split cubic surfaces that
are not simply cones over planar cubic curves; these are represented by the following
equations:

(1) x3
1 + x3

2 + x3
3 + x3

4

(2) x2
1x4 + x3

2 + x1x
2
3

(3) x2
1x4 + x2

2x3 + x1x
2
3

(4) x2
1x4 + x3

2 + x3
3

(5) x2
1x3 + x2

2x4

Only the first of these is smooth: there is exactly one smooth cubic surface
that is not Frobenius split, a higher-dimensional analog of the fact that (over an
algebraically closed field of characteristic two) there is only one supersingular el-
liptic curve [Hus04, p. 260]. Indeed, we deduce the former from the latter, giving a
different proof than in [Har98, 5.5].

To complete the classification, we consider cubic surfaces that are cones over a
cubic curve in P

2. Again, the generic one is Frobenius split—the non-Frobenius
split ones are parametrized by a hyperplane in the P

9 of all plane cubics. Again,
up to projective linear changes of coordinates, we establish in Proposition 4.2 and
Lemma 4.3 that there are only finitely many non-Frobenius split ones, which can
be enumerated as follows:

(1) The unique smooth supersingular elliptic curve (projectively equivalent to
the Fermat cubic x3 + y3 + z3).

(2) The cuspidal cubic curve (projectively equivalent to x2z + y3).
(3) A line tangent to a smooth conic (projectively equivalent to x2z + xy2).

In addition to these, there exist three distinct configurations of lines that are not
Frobenius split:

(1) Three different lines meeting at one point (projectively equivalent to xy(x+
y)).

(2) The union of a line and a double line (projectively equivalent to x2y).
(3) A triple line (projectively equivalent to x3).

Note that “triangles” of lines—three coplanar lines that do not meet at a point—
are excluded from the list; such a triangle of lines is always Frobenius split. This
observation is crucial to our characterization of non-Frobenius split cubic surfaces
as those that are maximally degenerate from the point of view of the configuration
of lines on them.

More precisely, we show in Theorem 5.1 that a (possibly singular) cubic surface
is Frobenius split unless every pair of intersecting lines on it meets in an Eckardt
point (or consists of double or triple lines in the singular case). In the smooth
case we can say simply that a smooth cubic surface is Frobenius split unless it
contains no triangles. This corollary in the smooth case also follows by combining
[Har98, 5.5] and [Hom97, 1.1]; see also [Hir85, 20.2].
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Our method for studying non-F -pure cubics in characteristic two can be de-
scribed as linear algebraic, different from the algebro-geometric or commutative
algebraic approaches of [Hir85], [Hom97] and [Har98]. We show that each such
cubic form can be represented by a unique matrix, and we can explicitly describe
the action of the group of coordinate changes on such forms in terms of this matrix;
see Section 3. Related techniques are considered by Lang in his study of algebraic
groups over finite fields; see [Lan56].

We work over a fixed algebraically closed field k of characteristic two, except
where otherwise indicated.

2. Definitions and preliminary material

A map of commutative rings A → B is pure if the induced map M → M ⊗A B
is injective for all A-modules M . For example, a map of rings A → B is pure if it
splits as a map of A-modules. In fact, purity is equivalent to splitting if A → B is
finite and A is Noetherian [HR76, 5.3, 5.5], although in general, purity of a map is
a weaker condition.

For a commutative ring R of prime characteristic p, the Frobenius map is the
ring homomorphism R → R sending each element to its p-th power. We say that
R is F -pure if its Frobenius map is pure. While formally defined by Hochster and
Roberts in [HR76], F -purity played a starring role in their famous proof of the
Cohen-Macaulayness for rings of invariants [HR74].

For a scheme X over a field of prime characteristic p, we also have a Frobenius

map—the scheme map X
F−→ X that is the identity map on the underlying topo-

logical space, but the p-th power map on functions on each open set. The scheme
X is Frobenius split if the corresponding map of sheaves OX → F∗OX splits.
The term “Frobenius splitting” was coined by Mehta and Ramanathan, who used
it masterfully to prove vanishing theorems for cohomology of sheaves on Schubert
varieties.

Frobenius splitting for an affine variety X is the same as the F -purity of its coor-
dinate ring by the aforementioned result in [HR76, 5.3, 5.5], because the Frobenius
map is always finite for a finitely generated algebra over an algebraically closed field.
Likewise, Frobenius splitting for a projective variety X is equivalent to the F -purity
of any (equivalently, every) homogeneous coordinate ring for a projectively normal
embedding of X into projective space, or more generally, for any (equivalently,
every) section ring of X; see [Smi97, 4.2], [Smi00, 3.10], or [BK05, 1.1.14].

In this paper, we are interested in cubic surfaces—subschemes of P3 cut out by a
single homogeneous polynomial f of degree 3. A cubic surface X ⊂ P

3 over a field
of characteristic p is Frobenius split if and only if its homogeneous coordinate ring
k[x1, x2, x3, x4]/〈f〉 is F -pure. Although the terms “F -pure” and “Frobenius split”
are essentially equivalent in our context and often used interchangeably, we will use
Frobenius split when talking about varieties and F -pure when talking about rings
or forms, in keeping with the historical use of these words.

There is a convenient criterion for F -purity due to Fedder, which we state only
in the special case we need:

Theorem 2.1 ([Fed83, 1.2]). Given a homogeneous polynomial f in R=k[x1, . . . , xn],
where k is a perfect field of characteristic p > 0, the graded ring R/〈f〉 is F -pure
if and only if

fp−1 /∈ m[p]
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6254 ZHIBEK KADYRSIZOVA ET AL.

where m = 〈x1, . . . , xn〉 denotes the unique homogeneous maximal ideal of R, and
m[p] = 〈xp

1, . . . , x
p
n〉 is the ideal generated by the p-th powers of the elements of m.

Remark 2.2. It is easy to see that the ring k[x1, . . . , xn]/〈f〉 is F -pure if and only if
k[x1, . . . , xn]/〈f〉 is F -pure, where k is the algebraic closure of k. This follows from
Fedder’s criterion immediately since fp−1 /∈ m[p] in the polynomial ring over k if and
only if the same is true over L, where L is any field extension of k. Alternatively,
this is a special case of the more general fact [HR76, 5.13].

Remark 2.3. Fix a form f ∈ k[x1, . . . , xn], which we may also consider as a form
in one more variable, {x1, . . . , xn, xn+1}. It is clear from Fedder’s criterion that
k[x1, . . . , xn]/〈f〉 is F -pure if and only if k[x1, . . . , xn, xn+1]/〈f〉 is F -pure. We will
use this in the following more geometric form: if a hypersurface X ⊂ P

n is a cone
over some variety Y in a lower dimensional projective space, then X is Frobenius
split if and only if Y is Frobenius split.

Example 2.3.1. An elliptic curve is Frobenius split if and only if it is ordinary, that
is, not supersingular. One way to see this is using Fedder’s criterion: the graded
ring k[x, y, z]/〈f〉 is F -pure if and only if fp−1 /∈ 〈xp, yp, zp〉, but when f has degree
three, this can happen if and only if the monomial (xyz)p−1 appears in fp−1 with
non-zero coefficient. This recovers the well-known criterion for ordinariness of the
elliptic curve defined by f [Har77, IV 4.21]. See [Smi97, 4.3] for a different proof.

We will also need another result of Fedder guaranteeing that F -purity “deforms”
in a Gorenstein ring:

Theorem 2.4 ([Fed83, 3.4]). Let (R,m) be a Gorenstein local (or standard graded)
ring and let f ∈ m be a regular element. If R/〈f〉 is F -pure, then R is also F -pure.

Although the results in this paper do not rely on it, we record here the following
theorem of Beauville, which we use to provide alternative proofs of several steps
throughout the paper:

Theorem 2.5 ([Bea90]). Let X ⊂ P
n be a smooth hypersurface over an alge-

braically closed field k of prime characteristic p > 0. If all smooth hyperplane
sections of X are isomorphic to one another, then (in suitable linear coordinates)

X is defined by an equation of the form
∑n

i=0 x
pe+1
i for some non-negative integer

e, where p is the characteristic of k.

3. F -purity of cubics and some linear algebra

Fix a field k. A cubic form in four variables over k is an element of the twenty-
dimensional space Sym3

(
(k4)∗

)
. The corresponding set of cubic surfaces in P

3

(including all the degenerate, singular, and even non-reduced ones) is therefore
parametrized by the nineteen-dimensional projective space P(Sym3

(
(k4)∗)

)
.

Explicitly, we can write a cubic form (uniquely) in the form

x2
1L1 + x2

2L2 + x2
3L3 + x2

4L4 + b1x2x3x4 + b2x1x3x4 + b3x1x2x4 + b4x1x2x3

where the Li are linear forms and the bi are scalars. Using matrix notation, we can
write ⎡

⎢⎢⎣
L1

L2

L3

L4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ ,
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CUBIC SURFACES OF CHARACTERISTIC TWO 6255

and thus see that the sixteen scalars aij , together with the four scalars bk, determine
a unique cubic form in x1, . . . , x4. Compactly, we write the cubic as

(1)
[
x2
1 x2

2 x2
3 x2

4

]
A

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦+ b1x2x3x4 + b2x1x3x4 + b3x1x2x4 + b4x1x2x3

where A is the 4× 4 matrix [aij ].
Similarly (or as a special case in which scalars associated with x4 are zero), a

cubic form in three variables can be written as

(2)
[
x2
1 x2

2 x2
3

]
A

⎡
⎣x1

x2

x3

⎤
⎦+ bx1x2x3.

where A is a 3× 3 matrix and b is a scalar.
Thinking of these aij and b1, b2, b3, b4 as the homogeneous coordinates for the P19

parametrizing all cubic surfaces, we have the following description of the Frobenius
split ones in characteristic two:

Proposition 3.1. Fix a ground field k of characteristic two. The set of Frobenius
split cubic surfaces is the non-empty Zariski open set of the P

19 of all cubic
surfaces that is complementary to the codimension four linear subspace where b1 =
b2 = b3 = b4 = 0 in the expression of the cubic as

(3) x2
1L1 + x2

2L2 + x2
3L3 + x2

4L4 + b1x2x3x4 + b2x1x3x4 + b3x1x2x4 + b4x1x2x3.

Put differently, a cubic surface is Frobenius split if and only if some bi is non-
zero—that is, if and only if its equation has a non-zero square-free monomial.

Proof. In characteristic two, Fedder’s criterion, Theorem 2.1, tells us that
k[x1, . . . , xn]/〈f〉 is F -pure if and only if f /∈ m[2], where m = 〈x1, . . . , xn〉. Examin-
ing Equation (1), we see that this is the same as saying that some bi is non-zero. �
Remark 3.2. As a special case, a cubic in three variables is Frobenius split if and
only if, writing it in the form

x2L1 + y2L2 + z2L3 + bxyz,

the “square-free” term xyz appears with non-zero coefficient. This recovers the
fact that a smooth elliptic curve of characteristic 2 is ordinary if and only if the
cubic polynomial f defining it as a subvariety of P2 has a nonvanishing square-free
monomial term; see Example 2.3.1.

3.3. Singular locus of non-F -pure cubics. For future reference, we record here
a simple description of the singular locus for a cubic surface that is not Frobenius
split in terms of the matrix A representing it:

Proposition 3.4. Given a non-F -pure cubic h over a field of characteristic 2 in
four variables,

h =
[
x2
1 x2

2 x2
3 x2

4

]
A

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ ,

the codimension of the singular locus of the cubic surface defined by h is equal to
the rank of A.

Licensed to Univ of Kansas. Prepared on Mon Oct 18 12:51:22 EDT 2021 for download from IP 129.237.90.38.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



6256 ZHIBEK KADYRSIZOVA ET AL.

Proof. The singular locus is defined by the vanishing of

∂h

∂x1
,

∂h

∂x2
,

∂h

∂x3
,

∂h

∂x4
,

i.e., the system of equations

Atr

⎡
⎢⎢⎣
x2
1

x2
2

x2
3

x2
4

⎤
⎥⎥⎦ = 0.

This is the “double linear space” defined by

A[1/2]tr

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ = 0,

so that its codimension is precisely the rank of A[1/2]tr, which is the same as the
rank of A. Here the notation A[1/2] denotes the matrix obtained from A by taking

the unique square root of each entry, and A[1/2]tr is its transpose. �

3.5. Changing coordinates. We record some observations about the behavior
under coordinate changes.

Let h be a non-F -pure cubic defining a cubic surface of characteristic 2. Using
Proposition 3.1, we can write h uniquely as

(4) h =
[
x2
1 x2

2 x2
3 x2

4

]
A

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦

where A is some 4 × 4 matrix of scalars. Let g = [λij ] ∈ GL4(k) be an invertible
4×4 matrix which acts on the coordinates {x1, . . . , x4} in the obvious way, i.e., via

g ·

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∑4
j=1 λ1jxj∑4
j=1 λ2jxj∑4
j=1 λ3jxj∑4
j=1 λ4jxj

⎤
⎥⎥⎥⎦ .

Given a matrix B of any size over a field of characteristic p > 0, we denote by
B[p] the matrix obtained by raising each entry of B to the p-th power. If g is a
change of coordinates represented by an invertible 4 × 4 matrix, then it is easy to
check that

g ·

⎡
⎢⎢⎣
xp
1

xp
2

xp
3

xp
4

⎤
⎥⎥⎦ = [g

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦][p] = g[p]

⎡
⎢⎢⎣
xp1
xp2
xp3
xp4

⎤
⎥⎥⎦ .

Here the notation · indicates the ring automorphism induced by the linear change
of coordinates, and all other adjacent symbols are usual matrix product.
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So our change of coordinates formula for a non-F -pure cubic is

g · h = g ·
[
x2
1 x2

2 x2
3 x2

4

]
A

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ =

[
x2
1 x2

2 x2
3 x2

4

] [
g[2]

]tr
Ag

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ ,

where Btr denotes the transpose of the matrix B. We can write this in the compact
form

(5) g · h = g ·
[
(�x[2])trA�x

]
= (�x[2])tr

[[
g[2]

]tr
Ag

]
�x,

or simply state that when a coordinate change g acts on a non-F -pure cubic h
whose matrix is A, the matrix of g · h is

(6)
[
g[2]

]tr
Ag.

Remark 3.6. It is worth recording how each elementary coordinate operation affects
the matrix A representing a non-F -pure cubic h. By elementary operation, we mean
one of the following:

• Swap two variables: xi �→ xj and xj �→ xi, fixing the others.
• Multiply coordinate xi by a non-zero scalar λ: xi �→ λxi, fixing the others.
• Replace xi by xi + λxj for some j 	= i, fixing the others.

Each of these corresponds to multiplying the column vector

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ on the left by

the corresponding elementary matrix E. The effect on the A matrix representing
f is to multiply by the transpose of E[2] on the left, and by E on the right. This
amounts to the following, in each respective case:

• Swap columns Ci and Cj and rows Ri and Rj , fixing the others.
• Multiply row Ri by λ2 and column Ci by λ.
• Replace column Cj by column Cj + λCi and replace row Rj by row Rj +
λ2Ri.

Remark 3.7. We can think of Equation (6) as describing a right action GL4(k) on
k4×4 such that

g ∈ GL4(k) acts on A ∈ k4×4 by
[
g[p]

]tr
Ag.

Lang studies these representations in [Lan56].

4. Classification of non-Frobenius split cubic surfaces

In this section, we prove that up to projective change of coordinates, there are
only finitely many cubic surfaces of characteristic two that are not Frobenius split,
and list them out explicitly. We state the classification separately for degenerate
and non-degenerate cubic surfaces, before proving all the statements.

By a non-degenerate form in n variables, we mean a form that cannot be written
in fewer than n variables after linear change of coordinates. Geometrically, this
means the corresponding hypersurface is not the cone over a hypersurface in a
smaller dimensional projective space.
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6258 ZHIBEK KADYRSIZOVA ET AL.

Theorem 4.1. Let h be a non-degenerate cubic form in four variables over an
algebraically closed field of characteristic two. Then the hypersurface in P

3 defined
by h fails to be Frobenius split if and only if, up to linear change of coordinates, h
is exactly one of the following:

(1) x3
1 + x3

2 + x3
3 + x3

4

(2) x2
1x4 + x3

2 + x1x
2
3

(3) x2
1x4 + x2

2x3 + x1x
2
3

(4) x2
1x4 + x3

2 + x3
3

(5) x2
1x3 + x2

2x4

The first of these is the unique smooth non-Frobenius split cubic surface. The
second, third, and fourth are normal, with an isolated singularity at [0 : 0 : 0 : 1].
The final one is the non-normal cubic surface whose singular locus is the line x1 =
x2 = 0.

All these surfaces are extremal from the point of view of the collection of lines
on them, as we will prove in Theorem 5.1.

Before embarking on the proof of Theorem 4.1, we state and prove the classifi-
cation for cubic surfaces that are cones over curves in P

2. In light of Remark 2.3,
the classification follows from:

Theorem 4.2. A non-degenerate non-F -pure cubic in three variables over an alge-
braically closed field of characteristic two is projectively equivalent to a plane curve
defined by one of the following:

(1) x3 + y3 + z3

(2) x2z + y3

(3) x2z + xy2

The first is the only non-F -pure smooth cubic curve: every supersingular elliptic
curve is projectively equivalent to this Fermat curve. The second is an irreducible
cuspidal cubic curve with one singular point (at [0 : 0 : 1] in the given coordinates).
The third is a union of a smooth conic and a line tangent to it at one point ([0 : 0 : 1]
in the given coordinates).

Finally, we record for future reference the classification of cubics in two variables;
this completes the classification of non-Frobenius split cubic surfaces in character-
istic two, as this covers the case where the surface is the cone over a collection of
points in P

1.

Lemma 4.3. Every cubic form h in two variables over an algebraically closed field
of any characteristic can be brought to exactly one of the following three forms by
linear change of coordinates:

(1) x3

(2) x2y
(3) xy(x+ y), or any other cubic form with three distinct roots.

All of these define non-F -pure quotients k[x, y]/〈h〉.
Proof. A homogeneous form h in two variables factors completely into three linear
forms L1L2L3. The three cases amount to whether the dehomogenized cubic has
one, two or three distinct roots. These are represented by the three forms above
because any set of three (or fewer) points in P

1 are projectively equivalent. Finally,
because hp−1 has degree 3p− 3, it is in the ideal 〈xp, yp〉, which means h defines a
non-F -pure hypersurface by Fedder’s criterion. �
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4.4. The proofs of Theorems 4.2 and 4.1.

Proof of Theorem 4.2. Let f be a cubic in three variables that is not F -pure. Such
an f can be written uniquely as

f = x2L1 + y2L2 + z2L3 =
[
x2 y2 z2

]
A

⎡
⎣xy
z

⎤
⎦ ,

where the Li are linear forms in three variables, and A is the matrix whose i-th
row is the coefficients of the linear form Li.

If A has rank 3, then the cubic represents a smooth cubic curve, whence it is a
supersingular elliptic curve of characteristic two. There is only one such curve up
to isomorphism [Hus04, p. 260], so after changing coordinates, we may assume that
f is the Fermat cubic, which is non-F -pure by Proposition 3.1.

If A has rank one, then after changing the names of the variables if necessary,
we can assume that the second and third rows of A are multiples of the first. So
our cubic form is

x2L+ y2(λL) + z2(μL) =
(
x+ λ1/2y + μ1/2z

)2

L

for some linear form L and scalars λ, μ. Changing coordinates, this is x2y or x3,

depending on whether or not L is a scalar multiple of x + λ1/2y + μ
1/2
3 z. Both of

these cases are degenerate (and hence covered by Lemma 4.3).
Finally, we consider the case where A has rank two. In this case, we can assume

without loss of generality that f can be written

f = x2L1 + y2L2 + z2(aL1 + bL2) = (x+ a1/2z)2L1 + (y + b1/2z)2L2,

where L1 and L2 are linear forms and a and b are scalars. Changing coordinates so
the rank two form is x2L1+ y2L2, the bottom row of A can be assumed to be zero.

Next, we analyze the effect of coordinate changes of f in terms of the matrix
A using the technique explained in Subsection 3.5. Note that in the expression
x2L1 + y2L2, at least one of the terms x2z or y2z must appear with non-zero
coefficient, for otherwise the form is in the two variables x, y and is degenerate.
Changing the names of the variables (swapping x and y) if needed, we can assume
that the coefficient of x2z is nonzero (and hence scaling, we can assume it is 1, if
we’d like).

Making use of Remark 3.6, we can add multiples of column 3 to column 1 and to
column 2 to clear out the coefficients of x3 and x2y in the matrix A; this and the
corresponding row operations do not affect the fact that row 3 consists of zeros. So
without loss of generality, we can assume that the matrix has the form

A =

⎡
⎣0 0 1
∗ ∗ ∗
0 0 0

⎤
⎦ .

Now adding a multiple of row 1 to row 2 (and the corresponding column operation),
we can assume it is

A =

⎡
⎣0 0 1
a b 0
0 0 0

⎤
⎦ .
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If a = b = 0, then the form is x2z, which is degenerate, so assume at least one is
not zero. If both a and b are non-zero, then add a multiple of column 2 to column
1 to make a = 0; the corresponding row operation changes row 1, but this can
be easily corrected by again clearing out row 1 using column 3 (the corresponding
row operation does nothing since row 3 is a zero row). Thus we can assume that
exactly one of a or b is non-zero, in which case we can scale the appropriate variable
to assume it is 1. So, up to linear changes of coordinates, every rank two (non-
degenerate) cubic in three variables will be represented by one of the following
matrices: ⎡

⎣0 0 1
0 1 0
0 0 0

⎤
⎦ ,

⎡
⎣0 0 1
1 0 0
0 0 0

⎤
⎦ .

These correspond to the two forms

x2z + y3 and x2z + xy2

which are distinct, since the former is irreducible while the latter is not. �
Proof of Theorem 4.1. Let

f = x2
1L1 + x2

2L2 + x2
3L2 + x2

4L4 =
[
x2
1 x2

2 x2
3 x2

4

]
A

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦

be a non-degenerate non-F -pure cubic in four variables. We need to show

(1) f can be brought to one of the five normal forms of Theorem 4.1 by linear
change of coordinates.

(2) The five polynomials in Theorem 4.1 define non-isomorphic cubic surfaces.

Towards (1), we give separate arguments, depending on the rank of A.
We first dispatch with the rank four case—that is, the case where the projective

hypersurface X defined by f is smooth—using our geometric characterization of
Frobenius split cubic surfaces in Section 5. If X is not Frobenius split, then no
hyperplane section is Frobenius split, by Theorem 2.4. Invoking our classification
of the non-Frobenius split cubic curves (Theorem 4.2 and Lemma 4.3), we see that
no hyperplane section of X can be a union of three lines, unless those lines meet at
a point. So X contains no triangles, and is projectively equivalent to the Fermat
cubic surface by Corollary 5.2.1

Next, assume the rank of A is one. Here the rows of A are multiples of some
fixed linear form L, say Li = λiL. In this case, we can rewrite f = L(L′)2 where
L′ is some other linear form. There are two cases, either f = x3 or f = x2y, up to
changing coordinates. Both of these are degenerate.

Now, assume the rank of A is two. Without loss of generality, we assume L1, L2

are linearly independent and write L3 = λ1L1+λ2L2 and L4 = μ1L1+μ2L2. Write

f = x2
1L1 + x2

2L2 + x2
3(λ1L1 + λ2L2) + x2

4(μ1L1 + μL2).

Reorganizing, we have

f = (x1 + λ
1/2
1 x3 + μ

1/2
1 x4)

2L1 + (x2 + λ
1/2
2 x3 + μ

1/2
2 x4)

2L2.

1Alternatively, we can instead use Beauville’s theorem to come to the same conclusion: Since
every smooth hyperplane section of X is a supersingular elliptic curve of characteristic two, all
such sections are isomorphic ([Hus04, p. 260]), so Theorem 2.5 implies f is the Fermat cubic.
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which we re-write as

f = x2
1L1 + x2

2L2

for some (new) linear forms x1, x2. Now, if the linear forms x1, x2, L1, L2 are not
linearly independent, then changing coordinates, f can be written as a cubic in
three variables, and the cubic is degenerate. Thus, without loss of generality, we
have f = x2

1x3 + x2
2x4.

Next, assume the rank of A is three. Assume L1, L2, L3 are linearly independent,
and write L4 = λ1L1 + λ2L2 + λ3L3. Rewrite f as

f = L1(x
2
1 + λ1x

2
4)︸ ︷︷ ︸

m2
1

+ L2(x
2
2 + λ2x

2
4︸ ︷︷ ︸

m2
2

) + L3(x
2
3 + λ3x

2
4︸ ︷︷ ︸

m2
3

).

Notice that m1,m2,m3 are linearly independent, and thus after a change of coor-
dinates we may write f as

f = L1x
2
1 + L2x

2
2 + L3x

2
3.

Again, our non-degeneracy hypothesis implies that x4 appears in at least one of the
Li, so that after a change of coordinates we may assume L1 = x4. So

f = x4x
2
1 + (a21x1 + · · ·+ a24x4)x

2
2 + (a31x1 + · · ·+ a34x4)x

2
3,

for some constants aij . So

A =

⎛
⎜⎜⎝

0 0 0 1
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 0

⎞
⎟⎟⎠

Notice that because A has rank 3, the first three columns must span a space of
dimension two. We can now do changes of coordinates to get a24 = a34 = 0
without affecting the basic form of the matrix. For example, using Remark 3.6, we
can add a suitable multiple of the first row to the second row to make a24 = 0;
the corresponding column operation adds a multiple of column one to column two,
changing only the second and third rows of the second column. Similarly, we can
make a34 = 0, so that we can assume the matrix A has the form

A =

⎛
⎜⎜⎝

0 0 0 1
a1 a2 a3 0
b1 b2 b3 0
0 0 0 0

⎞
⎟⎟⎠ .

The submatrix

B =

(
a2 a3
b2 b3

)

is non-zero, since A has rank 3. This submatrix represents a cubic in the two
variables x2, x3. By Proposition 4.3, a linear change of coordinates involving only
x2 and x3 will bring the submatrix B to one of the standard forms(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
1 0
0 1

)
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without changing any of the zero entries of the matrix A. That is, A can be assumed
to be in one of the following three forms:⎛

⎜⎜⎝
0 0 0 1
a 1 0 0
b 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
a 0 1 0
b 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
a 1 0 0
b 0 1 0
0 0 0 0

⎞
⎟⎟⎠ .

In each of these three cases, we can do row and column operations (according
to the rules prescribed by Remark 3.6) to bring these to the following three forms,
respectively:

⎛
⎜⎜⎝
0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ .

For example, to transform the first matrix, we first add a multiple of the second
column to the first column (along with the corresponding row operation) to obtain
a matrix of the form ⎛

⎜⎜⎝
0 � 0 1
0 1 0 0
b 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

where b 	= 0 (as the rank is 3). Since the last row is zero, we can simply add a
multiple of the last column to the second column to eliminate �, obtaining⎛

⎜⎜⎝
0 0 0 1
0 1 0 0
b 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Now multiplying the third row/column appropriately, we get⎛
⎜⎜⎝
0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Summarizing, the three matrices above correspond, respectively, to the following
three cubic forms:

F1 = x2
1x4 + x3

2 + x1x
2
3

F2 = x2
1x4 + x2

2x3 + x1x
2
3

F3 = x2
1x4 + x3

2 + x3
3.

We have now completed step (1) of the proof of Theorem 4.1. Step (2), showing
that the five normal forms we have identified are all distinct, remains. For this, we
need only compare those of the same rank, so it suffices to prove the following:

Lemma 4.5. The rings corresponding to the three choices of F1, F2, F3 above are
pair-wise non-isomorphic.
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Proof. The singular locus for each of F1, F2, F3 is defined by the ideal 〈x1, x2, x3〉.
Therefore, any change of variables that sends Fi to Fj for i, j ∈ {1, 2, 3} has to
send 〈x1, x2, x3〉 to 〈x1, x2, x3〉. This means any such change of variables, without
loss of generality, has the form

g

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

L1

L2

L3

L4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a1x1 + a2x2 + a3x3

b1x1 + b2x2 + b3x3

c1x1 + c2x2 + c3x3

d1x1 + d2x2 + d3x3 + x4

⎤
⎥⎥⎦ .

We claim that any such isomorphism g taking Fi to Fj must fix x1. To see this, we
substitute L1, L2, L3, L4 in for x1, x2, x3, x4 into Fi and compare to Fj . The terms
that contain x4 in g · Fi are L2

1x4 whereas in Fj there is only x2
1x4. This means

that L1 = x1, so that any linear change of coordinates taking Fi to Fj must fix x1.
It is now easy to see that the hypersurfaces defined by F1, F2 and F3 are pro-

jectively distinct. First, suppose that g · F1 = F2. Since g fixes x1, it induces
isomorphisms

k[x1, x2, x3, x4]

〈x1, F1〉
∼=

k[x1, x2, x3, x4]

〈g · x1, g · F1〉
∼=

k[x1, x2, x3, x4]

〈x1, F2〉
or

k[x2, x3, x4]

〈x3
2〉

∼=
k[x2, x3, x4]

〈x2
2x3〉

.

But these are obviously not isomorphic, as they exhibit different indeces of nilpo-
tency. So F1 and F2 cut out projectively distinct hypersurfaces in P

3.
Similarly, we can see that if there is a linear change of coordinates g such that

g · F2 = F3, we would get an isomorphism

k[x2, x3, x4]

〈x2
2x3〉

∼=
k[x2, x3, x4]

〈x3
2 + x3

3〉
,

again a contradiction since the ring on the right is reduced. Finally, if we assume
g · F3 = F1, we would get an isomorphism

k[x2, x3, x4]

〈x3
2〉

∼=
k[x2, x3, x4]

〈x3
2 + x3

3〉
,

which is a contradiction for the same reason. �

�

Remark 4.6. We conclude by sketching an alternative proof of the fact that a
smooth cubic surface in characteristic p > 2 is Frobenius split ([Har98, 5.5]), using
Beauville’s theorem. Fix a smooth cubic surface X over an algebraically closed field
of char p > 0. Choose a pencil of hyperplane sections, blown up at the line they
meet. This gives a polarized family of elliptic curves over a dense open set of the
affine line (after throwing away any singular member). Since a coarse moduli space
exists [MS72, p. 206], the base of this family must map to the j-line, and so its
image is connected. Now, if X is not Frobenius split, the members of this family of
elliptic curves are all supersingular. But there are only finitely many supersingular
j-invariants, so in fact, the map to the j-line is a constant map. So all the smooth
hyperplane sections of X are isomorphic. By Theorem 2.5, our cubic hypersurface

must be projectively equivalent to one defined by
∑

i x
pe+1
i , which means that X
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must be projectively equivalent to the Fermat cubic and the characteristic must be
two.

5. Frobenius splitting and lines on cubic surfaces

In this section, we use our classification to deduce a characterization of Frobenius
splitting of cubic surfaces in terms of their configuration of lines. Our results are
valid whether or not the surface is smooth. In the smooth case, our results overlap
with those of Hara [Har98, 5.5], but our approach is different, and we think, more
elementary.

Recall that a point on a cubic surface is an Eckardt point if it is an intersection
point of three distinct lines on the surface. Generically, we expect three lines in a
plane to form a “triangle”—that is, we expect that they do not meet in a single
point. Thus the cubic surfaces that contain Eckardt points are more special than a
generic cubic surface.

Non-Frobenius split cubic surfaces have the most degenerate possible configura-
tions of lines and thus the maximal possible number of Eckardt points:

Theorem 5.1. Consider a (possibly singular) cubic surface X over a field of char-
acteristic two that is not Frobenius split. If two lines �1 and �2 on X meet at a
point, then either one of the lines is a double line, or the intersection is an Eckardt
point. That is, a non-Frobenius split cubic surface of characteristic two contains
no triangles.

Proof. Fix two intersecting lines �1 and �2 on a (possibly singular, or even degen-
erate) cubic surface X that is not Frobenius split. Let H be the plane spanned
by �1 and �2. Since X has degree three, we know X ∩ H contains exactly one
more line, and the coordinate ring of the hyperplane section X ∩H is isomorphic to
k[x, y, z]/〈xyL〉, where L is a linear form. By Theorem 2.4, the ring k[x, y, z]/〈xyL〉
cannot be F -pure, for if it were, the coordinate ring of X would also be F -pure.
By our classification theorem for non-Frobenius split cubics in three variables, the
cubic curve X ∩ H must therefore be degenerate, since our list in Theorem 4.2
contains no triple of lines. That is, the third linear form L must lie in the span of
{x, y}. So either the third line is one of �1 or �2 (this is the case where L is a scalar
multiple of x or y) or the three lines are distinct, and meet at the Eckardt point
[0 : 0 : 1]. �

We deduce a cute corollary in the smooth case:

Corollary 5.2. A smooth cubic surface of characteristic two is Frobenius split
unless it is “triangle-free”—that is, unless each and every collection of coplanar
lines on it meet at one point. In particular, the only smooth cubic surface that
is not Frobenius split (up to projective change of coordinates) is the Fermat cubic
defined by x3 + y3 + z3 + w3 in characteristic two.

Remark 5.3. Corollary 5.2 holds as stated in any positive characteristic, but some-
what vacuously: in characteristic p > 2, every cubic surface is Frobenius split
([Har98, 5.5]; see also Remark 4.6) and there are no triangle-free cubic surfaces.
The latter statement is likely well-known but follows easily from our classical argu-
ment below.

The second statement of Corollary 5.2 follows immediately from Theorem 5.1
using the main theorem of [Hom97] geometrically characterizing the Fermat cubic
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surface in characteristic two. However, we include two straightforward proofs, the
first quite classical (and reproving part of [Hom97, 1.1]) and the second using
Beauville’s theorem (Theorem 2.5).

Classical Proof of Corollary 5.2. The first statement is immediate from the theo-
rem, since each tri-tangent planar section of a smooth cubic surface is either a
triangle or a triple of lines meeting at an Eckardt point. Thus for the second state-
ment, because the Fermat cubic surface is not Frobenius split (Theorem 2.1), it
suffices to show that there is at most one cubic surface without any triangles.2

Recall that a cubic surface can be described as P
2 blown up at six points

{p1, . . . , p6}, with no three co-linear, and no five on a conic (for example, see
[Har77, V §4]). Each pair of these points determines a line �ij on the cubic surface
X—namely the birational transform on X of the line through pi and pj in P

2. Note
that the lines �ij and �kl intersect on X if and only if {i, j} ∩ {k, l} = ∅. We claim
that the fact that these fifteen lines can never form a triangle on X imposes so
many conditions that the configuration of six points is uniquely determined.

To see this, choose coordinates so that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 :
0 : 1], and p4 = [1 : 1 : 1]. These determine three pairs of intersecting lines on the
cubic, whose intersection points are [1 : 1 : 0], [0 : 1 : 1], and [1 : 0 : 1]. The line
�56 must intersect both lines in each of these intersecting pairs, and hence �56 must
pass through each of these three points, for otherwise we would have a triangle on
the cubic surface. Thus �56 is uniquely determined3 as the line {x+ y+ z = 0}. So
p5 = [a : a + 1 : 1] and p6 = [b : b + 1 : 1], for some non-zero scalars a, b. Because
�25, �46 and �13(= V(y)) are concurrent, we compute that

�25 ∩ �13 = �46 ∩ �13 so that [a : 0 : 1] = [1 : 0 : b].

Likewise, because the lines �15, �46 and �23(= V(x)) are concurrent, we have

�15 ∩ �23 = �46 ∩ �23 so that [0 : a+ 1 : 1] = [0 : 1 : b+ 1].

Therefore, the constants a and b satisfy the relations ab = 1 and a + b = 1. This
determines p5 and p6 as [ω : ω + 1 : 1] and [ω2, ω2 + 1 : 1], where ω is a primitive
cube root of unity. �
Alternate Proof of Corollary. Alternatively, the second statement in Corollary 5.2
can be deduced from Beauville’s theorem. We know that if X is not Frobenius split,
then the same is true for every hyperplane section by Theorem 2.4. So the smooth
hyperplane sections of X are all supersingular elliptic curves of characteristic two
(by Example 2.3.1), and hence isomorphic [Hus04, p. 260]. Now Beauville’s theorem
(Theorem 2.5) implies that the cubic surface X is projectively equivalent to x3 +
y3 + z3 + w3. �
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