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This paper develops an automatic online Behavior Tree (BT) synthesis and execution technique to guide an
autonomous agent to accomplish a series of missions expressed in Fragmented-Linear Temporal Logic (F-LTL).
For this purpose, a novel top-down, divide-and-conquer method is developed to decompose the original F-LTL
formulas into simpler sub-formulas, followed by synthesizing the corresponding sub-BTs. Then, the safe and
reachable regions are calculated to identify the winning set for the sub-BTs and the associated winning paths.
If the computed winning set is non-empty, the sub-BTs are composed to form a coordinator whose execution
guarantees the satisfaction of the original F-LTL formulas. The correctness of the proposed method is proved.
Unlike most existing methods which manually design BTs and suffer from high computation cost, the proposed
method can automatically synthesize the BTs on-the-fly for F-LTL formulas with polynomial complexity in the
size of the formula and the environment. The developed method is applied to several scenarios with different
missions and sizes of the environment using a physics-based simulator. The simulation results demonstrate the
capability of the proposed method to handle missions described by F-LTL formulas and the scalability of the

approach in terms of the size of the environment.

1. Introduction

A fundamental challenge for coordination of autonomous systems
is to design a mission-driven controller to satisfy desired specifica-
tions. Conventional engineering practice is to employ a bottom-up
approach by designing a controller followed by testing and evaluating
it through an extensive set of simulations and experiments to identify
possible problems in the system, and then, redesigning the system to
fix the problems and satisfy the design requirements (Lee & Yannakakis,
1996). However, this trial-and-error approach with ad hoc requirement
refinement is costly and time consuming, and in the end, there is no
guarantee to achieve the desired performance.

On the contrary, top-down approaches aim to develop correct-by-
design controllers which provide a guaranteed performance against
desired specifications (Wu et al., 2015). A common specification-guided
top-down approach is to design coordinators to achieve high-level
specifications given in the form of a regular language (Feng & Wonham,
2008; Wang, Moor, & Li, 2020; Wang, Wang, & Li, 2020) or a Temporal
Logic formula (Camacho et al., 2018; Kloetzer & Mahulea, 2015; Raman
et al., 2015). The resulting coordinator is often an automaton which
produces sequences of high-level actions. The generated actions are
then executed by translating them to continuous motion primitives.

These methods, however, lack scalability due to the high computation
cost for large environments with a high number of partitions. More
importantly, these methods suffer from the lack of flexibility in the
sense that the specifications and the environment should be fully known
before designing the coordinator, and any change in the specification
may require redesigning the coordinator from the scratch.

In practice, however, a system may need to be involved in a set
of tasks, each described by high-level specifications that may be intro-
duced to the system as the mission is evolved, not necessarily before
the mission starts. In this case, the aforementioned offline methods for
designing the coordinators are not applicable to such a scenario. Re-
active temporal planning methods include receding-horizon GR(1) ap-
proach for controller synthesis (Maoz & Shevrin, 2020; Shamgah et al.,
2018; Wongpiromsarn et al., 2012), revising unsatisfied temporal logic
expressions (Fainekos, 2011; Guo et al., 2013), and counterexample-
guided supervisor synthesis (Lin & Hsiung, 2011; Wu & Lin, 2016)
may handle limited changes in the specification or the environment but
often at a high computation cost of controller synthesis.

Motivated by these challenges, we are interested in addressing the
problem of designing a computationally-effective and scalable coordi-
nator for an autonomous system to achieve a sequence of missions in
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the form of high-level specifications which are introduced to the system
on-the-fly, while respecting the safety requirements. As an example,
consider an Intelligence, Surveillance, Target Acquisition, and Recon-
naissance (ISTAR) mission in which a robot should search different
assigned areas to find targets and collect the required information,
while avoiding restricted zones and obstacles based on the terrain
information. Certainly, offline planning cannot be a solution for the
coordination of the robot for such a complex mission with random
arrival of tasks and their location. To address this problem, we propose
to employ Behavior Trees (BTs), which provide a hierarchical, modular,
and reactive task execution models (Agis et al., 2020; Colledanchise
& Ogren, 2017; Tovino et al., 2020; Kim et al., 2012). With BTs, it is
more convenient to manage, modify, and add tasks or subtasks due to
their modular and scalable structure. BTs have been applied for many
applications, including but not limited to robotic manipulation (French
et al, 2019), controlling an aerial vehicle (Scheper et al., 2016),
coordination of ground robots (Coronado et al., 2019), etc.

Despite the great capabilities of BTs, there are only a few works
in the literature about formal, systematic, and specification-driven
synthesis of BTs. Most existing results manually design BTs (Guerin
et al., 2015; Ruifeng et al., 2019). In Nicolau et al. (2017), a game
theory approach, in Dey and Child (2013) a Q-learning method, and
in Colledanchise et al. (2019) a reinforcement learning technique is
used for automatic synthesis of BTs. However, these methods lack proof
of guaranteed performance and are often applicable to simple specifi-
cations in the form of a single proposition such as reaching a particular
state or meeting a certain condition. In our earlier work (Tadewos
et al., 2019a, 2019b), we have shown a safe BT can be automatically
synthesized using Dynamic Differential logic (DL) by concatenating
a safe set of actions under the assumption that the completion of
each action meets the safety requirement of its successor action. This
condition is not practically feasible to meet and verify in many cases
such as the situations that require synthesizing a BT for an action with
a preposition that requires multiple sequences of actions. In Tumova
et al. (2014), a maximally satisfying LTL action planning framework is
proposed that utilizes BTs as a middle layer which interfaces the high-
level discrete planner with the low-level continuous controller. Given
a robot and a specification in the form of State/Event Linear Temporal
Logic (SE-LTL), this framework generates a high-level planner as a
weighted product automaton. However, using BTs as a middle layer
in conjunction with the generated product automaton increases the
computational complexity and challenges the scalability of this method.

To address these challenges, in this paper, we develop an automatic
BT synthesis and execution method to coordinate a robot to meet a
series of missions. We leverage the rich expressivity of Fragmented
Linear Temporal Logic (F-LTL) to capture mission requirements includ-
ing response/reactivity, safety, reachability, and recurrence (infinitely
often). The proposed approach is illustrated in Fig. 1. With a “divide-
and-conquer” strategy, we decompose the original F-LTL formulas into
simpler sub-formulas, for which we synthesize separate BTs. For each of
these BTs, we compute the safe and reachable sets, the intersection of
which form the winning set. In parallel, the paths to reach the winning
set will be calculated. If the winning set is not empty, these BTs can be
composed to realize the original F-LTL specification, which can serve
as a high-level planner to generate a sequence of actions as well as safe
paths to reach the winning set. In summary, the main contributions of
this paper are:

» Developing a top-down, correct-by-design, divide-and-conquer
approach for automatic online behavior tree synthesis and exe-
cution to coordinate a robot to meet a series of desired missions
described by F-LTL specifications.

» Computing a winning set for the synthesized BTs from which, we
can calculate a set of paths whose execution satisfies the missions
given in the form of F-LTL specifications.
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Fig. 1. The overview of the proposed method for BT synthesis and execution to satisfy
missions given in F-LTL.

» Proving the correctness of the proposed method along with the
analyzing the computational complexity of the developed algo-
rithms.

» Verifying the developed method via a physics-based robotic sim-
ulator for handling the assigned missions.

Compared to the manual approach for designing BTs in Guerin et al.
(2015), our proposed method synthesizes BTs automatically. Compared
to Al-based techniques in Colledanchise et al. (2019), Dey and Child
(2013), Nicolau et al. (2017), our approach guarantees that the execu-
tion of the synthesized BTs satisfies the desired specifications. Further,
unlike many existing approaches where synthesizing an action policy
from LTL specifications suffers from double-exponential or exponential
time complexity (Kloetzer & Mahulea, 2015; Pnueli & Rosner, 1989),
focusing on F-LTL formulas, the proposed method features polyno-
mial time complexity. The proposed method in Colledanchise et al.
(2017), synthesizes BTs by computing a value function, requirement
function, and constraint function for each formula to generate the
BT from F-LTL specifications. Specifically, the requirement function
in Colledanchise et al. (2017), is given as a transition rule, which is
then used to identify the actions that have to be performed by a BT as
middle layer. In comparison, our proposed method utilizes a uniform
BT synthesis algorithm to generate the sequence of actions to meet
a given specification, allowing for accommodation of more complex
missions. Further, our hierarchical approach allows the treatment of the
computation of the winning set and the synthesis of the BT separately.
The manageable computation cost and the adopted hierarchical and
“divide-and-conquer” approach explain the scalability of the proposed
method.

The rest of the paper is organized as follows. The background and
necessary preliminaries on behavior trees are provided in Section 2. In
Section 3, the problem to synthesize a BT from the F-LTL specification is
formulated. Section 4 describes our proposed approach for synthesizing
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the BTs and identifying the winning set in detail. Section 5 provides
the proof of correctness and complexity of the developed algorithms.
Section 6 applies the proposed method to a search, delivery, and
patrolling case study to illustrate the implementation of the developed
algorithms. Also, the computation time for different steps of the pro-
posed method and for different sizes of the environment are calculated.
Finally, Section 7 concludes the paper.

2. Preliminaries

This section provides the preliminaries and notations that are needed
for developing the proposed framework including BT formalism and
F-LTL syntax and semantics.

2.1. Behavior Tree (BT)

Behavior Tree (BT) is a graphical modeling language that executes
a task by controlling the decision making process of a robot to achieve
the desired goal. Structurally, a BT is a directed graph in which each
node represents either a leaf node or a composite node with the root
node at the top of the tree. A root node has no parent, a composite
node has both a parent and one or more child(ren), while a leaf node
has only a parent node.

Leaf nodes are terminal nodes with the ability to observe the
environment (condition nodes) or to act on the environment (action
nodes). A condition node returns either success or failure, by evaluating
the actual observations. An action node acts on the environment and
returns success if the action is completed, failure if the action is failed,
and running if the action is in progress.

Composite node organizes multiple nodes under a single parent to
achieve a unique behavior. For example, a sequence node is used to ex-
ecute its children nodes in sequence. A selector node is used to execute
its children nodes in order only if the previous nodes fail. A sequence
node returns success only if all the composed nodes return success,
otherwise it returns failure. On the other hand, a selector node returns
success as soon as one of its child nodes returns success, otherwise it
returns failure if all the composed nodes return failure. Both sequence
and selector nodes return running if one of their children nodes is in
progress. Figs. 2.a, 2.b, and 2.c show a pair of condition and action
composed by a selector node, a set of actions composed by a sequence
node, and a set of actions composed by a selector node, respectively.

The execution of a BT starts from the root node. Then, the root
node sends a tick (enabling signal) to its children such that nodes are
traversed from top to bottom and left to right. The tick flows from
parents to their child(ren) until a terminal node is reached. Then, the
terminal node is executed. Thus, with this process, the actions are
executed starting from the bottom left of the BT.

By the proper combination of leaf nodes (actions and condition
nodes), and composite nodes (sequence or selector nodes), a complex
BT structure can be modularly synthesized to effectively meet the goal
of a mission.

2.2. Finite state transition system

A transition system can describe discrete changes over the states of
a system and can be formally defined as:

Definition 1. A transition system is a tuple T.S = (S, %,5,S,, AP, L)
where S is a finite set of states, > is a finite set of actions, 6 is a
transition relation S x =~ — 25, S, is an initial state € S, AP is a set of
atomic propositions, and L is a mapping function L : § — 24P,

A run of TS is defined as a finite/infinite sequence of states ¢ =
Sg.S1.... where sg = Sy, s, € S and (s, s.41) € 6 for all &k > 0.
For the run o, a word w = L(sg), L(s}), ... is generated, where L(s;)
is a mapping function for the set of atomic propositions satisfied at
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Condition C1

a) Execution of action 1 based on C1

Action 1 Action n

Actionl

b) A sequence node

Action 1 Action n

¢) A selector node

Fig. 2. Building blocks of Behavior Trees.

state s,. From a state s € S the number of successors could be one
(deterministic, i.e. |6(s, X)| = 1) or more than one (non-deterministic,
ie., [6(s,%)] > 1). We assume the system under consideration is
non-blocking, i.e., |5(s, X)| > 1.

Given a system expressed as a transition system, we define the
operator Cpre(.) to facilitate the computation of the winning region as
follows:

Definition 2. Controlled predecessor C Pre(f) := {b € S | Ja s.t. 5(b,a)
= {f}}, where CPre(f) returns the set b that always reach state f for
action a.

2.3. Fragmented linear temporal logic (F-LTL)

To state the mission objective of an agent at a high level, we
employ F-LTL (Wolff et al., 2013) that can describe properties like safe
navigation, immediate response, coverage, and surveillance. While LTL
is a more expressive language, compared to the F-LTL (has a polynomial
complexity), the complexity of synthesizing a control policy is doubly-
exponential in the length of the system (Pnueli & Rosner, 1989). The
syntax and semantics of F-LTL are as follow:

P=Ps NPRADE A Dyp (@)
where
s = /\ Op
icly
¢x=/\ O = Op)
iely
dF = /\ Op;
ielp
bar = /\ Oop;
i€lyp

In the above definition p; is an atomic proposition under the control
of the system, ¢; is an atomic proposition controlled by the envi-
ronment, 1,, Ig, Iy, and I, are finite set of indexes. Here, the
sub-formulas [Jp; and {p; are assumed to describe reaching a des-
tination which can be achieved by proper motion planning over a
partitioned environment. Given a run ¢ = (s, s}, ...), the semantics of
F-LTL is given as follows:

o F p,, if and only if Vi s; F p; for

6 F[(qg; = Op,) if and only if Vi s; ¥ q; or
S(i+1) Fp

o F Qp, if and only if Ji,s; F p,

6 EOOp, if and only if Vi > 0,3 > i,s; F p;

The satisfaction of ¢ by a transition system 7T'S is denoted by 7T'.S
¢, where a run o = (s, s, ...) meets all the sub-formulas of ¢.
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3. Problem formulation

In this section, we use BTs to synthesize a sequence of actions for
an autonomous agent over the following components:

1. The robot R which is capable of performing a set of actions.
Here, the terms agent, robot, and vehicle are used interchange-
ably.

2. The set A is the action bank, which contains a set of actions A,
k =1,...,L, where L € N is the total number of actions that
the robot is capable of. We also define a set of preconditions for
each action, Cppp=1,..., P where P € N is the total number of
preconditions for action A,. If all the preconditions of an action
are satisfied, then the execution of the action has an effect, E,.
Here, the robot is assumed to perform a single action at a time.

3. The set ¢ includes missions ¢;, j = 1,..., N, where N € N is
the total number of missions. The mission ¢; is a conjunction
of sub-formulas, Gjms m = L., N, expressed as F-LTL. Each
sub-formula ¢,,, has to be satisfied by the execution of a set of
actions and each action requires a set of conditions to be met.
The mission ¢; is completed when all sub-formulas are satisfied.
Here, we assume that the missions and the number of missions,
N, are not initially known to the robot. Instead, the missions are
streamed to the system and are served by the robot sequentially
for each of which a BT is synthesized in an online way.

4. To capture the interactions between the robot R and the envi-
ronment, we define the transition system T} = (S, A, 8, sy, IT, L)
by partitioning the environment into ¢ bounded regions where
S = {50s 81500055} is a set of regions in R2; A is the event/action
set; 6 : S x A — 25 is the transition relation; s, is the region
that the robot R initially is located; The environment is assumed
to be static and is represented by a set of atomic propositions
I = {zy, 7y, ..., 7}, where 7z; is true if and only if the robot R
is at region s;, and L : S — 247 is the label function.

Given R, A, ¢, and Ty, our objective is to synthesize and execute
BTs for the completion of missions expressed as F-LTL specifications.
This has been formally formulated in the following problem:

Specification-guided BT Synthesis and Execution Problem: Con-
sider ¢ as a set of streamed missions ¢;, j = 1,...,n which are described
by F-LTL specifications defined over I1. Also, consider the robot R, which is
capable of executing the actions A, k = 1, ..., L, and its interactions within
the environment is captured by Tg. For each of the missions ¢;, (1) Identify
the set of regions W, from which the robot can achieve ¢;. (2) Synthesize
a BT for coordinating the robot R such that BT; F ¢;.

4. Automatic behavior tree synthesis and execution

To address the Specification-guided BT Synthesis and Execution Prob-
lem, we propose a framework that generates a high-level plan for the
received missions. Fig. 1 shows our proposed framework which has
three folds: the synthesis of BTs, the computation of the winning set,
and the execution of BTs to satisfy the missions. Algorithm 1, receives
the missions streamed to the robot and calls function HighLevelBT-
Synthesis to synthesizing BT; (Line 4). Consider the mission ¢;
given as an F-LTL. With a divide-and-conquer strategy, we decompose
¢; into sub-formulas ¢;, in the form of [1C;,, {C;,, [OOC;,, or
D(C;m = 0Cj,), where C;m and C;, are atomic propositions
(showing accomplishment of an action or satisfying a condition). Then,
for each mission, ¢;, a BT is synthesized by satisfying sub-formulas ¢,,,.
Once the BTs are synthesized, i.e., the high level planning is completed,
the winning set, W, needs to be computed (Line 5). If the winning
set W, is empty, then BT, is set to null, and the Mission Controller
will be ready to receive a new mission (Lines 6-9). Otherwise, the
synthesized BT will be executed (Line 10). The components of the
proposed framework are discussed next.
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Algorithm 1: MissionController

1 Main()

while True do

¢; — ReciveMission()

BT, < HighLevelBTSynthesis (¢;)
W, I;, = GetWinningRegion(d;j, BT))
if W, == ¢ then
BTJ- P]
continue
end

ExecuteBT (BT, },)

// unrealizable

© o N & u b w N

-
(=]

end

-
-

BT

BTy | ... | BTm

] i
@ BT, DisableOneTime

Fig. 3. Behavior tree BT; which is formed by the sequence of BT},, m=1,....,M;, to
meet the mission ¢;.

4.1. High-level behavior tree based planner synthesis

Here, we will discuss the process of generating a BT for a mission
¢;. Consider the F-LTL formula ¢; = /\,’;4:’1 ®jm- Also, assume that there
exist behavior trees BTj,, m = 1--M;, such that BT}, F ¢;, (we
say BT, F ¢;, if the execution of BT, satisfies ¢;,). Then, BT,
generated by the sequence of BT}, -, BTy, as shown in Fig. 3,
satisfies ¢;. Hence, the remaining problem is to synthesize BT, j =
L...,M, which are synthesized by Algorithm 2 (Lines 2-17). Note that
we need to only synthesize sub-trees for sub-formulas of type {C;,
and [JOC,,. This is due to the fact that specifications of types []C),
and I:I(C;,,, = 0OC},) have to be always true, and hence, they do
not need a BT, and instead they will be taken into account during
the computation of the winning set W;. Algorithm 2 implements this
process. It starts by synthesizing sub-formulas of type {C;, (Lines 4—
8), followed by synthesizing sub-formulas of type [(1(C;,, (Lines 9-12).
To create BT; for the mission ¢;, each synthesized BTs are composed
using a sequence node (Lines 7 and 11). Unlike the specification of
type [1OC;,,, the BT generated for specification of {C;, should be
executed only one time, for which we have introduced global variables
OneTime;,,, m € Ip that are initially set to False, and then, will be
reset/disabled after execution of each sub-tree of type (C;,, (see Line
6). Further, we introduced a mechanism to handle a conflict between
BTs (Lines 13-16). For this purpose, if the last action of BT}, violates
the precondition of the first action of BT, then there is a conflict.
In order to resolve conflicts, the sequence of the BTs has to be switched,
i.e., the priority of BT}, has to be increased by shifting it to the left
in the sequence node to be executed after BT, To achieve this,
the function Conflict(.) identifies the BT that is in conflict (Line 14)
and the function IncreasePriority(.) (Line 15) increases the priority
of BT;,,. This process is repeated until BT; is conflict-free.
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Algorithm 2: HighLevelBTSynthesis

1 Function HighLevelBTSynthesis (¢,;):

2 onetime;,, < False for m € I,

3 BTj Py

4 formel F, do

5 n < AddBTforSubFormula(¢,)
6 BT, < Sequence(BT}, DisableOneTime)
7 BT; « Sequence(BTj,Bij)

8 end

9 formel, F do

10 BT;,, < AddBTforSubFormula(g;,)
11 BT; « Sequence(BTj,Bij)
12 end
13 do

14 conf_flag, BT;,, < Conflict(BT))

15 BT; « IncreasePriority(BT;,)
16 while (conf_flag == True)
17 return BT;

Algorithm 3: AddBTforSubFormula

1 Function AddBTforSubFormula(g,,):
BT, < getcondtion(¢;,) // set BT, to Cj,
ExpandBT(BT},,)
if Type(C;,,) == Type((}C ) then
‘ BT}, < Selector(OneTme,,, BT,)
end
return BT},

N o a1 » W N

J
I 1 o
BT, DisableOneTime

Fig. 4. BT, represents a specification of type ()C;,,, followed by BTs for other types
of formulas. The action DisableOneTime disables the OneTime flag to ensure that BT
will be executed only one time.

Called by Algorithm 2, Algorithm 3 initializes BT},, with the con-
dition C;,, for the sub-formula ¢;,, (Line 2) and synthesizes the corre-
sponding BT by calling the function ExpandBT(.) (Line 3). To enforce
the execution of a sub-tree for type {)C,,, only once, BT}, is composed
with a boolean variable onetime im by a selector node (Lines 4-6). The
variable OneTime;,, is initially set to False to allow the execution of
BT}, and then, the action DisableOneTime sets OneTime;, to True
(Line 6 of Alg. 2) after the execution of that specific sub-tree for the
first time. Since the composition is done by a selector node, setting
to True prevents subsequent execution of the corresponding
sub-tree. Fig. 4 shows the resulting BTs following Algorithm 3.

Invoked by Algorithm 3, Algorithm 4 synthesizes BT’s for each
sub-formula’s ¢;,. In a While loop, by identifying the unmet con-
ditions, BT, is modified in a recursive (backward) way until the
synthesis of the BT is completed (Lines 2-8), i.e., the aforementioned
backward process ends up with an action whose preconditions are
already met (from which later we can start execution in a forward
way). To implement this backward process, we use the function Get-
CondtionsToExpand(.) to pinpoint the cause, ¢, (Line 3) and the
function ExpandSubBT (. ) to synthesize a suitable sub-tree to resolve
the issue (Line 4). However, similar to the conflict between BT},’s,

OneTime;,,
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the addition of the new sub-tree may introduce a conflict that has to
be resolved by adjusting the priory (Lines 5-7) of the newly added
sub-tree. For example, if the goal is to close a door and there are
two sub-trees: one with the action closedoor and the other with the
action opendoor. The sub-tree with the action opendoor should come
first, followed by the sub-tree with the action closedoor. If that is not
the case, the priorities of the sub-trees should be adjusted.

Algorithm 4: ExpandBT

1 Function ExpandBT (BT},,):
2 do
3 ¢; < GetConditionToExpand(BT;,)
// Identify the cause for not being
executable
BT}, BTy < ExpandSubBT(BT,,c,)
while Confl4ct(BT},) do
| BT, < IncreasePriority(BT,u,..)
end

while (~IsSynthesisCompeleted(BT},))

® N o o A

4.2. Computing winning regions for the system

Before executing the synthesized BTs for the mission ¢;, we should
first compute the winning set W;, which consists of states from where
there exists a sequence of actions that satisfies the ¢;.

Algorithms 5-8 compute the winning sets for all types of sub-
formulas whose intersection results in W.

Consider sub-formulas of type D(C;,,, = 0OCj},) in ¢; which re-
quire the robot to respond the current condition C;m by taking an action
that meets C;,,. Putting all together, we form ¢ R, = Nier, D(ij =
OC;,)-

Algorithm 5 computes the winning set, Wg,» for ¢ ®,- In Line 2, the
variable Wg, is set to .S (the whole states of TE) which is pruned by
removing all states that are violating ¢ (Line 3-10). For each sub-
formula, ¢,,, the algorithm computes [C ]]WR ={qe€ WR | gk C s
as the set of states that meet CJ{ (Line 4). Then the algorlthm removes
those states from which there is no transition to a state that meets C;,,
(Lines 5-9). After the termination of the loop, the states that satisfy ¢ R,
are returned (Line 11).

Algorithm 5: Response

1 Function Response (¢z):

2 WR, )

3 for bjm € g, do

4 q < IC], I, // all states in which c;, can

J
be met.

5 for g, € g do

6 if Va € A:6(qy.a) & [C;,] then

7 Wr, =Wk, / 4 // remove state g, from

WR/

8 end

9 end
10 end
11 return WR/

Algorithm 6 computes W, as the set of states that meet the safety
requirement ¢ A where ¢ A= Nie 1, IC;,,. In Line 2, the variable WA
is set to Wg;» which was cornputed in Algorithm 5. The set Wy, is then
iteratively updated by removing states that are not safe (Lmes 3-10).
For each sub-formula, we set the variable S, to the set of states that
satisfy C;,, (Line 4). Then, we compute Cpred( Spre) which contains the
states in Wthh the agent can force a transition to a safe state under any
environment action or non-determinism followed by updating S,,, by

removing the states that are not in Cpred(S,,,) (Line 7). This process
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is repeated until all the states can transition to an unsafe region are
removed (Lines 5-8). In Line 9, the set W, is updated by excluding
unsafe states. At the end, the states that satisfy ¢ 4, are returned (Line
11).

Algorithm 6: Safety

1 Function Safety (¢Aj, Wg, ):
2 WAj « WRJ
3 for Dim eqSAj do

R T

5 do

6 temp = S,

7 Spre = Spre N Cpre(S,,,)
8 while S, # temp

9 WA/ «— WA‘, n Sp,e
10 end
11 return WAJ

Next, we will compute the states that meet the specifications ¢ F =
Nierp QCjm> and ¢ = /\ielArj 0OC;),- Unlike ¢4 and ¢ , specifica-
tions ¢, and ¢, F; have been taken into account during BT; synthesis
in Algorithm 2. Assuming that all sub-formulas of type $C;,, or (IC;,,
describe reaching a destination, to compute the winning set for these
specifications, we need to extract the MoveTo() actions from BT; by
the function MoveToExpand(.) and sequence them according to the order
that they will be executed by BT; (Line 2 of Algorithm 7).

A similar procedure is followed to compute the reachable states
for the action MoveTo() that corresponds to specifications of type
QC;, or [OQC;,. The only difference is that for MoveTo() actions
that correspond to the specifications of type [J{C;,,, the robot should
visit the target state(s) repeatedly. This difference can be captured by
solving an additional reachability problem from the target states of the
last MoveTo() action to the target states of the first MoveTo() action
that corresponds to a specification of type [J{C;,,. This is done by the
function ReturnToFirst(.) which adds the return path to the sequence
of MoveTo() actions (Line 3 of Algorithm 7). Then, we compute the
winning reachable states, Wi along with the reachable space, I, for
each subsequent MoveTo(.) action target state by invoking Algorithm
8 (Lines 5-14). Initially s, is set to s, (Line 7), while s,,,, is set
to the target state of the first MoveTo(.) action (Line 11). In subse-
quent iterations, s, is set to the desired target state of the previous
MoveTo(.) action to keep track of the robot’s position (Line 9), while
Spext 1S Set to the target state of the current MoveTo(.) action (Line 11).
At the mth iteration, we compute reachable states, W,,, and reachable
space I;,[m] for each MoveTo(.) action (Line 12), where I';,[m] can be
thought of as an array of reachable states for each single-step move (to
be calculated in Algorithm 8). We then accumulate the reachable states
for all MoveT o(.) actions to calculate the winning reachable states (Line
13).

Algorithm 8 computes the states that are reachable from s,,,, in
a backward way and verifies whether there is a viable path between
Sgqre and s,,,. For this purpose, we set S, = {s,.,,} and then, using
the operator Cpre, we iteratively update S, with one-step backward
reachable states (Lines 5-13). In parallel, we also trace the states in
each step by storing them in I'. During this backward reachability
computation, if we reach sg,,,,, then the algorithm terminates returning
S, and I' (Lines 10-12). Otherwise, the algorithm continues until all
reachable states are computed, after which if still s, & S.,,, then the
algorithm terminates returning @, which implies that there is no viable
path between s,,,, and s,,,,;.

Algorithm 9 computes the winning regions by invoking Algorithms
5-8. The set of allowable states, S, are pruned to meet specifications
corresponding to ¢, (Lines 2), ¢, (Lines 3), as well as ¢ F, and ¢4 K,
(Line 4). The synthesized BT is executable if the initial state of the robot
is in the winning region returning W; and I, (Lines 5-7). Otherwise
BT; is not executable and the algorithm returns @ (Lines 7-9).
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Algorithm 7: Reachable
1 Function Reachable (BT, Wy, ):

2 Move;, = [MoveToExpanded(BT))]

3 Move;, = [Moueju,ReturnToFirstAF(BTj)]
4 VVju @

5 form=0tom§|MouejuE|) do

6 if m==0 then

7 ‘ Sstart = S0

8 else

9 | Suan < GetTarget(Movey,, [m—11. W, )
10 end

11 Spexs < GetTarget(Move, [m], Wy,

12 W, I;,lm] < ReachablePath(S,.Syex)
13 I/Vju - I/Vju U I/Vji
14 end
15 return W, I';,

Algorithm 8: ReachablePath

Function ReachablePath (s, S,ex Wy, ):

-

2 m=0

3 Scur = {Snext}

4 I'lm] = {snexr}

5 do

6 m=m+1

7 Sprev = SCM"

8 I'lm] = Cpre(I'[m — 1])WA»
J

9 Scur = Scur U r[m]

10 if s, € S, then

11 ‘ return S, I’

12 end

13 while S, # S,

14 return ¢

Algorithm 9: GetWinningRegion

-

Function GetWinningRegion (¢;, BT;):
2 Wg, < Sn Response(¢g,)

3 Wy, <Sn Safety(qﬁA/, Wg,)

W;,I';, < Reachable(BT;, WA/,)

EN

J2 T u
5 if W, €5, then
6 ‘ return W,F,u
7 else
8 | return ¢ // unrealizable
9 end

4.3. Executing BT

When the winning set, W;, is not NULL, Algorithm 10 executes
the generated BT, BT}, to satisfy the mission ¢; (Lines 2-10). Since
only the specifications of type {)C;,, and [1(C;,, are directly used to
synthesize the BT, there are a total of I = |[Ig| + |I45| sub-BTs to
execute. Therefore, to execute BT}, in a for-loop (Lines 5-9), each sub-
BT is executed to meet the conditions, C im (Lines 6-8). After executing
all sub-BTs BT}, of BT}, the OneTime,,, flags which correspond to the
specification of type {)C;,, are disabled (the function DisableOneTime()
in Algorithm 2 disables BT’s specifications of type {C;,), whereas the
sub-BTs that correspond to the specifications of type [1{C;, should
continue executing until a new mission is introduced to the Robot.
Here we assume that when a new mission is introduced, the previous
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Main (Alg 1)
—»{ ReceiveMission()
[
Y
HighLevelBTSynthesis(Alg 2)
T N
AddBTForSubformula AddBTForSubformula
(Alg3) (Alg 3)
v v
I SynthesizeBT (Alg 4) ‘ ‘ SynthesizeBT (Alg 4) ‘
BT;
A A

GetWinningSet (Alg 9)

| Response (Alg 5) |

| safety (Alge) |
!
| Reachable (Alg 7) |

| ReachablePath (Alg 8) |

Specification is
unrealizable
—{ ExecuteBt (Alg 10) |

Fig. 5. Algorithms 1-10 describes the proposed framework for synthesis and execution
of BTs for achieving missions given in the form of F-LTL specifications.

mission has to be terminated when all sub-BTs of the previous mission
are executed at least once.
Algorithm 10: ExecuteBT

1 Function ExecuteBT (BT, I, ):

it ju
2 I =g |+ U ap,|

3 Sucessjm=False; m=1,--,1

4 do

5 for(m:llomglj)do

6 while —Sucess;,, do

7 ‘ Sucess;, = Execute(BT},, I;,)
8 end

9 end

10 while (NoNewMzssion())

The overall flow of the algorithms is shown in Fig. 5. Upon receiving
a mission, Algorithm 1, synthesizes a BT, computes its winning set and
space, and finally executes the synthesized BT to satisfy the mission
goals. Algorithm 2 synthesizes the BT for each mission ¢; by invoking
Algorithms 3 and 4 to synthesize sub-BTs for specifications of type
QC;,, and [JOC;,,. Based on the generated BT, Algorithm 9 computes
the wining set, W;, by invoking Algorithms 5-8. Then, if the winning
set W is not null, Algorithm 10 executes the synthesized BT to meet

the mission goals.

Expert Systems With Applications 201 (2022) 117022
5. Properties of the proposed method

This section provides the proof of correctness and the analysis of
the computational complexity of the proposed method.

5.1. Proof of correctness

Next, we show that the proposed method synthesizes a BT, B;, and
computes the winning set, W, to meet the mission goals for ¢;. Here,
we assume that for each goal, there exists a sequence of actions that
can be executed by the robot leading to the achievement of the goals
of missions.

Lemma 1. Algorithms 2—4 synthesize a BT that can satisfy the specifica-
tions of type {C;,, and [JOC,;,, for mission ¢; if W, # 8.

Proof. Consider a specification of type ()C;, or [1{C;, in ¢; and
assume that there exists a sequence of actions that meets C;,, Algo-
rithm 4 synthesizes a sub-BT to meet C;,. Algorithm 3 expands the
generated BT for C;, to meet a specification of type {)C;,, by adding
the flag OneTime,,,. Finally, Algorithm 2, sequences all sub-BTs for
specifications of type {C;,, and [J{C;,,. Assuming that all actions are
executable in finite time and w; # 0, by construction, executing the
synthesized BT meets the goals {)C;,, and (1GC;,,. [

Lemma 2. Algorithm 6 terminates returning the set of states, Wy, that
satisfies the goals for specification of type [1C;,,.

Proof. Algorithm 6 computes the set of states that meets the spec-
ification of type [IC;,. Here, we will prove the termination of the
loop in Lines 5-8 in Algorithm 6 by showing that Cpre(.) is monotone.
Let, S; € S,. Then Cpre(S,) = Cpre(S,) U Cpre(S,\S;), implying
that Cpre(S|) C Cpre(S,). Thus Cpre(.) is a monotonically increasing
function. Since Cpre(.) is a monotone function and the set, .S, is finite,
the loop for searching and removing states that do not meet [IC;,
terminates after a finite number of iterations. []

Lemma 3. Algorithm 8 terminates returning all reachable states and paths
between s,,,, and s,,,,;-

Proof. Algorithm 8 computes the set of states that are reachable from
Spex: and paths between sg,,., and s,,,, over the set S. Since Cpre(.) is
monotone (See Lemma 2 for the proof) and the set, .S, is finite, the loop
in Lines 5-13 of Algorithm 8 for finding the reachable states and paths
terminates after a finite number of iterations. []

Theorem 1. The proposed BT synthesis and execution approach, described
in Algorithms 1-10, addresses the BT Synthesis and Execution Problem for
F-LTL mission specifications, ¢, if W; # 0.

Proof. Algorithm 1 sequentially invokes Algorithms 2-4 for synthe-
sis of the BT, Algorithms 5-9 for computation of winning set, and
Algorithm 10 for the execution of the synthesized BT. According to
Lemma 1, the synthesized BT by Algorithms 2-4 can meet the spec-
ification of type (C;, and [J{QC,, if W, # @. On the other hand,
Algorithms 5-9 compute the winning region, W, that meets the F-
LTL specification ¢; by a finite number of iterations of searches over
a finite space (see Lemmas 2 and 3). Therefore, by construction, if
W, # @, execution of the synthesized BT by Algorithm 10 leads to the
satisfaction of ¢; addressing the BT Synthesis and Execution Problem for
F-LTL specification. []

Under this assumption, each mission goal can be achieved by a
sequence of actions, we always can find a BT to complete the mission
leading as stated in the following corollary.
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Table 1

Action bank for the robot, R, where action MoveTo(p) guides the robot R to position
p, Place(O, p) delivers an object O to a target location T, Pick(O, p) picks an object O
from position p, and TakeImage(p) takes an image at location p.

Robot Action Bank

Actions Description Precondition Effect

A, MoveTo(p) - Ratp

A, Pick(O, p) arm is free O is at R arm
R is near p

A Place(0,T) RaT oat T
O is at R arm

Ay Takelmage(p) Ratp TI at p

Corollary 1. Conducting Algorithms 1-9 enumeratively over all possible
sequences of actions addresses the BT Synthesis and Execution Problem for
F-LTL specification.

5.2. Computational complexity analysis

The complexity analysis of the proposed framework can be broken
down into the complexity of the BT synthesis module (Algorithms 2—
4), the winning set computation module (Algorithms 5-9), and the BT
execution module (Algorithm 10).

For the complexity analysis of the BT synthesis module, we start
by considering Algorithm 4 that synthesizes a sub-BT, BT}, for a sub-
formula, ¢;,. As shown in Algorithm 4, the synthesis stage starts by
determining unmet conditions (Line 3 of Algorithm 4) and constructing
the sub-tree that meets the condition (Line 4 of Algorithm 4). Assuming
a lookup table containing the conditions and their corresponding ac-
tions with preconditions (the elements of the sub-tree) is available, the
complexity for the synthesis of a sub-tree is O(1). Then, repeating this
process for all unmet conditions and also handling possible conflicts in
every iteration (Lines 5-7) which in the worst case need to be checked
for conflict with n — 1 sub-trees, where n is the maximum number of
actions that are needed to complete a task, the complexity of Algorithm
4 is O(n?). Since a mission is composed of totally I =1 K, [+1,4 F | sub-
BTs (Lines 4-12 of Algorithm 2), and each sub-BT has to be checked
for possible conflicts with other sub-BTs, the synthesis module has a
complexity of O (I7n* ).

The computational complexity of the winning set via Algorithms 5-
9 is dominated by the computation of safe states (Algorithm 6) and
reachable states (Algorithms 7 and 8). In Lemma 2, it is shown that
the loop in Algorithm 6 (Lines 5-8) terminates after a finite number
of iterations. As shown in Cormen et al. (2001), the computation of
safe states by finding a fixed-point set via a depth-first search has a
complexity of O(|.S| + |5|), where |S| is the number of states and ||
is the total number of transitions. Thus, the complexity of Algorithm
61is O <|IA], |(|S] + |5|)), where |IA/| is the number of specifications of
type [1C;,,. Similarly, the complexity of computing the reachable set

via Algorithms 7 and 8 is @ (lMoUejuEl(lSl + |5|)), where Move;,, is
the number of MoveTo(.) actions in BT;.

Execution of each sub-tree in Lines 6-8 of Algorithm 10, has a
complexity of O(n) where n is the maximum number of actions in a
sub-tree. Since there are a total of I f sub-BTs for a mission, ¢ s the
complexity of BT execution module is O(|1;|n).

By considering the contribution from each module, the proposed
framework has a complexity of

O(lMoUev |(|S|+|5|)+|1j|2n2+|1j|n).

JUE

6. Simulation results

In this section, we consider two scenarios. First, we consider a robot
R in a given environment to handle two missions, with the objective
of illustrating the steps of the developed algorithms. In the second
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Fig. 6. Operational environment with 7 x 9 cells. The robot R can transit to its
neighboring cells excluding occupied ones. The robot has to deliver object O to the
target cell T, followed by persistent patrolling and taking pictures from targets P, P,,
and P;, while avoiding the restricted zones RZ, and RZ,.

scenario, we apply the developed tasking algorithm to the coordination
of the robot R for different sizes of environment and randomized places
of obstacles and targets, to assess the runtime efficiency of the proposed
method.

6.1. Scenario 1

Consider an operational environment, shown in Fig. 6, which is
partitioned into 7 x 9 grid cells, in which S;; refers to the cell in ith
row and jth column. There are also two restricted zones RZ, and RZ,
located at S5, and S,9. Also, consider the robot R that starts from the
initial position at .S;;, and can transit to neighboring regions except
the occupied cells. The robot R is assumed to be capable of executing
actions A; (MoveTo), A, (Pick), Ay (Place), and A, (TakePicture),
whose associated preconditions and effects are listed in Table 1.

Now, consider two missions ¢, and ¢, that are introduced to the
robot R sequentially for picking/placing an object and persistent pa-
trolling, respectively. More specifically, missions ¢, requires the robot
R to pick an object O, located at .S;;, and deliver it to the target cell T,
located at Sgg, while avoiding the restricted zones. This specification is
captured as a F-LT L:

¢ =0 RZ,AOO"RZ,AQO at T)

where RZ,, RZ,, and O at T are atomic propositions that are true
when the robot is at RZ;, the robot is at RZ,, and the Object is
at target, respectively. During or after executing mission ¢, mission
¢, will be introduced with the objective of patrolling and taking
pictures from targets p,, p,, and p; located at cells S5, 3, and Sig,
respectively, while avoiding restricted zones, which is expressed as an
F-LT L formula:

¢, =[0~RZ, ALINRZ, ALIN(TT at p)A
OO T at p,) ACIO(TT at py)

where TT at p; is an atomic proposition that is true when the robot
takes an image at position p;.

Given the action bank, A, in Table 1, the process of generating BTs
and computing W;’s, for missions ¢, and ¢, is as follows. The first
mission, ¢;, is composed of three sub-formulas: ¢,, = [1-RZ,, ¢, =
[0-RZ, and ¢y; = (O at T). Since the specifications of type []C),
will be taken into account during the computation of the winning set
and reachable space, we only need to synthesize BT, = BT); for ¢3 =
(O at T). Invoked by Algorithm 1, Algorithm 2 initiates the synthesis
of BT); (Lines 4-8 of Algorithm 2) by calling Algorithm 3 to initialize
BT;; with the condition O at T (Line 2 of Algorithm 3) as shown in
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a) BT; after initialization
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b) Expanding BT} for condition (O at T)

MoveTo

y
DisableOne
TIme

@ I MoveTo

| Place

A 4

D> ]

¢) Expanding BT for condition (o at R arm) and (R at p)

Fig. 7. Synthesizing BT to deliver an object O to position T: (a) BT,; is initialized for specification {)(O ar T), (b) The BT is expanded by identifying that the action “Place”
can meet the condition O at T, and hence, the action “Place” and its preconditions (“O at R arm” and “R at T”) are added to the BT, (c) The BT is expanded by identifying the
actions and their preconditions for the conditions “O at R arm” and “R at T”, as well as the action DisbaleOneTime() to set the flag oneTime,; after one time execution of BT;.

a) Initialization of BTy

y

Takelmage

A 4

d) The synthesized BT, to meet specification ¢,

Fig. 8. Synthesizing BT, for ¢, which requires patrolling positions p,, p,, and p; infinitely often while taking images: (a) BTy; is initialized for specification ((T'I at p,), (b) The
BT is expanded by identifying that the action “TakeImage” at p, can meet the condition “T'I at p,”, and hence, the action “T'akeImage” and its precondition R at p, are added
to the BT, (c) The BT is expanded by identifying that the action “MoveTo” can meet the condition “R ar p,”, and hence, the action “MoveTo” is added to the BT, (d) BT, is
synthesized by combining BT,;, BT,,, and BT,; by a sequence node (for better visualization the OneTime,; and DisableOneTime is not shown for BT),3).

Fig. 7.a. Then, Algorithm 4 takes the initialized BT,; and continuously
updates it by identifying an unmet condition and generating a sub-
tree to meet the condition until the synthesis of BT}; is completed (it
ends up with an action whose preconditions are already met). For this
purpose, the function GetCondtionsToExpand(.) in Line 3 of Algorithm
4 identifies the condition “O at T" as unmet. This will be followed by
calling the function ExpandBt(.), which uses a selector node to compose
the condition “O ar T" with the sub-tree that contains the action Place,
in which the action Place is composed with its preconditions by a
sequence node (see Table 1 for list of preconditions and Fig. 7.b for
the synthesized sub-BT). This process continues by expanding the BT to

find the actions and their preconditions for the conditions “O at R arm”
and “R at T”. Fig. 7.c shows the expanded sub-BT including the flag
oneTime;3 and the action DisbaleOneTime() that are needed to ensure
onetime execution of the specification “{O ar T”.

We next compute the winning region W, for BT,. To simplify the
explanation of the process, consider the following sets OCC = {.S,,,
8235 S245 325 S345 Sazs Saas Ssas Sss, Sses S5k, RZ = {855, 49},
target = {Sg} which represents occupied cells, restricted zones, and
the target, respectively. Invoked by Algorithm 9, Algorithm 5 returns
Wy, = S as there is no specification of type Cj’.m = OC;j,,. Then,
Algorithm 6 prunes the set of states that are not safe and returns the
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(a) Pick the object O (b) Move to target T (c) Place the object O at T
S > o
S Al > N >

N

-

(d) Move to p, and take image

(e) Move to p, and take image

=

(f) Move to p, and take image

Fig. 9. Execution of BT, (a-c) and BT, (d-f).

states W, = S\ {RZ} as the states in RZ are the only unsafe regions.
This is followed by the identification of reachable states and spaces
for each MoveTo() action (Line 4 of Algorithm 9). For this purpose,
Algorithm 9 calls Algorithm 7 to compute W, and I'} for MoveT o(S},)
actions from the initial position s, = S7, and for MoveTo(Seo) actions
from the S|, ending up with W), = S\ {occ, RZ}. Putting all together
in Algorithm 9, we have W; = Wr N W, n Wy, =S\ {occ, RZ}.

Following the computation of the winning set, since W, is not NU!I,
Algorithm 10 executes BT). Fig. 9 (a—c) shows the execution of BT,
starting where the robot moves towards the object O, pick O, move to
the target location, and, finally place the object.

Once ¢, execution is completed, the second mission, ¢,, is in-
troduced to the robot which has five sub-formulas: ¢,, = [J-RZ,,
¢y = O"RZy, ¢p3 = OQTL at py), dpy = OO at py), and ¢ps =
OQ(TI at p3). Following similar procedures, we synthesize BT,; for
sub-formula ¢,3, by initializing it as “T'I ar p,” as shown in Fig. 8.a,
and then expanding it for the condition “T'I at p,” and its precondition
“R at p,”, as shown in Fig. 8.b and Fig. 8.c, respectively. BT,, and
BT)5 can be synthesized in the same way. By combining these sub-BTs
using a selector node, we synthesize BT, for ¢, as shown in Fig. 8.d.
Then, the winning set, W, = S \ {obs,RZ}, and I, are computed
where I, provides the reachable space for the four MoveTo() actions
(MoveTo(p,) from T, MoveTo(p,) from p;, MoveTo(p;) from p,, and
MoveTo(p,) from p;. Finally, since the winning set W, is not NULL,
Algorithm 10 executes the synthesized BT to meet the mission ¢,. Fig. 9
(d-h) shows the execution of BT, where the robot moves to p,, p,, and,
p3 one after the other and simultaneously taking image at each position.

6.2. Scenario 2

Consider an operational environment, which is partitioned into nxn
grid cells. There are two restricted zones RZ, and RZ, which are
located at two different cells S| and S,. Also, consider the robot R that
starts from the initial position at S, and can transit to neighboring
regions except for the occupied cells. The robot R is assumed to be ca-
pable of executing actions A; (MoveTo), and A, (TakePicture), whose
associated preconditions and effects are listed in Table 1. Now, consider
the missions ¢5, which requires the robot R to conduct persistent
patrolling. More specifically, mission ¢; has the objective of patrolling
and taking pictures at targets p; (eventually once) and p, (infinitely
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Table 2
Time taken for the BT synthesis, computation of the winning set, and execution of BT}
for an nxn grid environment.

Size of the BT Safety Reachable Execution
environment Synthesis (Alg. 6) (Algs. 7 and 8) (Alg. 10)
5x5 0.73 ms 0.227 ms 0.518 ms 9s

10 x 10 0.73 ms 6.86 ms 16.9 ms 19s

100 x 100 0.73 ms 23.7 ms 55.9 ms 199 s
1000 x 1000 0.73 ms 2546 ms 8098 ms 1999 s

often), while avoiding restricted zones. The mission ¢; can be captured
as:

¢3 =[~RZ, A[J-RZ,
QI at p) AT at p,)

We synthesize and execute the BTs for different sizes of the envi-
ronment while randomizing the placement of the restricted zones RZ,
and RZ,, the robot initial position S, and the target locations p,, and
p2-

Given the action bank, A, in Table 1, for each setup, we apply the
developed algorithms to generate BTs and computing W;’s, for missions
¢3, which has four sub-formulas: ¢3; = [OJ-RZ;, ¢3, = [O-RZ,,
¢33 = O(TI at py), and ¢3, = QT I at p,). Following a procedure
similar to Scenario 6.1, the BTs for ¢s; and ¢;, are synthesized and
then composed using a selector node. The synthesized BT; for ¢; is
shown in Fig. 10.

Then, the winning set, W3 = S\ {RZ}, and I; are computed,
where I'; provides the reachable space for the two MoveTo() actions:
MoveT o(p;) for moving from s, to p;, and MoveT o(p,) for moving from
p; to p,. Since the winning set W3 is not NU LL, Algorithm 10 executes
the synthesized BT to meet the mission ¢;.

The synthesized BT is the same for different configurations of the
environment and the location of the initial position of the robot,
restricted zones, and targets. However, for different configurations, the
computation time of the winning set and the execution time of the
BT are different as the computation of safes states (Algorithm 6) and
reachable states (Algorithms 7 and 8), and the execution of the BT in
Algorithm 10 depend on the locations of the robot’s initial position, re-
stricted zones, and targets. Table 2, provides average time for synthesis
of the BT, the computation of the winning set and execution of the BT.
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A

Takelmage

| MoveTo

| DisableOneTime

MoveTo Takelmage

Fig. 10. BT; is synthesized by combining BTy;, and BTy, by a sequence node.

The execution time of the BT is obtained by assuming the robot moves
from one cell to any of its neighbor cells in 1 s.

7. Conclusion

This paper developed an automatic provably-correct online BT syn-
thesis and execution technique for the coordination of an autonomous
system to accomplish a series of missions which are introduced to
the system on-the-fly. Capturing the mission requirements in the form
of F-LTL formulas, we developed a novel top-down, divide-and- con-
quer approach to decompose the missions into smaller sub-formulas,
for which we designed sub-BTs. The realizability of the sub-BTs was
checked by computing the intersection of safe and reachable sets in
parallel to storing the paths to the winning set. If realizable, these
sub-BTs are composed in order to form a coordinator to achieve the
assigned mission by executing the synthesized BT using the calculated
paths to the winning set. The correctness of the proposed method
was proved. Unlike many existing methods which rely on manually
designing the BTs, our proposed method can automatically synthesize
a BT for a given F-LTL specification. Further, compared with most
existing results which suffer from exponential complexity, we proved
that the complexity of the proposed method is polynomial in the size
of the formula and the size of the environment. The developed method
was applied to the case-studies for different missions and different sizes
of the environment using a physics-based simulator, demonstrating the
capability of the proposed method on handling complex missions and
scalability of the approach in terms of the size of the environment.
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