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In recent years, two-photon lithography (TPL) has emerged as a practical and promising micro- and nano-
fabrication technique for a wide range of applications. Numerous studies have reported improving the process
control and printed feature size of TPL, including by incorporating some degree of hardware improvements,
which may be prohibitive for commercial systems. However, the geometric accuracy of TPL-fabricated 3D
structures has not been well understood. In this study, a general machine-learning-based framework is presented
to quantitatively model and improve the geometric compliance in TPL. The framework quantifies the spatial
variation in geometric compliance of fabricated 3D structures, and then designs compensation strategies to
improve the geometric compliance. Two experimental case studies, one at the microscale and the other at the
nanoscale, are presented to demonstrate the effectiveness of the framework. It is revealed for the first time that
systematic geometric errors exist in TPL-fabricated structures and such errors exhibit a strong spatial correlation.
The produced compensation strategies reduce the average errors in key geometric features at the microscale and
nanoscale by up to 79.7% and 47.4%, respectively. The case studies demonstrate that the proposed framework
can effectively improve the geometric compliance without introducing any modifications to the hardware or
process parameters, thereby facilitating more widespread adoption.

1. Introduction

Two-photon lithography (TPL) is an additive manufacturing (AM)
technique based on laser scanning that is well-suited for rapidly proto-
typing 3D micro and nano structures, the demand for which has sky-
rocketed over the years due to application in many disparate and broad
fields such as electronics, medicine, communications, and optics [1-3].
In TPL, a high intensity ultrafast laser beam is tightly focused inside a
photo-reactive polymer, which leads to polymerization or scission due to
two-photon absorption occurring in the high-intensity region of the focal
volume [4]. 3D fabrication using TPL was first demonstrated in 1997,
and has been shown to routinely produce structures on the order of a few
hundred nanometers [5]. Improvements in the resolution have been
achieved by various methods including controlling the process param-
eters such as laser power, exposure time, and the numerical aperture of
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the objective [6-8].

Although TPL has an impressive capability to create complex
microscale and nanoscale 3D structures, the produced structures show a
large variability in the geometric compliance due to the intricate
physical and optical phenomena involved, including shrinkage [9],
deformation [10], shape distortion [11], and step effect [12-15]. The
geometric compliance is an important quality attribute. It is directly
related to the mechanical and optical properties of TPL-produced
structures, and these properties govern the performances and func-
tionalities of produced structures, such as micro-lenses [13,16], micro-
needles [17], and microfluidic devices [18]. Hence, it is crucial to
quantitatively investigate the geometric variability and improve the
geometric compliance of structures produced by TPL.

Significant research gaps still exist in the characterization, modeling,
and control of the geometric compliance of TPL-fabricated structures.
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First, there is a lack of research on quantitative, fine-scale assessment of
the geometric compliance of TPL-produced 3D structures. A few recent
studies have focused on the process control and geometric compliance of
TPL. Zhou et al. reviewed several factors influencing the processing
accuracy in TPL, such as the step effect caused by 3D motion of the laser
beam, the inherent errors between the stereolithography file and the
designed model, and shrinkage/deformation due to low mechanical
strength during the developing process [19]. They also discussed ap-
proaches to potentially improve the process accuracy, including
increasing the overlap of the illumination voxel, controlling the scan-
ning direction, and changing the layer thickness. LaFratta and Baldac-
chini reviewed methods for analyzing and characterizing the
mechanical and chemical properties of fabricated microstructures [20].
However, none of the existing studies precisely measured or analyzed
the 3D geometric accuracy. Some works acquired dimensional infor-
mation from scanning electron microscope (SEM) images, but such in-
formation did not adequately capture the 3D geometric accuracy
[17,21]. Since TPL is essentially an AM technique for producing 3D
structures with nearly arbitrary geometries, quantitative evaluation and
analysis of dimensional accuracy are crucial for moving TPL from lab-
oratory to industrial scale.

Second, the potential of leveraging the recent advancement in data
science to enable the modeling and control of geometric compliance in
micro- and nano-scale AM processes is largely untapped. There have
been rich studies on macro-scale AM using data science techniques.
Some research focuses on in-situ sensing technologies and data-driven
process monitoring methods. For example, different data-driven
models have been developed to monitor and control the layer width
or roughness for wire arc AM [22-24] and fused filament fabrication
[25,26]. Some studies used thermal imaging to detect process abnor-
malities in direct laser deposition [27-30]. Meltpool emission moni-
toring was used to monitor the quality of porous structures produced by
laser powder bed fusion [31]. Machine learning has been used to
establish the process—structure—-property relationships in design for AM
[32,33]. A few publications have focused on the prediction and control
of geometric variability in printed parts by analyzing the CAD models
and comparing with models of machine capabilities. Data-driven models
such as statistical models [34,35], cookie-cutter model [36], Gaussian
process [37], and Bayesian neural network [38] have been used to
characterize and compensate geometric deviations. Additionally,
systems-level investigation of variability in geometric features of lattice
parts made on multiple machines demonstrated the existence of
machine-to-machine variability [39]. Despite that a rich body of liter-
ature on macro-scale AM exists, there is a lack of studies on using data
science to improve geometric compliance in micro- and nano-scale TPL.

To date, the TPL process variability has been neither systematically
investigated nor quantitatively modeled, not to mention controlling the
variability. To fill the research gaps, in this study, a machine-learning-
based framework is developed to both quantitatively characterize and
improve the geometric compliance of micro- and nano-scale TPL pro-
cesses. Specifically, Gaussian process (GP) regression is utilized to model
the spatially varying trends of the geometric deviations between struc-
tures. A data-driven compensation approach to reduce the geometric
deviations is presented. The remainder of this paper is organized as
follows. The proposed modeling and decision-making framework are
first introduced. The experimental setup and 3D characterization tech-
niques are then presented for two different designs including a micro-
scale hemisphere and a nanoline. The patterns of geometric deviations in
TPL processes are discussed and the effectiveness of the proposed
framework is showcased, followed by a discussion on the limitations of
the proposed framework and potential future research directions. An
open-source software tool developed based on the proposed framework
can be accessed online [40].
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2. Modeling and decision-making framework

A schematic of the proposed framework is shown by Fig. 1. Existing
practice often uses a one-way approach and does not quantitatively
assess the geometric quality of fabricated structures. In a typical work-
flow, a user designs a 3D structure using CAD software. The CAD model
is then transferred to a TPL machine, and a 3D structure is fabricated.
Though qualitative quality check, e.g., using SEM [17,21], is sometimes
used, quantitative assessment of the geometric quality is often lacking.
Here, the proposed framework closes the loop by using 3D metrology
and developing learning and decision-making capabilities. The geo-
metric measurements are first obtained using 3D metrology. The
dimensional quantities of the geometric elements are referred to as
geometric features, and the controllable features are the dimensions that
can be set up directly in the CAD design. In the learning stage, the
geometric features in individual structures as well as their spatial dis-
tributions are quantified using GP regression [41]. Lastly, the machine-
learning-enabled decision-making algorithm prescribes an optimal CAD
design that can achieve the best geometric compliance by compensating
the systematic errors. The structures reproduced with the compensated
design under the same manufacturing settings would have a minimal
deviation from the desired feature value. In the remainder of this sec-
tion, the proposed modeling and decision-making methods are
elaborated.

2.1. Learning and modeling geometric variability

GP regression is selected to model the geometric variability of TPL-
fabricated structures because it has demonstrated excellent capability
for spatial analysis in various manufacturing applications [42-49]. GP
regression is able to adequately capture the spatial variability exhibited
in the TPL problem. It should be noted that other regression methods
may be preferred for the modeling task if the variability pattern is
different.

In a GP regression model, let s; be a coordinate vector representing
the spatial location of the i-th structure on one sample and Dg = {sy, ...,
sn} denote the set of spatial locations for all n structures on the sample.
The following assumptions are made regarding the proposed modeling
approach.

1. Each geometric feature in the model is independent. The
controllable features studied in this paper do not exhibit strong corre-
lations with each other. When a strong correlation exists between the
geometric features, multivariate regression can be used to account for
the correlations.

2. The measurements of the actual fabricated structures can be lin-
early approximated by a function of the spatial location. In other words,
at location s, the measurement of a geometric feature, Z(s), is propor-
tional to the value in the design, Y(s), by a scale factor, f(s). Such a linear
relationship is expected because the geometric errors are accumulated
during the point-by-point, line-by-line, and layer-by-layer fabrication in
AM processes [50,51].

Based on these assumptions, the proposed spatial model can be
expressed by the following equation:

Z(s) = Y(s)f(s) +& 6]
where Y(s) is the value of the feature at location s in the design, f(s) is
the spatial function that maps the value in the design to the measure-
ment of the actual fabricated structures, and ¢ is a zero-mean error with
variance o. f reflects the systematic error, representing the consistent
and repeating spatial trends. ¢ characterizes the random error, which is
caused by the inherent process variability.

Measurement data are used to learn the function f. The link function f
(s) can also be formularized in other forms, depending on what vari-
ability patterns exist in the targeted problem. In this study, the function f
is modeled as a GP and is specified by a constant mean m and the



Y. Yang et al.

I

I USER CAD DESIGN

I

@ 7

| e
: CAD

I

|

STATE-OF-TH E—ART

LEARNING & DECISION-MAKING

ML-Enabled
Optimal Design

Variability Modeling and
Analysis

Journal of Manufacturing Processes 76 (2022) 841-849

FABRICATED
TPL PROCESS STRUTURE
Polymenzed

Resist

3D MEASUREMENT &
ERROR MODELING

@Mz

Fig. 1. The proposed framework for characterizing geometric variability and improving geometric compliance in TPL.

covariance function «(s,s’):

F(8) ~ A (mox(s.5) ).
K(s,8) = E[(f(s) — m)((s) —m)].

Here, the implementation of GP regression is briefly summarized in the
context of geometric feature modeling in TPL. More details on the theory
and other applications of GP can be found in [41,52]. The prior on the
noisy observations is

(2)

cov(Z) = Y(S)'K(S,S)Y(S) + 21, 3)
where S is a matrix representing a set of all relative spatial locations in
Dg and K(S, S) is the covariance matrix with elements corresponding to
the covariance function x(s,s’). The squared exponential kernel, one of
the most commonly used kernels, is used in this study [41,52], and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to estimate
the kernel parameters [53].

The measurement of the actual fabricated structures Z at spatial lo-
cations S and the estimated values Z- at a given set of unmeasured lo-
cations S+ follow the following joint distribution

{é} r\a/i/”<ml7

where Z+ = Y«f+, Y = Y(S), Y+ = Y(S+), f = f(S), and f+ = f(S+). The
derived predictor at a single spatial location s+ can be expressed as

—m+Z K(S;, S=

Y'K(S,S)Y +6I  Y'K(S,S:)Y-

4
YIK(S.,S)Y  YIK(S-,S.)Y. @

1

O[Y'K(S,S)Y + 1] Z(sy). (5)

It should be noted that the value of function at a single location s, such as
f(s), Z(s), and Y(s), is a scalar, while f/f(S), Z/Z(S), and Y/Y(S) are
vectors representing the values at a set of locations S.

2.2. Generating compensation designs

With a geometric variability model, the feature value of a fabricated
structure at location s, Z(s), can be predicted given the designed feature
value, Y(s). The controllable geometric features, such as length, height,
and radius, can be changed to optimize the geometric compliance. The
feature value in the compensated design, Y.(s), should make the
resulting fabricated structure, Z.(s), closer to the desired feature value,
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Y4(s). In the proposed compensation approach, Y.(s) is a discrete vari-
able determined by the TPL machine precision, p. The machine precision
is the minimal step of z-axis movement and it is determined by the
capability of the fabricating system. For Nanoscribe GT used in this
study, the machine precision is 100 nm, which is the minimal motion
unit that can be handled by numerical control programming. In other
words, the features in design must be a multiple of 100 nm or the re-
sidual does not affect the fabrication process. For example, 500 nm and
530 nm in design will be processed as 500 nm. Hence, Y,.(s) should be a
multiple of the machine precision.

The feature value in the compensated design Y.(s) can be obtained by
reversely calculating the desirable feature value and be expressed as:

K@:rcwﬁp)

f(s)’
where r(x,p) = [;—‘] x p is a function that rounds x to a multiple of p, and

©

|+] denotes an integer rounding function such that |x] is the nearest
integer that x is rounded to. Function r ensures that Y.(s) is a multiple of
the machine precision that would lead to a measurement of compen-
sated structure Z.(s) with a minimal deviation from the desired feature
value Y4(s). In other words, the feature value in the compensated design,
Y.(s), is determined by f(s) and p. This compensation approach provides
us with the ability to control the TPL process at multiple scales.

3. Experiments

In this section, we first present the experimental settings and then the
designs of structures at micro and nano scales. The details of the 3D
measurements systems and structure characterization approach are also
discussed.

All experimental structures are manufactured with a commercial TPL
system (Photonic Professional GT, Nanoscribe GmbH). A femtosecond
fiber-laser of center wavelength 780-nm and repetition rate 80-MHz is
focused using a 1.4 numerical aperture (NA) 63x Oil DIC objective
(Zeiss, Plan Apochromat) onto a drop of 0.05-ml photosensitive polymer
(IP-Dip, Nanoscrib GmbH) placed on a 1-in. x 1-in. fused silica sub-
strate. The laser power is set as 50 mW and scanning frequency is set as
30 kHz. The entire 3D structure is built by scanning the voxel in the x-, y-
, and z-directions. The focus is initially located at the interface between
the substrate and the photoresist, and it is scanned with the help of galvo
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mirrors in the x-y plane. At each focus, the photoresist is polymerized
due to two-photon polymerization induced by the high intensity of the
laser. A piezoelectrically activated stage holding the sample achieves the
relative motion of the focus spot with respect to the sample in the z-
direction.

We carry out our study using two designs—hemispheres at the
microscale and nanolines at the nanoscale. These two geometric designs
are selected for the case studies because they have been widely used,
either directly or as building blocks for complex structures, in a wide
range of applications, including micro-optics [13,16,54], microfluidic
devices [18,55], and micro electromechanical systems [21,56]. Inves-
tigating the geometric variability in the chosen structures will allow us
to better evaluate the properties of the produced structures and improve
their performances and functionalities in these manufacturing applica-
tions. The schematic representations of the geometric designs are dis-
played in Fig. 2. Forty samples of the microscale hemisphere structures
are fabricated, measured, and characterized in the learning stage, where
the sample measurements are used as the training dataset to fit the
model parameters. The designed radius of each hemisphere is 2 pm. In
each sample, 25 such structures are evenly spaced on a 5 x 5 grid on the
base box of dimensions 40 pm x 40 pm x 3 pm. For the nanoscale line
structures, eight samples are fabricated, measured, and characterized in
the learning stage. The dimensions of the nanolines are selected as 20-
pm length, 500-nm thickness, and 500-nm height. Each sample consists
of 13 lines on a 40-pm x 40-pm X 3-pm base box.

A 3D laser scanning confocal microscope (VK-X1000, Keyence),
equipped with a 150x objective lens, is used to measure the microscale
hemisphere structures. It can acquire both an optical image and a high-
resolution surface profile over an area of 123 pm x 92 pm with 1-nm
vertical resolution and 100-nm lateral resolution. Atomic force micro-
scopy (AFM) (Tosca 400, Anton Paar) is employed to measure the ge-
ometry of the nanolines. It can achieve one angstrom vertical resolution
and the lateral resolution is set as 20 nm.

4. Results

In this section, we analyze the patterns of geometric deviations in
TPL processes and demonstrate the effectiveness of the proposed data-
driven compensation method. The case study with microscale hemi-
spherical structures is discussed first, followed by the case study with
nanoscale line structures.

Fig. 3 shows the SEM images of fabricated structures. It is impossible
to get accurate geometric information from the SEM image to reveal and
quantify the differences between the fabricated structures with the same
design. Hence, high-resolution 3D metrology is necessary for quantita-
tive characterization of the geometric compliance in TPL.

4.1. Microscale hemispherical structure
The goal of the quantitative analysis is to characterize the geometric
features of the structures and use GP regression to model the spatially

varying trends of the geometric deviations between structures. The first
step toward this goal is identifying the region of interest on the surface

a
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b
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profile and extracting the geometric information from each structure.
For the hemisphere structures, height, equivalent radius, and volume are
identified as the three key geometric features. The 3D visualization of
geometric measurement for one single hemisphere and the spatial trend
of geometric features in forty samples are shown in Fig. 4. Compared
with the structures on the edges, the structures near the center have
equivalent radius and volume 2.8% and 6.5% larger on average,
respectively. The patterns of geometric deviations between structures
are spatially correlated. In addition, it can be noticed that three geo-
metric features, height, radius, and volume, are 16.9%, 3.4%, and
37.2%, smaller than the desired values in design, respectively.

Height and radius are two controllable geometric features for the
hemisphere structures, while volume, as a 3D feature, cannot be set up
directly in CAD designs. It should be noted that height is not strongly
correlated with radius (** = 0.11) or volume (> = 0.33) and only radius
and volume are strongly correlated (r2 =0.91). Hence, height and radius
are modeled independently. For each feature, a GP model is built with
data of 1000 structures from 40 samples. A compensated CAD design is
generated with the built GP model using the proposed approach, where
the feature values varies at different locations in the compensated
design. Ten samples are produced with the compensated design under
the same manufacturing settings. The statistics of the geometric features
in the original design and in the compensated design are listed in
Table 1. The spatial trends of the errors in geometric features are dis-
played in Fig. 5. With the proposed compensation approach, the average
errors in height, equivalent radius, and volume are reduced by 73.0%,
79.7%, and 29.4%, respectively. It is noticed that not only the average
values of the geometric features are closer to the desired values, but also
the relative standard deviation (RSD) is smaller. RSD, also known as the
coefficient of variation, is calculated as [57].

o

RSD =
|l

x 100%, %)

where ¢ is the standard deviation and p is the mean. It reflects the
variability relative to the mean. In this study, a smaller RSD indicates a
reduced intra-sample variability and an improved process repeatability.
Although the standard deviation of height in compensated design is
slightly higher than in the original design, the average height increases
more, leading to a smaller RSD.

4.2. Nanoline structure

An array of nanolines are fabricated and used to demonstrate the
effectiveness of the proposed framework at the nanoscale. Fig. 6a pre-
sents an AFM image for one sample with nanolines. A line profile of the
13-line structures is provided in Fig. 6b. It is observed that the nanoline
structures near the center are higher than those on the edges and the
base box surface is curved. In the geometric measurements, the nanoline
structures are extracted from the curved surface and the line height is
identified as the key geometric feature. It should be noted that the
precision of the instrument, which is the minimal distance between two
adjacent layers, is 100 nm, and the feature size-to-precision ratio would
be only 5 for the structure with feature size of 500 nm. Such a small

Fig. 2. Schematic representations of the geometric design. (a) hemispheres. (b) nanolines.
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Fig. 3. SEM images of fabricated structures. (a) hemispheres. (b) nanolines. The fabricated structures with the same design looks almost identical in the SEM image.
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Fig. 4. Quantitative characterization of the hemisphere structures fabricated with the original design. (a) 3D visualization of geometric measurement for an indi-
vidual hemisphere. Spatial trends of geometric features (b) height (c) equivalent radius (d) volume. The x-axis and y-axis in (b) (c) (d) are relative locations of

the structures.

Table 1

The average values + standard deviations, average errors, and RSD of the geo-
metric features of the hemisphere structures produced with the original design
and with the compensated design.

Desired Original Compensated

Avg. + Std. (pm) 2.000 1.671 + 0.020 1.912 + 0.022
Height Avg. error (um) NA 0.329 0.088

RSD NA 1.20% 1.17%

Avg. + Std. (pm) 2.000 1.933 + 0.036 1.987 £+ 0.023
Radius Avg. error (pm) NA 0.067 0.013

RSD NA 1.88% 1.16%

Avg. + Std. (pmz) 16.755 10.520 + 0.438 12.355 £ 0.331
Volume  Avg. error (um®) NA 6.235 4.400

RSD NA 4.17% 2.68%

feature size-to-precision ratio poses a fundamental limit to geometric
accuracy, and the data-driven compensation approach can lead to a
minimal deviation from the desired feature in the compensated

845

structures even under such a limitation.

A GP model is built using the measured heights of 104 structures
from eight samples. Four samples are produced with the compensated
height under the same manufacturing settings. The statistics of the
measured heights of structures produced using the original design and
compensated design are listed in Table 2. The spatial trends of the
average heights of the line structures in the original design and the
compensated design are displayed in Fig. 6¢. The average line height is
488.41 nm in the original design and 506.10 nm in the compensated
design. With the compensation approach, the average height is closer to
the desired value and the average error in height is reduced by 47.4%.

It should be noted that the base box surfaces are curved as shown in
Fig. 6b, which might be caused by the surface tension and internal stress
in the liquid solidifying processes. In order to characterize the geometric
features of the structures of interest, it is important to first extract the
region of each structure in the surface profile. A robust approach to
extracting the regions of structures from the surface profile is developed.
The contours of the structures are identified using Canny edge detector
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Original

C

Compensated

Fig. 5. The spatial trends of the errors in geometric features before and after compensation. (a) height (b) equivalent radius (c) volume. The errors in all three
features are significantly reduced with the compensation approach. The x-axis and y-axis are relative locations of the structures.

[58]. Sobel operator is utilized to estimate the intensity of the gradients
in the surface profile [59]. Since closed contours are required for the
structure extraction, morphological filters and binary image operations
are adopted to close the open borders. Compared with simple region
extracting approaches, the edge-detection-based method can robustly
extract the region of each structure well even when the base box surfaces
are curved. For example, using a single height threshold to “cut off” the
structures from the base box is also a region extracting method. How-
ever, with such a method, we either miss lower portions of the structures
near the base box surface or include redundant parts from the base when
the base box surfaces are curved.
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5. Discussion

Our proposed framework consists of three important components—
(1) high-resolution quantitative image characterization, (2) machine-
learning-based modeling that captures the geometric variability, and
(3) a data-driven compensation algorithm. The effectiveness of the
framework has been proven by experimental case studies with micro-
scale hemispherical structures and nanoscale line structures. Without
introducing any hardware improvements or changing the process pa-
rameters, the compliance of geometric features with their designed
values is significantly improved across the board under the precision
limit from the hardware.

The goal of the geometric variability modeling is to predict the
values of actual geometric features using the spatial locations of given
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Fig. 6. Nanoline structures. (a) AFM image. (b) A profile across the midpoints
of the 13 nanoline structures. (¢, d) The spatial trends of the average heights of
the line structures before and after compensation, respectively. The error bars
represent the standard deviations.

Table 2

The average values + standard deviations, average errors, and RSD of the
heights of the line structures produced with the original design and with the
compensated design.

Desired Original Compensated
Avg. + Std. (nm) 500.00 488.41 + 28.50 506.10 + 26.63
Avg. error (nm) NA 11.59 6.10
RSD NA 5.84% 5.26%

structures. Due to the complex nature of the polymerization process, it is
challenging to predict the complex patterns of shrinkage, deformation,
and other internal/interfacial defects developed during the TPL process
with a descriptive physical model. Different from other machine-
learning-based regression techniques, GP regression is based on statis-
tical models capturing both autocorrelation and the statistical re-
lationships among the spatial locations, which are usually described by
kernels or covariance functions. Taking advantage of the spatial corre-
lation, GP regression can achieve a better predictive performance for the
complex nonlinear relationships between spatial locations and geo-
metric features. In addition, GP is much more data efficient than some
other machine learning methods such as deep neural networks, making
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it particularly suitable for TPL applications, where data scarcity is
identified as a key challenge.

Our observations suggest that the geometric variability in TPL
manifests in the forms of both systematic and random errors. We
anticipate that such errors are determined by some other factors, but to
focus on a tractable problem, we only investigate the effect of the spatial
locations in this study. Here, we suggest a few future research directions.
First, the influence of process parameters such as the average power of
the femtosecond laser, exposure time, and photo-initiator materials on
the geometric compliance is worth investigating. Existing theoretical
and experimental studies have shown that these process parameters can
affect the dimensions of voxels, the fundamental unit of TPL, and in-
fluence the process accuracy [19]. In addition, it has been reported that
the optical, environmental, and material parameters also affect the
geometric deviations [19,20]. Investigating the influence of process
parameters may also advance the physical understanding on the sources
of TPL process variability and the fundamental limit of TPL process
capability.

Hybrid modeling with GP, also known as additive GP or integrated
GP, can be potentially used to model the spatial variability with a trend
dominated by these process parameters [45,46,60-63]. The predicted
geometric feature at location s with a set of process parameters f can be
expressed as:

Z(B,s) = u(B; Y(s)) +Y(s)f (s), ®

where p(B; Y(s)) is the expected feature value with process parameters
and designed feature value Y(s). Instead of assuming a constant mean
function, we model the mean as a function of both process parameters
and desired design. This type of modeling scheme has proven effective in
simultaneously characterizing a large-scale global trend dominated by
physics and a small-scale residual reflecting natural variability in ap-
plications of additive manufacturing [63], high-precision machining
[45,46], and ultrasonic metal welding [62].

Second, the effect of the laser scanning direction, which determines
the order of the fabrication process, has not been investigated in the
existing literature. In our study, we also fabricated the nanoline struc-
tures with a scanning direction rotated from the default value by 180°.
Interestingly, the resulting spatial variability pattern is perfectly mirror
symmetric to the trend resulting from the default scanning direction.
This implies that the scanning direction is one of the factors that cause
spatial variability. This asymmetric spatial variability and the underly-
ing physical mechanism have not been reported in the literature. The
proposed framework can be extended to help explain this phenomenon
and further devise a compensation strategy.

Third, more efforts are needed to demonstrate the scalability and
generalizability of the proposed framework. In this research, all struc-
tures in one sample have identical, and relatively simple designs and are
uniformly allocated on the substrate. However, in practice, the geo-
metric designs can be much more complicated. It is also worth investi-
gating how varying the spatial distributions of the structures, e.g., with
different spacing, will influence the variability patterns.

6. Conclusion

This paper presents a general machine-learning-based framework to
quantitatively model and improve the geometric compliance in TPL. The
existence of systematic and random geometric errors in TPL-fabricated
structures is revealed for the first time. Without introducing any hard-
ware improvements or changing the process parameters, the compliance
of geometric features with their designed values is significantly
improved across the board under the precision limit from the hardware.
The average errors of the geometric features in the microscale and
nanoscale structures are reduced by up to 79.7% and 47.4%, respec-
tively, demonstrating a significant improvement in geometric accuracy.
The independence of our approach to hardware improvements
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facilitates widespread adoption as it is readily compatible for use with
commercial systems. Drawing on this work, more sophisticated
modeling and compensation methods may be developed for more
complicated 3D designs by leveraging the advances in data science.
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