Journal of Intelligent and Fuzzy Systems 1 (2021) 1-16 1
10S Press

FLC-ROS: A Generic and Configurable ROS
Package for Developing Fuzzy Logic
Controllers

Ali Karimoddini ®*, Abel Hailemichael #, and Mo Jamshidi "

& Department of Electrical and Computer Engineering, North Carolina Agricultural and Technical State
University, Greensboro, NC 27411 USA **
> Department of Electrical and Computer Engineering, The University of Texas, San Antonio, TX 78249 USA

Abstract. Fuzzy logic controllers can handle complex systems by incorporating expert’s knowledge in the absence of formal
mathematical models. Further, fuzzy logic controllers can effectively capture and accommodate uncertainties that are inherent
in real-world controlled systems. On the other hand, Robot Operating System (ROS) has been widely used for many robotic
applications due to its modular structure and efficient message-passing mechanisms for the integration of system’s components.
For this reason, Robot Operating System is an ideal tool for developing software stacks for robotic applications. This paper
develops a generic and configurable Robot Operating System package for the implementation of fuzzy logic controllers, par-
ticularly type-1 and interval type-2, which are based on either Mamdani or Takagi-Sugeno-Kang fuzzy inference mechanisms.
This is achieved by employing a systematic object-oriented approach using the Unified Model Language (UML) to implement
the fuzzy inference system as a single class that is composed of fuzzifier, inference, and defuzzifier classes. The deployment of
the developed Robot Operating System package is demonstrated by implementing an interval type-2 fuzzy logic control of an
Unmanned Aerial Vehicle (UAV).

Keywords: Robot Operating System, Unified Model Language, Type-1 Fuzzy Logic Control, Interval Type-2 Fuzzy Logic
System, TSK, Mamdani, ROS, UAV, Unmanned Aerial Vehicles.

1. Introduction

A major challenge in any control system is to deal
with uncertainties that exist in real-world systems due
to sensor-reading inaccuracy, noises in the environ-
ment, inaccuracy of model parameters, and external
disturbances. To handle these situations, classical ro-

*Corresponding author: A. Karimoddini, Tel: +13362853313,
akarimod@ncat.edu.

“*This work is supported by the NSF under the award number
1832110 and Air Force Research Laboratory and Office of the Sec-
retary of Defense under agreement number FA8750-15-2-0116.

bust control systems often require an accurate model
of the system and bounds of disturbances which may
not be always available. In contrast, artificial intelli-
gent (Al) techniques, including but limited to Artifi-
cial Neural Network (ANN), Genetic Algorithm (GA),
Support Vector Machine (SVM), Expert Systems (ES),
Neural Language Programming (NLP), Reinforcement
Learning (RL), Fuzzy Logic (FL), as well as, hybrid
approaches (combination of Al techniques), are capa-
ble of handling control problems when the system’s
model is unknown or far too complex to accurately
model [1-4]. In this vein, Fuzzy Logic Controllers

0000-0000/21/$00.00 © 2021 — IOS Press and the authors. All rights reserved

2 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

(FLCs) use approximate reasoning to deal with com-
plex ill-defined systems with uncertain models and
stochastic behaviors and disturbances [5, 6]. FLCs use
fuzzy logic for computing the control signals in or-
der to control a system. Fuzzy logic is an approach
for knowledge representation and symbolic inference,
computation, and reasoning based on human-like lin-
guistic expressions with degrees of truth [7]. By us-
ing membership functions and rule-based inference
mechanisms, FLCs are exceptionally powerful in mim-
icking human decision-making in the absence of for-
mal mathematical models for a system. Furthermore,
FLCs (particularly type-2 FLCs [8]) are capable of ef-
fectively capturing and handling uncertainties [9, 10].
The ability of FLCs to handle dynamic behaviors of
complex systems, without knowing much about their
mathematical model, has made them suitable for the
design of real-world robotic systems [1 1] and indus-
trial control systems such as such as the control of
liquid-level process [12], control of unmanned aerial
vehicles [13], traffic signal control [14], fault detec-
tion [15], autonomous vehicle applications [16], mar-
itime radar detection mechanism [17], human behavior
modeling [18], testing and evaluation of autonomous
vehicles [19, 20], and pattern recognition [21]. How-
ever, the structure of a fuzzy logic controller is rela-
tively more complex than many other commonly-used
controllers, e.g, PID controllers, and often involves
several procedures including fuzzification, inference,
type-reduction, and defuzzifcation, which requires a
lot of effort for the development, implementation, test-
ing, and verification of the FLCs [13,22,23]. This has
hindered control application developers from utilizing
the advantages of FLCs, particularly type-2 FLCs.

In this paper, we develop a user-friendly develop-
ment tool in order to ease the implementation of FLCs
and facilitate fast prototyping FLC-based robotic and
control applications. The developed tool will be pro-
vided as a Robot Operating System (ROS) package.
Our choice of ROS is motivated by the fact that its
modular structure and enhanced robust communica-
tion and system integration mechanisms enable the
rapid and reliable development of robotic and au-
tonomous systems [24-26]. As such, ROS has been

widely adopted by the robotic community as the pre-
mier development platform for developing software
stacks for different robotic applications [27-29]. While
some work has been done to develop ROS packages for
the implementation of type-1 Mamdani FLCs [30,31],
they are limited to a particular class of FLCs and do not
support the development of different inference systems
such as Takagi-Sugeno-Kang (TSK) fuzzy inference
mechanisms, and are developed for a specific appli-
cation. Therefore, their deployment and generalization
for other use cases and applications are not straight-
forward. Hence, the challenge to find a suitable ROS
package, which provides the required functionality and
flexibility for the design and implementation of FLCs
is still open. To overcome this challenge, this paper
provides, to the best of our knowledge, the first generic
and configurable ROS package that eases the real-time
implementation of type-1 and interval type-2 FLCs,
which are based on both Mamdani and TSK inference
mechanisms.
The contributions of this paper are as follows:

— We have developed systematic configuration tech-
niques, software architecture, and algorithms that
enable the implementations of a generic and con-
figurable FLC ROS packages.

— To implement multiple FLCs in a single appli-
cation, this paper presents a systematic object-
oriented development approach representing the
entire fuzzy logic system by a single class, which
is composed of fuzzifier and inference as well as
defuzzifier classes. Algorithms and structures that
enable configuration and deployment of multi-
input-multi-output (MIMO) Mamdani or TSK
fuzzification, inference mechanisms, and defuzzi-
fication operations are developed and imple-
mented.

— To enable the development of computationally ef-
fective real-time interval type-2 FLCs, the devel-
oped FLC ROS package employs the uncertainty
bounds [32,33] and Nie-Tan [34] output process-
ing techniques.

— The developed package constitutes a user-friendly
graphical user interface (GUI) and configura-
tion file, allowing configuration of MIMO fuzzy

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 3

logic control parameters such as number of in-
puts, number of outputs, rules, membership func-
tions, inference methods, type reduction, and de-
fuzzification. The package assists the implemen-
tation of FLCs within the ROS environment with-
out demanding the detailed mathematical knowl-
edge of type-1 and type-2 FLCs.

— The effectiveness of the developed FLC ROS
package is demonstrated via a software-in-the-
loop (SITL) for implementing an interval type-2
TSK fuzzy logic controller for the altitude control
of a quadcopter UAV in ROS Gazebo simulation
environment.

The rest of this paper is organized as follows. Sec-
tion 2 briefly provides the necessary preliminaries
and backgrounds on fuzzy control systems, ROS, and
UML. Section 3 discusses the developed FLC ROS
package’s structure and functionalities. Section 4 de-
scribes the deployment of the developed ROS package
within a simulation environment for the altitude con-
trol of a quadcopter UAV. The paper is concluded in
Section 5.

2. PRELIMINARIES

This section presents a brief review of fuzzy set
theory and fuzzy logic systems. A fuzzy set is a set
whose elements have degrees of membership. Fuzzy
logic controllers employ rule-based inference tech-
niques that use fuzzy sets for making control decisions.
The development process of FLCs includes the pro-
cesses of fuzzification, inference, and defuzzification.
By using membership functions (MFs), the fuzzifica-
tion process assigns membership values to crisp inputs.
The inference process maps fuzzy inputs to fuzzy out-
puts according to pre-defined rules. Finally, it is the de-
fuzzification process that generates crisp outputs from
aggregated fuzzy outputs.

Based on the employed type of fuzzy sets, FLCs
may be classified as type-1, type-2, or type-n. Also,
FLCs may be classified based on the type of the em-
ployed inference mechanism such as Mamdani [35] or
TSK [36].

2.1. Type-1 Fuzzy Logic Systems

Definition 1. Type-1 Fuzzy Set

A type-1 fuzzy set is composed of elements of the
set’s domain, x € X, and their corresponding mem-
bership values (x, pa(x)) for which pa(x) € [0,1].
Formally, a type-1 fuzzy set can be defined as:

A= {(z,pa(2) | Vo € X, pa() € [0,1])
= Y (wuale)) O

rzeX

where . is the collection of elements of the set.

An example of a type-1 fuzzy set with its corre-
sponding membership function is shown in Fig. 1.

U

Fig. 1. A type-1 fuzzy set.

In type-1 Mamdani fuzzy inference systems [35],
crisp inputs are initially fuzzified using predefined
type-1 membership functions. The fuzzified inputs are
then mapped to type-1 output fuzzy sets using the
mamdani fuzzy inference process. The output fuzzy
sets are finally aggregated and defuzzified to generate
crisp outputs. A typical MIMO type-1 fuzzy logic con-
troller is shown in Fig. 2.

FLC

Fig. 2. A type-1 FLC structure.

Type-1 FLCs employ type-1 fuzzy sets on the an-
tecedent and consequent sides of their rules. An exam-

4 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

ple a rule with p inputs and g outputs in a type-1 FLC
with Mamdani fuzzy inference system can be stated as:

R IF T IS Flé, and s is FQZ, -+, and xp is Fpe

THEN y, is G1*, ya is Gof, -, y, is G, (2)

where R’ is the /th rule, Fpe is the activated antecedent
type-1 fuzzy set for input channel z,, and qu is the
activated consequent type-1 fuzzy set for output chan-
nel y4, m is the number of membership functions for a
given input, and r is the number of membership func-
tions for a given output. The firing level for the ¢th rule
is the t-norm of these fuzzy values obtained from the
antecedent membership functions as indicated by the
Rule Set. For each of the rules, the output fuzzy set can
be found as the t-norm of the firing level and the out-
put fuzzy set. The aggregated output fuzzy set can be
found as the s-norm of the output fuzzy sets. Finally,
using the centroid defuzzification as one of the most
common defuzzification methods, we can calculate the
crisp value of each output of a Mamdani fuzzy infer-
ence system as:

e = Doy ik (ki) Yni
L =
Z?:1 ,Uk(xkﬂ')

where p, is the membership function of the aggregated

3)

output yy, n is the number of samples in the aggregated
output fuzzy set of the kth output channel, and yj, ; is
the 7th sample.

In type-1 TSK fuzzy control systems [37], rule out-
puts are a function of the rule inputs. As an example,
the rules for a TSK FLC with a p inputs and g outputs
can be stated as:

R IF x4 is Flg, and x5 is Fgé7 .

THEN

VI = Coq Tt T,
Y5 = 06,2 + C?,le +oee cﬁ,zxp,

ool
,andx, is F,

Vg = Coq+ ClgT1t + T,
where R’ is the /th rule; Fpe is the activated an-
tecedent type-1 fuzzy set for input channel z,; and
cf)yq, ch, e ,cf)_q are crisp TSK output coefficients
¢
for outputs y,. The outputs of type-1 TSK fuzzy rules

are crisp. To obtain the final (aggregated) crisp value

of kth output, a defuzzification process could be per-
formed using the weighted average technique as:
¢
= e [Uk
- ¢
2= [

where f* is the firing level for rule £ and yi is the con-
sequent for output k of the ¢th TSK rule.

“

2.2. Type-2 Fuzzy Logic Systems

Even though type-1 fuzzy sets enable linguistic
computing by assigning a degree of membership to all
their elements, they are not capable of quantifying the
level of uncertainty in the degree of membership. It is,
however, possible to successfully capture and quantify
uncertainties by extending type-1 fuzzy sets to type-2
fuzzy sets [38,39]. Type-2 fuzzy sets can be defined as
follows:

Definition 2. Type-2 Fuzzy Set

A type-2 fuzzy set is composed of triples ((x,u),
iz, w)) in which secondary membership, i ;(x,)
is defined for each member of domain x € X with the
primary membership value, u € J, (J, is the range of
primary membership for a given x). Mathematically, a
type-2 fuzzy set is defined as follows:

A={((z,u), pz(z,u))| Ve € X,Yu € J, C [0,1],

pa(z,u) €10,1]} = Z Z((JI,U),MA‘<$,U))

ucJ, x€X

)

Fig. 3(a) shows a simple type-2 fuzzy set for a case
that X and J, are connected sets, and y 4 is a continu-
ous function.

Type-2 FLCs capture input and output uncertainties
by employing type-2 fuzzy sets on their antecedent and
consequent parts of rules [40,41]. Use of interval type-
2 or a-plane based FLCs can significantly reduce the
computational complexity, facilitating real-time imple-
mentations [9,42,43].

Definition 3. Interval Type-2 Fuzzy Set (IT2 FS)
An interval type-2 fuzzy set is a type-2 fuzzy set with

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 5

M Atx,u)
1 e

N I I W

0 5 0"

(a)

M A(x,u)
I]---

L DR | | R |

0 5 10

(b)

Fig. 3. (a) A type-2 fuzzy set, (b) An interval type-2 fuzzy set.

secondary grade values set to unity. It is defined as:

A={((z,u),1)|Vz € X,Yu e J, C[0,1]}

= Z Z((m,u),l) (6)

ueJy v€X

Fig. 3(b) shows an example of an interval type-2
fuzzy set. Compared to type-1 fuzzy sets, interval type-
2 fuzzy sets have more degrees of freedom in the form
of upper and lower membership functions to better
capture uncertainties, while generating smoother con-
trol surfaces [10,44]. On the other hand, compared to
type-2 FLSs, the use of interval type-2 fuzzy sets sig-
nificantly reduces the computation costs, while main-
taining major advantages of type-2 FLSs [9,9,45].

Both the rule antecedent and consequent sets of a
type-2 Mamdani FLCs are type-2 fuzzy sets. An ex-
ample of a p-input and g-output type-2 FLC rule can
be stated as:

o= o=t o=
RK:IFxllsFl,andargstg,-~-,andxp1st

Lo~ t o<t o~
THEN vy, is G1 , y2is G2, -+, yq 18 Gy @)

where R is the ¢th rule, F pz is the activated antecedent
type-2 fuzzy set for input channel z,, and éqe is the
activated consequent type-2 fuzzy set for output chan-
nel yg.

For type-2 Mamdani FLCs, a computationally ex-
pensive type reduction of the aggregated output fuzzy
set is required prior to the defuzzification process.
With an effort of easing this computation burden, sev-
eral techniques have been previously developed, one of
which is the Nie-Tan type reduction mechanism, which

is applicable to interval type-2 FLCs [34]. With rea-
sonable accuracy, the Nie-Tan type reduction mecha-
nism is the least computationally expensive [45]. As
stated in Equation 8, to compute the type reduced set,
this method uses the average of the upper and lower
membership functions of an aggregate interval type-2

output fuzzy set, ¢y, for the kth output.
x(x 1 _ _
i (ge) = 5 (e (Gn) + pa (9r)) ®)

where p* is the membership function of the type re-

duced set, fiz(x) and pz(7x) are respectively the up-
per and lower membership functions of the aggregated
output fuzzy set ¢ for the output yi. Then, the cen-
troid of the generated IT2 fuzzy set can be computed
using Equation 9.

Zi:kl Mk(,igkii)yk’i 9)
> izt Wi (Tn,i)
Instead of IT2 Mamdani FLCs, we can use IT2 TSK
FLCs. Similar to type-1 TSK FLC rules, the rule out-

puts of IT2 TSK FLCs are functions the inputs. In
this case, to capture inputs’ uncertainty, we use Type-2

Yk =

fuzzy sets for the antecedent MFs. On the other hand,
for capturing output uncertainty, the consequent coef-
ficients can be type-1 fuzzy sets [33]. An example of
an IT2 TSK FLC rule with p inputs and g outputs can
be stated as:
RYIF xy is F’le, and x5 is FQZ, e
THEN
yi = 05,1 + Ct{,ﬁl +ot Cﬁ,l%v
Vs = Coz + o1+ + € T,

Lot
,andxy is F,

L _ L £ 4
Yg = Co,q T C1gT1 + -+ Cp gTp,

6 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

where R’ is the /th rule; ﬁpe is the activated an-
tecedent interval type-2 fuzzy set for input channel
Tp; c€7q, ch, e ,cﬁ,q are type-1 TSK rule output co-
efficients for outputs y,. For reducing the computa-
tion burden, a computationally effective interval type-
2 TSK output processing technique may be used [32].
This output processing technique approximates the up-
per and lower bounds of the weighted outputs, 3; and
yr, by using only the upper and lower bounds of the
rule firing levels and output coefficients. The upper and
lower bounds of the firing levels can be computed us-

ing Equations 10 and 11, respectively.

ﬁ =F (1) * F2£($2) LR *ipf(xp) (10)

Fl= B (@)« By (a) %% B, (z,) (1)

The upper and lower bounds of the output, y; and

Yr, can be estimated by calculating and averaging their

upper and lower bounds values, Yis Yis Yrs and 7, as

shown in Fig. 4. The inner upper and lower bounds (¥;
and y;,-) of y; and y,- are calculated as follows:

u(Y)
]_]

PR AR
n_y M _
Yoy, Yr ¥,

Fig. 4. Visual representation of output uncertainty bounds.

7 = min{yy, yu} (12)
yl = max{ylm yur} (13)
where,
ot +- 4+ My
Yyu = f,L' T I fI\/[(14)
_ iyl Py (15)

N e i
ii_|_”__|_iM

Yir (16)

fiyl -4 fMyM
fi+...+fM

With the above calculated inner bounds, the outer

Yur = (17)

bounds (y; and ¥;) can then be obtained using Equa-
tions 18 and 12 [32,33], respectively as:

{ Y-

— i | =L _ (18)
w= Z?ileXZZLﬁX
ST -y xS —yf)]
S L -y X Py -)
_ Sr(fi-
r = 'r+ — — - X (19)
M DN S S

S Fiy =y < S f - yf«)]
ST PR =y 4+ fiyr —)

The lower and upper bounds of y; and y, can then
be estimated using Equations 20 and 21.

y+ur

Yy == 5 (20)
Yr + Yr

yr == @

Finally, a crisp output can be obtained by perform-
ing the defuzzification provided in Equation 22.

:yl+yr
4 2

2.3. Robot Operating System (ROS)

(22)

ROS is an open-source message-based framework,
that provides enhanced functionality for the develop-
ment of large-scale service robots. Importantly, ROS
provides hardware abstractions, low-level device con-
trols, implementation of commonly used functionali-
ties, message-passing, and package management for a
set of connected robots and their subordinate compo-
nents [30,46].

Nodes, messages, topics, and services are the fun-
damental concepts of a ROS implementation [30]. The
ROS master allows all ROS nodes to exchange mes-
sages between one another. Nodes publish messages

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 7

in topics; other nodes should subscribe to a topic
in order to receive a message. This feature of ROS
is advantageous enabling the reuse of publisher and
subscriber implementations over multiple use cases.
A ROS package can be directly used for organizing
software components that provide easy-to-use func-
tionality. A ROS package may contain ROS nodes,
a ROS-independent library, a data-set, configuration
files, third-party pieces of software, or anything else
that logically constitutes a useful module.

ROS programs running on multiple computers can
communicate over a network. This allows easy integra-
tion of software applications, packages, and drivers for
robot kinematics visualization, data sharing, path plan-
ning, control, etc [47]. Further, ROS is multi-lingual,
allowing users to develop different parts of the code
with different languages including C++, Python, MAT-
LAB, Java, etc [40].

2.4. Unified Model Language

First proposed by the Object Management Group
(OMG) in 1997, Unified Modeling Language (UML) is
a standard language which is basically used for speci-
fying, visualizing, constructing, and documenting soft-
ware systems using pictorial languages [48,49]. UML
provides multiple diagrams which are used for model-
ing a system in several levels of abstractions. UML di-
agrams are basically classified as behavioral and struc-
tural diagrams. Behavioral diagrams describe a sys-
tem using activity, interaction, state flow, and use case
diagrams. On the other hand, structural diagrams de-
scribe a system using class, composite structure, de-
ployment, object, component, profile as well as pack-
age diagrams [49, 50].

UML by itself is not a programming language. How-
ever, it is highly used to conceptualize and struc-
ture computer codes using object-oriented design ap-
proaches. The object-oriented design uses objects as
building blocks of a system. Objects may contain data,
referred to as an attribute, and a logic sequence, which
is referred to as an operation or method. The state and
behavior of an object are defined and modeled within
a class. This paper models FLC processes in an object-
oriented approach using UML.

3. DEVELOPING FLC-ROS

In this section, we will discuss FLC ROS pack-
age’s use cases, development architecture, configu-
ration techniques as well as algorithms that enable
MIMO FLC operations.

3.0.1. FLS Library Use Case

The interactions between FLC ROS package, the
controlled system, and the FLC application develop-
ers are illustrated using the use case diagram shown in
Fig. 5.

In order to develop an FLC application using the de-
veloped FLC-ROS package, initially, users should con-
figure the FLS package in accordance with the spec-
ification of the application that they have developed
and build the ROS workspace. The developed FLC-
ROS package performs fuzzification and inference as
well as defuzzification operations for type-1 and inter-
val type-2 FLCs. The controlled system may be a robot
or any device for which the control inputs and outputs
will be the inputs and outputs of the FLC, respectively.

3.1. FLC-ROS Configuration Structure

The developed FLC ROS package can be config-
ured for MIMO fuzzy logic control applications us-
ing the structure presented in Fig. 6. Basic parameters
of the FLC constitute the system’s name, type, infer-
ence mechanism, number of inputs, number of outputs,
rules, and so on. Each input and output has its own
name and range as well as membership functions. Fur-
ther, each membership function has its own linguis-
tic parameter (name), range, and numeric parameters
defining its shape. If the TSK inference technique is
employed, rule consequent coefficients should be de-
fined in the form of simple or type-1 coefficients. Rules
are configured having linguistic antecedents, conse-
quents, and inference logic, which could be combined
using “and” or “or” operators.

Configuration is performed offline by using a cross-
platform GUI or manually by editing a configuration
file which is based on an extensible markup language
(XML) format. The main window of the developed
GUI is shown in Fig. 7. This main window enables the
definition of basic parameters such as the FLC type,

8 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

Configure FLS Library
Write System Firmware
Build System Firmware

FLC Developer

Upload System Firmware

[

<<actor>>

Run System Firmware
Controlled System o

|

<<Include>>

Controlled System's Firmware Development

—i Perform Fuzzification

<<Include>> .-~

- Perform FLS Operations ™)- - - - - - - - - - - - - “>(Perform Inference
.. <<Include>>

<<Include>> “(Perform Defuzzification

Fig. 5. FLC ROS package’s use case diagram.

Table 1
Parameters of FLC ROS package MFs

Shape of MF | Triangular | Trapezoidal Gaussian Triangular-IT2 | Trapezoidal-1T2 Gaussian-1T2
P1 Left edge Left edge Mean LMF left edge LMF left edge Mean-1

P2 Center Center left edge | Standard deviation | LMF center edge | LMF center left edge | Mean-2

P3 Right edge | Center right edge | Unused LMF right edge | LMF center right edge | Standard deviation
P4 Unused Right edge Unused UMF left edge LMF right edge Unused

P5 Unused Unused Unused UMF center edge | UMF left edge Unused

P6 Unused Unused Unused UMF right edge | UMF center left edge | Unused

P7 Unused Unused Unused Unused UMF center right edge | Unused

P8 Unused Unused Unused Unused UMF right edge Unused

inference method, aggregation method, and defuzzi-
fication method. Further, multiple GUI windows (not
shown on the paper but are available on the publicly-
made-available GitHub page) allow FLC developers
to easily define or modify the input/output parameters
and membership functions.

The membership function shapes that are supported
by the developed ROS package are Triangular, Trape-
zoidal, and Gaussian. Each interval type-2 MF is de-
fined using its upper and lower membership func-
tions which could be Triangular, Trapezoidal, or Gaus-
sian MFs. For configuration, the nth membership
function is defined as MF* =< Name >, < Shape >,
< P1,P2,...P8,Maximum >, where n is ranging from
1,--- k, and P1 — P8 are parameters used to define

different edges and properties of type-1 and type-2
membership functions (See Table 1 for details).
The /th rule is structured as follows:

R’ =< Antecedent >, < Consequent >,
< Inference logic >, < TSKCoefficients >

where /¢ is ranging from 1, --- ,m.

A saved configuration file can be uploaded to the de-
veloped FLC ROS package, enabling the reuse of de-
sign across multiple applications or implementations.

3.2. FLC ROS package Classes

The FLC ROS package is developed using an
object-oriented approach. In this case, with the pur-
pose of making the package suitable for real-time con-
trol applications, FLC ROS is developed in C++. As

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 9

Mamdani l
Output(s)
MF
.
&
Input(s) IT2UMFGs) | =
(o |
e 7
=
-
T Type-1 ME(s)
I []| =1
T [ot |
Name Output(s)
FLS Tvpe l
Inference
Mechanism TSK Output(s)
And Method [Name | IT-2LMFi(s)
Type-l1TSK Name
e
Input(s) Parameters Type |—
IT-2TSK I—I
‘Output(s) c i Parameters
< Parameters
Aggregation
Method
—= IT-2UME(s)
Implication Rule(s)
Method Name
» A d)
Cutpnt Type -
oy (e]
Method
S
-
C :
Logic

Fig. 6. Configuration structure of the developed FLC ROS package.

| FLS Library
FLSName FLC_1

) Type-1 @ TSK

@ Interval Type-2 ~) Mamdani

ACCESS Laboratory

[-]

Mumber of Inputs 2 % And Method
Number of Qutputs 1 + Or Method =
Mumber of Rules 9 | Agg. Method i

Qutput Processing Method Implication Method @

\ Add Inputs | [Add Outputs Add Rules]

North Carolina A &7 State University] l Cancel |

Fig. 7. The main window of the developed GUI

shown in Fig. 8, the developed ROS package has a
parent class named flslib, which is composed of
other classes including fuzzify, inference, and
defuzzify. Class flslib has a method, named
perform_fls, which is responsible for performing
operations of fuzzification, inference, and defuzzifi-

cation for both type-1 and IT-2 FLCs. This architec-
ture allows FLC application developers to instantiate
multiple objects having different configurations, facil-
itating the development of multiple FLCs in a single
ROS application. Additionally, defining memberships,
fuzzification, inference, and defuzzification as separate
classes enable the development of customized FLC ar-
chitectures through independent implementation and
integration of fuzzy logic operations.

Algorithm 1 Membership Value Calculation
Input: Crisp input, Input MF parameters
Output: Membership value

Begin Procedure

1: Read Crisp input and parameters
2: Calculate membership value
3: Return membership value

End Procedure

Algorithm 2 Fuzzification
Input: Configuration, Crisp inputs
Output: Input fuzzy set(s)

Begin Procedure

1: Get crisp inputs;

2: Get configuration;

3. ifFLC is type-1then

4: for all crisp inputsdo

5: for all MFs of the inputdo

6: Identify the shape of the MF;
7. Calculate the membership

value;

8: Store the fuzzified input;

9: end for

10: end for

11: else > FLC is IT-2

12: for all crisp inputsdo

13: for all upper and lower IT-2 MFs
of the inputdo

14: Identify the shape of the MF;

15: Calculate the membership
value;

16: Store the fuzzified input;

17: end for

18: end for

19: end if

20: Return the input fuzzy set(s);
End Procedure

10 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

typel_MFs

-_positive_slope : double
-_negative_slope : double
-_membership_value : double

+_gaussian_mf(input : double, p1 : double, p2 : double) : double
+_triangular_mf(input : double, p1 : double, p2 : double, p3 : double, max : double) : double

1 l-\Tz,MembershipValue

interval_type2_MFs
-_positive_slope : double
-_negative_slope : double
-_membership_values : vector<double>

+_it2_gaussian2_mf(input : double, p1 : double, p2 : double, p3 : double) : vector<double>

-IT2_MembershipValug

-IT2_MembershipValue

+_trapezoidal_mf(input : double, p1 : double, p2 : double, p3 : double, p4 : double, max : double) : double

-T1_MembershipValue -T1_MembershipValue

1

¢

-_firing_levels : vector<vector<double>>
~_inference_table : vector<vector<double>>
~_output_fuzzy_set : vector<vector<double>>

+_firingLevels(_fuzzified_value : double>>, _ struct8,) © doubl
+_type1_mamdani_f (firingLevel : double>>, _configuration : struct&) : vector<vector<double>>
+_type1_TSK ing(_firingLevel : double>>, _configuration : struct&) : vector<vector<double>>

defuzzify

-_fuzzified_values : vector<vector<double>>

+_it2_mamdani_processing(_firingLevel : double>>, _ : struct8,) : vector<vector<double>>
+_it2_TSK_processing(_fiingLevel : double>>, : struct8, : vector<vector<doubles>
infer | 1
1 ‘ f -yl : double
fuzzify -_yr : double

-_crisp_output : vector<double>

+_centroid(_output_fuzzy_set : vector<vector<double>>, _configuration : structg) : vector<double>

+_uncertainty_bounds(_inputs : vector<double>, _output_fuzzy_set : vector<vector<double>>,
+_NT(_output_fuzzy_set : vector<vector<double>>, _configuration : struct8,) : vector<double>

double>>, _¢ : structg) : vector<doubl

s structd,) © double>

-defuzzifyFuzzySets | 1

+_fuzzify(_inputs : double>, ¢ : struct8,) doubl .
+_weighted_average(_inputs : vector<double>, _output_fuzzy_set :
-fuzzifylnputs | 1
1
fislib
-_fuzzifiedVal : vector<vector<double>>
@ fiingLevel : doubl

-_output : vector<double>

+perform_fls(_inputs : vector<double>, _configuration : struct8,) : vector<double>

Fig. 8. UML Diagram of classes inside class flslib

3.2.1. Fuzzification

Fuzzification is a process to simply find the fuzzy
values corresponding to each crisp input, which can
be done using the membership functions. For this
purpose, in the developed FLC ROS package, Class
flslib contains the Class fuzzify that performs
fuzzification operations. Class fuzzify is composed
of other Classes for for different MFs including
typel_mfs and interval_type2_mfs. Operations
in these MF classes are used for calculating member-
ship values using Algorithm 1. Having a system with
multiple inputs and multiple outputs, Algorithm 2 in
Class fuzzify performs MIMO fuzzification. This
is achieved by an enumerative search over all inputs
based on the shape of the corresponding membership
function. For IT2 FLCs, the membership values will
be calculated for both the upper and lower MFs.

3.2.2. Inference

Based on the configured rules, execution method
of fuzzy logical operations and implication method,
as well as the aggregation method, the inference pro-
cess maps all input fuzzy sets to their respective output
fuzzy sets. For each rule, the inference process initially
calculates the associated firing levels. To make the out-
put FSs suitable for the Mamdani defuzzification, the

implication operation is performed for each rule out-
put while the aggregation operation is performed for
each FLC output. As shown in Fig. 8, the developed
ROS package is composed of Class inference, ca-
pable of performing MIMO inference operations. This
class is composed of other classes of type-1 and IT-
2 MFs that are used for performing implication and
aggregation operations. The developed algorithm for
performing generic MIMO inference operations is de-
scribed in Algorithm 3. By instantiating objects of
Class inference, FLC application developers can
perform the inference process independently, if they
prefer to perform other processes (such as fuzzifica-
tion and defuzzification) using a different method not
supported by the developed ROS package.

3.2.3. Output Processing

The final step in an FLC process is output process-
ing. The output processing of type-1 FLCs involves
only defuzzification. However, the output processing
of IT-2 FLCs involves type reduction followed by de-
fuzzification. Class defuzzify is composed of oper-
ations which perform several kinds of type-reductions
and defuzzifications, in accordance with the configura-
tion set by the user. This enables application develop-
ers to customize FLC operations, if they prefer to per-

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 11

Algorithm 3 Inference

Input: Configuration, crisp inputs, fuzzified inputs, rules
Output: Output fuzzy set(s)

Begin Procedure

1: Get the fuzzified input;

2: Get configuration;

3: if FLC type is type-—1then

4: Compute the firing level of rules;

5: if Inference is Mamdani then

6: for all outputsdo

7. Perform implication on the
consequent fuzzy sets;

8: Perform aggregation to get
the type-1 output fuzzy set;

9: end for

10: else > FLC is type-1 TSK

11: for all outputsdo

12: Compute the TSK rule outputs
and get the output fuzzy set;

13: end for

14: end if

15: else > FLC is IT-2

16: Compute the firing level for the

upper and lower bounds of the
antecedent fuzzy sets of rules;

17: if Inference is Mamdani then
18: for all outputsdo
19: Perform implication on the

upper and lower bounds of the
consequent fuzzy sets;

20: Perform aggregation on the
upper and lower bounds of the
consequent fuzzy sets to get the
output fuzzy set;

21: end for

22: else > FLCis IT-2 TSK

23: for all outputsdo

24: Compute the inner TSK
uncertainty bounds (y; and Yr);

25: Compute the outer TSK
uncertainty bounds (y; and VYr);

26: Compute the u?)per and lower

bounds for the TSK output output
fuzzy set (yi and yr);

27: end for
28: end if
29: end if

30: Return the output fuzzy set;

End Procedure

form other processes (fuzzification and inference) us-
ing methods not presently supported by the developed
FLC ROS package.

In the developed ROS package, for all outputs, type-
1 Mamdani FLCs are defuzzified using the centroid
defuzzification technique while type-1 TSK FLCs are
defuzzified using the weighted average defuzzification
technique. Algorithm 4 implements the type-1 TSK
FLC defuzzification. To obtain a crisp value of IT-2
Mamdani FLSs, for all outputs, the developed ROS
package performs Nie-Tan type reduction on the out-
put fuzzy set followed by an I'T-2 defuzzification. If the
configured FLC is IT-2 TSK FLS, uncertainty bounds
output processing technique is used (See Sections 2.1
and 2.2 for details). As shown in Fig. 8, for assist-
ing output processing of user-defined fuzzy sets, Class
defuzzify is composed of other classes of type-1 and
IT-2 MFs. Described in Algorithm 5 is the output pro-
cessing for interval type-2 TSK FLCs.

Algorithm 4 Type-1 TSK Defuzzification

Input: Configuration, crisp inputs, rule firing levels, rule
output coefficients

Output: Crisp outputs

Begin Procedure

I: Read configuration, inputs, rule
firing levels and rule output
coefficients;

: for all outputsdo

for all rulesdo

4: Compute the corresponding rule

output;

5: end for

6: Compute the crisp output using

weighted average method;

7: store the crisp output;

8: end for

9: Return crisp outputs;

w o

End Procedure

3.2.4. Putting it all Together

The developed FLC ROS package performs FLC
operations (fuzzification, inference, and defuzzifica-
tion) for type-1 and IT-2 FLSs using the methodology
presented in Algorithm 6. The source code of the de-
veloped package and relevant configuration examples
are available on Github at https://github.
com/ACCESSLab/ros-fuzzy-1library.

12 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

Algorithm 5 Interval type-2 TSK output Processing

Input: Configuration, crisp inputs, fuzzified upper and

lower bound set, rule firing levels, rule output bounds

Output: Crisp outputs

Begin Procedure

1: for all outputsdo

2: Compute the inner uncertainty
bounds (y; and yr) using Equations (12)
and (13); o

3: Compute the outer uncertainty
bounds (y1 and y,) using Equations (18)
and (19);

4: Compute the upper and lower bounds
for the output signal (y; and yr)
using Equations (20) and (21);

5: Compute the crisp output y using
(22);

6: Store the the crisp output y;

7: end for

8: Return crisp outputs;

End Procedure

Algorithm 6 FLC ROS package Operations
Input: Crisp Inputs

Output: Crisp Outputs

Begin Procedure

1: Get configuration;
2: while perform_FLC = true do
3: Get crisp inputs;

4: Perform fuzzification;
5: Perform inference;

6: Perform defuzzification;
7: Return crisp outputs;

8: end while

End Procedure

4. USE CASE: EMPLOYING THE
DEVELOPED FLC PACKAGE FOR THE UAV
ALTITUDE CONTROL

To evaluate the effectiveness of the developed ROS
package, we configured the package to construct an I'T-
2 TSK fuzzy logic controller for the altitude control of
a quadcopter UAV, simulated in Gazebo STIL simula-
tion environment. The closed-loop controlled structure
of the quadcopter UAV is based on Fig. 9.

The IT-2 TSK FLC takes two inputs and produces
one control output. The inputs are the altitude error,
Zerr, and its derivative, ZCT.,., whereas the control out-
put is the throttle level. In general, the membership

functions and rule-base of FLC can be designed and
tuned experimentally based on the prior knowledge
about the system and conducting a trial-and-error ap-
proach, or they can be found via different techniques
based on optimization (e.g., genetic algorithm [51],
simulated annealing [52], or tabu search [53]), learn-
ing [54], or clustering [55]. Either way, the developed
ROS package can be employed for the implementation
of the designed FLC regardless of the design approach.
In this case-study, we designed the membership func-
tions and rule-base of the FLC experimentally and se-
lected the input IT-2 MFs of the TSK FLC as shown in
Figures 10(a) and 10(b). The rule-base of the FLC is
stated in Table 2. For example,

R IF Zerr is L and Zerr is0
THEN yis ML (23)

The output uncertainties of the first-order TSK FLC
coefficients (Z,,,. and Zerr) are stated in Table 3. For

example, for the rule in Equation 24, the output will
be:

y=a Zerr + CQZerr (24)

where the upper and lower bounds of coefficients c;
and ¢y are given in the third row of Table 3.

The output processing unit for developing the FLC
uses uncertainty bounds aggregation method, described
in Section 2.2. Presented in Fig. 11 is the UAV FLC de-
velopment process in ROS using the developed pack-
age described in Section 3. Initially, the FLC parame-
ters are configured using the provided GUI. Following
this, an object with the configured properties is instan-
tiated to perform UAV FLC operations in ROS. Fig.
12 shows the sequence diagram which describes how
FLC ROS package operations interact for performing
fuzzification, inference, and defuzification operations
at every control time-step.

The control simulation results are shown in Figures
13(a) and 13(b). These results are also compared with
that of a classical PD controller. For making the com-
parison fair, the gains of the PD controller were set
at the centers of the output uncertainty of the imple-
mented IT-2 TSK FLC as follows:

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

13

Crisp

Input

Z err, Z_err}

A — -

Output Processin, Throttle

Normalization

Denormalization

[

1 3DR IRIS Quadcopter UAV !
Sensors %= Ax 4 Bu % Actuator]
y=Cx+Du
Fig. 9. Interval type-2 TSK UAV altitude control structure.
fu 0 H by 0 P
T 08 06 94 92 0 02 07 05 08 1 Lerr(m) a4 a5 0 s 115 1Zer(my
(a) (b)

Fig. 10. (a) Membership functions of Zerr, (b) Membership functions of Z'errl

FiSNeme ALC_1
Type-1 © T
© Interval Type-2 Birendn ACCESS Laboratory
Nmberofirous Sy [—)
Nmber of Outputs 1 +| or Method ax. %
Number of Rues B + agg. Method
e) [1an =
(Add Inputs] [Add Outputs (Add Rues]
Nort Carina A 87 State Uversty =)

#include “ros/ros.h"
#include <vector>
#include “fls.h"

int main() {
//Subscribe for altitude data from PX4flow
//Subscribe to PX4 Modes
//Advertize to publish throttle value
fls -fuz;
double Z, Zref, Zerr, Zerr_dot;
vector<double> input = {Zerr, Zdot};
vector<double> output = {};
while(ros::ok()){

output = fuz.runfuzzy(input);

ros::spinOnce();
pub_thr.publish(output[@]);
rate.sleep();

¥

return 0;

Fig. 11. Example steps for UAV control using FLC ROS package and Gazebo SITL simulator.

Table 2 Table 3
Rule Base for the IT-2 TSK FLC for the attitude control of the UAV Rule coefficient bounds
Zerr Rule Rule Output o o
. ‘1 €1 2 €2
L 0 H Number | Coefficient Label | — =
~
. 51N ML | MS 1 S 0.4 |045| 0.3 |0.35
N 2 MS 05| 06|03][035
0 |ML)S ML 3 ML 0.5 | 0.6 | 045 | 0.5
P|MS|ML|L : - - .
4 L 0.65 | 0.7 | 0.55| 0.6

Y = 0.55Zery + 0.45Z 0,y

From the simulation results, it can be observed that
the interval type-2 TSK FLC has successfully con-

(25)
trolled the altitude of the UAV with a smaller overshoot

and faster settling time compared to the classical PD
controller.

14 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

I UAV_1: UAV ‘ l ROS : UAV_Software_Node J lFLs_Ros:qsﬁh ‘

Fuzzifier : fuzzify ‘

l Inference : inference Defuzzifier : defuzzify

UAV Pilot | |
timisson) | |
I
Teop
Iwhile(UAV == 0m)] 1 1. intialize ()
[toop,
[twhileAV == armed))
1114 updateSensorData() 11011 prtorm_is_inputs sias):
1.4.4.1.1.1: _fuzzify(_inputs : veclor<double>, _ structa)
1.141.1.8:_112_TSK_prosessing_ringLevel s suucis)
: | L]
1114 retum ulpu Fuzzy Sets
——————— i :1
Tiarts niy_boundsinpus , _output_tuzzy_set e sas)
T e Uaie
[RRRP v | D _ o J
1.1.1.0.3 publhContolacion()
i T
i |
2: turnoff() I ! !
U | i |
i i | i
Fig. 12. UML sequence diagram of FLC execution using the developed FLC ROS package.
Z (m) {’—I;;ZCFLtC - Control action
7 on l;eter (% of throttle) IT-2 FLC
Point 100 PD Controller|
0.5
01 By b
AT AY hints ol e A bt bl |
j T,'l o ai ‘~ T w[AR e
time (s, ¢ v time (s)
3 g et 0 3 T PG

(a)

(b)

Fig. 13. (a) UAV altitude using IT-2 TSK and PD controllers, (b) UAV control signal using IT-2 TSK and PD controllers.

5. CONCLUSION

This paper developed a reconfigurable FLC ROS
package using an object-oriented approach and UML.
For this purpose, we developed an implementation
architecture, configuration technique, and algorithms
that enable easier implementation of generic and con-
figurable MIMO FLCs for ROS control applications.
The software architectures and algorithms of the de-
veloped FLC ROS package were realized using C++
programming language. Further, possible use cases of
the FLC ROS package for developing MIMO type-
1 and interval type-2 were explained. The developed
FLC ROS package allows the user to configure the
control structure to use Mamdani or TSK fuzzy infer-
ence mechanisms. Further, to enhance the computation
cost for real-time control applications, the developed
FLC ROS package allows for adopting the uncertainty
bounds and Nie-Tan output processing techniques. A

user-friendly graphical user interface was developed to
facilitate the configuration of MIMO fuzzy logic con-
trol parameters such as number of inputs, number of
outputs, rules, membership functions, inference meth-
ods, type reduction, and defuzzification. The effective-
ness of the developed package was demonstrated by
applying to the altitude control of a quadcopter UAV
in Gazebo simulation environment. The simulation re-
sults were then compared with a PD controller. The
results have shown that the developed ROS package
can actually assist in realizing ROS-based fuzzy logic
control applications. Inspired by the work in [56,57],
one of the research directions that we will pursue is to
enhance the developed tool for the implementation of
adaptive and fault tolerant fuzzy control systems. Our
focus in this paper was on type-1 and interval type-2
FLCs with Mamdani or TSK inferences. Following the
same procedure, the developed tool will be extended
to other FLC types and inferences.

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 15

Acknowledgment

This work is supported by National Science Founda-
tion under the award number 1832110 and 2000320 as
well as the Air Force Research Laboratory and Office

of the Secretary of Defense under agreement number
FA8750-15-2-0116.

References

(1]

(2]

(3]

[4

—_

[5

—_

(6]

[7

—

[8

—_—

[91

[10]

[11]

E. Wolfgang, Introduction to artificial intelligence, Springer,
Cham, 2019. doi:10.1007/978-3-319-58487-4.

M. Rodd, H. Verbruggen, A. Krijgsman, Artificial intelligence
in real-time control, Engineering Applications of Artificial
Intelligence 5 (5) (1992) 385-399. doi:https://doi.

0rg/10.1016/0952-1976(92)90010~-H.

J. L. Castro, Fuzzy logic controllers are universal approxima-
tors, IEEE Transactions on Systems, Man, and Cybernetics
25 (4) (1995) 629-635. do1:10.1109/21.370193.

S. Ramyar, A. Homaifar, A. Anzagira, A. Karimoddini, S. Am-
salu, A. Kurt, Fuzzy modeling of drivers’ actions at intersec-
tions, in: 2016 World Automation Congress (WAC), 2016, pp.
1-6. doi:10.1109/WAC.2016.7582966.

L. A. Zadeh, Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes, IEEE Transactions
on Systems, Man, and Cybernetics SMC-3 (1) (1973) 28-44.
doi:10.1109/TSMC.1973.5408575.

D. Dubois, H. Prade, L. Ughetto, Fuzzy Logic, Control
Engineering and Artificial Intelligence, Springer Nether-
lands, Dordrecht, 1999, pp. 17-57. doi:10.1007/
978-94-011-4405-6_2.

L. Zadeh, The concept of a linguistic variable and its ap-
plication to approximate reasoning—II, Information Sciences
8 (4) (1975) 301-357. doi:10.1016/0020-0255(75)

90046-8.

J. Mendel, R. John, Type-2 fuzzy sets made simple, IEEE
Transactions on Fuzzy Systems 10 (2) (2002) 117-127. doi:

10.1109/91.995115.

J. M. Mendel, R. I. John, F. Liu, Interval type-2 fuzzy logic sys-
tems made simple, IEEE Transactions on Fuzzy Systems 14 (6)
(2006) 808-821. doi:10.1109/TFUZZ.2006.879986.

A. Hailemichael, S. M. Salaken, A. Karimoddini, A. Homai-
far, K. Abbas, S. Nahavandi, Developing a computationally ef-
fective interval type-2 tsk fuzzy logic controller, Journal of In-
telligent & Fuzzy Systems 38 (2) (2020) 1915-1928. doi:

10.3233/JIFS-190446.

M. Biglarbegian, W. W. Melek, J. M. Mendel, Design of novel
interval type-2 fuzzy controllers for modular and reconfig-
urable robots: Theory and experiments, IEEE Transactions on
Industrial Electronics 58 (4) (2011) 1371-1384. doi:10.

1109/TIE.2010.2049718.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

D. Wu, W. Tan, A type-2 fuzzy logic controller for the liquid-
level process, in: IEEE International Conference on Fuzzy Sys-
tems, Vol. 2, 2004, pp. 953-958 vol.2. doi:10.1109/
FUZZY.2004.1375536.

A. Hailemichael, M. Behniapoor, A. Karimoddini, Develop-
ment of an Interval Type-2 TSK Fuzzy Logic Attitude Con-
troller for a UAV, in: 2018 International Conference on Un-
manned Aircraft Systems (ICUAS), 2018, pp. 1003-1009.
doi:10.1109/ICUAS.2018.8453330.

C. Wen, Z. Hui, L. Tao, L. Yuling, Intelligent traffic signal con-
troller based on type-2 fuzzy logic and nsgaii, Journal of In-
telligent & Fuzzy Systems 29 (6) (2015) 2611-2618. doi:
10.3233/IFS-151964.

B. Safarinejadian, B. Bagheri, P. Ghane, Fault detection in non-
linear systems based on type-2 fuzzy sets and bat optimiza-
tion algorithm, Journal of Intelligent & Fuzzy Systems 28 (1)
(2015) 179-187. doi1:10.3233/IFS-141288.

Z. Wang, S. Ramyar, S. M. Salaken, A. Homaifar, S. Na-
havandi, A. Karimoddini, A collision avoidance system with
fuzzy danger level detection, in: 2017 IEEE Intelligent Vehi-
cles Symposium (IV), 2017, pp. 283-288. doi:10.1109/
IVS.2017.7995733.

A. Davari, M. Hamiruce Marhaban, S. Bahari Mohd Noor,
M. Karimadini, A. Karimoddini, Parameter estimation of
k-distributed sea clutter based on fuzzy inference and
gustafson—kessel clustering, Fuzzy Sets and Systems 163 (1)
(2011) 45-53, theme: Classification and Modelling. doi :
10.1016/3.£ss.2010.09.008.

S. Ramyar, M. G. Sefidmazgi, S. Amsalu, A. Anzagira,
A. Homaifar, A. Karimoddini, A. Kurt, Modeling driver behav-
ior at intersections with takagi-sugeno fuzzy models, in: 2015
IEEE 18th International Conference on Intelligent Transporta-
tion Systems, 2015, pp. 2378-2383. doi:10.1109/ITSC.
2015.384.

A. Homaifar, A. Karimoddini, M. Heiges, M. A. Khan, B. A.
Erol, S. Nazmi, A software tool for evaluating unmanned au-
tonomous systems, The ITEA Journal of Test and Evaluation
41 (3) (2020) 188-195.

A. Karimoddini, S. Grebreyohannes, A. Homaifar, Automatic
testing tool for testing autonomous systems, US Patent App.
17/148,909 (Aug. 5 2021).

P. Ejegwa, S. Wen, Y. Feng, W. Zhang, N. Tang, Novel
pythagorean fuzzy correlation measures via pythagorean fuzzy
deviation, variance and covariance with applications to pattern
recognition and career placement, IEEE Transactions on Fuzzy
Systems (2021). doi:10.1109/TFUZZ.2021.3063794.
S. Gebreyohannes, A. Karimoddini, A. Homaifar, A. Es-
terline, Formal verification of a fuzzy rule-based classifier
using the prototype verification system, in: G. A. Barreto,
R. Coelho (Eds.), Fuzzy Information Processing, Springer In-
ternational Publishing, Cham, 2018, pp. 1-12. doi:10.
1007/978-3-319-95312-0_1.

S. Greenfield, Type-2 fuzzy logic: Circumventing the defuzzi-

16 A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers

fication bottleneck, De Montfort University, PhD dissertation,
2012.

[24] J. Boren, S. Cousins, Exponential Growth of ROS, IEEE
Robotics Automation Magazine 18 (1) (2011) 19-20. doi:
10.1109/MRA.2010.940147.

[25] P. Estefo, J. Simmonds, R. Robbes, J. Fabry, The robot oper-
ating system: Package reuse and community dynamics, Jour-
nal of Systems and Software 151 (2019) 226-242. doi:
10.1016/3.3ss.2019.02.024.

[26] L. Garber, Robot os: A new day for robot design, Computer
46 (12) (2013) 16-20. doi:10.1109/MC.2013.434.

[27] L. Peppoloni, F. Brizzi, C. A. Avizzano, E. Ruffaldi, Immersive
ROS-integrated framework for robot teleoperation, in: 2015
IEEE Symposium on 3D User Interfaces (3DUI), 2015, pp.
177-178. doi:10.1109/3DUI.2015.7131758.

[28] D. G. Schneider, L. Lima da Silva, P. Diehl, A. H. R.
Leite, G. S. Bastos, Robot Navigation by Gesture Recogni-
tion with ROS and Kinect, in: 2015 12th Latin American
Robotics Symposium and 2015 3rd Brazilian Symposium on
Robotics (LARS-SBR), 2015, pp. 145-150. doi:10.1109/
LARS-SBR.2015.21.

[29] Y. Chen, X. Wang, S. Hong, X. Zhong, C. Zou, Motion plan-
ning implemented in ROS for mobile robot, in: 2017 29th Chi-
nese Control And Decision Conference (CCDC), 2017, pp.
7149-7154. doi1:10.1109/CCDC.2017.7978473.

[30] A. Koubaa, Robot Operating System (ROS) The Complete
Reference (Volume 2), Springer, 2017. doi:10.1007/
978-3-319-54927-9.

[31] M. Costa de Oliveira, M. Rocha Facury, Writing fuzzy rules
directly in a C++ source code, in: Proceedings of IEEE 5th
International Fuzzy Systems, Vol. 1, 1996, pp. 522-528 vol.1.
doi:10.1109/FUZZY.1996.551795.

[32] H. Wu, J. Mendel, Uncertainty bounds and their use in the
design of interval type-2 fuzzy logic systems, IEEE Trans-
actions on Fuzzy Systems 10 (5) (2002) 622-639. doi:
10.1109/TFUZZ.2002.803496.

[33] N. Enyinna, A. Karimoddini, D. Opoku, A. Homaifar,
S. Arnold, Developing an interval type-2 tsk fuzzy logic
controller, in: 2015 Annual Conference of the North Amer-
ican Fuzzy Information Processing Society (NAFIPS) held
jointly with 2015 Sth World Conference on Soft Com-
puting (WConSC), 2015, pp. 1-6. doi:10.1109/
NAFIPS-WConSC.2015.7284160.

[34] M. Nie, W. W. Tan, Towards an efficient type-reduction method
for interval type-2 fuzzy logic systems, in: 2008 IEEE Inter-
national Conference on Fuzzy Systems (IEEE World Congress
on Computational Intelligence), 2008, pp. 1425-1432. doi:
10.1109/FUZZY.2008.46305509.

[35] E. Mamdani, S. Assilian, An experiment in linguistic synthe-
sis with a fuzzy logic controller, International Journal of Man-
Machine Studies 7 (1) (1975) 1-13. doi:https://doi.
org/10.1016/50020-7373(75)80002-2.

[36] P. Martin Larsen, Industrial applications of fuzzy logic con-

trol, Vol. 12, 1980. doi:https://doi.org/10.1016/
S0020-7373(80)80050-2.

[37] T. Takagi, M. Sugeno, Fuzzy identification of systems and its
applications to modeling and control, IEEE Transactions on
Systems, Man, and Cybernetics SMC-15 (1) (1985) 116-132.
doi:10.1109/TSMC.1985.6313399.

[38] J. M. Mendel, Uncertain rule-based fuzzy logic system: intro-
duction and new directions, Prentice—Hall PTR, 2001. doi :
10.1007/978-3-319-51370-6.

[39] N. Karnik, J. Mendel, Applications of type-2 fuzzy logic
systems: handling the uncertainty associated with surveys
3 (1999) 1546-1551. doi1:10.1109/FUZZY.1999.
790134.

[40] J. M. Mendel, General type-2 fuzzy logic systems made
simple: A tutorial, IEEE Transactions on Fuzzy Systems
22 (5) (2014) 1162-1182. doi:10.1109/TFUZZ.2013.
2286414.

[41] H. Hagras, Type-2 FLCs: A New Generation of Fuzzy Con-
trollers, IEEE Computational Intelligence Magazine 2 (1)
(2007) 3043. doi1:10.1109/MCI.2007.357192.

[42] J. M. Mendel, F. Liu, D. Zhai, a-plane representation for type-
2 fuzzy sets: Theory and applications, IEEE Transactions on
Fuzzy Systems 17 (5) (2009) 1189-1207. doi:10.1109/
TFUZZ.2009.2024411.

[43] H. Hamrawi, S. Coupland, R. John, Type-2 Fuzzy Alpha-Cuts,
IEEE Transactions on Fuzzy Systems 25 (3) (2017) 682-692.
doi:10.1109/TFUZZ.2016.2574914.

[44] D. Wu, On the Fundamental Differences Between Interval
Type-2 and Type-1 Fuzzy Logic Controllers, IEEE Transac-
tions on Fuzzy Systems 20 (5) (2012) 832-848. doi:10.
1109/TFUZZ.2012.2186818.

[45] J. Li, R. John, S. Coupland, G. Kendall, On nie-tan operator
and type-reduction of interval type-2 fuzzy sets, IEEE Trans-
actions on Fuzzy Systems 26 (2) (2018) 1036-1039. doi:
10.1109/TFUZZ.2017.2666842.

[46] J. Kerr, K. Nickels, Robot operating systems: Bridging the gap
between human and robot, in: Proceedings of the 2012 44th
Southeastern Symposium on System Theory (SSST), 2012, pp.
99-104. doi:10.1109/SSST.2012.6195127.

[47] B. Dieber, S. Kacianka, S. Rass, P. Schartner, Application-
level security for ROS-based applications, in: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 4477-4482. doi:10.1109/IROS.
2016.77596509.

[48] G. B. J. Rumbaugh, I. Jacobson, The unified modeling lan-
guage user guide, Addison Wesley (1998).

[49] N. G. N. D. Muhazam Mustapha, UML diagram for
design patterns, ICSECS (2011). doi:10.1007/
978-3-642-22203-0_19.

[50] M. N. Alanazi, Basic rules to build correct uml diagrams, in:
2009 International Conference on New Trends in Informa-
tion and Service Science, 2009, pp. 72-76. doi:10.1109/
NISS.2009.252.

[51]

[52]

[53]

[54]

A. Karimoddini et al. / FLC-ROS: A Generic and Configurable ROS Package for Developing Fuzzy Logic Controllers 17

Y.-S. Zhou, L.-Y. Lai, Optimal design for fuzzy controllers by
genetic algorithms, IEEE Transactions on Industry Applica-
tions 36 (1) (2000) 93-97. doi:10.1109/28.821802.

J. Garibaldi, E. Ifeachor, Application of simulated annealing
fuzzy model tuning to umbilical cord acid-base interpretation,
IEEE Transactions on Fuzzy Systems 7 (1) (1999) 72-84.
doi:10.1109/91.746314.

A. Bagis, Determining fuzzy membership functions with tabu
search—an application to control, Fuzzy Sets and Systems
139 (1) (2003) 209-225. doi:https://doi.org/10.
1016/50165-0114(02)00502-X

M. J. Er, C. Deng, Online tuning of fuzzy inference systems
using dynamic fuzzy q-learning, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B (Cybernetics) 34 (3) (2004)
1478-1489. doi1:10.1109/TSMCB.2004.825938.

[55]

[56]

[57]

A. Karimoddini, K. Salahshoor, A. Fatehi, M. Karimadini, A
new approach for online fuzzy identification by potential clus-
tering including rule reduction, in: 2007 European Control
Conference (ECC), 2007, pp. 747-754. doi:10.23919/
ECC.2007.7068445.

K. Sun, H. R. Karimi, J. Qiu, Finite-time fuzzy adaptive quan-
tized output feedback control of triangular structural systems,
Information Sciences 557 (2021) 153-169. doi:https:
//doi.org/10.1016/3.ins.2020.12.0509.

K. Sun, L. Liu, J. Qiu, G. Feng, Fuzzy adaptive finite-time
fault-tolerant control for strict-feedback nonlinear systems,
IEEE Transactions on Fuzzy Systems 29 (4) (2021) 786-796.
doi:10.1109/TFUZZ.2020.2965890.

