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1 Introduction

Fix a field k of prime characteristic p. A Frobenius form over k is a homogeneous
polynomial in indeterminates xi, . .., x, of the form

x{’eLl—i—x;eLz—i—u-—}—x,’;eLn (1)

where each L; is some linear form and e is a positive integer. Put differently, a

Frobenius form is a homogeneous polynomial of degree p¢ + 1 that is in the ideal

p° P
generated by x| , ..., x; .

Frobenius forms can be compared to quadratic forms: if we allow e = 0 in the
expression (1) above, we get a quadratic form. Quadratic forms are well-studied in
the classical literature. For example, much is known about the geometry of quadric
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hypersurfaces, and, at least over a quadratically closed field, their classification up
to linear changes of coordinates is well-known. Both admit a convenient matrix
factorization, where the action of changing coordinates behaves similarly.

One special but very interesting case of Frobenius forms are those of degree
three (which are necessarily defined over a field of characteristic two). A smooth
cubic surface is always Frobenius split, it turns out, unless it is defined by a
Frobenius form; in particular, non-Frobenius split (smooth) cubic surfaces exist
only over fields of characteristic two [8, 5.5]. A detailed examination of non-
Frobenius split cubic surfaces of characteristic two, including the non-smooth ones,
was undertaken in [10]. In particular, the Frobenius forms of degree three in up
to four variables are classified there, up to projective equivalence. In this paper,
we extend that classification to arbitrary Frobenius forms in up to five variables.
Put differently, we classify the projective equivalence classes of three-dimensional
projective hypersurfaces defined by Frobenius forms—a class called extremal three-
folds in [11]. Section 4 describes this classification in detail, including a particularly
“sparse” equation representing each of the seven types of projective equivalence
classes of extremal three-folds.

Frobenius forms and the projective schemes they define have various “extreme”
properties, both algebraically and geometrically. For example, cubic surfaces
defined by Frobenius forms are characterized by the geometric property that
they “contain no triangles”—that is, any plane section consisting of three lines
must contain a point on all three [10, 5.1]. Analogous extremal configurations
of linear subvarieties occur more generally for extremal hypersurfaces of higher
degree and dimension; see [11, §8]. Algebraically, reduced Frobenius forms can
be characterized as those achieving the minimal possible F-pure threshold among
reduced forms of the same degree [11, 1.1].

2 Matrix Factorization of Frobenius Forms

Fix a field k of prime characteristic p. Let g denote an integral positive power of p.
The beauty of Frobenius forms is that, like quadratic forms, they admit a matrix
factorization: a Frobenius form % in n variables can be written as

xi
x

Xn

for some n x n matrix A with entries in k. Because e > 0, the matrix A representing
the Frobenius form 7 is unique.

When e = 0, we recover the case of quadratic forms. In the quadratic form case,
of course, A is not unique, but we can force uniqueness, for example, by insisting
that A be symmetric (when p # 2).
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There is an interesting story of Frobenius forms with “conjugate symmetric”
matrices, where conjugacy is defined using a Frobenius automorphism. By defi-
nition, a Hermitian Frobenius form over k is a Frobenius form whose matrix A
satisfies AT = Al4] for some ¢ = p¢ (in particular, such a matrix is defined
over F,2). This special class of Frobenius forms gives a characteristic p analog
of Hermitian forms over the complex numbers, and has been studied, for example,
in [1, 9, 15] and [12, §35]. Like quadratic forms over quadratically closed fields,
there is exactly one non-degenerate Hermitian Frobenius form, up to projective
equivalence, in each dimension [1, 4.1] over qu. As we will see, the classification
of more general Frobenius forms is more complicated.

To classify Frobenius forms up to projective equivalence, we need to understand
how linear changes of coordinates act on them.

Let g € GL,(k) be any linear change of coordinates for the polynomial ring

k[x1, ..., xn]. We represent the action of g on the variables as
X1 X1
b X2
=g s
Xn Xn

the usual matrix multiplication. In particular, when g acts! on the Frobenius form #,
we have

X1 X1
e e e X2 e e ¢ CINT *2

¢ h=g- [xlp M -~xn”]A : :[X]P N ...x;;](glm) Ag| ..
Xn Xn

where gl7‘! denotes the matrix whose entries are the p¢-th powers of the entries of g
and BT indicates the transpose of a matrix B. Thus, the action of g on the Frobenius
form h transforms the matrix A representing / into the matrix (g/?1)T Ag.

A Frobenius form is said to be nondegenerate if it cannot be written, after a
linear change of coordinates, in a smaller number of variables, and is otherwise
degenerate, similarly as for quadratic forms. We define its embedding dimension
to be the smallest number of variables needed to write f up to linear change of
coordinates.

The rank of a Frobenius form is defined as the rank of the representing matrix,
just as the rank of a quadratic form is the rank of the corresponding symmetric
matrix when p # 2. The rank of a Frobenius form is invariant under changes of

I'We write “g - h” to indicate the group action on polynomials, whereas adjacency, “gB,” will
indicate the usual matrix multiplication on an n x m matrix B.
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coordinates, since the rank of a matrix is unchanged by multiplication on the left
and right by invertible matrices.

The rank of a Frobenius form is equal to the codimension of the singular locus
of the corresponding hypersurface [11, 5.3]. This is analogous to the corresponding
statement about quadratic forms of non-even characteristic, when we work with the
corresponding symmetric matrix.

There is precisely one full rank Frobenius form, up to change of coordinates,
over an algebraically closed field, in each fixed degree p® + 1 and embedding
dimension n:

Theorem 2.1 ([11, 6.1][2]) Every full rank Frobenius form over an algebraically
closed field k of characteristic p > 0 is represented, in suitable linear coordinates,

by the diagonal form xiﬁl + -+ xff“, where q is an integral power of p. O

Put differently, every smooth projective hypersurface defined by a Frobenius
form is projectively equivalent to one defined by xi’“ + xg + + ot X *1 This
is analogous to the situation for quadratic forms over a quadratically closed field
of characteristic not two, though the proof is a bit more involved. In particular, we
do not have a complete understanding of the situation over non-closed fields, an
interesting open problem. We have no counterexample to the speculation that the
full rank Frobenius forms may be “diagonalizable” over a perfect field closed under
all degree p° extensions.

In the non-full rank case, there are finitely many projective equivalence classes of
Frobenius forms in each fixed degree and embedding dimension [11, 7.4]. Indeed,
the number of non-degenerate Frobenius forms of embedding dimension n (of fixed
degree) is bounded above by the n-th Fibonacci number. However, the paper [11]
stopped short of precisely classifying the Frobenius forms in each dimension, a task
essentially completed for Frobenius forms in four variables in [10]. The case of five
variables is treated here in Sect. 5. For the statement, see Sect. 4.

3 Quadratic Forms

To complete our story, we recall the classification of quadratic forms:

Proposition 3.1 Let f be a non-degenerate quadratic form in n variables over a
quadratically closed® field. If the characteristic of k is two, then f is projectively
equivalent to either

1. x1x2+x3x4 + -+ xXp—2xp—1 + x,% if n is odd, or
2. xX1x2 +x3X4 4 -+ - + Xp—3Xn—2 + Xn_1Xp, if n is even.

2 By quadratically closed, we mean that every degree two polynomial over k splits. In characteristic
two, this is a stronger assumption than requiring that the field contain the square root of every
element.
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If the characteristic of k is not two, then f is projectively equivalent to

x12+x§+~~~+x,f.
In particular, over a quadratically closed field, there is exactly one quadratic form
in each embedding dimension. O

This classification is well known, but since we could not find a low-tech proof in
the modern literature for the case p = 2, we include one here. Alternate discussions
using more machinery can be found, for example, in [5, [.16], [7, 12.9] or [6, 7.32],
which also contain more refined classifications over non-closed fields. A lower-tech
proof can be found in the classic book of [4], but for the convenience of the reader
we include a direct and concise proof here.’

Proof The only quadratic form in one variable is xf. Likewise, the two-variable
case is trivial: a degree two form in two variables must factor into two linear forms
over a quadratically closed field, so in suitable coordinates, the form is either xjx;
or x% (which is degenerate). m]

Case of Characteristic Not Two

It is straightforward to check (even without closure assumptions on k) that a suitable
choice of linear change of coordinates puts f in the form )le% 4+ 4+ k,,x,zl, where
the X; are nonzero (e.g., see [13]). So, if the ground field is quadratically closed, the
change of coordinates taking each x; — ﬁxi normalizes the form to x% 4+ —I—x,%.

Case of Characteristic Two

Say that n > 3. Since f is non-degenerate, it is not the square of a linear form. Thus
some square-free term, which we can assume to be x1x;, appears with nonzero
coefficient. Scaling, we may assume the coefficient of xjx; is 1.

Now write f in the form

n n
L2+x1x2+2a1jx1xj+Za2jx2xj +hi(x3,...,x,) 2)
j=3 j=3

where L is a (possibly zero) linear form in x1, xp, and A1 is a quadratic form in
X3, ..., Xn. Apply the linear change of coordinates sending x> to x» + 27:3 ayjxj,
fixing the other variables. This transforms (2) into an expression which can be
written

3 While the stated classification of quadratic forms in characteristic two is well known, it appears
that an elementary proof is not. In his history of quadratic forms [14], Scharlau laments that
Dickson’s 1899 work [3], which is elementary but “rather involved,” is not better known, stating
“However, one must admit, that this paper—like most of Dickson’s work—is not very pleasant
to read. It is entirely algebraic.” We hope the reader will find our straightforward and entirely
algebraic proof more pleasant to read.
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n
L2+x1xz+2aéjx2xj+h2(x3,...,x,,), 3)
j=3
where again A, is a quadratic form in x3, ..., x,.

With another change of coordinates, we may assume the summand
23;3 a, X% is zero. Indeed, if some a; ; is nonzero, then we can assume a; = 1
after renumbering and scaling if necessary. Now apply the linear transformation
sending. x3 to X3 + Z;f=4 al X fixing the other variables. This transforms the
expression (3) into

L+ (x1 + x3)x2 + h3(x3, .., X)), 4)

where /3 is quadratic in x3, . . ., x;,. Next, the coordinate change taking x; to x1 +x3,
fixing the other variables, transforms (4) into the form

L%+ x1x0 4 ha(x3, ..., Xn), )

where h4 is quadratic.

Finally, by induction, we separately apply linear changes of coordinates to the
quadratic L? 4+ x1xy in {x1, x2} and the quadratic h4 in {x3, ..., x,} to put each into
the desired form. It is easy to see, then, that their sum has the desired form as well,
depending on the parity of # in the stated way. This completes the proof. O

Remark 3.2 Our proof easily adapts to show the well-known basic fact that a
quadratic form over an arbitrary field of characteristic two is a sum of binary
quadratics in distinct variables (plus a quadratic in one variable if the embedding
dimension is odd). Alternatively, our proof adapts to prove Theorem 199 in [4] over
any perfect field of characteristic two.

Remark 3.3 Quadratic forms behave like Frobenius forms from the point of view
of achieving the minimal F-pure threshold. For a reduced form of degree d, it is
proved in [11, 1.1] that the F-pure threshold is at least d+1, with equality if and
only if the form is a Frobenius or quadratic form. Another way in which Frobenius
forms and quadratic forms are similar is that the corresponding hypersurfaces both

contain many high-dimensional linear subvarieties; see [11, §8].
4 Frobenius Forms in Five Variables: Classification
Statements

Fix an algebraically closed field k of positive characteristic p. Let g be an integral
positive power of p.
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Theorem 4.1 There are seven projective equivalence classes of Frobenius forms
of a fixed degree q + 1 and embedding dimension five. Specifically, these are
represented by the following forms:

1 1 1 1 1
xiﬁ —i—ngr +x§1+ —i—JcZJr +xg+ (rank 5)

1
xfx5 +x§x4+x§]+ +xe2 (rank 4)
xdxs 4+ x4 AR k4
1Xs +xyx4 +x3° +x,x1 (rank 4)
xf)g + xgx4 —l—xgxz +x2x1 (rank 4)
xfx5 + xgx3 —l—xgxz +xf{x1 (rank 4)
1
xfx5+xgx4+xg+ (rank 3)
xfx5 +xgx4+xgx2 (rank 3)

NS Lk b~

For completeness, we also describe degenerate Frobenius forms in five variables
in the following two theorems. The proofs are the same as in [10], although that
source considered only cubic Frobenius forms.

Theorem 4.2 There are five projective equivalence classes of Frobenius forms of a
fixed degree q + 1 and embedding dimension four. Specifically, these are represented
by the following forms:

q+1 q+1 q+1 q+1
xXp o t+x, +x3 +xg (rank4)

x?x;;—}—xgﬂ—i—xgxl (rank 3)
x;]X4+xgx3 +x§1x1 (rank 3)
x;]X4+xgx3 —i—xgxz (rank 3)
x?x;;—}—xg)@ (rank 2)

SRk~

Theorem 4.3 There are three projective equivalence classes of nondegenerate
Frobenius forms in three variables in each fixed degree, represented by precisely
one of the following forms:

1. The diagonal form xiﬁl + xgﬂ + xéﬁl (rank 3)

2. The cuspidal form x;’x3 + xgH (rank 2)
3. The reducible form xi{x3 + xgxl (rank 2)

Moreover, in two variables, each Frobenius form is projectively equivalent to
exactly one of the following:

1. Theform x1x; (x?_1 +xg_l), defining g +1 distinct points 0, 0o and the (g —1)-st
roots of unity in P'.

2. The form x?xz, defining the union of a q-fold point and a reduced point.

3. The form x?“, defining a (g + 1)-fold point.
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5 C(lassification of Frobenius Forms in Five Variables: Proofs

In this section, we prove Theorem 4.1.

For this, we recall the method in [11] for showing that there are only finitely many
Frobenius forms of any fixed degree and embedding dimension, up to projective
equivalence. A key point is that a Frobenius form is equivalent to one represented
by a “sparse matrix:”

Theorem 5.1 ([111)* Fix any algebraically closed field of characteristic p > 0.
A Frobenius form of embedding dimension n and rank r can be represented by a
matrix A with the following properties:

1. All rows beyond the r-th are zero.

2. All columns beyond the n-th are zero.

3. There are exactly r nonzero entries (all of which are 1) occurring in positions
(1 j0), 2 j2), ..., (r jr), where ji > jp > -+ > j.

In particular, we may assume that all columns of A are zero but for r of them,
which are the standard unit basis vectors e, ..., e (in that order, and possibly
interspersed with zero columns). For example, any full rank Frobenius form is
projectively equivalent to a Frobenius form whose matrix is the anti-diagonal
matrix, that is, whose columns are ¢, ..., e;. A Frobenius form whose matrix
satisfies the three conditions of Theorem 5.1 will be called a sparse form.

Theorem 5.1 implies the following bounds:

Corollary 5.2

1. The rank of a Frobenius form of embedding dimension n is at least 7.

2. The number of non-degenerate n X n matrices of rank r satisfying the three
conditions in Theorem (5.1) is (n:r).

3. The number of projective equivalence types of Frobenius forms of rank r and
embedding dimension n (and fixed degree) is at most (n:r).

Proof Choosing a sparse matrix to represent the Frobenius form, we can assume it
looks like

xlp Li+-+xf Ly,

where Ly, ..., L, € {x1,...,x,} are variables that appear in reverse order, each
variable appearing at most once. All the variables x,1, ..., x, must appear in the
list Ly, ..., L, (otherwise the embedding dimension is less than 7). In particular,

n —r < r. This proves (1).

4 An older version of [11] contained the statement of Theorem 5.1 explicitly; observe now that
it follows easily from Lemma 5.5 in the new version of [11]. The updated version of [11], in
fact, classifies Frobenius forms in all dimensions ([11, Thm. 7.1]), so [11] gives a new proof of
Theorem 4.1 as well.
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For (2), we continue by observing that conditions (1) and (3) of sparseness
(Theorem 5.1) force

Ly=xp, Lo =Xxp—1, ..., Ln_y = Xr41.
For the remaining linear forms {L,,—1, ..., L;}, we can choose 2r — n variables
out of the remaining variables {x1, ..., x,}. There are
r r
2r—n) \n-—r
such choices. So (3) follows as well. O

It is easy to determine the embedding dimension of a sparse Frobenius form:

Lemma 5.3 A rank r Frobenius form of the type
Xy +xdxj, + 4 xlxg (6)

has embedding dimension equal to the number of distinct variables appearing in the
expression (6). O

Proof Suppose that a Frobenius form f of the type (6) involves n variables and has
rank r. If its embedding dimension is not n, then f could be written as a polynomial
in n — 1 independent linear forms, y1, ..., y,—1. Without loss of generality, we can
assume that the y; have the following very special property: there is an index j such
that every y; is a binomial linear form x¢; + a;x; for some index ¢; # j and scalar
a;. To see this, write

Y1 X1

y2 X2

‘=5
Yn—1 Xn

where B is an (n — 1) x n matrix of full rank, and then left-multiply by the inverse
in GL(n — 1) of a full rank (n — 1) x (n — 1) submatrix of B. This replaces
{¥1,..., yn—1} by a set of linear forms spanning the same space and with the desired
binomial form.

There are two cases to consider, depending on whether or not j € {1, ..., r}.

If j < r, then without loss of generality j = 1, so that y; = a;x1 + x;41 for each
i=1,...,n—1.Nowif f is a Frobenius form in y1, ..., y,—1, then

xixj 4 xixj, 4+ xlx, =yILi+ I+ 4yl Lao (N
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for some linear forms L; in the y;. Because the only terms on the right side of
(7) that involve x;] IRTREEE xZ come from y;] e yZﬁl , respectively, it follows that
L,=---=1L,_1 =0.In this case,

f=ylLi+yiLlat+ 4y L,
so that f has rank less than r, contrary to our hypothesis.

If j > r, then without loss of generality j = n, so that y; = x; 4+ a;x, for each
i=1,...,n— 1. Now assuming

xjxg Hxgxp ol =y L+ yiLa+ -+ v Lo ®)

for some linear forms L; in the y;, again it follows that L, y; = --- = L, 1 =0

by looking at the xiq terms, with i > r. Moreover, since the only terms on the right

side of (8) that involve xf, e, x? come from yf, R y;’, we see that L; = x;,

for i < r. But note that x,, must appear among the variables x;,, ..., xj,, since the

original form f involves all n variables. So x, is one of the L;. This says that x,, is
a linear combination of x| + a1x,, ..., Xy,—1 + a,—1x,, a contradiction.

Combining the two cases, we conclude that f is not a form in y1, ..., y,—1, and

so the embedding dimension of f is n. O

Remark 5.4 The total number of projective equivalence classes of Frobenius forms
of embedding dimension n is bounded above by the n-th Fibonacci number [11,
7.4]> This follows from Corollary 5.2 (3) simply by adding the bounds for each
relevant rank. This upper bound is sharp for n < 4, but not in general. There
are distinct sparse matrices that define equivalent Frobenius forms starting in five
variables: O

Example 5.4.1 Consider the Frobenius forms corresponding to the following matri-
ces:

00001 00001
00010 00010
01000 and 10000
00000 00000
00000 00000

namely, x{xs + xJx4 4+ xJx, and x{xs + xJx4 + xJx;. These are rank three non-
degenerate Frobenius forms corresponding to distinct matrices satisfying the three
conditions of Theorem 5.1, but they are equivalent by the change of coordinates
which swaps x; <> x2 and x4 <> x5, but fixes x3. O

5 In an updated version of [11], the authors have recently given a precise count of the number of
projective equivalence classes with a fixed embedding dimension.
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The proof of Theorem 5.1 in [11] relied on noting that a sparse n x n matrix of
rank r will take one of two forms

[0 | | 0 |
O0Bej| or |e Be
[0 | | 0|

where B is a sparse matrix of rank r — 1 in the first case, and a sparse matrix of rank
r — 2 in the second. In light of this, we make the following definition.

Definition 5.4.2 Forn > 3, we say a sparse n X n matrix of rank r < n has type a
if its first column is 0, and type b if its first column is e,.

In particular, a Frobenius form of embedding dimension n and rank r is
equivalent, after a linear change of coordinates, to a polynomial of one of two forms:

(typea) h = x;’xn +h'(x2, ..., x,-1) where &’ is a Frobenius form of rank » — 1
and embedding dimension n — 2. In this case, B is non-degenerate of rank » — 1.
(typeb) h = x{x, + x!x1 + h'(x2, ..., x,—1) where &’ is a Frobenius form of

rank r — 2. If 1’ is non-degenerate in the n — 2 variables x», ... x,_1, then B is
non-degenerate of rank r — 2. Otherwise, 2’ must be non-degenerate in the n — 3
variables x3, ..., X, ..., Xy_1, so that B is degenerate of rank r — 2.

The proof of Theorem 4.1 will now follow from the following two propositions.

Proposition 5.5.2 There are precisely n — 1 projective equivalence classes of
Frobenius forms of embedding dimension n and rank n — 1 (in fixed degree p® +1).

The proof of Proposition 5.5.2 uses the following lemma:

Lemma 5.6 Let hy and hy be two Frobenius forms of the same degree, both of
embedding dimension n and rank r = n — 1, and both represented by matrices (say
A1 and A3) in sparse form. Then hy and hy are projectively equivalent if and only
if A1 and A, are the same type, and their B matrices are projectively equivalent.

Proof Without loss of generality, by Theorem 5.1 we may assume

q

n—1%ju—1> and

hy =xi]x,, +xng2 +x§xj3 +-4x
- q q AT
hz_xlxn+x2xj2/+x3xj§+ vL)C,,,l)c]’;_1

where xj,, x;7 € {x1, ..., x,—1} for each i. In particular, we note that the only term

containing x, in both /| and A, is xi’x,,. Now suppose some change of coordinates
¢ sends & to hy. The singular locus of both /1 and /5 is defined by the vanishing of
X1,X2,...,Xp—1, so the ideal (xp, ..., x,_1) is stable under ¢. In particular, ¢ must
send x,, to a linear form involving x,. Supposing that ¢ maps

X1 > AXy 4+ A p—1x,—1, and

Xp > Ap1X1 + -+ Agnxn, With Ay, # 0,
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then ¢ sends % to a polynomial
M Apnx T, + -+ A?’n_lknnxg_lxn + terms that do not involve x;,.
In order for this to be equal to s, we must have Aj; = 0 forall i > 1. So ¢ sends
X1 > A11X]
where A1 # 0. In particular, if 41 and h, are equivalent, they must be equivalent
after modding out by x7.

We can now see that if 41 and &, are equivalent, then A; and A, have the same
type. Letting ~ denote equivalence up to change of coordinates, if

001 0 01
0BO|~|e—_1 B O
000 0 00

then

|:B 0] N |:B/ 0}
00 00
which is the same as saying B ~ B’. By rank considerations this never happens
between type a and type b (see the discussion following Definition 5.4.2). Thus the
sparse matrices of projectively equivalent Frobenius forms whose rank is one less
than the embedding dimension must have the same type. Furthermore, the argument

above also shows that their “B” matrices are projectively equivalent.
Because the converse is obvious, the lemma is proved. O

Proof (Proof of Proposition 5.5.2) Fix gq. Let N(n,r) denote the number of
projective equivalence classes of Frobenius forms of degree ¢ + 1, rank r, and
embedding dimension n. We want to show that N (n, n — 1) = n — 1. We will induce
on n.

One readily verifies that

N1,00=0,N2,1) =1, and N(3,2) = 2.
Since type a and type b matrices yield distinct classes for » = n — 1, the number of
classes N(n,n — 1) is equal to the number of classes of type a plus the number of

type b. The discussion of the types following Definition 5.4.2 informs us, therefore,
that forn > 4

Nn,n—1)=Nn-2,n—-2)+Nn—-2,n—3)+Nmn—-3,n—3).
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Recalling that there is only one full rank form in each degree and dimension
(Theorem 2.1), it follows that

Nnn—1)=14Nn—-2,n—-3)+1=Nn—-2,n—3)+2.
Finally, by induction on n,
Nn,n—1)=m-3)4+2=n-—1,

as desired. 0O

In light of Proposition 5.5.2, we have now fully classified all Frobenius forms in
five variables of ranks four and five. By Corollary 5.2 (1), it only remains to analyze
the rank three case. Using Corollary 5.2 (2), we see that there are (;) = 3 sparse
forms of rank three in five variables, and we have seen in Example 5.4.1 that two
of them are projectively equivalent. To complete the classification, it remains to see
that the third sparse matrix produces a Frobenius form not equivalent to these. This
is accomplished by the following:

Proposition 5.7 The following rank three Frobenius forms in five variables are not
projectively equivalent:

+1
f= xfxs + xgx4 +x§1

and
g = x?)g + xgx4 + xgxz.

Proof To see this, note that g € (x1,x2). Thus, if f and g are projectively
equivalent, there must be some linear forms L; and L, such that f € (L1, L»).
Since any projective change of coordinates must respect the singular locus, any
form in xy, x2, x3 must be sent to another form in x1, x2, x3, as the vanishing of
these coordinates defines the singular set of both hypersurfaces. This implies that
L1, L;, being the images of x| and x, under our linear change of coordinates, are
forms in x1, xp, x3.

Now note that <x§+l,x4,x5> = (f,x4,x5) C (L1, L3, x4, x5). In particular,

x3 € (L1, Lo, x4,x5) = (L1, L2, x4, x5), so that x3 € (L1, Ly). Without loss
of generality, we may assume (L1, L>) = (x3, L2), where L, is a linear form in x
and x», so that f € (x3, L) . Therefore,

x{xs +xdxs € (x3, L) 9

as well. Considering the image of the expression (9) under the natural quotient map
klx1,...,xs5] = k[x1,...,x5]/(x3), we see that
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xlxs +xdx4 € (Lo) (10)

in a polynomial ring in four variables. But the polynomial x{xs+x3 x4 is irreducible
(for example, by FEisenstein’s criterion), so we arrive at a contradiction. This
contradiction ensures that f and g are not projectively equivalent. O

This completes our classification of Frobenius forms in up to five variables.
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