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1 Introduction

Fix a field k of prime characteristic p. A Frobenius form over k is a homogeneous

polynomial in indeterminates x1, . . . , xn of the form

x
pe

1 L1 + x
pe

2 L2 + · · · + x
pe

n Ln (1)

where each Li is some linear form and e is a positive integer. Put differently, a

Frobenius form is a homogeneous polynomial of degree pe + 1 that is in the ideal

generated by x
pe

1 , . . . , x
pe

n .

Frobenius forms can be compared to quadratic forms: if we allow e = 0 in the

expression (1) above, we get a quadratic form. Quadratic forms are well-studied in

the classical literature. For example, much is known about the geometry of quadric
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hypersurfaces, and, at least over a quadratically closed field, their classification up

to linear changes of coordinates is well-known. Both admit a convenient matrix

factorization, where the action of changing coordinates behaves similarly.

One special but very interesting case of Frobenius forms are those of degree

three (which are necessarily defined over a field of characteristic two). A smooth

cubic surface is always Frobenius split, it turns out, unless it is defined by a

Frobenius form; in particular, non-Frobenius split (smooth) cubic surfaces exist

only over fields of characteristic two [8, 5.5]. A detailed examination of non-

Frobenius split cubic surfaces of characteristic two, including the non-smooth ones,

was undertaken in [10]. In particular, the Frobenius forms of degree three in up

to four variables are classified there, up to projective equivalence. In this paper,

we extend that classification to arbitrary Frobenius forms in up to five variables.

Put differently, we classify the projective equivalence classes of three-dimensional

projective hypersurfaces defined by Frobenius forms—a class called extremal three-

folds in [11]. Section 4 describes this classification in detail, including a particularly

“sparse” equation representing each of the seven types of projective equivalence

classes of extremal three-folds.

Frobenius forms and the projective schemes they define have various “extreme”

properties, both algebraically and geometrically. For example, cubic surfaces

defined by Frobenius forms are characterized by the geometric property that

they “contain no triangles”—that is, any plane section consisting of three lines

must contain a point on all three [10, 5.1]. Analogous extremal configurations

of linear subvarieties occur more generally for extremal hypersurfaces of higher

degree and dimension; see [11, §8]. Algebraically, reduced Frobenius forms can

be characterized as those achieving the minimal possible F -pure threshold among

reduced forms of the same degree [11, 1.1].

2 Matrix Factorization of Frobenius Forms

Fix a field k of prime characteristic p. Let q denote an integral positive power of p.

The beauty of Frobenius forms is that, like quadratic forms, they admit a matrix

factorization: a Frobenius form h in n variables can be written as

h =
L
x

pe

1 x
pe

2 · · · x
pe

n

M
A

⎡
⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎦

for some n×n matrix A with entries in k. Because e > 0, the matrix A representing

the Frobenius form h is unique.

When e = 0, we recover the case of quadratic forms. In the quadratic form case,

of course, A is not unique, but we can force uniqueness, for example, by insisting

that A be symmetric (when p �= 2).
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There is an interesting story of Frobenius forms with “conjugate symmetric”

matrices, where conjugacy is defined using a Frobenius automorphism. By defi-

nition, a Hermitian Frobenius form over k is a Frobenius form whose matrix A

satisfies A1 = A[q] for some q = pe (in particular, such a matrix is defined

over Fq2 ). This special class of Frobenius forms gives a characteristic p analog

of Hermitian forms over the complex numbers, and has been studied, for example,

in [1, 9, 15] and [12, §35]. Like quadratic forms over quadratically closed fields,

there is exactly one non-degenerate Hermitian Frobenius form, up to projective

equivalence, in each dimension [1, 4.1] over Fq2 . As we will see, the classification

of more general Frobenius forms is more complicated.

To classify Frobenius forms up to projective equivalence, we need to understand

how linear changes of coordinates act on them.

Let g ∈ GLn(k) be any linear change of coordinates for the polynomial ring

k[x1, . . . , xn]. We represent the action of g on the variables as

⎡
⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎦ �→ g

⎡
⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎦ ,

the usual matrix multiplication. In particular, when g acts1 on the Frobenius form h,
we have

g · h = g ·

⎛
⎜⎜⎜⎝
L
x

pe

1 x
pe

2 · · · x
pe

n

M
A

⎡
⎢⎢⎢⎣

x1

x2

.

.

.

xn

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ =

L
x

pe

1 x
pe

2 · · · x
pe

n

M
(g[pe])1Ag

⎡
⎢⎢⎢⎣

x1

x2

.

.

.

xn

⎤
⎥⎥⎥⎦ ,

where g[pe] denotes the matrix whose entries are the pe-th powers of the entries of g

and B1 indicates the transpose of a matrix B. Thus, the action of g on the Frobenius

form h transforms the matrix A representing h into the matrix (g[pe])1Ag.

A Frobenius form is said to be nondegenerate if it cannot be written, after a

linear change of coordinates, in a smaller number of variables, and is otherwise

degenerate, similarly as for quadratic forms. We define its embedding dimension
to be the smallest number of variables needed to write f up to linear change of

coordinates.

The rank of a Frobenius form is defined as the rank of the representing matrix,

just as the rank of a quadratic form is the rank of the corresponding symmetric

matrix when p �= 2. The rank of a Frobenius form is invariant under changes of

1 We write “g · h” to indicate the group action on polynomials, whereas adjacency, “gB,” will

indicate the usual matrix multiplication on an n × m matrix B.



356 Z. Kadyrsizova et al.

coordinates, since the rank of a matrix is unchanged by multiplication on the left

and right by invertible matrices.

The rank of a Frobenius form is equal to the codimension of the singular locus

of the corresponding hypersurface [11, 5.3]. This is analogous to the corresponding

statement about quadratic forms of non-even characteristic, when we work with the

corresponding symmetric matrix.

There is precisely one full rank Frobenius form, up to change of coordinates,

over an algebraically closed field, in each fixed degree pe + 1 and embedding

dimension n:

Theorem 2.1 ([11, 6.1][2]) Every full rank Frobenius form over an algebraically

closed field k of characteristic p > 0 is represented, in suitable linear coordinates,

by the diagonal form x
q+1
1 + · · · + x

q+1
n , where q is an integral power of p. �


Put differently, every smooth projective hypersurface defined by a Frobenius

form is projectively equivalent to one defined by x
q+1
1 + x

q+1
2 + · · · + x

q+1
n . This

is analogous to the situation for quadratic forms over a quadratically closed field

of characteristic not two, though the proof is a bit more involved. In particular, we

do not have a complete understanding of the situation over non-closed fields, an

interesting open problem. We have no counterexample to the speculation that the

full rank Frobenius forms may be “diagonalizable” over a perfect field closed under

all degree pe extensions.

In the non-full rank case, there are finitely many projective equivalence classes of

Frobenius forms in each fixed degree and embedding dimension [11, 7.4]. Indeed,

the number of non-degenerate Frobenius forms of embedding dimension n (of fixed

degree) is bounded above by the n-th Fibonacci number. However, the paper [11]

stopped short of precisely classifying the Frobenius forms in each dimension, a task

essentially completed for Frobenius forms in four variables in [10]. The case of five

variables is treated here in Sect. 5. For the statement, see Sect. 4.

3 Quadratic Forms

To complete our story, we recall the classification of quadratic forms:

Proposition 3.1 Let f be a non-degenerate quadratic form in n variables over a

quadratically closed2 field. If the characteristic of k is two, then f is projectively

equivalent to either

1. x1x2 + x3x4 + · · · + xn−2xn−1 + x2
n if n is odd, or

2. x1x2 + x3x4 + · · · + xn−3xn−2 + xn−1xn if n is even.

2 By quadratically closed, we mean that every degree two polynomial over k splits. In characteristic

two, this is a stronger assumption than requiring that the field contain the square root of every

element.
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If the characteristic of k is not two, then f is projectively equivalent to

x2
1 + x2

2 + · · · + x2
n.

In particular, over a quadratically closed field, there is exactly one quadratic form

in each embedding dimension. �

This classification is well known, but since we could not find a low-tech proof in

the modern literature for the case p = 2, we include one here. Alternate discussions

using more machinery can be found, for example, in [5, I.16], [7, 12.9] or [6, 7.32],

which also contain more refined classifications over non-closed fields. A lower-tech

proof can be found in the classic book of [4], but for the convenience of the reader

we include a direct and concise proof here.3

Proof The only quadratic form in one variable is x2
1 . Likewise, the two-variable

case is trivial: a degree two form in two variables must factor into two linear forms

over a quadratically closed field, so in suitable coordinates, the form is either x1x2

or x2
1 (which is degenerate). �


Case of Characteristic Not Two
It is straightforward to check (even without closure assumptions on k) that a suitable

choice of linear change of coordinates puts f in the form λ1x
2
1 + · · · + λnx

2
n , where

the λi are nonzero (e.g., see [13]). So, if the ground field is quadratically closed, the

change of coordinates taking each xi �→ 1√
λi

xi normalizes the form to x2
1 +· · ·+x2

n .

Case of Characteristic Two
Say that n � 3. Since f is non-degenerate, it is not the square of a linear form. Thus

some square-free term, which we can assume to be x1x2, appears with nonzero

coefficient. Scaling, we may assume the coefficient of x1x2 is 1.

Now write f in the form

L2 + x1x2 +
n�

j=3

a1j x1xj +
n�

j=3

a2j x2xj + h1(x3, . . . , xn) (2)

where L is a (possibly zero) linear form in x1, x2, and h1 is a quadratic form in

x3, . . . , xn. Apply the linear change of coordinates sending x2 to x2 + �n
j=3 a1j xj ,

fixing the other variables. This transforms (2) into an expression which can be

written

3 While the stated classification of quadratic forms in characteristic two is well known, it appears

that an elementary proof is not. In his history of quadratic forms [14], Scharlau laments that

Dickson’s 1899 work [3], which is elementary but “rather involved,” is not better known, stating

“However, one must admit, that this paper—like most of Dickson’s work—is not very pleasant

to read. It is entirely algebraic.” We hope the reader will find our straightforward and entirely

algebraic proof more pleasant to read.
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L2 + x1x2 +
n�

j=3

a�
2j x2xj + h2(x3, . . . , xn), (3)

where again h2 is a quadratic form in x3, . . . , xn.

With another change of coordinates, we may assume the summand�n
j=3 a�

2j x2xj is zero. Indeed, if some a�
2j is nonzero, then we can assume a�

23 = 1

after renumbering and scaling if necessary. Now apply the linear transformation

sending x3 to x3 + �n
j=4 a�

2j xj , fixing the other variables. This transforms the

expression (3) into

L2 + (x1 + x3)x2 + h3(x3, . . . , xn), (4)

where h3 is quadratic in x3, . . . , xn. Next, the coordinate change taking x1 to x1+x3,

fixing the other variables, transforms (4) into the form

L2 + x1x2 + h4(x3, . . . , xn), (5)

where h4 is quadratic.

Finally, by induction, we separately apply linear changes of coordinates to the

quadratic L2 + x1x2 in {x1, x2} and the quadratic h4 in {x3, . . . , xn} to put each into

the desired form. It is easy to see, then, that their sum has the desired form as well,

depending on the parity of n in the stated way. This completes the proof. �

Remark 3.2 Our proof easily adapts to show the well-known basic fact that a

quadratic form over an arbitrary field of characteristic two is a sum of binary

quadratics in distinct variables (plus a quadratic in one variable if the embedding

dimension is odd). Alternatively, our proof adapts to prove Theorem 199 in [4] over

any perfect field of characteristic two.

Remark 3.3 Quadratic forms behave like Frobenius forms from the point of view

of achieving the minimal F -pure threshold. For a reduced form of degree d, it is

proved in [11, 1.1] that the F -pure threshold is at least 1
d−1

, with equality if and

only if the form is a Frobenius or quadratic form. Another way in which Frobenius

forms and quadratic forms are similar is that the corresponding hypersurfaces both

contain many high-dimensional linear subvarieties; see [11, §8].

4 Frobenius Forms in Five Variables: Classification
Statements

Fix an algebraically closed field k of positive characteristic p. Let q be an integral

positive power of p.



Classification of Frobenius Forms in Five Variables 359

Theorem 4.1 There are seven projective equivalence classes of Frobenius forms

of a fixed degree q + 1 and embedding dimension five. Specifically, these are

represented by the following forms:

1. x
q+1
1 + x

q+1
2 + x

q+1
3 + x

q+1
4 + x

q+1
5 (rank 5)

2. x
q

1 x5 + x
q

2 x4 + x
q+1
3 + x

q

4 x2 (rank 4)

3. x
q

1 x5 + x
q

2 x4 + x
q+1
3 + x

q

4 x1 (rank 4)

4. x
q

1 x5 + x
q

2 x4 + x
q

3 x2 + x
q

4 x1 (rank 4)

5. x
q

1 x5 + x
q

2 x3 + x
q

3 x2 + x
q

4 x1 (rank 4)

6. x
q

1 x5 + x
q

2 x4 + x
q+1
3 (rank 3)

7. x
q

1 x5 + x
q

2 x4 + x
q

3 x2 (rank 3)

For completeness, we also describe degenerate Frobenius forms in five variables

in the following two theorems. The proofs are the same as in [10], although that

source considered only cubic Frobenius forms.

Theorem 4.2 There are five projective equivalence classes of Frobenius forms of a

fixed degree q+1 and embedding dimension four. Specifically, these are represented

by the following forms:

1. x
q+1
1 + x

q+1
2 + x

q+1
3 + x

q+1
4 (rank 4)

2. x
q

1 x4 + x
q+1
2 + x

q

3 x1 (rank 3)

3. x
q

1 x4 + x
q

2 x3 + x
q

3 x1 (rank 3)

4. x
q

1 x4 + x
q

2 x3 + x
q

3 x2 (rank 3)

5. x
q

1 x4 + x
q

2 x3 (rank 2)

Theorem 4.3 There are three projective equivalence classes of nondegenerate

Frobenius forms in three variables in each fixed degree, represented by precisely

one of the following forms:

1. The diagonal form x
q+1
1 + x

q+1
2 + x

q+1
3 (rank 3)

2. The cuspidal form x
q

1 x3 + x
q+1
2 (rank 2)

3. The reducible form x
q

1 x3 + x
q

2 x1 (rank 2)

Moreover, in two variables, each Frobenius form is projectively equivalent to

exactly one of the following:

1. The form x1x2(x
q−1
1 +x

q−1
2 ), defining q+1 distinct points 0, ∞ and the (q−1)-st

roots of unity in P1.

2. The form x
q

1 x2, defining the union of a q-fold point and a reduced point.

3. The form x
q+1
1 , defining a (q + 1)-fold point.
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5 Classification of Frobenius Forms in Five Variables: Proofs

In this section, we prove Theorem 4.1.

For this, we recall the method in [11] for showing that there are only finitely many

Frobenius forms of any fixed degree and embedding dimension, up to projective

equivalence. A key point is that a Frobenius form is equivalent to one represented

by a “sparse matrix:”

Theorem 5.1 ([11])4 Fix any algebraically closed field of characteristic p > 0.

A Frobenius form of embedding dimension n and rank r can be represented by a

matrix A with the following properties:

1. All rows beyond the r-th are zero.

2. All columns beyond the n-th are zero.

3. There are exactly r nonzero entries (all of which are 1) occurring in positions

(1 j1), (2 j2), . . . , (r jr ), where j1 > j2 > · · · > jr .

In particular, we may assume that all columns of A are zero but for r of them,

which are the standard unit basis vectors er , . . . , e1 (in that order, and possibly

interspersed with zero columns). For example, any full rank Frobenius form is

projectively equivalent to a Frobenius form whose matrix is the anti-diagonal

matrix, that is, whose columns are en, . . . , e1. A Frobenius form whose matrix

satisfies the three conditions of Theorem 5.1 will be called a sparse form.
Theorem 5.1 implies the following bounds:

Corollary 5.2

1. The rank of a Frobenius form of embedding dimension n is at least n
2

.

2. The number of non-degenerate n × n matrices of rank r satisfying the three

conditions in Theorem (5.1) is
 

r
n−r

!
.

3. The number of projective equivalence types of Frobenius forms of rank r and

embedding dimension n (and fixed degree) is at most
 

r
n−r

!
.

Proof Choosing a sparse matrix to represent the Frobenius form, we can assume it

looks like

x
pe

1 L1 + · · · + x
pe

r Lr ,

where L1, . . . , Lr ∈ {x1, . . . , xn} are variables that appear in reverse order, each

variable appearing at most once. All the variables xr+1, . . . , xn must appear in the

list L1, . . . , Lr (otherwise the embedding dimension is less than n). In particular,

n − r � r . This proves (1).

4 An older version of [11] contained the statement of Theorem 5.1 explicitly; observe now that

it follows easily from Lemma 5.5 in the new version of [11]. The updated version of [11], in

fact, classifies Frobenius forms in all dimensions ([11, Thm. 7.1]), so [11] gives a new proof of

Theorem 4.1 as well.
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For (2), we continue by observing that conditions (1) and (3) of sparseness

(Theorem 5.1) force

L1 = xn, L2 = xn−1, . . . , Ln−r = xr+1.

For the remaining linear forms {Ln−r+1, . . . , Lr}, we can choose 2r − n variables

out of the remaining variables {x1, . . . , xr }. There are

�
r

2r − n

�
=

�
r

n − r

�

such choices. So (3) follows as well. �

It is easy to determine the embedding dimension of a sparse Frobenius form:

Lemma 5.3 A rank r Frobenius form of the type

x
q

1 xj1
+ x

q

2 xj2
+ · · · + x

q
r xjr (6)

has embedding dimension equal to the number of distinct variables appearing in the

expression (6). �

Proof Suppose that a Frobenius form f of the type (6) involves n variables and has

rank r . If its embedding dimension is not n, then f could be written as a polynomial

in n − 1 independent linear forms, y1, . . . , yn−1. Without loss of generality, we can

assume that the yi have the following very special property: there is an index j such

that every yi is a binomial linear form x
i
+ aixj for some index 
i �= j and scalar

ai . To see this, write

⎡
⎢⎢⎢⎣

y1

y2

...

yn−1

⎤
⎥⎥⎥⎦ = B

⎡
⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎦

where B is an (n − 1) × n matrix of full rank, and then left-multiply by the inverse

in GL(n − 1) of a full rank (n − 1) × (n − 1) submatrix of B. This replaces

{y1, . . . , yn−1} by a set of linear forms spanning the same space and with the desired

binomial form.

There are two cases to consider, depending on whether or not j ∈ {1, . . . , r}.
If j � r , then without loss of generality j = 1, so that yi = aix1 +xi+1 for each

i = 1, . . . , n − 1. Now if f is a Frobenius form in y1, . . . , yn−1, then

x
q

1 xj1
+ x

q

2 xj2
+ · · · + x

q
r xjr = y

q

1 L1 + y
q

2 L2 + · · · + y
q

n−1Ln−1 (7)
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for some linear forms Li in the yi . Because the only terms on the right side of

(7) that involve x
q

r+1, . . . , x
q
n come from y

q
r , . . . , y

q

n−1, respectively, it follows that

Lr = · · · = Ln−1 = 0. In this case,

f = y
q

1 L1 + y
q

2 L2 + · · · + y
q

r−1Lr−1,

so that f has rank less than r , contrary to our hypothesis.

If j > r , then without loss of generality j = n, so that yi = xi + aixn for each

i = 1, . . . , n − 1. Now assuming

x
q

1 xj1
+ x

q

2 xj2
+ · · · + x

q
r xjr = y

q

1 L1 + y
q

2 L2 + · · · + y
q

n−1Ln−1 (8)

for some linear forms Li in the yj , again it follows that Lr+1 = · · · = Ln−1 = 0

by looking at the x
q
i terms, with i > r . Moreover, since the only terms on the right

side of (8) that involve x
q

1 , . . . , x
q
r come from y

q

1 , . . . , y
q
r , we see that Li = xji

for i � r . But note that xn must appear among the variables xj1
, . . . , xjr , since the

original form f involves all n variables. So xn is one of the Li . This says that xn is

a linear combination of x1 + a1xn, . . . , xn−1 + an−1xn, a contradiction.

Combining the two cases, we conclude that f is not a form in y1, . . . , yn−1, and

so the embedding dimension of f is n. �

Remark 5.4 The total number of projective equivalence classes of Frobenius forms

of embedding dimension n is bounded above by the n-th Fibonacci number [11,

7.4].5 This follows from Corollary 5.2 (3) simply by adding the bounds for each

relevant rank. This upper bound is sharp for n � 4, but not in general. There

are distinct sparse matrices that define equivalent Frobenius forms starting in five

variables: �

Example 5.4.1 Consider the Frobenius forms corresponding to the following matri-

ces:

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1

0 0 0 1 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 1

0 0 0 1 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

namely, x
q

1 x5 + x
q

2 x4 + x
q

3 x2 and x
q

1 x5 + x
q

2 x4 + x
q

3 x1. These are rank three non-

degenerate Frobenius forms corresponding to distinct matrices satisfying the three

conditions of Theorem 5.1, but they are equivalent by the change of coordinates

which swaps x1 ↔ x2 and x4 ↔ x5, but fixes x3. �


5 In an updated version of [11], the authors have recently given a precise count of the number of

projective equivalence classes with a fixed embedding dimension.
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The proof of Theorem 5.1 in [11] relied on noting that a sparse n × n matrix of

rank r will take one of two forms

⎡
⎣

| 0 |
0 B e1

| 0 |

⎤
⎦ or

⎡
⎣

| 0 |
er B e1

| 0 |

⎤
⎦

where B is a sparse matrix of rank r −1 in the first case, and a sparse matrix of rank

r − 2 in the second. In light of this, we make the following definition.

Definition 5.4.2 For n � 3, we say a sparse n × n matrix of rank r < n has type a

if its first column is 0, and type b if its first column is er .

In particular, a Frobenius form of embedding dimension n and rank r is

equivalent, after a linear change of coordinates, to a polynomial of one of two forms:

(type a) h = x
q

1 xn +h�(x2, . . . , xn−1) where h� is a Frobenius form of rank r − 1

and embedding dimension n − 2. In this case, B is non-degenerate of rank r − 1.

(type b) h = x
q

1 xn + x
q
r x1 + h�(x2, . . . , xn−1) where h� is a Frobenius form of

rank r − 2. If h� is non-degenerate in the n − 2 variables x2, . . . xn−1, then B is

non-degenerate of rank r − 2. Otherwise, h� must be non-degenerate in the n − 3

variables x2, . . . ,�xr , . . . , xn−1, so that B is degenerate of rank r − 2.

The proof of Theorem 4.1 will now follow from the following two propositions.

Proposition 5.5.2 There are precisely n − 1 projective equivalence classes of

Frobenius forms of embedding dimension n and rank n− 1 (in fixed degree pe + 1).

The proof of Proposition 5.5.2 uses the following lemma:

Lemma 5.6 Let h1 and h2 be two Frobenius forms of the same degree, both of

embedding dimension n and rank r = n − 1, and both represented by matrices (say

A1 and A2) in sparse form. Then h1 and h2 are projectively equivalent if and only

if A1 and A2 are the same type, and their B matrices are projectively equivalent.

Proof Without loss of generality, by Theorem 5.1 we may assume

h1 = x
q

1 xn + x
q

2 xj2
+ x

q

3 xj3
+ · · · + x

q

n−1xjn−1
, and

h2 = x
q

1 xn + x
q

2 xj �
2
+ x

q

3 xj �
3
+ · · · + x

q

n−1xj �
n−1

where xji
, xj �

i
∈ {x1, . . . , xn−1} for each i. In particular, we note that the only term

containing xn in both h1 and h2 is x
q

1 xn. Now suppose some change of coordinates

φ sends h1 to h2. The singular locus of both h1 and h2 is defined by the vanishing of

x1, x2, . . . , xn−1, so the ideal �x1, . . . , xn−1� is stable under φ. In particular, φ must

send xn to a linear form involving xn. Supposing that φ maps

x1 �→ λ11x1 + · · · + λ1,n−1xn−1, and

xn �→ λn1x1 + · · · + λnnxn with λnn �= 0,
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then φ sends h1 to a polynomial

λ
q

11λnnx
q

1 xn + · · · + λ
q

1,n−1λnnx
q

n−1xn + terms that do not involve xn.

In order for this to be equal to h2, we must have λ1i = 0 for all i > 1. So φ sends

x1 �→ λ11x1

where λ11 �= 0. In particular, if h1 and h2 are equivalent, they must be equivalent

after modding out by x1.

We can now see that if h1 and h2 are equivalent, then A1 and A2 have the same

type. Letting ∼ denote equivalence up to change of coordinates, if

⎡
⎣

0 0 1

0 B 0
0 0 0

⎤
⎦ ∼

⎡
⎣

0 0 1

er−1 B � 0
0 0 0

⎤
⎦

then

�
B 0
0 0

�
∼

�
B � 0
0 0

�

which is the same as saying B ∼ B �. By rank considerations this never happens

between type a and type b (see the discussion following Definition 5.4.2). Thus the

sparse matrices of projectively equivalent Frobenius forms whose rank is one less

than the embedding dimension must have the same type. Furthermore, the argument

above also shows that their “B” matrices are projectively equivalent.

Because the converse is obvious, the lemma is proved. �

Proof (Proof of Proposition 5.5.2) Fix q. Let N(n, r) denote the number of

projective equivalence classes of Frobenius forms of degree q + 1, rank r , and

embedding dimension n. We want to show that N(n, n−1) = n−1. We will induce

on n.

One readily verifies that

N(1, 0) = 0, N(2, 1) = 1, and N(3, 2) = 2.

Since type a and type b matrices yield distinct classes for r = n − 1, the number of

classes N(n, n − 1) is equal to the number of classes of type a plus the number of

type b. The discussion of the types following Definition 5.4.2 informs us, therefore,

that for n � 4

N(n, n − 1) = N(n − 2, n − 2) + N(n − 2, n − 3) + N(n − 3, n − 3).



Classification of Frobenius Forms in Five Variables 365

Recalling that there is only one full rank form in each degree and dimension

(Theorem 2.1), it follows that

N(n, n − 1) = 1 + N(n − 2, n − 3) + 1 = N(n − 2, n − 3) + 2.

Finally, by induction on n,

N(n, n − 1) = (n − 3) + 2 = n − 1,

as desired. �

In light of Proposition 5.5.2, we have now fully classified all Frobenius forms in

five variables of ranks four and five. By Corollary 5.2 (1), it only remains to analyze

the rank three case. Using Corollary 5.2 (2), we see that there are
 

3
2

! = 3 sparse

forms of rank three in five variables, and we have seen in Example 5.4.1 that two

of them are projectively equivalent. To complete the classification, it remains to see

that the third sparse matrix produces a Frobenius form not equivalent to these. This

is accomplished by the following:

Proposition 5.7 The following rank three Frobenius forms in five variables are not

projectively equivalent:

f = x
q

1 x5 + x
q

2 x4 + x
q+1
3

and

g = x
q

1 x5 + x
q

2 x4 + x
q

3 x2.

Proof To see this, note that g ∈ �x1, x2�. Thus, if f and g are projectively

equivalent, there must be some linear forms L1 and L2 such that f ∈ �L1, L2�.
Since any projective change of coordinates must respect the singular locus, any

form in x1, x2, x3 must be sent to another form in x1, x2, x3, as the vanishing of

these coordinates defines the singular set of both hypersurfaces. This implies that

L1, L2, being the images of x1 and x2 under our linear change of coordinates, are

forms in x1, x2, x3.

Now note that
(
x

q+1
3 , x4, x5

)
= �f, x4, x5� ⊂ �L1, L2, x4, x5�. In particular,

x3 ∈ √�L1, L2, x4, x5� = �L1, L2, x4, x5� , so that x3 ∈ �L1, L2�. Without loss

of generality, we may assume �L1, L2� = �x3, L2�, where L2 is a linear form in x1

and x2, so that f ∈ �x3, L2� . Therefore,

x
q

1 x5 + x
q

2 x4 ∈ �x3, L2� (9)

as well. Considering the image of the expression (9) under the natural quotient map

k[x1, . . . , x5] → k[x1, . . . , x5]/�x3�, we see that
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x
q

1 x5 + x
q

2 x4 ∈ �L2� (10)

in a polynomial ring in four variables. But the polynomial x
q

1 x5+x
q

2 x4 is irreducible

(for example, by Eisenstein’s criterion), so we arrive at a contradiction. This

contradiction ensures that f and g are not projectively equivalent. �

This completes our classification of Frobenius forms in up to five variables.
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