
Journal of Intelligent and Fuzzy Systems 1 (2021) 1±16 1
IOS Press

FLC-ROS: A Generic and Configurable ROS

Package for Developing Fuzzy Logic

Controllers

Ali Karimoddini a,∗, Abel Hailemichael a, and Mo Jamshidi b

a Department of Electrical and Computer Engineering, North Carolina Agricultural and Technical State

University, Greensboro, NC 27411 USA ∗∗

b Department of Electrical and Computer Engineering, The University of Texas, San Antonio, TX 78249 USA

Abstract. Fuzzy logic controllers can handle complex systems by incorporating expert’s knowledge in the absence of formal

mathematical models. Further, fuzzy logic controllers can effectively capture and accommodate uncertainties that are inherent

in real-world controlled systems. On the other hand, Robot Operating System (ROS) has been widely used for many robotic

applications due to its modular structure and efficient message-passing mechanisms for the integration of system’s components.

For this reason, Robot Operating System is an ideal tool for developing software stacks for robotic applications. This paper

develops a generic and configurable Robot Operating System package for the implementation of fuzzy logic controllers, par-

ticularly type-1 and interval type-2, which are based on either Mamdani or Takagi-Sugeno-Kang fuzzy inference mechanisms.

This is achieved by employing a systematic object-oriented approach using the Unified Model Language (UML) to implement

the fuzzy inference system as a single class that is composed of fuzzifier, inference, and defuzzifier classes. The deployment of

the developed Robot Operating System package is demonstrated by implementing an interval type-2 fuzzy logic control of an

Unmanned Aerial Vehicle (UAV).

Keywords: Robot Operating System, Unified Model Language, Type-1 Fuzzy Logic Control, Interval Type-2 Fuzzy Logic

System, TSK, Mamdani, ROS, UAV, Unmanned Aerial Vehicles.

1. Introduction

A major challenge in any control system is to deal

with uncertainties that exist in real-world systems due

to sensor-reading inaccuracy, noises in the environ-

ment, inaccuracy of model parameters, and external

disturbances. To handle these situations, classical ro-

*Corresponding author: A. Karimoddini, Tel: +13362853313,

akarimod@ncat.edu.
**This work is supported by the NSF under the award number

1832110 and Air Force Research Laboratory and Office of the Sec-

retary of Defense under agreement number FA8750-15-2-0116.

bust control systems often require an accurate model

of the system and bounds of disturbances which may

not be always available. In contrast, artificial intelli-

gent (AI) techniques, including but limited to Artifi-

cial Neural Network (ANN), Genetic Algorithm (GA),

Support Vector Machine (SVM), Expert Systems (ES),

Neural Language Programming (NLP), Reinforcement

Learning (RL), Fuzzy Logic (FL), as well as, hybrid

approaches (combination of AI techniques), are capa-

ble of handling control problems when the system’s

model is unknown or far too complex to accurately

model [1±4]. In this vein, Fuzzy Logic Controllers

0000-0000/21/$00.00 © 2021 ± IOS Press and the authors. All rights reserved

2 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

(FLCs) use approximate reasoning to deal with com-

plex ill-defined systems with uncertain models and

stochastic behaviors and disturbances [5, 6]. FLCs use

fuzzy logic for computing the control signals in or-

der to control a system. Fuzzy logic is an approach

for knowledge representation and symbolic inference,

computation, and reasoning based on human-like lin-

guistic expressions with degrees of truth [7]. By us-

ing membership functions and rule-based inference

mechanisms, FLCs are exceptionally powerful in mim-

icking human decision-making in the absence of for-

mal mathematical models for a system. Furthermore,

FLCs (particularly type-2 FLCs [8]) are capable of ef-

fectively capturing and handling uncertainties [9, 10].

The ability of FLCs to handle dynamic behaviors of

complex systems, without knowing much about their

mathematical model, has made them suitable for the

design of real-world robotic systems [11] and indus-

trial control systems such as such as the control of

liquid-level process [12], control of unmanned aerial

vehicles [13], traffic signal control [14], fault detec-

tion [15], autonomous vehicle applications [16], mar-

itime radar detection mechanism [17], human behavior

modeling [18], testing and evaluation of autonomous

vehicles [19, 20], and pattern recognition [21]. How-

ever, the structure of a fuzzy logic controller is rela-

tively more complex than many other commonly-used

controllers, e.g, PID controllers, and often involves

several procedures including fuzzification, inference,

type-reduction, and defuzzifcation, which requires a

lot of effort for the development, implementation, test-

ing, and verification of the FLCs [13, 22, 23]. This has

hindered control application developers from utilizing

the advantages of FLCs, particularly type-2 FLCs.

In this paper, we develop a user-friendly develop-

ment tool in order to ease the implementation of FLCs

and facilitate fast prototyping FLC-based robotic and

control applications. The developed tool will be pro-

vided as a Robot Operating System (ROS) package.

Our choice of ROS is motivated by the fact that its

modular structure and enhanced robust communica-

tion and system integration mechanisms enable the

rapid and reliable development of robotic and au-

tonomous systems [24±26]. As such, ROS has been

widely adopted by the robotic community as the pre-

mier development platform for developing software

stacks for different robotic applications [27±29]. While

some work has been done to develop ROS packages for

the implementation of type-1 Mamdani FLCs [30,31],

they are limited to a particular class of FLCs and do not

support the development of different inference systems

such as Takagi-Sugeno-Kang (TSK) fuzzy inference

mechanisms, and are developed for a specific appli-

cation. Therefore, their deployment and generalization

for other use cases and applications are not straight-

forward. Hence, the challenge to find a suitable ROS

package, which provides the required functionality and

flexibility for the design and implementation of FLCs

is still open. To overcome this challenge, this paper

provides, to the best of our knowledge, the first generic

and configurable ROS package that eases the real-time

implementation of type-1 and interval type-2 FLCs,

which are based on both Mamdani and TSK inference

mechanisms.

The contributions of this paper are as follows:

± We have developed systematic configuration tech-

niques, software architecture, and algorithms that

enable the implementations of a generic and con-

figurable FLC ROS packages.

± To implement multiple FLCs in a single appli-

cation, this paper presents a systematic object-

oriented development approach representing the

entire fuzzy logic system by a single class, which

is composed of fuzzifier and inference as well as

defuzzifier classes. Algorithms and structures that

enable configuration and deployment of multi-

input-multi-output (MIMO) Mamdani or TSK

fuzzification, inference mechanisms, and defuzzi-

fication operations are developed and imple-

mented.

± To enable the development of computationally ef-

fective real-time interval type-2 FLCs, the devel-

oped FLC ROS package employs the uncertainty

bounds [32, 33] and Nie-Tan [34] output process-

ing techniques.

± The developed package constitutes a user-friendly

graphical user interface (GUI) and configura-

tion file, allowing configuration of MIMO fuzzy

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 3

logic control parameters such as number of in-

puts, number of outputs, rules, membership func-

tions, inference methods, type reduction, and de-

fuzzification. The package assists the implemen-

tation of FLCs within the ROS environment with-

out demanding the detailed mathematical knowl-

edge of type-1 and type-2 FLCs.

± The effectiveness of the developed FLC ROS

package is demonstrated via a software-in-the-

loop (SITL) for implementing an interval type-2

TSK fuzzy logic controller for the altitude control

of a quadcopter UAV in ROS Gazebo simulation

environment.

The rest of this paper is organized as follows. Sec-

tion 2 briefly provides the necessary preliminaries

and backgrounds on fuzzy control systems, ROS, and

UML. Section 3 discusses the developed FLC ROS

package’s structure and functionalities. Section 4 de-

scribes the deployment of the developed ROS package

within a simulation environment for the altitude con-

trol of a quadcopter UAV. The paper is concluded in

Section 5.

2. PRELIMINARIES

This section presents a brief review of fuzzy set

theory and fuzzy logic systems. A fuzzy set is a set

whose elements have degrees of membership. Fuzzy

logic controllers employ rule-based inference tech-

niques that use fuzzy sets for making control decisions.

The development process of FLCs includes the pro-

cesses of fuzzification, inference, and defuzzification.

By using membership functions (MFs), the fuzzifica-

tion process assigns membership values to crisp inputs.

The inference process maps fuzzy inputs to fuzzy out-

puts according to pre-defined rules. Finally, it is the de-

fuzzification process that generates crisp outputs from

aggregated fuzzy outputs.

Based on the employed type of fuzzy sets, FLCs

may be classified as type-1, type-2, or type-n. Also,

FLCs may be classified based on the type of the em-

ployed inference mechanism such as Mamdani [35] or

TSK [36].

2.1. Type-1 Fuzzy Logic Systems

Definition 1. Type-1 Fuzzy Set

A type-1 fuzzy set is composed of elements of the

set’s domain, x ∈ X , and their corresponding mem-

bership values (x, µA(x)) for which µA(x) ∈ [0, 1].

Formally, a type-1 fuzzy set can be defined as:

A = {(x, µA(x)) | ∀x ∈ X,µA(x) ∈ [0, 1]}

=
∑

x∈X

(x, µA(x)) (1)

where
∑

is the collection of elements of the set.

An example of a type-1 fuzzy set with its corre-

sponding membership function is shown in Fig. 1.

Fig. 1. A type-1 fuzzy set.

In type-1 Mamdani fuzzy inference systems [35],

crisp inputs are initially fuzzified using predefined

type-1 membership functions. The fuzzified inputs are

then mapped to type-1 output fuzzy sets using the

mamdani fuzzy inference process. The output fuzzy

sets are finally aggregated and defuzzified to generate

crisp outputs. A typical MIMO type-1 fuzzy logic con-

troller is shown in Fig. 2.

Fig. 2. A type-1 FLC structure.

Type-1 FLCs employ type-1 fuzzy sets on the an-

tecedent and consequent sides of their rules. An exam-

4 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

ple a rule with p inputs and q outputs in a type-1 FLC

with Mamdani fuzzy inference system can be stated as:

Rℓ: IF x1 is F1
ℓ, and x2 is F2

ℓ, · · · , and xp is Fp
ℓ

THEN y1 is G1
ℓ, y2 is G2

ℓ, · · · , yq is Gq
ℓ (2)

where Rℓ is the ℓth rule, Fp
ℓ is the activated antecedent

type-1 fuzzy set for input channel xp, and Gq
ℓ is the

activated consequent type-1 fuzzy set for output chan-

nel yq , m is the number of membership functions for a

given input, and r is the number of membership func-

tions for a given output. The firing level for the ℓth rule

is the t-norm of these fuzzy values obtained from the

antecedent membership functions as indicated by the

Rule Set. For each of the rules, the output fuzzy set can

be found as the t-norm of the firing level and the out-

put fuzzy set. The aggregated output fuzzy set can be

found as the s-norm of the output fuzzy sets. Finally,

using the centroid defuzzification as one of the most

common defuzzification methods, we can calculate the

crisp value of each output of a Mamdani fuzzy infer-

ence system as:

yk =

∑n

i=1
µk(xk,i)yk,i∑n

i=1
µk(xk,i)

(3)

where µk is the membership function of the aggregated

output yk, n is the number of samples in the aggregated

output fuzzy set of the kth output channel, and yk,i is

the ith sample.

In type-1 TSK fuzzy control systems [37], rule out-

puts are a function of the rule inputs. As an example,

the rules for a TSK FLC with a p inputs and q outputs

can be stated as:

Rℓ: IF x1 is F1
ℓ, and x2 is F2

ℓ, · · · , andxp is Fp
ℓ

THEN

yℓ
1
= cℓ

0,1 + cℓ
1,1x1 + · · ·+ cℓp,1xp,

yℓ
2
= cℓ

0,2 + cℓ
1,2x1 + · · ·+ cℓp,2xp,

· · ·

yℓq = cℓ
0,q + cℓ

1,qx1 + · · ·+ cℓp,qxp,

where Rℓ is the ℓth rule; Fp
ℓ is the activated an-

tecedent type-1 fuzzy set for input channel xp; and

cℓ
0,q , cℓ

1,q, · · · , c
ℓ
p,q are crisp TSK output coefficients

for outputs yℓq . The outputs of type-1 TSK fuzzy rules

are crisp. To obtain the final (aggregated) crisp value

of kth output, a defuzzification process could be per-

formed using the weighted average technique as:

yk =

∑ℓ

i=1
f ℓyℓk∑ℓ

i=1
f ℓ

(4)

where f ℓ is the firing level for rule ℓ and yℓk is the con-

sequent for output k of the ℓth TSK rule.

2.2. Type-2 Fuzzy Logic Systems

Even though type-1 fuzzy sets enable linguistic

computing by assigning a degree of membership to all

their elements, they are not capable of quantifying the

level of uncertainty in the degree of membership. It is,

however, possible to successfully capture and quantify

uncertainties by extending type-1 fuzzy sets to type-2

fuzzy sets [38,39]. Type-2 fuzzy sets can be defined as

follows:

Definition 2. Type-2 Fuzzy Set

A type-2 fuzzy set is composed of triples ((x, u),

µÃ(x, u)) in which secondary membership, µÃ(x, u)

is defined for each member of domain x ∈ X with the

primary membership value, u ∈ Jx (Jx is the range of

primary membership for a given x). Mathematically, a

type-2 fuzzy set is defined as follows:

Ã = {((x, u), µÃ(x, u))| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1],

µÃ(x, u) ∈ [0, 1]} =
∑

u∈Jx

∑

x∈X

((x, u), µÃ(x, u))

(5)

Fig. 3(a) shows a simple type-2 fuzzy set for a case

that X and Jx are connected sets, and µÃ is a continu-

ous function.

Type-2 FLCs capture input and output uncertainties

by employing type-2 fuzzy sets on their antecedent and

consequent parts of rules [40,41]. Use of interval type-

2 or α-plane based FLCs can significantly reduce the

computational complexity, facilitating real-time imple-

mentations [9, 42, 43].

Definition 3. Interval Type-2 Fuzzy Set (IT2 FS)

An interval type-2 fuzzy set is a type-2 fuzzy set with

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 5

(a) (b)

Fig. 3. (a) A type-2 fuzzy set, (b) An interval type-2 fuzzy set.

secondary grade values set to unity. It is defined as:

Ã = {((x, u), 1)| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]}

=
∑

u∈Jx

∑

x∈X

((x, u), 1) (6)

Fig. 3(b) shows an example of an interval type-2

fuzzy set. Compared to type-1 fuzzy sets, interval type-

2 fuzzy sets have more degrees of freedom in the form

of upper and lower membership functions to better

capture uncertainties, while generating smoother con-

trol surfaces [10, 44]. On the other hand, compared to

type-2 FLSs, the use of interval type-2 fuzzy sets sig-

nificantly reduces the computation costs, while main-

taining major advantages of type-2 FLSs [9, 9, 45].

Both the rule antecedent and consequent sets of a

type-2 Mamdani FLCs are type-2 fuzzy sets. An ex-

ample of a p-input and q-output type-2 FLC rule can

be stated as:

Rℓ: IF x1 is F̃1

ℓ
, and x2 is F̃2

ℓ
, · · · , and xp is F̃p

ℓ

THEN y1 is G̃1

ℓ
, y2 is G̃2

ℓ
, · · · , yq is G̃q

ℓ
(7)

where Rℓ is the ℓth rule, F̃p

ℓ
is the activated antecedent

type-2 fuzzy set for input channel xp, and G̃q

ℓ
is the

activated consequent type-2 fuzzy set for output chan-

nel yq .

For type-2 Mamdani FLCs, a computationally ex-

pensive type reduction of the aggregated output fuzzy

set is required prior to the defuzzification process.

With an effort of easing this computation burden, sev-

eral techniques have been previously developed, one of

which is the Nie-Tan type reduction mechanism, which

is applicable to interval type-2 FLCs [34]. With rea-

sonable accuracy, the Nie-Tan type reduction mecha-

nism is the least computationally expensive [45]. As

stated in Equation 8, to compute the type reduced set,

this method uses the average of the upper and lower

membership functions of an aggregate interval type-2

output fuzzy set, c̃k, for the kth output.

µ∗

k(ỹk) =
1

2
(µc̃k(ỹk) + µc̃k(ỹk)) (8)

where µ∗ is the membership function of the type re-

duced set, µc̃(ỹk) and µc̃(ỹk) are respectively the up-

per and lower membership functions of the aggregated

output fuzzy set c̃k for the output yk. Then, the cen-

troid of the generated IT2 fuzzy set can be computed

using Equation 9.

yk =

∑n

i=1
µ∗

k(ỹk,i)ỹk,i∑k

i=1
µ∗

k(ỹk,i)
(9)

Instead of IT2 Mamdani FLCs, we can use IT2 TSK

FLCs. Similar to type-1 TSK FLC rules, the rule out-

puts of IT2 TSK FLCs are functions the inputs. In

this case, to capture inputs’ uncertainty, we use Type-2

fuzzy sets for the antecedent MFs. On the other hand,

for capturing output uncertainty, the consequent coef-

ficients can be type-1 fuzzy sets [33]. An example of

an IT2 TSK FLC rule with p inputs and q outputs can

be stated as:

Rℓ: IF x1 is F̃1

ℓ
, and x2 is F̃2

ℓ
, · · · , andxp is F̃p

ℓ

THEN

yℓ
1
= cℓ

0,1 + cℓ
1,1x1 + · · ·+ cℓp,1xp,

yℓ
2
= cℓ

0,2 + cℓ
1,2x1 + · · ·+ cℓp,2xp,

· · ·

yℓq = cℓ
0,q + cℓ

1,qx1 + · · ·+ cℓp,qxp,

6 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

where Rℓ is the ℓth rule; F̃p

ℓ
is the activated an-

tecedent interval type-2 fuzzy set for input channel

xp; cℓ
0,q, c

ℓ
1,q, · · · , c

ℓ
p,q are type-1 TSK rule output co-

efficients for outputs yq . For reducing the computa-

tion burden, a computationally effective interval type-

2 TSK output processing technique may be used [32].

This output processing technique approximates the up-

per and lower bounds of the weighted outputs, yl and

yr, by using only the upper and lower bounds of the

rule firing levels and output coefficients. The upper and

lower bounds of the firing levels can be computed us-

ing Equations 10 and 11, respectively.

f ℓ = F̃1

ℓ
(x1) ∗ F̃2

ℓ
(x2) ∗ · · · ∗ F̃p

ℓ
(xp) (10)

f ℓ = F̃1

ℓ
(x1) ∗ F̃2

ℓ
(x2) ∗ · · · ∗ F̃p

ℓ
(xp) (11)

The upper and lower bounds of the output, yl and

yr, can be estimated by calculating and averaging their

upper and lower bounds values, yl, yl, yr, and yr as

shown in Fig. 4. The inner upper and lower bounds (yl

and yr) of yl and yr are calculated as follows:

Fig. 4. Visual representation of output uncertainty bounds.

yl = min{yll, yul} (12)

yr = max{ylr, yur} (13)

where,

yll =
f iy1l + · · ·+ fMyMl

f i + · · ·+ fM
(14)

yul =
f iy1l + · · ·+ fMyMl

f i + · · ·+ fM
(15)

ylr =
f iy1r + · · ·+ fMyMr

f i + · · ·+ fM
(16)

yur =
f iy1r + · · ·+ fMyMr

f i + · · ·+ fM
(17)

With the above calculated inner bounds, the outer

bounds (yl and yr) can then be obtained using Equa-

tions 18 and 12 [32, 33], respectively as:

yl = yl−

[

∑

m

i=1
(f i

− f i)
∑

m

i=1
f i

×

∑

m

i=1
f i

× (18)

∑

m

i=1
f i(yi

l − y1

l)×
∑

m

i=1
f i(ym

l − yi

l)
∑

m

i=1
f i(yi

l
− y1

l
) +

∑

m

i=1
f i(ym

l
− yi

l
)

]

yr = yr+

[

∑

m

i=1
(f i

− f i)
∑

m

i=1
f i

×

∑

m

i=1
f i

× (19)

∑

m

i=1
f i(yi

r − y1

r)×
∑

m

i=1
f i(ym

r − yi

r)
∑

m

i=1
f i(yi

r − y1
r) +

∑

m

i=1
f i(ym

r − yi
r)

]

The lower and upper bounds of yl and yr can then

be estimated using Equations 20 and 21.

yl =
yl + yl

2
(20)

yr =
yr + yr

2
(21)

Finally, a crisp output can be obtained by perform-

ing the defuzzification provided in Equation 22.

y =
yl + yr

2
(22)

2.3. Robot Operating System (ROS)

ROS is an open-source message-based framework,

that provides enhanced functionality for the develop-

ment of large-scale service robots. Importantly, ROS

provides hardware abstractions, low-level device con-

trols, implementation of commonly used functionali-

ties, message-passing, and package management for a

set of connected robots and their subordinate compo-

nents [30, 46].

Nodes, messages, topics, and services are the fun-

damental concepts of a ROS implementation [30]. The

ROS master allows all ROS nodes to exchange mes-

sages between one another. Nodes publish messages

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 7

in topics; other nodes should subscribe to a topic

in order to receive a message. This feature of ROS

is advantageous enabling the reuse of publisher and

subscriber implementations over multiple use cases.

A ROS package can be directly used for organizing

software components that provide easy-to-use func-

tionality. A ROS package may contain ROS nodes,

a ROS-independent library, a data-set, configuration

files, third-party pieces of software, or anything else

that logically constitutes a useful module.

ROS programs running on multiple computers can

communicate over a network. This allows easy integra-

tion of software applications, packages, and drivers for

robot kinematics visualization, data sharing, path plan-

ning, control, etc [47]. Further, ROS is multi-lingual,

allowing users to develop different parts of the code

with different languages including C++, Python, MAT-

LAB, Java, etc [46].

2.4. Unified Model Language

First proposed by the Object Management Group

(OMG) in 1997, Unified Modeling Language (UML) is

a standard language which is basically used for speci-

fying, visualizing, constructing, and documenting soft-

ware systems using pictorial languages [48, 49]. UML

provides multiple diagrams which are used for model-

ing a system in several levels of abstractions. UML di-

agrams are basically classified as behavioral and struc-

tural diagrams. Behavioral diagrams describe a sys-

tem using activity, interaction, state flow, and use case

diagrams. On the other hand, structural diagrams de-

scribe a system using class, composite structure, de-

ployment, object, component, profile as well as pack-

age diagrams [49, 50].

UML by itself is not a programming language. How-

ever, it is highly used to conceptualize and struc-

ture computer codes using object-oriented design ap-

proaches. The object-oriented design uses objects as

building blocks of a system. Objects may contain data,

referred to as an attribute, and a logic sequence, which

is referred to as an operation or method. The state and

behavior of an object are defined and modeled within

a class. This paper models FLC processes in an object-

oriented approach using UML.

3. DEVELOPING FLC-ROS

In this section, we will discuss FLC ROS pack-

age’s use cases, development architecture, configu-

ration techniques as well as algorithms that enable

MIMO FLC operations.

3.0.1. FLS Library Use Case

The interactions between FLC ROS package, the

controlled system, and the FLC application develop-

ers are illustrated using the use case diagram shown in

Fig. 5.

In order to develop an FLC application using the de-

veloped FLC-ROS package, initially, users should con-

figure the FLS package in accordance with the spec-

ification of the application that they have developed

and build the ROS workspace. The developed FLC-

ROS package performs fuzzification and inference as

well as defuzzification operations for type-1 and inter-

val type-2 FLCs. The controlled system may be a robot

or any device for which the control inputs and outputs

will be the inputs and outputs of the FLC, respectively.

3.1. FLC-ROS Configuration Structure

The developed FLC ROS package can be config-

ured for MIMO fuzzy logic control applications us-

ing the structure presented in Fig. 6. Basic parameters

of the FLC constitute the system’s name, type, infer-

ence mechanism, number of inputs, number of outputs,

rules, and so on. Each input and output has its own

name and range as well as membership functions. Fur-

ther, each membership function has its own linguis-

tic parameter (name), range, and numeric parameters

defining its shape. If the TSK inference technique is

employed, rule consequent coefficients should be de-

fined in the form of simple or type-1 coefficients. Rules

are configured having linguistic antecedents, conse-

quents, and inference logic, which could be combined

using ªandº or ªorº operators.

Configuration is performed offline by using a cross-

platform GUI or manually by editing a configuration

file which is based on an extensible markup language

(XML) format. The main window of the developed

GUI is shown in Fig. 7. This main window enables the

definition of basic parameters such as the FLC type,

8 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

Fig. 5. FLC ROS package’s use case diagram.

Table 1

Parameters of FLC ROS package MFs

Shape of MF Triangular Trapezoidal Gaussian Triangular-IT2 Trapezoidal-IT2 Gaussian-IT2

P1 Left edge Left edge Mean LMF left edge LMF left edge Mean-1

P2 Center Center left edge Standard deviation LMF center edge LMF center left edge Mean-2

P3 Right edge Center right edge Unused LMF right edge LMF center right edge Standard deviation

P4 Unused Right edge Unused UMF left edge LMF right edge Unused

P5 Unused Unused Unused UMF center edge UMF left edge Unused

P6 Unused Unused Unused UMF right edge UMF center left edge Unused

P7 Unused Unused Unused Unused UMF center right edge Unused

P8 Unused Unused Unused Unused UMF right edge Unused

inference method, aggregation method, and defuzzi-

fication method. Further, multiple GUI windows (not

shown on the paper but are available on the publicly-

made-available GitHub page) allow FLC developers

to easily define or modify the input/output parameters

and membership functions.

The membership function shapes that are supported

by the developed ROS package are Triangular, Trape-

zoidal, and Gaussian. Each interval type-2 MF is de-

fined using its upper and lower membership func-

tions which could be Triangular, Trapezoidal, or Gaus-

sian MFs. For configuration, the nth membership

function is defined as MFn =< Name >, < Shape >,

< P1, P2, ...P8, Maximum >, where n is ranging from

1, · · · , k, and P1− P8 are parameters used to define

different edges and properties of type-1 and type-2

membership functions (See Table 1 for details).

The ℓth rule is structured as follows:

Rℓ =< Antecedent >,< Consequent >,

< Inference logic >,< TSKCoefficients >

where ℓ is ranging from 1, · · · ,m.

A saved configuration file can be uploaded to the de-

veloped FLC ROS package, enabling the reuse of de-

sign across multiple applications or implementations.

3.2. FLC ROS package Classes

The FLC ROS package is developed using an

object-oriented approach. In this case, with the pur-

pose of making the package suitable for real-time con-

trol applications, FLC ROS is developed in C++. As

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 9

Fig. 6. Configuration structure of the developed FLC ROS package.

Fig. 7. The main window of the developed GUI

shown in Fig. 8, the developed ROS package has a

parent class named flslib, which is composed of

other classes including fuzzify, inference, and

defuzzify. Class flslib has a method, named

perform_fls, which is responsible for performing

operations of fuzzification, inference, and defuzzifi-

cation for both type-1 and IT-2 FLCs. This architec-

ture allows FLC application developers to instantiate

multiple objects having different configurations, facil-

itating the development of multiple FLCs in a single

ROS application. Additionally, defining memberships,

fuzzification, inference, and defuzzification as separate

classes enable the development of customized FLC ar-

chitectures through independent implementation and

integration of fuzzy logic operations.

Algorithm 1 Membership Value Calculation

Input: Crisp input, Input MF parameters

Output: Membership value

Begin Procedure

1: Read Crisp input and parameters

2: Calculate membership value

3: Return membership value

End Procedure

Algorithm 2 Fuzzification

Input: Configuration, Crisp inputs

Output: Input fuzzy set(s)

Begin Procedure

1: Get crisp inputs;

2: Get configuration;

3: if FLC is type-1 then

4: for all crisp inputs do

5: for all MFs of the input do

6: Identify the shape of the MF;

7: Calculate the membership

value;

8: Store the fuzzified input;

9: end for

10: end for

11: else ▷ FLC is IT-2

12: for all crisp inputs do

13: for all upper and lower IT-2 MFs

of the input do

14: Identify the shape of the MF;

15: Calculate the membership

value;

16: Store the fuzzified input;

17: end for

18: end for

19: end if

20: Return the input fuzzy set(s);

End Procedure

10 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

-_fuzzifiedVal : vector<vector<double>>

-_firingLevel : vector<vector<double>>

-_output : vector<double>

+perform_fls(_inputs : vector<double>, _configuration : struct&) : vector<double>

flslib

-_fuzzified_values : vector<vector<double>>

+_fuzzify(_inputs : vector<double>, _configuration : struct&) : vector<vector<double>>

fuzzify

-_firing_levels : vector<vector<double>>

-_inference_table : vector<vector<double>>

-_output_fuzzy_set : vector<vector<double>>

+_firingLevels(_fuzzified_value : vector<vector<double>>, _configuration : struct&) : vector<vector<double>>

+_type1_mamdani_processing(_firingLevel : vector<vector<double>>, _configuration : struct&) : vector<vector<double>>

+_type1_TSK_processing(_firingLevel : vector<vector<double>>, _configuration : struct&) : vector<vector<double>>

+_it2_mamdani_processing(_firingLevel : vector<vector<double>>, _configuration : struct&) : vector<vector<double>>

+_it2_TSK_processing(_firingLevel : vector<vector<double>>, _configuration : struct&) : vector<vector<double>>

inference

-_yl : double

-_yr : double

-_crisp_output : vector<double>

+_centroid(_output_fuzzy_set : vector<vector<double>>, _configuration : struct&) : vector<double>

+_weighted_average(_inputs : vector<double>, _output_fuzzy_set : vector<vector<double>>, _configuration : struct&) : vector<double>

+_uncertainty_bounds(_inputs : vector<double>, _output_fuzzy_set : vector<vector<double>>, _configuration : struct&) : vector<double>

+_NT(_output_fuzzy_set : vector<vector<double>>, _configuration : struct&) : vector<double>

defuzzify

-_positive_slope : double

-_negative_slope : double

-_membership_value : double

+_gaussian_mf(input : double, p1 : double, p2 : double) : double

+_triangular_mf(input : double, p1 : double, p2 : double, p3 : double, max : double) : double

+_trapezoidal_mf(input : double, p1 : double, p2 : double, p3 : double, p4 : double, max : double) : double

type1_MFs
-_positive_slope : double

-_negative_slope : double

-_membership_values : vector<double>

+_it2_gaussian2_mf(input : double, p1 : double, p2 : double, p3 : double) : vector<double>

interval_type2_MFs

-T1_MembershipValue

1

1

-fuzzifyInputs

1

1

-IT2_MembershipValue

1

1

-T1_MembershipValue

1

1

-infer

1

1

-IT2_MembershipValue

1

1

-IT2_MembershipValue

1

1

-defuzzifyFuzzySets

1

1

-T1_MembershipValue

1

1

Fig. 8. UML Diagram of classes inside class flslib

3.2.1. Fuzzification

Fuzzification is a process to simply find the fuzzy

values corresponding to each crisp input, which can

be done using the membership functions. For this

purpose, in the developed FLC ROS package, Class

flslib contains the Class fuzzify that performs

fuzzification operations. Class fuzzify is composed

of other Classes for for different MFs including

type1_mfs and interval_type2_mfs. Operations

in these MF classes are used for calculating member-

ship values using Algorithm 1. Having a system with

multiple inputs and multiple outputs, Algorithm 2 in

Class fuzzify performs MIMO fuzzification. This

is achieved by an enumerative search over all inputs

based on the shape of the corresponding membership

function. For IT2 FLCs, the membership values will

be calculated for both the upper and lower MFs.

3.2.2. Inference

Based on the configured rules, execution method

of fuzzy logical operations and implication method,

as well as the aggregation method, the inference pro-

cess maps all input fuzzy sets to their respective output

fuzzy sets. For each rule, the inference process initially

calculates the associated firing levels. To make the out-

put FSs suitable for the Mamdani defuzzification, the

implication operation is performed for each rule out-

put while the aggregation operation is performed for

each FLC output. As shown in Fig. 8, the developed

ROS package is composed of Class inference, ca-

pable of performing MIMO inference operations. This

class is composed of other classes of type-1 and IT-

2 MFs that are used for performing implication and

aggregation operations. The developed algorithm for

performing generic MIMO inference operations is de-

scribed in Algorithm 3. By instantiating objects of

Class inference, FLC application developers can

perform the inference process independently, if they

prefer to perform other processes (such as fuzzifica-

tion and defuzzification) using a different method not

supported by the developed ROS package.

3.2.3. Output Processing

The final step in an FLC process is output process-

ing. The output processing of type-1 FLCs involves

only defuzzification. However, the output processing

of IT-2 FLCs involves type reduction followed by de-

fuzzification. Class defuzzify is composed of oper-

ations which perform several kinds of type-reductions

and defuzzifications, in accordance with the configura-

tion set by the user. This enables application develop-

ers to customize FLC operations, if they prefer to per-

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 11

Algorithm 3 Inference

Input: Configuration, crisp inputs, fuzzified inputs, rules

Output: Output fuzzy set(s)

Begin Procedure

1: Get the fuzzified input;

2: Get configuration;

3: if FLC type is type-1 then

4: Compute the firing level of rules;

5: if Inference is Mamdani then

6: for all outputs do

7: Perform implication on the

consequent fuzzy sets;

8: Perform aggregation to get

the type-1 output fuzzy set;

9: end for

10: else ▷ FLC is type-1 TSK

11: for all outputs do

12: Compute the TSK rule outputs

and get the output fuzzy set;

13: end for

14: end if

15: else ▷ FLC is IT-2

16: Compute the firing level for the

upper and lower bounds of the

antecedent fuzzy sets of rules;

17: if Inference is Mamdani then

18: for all outputs do

19: Perform implication on the

upper and lower bounds of the

consequent fuzzy sets;

20: Perform aggregation on the

upper and lower bounds of the

consequent fuzzy sets to get the

output fuzzy set;

21: end for

22: else ▷ FLC is IT-2 TSK

23: for all outputs do

24: Compute the inner TSK

uncertainty bounds (yl and yr);

25: Compute the outer TSK

uncertainty bounds (yl and yr);

26: Compute the upper and lower

bounds for the TSK output output

fuzzy set (yl and yr);

27: end for

28: end if

29: end if

30: Return the output fuzzy set;

End Procedure

form other processes (fuzzification and inference) us-

ing methods not presently supported by the developed

FLC ROS package.

In the developed ROS package, for all outputs, type-

1 Mamdani FLCs are defuzzified using the centroid

defuzzification technique while type-1 TSK FLCs are

defuzzified using the weighted average defuzzification

technique. Algorithm 4 implements the type-1 TSK

FLC defuzzification. To obtain a crisp value of IT-2

Mamdani FLSs, for all outputs, the developed ROS

package performs Nie-Tan type reduction on the out-

put fuzzy set followed by an IT-2 defuzzification. If the

configured FLC is IT-2 TSK FLS, uncertainty bounds

output processing technique is used (See Sections 2.1

and 2.2 for details). As shown in Fig. 8, for assist-

ing output processing of user-defined fuzzy sets, Class

defuzzify is composed of other classes of type-1 and

IT-2 MFs. Described in Algorithm 5 is the output pro-

cessing for interval type-2 TSK FLCs.

Algorithm 4 Type-1 TSK Defuzzification

Input: Configuration, crisp inputs, rule firing levels, rule

output coefficients

Output: Crisp outputs

Begin Procedure

1: Read configuration, inputs, rule

firing levels and rule output

coefficients;

2: for all outputs do

3: for all rules do

4: Compute the corresponding rule

output;

5: end for

6: Compute the crisp output using

weighted average method;

7: store the crisp output;

8: end for

9: Return crisp outputs;

End Procedure

3.2.4. Putting it all Together

The developed FLC ROS package performs FLC

operations (fuzzification, inference, and defuzzifica-

tion) for type-1 and IT-2 FLSs using the methodology

presented in Algorithm 6. The source code of the de-

veloped package and relevant configuration examples

are available on Github at https://github.

com/ACCESSLab/ros-fuzzy-library .

12 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

Algorithm 5 Interval type-2 TSK output Processing

Input: Configuration, crisp inputs, fuzzified upper and

lower bound set, rule firing levels, rule output bounds

Output: Crisp outputs

Begin Procedure

1: for all outputs do

2: Compute the inner uncertainty

bounds (yl and yr) using Equations (12)

and (13);

3: Compute the outer uncertainty

bounds (yl and yr) using Equations (18)

and (19);

4: Compute the upper and lower bounds

for the output signal (yl and yr)

using Equations (20) and (21);

5: Compute the crisp output y using

(22);

6: Store the the crisp output y;

7: end for

8: Return crisp outputs;

End Procedure

Algorithm 6 FLC ROS package Operations

Input: Crisp Inputs

Output: Crisp Outputs

Begin Procedure

1: Get configuration;

2: while perform_FLC = true do

3: Get crisp inputs;

4: Perform fuzzification;

5: Perform inference;

6: Perform defuzzification;

7: Return crisp outputs;

8: end while

End Procedure

4. USE CASE: EMPLOYING THE

DEVELOPED FLC PACKAGE FOR THE UAV

ALTITUDE CONTROL

To evaluate the effectiveness of the developed ROS

package, we configured the package to construct an IT-

2 TSK fuzzy logic controller for the altitude control of

a quadcopter UAV, simulated in Gazebo STIL simula-

tion environment. The closed-loop controlled structure

of the quadcopter UAV is based on Fig. 9.

The IT-2 TSK FLC takes two inputs and produces

one control output. The inputs are the altitude error,

Zerr, and its derivative, Żerr, whereas the control out-

put is the throttle level. In general, the membership

functions and rule-base of FLC can be designed and

tuned experimentally based on the prior knowledge

about the system and conducting a trial-and-error ap-

proach, or they can be found via different techniques

based on optimization (e.g., genetic algorithm [51],

simulated annealing [52], or tabu search [53]), learn-

ing [54], or clustering [55]. Either way, the developed

ROS package can be employed for the implementation

of the designed FLC regardless of the design approach.

In this case-study, we designed the membership func-

tions and rule-base of the FLC experimentally and se-

lected the input IT-2 MFs of the TSK FLC as shown in

Figures 10(a) and 10(b). The rule-base of the FLC is

stated in Table 2. For example,

Rℓ: IF Zerr is L and Żerr is 0

THEN y is ML (23)

The output uncertainties of the first-order TSK FLC

coefficients (Zerr and Żerr) are stated in Table 3. For

example, for the rule in Equation 24, the output will

be:

y = c1Zerr + c2Żerr (24)

where the upper and lower bounds of coefficients c1

and c2 are given in the third row of Table 3.

The output processing unit for developing the FLC

uses uncertainty bounds aggregation method, described

in Section 2.2. Presented in Fig. 11 is the UAV FLC de-

velopment process in ROS using the developed pack-

age described in Section 3. Initially, the FLC parame-

ters are configured using the provided GUI. Following

this, an object with the configured properties is instan-

tiated to perform UAV FLC operations in ROS. Fig.

12 shows the sequence diagram which describes how

FLC ROS package operations interact for performing

fuzzification, inference, and defuzification operations

at every control time-step.

The control simulation results are shown in Figures

13(a) and 13(b). These results are also compared with

that of a classical PD controller. For making the com-

parison fair, the gains of the PD controller were set

at the centers of the output uncertainty of the imple-

mented IT-2 TSK FLC as follows:

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 13

Fig. 9. Interval type-2 TSK UAV altitude control structure.

(a) (b)

Fig. 10. (a) Membership functions of Zerr , (b) Membership functions of Żerr .

Fig. 11. Example steps for UAV control using FLC ROS package and Gazebo SITL simulator.

Table 2

Rule Base for the IT-2 TSK FLC for the attitude control of the UAV

Zerr

L 0 H

Ż
e
r
r

N L ML MS

0 ML S ML

P MS ML L

y = 0.55Zerr + 0.45Żerr (25)

From the simulation results, it can be observed that

the interval type-2 TSK FLC has successfully con-

Table 3

Rule coefficient bounds

Rule

Number

Rule Output

Coefficient Label
c1 c1 c2 c2

1 S 0.4 0.45 0.3 0.35

2 MS 0.5 0.6 0.3 0.35

3 ML 0.5 0.6 0.45 0.5

4 L 0.65 0.7 0.55 0.6

trolled the altitude of the UAV with a smaller overshoot

and faster settling time compared to the classical PD

controller.

14 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

Fig. 12. UML sequence diagram of FLC execution using the developed FLC ROS package.

(a) (b)

Fig. 13. (a) UAV altitude using IT-2 TSK and PD controllers, (b) UAV control signal using IT-2 TSK and PD controllers.

5. CONCLUSION

This paper developed a reconfigurable FLC ROS

package using an object-oriented approach and UML.

For this purpose, we developed an implementation

architecture, configuration technique, and algorithms

that enable easier implementation of generic and con-

figurable MIMO FLCs for ROS control applications.

The software architectures and algorithms of the de-

veloped FLC ROS package were realized using C++

programming language. Further, possible use cases of

the FLC ROS package for developing MIMO type-

1 and interval type-2 were explained. The developed

FLC ROS package allows the user to configure the

control structure to use Mamdani or TSK fuzzy infer-

ence mechanisms. Further, to enhance the computation

cost for real-time control applications, the developed

FLC ROS package allows for adopting the uncertainty

bounds and Nie-Tan output processing techniques. A

user-friendly graphical user interface was developed to

facilitate the configuration of MIMO fuzzy logic con-

trol parameters such as number of inputs, number of

outputs, rules, membership functions, inference meth-

ods, type reduction, and defuzzification. The effective-

ness of the developed package was demonstrated by

applying to the altitude control of a quadcopter UAV

in Gazebo simulation environment. The simulation re-

sults were then compared with a PD controller. The

results have shown that the developed ROS package

can actually assist in realizing ROS-based fuzzy logic

control applications. Inspired by the work in [56, 57],

one of the research directions that we will pursue is to

enhance the developed tool for the implementation of

adaptive and fault tolerant fuzzy control systems. Our

focus in this paper was on type-1 and interval type-2

FLCs with Mamdani or TSK inferences. Following the

same procedure, the developed tool will be extended

to other FLC types and inferences.

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 15

Acknowledgment

This work is supported by National Science Founda-

tion under the award number 1832110 and 2000320 as

well as the Air Force Research Laboratory and Office

of the Secretary of Defense under agreement number

FA8750-15-2-0116.

References

[1] E. Wolfgang, Introduction to artificial intelligence, Springer,

Cham, 2019. doi:10.1007/978-3-319-58487-4.

[2] M. Rodd, H. Verbruggen, A. Krijgsman, Artificial intelligence

in real-time control, Engineering Applications of Artificial

Intelligence 5 (5) (1992) 385±399. doi:https://doi.

org/10.1016/0952-1976(92)90010-H.

[3] J. L. Castro, Fuzzy logic controllers are universal approxima-

tors, IEEE Transactions on Systems, Man, and Cybernetics

25 (4) (1995) 629±635. doi:10.1109/21.370193.

[4] S. Ramyar, A. Homaifar, A. Anzagira, A. Karimoddini, S. Am-

salu, A. Kurt, Fuzzy modeling of drivers’ actions at intersec-

tions, in: 2016 World Automation Congress (WAC), 2016, pp.

1±6. doi:10.1109/WAC.2016.7582966.

[5] L. A. Zadeh, Outline of a New Approach to the Analysis of

Complex Systems and Decision Processes, IEEE Transactions

on Systems, Man, and Cybernetics SMC-3 (1) (1973) 28±44.

doi:10.1109/TSMC.1973.5408575.

[6] D. Dubois, H. Prade, L. Ughetto, Fuzzy Logic, Control

Engineering and Artificial Intelligence, Springer Nether-

lands, Dordrecht, 1999, pp. 17±57. doi:10.1007/

978-94-011-4405-6_2.

[7] L. Zadeh, The concept of a linguistic variable and its ap-

plication to approximate reasoningÐII, Information Sciences

8 (4) (1975) 301±357. doi:10.1016/0020-0255(75)

90046-8.

[8] J. Mendel, R. John, Type-2 fuzzy sets made simple, IEEE

Transactions on Fuzzy Systems 10 (2) (2002) 117±127. doi:

10.1109/91.995115.

[9] J. M. Mendel, R. I. John, F. Liu, Interval type-2 fuzzy logic sys-

tems made simple, IEEE Transactions on Fuzzy Systems 14 (6)

(2006) 808±821. doi:10.1109/TFUZZ.2006.879986.

[10] A. Hailemichael, S. M. Salaken, A. Karimoddini, A. Homai-

far, K. Abbas, S. Nahavandi, Developing a computationally ef-

fective interval type-2 tsk fuzzy logic controller, Journal of In-

telligent & Fuzzy Systems 38 (2) (2020) 1915±1928. doi:

10.3233/JIFS-190446.

[11] M. Biglarbegian, W. W. Melek, J. M. Mendel, Design of novel

interval type-2 fuzzy controllers for modular and reconfig-

urable robots: Theory and experiments, IEEE Transactions on

Industrial Electronics 58 (4) (2011) 1371±1384. doi:10.

1109/TIE.2010.2049718.

[12] D. Wu, W. Tan, A type-2 fuzzy logic controller for the liquid-

level process, in: IEEE International Conference on Fuzzy Sys-

tems, Vol. 2, 2004, pp. 953±958 vol.2. doi:10.1109/

FUZZY.2004.1375536.

[13] A. Hailemichael, M. Behniapoor, A. Karimoddini, Develop-

ment of an Interval Type-2 TSK Fuzzy Logic Attitude Con-

troller for a UAV, in: 2018 International Conference on Un-

manned Aircraft Systems (ICUAS), 2018, pp. 1003±1009.

doi:10.1109/ICUAS.2018.8453330.

[14] C. Wen, Z. Hui, L. Tao, L. Yuling, Intelligent traffic signal con-

troller based on type-2 fuzzy logic and nsgaii, Journal of In-

telligent & Fuzzy Systems 29 (6) (2015) 2611±2618. doi:

10.3233/IFS-151964.

[15] B. Safarinejadian, B. Bagheri, P. Ghane, Fault detection in non-

linear systems based on type-2 fuzzy sets and bat optimiza-

tion algorithm, Journal of Intelligent & Fuzzy Systems 28 (1)

(2015) 179±187. doi:10.3233/IFS-141288.

[16] Z. Wang, S. Ramyar, S. M. Salaken, A. Homaifar, S. Na-

havandi, A. Karimoddini, A collision avoidance system with

fuzzy danger level detection, in: 2017 IEEE Intelligent Vehi-

cles Symposium (IV), 2017, pp. 283±288. doi:10.1109/

IVS.2017.7995733.

[17] A. Davari, M. Hamiruce Marhaban, S. Bahari Mohd Noor,

M. Karimadini, A. Karimoddini, Parameter estimation of

k-distributed sea clutter based on fuzzy inference and

gustafson±kessel clustering, Fuzzy Sets and Systems 163 (1)

(2011) 45±53, theme: Classification and Modelling. doi:

10.1016/j.fss.2010.09.008.

[18] S. Ramyar, M. G. Sefidmazgi, S. Amsalu, A. Anzagira,

A. Homaifar, A. Karimoddini, A. Kurt, Modeling driver behav-

ior at intersections with takagi-sugeno fuzzy models, in: 2015

IEEE 18th International Conference on Intelligent Transporta-

tion Systems, 2015, pp. 2378±2383. doi:10.1109/ITSC.

2015.384.

[19] A. Homaifar, A. Karimoddini, M. Heiges, M. A. Khan, B. A.

Erol, S. Nazmi, A software tool for evaluating unmanned au-

tonomous systems, The ITEA Journal of Test and Evaluation

41 (3) (2020) 188±195.

[20] A. Karimoddini, S. Grebreyohannes, A. Homaifar, Automatic

testing tool for testing autonomous systems, US Patent App.

17/148,909 (Aug. 5 2021).

[21] P. Ejegwa, S. Wen, Y. Feng, W. Zhang, N. Tang, Novel

pythagorean fuzzy correlation measures via pythagorean fuzzy

deviation, variance and covariance with applications to pattern

recognition and career placement, IEEE Transactions on Fuzzy

Systems (2021). doi:10.1109/TFUZZ.2021.3063794.

[22] S. Gebreyohannes, A. Karimoddini, A. Homaifar, A. Es-

terline, Formal verification of a fuzzy rule-based classifier

using the prototype verification system, in: G. A. Barreto,

R. Coelho (Eds.), Fuzzy Information Processing, Springer In-

ternational Publishing, Cham, 2018, pp. 1±12. doi:10.

1007/978-3-319-95312-0_1.

[23] S. Greenfield, Type-2 fuzzy logic: Circumventing the defuzzi-

16 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

fication bottleneck, De Montfort University, PhD dissertation,

2012.

[24] J. Boren, S. Cousins, Exponential Growth of ROS, IEEE

Robotics Automation Magazine 18 (1) (2011) 19±20. doi:

10.1109/MRA.2010.940147.

[25] P. Estefo, J. Simmonds, R. Robbes, J. Fabry, The robot oper-

ating system: Package reuse and community dynamics, Jour-

nal of Systems and Software 151 (2019) 226±242. doi:

10.1016/j.jss.2019.02.024.

[26] L. Garber, Robot os: A new day for robot design, Computer

46 (12) (2013) 16±20. doi:10.1109/MC.2013.434.

[27] L. Peppoloni, F. Brizzi, C. A. Avizzano, E. Ruffaldi, Immersive

ROS-integrated framework for robot teleoperation, in: 2015

IEEE Symposium on 3D User Interfaces (3DUI), 2015, pp.

177±178. doi:10.1109/3DUI.2015.7131758.

[28] D. G. Schneider, L. Lima da Silva, P. Diehl, A. H. R.

Leite, G. S. Bastos, Robot Navigation by Gesture Recogni-

tion with ROS and Kinect, in: 2015 12th Latin American

Robotics Symposium and 2015 3rd Brazilian Symposium on

Robotics (LARS-SBR), 2015, pp. 145±150. doi:10.1109/

LARS-SBR.2015.21.

[29] Y. Chen, X. Wang, S. Hong, X. Zhong, C. Zou, Motion plan-

ning implemented in ROS for mobile robot, in: 2017 29th Chi-

nese Control And Decision Conference (CCDC), 2017, pp.

7149±7154. doi:10.1109/CCDC.2017.7978473.

[30] A. Koubaa, Robot Operating System (ROS) The Complete

Reference (Volume 2), Springer, 2017. doi:10.1007/

978-3-319-54927-9.

[31] M. Costa de Oliveira, M. Rocha Facury, Writing fuzzy rules

directly in a C++ source code, in: Proceedings of IEEE 5th

International Fuzzy Systems, Vol. 1, 1996, pp. 522±528 vol.1.

doi:10.1109/FUZZY.1996.551795.

[32] H. Wu, J. Mendel, Uncertainty bounds and their use in the

design of interval type-2 fuzzy logic systems, IEEE Trans-

actions on Fuzzy Systems 10 (5) (2002) 622±639. doi:

10.1109/TFUZZ.2002.803496.

[33] N. Enyinna, A. Karimoddini, D. Opoku, A. Homaifar,

S. Arnold, Developing an interval type-2 tsk fuzzy logic

controller, in: 2015 Annual Conference of the North Amer-

ican Fuzzy Information Processing Society (NAFIPS) held

jointly with 2015 5th World Conference on Soft Com-

puting (WConSC), 2015, pp. 1±6. doi:10.1109/

NAFIPS-WConSC.2015.7284160.

[34] M. Nie, W. W. Tan, Towards an efficient type-reduction method

for interval type-2 fuzzy logic systems, in: 2008 IEEE Inter-

national Conference on Fuzzy Systems (IEEE World Congress

on Computational Intelligence), 2008, pp. 1425±1432. doi:

10.1109/FUZZY.2008.4630559.

[35] E. Mamdani, S. Assilian, An experiment in linguistic synthe-

sis with a fuzzy logic controller, International Journal of Man-

Machine Studies 7 (1) (1975) 1±13. doi:https://doi.

org/10.1016/S0020-7373(75)80002-2.

[36] P. Martin Larsen, Industrial applications of fuzzy logic con-

trol, Vol. 12, 1980. doi:https://doi.org/10.1016/

S0020-7373(80)80050-2.

[37] T. Takagi, M. Sugeno, Fuzzy identification of systems and its

applications to modeling and control, IEEE Transactions on

Systems, Man, and Cybernetics SMC-15 (1) (1985) 116±132.

doi:10.1109/TSMC.1985.6313399.

[38] J. M. Mendel, Uncertain rule-based fuzzy logic system: intro-

duction and new directions, Prentice±Hall PTR, 2001. doi:

10.1007/978-3-319-51370-6.

[39] N. Karnik, J. Mendel, Applications of type-2 fuzzy logic

systems: handling the uncertainty associated with surveys

3 (1999) 1546±1551. doi:10.1109/FUZZY.1999.

790134.

[40] J. M. Mendel, General type-2 fuzzy logic systems made

simple: A tutorial, IEEE Transactions on Fuzzy Systems

22 (5) (2014) 1162±1182. doi:10.1109/TFUZZ.2013.

2286414.

[41] H. Hagras, Type-2 FLCs: A New Generation of Fuzzy Con-

trollers, IEEE Computational Intelligence Magazine 2 (1)

(2007) 30±43. doi:10.1109/MCI.2007.357192.

[42] J. M. Mendel, F. Liu, D. Zhai, α-plane representation for type-

2 fuzzy sets: Theory and applications, IEEE Transactions on

Fuzzy Systems 17 (5) (2009) 1189±1207. doi:10.1109/

TFUZZ.2009.2024411.

[43] H. Hamrawi, S. Coupland, R. John, Type-2 Fuzzy Alpha-Cuts,

IEEE Transactions on Fuzzy Systems 25 (3) (2017) 682±692.

doi:10.1109/TFUZZ.2016.2574914.

[44] D. Wu, On the Fundamental Differences Between Interval

Type-2 and Type-1 Fuzzy Logic Controllers, IEEE Transac-

tions on Fuzzy Systems 20 (5) (2012) 832±848. doi:10.

1109/TFUZZ.2012.2186818.

[45] J. Li, R. John, S. Coupland, G. Kendall, On nie-tan operator

and type-reduction of interval type-2 fuzzy sets, IEEE Trans-

actions on Fuzzy Systems 26 (2) (2018) 1036±1039. doi:

10.1109/TFUZZ.2017.2666842.

[46] J. Kerr, K. Nickels, Robot operating systems: Bridging the gap

between human and robot, in: Proceedings of the 2012 44th

Southeastern Symposium on System Theory (SSST), 2012, pp.

99±104. doi:10.1109/SSST.2012.6195127.

[47] B. Dieber, S. Kacianka, S. Rass, P. Schartner, Application-

level security for ROS-based applications, in: 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), 2016, pp. 4477±4482. doi:10.1109/IROS.

2016.7759659.

[48] G. B. J. Rumbaugh, I. Jacobson, The unified modeling lan-

guage user guide, Addison Wesley (1998).

[49] N. G. N. D. Muhazam Mustapha, UML diagram for

design patterns, ICSECS (2011). doi:10.1007/

978-3-642-22203-0_19.

[50] M. N. Alanazi, Basic rules to build correct uml diagrams, in:

2009 International Conference on New Trends in Informa-

tion and Service Science, 2009, pp. 72±76. doi:10.1109/

NISS.2009.252.

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 17

[51] Y.-S. Zhou, L.-Y. Lai, Optimal design for fuzzy controllers by

genetic algorithms, IEEE Transactions on Industry Applica-

tions 36 (1) (2000) 93±97. doi:10.1109/28.821802.

[52] J. Garibaldi, E. Ifeachor, Application of simulated annealing

fuzzy model tuning to umbilical cord acid-base interpretation,

IEEE Transactions on Fuzzy Systems 7 (1) (1999) 72±84.

doi:10.1109/91.746314.

[53] A. BaǧiËs, Determining fuzzy membership functions with tabu

searchÐan application to control, Fuzzy Sets and Systems

139 (1) (2003) 209±225. doi:https://doi.org/10.

1016/S0165-0114(02)00502-X.

[54] M. J. Er, C. Deng, Online tuning of fuzzy inference systems

using dynamic fuzzy q-learning, IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part B (Cybernetics) 34 (3) (2004)

1478±1489. doi:10.1109/TSMCB.2004.825938.

[55] A. Karimoddini, K. Salahshoor, A. Fatehi, M. Karimadini, A

new approach for online fuzzy identification by potential clus-

tering including rule reduction, in: 2007 European Control

Conference (ECC), 2007, pp. 747±754. doi:10.23919/

ECC.2007.7068445.

[56] K. Sun, H. R. Karimi, J. Qiu, Finite-time fuzzy adaptive quan-

tized output feedback control of triangular structural systems,

Information Sciences 557 (2021) 153±169. doi:https:

//doi.org/10.1016/j.ins.2020.12.059.

[57] K. Sun, L. Liu, J. Qiu, G. Feng, Fuzzy adaptive finite-time

fault-tolerant control for strict-feedback nonlinear systems,

IEEE Transactions on Fuzzy Systems 29 (4) (2021) 786±796.

doi:10.1109/TFUZZ.2020.2965890.

