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A B S T R A C T

This paper develops an automatic online Behavior Tree (BT) synthesis and execution technique to guide an
autonomous agent to accomplish a series of missions expressed in Fragmented-Linear Temporal Logic (F-LTL).
For this purpose, a novel top-down, divide-and-conquer method is developed to decompose the original F-LTL
formulas into simpler sub-formulas, followed by synthesizing the corresponding sub-BTs. Then, the safe and
reachable regions are calculated to identify the winning set for the sub-BTs and the associated winning paths.
If the computed winning set is non-empty, the sub-BTs are composed to form a coordinator whose execution
guarantees the satisfaction of the original F-LTL formulas. The correctness of the proposed method is proved.
Unlike most existing methods which manually design BTs and suffer from high computation cost, the proposed
method can automatically synthesize the BTs on-the-fly for F-LTL formulas with polynomial complexity in the
size of the formula and the environment. The developed method is applied to several scenarios with different
missions and sizes of the environment using a physics-based simulator. The simulation results demonstrate the
capability of the proposed method to handle missions described by F-LTL formulas and the scalability of the
approach in terms of the size of the environment.

1. Introduction

A fundamental challenge for coordination of autonomous systems
is to design a mission-driven controller to satisfy desired specifica-
tions. Conventional engineering practice is to employ a bottom-up
approach by designing a controller followed by testing and evaluating
it through an extensive set of simulations and experiments to identify
possible problems in the system, and then, redesigning the system to
fix the problems and satisfy the design requirements (Lee & Yannakakis,
1996). However, this trial-and-error approach with ad hoc requirement
refinement is costly and time consuming, and in the end, there is no
guarantee to achieve the desired performance.

On the contrary, top-down approaches aim to develop correct-by-
design controllers which provide a guaranteed performance against
desired specifications (Wu et al., 2015). A common specification-guided
top-down approach is to design coordinators to achieve high-level
specifications given in the form of a regular language (Feng & Wonham,
2008; Wang, Moor, & Li, 2020; Wang, Wang, & Li, 2020) or a Temporal
Logic formula (Camacho et al., 2018; Kloetzer & Mahulea, 2015; Raman
et al., 2015). The resulting coordinator is often an automaton which
produces sequences of high-level actions. The generated actions are
then executed by translating them to continuous motion primitives.
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These methods, however, lack scalability due to the high computation
cost for large environments with a high number of partitions. More
importantly, these methods suffer from the lack of flexibility in the
sense that the specifications and the environment should be fully known
before designing the coordinator, and any change in the specification
may require redesigning the coordinator from the scratch.

In practice, however, a system may need to be involved in a set
of tasks, each described by high-level specifications that may be intro-
duced to the system as the mission is evolved, not necessarily before
the mission starts. In this case, the aforementioned offline methods for
designing the coordinators are not applicable to such a scenario. Re-
active temporal planning methods include receding-horizon GR(1) ap-
proach for controller synthesis (Maoz & Shevrin, 2020; Shamgah et al.,
2018; Wongpiromsarn et al., 2012), revising unsatisfied temporal logic
expressions (Fainekos, 2011; Guo et al., 2013), and counterexample-
guided supervisor synthesis (Lin & Hsiung, 2011; Wu & Lin, 2016)
may handle limited changes in the specification or the environment but
often at a high computation cost of controller synthesis.

Motivated by these challenges, we are interested in addressing the
problem of designing a computationally-effective and scalable coordi-
nator for an autonomous system to achieve a sequence of missions in
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the form of high-level specifications which are introduced to the system
on-the-fly, while respecting the safety requirements. As an example,
consider an Intelligence, Surveillance, Target Acquisition, and Recon-
naissance (ISTAR) mission in which a robot should search different
assigned areas to find targets and collect the required information,
while avoiding restricted zones and obstacles based on the terrain
information. Certainly, offline planning cannot be a solution for the
coordination of the robot for such a complex mission with random
arrival of tasks and their location. To address this problem, we propose
to employ Behavior Trees (BTs), which provide a hierarchical, modular,
and reactive task execution models (Agis et al., 2020; Colledanchise
& Ögren, 2017; Iovino et al., 2020; Kim et al., 2012). With BTs, it is
more convenient to manage, modify, and add tasks or subtasks due to
their modular and scalable structure. BTs have been applied for many
applications, including but not limited to robotic manipulation (French
et al., 2019), controlling an aerial vehicle (Scheper et al., 2016),
coordination of ground robots (Coronado et al., 2019), etc.

Despite the great capabilities of BTs, there are only a few works
in the literature about formal, systematic, and specification-driven
synthesis of BTs. Most existing results manually design BTs (Guerin
et al., 2015; Ruifeng et al., 2019). In Nicolau et al. (2017), a game
theory approach, in Dey and Child (2013) a Q-learning method, and
in Colledanchise et al. (2019) a reinforcement learning technique is
used for automatic synthesis of BTs. However, these methods lack proof
of guaranteed performance and are often applicable to simple specifi-
cations in the form of a single proposition such as reaching a particular
state or meeting a certain condition. In our earlier work (Tadewos
et al., 2019a, 2019b), we have shown a safe BT can be automatically
synthesized using Dynamic Differential logic (DL) by concatenating
a safe set of actions under the assumption that the completion of
each action meets the safety requirement of its successor action. This
condition is not practically feasible to meet and verify in many cases
such as the situations that require synthesizing a BT for an action with
a preposition that requires multiple sequences of actions. In Tumova
et al. (2014), a maximally satisfying LTL action planning framework is
proposed that utilizes BTs as a middle layer which interfaces the high-
level discrete planner with the low-level continuous controller. Given
a robot and a specification in the form of State/Event Linear Temporal
Logic (SE-LTL), this framework generates a high-level planner as a
weighted product automaton. However, using BTs as a middle layer
in conjunction with the generated product automaton increases the
computational complexity and challenges the scalability of this method.

To address these challenges, in this paper, we develop an automatic
BT synthesis and execution method to coordinate a robot to meet a
series of missions. We leverage the rich expressivity of Fragmented
Linear Temporal Logic (F-LTL) to capture mission requirements includ-
ing response/reactivity, safety, reachability, and recurrence (infinitely
often). The proposed approach is illustrated in Fig. 1. With a ‘‘divide-
and-conquer’’ strategy, we decompose the original F-LTL formulas into
simpler sub-formulas, for which we synthesize separate BTs. For each of
these BTs, we compute the safe and reachable sets, the intersection of
which form the winning set. In parallel, the paths to reach the winning
set will be calculated. If the winning set is not empty, these BTs can be
composed to realize the original F-LTL specification, which can serve
as a high-level planner to generate a sequence of actions as well as safe
paths to reach the winning set. In summary, the main contributions of
this paper are:

• Developing a top-down, correct-by-design, divide-and-conquer
approach for automatic online behavior tree synthesis and exe-
cution to coordinate a robot to meet a series of desired missions
described by F-LTL specifications.

• Computing a winning set for the synthesized BTs from which, we
can calculate a set of paths whose execution satisfies the missions
given in the form of F-LTL specifications.

Fig. 1. The overview of the proposed method for BT synthesis and execution to satisfy
missions given in F-LTL.

• Proving the correctness of the proposed method along with the
analyzing the computational complexity of the developed algo-
rithms.

• Verifying the developed method via a physics-based robotic sim-
ulator for handling the assigned missions.

Compared to the manual approach for designing BTs in Guerin et al.
(2015), our proposed method synthesizes BTs automatically. Compared
to AI-based techniques in Colledanchise et al. (2019), Dey and Child
(2013), Nicolau et al. (2017), our approach guarantees that the execu-
tion of the synthesized BTs satisfies the desired specifications. Further,
unlike many existing approaches where synthesizing an action policy
from LTL specifications suffers from double-exponential or exponential
time complexity (Kloetzer & Mahulea, 2015; Pnueli & Rosner, 1989),
focusing on F-LTL formulas, the proposed method features polyno-
mial time complexity. The proposed method in Colledanchise et al.
(2017), synthesizes BTs by computing a value function, requirement
function, and constraint function for each formula to generate the
BT from F-LTL specifications. Specifically, the requirement function
in Colledanchise et al. (2017), is given as a transition rule, which is
then used to identify the actions that have to be performed by a BT as
middle layer. In comparison, our proposed method utilizes a uniform
BT synthesis algorithm to generate the sequence of actions to meet
a given specification, allowing for accommodation of more complex
missions. Further, our hierarchical approach allows the treatment of the
computation of the winning set and the synthesis of the BT separately.
The manageable computation cost and the adopted hierarchical and
‘‘divide-and-conquer’’ approach explain the scalability of the proposed
method.

The rest of the paper is organized as follows. The background and
necessary preliminaries on behavior trees are provided in Section 2. In
Section 3, the problem to synthesize a BT from the F-LTL specification is
formulated. Section 4 describes our proposed approach for synthesizing
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the BTs and identifying the winning set in detail. Section 5 provides
the proof of correctness and complexity of the developed algorithms.
Section 6 applies the proposed method to a search, delivery, and
patrolling case study to illustrate the implementation of the developed
algorithms. Also, the computation time for different steps of the pro-
posed method and for different sizes of the environment are calculated.
Finally, Section 7 concludes the paper.

2. Preliminaries

This section provides the preliminaries and notations that are needed
for developing the proposed framework including BT formalism and
F-LTL syntax and semantics.

2.1. Behavior Tree (BT)

Behavior Tree (BT) is a graphical modeling language that executes
a task by controlling the decision making process of a robot to achieve
the desired goal. Structurally, a BT is a directed graph in which each
node represents either a leaf node or a composite node with the root
node at the top of the tree. A root node has no parent, a composite
node has both a parent and one or more child(ren), while a leaf node
has only a parent node.

Leaf nodes are terminal nodes with the ability to observe the
environment (condition nodes) or to act on the environment (action
nodes). A condition node returns either success or failure, by evaluating
the actual observations. An action node acts on the environment and
returns success if the action is completed, failure if the action is failed,
and running if the action is in progress.

Composite node organizes multiple nodes under a single parent to
achieve a unique behavior. For example, a sequence node is used to ex-
ecute its children nodes in sequence. A selector node is used to execute
its children nodes in order only if the previous nodes fail. A sequence
node returns success only if all the composed nodes return success,
otherwise it returns failure. On the other hand, a selector node returns
success as soon as one of its child nodes returns success, otherwise it
returns failure if all the composed nodes return failure. Both sequence
and selector nodes return running if one of their children nodes is in
progress. Figs. 2.a, 2.b, and 2.c show a pair of condition and action
composed by a selector node, a set of actions composed by a sequence
node, and a set of actions composed by a selector node, respectively.

The execution of a BT starts from the root node. Then, the root
node sends a tick (enabling signal) to its children such that nodes are
traversed from top to bottom and left to right. The tick flows from
parents to their child(ren) until a terminal node is reached. Then, the
terminal node is executed. Thus, with this process, the actions are
executed starting from the bottom left of the BT.

By the proper combination of leaf nodes (actions and condition
nodes), and composite nodes (sequence or selector nodes), a complex
BT structure can be modularly synthesized to effectively meet the goal
of a mission.

2.2. Finite state transition system

A transition system can describe discrete changes over the states of
a system and can be formally defined as:

Definition 1. A transition system is a tuple 𝑇𝑆 = (𝑆,𝛴, 𝛿, 𝑆𝑜, 𝐴𝑃 , 𝐿)

where 𝑆 is a finite set of states, 𝛴 is a finite set of actions, 𝛿 is a
transition relation 𝑆 𝑥 𝛴 → 2𝑆 , 𝑆𝑜 is an initial state ∈ 𝑆, 𝐴𝑃 is a set of
atomic propositions, and 𝐿 is a mapping function 𝐿 ∶ 𝑆 → 2𝐴𝑃 .

A run of 𝑇𝑆 is defined as a finite/infinite sequence of states 𝜎 =

𝑠0, 𝑠1,… where 𝑠0 = 𝑆0, 𝑠𝑘 ∈ 𝑆 and (𝑠𝑘, 𝑠𝑘+1) ∈ 𝛿 for all 𝑘 ≥ 0.
For the run 𝜎, a word 𝜔 = 𝐿(𝑠0), 𝐿(𝑠1),… is generated, where 𝐿(𝑠𝑘)

is a mapping function for the set of atomic propositions satisfied at

Fig. 2. Building blocks of Behavior Trees.

state 𝑠𝑘. From a state 𝑠 ∈ 𝑆 the number of successors could be one
(deterministic, i.e. |𝛿(𝑠, 𝛴)| = 1) or more than one (non-deterministic,
i.e., |𝛿(𝑠, 𝛴)| > 1). We assume the system under consideration is
non-blocking, i.e., |𝛿(𝑠, 𝛴)| ≥ 1.

Given a system expressed as a transition system, we define the
operator 𝐶𝑝𝑟𝑒(.) to facilitate the computation of the winning region as
follows:

Definition 2. Controlled predecessor 𝐶𝑃𝑟𝑒(𝑓 ) ∶= {𝑏 ∈ 𝑆 ∣ ∃𝑎 𝑠.𝑡. 𝛿(𝑏, 𝑎)

= {𝑓}}, where 𝐶𝑃𝑟𝑒(𝑓 ) returns the set 𝑏 that always reach state 𝑓 for
action 𝑎.

2.3. Fragmented linear temporal logic (F-LTL)

To state the mission objective of an agent at a high level, we
employ F-LTL (Wolff et al., 2013) that can describe properties like safe
navigation, immediate response, coverage, and surveillance. While LTL
is a more expressive language, compared to the F-LTL (has a polynomial
complexity), the complexity of synthesizing a control policy is doubly-
exponential in the length of the system (Pnueli & Rosner, 1989). The
syntax and semantics of F-LTL are as follow:

𝜙 = 𝜙𝐴 ∧ 𝜙𝑅 ∧ 𝜙𝐹 ∧ 𝜙𝐴𝐹 (1)

where

𝜙𝐴 =
⋀

𝑖∈𝐼𝐴

□𝑝𝑖

𝜙𝑅 =
⋀

𝑖∈𝐼𝑅

□(𝑞𝑖 ⟹ ○𝑝𝑖)

𝜙𝐹 =
⋀

𝑖∈𝐼𝐹

◊𝑝𝑖

𝜙𝐴𝐹 =
⋀

𝑖∈𝐼𝐴𝐹

□◊𝑝𝑖

In the above definition 𝑝𝑖 is an atomic proposition under the control
of the system, 𝑞𝑖 is an atomic proposition controlled by the envi-
ronment, 𝐼𝐴, 𝐼𝑅, 𝐼𝐹 , and 𝐼𝐴𝐹 are finite set of indexes. Here, the
sub-formulas □◊𝑝𝑖 and ◊𝑝𝑖 are assumed to describe reaching a des-
tination which can be achieved by proper motion planning over a
partitioned environment. Given a run 𝜎 = (𝑠0, 𝑠1,…), the semantics of
F-LTL is given as follows:

𝜎 ⊧ □𝑝1, if and only if ∀𝑖 𝑠𝑖 ⊧ 𝑝1 for

𝜎 ⊧ □(𝑞1 ⟹ ○𝑝1) if and only if ∀𝑖 𝑠𝑖 ̸⊧ 𝑞1 or

𝑠(𝑖+1) ⊧ 𝑝1

𝜎 ⊧ ◊𝑝1 if and only if ∃𝑖, 𝑠𝑖 ⊧ 𝑝1

𝜎 ⊧ □◊𝑝1 if and only if ∀𝑖 ≥ 0,∃𝑗 ≥ 𝑖, 𝑠𝑖 ⊧ 𝑝1

The satisfaction of 𝜙 by a transition system 𝑇𝑆 is denoted by 𝑇𝑆 ⊧

𝜙, where a run 𝜎 = (𝑠0, 𝑠1,…) meets all the sub-formulas of 𝜙.
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3. Problem formulation

In this section, we use BTs to synthesize a sequence of actions for
an autonomous agent over the following components:

1. The robot 𝑅 which is capable of performing a set of actions.
Here, the terms agent, robot, and vehicle are used interchange-
ably.

2. The set 𝐴 is the action bank, which contains a set of actions 𝐴𝑘,
𝑘 = 1,… , 𝐿, where 𝐿 ∈ N is the total number of actions that
the robot is capable of. We also define a set of preconditions for
each action, 𝑐𝑘𝑝, 𝑝 = 1,… , 𝑃 where 𝑃 ∈ N is the total number of
preconditions for action 𝐴𝑘. If all the preconditions of an action
are satisfied, then the execution of the action has an effect, 𝐸𝑘.
Here, the robot is assumed to perform a single action at a time.

3. The set 𝜙 includes missions 𝜙𝑗 , 𝑗 = 1,… , 𝑁 , where 𝑁 ∈ N is
the total number of missions. The mission 𝜙𝑗 is a conjunction
of sub-formulas, 𝜙𝑗𝑚, 𝑚 = 1,… , 𝑁𝑗 , expressed as F-LTL. Each
sub-formula 𝜙𝑗𝑚 has to be satisfied by the execution of a set of
actions and each action requires a set of conditions to be met.
The mission 𝜙𝑗 is completed when all sub-formulas are satisfied.
Here, we assume that the missions and the number of missions,
𝑁 , are not initially known to the robot. Instead, the missions are
streamed to the system and are served by the robot sequentially
for each of which a BT is synthesized in an online way.

4. To capture the interactions between the robot 𝑅 and the envi-
ronment, we define the transition system 𝑇𝐸 = (𝑆,𝐴, 𝛿, 𝑠0,𝛱,𝐿)

by partitioning the environment into 𝜉 bounded regions where
𝑆 = {𝑠0, 𝑠1,… , 𝑠𝜉} is a set of regions in R2; 𝐴 is the event/action
set; 𝛿 ∶ 𝑆 × 𝐴 → 2𝑆 is the transition relation; 𝑠0 is the region
that the robot 𝑅 initially is located; The environment is assumed
to be static and is represented by a set of atomic propositions
𝛱 = {𝜋0, 𝜋1,… , 𝜋𝜉}, where 𝜋𝑖 is true if and only if the robot 𝑅
is at region 𝑠𝑖, and 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the label function.

Given 𝑅, 𝐴, 𝜙, and 𝑇𝐸 , our objective is to synthesize and execute
BTs for the completion of missions expressed as F-LTL specifications.
This has been formally formulated in the following problem:

Specification-guided BT Synthesis and Execution Problem: Con-
sider 𝜙 as a set of streamed missions 𝜙𝑗 , 𝑗 = 1,… , 𝑛 which are described
by F-LTL specifications defined over 𝛱 . Also, consider the robot 𝑅, which is
capable of executing the actions 𝐴𝑘, 𝑘 = 1,… , 𝐿, and its interactions within
the environment is captured by 𝑇𝐸 . For each of the missions 𝜙𝑗 , (1) Identify
the set of regions 𝑊𝑗 from which the robot can achieve 𝜙𝑗 . (2) Synthesize
a BT for coordinating the robot 𝑅 such that 𝐵𝑇𝑗 ⊧ 𝜙𝑗 .

4. Automatic behavior tree synthesis and execution

To address the Specification-guided BT Synthesis and Execution Prob-
lem, we propose a framework that generates a high-level plan for the
received missions. Fig. 1 shows our proposed framework which has
three folds: the synthesis of BTs, the computation of the winning set,
and the execution of BTs to satisfy the missions. Algorithm 1, receives
the missions streamed to the robot and calls function HighLevelBT-
Synthesis to synthesizing 𝐵𝑇𝑗 (Line 4). Consider the mission 𝜙𝑗

given as an F-LTL. With a divide-and-conquer strategy, we decompose
𝜙𝑗 into sub-formulas 𝜙𝑗𝑚 in the form of □𝐶𝑗𝑚, ◊𝐶𝑗𝑚, □◊𝐶𝑗𝑚, or
□(𝐶 ′

𝑗𝑚
⟹ ○𝐶𝑗𝑚), where 𝐶 ′

𝑗𝑚
and 𝐶𝑗𝑚 are atomic propositions

(showing accomplishment of an action or satisfying a condition). Then,
for each mission, 𝜙𝑗 , a BT is synthesized by satisfying sub-formulas 𝜙𝑗𝑚.
Once the BTs are synthesized, i.e., the high level planning is completed,
the winning set, 𝑊𝑗 , needs to be computed (Line 5). If the winning
set 𝑊𝑗 is empty, then 𝐵𝑇𝑗 is set to null, and the Mission Controller
will be ready to receive a new mission (Lines 6–9). Otherwise, the
synthesized BT will be executed (Line 10). The components of the
proposed framework are discussed next.

Algorithm 1: MissionController

1 Main()
2 while 𝑇 𝑟𝑢𝑒 do
3 𝜙𝑗 ← ReciveMission()
4 𝐵𝑇𝑗 ← HighLevelBTSynthesis(𝜙𝑗)
5 𝑊𝑗 , 𝛤𝑗𝑢 = GetWinningRegion(𝜙𝑗 , 𝐵𝑇𝑗 )

6 if 𝑊𝑗 == ∅ then
7 𝐵𝑇𝑗 ← ∅ // unrealizable
8 continue

9 end
10 ExecuteBT(𝐵𝑇𝑗 , 𝛤𝑗𝑢)

11 end

Fig. 3. Behavior tree 𝐵𝑇𝑗 which is formed by the sequence of 𝐵𝑇𝑗𝑚, 𝑚 = 1,… ,𝑀𝑗 , to
meet the mission 𝜙𝑗 .

4.1. High-level behavior tree based planner synthesis

Here, we will discuss the process of generating a BT for a mission
𝜙𝑗 . Consider the F-LTL formula 𝜙𝑗 =

⋀𝑀𝑗

𝑚=1
𝜙𝑗𝑚. Also, assume that there

exist behavior trees 𝐵𝑇𝑗𝑚, 𝑚 = 1⋯𝑀𝑗 , such that 𝐵𝑇𝑗𝑚 ⊧ 𝜙𝑗𝑚 (we
say 𝐵𝑇𝑗𝑚 ⊧ 𝜙𝑗𝑚 if the execution of 𝐵𝑇𝑗𝑚 satisfies 𝜙𝑗𝑚). Then, 𝐵𝑇𝑗
generated by the sequence of 𝐵𝑇𝑗1, ⋯, 𝐵𝑇𝑗𝑀𝑗

, as shown in Fig. 3,
satisfies 𝜙𝑗 . Hence, the remaining problem is to synthesize 𝐵𝑇𝑗𝑚, 𝑗 =

1,… ,𝑀𝑗 , which are synthesized by Algorithm 2 (Lines 2–17). Note that
we need to only synthesize sub-trees for sub-formulas of type ◊𝐶𝑗𝑚

and □◊𝐶𝑗𝑚. This is due to the fact that specifications of types □𝐶𝑗𝑚

and □(𝐶 ′
𝑗𝑚

⟹ ○𝐶𝑗𝑚) have to be always true, and hence, they do
not need a BT, and instead they will be taken into account during
the computation of the winning set 𝑊𝑗 . Algorithm 2 implements this
process. It starts by synthesizing sub-formulas of type ◊𝐶𝑗𝑚 (Lines 4–
8), followed by synthesizing sub-formulas of type □◊𝐶𝑗𝑚 (Lines 9–12).
To create 𝐵𝑇𝑗 for the mission 𝜙𝑗 , each synthesized BTs are composed
using a sequence node (Lines 7 and 11). Unlike the specification of
type □◊𝐶𝑗𝑚, the BT generated for specification of ◊𝐶𝑗𝑚 should be
executed only one time, for which we have introduced global variables
𝑂𝑛𝑒𝑇 𝑖𝑚𝑒𝑗𝑚, 𝑚 ∈ 𝐼𝐹 that are initially set to 𝐹𝑎𝑙𝑠𝑒, and then, will be
reset/disabled after execution of each sub-tree of type ◊𝐶𝑗𝑚 (see Line
6). Further, we introduced a mechanism to handle a conflict between
BTs (Lines 13–16). For this purpose, if the last action of 𝐵𝑇𝑗𝑚 violates
the precondition of the first action of 𝐵𝑇𝑗(𝑚+1), then there is a conflict.
In order to resolve conflicts, the sequence of the BTs has to be switched,
i.e., the priority of 𝐵𝑇𝑗𝑚 has to be increased by shifting it to the left
in the sequence node to be executed after 𝐵𝑇𝑗(𝑚+1). To achieve this,
the function 𝙲𝚘𝚗𝚏𝚕𝚒𝚌𝚝(.) identifies the BT that is in conflict (Line 14)
and the function 𝙸𝚗𝚌𝚛𝚎𝚊𝚜𝚎𝙿𝚛𝚒𝚘𝚛𝚒𝚝𝚢(.) (Line 15) increases the priority
of 𝐵𝑇𝑗𝑚. This process is repeated until 𝐵𝑇𝑗 is conflict-free.
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Algorithm 2: HighLevelBTSynthesis

1 Function HighLevelBTSynthesis(𝜙𝑗):
2 𝑜𝑛𝑒𝑡𝑖𝑚𝑒𝑗𝑚 ← 𝐹𝑎𝑙𝑠𝑒 for 𝑚 ∈ 𝐼𝐹𝑗

3 𝐵𝑇𝑗 ← ∅

4 for 𝑚 ∈ 𝐼𝐹𝑗
do

5 𝐵𝑇𝑗𝑚 ← AddBTforSubFormula(𝜙𝑗𝑚)

6 𝐵𝑇𝑗𝑚 ← Sequence(𝐵𝑇𝑗 , 𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑂𝑛𝑒𝑇 𝑖𝑚𝑒)

7 𝐵𝑇𝑗 ← Sequence(𝐵𝑇𝑗 , 𝐵𝑇𝑗𝑚)

8 end
9 for 𝑚 ∈ 𝐼𝐴𝐹 𝑗

do

10 𝐵𝑇𝑗𝑚 ← AddBTforSubFormula(𝜙𝑗𝑚)

11 𝐵𝑇𝑗 ← Sequence(𝐵𝑇𝑗 , 𝐵𝑇𝑗𝑚)

12 end
13 do
14 𝑐𝑜𝑛𝑓 _𝑓𝑙𝑎𝑔, 𝐵𝑇𝑗𝑚 ← Conflict(𝐵𝑇𝑗 )
15 𝐵𝑇𝑗 ← IncreasePriority(𝐵𝑇𝑗𝑚)

16 while (𝑐𝑜𝑛𝑓 _𝑓𝑙𝑎𝑔 == 𝑇 𝑟𝑢𝑒)

17 return 𝐵𝑇𝑗

Algorithm 3: AddBTforSubFormula

1 Function AddBTforSubFormula(𝜙𝑗𝑚):
2 𝐵𝑇𝑗𝑚 ← getcondtion(𝜙𝑗𝑚) // set 𝐵𝑇𝑗𝑚 to 𝐶𝑗𝑚

3 ExpandBT(𝐵𝑇𝑗𝑚)
4 if 𝑇 𝑦𝑝𝑒(𝐶𝑗𝑚) == 𝑇 𝑦𝑝𝑒(◊𝐶𝑗𝑚) then
5 𝐵𝑇𝑗𝑚 ← Selector(𝑂𝑛𝑒𝑇𝑚𝑒𝑗𝑚, 𝐵𝑇𝑗𝑚)

6 end
7 return 𝐵𝑇𝑗𝑚

Fig. 4. 𝐵𝑇1 represents a specification of type ◊𝐶𝑗𝑚, followed by BTs for other types
of formulas. The action 𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑂𝑛𝑒𝑇 𝑖𝑚𝑒 disables the 𝑂𝑛𝑒𝑇 𝑖𝑚𝑒 flag to ensure that 𝐵𝑇1
will be executed only one time.

Called by Algorithm 2, Algorithm 3 initializes 𝐵𝑇𝑗𝑚 with the con-
dition 𝐶𝑗𝑚 for the sub-formula 𝜙𝑗𝑚 (Line 2) and synthesizes the corre-
sponding BT by calling the function 𝙴𝚡𝚙𝚊𝚗𝚍𝙱𝚃(.) (Line 3). To enforce
the execution of a sub-tree for type ◊𝐶𝑗𝑚 only once, 𝐵𝑇𝑗𝑚 is composed
with a boolean variable 𝑜𝑛𝑒𝑡𝑖𝑚𝑒𝑗𝑚 by a 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 node (Lines 4–6). The
variable 𝑂𝑛𝑒𝑇 𝑖𝑚𝑒𝑗𝑚 is initially set to 𝐹𝑎𝑙𝑠𝑒 to allow the execution of
𝐵𝑇𝑗𝑚, and then, the action 𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑂𝑛𝑒𝑇 𝑖𝑚𝑒 sets 𝑂𝑛𝑒𝑇 𝑖𝑚𝑒𝑗𝑚 to 𝑇 𝑟𝑢𝑒

(Line 6 of Alg. 2) after the execution of that specific sub-tree for the
first time. Since the composition is done by a selector node, setting
𝑂𝑛𝑒𝑇 𝑖𝑚𝑒𝑗𝑚 to 𝑇 𝑟𝑢𝑒 prevents subsequent execution of the corresponding
sub-tree. Fig. 4 shows the resulting BTs following Algorithm 3.

Invoked by Algorithm 3, Algorithm 4 synthesizes BT’s for each
sub-formula’s 𝜙𝑗𝑚. In a 𝑊 ℎ𝑖𝑙𝑒 loop, by identifying the unmet con-
ditions, 𝐵𝑇𝑗𝑚 is modified in a recursive (backward) way until the
synthesis of the BT is completed (Lines 2–8), i.e., the aforementioned
backward process ends up with an action whose preconditions are
already met (from which later we can start execution in a forward
way). To implement this backward process, we use the function Get-
CondtionsToExpand(.) to pinpoint the cause, 𝑐𝑓 (Line 3) and the
function ExpandSubBT(.) to synthesize a suitable sub-tree to resolve
the issue (Line 4). However, similar to the conflict between 𝐵𝑇𝑗𝑚’s,

the addition of the new sub-tree may introduce a conflict that has to
be resolved by adjusting the priory (Lines 5–7) of the newly added
sub-tree. For example, if the goal is to close a door and there are
two sub-trees: one with the action 𝑐𝑙𝑜𝑠𝑒𝑑𝑜𝑜𝑟 and the other with the
action 𝑜𝑝𝑒𝑛𝑑𝑜𝑜𝑟. The sub-tree with the action 𝑜𝑝𝑒𝑛𝑑𝑜𝑜𝑟 should come
first, followed by the sub-tree with the action 𝑐𝑙𝑜𝑠𝑒𝑑𝑜𝑜𝑟. If that is not
the case, the priorities of the sub-trees should be adjusted.

Algorithm 4: ExpandBT

1 Function ExpandBT(𝐵𝑇𝑗𝑚):
2 do
3 𝑐𝑓 ← GetConditionToExpand(𝐵𝑇𝑗𝑚)

// Identify the cause for not being
executable

4 𝐵𝑇𝑗𝑚, 𝐵𝑇𝑠𝑢𝑏𝑡𝑟𝑒𝑒 ← ExpandSubBT(𝐵𝑇𝑗𝑚, 𝑐𝑓 )
5 while Conflict(𝐵𝑇𝑗𝑚) do
6 𝐵𝑇𝑗𝑚 ← IncreasePriority(𝐵𝑇𝑠𝑢𝑏𝑡𝑟𝑒𝑒)
7 end

8 while (¬IsSynthesisCompeleted(𝐵𝑇𝑗𝑚))

4.2. Computing winning regions for the system

Before executing the synthesized BTs for the mission 𝜙𝑗 , we should
first compute the winning set 𝑊𝑗 , which consists of states from where
there exists a sequence of actions that satisfies the 𝜙𝑗 .

Algorithms 5–8 compute the winning sets for all types of sub-
formulas whose intersection results in 𝑊𝑗 .

Consider sub-formulas of type □(𝐶 ′
𝑗𝑚

⟹ ○𝐶𝑗𝑚) in 𝜙𝑗 which re-
quire the robot to respond the current condition 𝐶 ′

𝑗𝑚
by taking an action

that meets 𝐶𝑗𝑚. Putting all together, we form 𝜙𝑅𝑗
=

⋀
𝑖∈𝐼𝑅

□(𝐶 ′
𝑗𝑚

⟹

○𝐶𝑗𝑚).
Algorithm 5 computes the winning set, 𝑊𝑅𝑗

, for 𝜙𝑅𝑗
. In Line 2, the

variable 𝑊𝑅𝑗
is set to 𝑆 (the whole states of 𝑇𝐸), which is pruned by

removing all states that are violating 𝜙𝑅𝑗
(Line 3–10). For each sub-

formula, 𝜙𝑗𝑚, the algorithm computes [[𝐶 ′
𝑗𝑚
]]𝑊𝑅𝑗

= {𝑞 ∈ 𝑊𝑅𝑗
∣ 𝑞 ⊧ 𝐶 ′

𝑗𝑚
},

as the set of states that meet 𝐶 ′
𝑗𝑚
(Line 4). Then, the algorithm removes

those states from which there is no transition to a state that meets 𝐶𝑗𝑚

(Lines 5–9). After the termination of the loop, the states that satisfy 𝜙𝑅𝑗

are returned (Line 11).

Algorithm 5: Response

1 Function Response(𝜙𝑅):
2 𝑊𝑅𝑗

← 𝑆

3 for 𝜙𝑗𝑚 ∈ 𝜙𝑅𝑗
do

4 𝑞 ← [[𝐶 ′
𝑗𝑚
]]𝑊𝑅𝑗

// all states in which 𝐶 ′
𝑗𝑚

can

be met.
5 for 𝑞𝑘 ∈ 𝑞 do
6 if ∀𝑎 ∈ 𝐴:𝛿(𝑞𝑘, 𝑎) ∉ [[𝐶𝑗𝑚]] then
7 𝑊𝑅𝑗

= 𝑊𝑅𝑗
/ 𝑞𝑘 // remove state 𝑞𝑘 from

𝑊𝑅𝑗

8 end

9 end

10 end
11 return 𝑊𝑅𝑗

Algorithm 6 computes 𝑊𝐴𝑗
as the set of states that meet the safety

requirement 𝜙𝐴𝑗
, where 𝜙𝐴𝑗

=
⋀

𝑖∈𝐼𝐴
□𝐶𝑗𝑚. In Line 2, the variable 𝑊𝐴𝑗

is set to 𝑊𝑅𝑗
, which was computed in Algorithm 5. The set 𝑊𝐴𝑗

is then
iteratively updated by removing states that are not safe (Lines 3–10).
For each sub-formula, we set the variable 𝑆𝑝𝑟𝑒 to the set of states that
satisfy 𝐶𝑗𝑚 (Line 4). Then, we compute 𝐶𝑝𝑟𝑒𝑑(𝑆𝑝𝑟𝑒) which contains the
states in which the agent can force a transition to a safe state under any
environment action or non-determinism followed by updating 𝑆𝑝𝑟𝑒 by
removing the states that are not in 𝐶𝑝𝑟𝑒𝑑(𝑆𝑝𝑟𝑒) (Line 7). This process
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is repeated until all the states can transition to an unsafe region are
removed (Lines 5–8). In Line 9, the set 𝑊𝐴𝑗

is updated by excluding
unsafe states. At the end, the states that satisfy 𝜙𝐴𝑗

are returned (Line
11).

Algorithm 6: Safety

1 Function Safety(𝜙𝐴𝑗
,𝑊𝑅𝑗

):

2 𝑊𝐴𝑗
← 𝑊𝑅𝑗

3 for 𝜙𝑗𝑚 ∈ 𝜙𝐴𝑗
do

4 𝑆𝑝𝑟𝑒 ← [[𝐶𝑗𝑚]]𝑊𝐴𝑗

5 do
6 𝑡𝑒𝑚𝑝 = 𝑆𝑝𝑟𝑒

7 𝑆𝑝𝑟𝑒 = 𝑆𝑝𝑟𝑒 ∩ Cpre(𝑆𝑝𝑟𝑒)

8 while 𝑆𝑝𝑟𝑒 ≠ 𝑡𝑒𝑚𝑝

9 𝑊𝐴𝑗
← 𝑊𝐴𝑗

∩ 𝑆𝑝𝑟𝑒

10 end
11 return 𝑊𝐴𝑗

Next, we will compute the states that meet the specifications 𝜙𝐹𝑗
=⋀

𝑖∈𝐼𝐹
◊𝐶𝑗𝑚, and 𝜙𝐴𝐹 𝑗

=
⋀

𝑖∈𝐼𝐴𝐹𝑗
□◊𝐶𝑗𝑚. Unlike 𝜙𝐴𝑗

and 𝜙𝑅𝑗
, specifica-

tions 𝜙𝐹𝑗
and 𝜙𝐴𝐹 𝑗

have been taken into account during 𝐵𝑇𝑗 synthesis
in Algorithm 2. Assuming that all sub-formulas of type ◊𝐶𝑗𝑚 or□◊𝐶𝑗𝑚

describe reaching a destination, to compute the winning set for these
specifications, we need to extract the 𝑀𝑜𝑣𝑒𝑇 𝑜() actions from 𝐵𝑇𝑗 by
the function 𝙼𝚘𝚟𝚎𝚃𝚘𝙴𝚡𝚙𝚊𝚗𝚍(.) and sequence them according to the order
that they will be executed by 𝐵𝑇𝑗 (Line 2 of Algorithm 7).

A similar procedure is followed to compute the reachable states
for the action 𝑀𝑜𝑣𝑒𝑇 𝑜() that corresponds to specifications of type
◊𝐶𝑗𝑚 or □◊𝐶𝑗𝑚. The only difference is that for 𝑀𝑜𝑣𝑒𝑇 𝑜() actions
that correspond to the specifications of type □◊𝐶𝑗𝑚, the robot should
visit the target state(s) repeatedly. This difference can be captured by
solving an additional reachability problem from the target states of the
last 𝑀𝑜𝑣𝑒𝑇 𝑜() action to the target states of the first 𝑀𝑜𝑣𝑒𝑇 𝑜() action
that corresponds to a specification of type □◊𝐶𝑗𝑚. This is done by the
function 𝚁𝚎𝚝𝚞𝚛𝚗𝚃𝚘𝙵𝚒𝚛𝚜𝚝(.) which adds the return path to the sequence
of 𝑀𝑜𝑣𝑒𝑇 𝑜() actions (Line 3 of Algorithm 7). Then, we compute the
winning reachable states, 𝑊𝑗𝑢, along with the reachable space, 𝛤𝑗𝑢, for
each subsequent 𝑀𝑜𝑣𝑒𝑇 𝑜(.) action target state by invoking Algorithm
8 (Lines 5–14). Initially 𝑠𝑠𝑡𝑎𝑟𝑡 is set to 𝑠0 (Line 7), while 𝑠𝑛𝑒𝑥𝑡 is set
to the target state of the first 𝑀𝑜𝑣𝑒𝑇 𝑜(.) action (Line 11). In subse-
quent iterations, 𝑠𝑠𝑡𝑎𝑟𝑡 is set to the desired target state of the previous
𝑀𝑜𝑣𝑒𝑇 𝑜(.) action to keep track of the robot’s position (Line 9), while
𝑠𝑛𝑒𝑥𝑡 is set to the target state of the current 𝑀𝑜𝑣𝑒𝑇 𝑜(.) action (Line 11).
At the 𝑚th iteration, we compute reachable states, 𝑊𝑗𝑢, and reachable
space 𝛤𝑗𝑢[𝑚] for each 𝑀𝑜𝑣𝑒𝑇 𝑜(.) action (Line 12), where 𝛤𝑗𝑢[𝑚] can be
thought of as an array of reachable states for each single-step move (to
be calculated in Algorithm 8). We then accumulate the reachable states
for all𝑀𝑜𝑣𝑒𝑇 𝑜(.) actions to calculate the winning reachable states (Line
13).

Algorithm 8 computes the states that are reachable from 𝑠𝑛𝑒𝑥𝑡 in
a backward way and verifies whether there is a viable path between
𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑛𝑒𝑥𝑡. For this purpose, we set 𝑆𝑐𝑢𝑟 = {𝑠𝑛𝑒𝑥𝑡} and then, using
the operator 𝐶𝑝𝑟𝑒, we iteratively update 𝑆𝑐𝑢𝑟 with one-step backward
reachable states (Lines 5–13). In parallel, we also trace the states in
each step by storing them in 𝛤 . During this backward reachability
computation, if we reach 𝑠𝑠𝑡𝑎𝑟𝑡, then the algorithm terminates returning
𝑆𝑐𝑢𝑟 and 𝛤 (Lines 10–12). Otherwise, the algorithm continues until all
reachable states are computed, after which if still 𝑠𝑠𝑡𝑎𝑟𝑡 ∉ 𝑆𝑐𝑢𝑟, then the
algorithm terminates returning ∅, which implies that there is no viable
path between 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑛𝑒𝑥𝑡.

Algorithm 9 computes the winning regions by invoking Algorithms
5–8. The set of allowable states, 𝑆, are pruned to meet specifications
corresponding to 𝜙𝑅𝑗

(Lines 2), 𝜙𝐴𝑗
(Lines 3), as well as 𝜙𝐹𝑗

and 𝜙𝐴𝐹𝑗

(Line 4). The synthesized BT is executable if the initial state of the robot
is in the winning region returning 𝑊𝑗 and 𝛤𝑗𝑢 (Lines 5–7). Otherwise
𝐵𝑇𝑗 is not executable and the algorithm returns ∅ (Lines 7–9).

Algorithm 7: Reachable

1 Function Reachable(𝐵𝑇𝑗 ,𝑊𝐴𝑗
):

2 𝑀𝑜𝑣𝑒𝑗𝑢 = [MoveToExpanded(𝐵𝑇𝑗 )]
3 𝑀𝑜𝑣𝑒𝑗𝑢𝐸

= [𝑀𝑜𝑣𝑒𝑗𝑢,ReturnToFirstAF(𝐵𝑇𝑗 )]

4 𝑊𝑗𝑢 ← ∅

5 for 𝑚 = 0 𝑡𝑜 𝑚 ≤ |𝑀𝑜𝑣𝑒𝑗𝑢𝐸
|) do

6 if m==0 then
7 𝑠𝑠𝑡𝑎𝑟𝑡 = 𝑠0
8 else
9 𝑠𝑠𝑡𝑎𝑟𝑡 ← GetTarget(𝑀𝑜𝑣𝑒𝑗𝑢𝐸

[𝑚 − 1],𝑊𝐴𝑗
)

10 end
11 𝑠𝑛𝑒𝑥𝑡 ← GetTarget(𝑀𝑜𝑣𝑒𝑗𝑢𝐸

[𝑚],𝑊𝐴𝑗
)

12 𝑊𝑗𝑖, 𝛤𝑗𝑢[𝑚] ← ReachablePath(𝑆𝑠𝑡𝑎𝑟𝑡, 𝑆𝑛𝑒𝑥𝑡)

13 𝑊𝑗𝑢 ← 𝑊𝑗𝑢 ∪𝑊𝑗𝑖

14 end
15 return 𝑊𝑗𝑢, 𝛤𝑗𝑢

Algorithm 8: ReachablePath

1 Function ReachablePath(𝑠𝑠𝑡𝑎𝑟𝑡, 𝑠𝑛𝑒𝑥𝑡,𝑊𝐴𝑗
):

2 𝑚 = 0

3 𝑆𝑐𝑢𝑟 = {𝑠𝑛𝑒𝑥𝑡}

4 𝛤 [𝑚] = {𝑠𝑛𝑒𝑥𝑡}

5 do
6 𝑚 = 𝑚 + 1

7 𝑆𝑝𝑟𝑒𝑣 = 𝑆𝑐𝑢𝑟

8 𝛤 [𝑚] = 𝐶𝑝𝑟𝑒(𝛤 [𝑚 − 1])𝑊𝐴𝑗

9 𝑆𝑐𝑢𝑟 = 𝑆𝑐𝑢𝑟 ∪ 𝛤 [𝑚]

10 if 𝑠𝑠𝑡𝑎𝑟𝑡 ∈ 𝑆𝑐𝑢𝑟 then
11 return 𝑆𝑐𝑢𝑟, 𝛤

12 end

13 while 𝑆𝑝𝑟𝑒𝑣 ≠ 𝑆𝑐𝑢𝑟

14 return ∅

Algorithm 9: GetWinningRegion

1 Function GetWinningRegion(𝜙𝑗 , 𝐵𝑇𝑗):
2 𝑊𝑅𝑗

← 𝑆 ∩ Response(𝜙𝑅𝑖
)

3 𝑊𝐴𝑗
← 𝑆 ∩ Safety(𝜙𝐴𝑗

,𝑊𝑅𝑗
)

4 𝑊𝑗 , 𝛤𝑗𝑢 ← Reachable(𝐵𝑇𝑗 ,𝑊𝐴𝑗
)

5 if 𝑊𝑗 ∈ 𝑠𝑜 then
6 return 𝑊𝑗 , 𝛤𝑗𝑢

7 else
8 return ∅ // unrealizable
9 end

4.3. Executing BT

When the winning set, 𝑊𝑗 , is not 𝑁𝑈𝐿𝐿, Algorithm 10 executes
the generated BT, 𝐵𝑇𝑗 , to satisfy the mission 𝜙𝑗 (Lines 2–10). Since
only the specifications of type ◊𝐶𝑗𝑚 and □◊𝐶𝑗𝑚 are directly used to
synthesize the BT, there are a total of 𝐼 = |𝐼𝐹 | + |𝐼𝐴𝐹 | sub-BTs to
execute. Therefore, to execute 𝐵𝑇𝑗 , in a for-loop (Lines 5–9), each sub-
BT is executed to meet the conditions, 𝐶𝑗𝑚 (Lines 6–8). After executing
all sub-BTs 𝐵𝑇𝑗𝑚 of 𝐵𝑇𝑗 , the 𝑂𝑛𝑒𝑇 𝑖𝑚𝑒𝑗𝑚 flags which correspond to the
specification of type ◊𝐶𝑗𝑚 are disabled (the function 𝙳𝚒𝚜𝚊𝚋𝚕𝚎𝙾𝚗𝚎𝚃𝚒𝚖𝚎()

in Algorithm 2 disables BT’s specifications of type ◊𝐶𝑗𝑚), whereas the
sub-BTs that correspond to the specifications of type □◊𝐶𝑗𝑚 should
continue executing until a new mission is introduced to the Robot.
Here we assume that when a new mission is introduced, the previous
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Fig. 5. Algorithms 1–10 describes the proposed framework for synthesis and execution
of BTs for achieving missions given in the form of F-LTL specifications.

mission has to be terminated when all sub-BTs of the previous mission

are executed at least once.

Algorithm 10: ExecuteBT

1 Function ExecuteBT(𝐵𝑇𝑗 , 𝛤𝑗𝑢):
2 𝐼𝑗 = |𝐼𝐹𝑗 | + |𝐼𝐴𝐹 𝑗

|
3 𝑆𝑢𝑐𝑒𝑠𝑠𝑗𝑚 = 𝐹𝑎𝑙𝑠𝑒; 𝑚 = 1,⋯ , 𝐼

4 do
5 for (𝑚 = 1 𝑡𝑜 𝑚 ≤ 𝐼𝑗) do
6 while ¬𝑆𝑢𝑐𝑒𝑠𝑠𝑗𝑚 do
7 𝑆𝑢𝑐𝑒𝑠𝑠𝑗𝑚 = Execute(𝐵𝑇𝑗𝑚, 𝛤𝑗𝑢)

8 end

9 end

10 while (NoNewMission())

The overall flow of the algorithms is shown in Fig. 5. Upon receiving

a mission, Algorithm 1, synthesizes a BT, computes its winning set and

space, and finally executes the synthesized BT to satisfy the mission

goals. Algorithm 2 synthesizes the BT for each mission 𝜙𝑗 by invoking

Algorithms 3 and 4 to synthesize sub-BTs for specifications of type

◊𝐶𝑗𝑚 and □◊𝐶𝑗𝑚. Based on the generated BT, Algorithm 9 computes

the wining set, 𝑊𝑗 , by invoking Algorithms 5–8. Then, if the winning

set 𝑊𝑗 is not null, Algorithm 10 executes the synthesized BT to meet

the mission goals.

5. Properties of the proposed method

This section provides the proof of correctness and the analysis of
the computational complexity of the proposed method.

5.1. Proof of correctness

Next, we show that the proposed method synthesizes a BT, 𝐵𝑗 , and
computes the winning set, 𝑊𝑗 , to meet the mission goals for 𝜙𝑗 . Here,
we assume that for each goal, there exists a sequence of actions that
can be executed by the robot leading to the achievement of the goals
of missions.

Lemma 1. Algorithms 2–4 synthesize a BT that can satisfy the specifica-
tions of type ◊𝐶𝑗𝑚 and □◊𝐶𝑗𝑚 for mission 𝜙𝑗 if 𝑊𝑗 ≠ ∅.

Proof. Consider a specification of type ◊𝐶𝑗𝑚 or □◊𝐶𝑗𝑚 in 𝜙𝑗 and
assume that there exists a sequence of actions that meets 𝐶𝑗𝑚, Algo-
rithm 4 synthesizes a sub-BT to meet 𝐶𝑗𝑚. Algorithm 3 expands the
generated BT for 𝐶𝑗𝑚 to meet a specification of type ◊𝐶𝑗𝑚 by adding
the flag 𝑂𝑛𝑒𝑇 𝑖𝑚𝑒𝑗𝑚. Finally, Algorithm 2, sequences all sub-BTs for
specifications of type ◊𝐶𝑗𝑚 and □◊𝐶𝑗𝑚. Assuming that all actions are
executable in finite time and 𝑊𝑗 ≠ ∅, by construction, executing the
synthesized BT meets the goals ◊𝐶𝑗𝑚 and □◊𝐶𝑗𝑚. □

Lemma 2. Algorithm 6 terminates returning the set of states, 𝑊𝐴𝑗
, that

satisfies the goals for specification of type □𝐶𝑗𝑚.

Proof. Algorithm 6 computes the set of states that meets the spec-
ification of type □𝐶𝑗𝑚. Here, we will prove the termination of the
loop in Lines 5–8 in Algorithm 6 by showing that 𝐶𝑝𝑟𝑒(.) is monotone.
Let, 𝑆1 ⊆ 𝑆2. Then 𝐶𝑝𝑟𝑒(𝑆2) = 𝐶𝑝𝑟𝑒(𝑆1) ∪ 𝐶𝑝𝑟𝑒(𝑆2∖𝑆1), implying
that 𝐶𝑝𝑟𝑒(𝑆1) ⊆ 𝐶𝑝𝑟𝑒(𝑆2). Thus 𝐶𝑝𝑟𝑒(.) is a monotonically increasing
function. Since 𝐶𝑝𝑟𝑒(.) is a monotone function and the set, 𝑆, is finite,
the loop for searching and removing states that do not meet □𝐶𝑗𝑚

terminates after a finite number of iterations. □

Lemma 3. Algorithm 8 terminates returning all reachable states and paths
between 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑛𝑒𝑥𝑡.

Proof. Algorithm 8 computes the set of states that are reachable from
𝑠𝑛𝑒𝑥𝑡 and paths between 𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑛𝑒𝑥𝑡 over the set 𝑆. Since 𝐶𝑝𝑟𝑒(.) is
monotone (See Lemma 2 for the proof) and the set, 𝑆, is finite, the loop
in Lines 5–13 of Algorithm 8 for finding the reachable states and paths
terminates after a finite number of iterations. □

Theorem 1. The proposed BT synthesis and execution approach, described
in Algorithms 1–10, addresses the BT Synthesis and Execution Problem for
F-LTL mission specifications, 𝜙𝑗 , if 𝑊𝑗 ≠ ∅.

Proof. Algorithm 1 sequentially invokes Algorithms 2–4 for synthe-
sis of the BT, Algorithms 5–9 for computation of winning set, and
Algorithm 10 for the execution of the synthesized BT. According to
Lemma 1, the synthesized BT by Algorithms 2-4 can meet the spec-
ification of type ◊𝐶𝑗𝑚 and □◊𝐶𝑗𝑚 if 𝑊𝑗 ≠ ∅. On the other hand,
Algorithms 5–9 compute the winning region, 𝑊𝑗 that meets the F-
LTL specification 𝜙𝑗 by a finite number of iterations of searches over
a finite space (see Lemmas 2 and 3). Therefore, by construction, if
𝑊𝑗 ≠ ∅, execution of the synthesized BT by Algorithm 10 leads to the
satisfaction of 𝜙𝑗 addressing the BT Synthesis and Execution Problem for
F-LTL specification. □

Under this assumption, each mission goal can be achieved by a
sequence of actions, we always can find a BT to complete the mission
leading as stated in the following corollary.
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Table 1
Action bank for the robot, 𝑅, where action 𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝) guides the robot 𝑅 to position
𝑝, 𝑃 𝑙𝑎𝑐𝑒(𝑂, 𝑝) delivers an object 𝑂 to a target location 𝑇 , 𝑃 𝑖𝑐𝑘(𝑂, 𝑝) picks an object 𝑂
from position 𝑝, and 𝑇 𝑎𝑘𝑒𝐼𝑚𝑎𝑔𝑒(𝑝) takes an image at location 𝑝.

Robot Action Bank

Actions Description Precondition Effect

𝐴1 MoveTo(𝑝) – 𝑅 𝑎𝑡 𝑝

𝐴2 Pick(𝑂, 𝑝) 𝑎𝑟𝑚 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑂 𝑖𝑠 𝑎𝑡 𝑅 𝑎𝑟𝑚

𝑅 𝑖𝑠 𝑛𝑒𝑎𝑟 𝑝

𝐴3 Place(𝑂, 𝑇 ) 𝑅 𝑎𝑡 𝑇 𝑜 𝑎𝑡 𝑇

𝑂 𝑖𝑠 𝑎𝑡 𝑅 𝑎𝑟𝑚

𝐴4 TakeImage(𝑝) 𝑅 𝑎𝑡 𝑝 𝑇 𝐼 𝑎𝑡 𝑝

Corollary 1. Conducting Algorithms 1–9 enumeratively over all possible
sequences of actions addresses the BT Synthesis and Execution Problem for
F-LTL specification.

5.2. Computational complexity analysis

The complexity analysis of the proposed framework can be broken
down into the complexity of the BT synthesis module (Algorithms 2–
4), the winning set computation module (Algorithms 5–9), and the BT
execution module (Algorithm 10).

For the complexity analysis of the BT synthesis module, we start
by considering Algorithm 4 that synthesizes a sub-BT, 𝐵𝑇𝑗𝑚, for a sub-
formula, 𝜙𝑗𝑚. As shown in Algorithm 4, the synthesis stage starts by
determining unmet conditions (Line 3 of Algorithm 4) and constructing
the sub-tree that meets the condition (Line 4 of Algorithm 4). Assuming
a lookup table containing the conditions and their corresponding ac-
tions with preconditions (the elements of the sub-tree) is available, the
complexity for the synthesis of a sub-tree is (1). Then, repeating this
process for all unmet conditions and also handling possible conflicts in
every iteration (Lines 5–7) which in the worst case need to be checked
for conflict with 𝑛 − 1 sub-trees, where 𝑛 is the maximum number of
actions that are needed to complete a task, the complexity of Algorithm
4 is (𝑛2). Since a mission is composed of totally 𝐼𝑗 = |𝐼𝐹𝑗 |+ |𝐼𝐴𝐹 𝑗

| sub-
BTs (Lines 4–12 of Algorithm 2), and each sub-BT has to be checked
for possible conflicts with other sub-BTs, the synthesis module has a

complexity of 
(
𝐼2
𝑗
𝑛2
)
.

The computational complexity of the winning set via Algorithms 5-
9 is dominated by the computation of safe states (Algorithm 6) and
reachable states (Algorithms 7 and 8). In Lemma 2, it is shown that
the loop in Algorithm 6 (Lines 5–8) terminates after a finite number
of iterations. As shown in Cormen et al. (2001), the computation of
safe states by finding a fixed-point set via a depth-first search has a
complexity of (|𝑆| + |𝛿|), where |𝑆| is the number of states and |𝛿|
is the total number of transitions. Thus, the complexity of Algorithm

6 is 
(
|𝐼𝐴𝑗

|(|𝑆| + |𝛿|)
)
, where |𝐼𝐴𝑗

| is the number of specifications of
type □𝐶𝑗𝑚. Similarly, the complexity of computing the reachable set

via Algorithms 7 and 8 is 
(
|𝑀𝑜𝑣𝑒𝑗𝑢𝐸

|(|𝑆| + |𝛿|)
)
, where 𝑀𝑜𝑣𝑒𝑗𝑢𝐸

is
the number of 𝑀𝑜𝑣𝑒𝑇 𝑜(.) actions in 𝐵𝑇𝑗 .

Execution of each sub-tree in Lines 6–8 of Algorithm 10, has a
complexity of (𝑛) where 𝑛 is the maximum number of actions in a
sub-tree. Since there are a total of 𝐼𝑗 sub-BTs for a mission, 𝜙𝑗 , the
complexity of BT execution module is (|𝐼𝑗 |𝑛).

By considering the contribution from each module, the proposed
framework has a complexity of



(
|𝑀𝑜𝑣𝑒𝑗𝑢𝐸

|(|𝑆| + |𝛿|) + |𝐼𝑗 |2𝑛2 + |𝐼𝑗 |𝑛
)
.

6. Simulation results

In this section, we consider two scenarios. First, we consider a robot
𝑅 in a given environment to handle two missions, with the objective
of illustrating the steps of the developed algorithms. In the second

Fig. 6. Operational environment with 7 × 9 cells. The robot 𝑅 can transit to its
neighboring cells excluding occupied ones. The robot has to deliver object 𝑂 to the
target cell 𝑇 , followed by persistent patrolling and taking pictures from targets 𝑃1, 𝑃2,
and 𝑃3, while avoiding the restricted zones 𝑅𝑍1 and 𝑅𝑍2.

scenario, we apply the developed tasking algorithm to the coordination
of the robot 𝑅 for different sizes of environment and randomized places
of obstacles and targets, to assess the runtime efficiency of the proposed
method.

6.1. Scenario 1

Consider an operational environment, shown in Fig. 6, which is
partitioned into 7 × 9 grid cells, in which 𝑆𝑖𝑗 refers to the cell in 𝑖th
row and 𝑗th column. There are also two restricted zones 𝑅𝑍1 and 𝑅𝑍2

located at 𝑆52 and 𝑆49. Also, consider the robot 𝑅 that starts from the
initial position at 𝑆71, and can transit to neighboring regions except
the occupied cells. The robot 𝑅 is assumed to be capable of executing
actions 𝐴1 (𝑀𝑜𝑣𝑒𝑇 𝑜), 𝐴2 (𝑃 𝑖𝑐𝑘), 𝐴3 (𝑃 𝑙𝑎𝑐𝑒), and 𝐴4 (𝑇 𝑎𝑘𝑒𝑃 𝑖𝑐𝑡𝑢𝑟𝑒),
whose associated preconditions and effects are listed in Table 1.

Now, consider two missions 𝜙1 and 𝜙2 that are introduced to the
robot 𝑅 sequentially for picking/placing an object and persistent pa-
trolling, respectively. More specifically, missions 𝜙1, requires the robot
𝑅 to pick an object 𝑂, located at 𝑆11, and deliver it to the target cell 𝑇 ,
located at 𝑆69, while avoiding the restricted zones. This specification is
captured as a F-𝐿𝑇𝐿:

𝜙1 = □¬𝑅𝑍1 ∧□¬𝑅𝑍2 ∧◊(𝑂 𝑎𝑡 𝑇 )

where 𝑅𝑍1, 𝑅𝑍2, and 𝑂 𝑎𝑡 𝑇 are atomic propositions that are true
when the robot is at 𝑅𝑍1, the robot is at 𝑅𝑍2, and the Object is
at target, respectively. During or after executing mission 𝜙1, mission
𝜙2 will be introduced with the objective of patrolling and taking
pictures from targets 𝑝1, 𝑝2, and 𝑝3 located at cells 𝑆43, 𝑆13, and 𝑆38,
respectively, while avoiding restricted zones, which is expressed as an
F-𝐿𝑇𝐿 formula:

𝜙2 = □¬𝑅𝑍1 ∧□¬𝑅𝑍2 ∧□◊(𝑇 𝐼 𝑎𝑡 𝑝1)∧

□◊(𝑇 𝐼 𝑎𝑡 𝑝2) ∧□◊(𝑇 𝐼 𝑎𝑡 𝑝3)

where 𝑇 𝐼 𝑎𝑡 𝑝𝑖 is an atomic proposition that is true when the robot
takes an image at position 𝑝𝑖.

Given the action bank, 𝐴, in Table 1, the process of generating BTs
and computing 𝑊𝑗 ’s, for missions 𝜙1 and 𝜙2 is as follows. The first
mission, 𝜙1, is composed of three sub-formulas: 𝜙11 = □¬𝑅𝑍1, 𝜙12 =

□¬𝑅𝑍2 and 𝜙13 = ◊(𝑂 𝑎𝑡 𝑇 ). Since the specifications of type □𝐶𝑗𝑚

will be taken into account during the computation of the winning set
and reachable space, we only need to synthesize 𝐵𝑇1 = 𝐵𝑇13 for 𝜙13 =

◊(𝑂 𝑎𝑡 𝑇 ). Invoked by Algorithm 1, Algorithm 2 initiates the synthesis
of 𝐵𝑇13 (Lines 4–8 of Algorithm 2) by calling Algorithm 3 to initialize
𝐵𝑇13 with the condition 𝑂 𝑎𝑡 𝑇 (Line 2 of Algorithm 3) as shown in
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Fig. 7. Synthesizing 𝐵𝑇1 to deliver an object 𝑂 to position 𝑇 : (a) 𝐵𝑇13 is initialized for specification ◊(𝑂 𝑎𝑡 𝑇 ), (b) The BT is expanded by identifying that the action ‘‘𝑃 𝑙𝑎𝑐𝑒’’
can meet the condition 𝑂 𝑎𝑡 𝑇 , and hence, the action ‘‘𝑃 𝑙𝑎𝑐𝑒’’ and its preconditions (‘‘𝑂 𝑎𝑡 𝑅 𝑎𝑟𝑚’’ and ‘‘𝑅 𝑎𝑡 𝑇 ’’) are added to the BT, (c) The BT is expanded by identifying the
actions and their preconditions for the conditions ‘‘𝑂 𝑎𝑡 𝑅 𝑎𝑟𝑚’’ and ‘‘𝑅 𝑎𝑡 𝑇 ’’, as well as the action 𝐷𝑖𝑠𝑏𝑎𝑙𝑒𝑂𝑛𝑒𝑇 𝑖𝑚𝑒() to set the flag 𝑜𝑛𝑒𝑇 𝑖𝑚𝑒13 after one time execution of 𝐵𝑇13.

Fig. 8. Synthesizing 𝐵𝑇2 for 𝜙2 which requires patrolling positions 𝑝1, 𝑝2, and 𝑝3 infinitely often while taking images: (a) 𝐵𝑇23 is initialized for specification ◊(𝑇 𝐼 𝑎𝑡 𝑝1), (b) The
BT is expanded by identifying that the action ‘‘𝑇 𝑎𝑘𝑒𝐼𝑚𝑎𝑔𝑒’’ at 𝑝1 can meet the condition ‘‘𝑇 𝐼 𝑎𝑡 𝑝1 ’’, and hence, the action ‘‘𝑇 𝑎𝑘𝑒𝐼𝑚𝑎𝑔𝑒’’ and its precondition 𝑅 𝑎𝑡 𝑝1 are added
to the BT, (c) The BT is expanded by identifying that the action ‘‘𝑀𝑜𝑣𝑒𝑇 𝑜’’ can meet the condition ‘‘𝑅 𝑎𝑡 𝑝1 ’’, and hence, the action ‘‘𝑀𝑜𝑣𝑒𝑇 𝑜’’ is added to the BT, (d) 𝐵𝑇2 is
synthesized by combining 𝐵𝑇23, 𝐵𝑇24, and 𝐵𝑇25 by a sequence node (for better visualization the 𝑂𝑛𝑒𝑇 𝑖𝑚𝑒23 and 𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑂𝑛𝑒𝑇 𝑖𝑚𝑒 is not shown for 𝐵𝑇23).

Fig. 7.a. Then, Algorithm 4 takes the initialized 𝐵𝑇13 and continuously
updates it by identifying an unmet condition and generating a sub-
tree to meet the condition until the synthesis of 𝐵𝑇13 is completed (it
ends up with an action whose preconditions are already met). For this
purpose, the function 𝙶𝚎𝚝𝙲𝚘𝚗𝚍𝚝𝚒𝚘𝚗𝚜𝚃𝚘𝙴𝚡𝚙𝚊𝚗𝚍(.) in Line 3 of Algorithm
4 identifies the condition ‘‘𝑂 𝑎𝑡 𝑇 " as unmet. This will be followed by
calling the function 𝙴𝚡𝚙𝚊𝚗𝚍𝙱𝚝(.), which uses a selector node to compose
the condition ‘‘𝑂 𝑎𝑡 𝑇 " with the sub-tree that contains the action 𝑃 𝑙𝑎𝑐𝑒,
in which the action 𝑃 𝑙𝑎𝑐𝑒 is composed with its preconditions by a
sequence node (see Table 1 for list of preconditions and Fig. 7.b for
the synthesized sub-BT). This process continues by expanding the BT to

find the actions and their preconditions for the conditions ‘‘𝑂 𝑎𝑡 𝑅 𝑎𝑟𝑚’’
and ‘‘𝑅 𝑎𝑡 𝑇 ’’. Fig. 7.c shows the expanded sub-BT including the flag
𝑜𝑛𝑒𝑇 𝑖𝑚𝑒13 and the action 𝐷𝑖𝑠𝑏𝑎𝑙𝑒𝑂𝑛𝑒𝑇 𝑖𝑚𝑒() that are needed to ensure
onetime execution of the specification ‘‘◊𝑂 𝑎𝑡 𝑇 ’’.

We next compute the winning region 𝑊1 for 𝐵𝑇1. To simplify the
explanation of the process, consider the following sets 𝑂𝐶𝐶 = {𝑆22,
𝑆23, 𝑆24, 𝑆32, 𝑆34, 𝑆42, 𝑆44, 𝑆54, 𝑆55, 𝑆56, 𝑆75}, 𝑅𝑍 = {𝑆52, 𝑆49},
𝑡𝑎𝑟𝑔𝑒𝑡 = {𝑆69} which represents occupied cells, restricted zones, and
the target, respectively. Invoked by Algorithm 9, Algorithm 5 returns
𝑊𝑅1

= 𝑆 as there is no specification of type 𝐶 ′
𝑗𝑚

⟹ ○𝐶𝑗𝑚. Then,
Algorithm 6 prunes the set of states that are not safe and returns the
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Fig. 9. Execution of 𝐵𝑇1 (a–c) and 𝐵𝑇2 (d–f).

states 𝑊𝐴1
= 𝑆 ⧵ {𝑅𝑍} as the states in 𝑅𝑍 are the only unsafe regions.

This is followed by the identification of reachable states and spaces
for each 𝑀𝑜𝑣𝑒𝑇 𝑜() action (Line 4 of Algorithm 9). For this purpose,
Algorithm 9 calls Algorithm 7 to compute 𝑊1𝑢 and 𝛤1 for𝑀𝑜𝑣𝑒𝑇 𝑜(𝑆11)

actions from the initial position 𝑠0 = 𝑆71 and for 𝑀𝑜𝑣𝑒𝑇 𝑜(𝑆69) actions
from the 𝑆11 ending up with 𝑊1𝑢 = 𝑆 ⧵ {𝑜𝑐𝑐, 𝑅𝑍}. Putting all together
in Algorithm 9, we have 𝑊1 = 𝑊𝑅1

∩𝑊𝐴1
∩𝑊1𝑢 = 𝑆 ⧵ {𝑜𝑐𝑐, 𝑅𝑍}.

Following the computation of the winning set, since𝑊1 is not𝑁𝑈𝑙𝑙,
Algorithm 10 executes 𝐵𝑇1. Fig. 9 (a–c) shows the execution of 𝐵𝑇1
starting where the robot moves towards the object 𝑂, pick 𝑂, move to
the target location, and, finally place the object.

Once 𝜙1 execution is completed, the second mission, 𝜙2, is in-
troduced to the robot which has five sub-formulas: 𝜙21 = □¬𝑅𝑍1,
𝜙22 = □¬𝑅𝑍2, 𝜙23 = □◊(𝑇 𝐼 𝑎𝑡 𝑝1), 𝜙24 = □◊(𝑇 𝐼 𝑎𝑡 𝑝2), and 𝜙25 =

□◊(𝑇 𝐼 𝑎𝑡 𝑝3). Following similar procedures, we synthesize 𝐵𝑇23 for
sub-formula 𝜙23, by initializing it as ‘‘𝑇 𝐼 𝑎𝑡 𝑝1’’ as shown in Fig. 8.a,
and then expanding it for the condition ‘‘𝑇 𝐼 𝑎𝑡 𝑝1’’ and its precondition
‘‘𝑅 𝑎𝑡 𝑝1’’, as shown in Fig. 8.b and Fig. 8.c, respectively. 𝐵𝑇24 and
𝐵𝑇25 can be synthesized in the same way. By combining these sub-BTs
using a selector node, we synthesize 𝐵𝑇2 for 𝜙2 as shown in Fig. 8.d.
Then, the winning set, 𝑊2 = 𝑆 ⧵ {𝑜𝑏𝑠, 𝑅𝑍}, and 𝛤2 are computed
where 𝛤2 provides the reachable space for the four 𝑀𝑜𝑣𝑒𝑇 𝑜() actions
(𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝1) from 𝑇 , 𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝2) from 𝑝1, 𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝3) from 𝑝2, and
𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝1) from 𝑝3. Finally, since the winning set 𝑊2 is not 𝑁𝑈𝐿𝐿,
Algorithm 10 executes the synthesized BT to meet the mission 𝜙2. Fig. 9
(d–h) shows the execution of 𝐵𝑇2 where the robot moves to 𝑝1, 𝑝2, and,
𝑝3 one after the other and simultaneously taking image at each position.

6.2. Scenario 2

Consider an operational environment, which is partitioned into 𝑛×𝑛

grid cells. There are two restricted zones 𝑅𝑍1 and 𝑅𝑍2 which are
located at two different cells 𝑆1 and 𝑆2. Also, consider the robot 𝑅 that
starts from the initial position at 𝑆0, and can transit to neighboring
regions except for the occupied cells. The robot 𝑅 is assumed to be ca-
pable of executing actions 𝐴1 (𝑀𝑜𝑣𝑒𝑇 𝑜), and 𝐴2 (𝑇 𝑎𝑘𝑒𝑃 𝑖𝑐𝑡𝑢𝑟𝑒), whose
associated preconditions and effects are listed in Table 1. Now, consider
the missions 𝜙3, which requires the robot 𝑅 to conduct persistent
patrolling. More specifically, mission 𝜙3 has the objective of patrolling
and taking pictures at targets 𝑝1 (eventually once) and 𝑝2 (infinitely

Table 2
Time taken for the BT synthesis, computation of the winning set, and execution of 𝐵𝑇3
for an 𝑛 × 𝑛 grid environment.

Size of the
environment

BT
Synthesis

Safety
(Alg. 6)

Reachable
(Algs. 7 and 8)

Execution
(Alg. 10)

5 × 5 0.73 ms 0.227 ms 0.518 ms 9 s
10 × 10 0.73 ms 6.86 ms 16.9 ms 19 s
100 × 100 0.73 ms 23.7 ms 55.9 ms 199 s
1000 × 1000 0.73 ms 2546 ms 8098 ms 1999 s

often), while avoiding restricted zones. The mission 𝜙3 can be captured
as:

𝜙3 = □¬𝑅𝑍1 ∧□¬𝑅𝑍2

◊(𝑇 𝐼 𝑎𝑡 𝑝1) ∧□◊(𝑇 𝐼 𝑎𝑡 𝑝2)

We synthesize and execute the BTs for different sizes of the envi-
ronment while randomizing the placement of the restricted zones 𝑅𝑍1

and 𝑅𝑍2, the robot initial position 𝑆0, and the target locations 𝑝1, and
𝑝2.

Given the action bank, 𝐴, in Table 1, for each setup, we apply the
developed algorithms to generate BTs and computing𝑊𝑗 ’s, for missions
𝜙3, which has four sub-formulas: 𝜙31 = □¬𝑅𝑍1, 𝜙32 = □¬𝑅𝑍2,
𝜙33 = ◊(𝑇 𝐼 𝑎𝑡 𝑝1), and 𝜙34 = □◊(𝑇 𝐼 𝑎𝑡 𝑝2). Following a procedure
similar to Scenario 6.1, the BTs for 𝜙33 and 𝜙34 are synthesized and
then composed using a selector node. The synthesized 𝐵𝑇3 for 𝜙3 is
shown in Fig. 10.

Then, the winning set, 𝑊3 = 𝑆 ⧵ {𝑅𝑍}, and 𝛤3 are computed,
where 𝛤3 provides the reachable space for the two 𝑀𝑜𝑣𝑒𝑇 𝑜() actions:
𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝1) for moving from 𝑠0 to 𝑝1, and𝑀𝑜𝑣𝑒𝑇 𝑜(𝑝2) for moving from
𝑝1 to 𝑝2. Since the winning set𝑊3 is not 𝑁𝑈𝐿𝐿, Algorithm 10 executes
the synthesized BT to meet the mission 𝜙3.

The synthesized BT is the same for different configurations of the
environment and the location of the initial position of the robot,
restricted zones, and targets. However, for different configurations, the
computation time of the winning set and the execution time of the
BT are different as the computation of safes states (Algorithm 6) and
reachable states (Algorithms 7 and 8), and the execution of the BT in
Algorithm 10 depend on the locations of the robot’s initial position, re-
stricted zones, and targets. Table 2, provides average time for synthesis
of the BT, the computation of the winning set and execution of the BT.
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Fig. 10. 𝐵𝑇3 is synthesized by combining 𝐵𝑇33, and 𝐵𝑇34 by a sequence node.

The execution time of the BT is obtained by assuming the robot moves
from one cell to any of its neighbor cells in 1 s.

7. Conclusion

This paper developed an automatic provably-correct online BT syn-
thesis and execution technique for the coordination of an autonomous
system to accomplish a series of missions which are introduced to
the system on-the-fly. Capturing the mission requirements in the form
of F-LTL formulas, we developed a novel top-down, divide-and- con-
quer approach to decompose the missions into smaller sub-formulas,
for which we designed sub-BTs. The realizability of the sub-BTs was
checked by computing the intersection of safe and reachable sets in
parallel to storing the paths to the winning set. If realizable, these
sub-BTs are composed in order to form a coordinator to achieve the
assigned mission by executing the synthesized BT using the calculated
paths to the winning set. The correctness of the proposed method
was proved. Unlike many existing methods which rely on manually
designing the BTs, our proposed method can automatically synthesize
a BT for a given F-LTL specification. Further, compared with most
existing results which suffer from exponential complexity, we proved
that the complexity of the proposed method is polynomial in the size
of the formula and the size of the environment. The developed method
was applied to the case-studies for different missions and different sizes
of the environment using a physics-based simulator, demonstrating the
capability of the proposed method on handling complex missions and
scalability of the approach in terms of the size of the environment.
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