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A Learning-based Autonomy Framework for Human-robot
Collaboration

Md Khurram Monir Rabby, Ali Karimoddini, Mubbashar Altaf Khan, and Steven Jiang

In this paper, an adjustable autonomy framework is proposed for Human-robot Collaboration (HRC) in which a robot uses a
Reinforcement Learning (RL) mechanism guided by a human operator’s rewards in an initially unknown workspace. Within the
proposed framework, the autonomy level of the robot is automatically adjusted in an HRC setting that is represented by a Markov
Decision Process (MDP) model. When the robot reaches higher performance levels, it can operate more autonomously in the sense
that it needs less human operator intervention. A novel ()—learning mechanism with an integrated e-greedy approach is implemented
for robot learning in order to capture the correct actions and robot’s mistakes as a basis for adjusting the robot’s autonomy level.
The proposed HRC framework can adapt to changes in the workspace as well as changes in human operator reward (scaling and
shifting) mechanism, and can always adjust the autonomy level. The autonomy level of the robot is automatically lowered when the
workspace changes to allow the robot to explore new actions in order to adapt to the new workspace. In addition, the human operator
has the ability to reset/lower the autonomy level of the robot to enforce the robot to re-learn the workspace if its performance is
not satisfactory for the human operator. The developed algorithm is applied to a realistic HRC setting involving a humanoid robot,
named Baxter. The experimental results are analyzed to assess the effectiveness of the proposed adjustable autonomy framework for
different cases: for the case when the workspace does not change, then for the case when the robot autonomy level is reset/lowered
by a human operator, and for the case when the workspace is changed by the introduction of new objects. The results confirm the
capability of the developed framework to successfully adjust the autonomy level in response to changes in the human operator’s
commands or the workspace.

Index Terms—Human-Robot Collaboration (HRC), Markov Decision Process (MDP), Autonomy Level (AL), Reinforcement
Learning (RL).

I. INTRODUCTION

Recent studies on Human-robot Collaboration (HRC) aim
at leveraging the interactions of humans and robots from
highly constrained laboratories to meaningful collaborations
for real-world applications [1]. As the robots are partial actors
in an HRC, the degree of their roles and their acceptance to hu-
man co-workers depend upon their operation and performance
to improve the joint performances in a workspace [2].

The traditional HRC approaches commonly use a pre-
programmed robot, which does not necessarily require a robot
to have learning capabilities [3]. However, with advances in
machine learning and artificial intelligence, it is becoming
possible to equip a robot with a learning mechanism and
make it a more active and effective collaborator with a human
operator in/on the loop [4, 5]. In [6-8], Markov chains,
Markov Decision Process (MDP), and Partially Observable
Markov Decision Process (POMDP) have been used to develop
learning mechanisms for a robot in an HRC setting while
capturing the uncertainties involved in a workspace and HRC
actors (humans and robots). In [9], a TAMER framework is
used that considers human rewards for training a robot in an
environment captured by an MDP model. In [10], visual and
force sensors have been used to observe and learn human
motion for human-robot co-carrying tasks. Other learning
based techniques such as imitation learning and supervised

learning have been employed for training a robot in an HRC
setting [11-13].

Despite the use of robot learning in the aforementioned
studies, they do not consider any mechanism for automatic
adjustment of robot autonomy based on the robot’s capability
of handling the shared tasks. To address this problem, a task
assignment method is introduced in [14] that considers the task
complexity associated with different autonomy levels in a Lay-
ered Adjustable Autonomy (LAA) model. A theoretical con-
cept of autonomy adjustment using interaction with the human
operator to achieve a common goal in an LAA model along
with an Autonomy Analysis Module (AAM) has been used in
[15] to control the robot’s actions at different autonomy levels.
Similarly, a Level of Autonomy (LA) approach is proposed
in [16] for remotely controlling mobile robots to manually
adjust their autonomy based on the interactions with a human
operator. The work in [17] presents an Adjustable Autonomy
Intelligent Environment (AAIE) model for developing a robot
autonomy adjustment method in a dynamic environment. The
concept of variable autonomy levels is implemented in [18] to
explore its impact on the task completion period. A sliding
scale autonomy is proposed for interactions with a human
operator that allows autonomy levels to be changed during
the robot operation [19]. The work in [20] presents a situation
awareness mechanism for the cyber-physical systems with an
integrated meta-model for multiple autonomy levels. In all
of these works, the robot does not incorporate any learning
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capability. Instead, the robot is pre-trained/pre-programmed
for different levels of automation and hence, the use of the
term “levels of autonomy” might not accurately describe these
frameworks. Therefore, to the best of our knowledge, this work
is the first to propose an autonomy adjustment mechanism
based on the change in the performance of a learning robot
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in an HRC setting. In this paper, we refer to autonomy as the
capability of a robot to perform a task with reduced human
intervention/supervision.

This paper develops an adjustable autonomy framework for
an HRC setting by augmenting the ()—learning algorithm with
an e—greedy mechanism to capture the robot performance,
adjust the autonomy level, and balance the exploration of
the action space and exploitation of its knowledge base.
Compared to supervised learning approaches which commonly
use labeled-data to train a model with no interaction with the
operator or environment [11], the adoption of (J—learning
enables the robot to interact with the human operator and
the environment to actively acquire and learn the required
information and adapt to changes in the workspace. The imi-
tation learning approaches can be a solution for this problem
[12, 13]. However, imitation learning approaches often train
a classifier to mimic human operator’s behavior, i.e., first
observe the actions of the human operator during the training
phase, followed by learning a policy that mimics the actions
demonstrated by the human operator, with limited or no active
interaction with the operator, particularly during the training
phase. In the proposed framework in this paper, however, the
robot uses a greedy strategy to actively explore the action
space and collect the required data by getting feedback signals
from the human operator. In this way, the robot learns from
its mistakes via interactions with the human operator, while
adapting to changes in the workspace.

The contributions of this paper include:

« Developing an adjustable autonomy framework using the
Reinforcement Learning (RL) mechanism in an HRC
framework. The robot learns the correct intended choices
of actions based on the received feedback from the
human operator. This information is used as a basis for
adjusting the robot’s autonomy level and improving the
robot’s learning process. A finite-state Markov Decision
Process (MDP) is developed to represent the proposed
HRC framework.

o Developing a novel ()—learning mechanism and integrat-
ing an e-greedy approach to adjust the robot autonomy
level. In the proposed framework, in the lowest level of
autonomy, the robot uses exploration of the action search
space to maximally gain information from the human
operator; in the intermediate autonomy level, depending
on the knowledge about the workspace, the robot uses a
mix of exploration and exploitation, and in the highest
autonomy level, the robot primarily uses exploitation to
take advantage of the experience that is acquired over the
training process. The human operator has the authority to
reduce the robot’s autonomy level to enforce the robot to
re-learn the workspace.

o Providing the analytical proof that the reward accumu-
lation (irrespective of scaling and shifting in human
operator reward) over the time changes the value of e
to improve the robot autonomy level to select the correct
action and transition to a higher autonomy level. Con-
versely, the robot’s mistakes are penalized with negative
rewards which increase the e value, resulting in lowering
the robot’s autonomy level.

o Applying the developed framework to a manufacturing
case study, which includes different cases of changes in
the workspace or human operator’s commands for reset-
ting/lowering the robot’s autonomy level. To evaluate the
proposed framework, experiments have been performed
using the developed algorithm in the real-world on a
7—DoF Baxter robot interacting with a human operator.
The results show that with the developed algorithm,
the autonomy level of the robot can be automatically
adjusted in response to changes in the robot’s learning
capabilities, and the changes in the workspace and the
human operator’s commands.

The rest of this paper is presented as follows. Section II de-
scribes the proposed modeling of HRC in a shared workspace
and formulates the problem of developing an adjustable au-
tonomy framework for HRC. Section III presents the proposed
adjustable autonomy framework for an HRC and the developed
algorithm using RL. Section IV presents a manufacturing case
study and the relevant experimental results for the evaluation
of the proposed framework. Finally, the paper is concluded
in Section V along with the provision of information about
possible future research directions.

II. PROPOSED MODEL FOR HUMAN-ROBOT
COLLABORATION AND PROBLEM FORMULATION

A. Human-robot Collaboration Model

We model an HRC as a finite-state MDP that is capable
of capturing both the performances of the human operator(s)
and the robot(s) in a shared workspace. We assume that
the human operator always makes rational decisions, and
correctly rewards the robot’s actions. We consider that the
state of the HRC system consists of both workspace state, Syy,
and robot’s state, Sz. The robot is assumed to be equipped
with multiple sensors in order to assess the state of HRC
(workspace state and robot’s state) to select an intended action,
ag,, from the action search space, Ag, using the feedback
received from the human operator. The selection of an intended
action is based on a quantitative measure of the reward, rp,
which is instantaneously sent by the human operator for the
intended action. If the robot’s intended action is correct, the
human operator provides the maximum reward, guiding the
robot to execute that action on the workspace. Otherwise,
the human operator minimizes the robot’s reward to keep the
robot looking for the correct action required to accomplish the
desired task. This HRC can be captured by an MDP, M g rc,
defined as follows:

MHRC = <8>AR7T7TH7’7> (1)

where, S = Sy x Sy is the state-space of M ygrc, where
st = (Sw,,Sgr,) € S consists of the workspace state sy, €
Sw and robot’s state s, € Sk at a given time ¢; Ap =
Apr x {0,1} is the action space, where Ap is the set of all
available actions, ag, € Ap x {0} and a;, € Ag x {1} refer
to the intended and performed actions of the robot at time
t, respectively; 7 : S x Ap x &’ — [0,1] is the transition
probability from the current state s; = (sw,,sgr,) € S to
the next state s;11 = (Sw,,,,5R,,,) € S', given by T (s; =
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(SWi»SR,), QR St41 = (SWiiys SRyt )i TH 2 8 X Ap —
R is the reward function, which determines the feedback to
be provided for the robot’s intended actions. The robot will
receive +r reward for selecting the correct intended actions
and —r for choosing the wrong actions, and v € (0, 1] is the
discounting factor.

B. Multilevel Autonomy

The term “autonomy” in the literature is context-based. The
primary standard definition of autonomy from the application
point of view is the SAE International’s definition for au-
tonomous cars [21], which was later adopted and enhanced
by NHTSA [22]. The SAE standard quantifies the levels of
autonomy based on the independence from the human oper-
ator’s intervention (as a car becomes more independent from
the human operator, its autonomy level increases and requires
less supervision/intervention from the human operator). Apart
from the SAE standard, in the HRC-related literature, the
higher robot autonomy requires lower levels or less frequent
and more sophisticated forms of intervention [23-25]. In fact,
when a robot’s performance improves, the human operator’s
trust in the robot increases, and as a result, the human operator
can allow more independence to the robot and/or makes less
intervention/supervision, which is interpreted as a higher level
of autonomy. Accordingly, in the proposed HRC framework,
as the robot learns correct action choices via interactions with
the human operator, the robot’s performance improves. In this
situation, the robot requires less guidance from the human op-
erator, and hence, the robot Autonomy Level (AL) increases.
Without loss of generality, three levels of autonomy AL,
ALy, and AL, are considered for the proposed framework that
is discussed in Section III. At the lowest autonomy level, ALy,
the robot does not have prior information about the workspace
and hence, the robot goes through a trial-and-error procedure,
requiring maximum interaction with the human operator for
learning the correct choices of action selection. At the highest
autonomy level, A Lo, the robot is experienced in selecting the
correct actions for the workspace tasks and hence, the robot
does not need to go through a trial-and-error procedure that it
was using in ALg. On the other hand, during the intermediate
autonomy level, AL;, the robot has some information about
the selection of the correct actions for some situations but this
acquired information is not enough to independently choose
the correct action for all cases. Therefore, the robot uses
both its already acquired knowledge and the trial-and-error
procedure to fill the information gap.

Given an HRC framework with a robot being guided by a
human operator, our aim is to develop a learning mechanism
that can provide the robot with an opportunity to improve its
performance and adjust its autonomy level via the guidance
received from the human operator in the form of rewards, as
formally stated below:

Problem 1. Consider the HRC framework modeled by M g rc
given in (1). In this HRC framework, the robot chooses an
action ag, € Apg to apply to the workspace whose current
state is captured as syy,. Also, consider a human operator who
uses the reward function rg : S X Ag — Ry to provide a
reward to the robot’s choices of action based on the state of

Mpre captured by (sw,,Sr,) € S = Sw X Sg. Develop a
learning mechanism in order to enable the robot to improve its
performance and accordingly adjust its autonomy level based
on the rewards received from the human operator.

III. PROPOSED ADJUSTABLE AUTONOMY FRAMEWORK

In this section, we develop an adjustable autonomy frame-
work for an HRC. In the HRC model captured by Mpyrc
given in (1), it is assumed that the robot is equipped with a
learning capability. Collaborating with a human operator, the
robot learns through a human-reward mechanism about the
actions to be performed to accomplish the assigned task(s).

A. Incorporating Reinforcement Learning into the Developed

Adjustable Autonomy Framework

In the proposed collaborative framework, shown in Fig. 1,
it is assumed that the robot already has the knowledge about
the basic actions such as picking and placing an object or
moving towards an object. Considering the robot’s intended
action, ag,, the current workspace status, syy,, and the current
robot state, sg,, the human operator provides reward for the
intended action as rp,., = ry(s; = (sw,,Sr,),ar,). The
robot learns to choose the actions with the maximum reward
at time ¢ using a learning process. The robot’s learning process
and decision-making process in the proposed framework are
divided into three modules, as discussed next.

1) Action selection mechanism

In the proposed HRC setting, the human-provided reward is
used by the robot to update its state-action value function and it
is defined as a (Q—function for determining the correct choices
of action. Here, the value of (Q)—function can be captured by
the Bellman equation [26] as:

2

Q*(St+17 ARy 41 )

Q*(st;ar,) = ra(st,ar,)+

vy T(st,aR,, st41) | max,

R R
s$t+1€S t+1

There are two techniques used by the robot to select an
action among the available choices, namely, “exploration” and
“exploitation.”

Using the exploration technique, the robot takes a policy
m(agr|s) to randomly choose an action in its search space as:

3)

1
m(agl|s) = - for all ag € Ag

where m(ap|s) is the policy of choosing an action ap at state
s, and n is the total number of actions in the robot action

performed action, a’Rt S

. <Sg,ag, I >
workspace state, Sw, € Sty Rt B Hd m

Learning Robot
I

Workspace
|workspace state, Sw, € Sy

1
robot state, Sp, € SR

b yintended action, ag € Ar
) Reward Model
s Y
. rge Sx Ax —> Ry reward, r,
Human 1

Fig. 1: The proposed learning-based HRC framework.
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space. Exploration is a trial-and-error methodology that the
robot uses to guess the correct choice of action(s) with all
actions having an equal probability of being chosen.

On the other hand, the exploitation technique is used by
the robot once it has reasonably learned about its actions
through its previous experiences. In this case, the robot can use
the learned information to maximize the (Q—function. Using
the exploitation technique, the robot chooses an action for
receiving the highest reward, which can be achieved by the
following policy:

1 ;if a* = argmax Q(s,ar)
ar€AR 4)
0 ;otherwise

m(ag|s) =

where a* is the optimal choice of action. If there are multiple
actions resulting in the maximum ()—value, then the robot
randomly chooses one of them.

2) Human reward mechanism

In the proposed framework, the execution of the robot’s
current action is based upon the reward for its intended action,
ar,. Also, the robot uses the human reward for improving its
learning process. The reward function is given as:

rH(St,aR,) =
—r ;if ar, € Ag is wrong
0 ;if (agr, € Ag is correct ) A (S¢41 7# Sgoar) (3)

+r ;if (ag, € Ag is correct ) A (St41 = Sgoal)

where 0, +7, and —r represent zero, positive, and negative
rewards, respectively. The robot will be provided with 0
reward for correct actions that do not achieve the goal in the
immediate next state; a positive reward, for a correct action
that achieves the goal in the immediate next state, and a
negative reward for a wrong action. If the task is a single-
stage task (it contains only one action), then the robot is given
a positive reward for each correct action selection, and the
reward mechanism can be reduced to:

—r
+r

;if ar, € Agr is wrong

ru (st ar,) = (6)

;if ap, € Ag is correct

Here, using the proposed MDP model in (1) and adopt-
ing the (Q—learning method, the reward mechanism can be
transformed (scaled and shifted) without changing the optimal
policy, as formally stated in the following two lemmas:

Lemma 1. Scaling human rewards in an MDP-based
Q—learning does not change the optimal policy.

Proof. See Appendix A for the proof. ]

Lemma 2. Shifting human rewards by a constant in an MDP-
based QQ—learning does not change the optimal policy.

Proof. See Appendix B for the proof. ]

Once the robot selects an action, the robot shares it with the
human operator as an intended action for the task. The human
operator provides a reward based on the robot’s intended

action according to the reward mechanism defined in (6).
Then, the robot first updates its (J—matrix, and then performs
the intended action only if the assigned reward is maximum,
otherwise the robot continues to search for new action.

3) Autonomy level adjustment mechanism

Through the exploration and exploitation processes, the
robot accumulates the received rewards for the choices of
actions over the time. We introduce 0 < € < 1 to capture
the rates of the robot’s mistakes. The value of € can be
greedily decreased when the robot’s mistake rate reduces and
its performance has improved due to the robot’s learning
capability. Initially, it is assumed that the robot starts its
operation at the first autonomy level, ALg, with the highest
value of e. Due to the high robot’s mistake rate at this level,
the robot only chooses exploration to explore the actions from
its action search space. This provides the robot with a chance
to learn correct choices of actions and reduce its mistake rate,
which in turn reduces €. Once € reaches a certain threshold, it
switches to ALj.

In AL;, even though the robot’s performance has improved,
it is not perfect yet. Therefore, the robot uses a combination
of exploration and exploitation. We can use € to assess the
amount of training that the robot needs through the exploration
process. For this purpose, the robot chooses exploration with
the probability of € and exploitation with the probability of
1 — €. Therefore, combining (3) and (4), the action selection
policy becomes:

S +1—e ;if a* = argmaxQ(s,ar)
m(agls) = ar€AR @)
; otherwise

n
During this process, by reducing e, the robot gradually
reduces the use of exploration and increases the use of
exploitation of the search space until an eventual transition
to the next autonomy level, i.e., ALs.
In AL, the robot reaches a high level of autonomy with
a small rate of mistakes. Therefore, the robot uses only the
exploitation and greedily updates € by maximizing the received
rewards as explained in (4). The next lemma and corollary
show that employing the proposed reward mechanism, ex-
ploitation will lead to a more informed decision.

Lemma 3. If the workspace does not change, with the reward
mechanism in (7), the exploitation will always lead to a more
informed decision, i.e., Pr(ar(t) = correct action) is larger
under the exploitation as compared to the exploration.

Proof. See Appendix C for the proof. |

Corollary 1. In an HRC setting with an e—Greedy policy for
the zero initialization of the QQ—matrix, choosing an action

apr, = argmax Q, (s, ar) selected by policy 71 will lead to a
ar€AR

larger reward from the human operator than an action ar, =

argmax Q, (s, ar) following a policy 7, i.e., ri(s,ar,) >

ar€AR

TH(87aR2)’ if and only if Qr, (37CLR1) > Qn, (Sﬂaﬁ’a)'

Proof. See Appendix D for the proof. ]
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B. Proposed Algorithm for an Adjustable Autonomy

Initially, we set the autonomy level to ALy and ¢ = 1. The
human operator rewards the robot based on (6). Accordingly,
the value of € will be changed as:

e(t) = e(t = 1)(1 — w(ru(se, ar,))) ®)
with
;if rp(se,agr,) >0
;if rp(se,ar,) <0

9

—K_

k(ru(se, ar,)) = {M

where ap, is an intended action at time ¢, and £4,x_ > 0.
As it is shown in Theorem 1, if condition (10) holds, the
autonomy level of the robot is eventually elevated to AL; as
the expected value of € decreases below the threshold 1Ly .

Theorem 1. If the robot’s autonomy level is at ALg, with the
reward mechanism in (6), the robot’s autonomy level always
eventually transitions from ALg to ALy, ie., E(e(t)) <TLy
at some t > 0 if and only if

Ky > (TL — 1)/‘6_ (10)

Proof. In the autonomy level ALy of the proposed human-
reward-based e—Greedy Algorithm, the value of e changes as
described in (8). Since, € and ap, are independent, based on
(8), we have:

Ele(t)] = Ele(t = D](1 = E[s(ru(st,ar,))]) (A1)

According to the policy for exploration, governed by (3),
the actions ar in the search space are selected randomly as
m(ar(t)|s) = L. Since, there is only one correct action corre-
sponding to each state, Pr(ag,(t) = the correct action) =
1 and Pr(ag,(t) = a wrong action) = ™1 Therefore,
E[x(ru(st,ar,))] will be:

1 -1
Eln(rs (s an,))] = ~rs = b (12)
Substituting (12) into (11), it can be revisited as:
Ble(0)] = Ble(t 1)1 - 2D g

Clearly, E[e(t)] will be decreasing if and only if x4 > (n —
Dr_. |

In AL, the robot performs both exploration to search
for the unknown states to handle different situations and the
exploitation to infer the correct action based on ()—matrix
using the policy provided in (7). In this situation, as it is shown
in Theorem 2, the value of e gradually decreases, and hence,
we will eventually have more exploitation than exploration.

Theorem 2. If the robot’s autonomy level is at AL, and if
the workspace does not change, with the reward mechanism in
(6), the autonomy level of the robot always eventually transits
from ALy to ALy, ie., E(e(t)) < TLy at some t > 0 if

Ky > (n—1)k_ (14)

5

Proof. Assume that the autonomy level of the robot is in
AL;. As it has been shown in the proof of Theorem 1,
the expected value of e changes according to (11). Apply-
ing the action selection policy provided in (7) for AL,
Pr(ag,(t) = the correct action using exploitation) = £ +
1 — € and Pr(ag,(t) = a wrong action ) = “~Le. Therefore,
E[x(rm(st,ar,))] can be calculated as:

-1

Elx(rm(st,ar,))] = /{+(% +1—¢)— m,n e. (15)

Substituting (15) into (11), it can be revisited as:
Ele(t)] =Ele(t — 1)]

(ke —(n—1Dkr_)e+ k(1 —€e)n

(16)

(1— )

Since 0 < € < 1, E[e(¢)] decreases for ky > (n — 1)k_.
Under this condition, the value of ¢(t) eventually decreases
below T'L; and the autonomy level switches to AL,. Note
that when the system is in AL, even though E[e(t)] will
be decreasing, still there is a chance that the value of e(t)
increases to take it above the threshold TLar and accordingly,
the autonomy level switches to ALg. However, as it is proved
in Theorem 1, again in AL the value of E[e(t)] will decrease
and eventually the value of ¢(¢) will fall below T'L; and the
autonomy level will switch back to AL;. On the other hand,
as shown above, in ALy, E[e(t)] is decreasing, and hence,
the value of €(¢) eventually decreases below T'L] and the

autonomy level switches to ALs. ]
HC == AL,
- - TLE+ =1l
/ \ =L
start mmmmp| ALy |t— AL, | /HC==AL,
| HC == AL,
N =1 e =TLy
e=1
=
o
N\,
N\
=
o
AL,
HC == AL,

Fig. 2: Change of autonomy level in the proposed HRC setting,
from the low level ALg to AL; and then AL-, and vice versa,
based on the human operator commands or value of €, where
0<TL;y <TL{ <TLy; <TL§ < 1.

The state-diagram for the proposed adjustable autonomy
framework is shown in Fig. 2, and is detailed in Algorithm 1
and Algorithm 2. Algorithm 1 implements the proposed
(Q—learning mechanism to learn from experiences in the form
of exploration or exploitation to update the (Q—matrix and
Algorithm 2 adjusts the robot’s autonomy level based on either
the received human command (HC') or the updated e—value.

Algorithm 1 is initialized with zero (Q—value function,
implying that the robot does not have any prior information
about the workspace (Line 1). In autonomy level ALy, AL,
and ALs, the robot chooses an intended action ap following
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Algorithm 1: Human-reward-based ¢—Greedy Algo-
rithm integrated with (Q—Learning

1 Initialization: Vs € S, Var € Ag:
Q(s,ag) =0, AL = ALy, € = 1;

2 while (1) do

3 repeat

4 if AL = ALy then

5 ‘ Choose ap, using the policy given in (3);
6 else if AL = AL; then

7 ‘ Choose ap, using the policy given in (7);
8 else

9 | Choose ar, using the policy given in (4);
10 end

11 Receive reward 7y from the human operator;
12 if ry < 0 then

13 | e=min(l,ex (1+k_));

14 else

15 e=max(0,e x (1 —kKy));

16 performed action <— ap;

17 update system state s; <— S¢41;

18 end

19 Update Q(s;,ag,) using Bellman eq. [26];
20 Receive human operator command HC if any;
21 AL = AdjustAutonomy(AL, e, HC);
22 until s # 54041
23 end

Algorithm 2: Autonomy Adjustment

1 Function AdjustAutonomy (AL, ¢, HC):
2 if HC = AL then

3 \ AL = ALy, e =1;

4 else if HC = AL, & (AL = ALy or AL = AL,)
then

5 | AL=AL,, e=TLy;

6 else if HC = AL, & AL = AL, then

7 ‘ AL = ALQ;

8 else

9 if AL=AL, & ¢ > TL(T then

10 | AL = ALg;

11 else if AL = ALy & e <TL then

12 | AL = ALy;

13 else if AL = ALy & ¢ > TL{ then

14 | AL = ALy;

15 else if AL = AL, & e <TL; then

16 | AL = ALy;

17 end

18 end

19 return AL;

20 End Function

the policies given by (3), (7), and (4), respectively (Lines
4-10). Then, the robot receives a reward from the human
operator (Line 11). Based on the received reward value, the
robot updates € and decides whether or not to perform the
intended action. If the reward value is negative, the value
of ¢ will be increased and the robot will not proceed with
the intended action (Lines 12-13). Otherwise, the robot will

6

Fig. 3: The experimental setup.

perform the action, and the value of € will be decreased (Lines
14-18). Next, the robot updates the ()—matrix (Line 19) for
each choice of action selection, followed by an adjustment in
the autonomy level (Lines 20-21).

Algorithm 2 is used to adjust the robot’s autonomy level
based on the received human operator command, HC, the
updated value of €, and the current autonomy level of the robot.
The human operator can override the level of autonomy and
can decrease the level of autonomy, but cannot increase the
level of autonomy without allowing the robot an opportunity to
learn and gain the required experiences. Therefore, by using
human commands HC = ALy, HC = AL, and HC =
AlLs, the autonomy level can be degraded to or reinstated
in ALy, ALy, and AL, respectively (Lines 2-7). Otherwise,
based on the value of € with respect to the defined threshold
values, the robot can transition to appropriate autonomy levels
(Lines 9-17). Hysteresis thresholding is applied to avoid Zeno
phenomena.

IV. EXPERIMENTAL RESULTS

In this section, the proposed adjustable autonomy frame-
work is implemented on a robot, which collaborates with a
human operator to inspect the incoming objects in order to
sort and place them into appropriate destination containers as
shown in Fig. 3.

A. Description of Experimental Case Study Set-up

The experimental setup is shown in Fig. 3. A Baxter robot
[27] is used for this experiment. Baxter is a humanoid robot
with 7—DoF arms equipped with grippers for picking objects.
We have made the robot capable of performing basic tasks
such as picking an object and placing an object as shown in
Fig. 3. In this experiment, the robot is expected to handle three
types of objects with Red, Blue, and White colors, and the
incoming objects need to be picked up from the Source Con-
tainer and routed to Container-1, Container-2, or Container-
3, depending on the scenario requirements. Accordingly, the
workspace state is defined as Sy = {b, r, w, empty} where b,
r, and w respectively represent the appearance of an incoming
object of type blue, red, or white in the Source container, and
empty represents the case when the there is no object in the
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workspace. On the other hand, the robot state is defined as
Sgr = {idle,busy} depending on whether the robot is taking
an action or not. Also, the set of available actions in this
setup is Arp = {T'C,,TCs,TCs}, standing for transferring
incoming objects to Containers 1, 2, or 3, respectively. In
a manufacturing setting, these containers can represent the
packaging stations/conveyors. The human operator inspects the
objects and cognitively helps the robot by rewarding its correct
intended choice of action selection through a ROS-operated
workstation. The human operator chooses the maximum re-
ward value for a correct intended action and the minimum
reward value for an incorrect intended action. Moreover, the
human operator physically adjusts the orientation of the object
so that the robot can easily pick the object, whenever needed.

TABLE I: Experimental Setup Parameters

AL Parameter | Value
All « 0.8
All v 0.8
All r 1

— TLS 0.85
- TLy 0.75
— TLT 0.45
— TLT 0.35
AL(), AL1 KR4 0.2
AL(), ALl K— 0.02
AL2 K4 0.1
ALo K_ 0.2

B. Analysis of the Experimental Results

In this experiment, we use the developed HRC framework
to handle objects of three different types/colors with random
arrival at the Source Container. The parameters involved in the
proposed adjustable autonomy framework are given in Table I.

In our experiment, four successive cases have been consid-
ered to demonstrate the adjustment of the robot’s autonomy
level. The details of these four cases are as follows:

In Case — 1, the robot initially starts at ALy and learns
the workspace through interactions with the human operator to
discover the correct actions for handling the incoming objects,
as shown in episodes 1—100 in Fig. 5 and time interval [1, 259]
in Figs. 6a and 7a, respectively. As the robot learns about
the workspace, the total accumulated reward(s) per episode is
improved (Fig. 5a) and the value of € is gradually decreased
over the time (Fig. 6a). As a result, the total exploitation count
per episode is increased (Fig. 5c), and the total exploration
count per episode is reduced (Fig. 5b). On the other hand,
as € decreases, the robot’s autonomy level transitions to AL
when € goes below T'L; = 0.75, and eventually it reaches
AL, when e becomes lower than T'L; = 0.35 as shown in
Fig. 7a.

In Case — 2, the human operator issues the command
HC == ALy to reset the autonomy level to ALy at episode
101 when t = 260min. As shown in Fig. 5 over the episodes
101 — 193 and over the time interval [260,465] in Figs. 6b
and 7b, the robot starts learning about the workspace again,
accumulates rewards, decreases ¢, and adjusts its autonomy

level accordingly. In this case, the total accumulated reward(s)
per episode suddenly decreases but later increases (Fig. 5a).

Similarly, in Case — 3, the human operator reduces the
robot’s autonomy level from ALy to AL; by issuing the
command HC == AL, at episode 194 (t = 466min). As
shown in Fig. 5 over episodes 194 — 285 and over the time
interval [466, 660] in Figs. 6¢ and 7c, the total accumulated
rewards per episode decrease insignificantly (Fig. 5a). As the
robot already has prior information about the workspace, the
robot quickly transitions from AL; to AL, as compared to
Case — 1 and Case — 2.

In C'ase—4, while the robot continues to operate at the high-
est autonomy level, i.e. ALs, a new object is introduced into
the workspace at the episode 286 (at time instant ¢ = 661min).
In Case — 4, as shown in Fig. 5 over episodes 286 — 373
and over the time interval [661,930] in Figs. 6d and 7d, the
robot does not have information about the new object in the
workspace but since it is operating in A Lo, it initially follows
the exploitation and consecutively makes wrong choices of
actions, and hence, it consistently receives minimum rewards
that increase the value of ¢, reducing the level of autonomy
to AL; when e increases above the TL;r = 0.45. Then,
in ALy, the robot starts learning about the workspace again
by conducting a mix of exploration and exploitation, while
accumulating rewards over the time that decreases e. When
the value of € becomes lower than the threshold T'L; = 0.35,
the AL of the robot is adjusted back to ALs.

A time-lapse video of this experiment is available at: https:
/lyoutu.be/Sycrr_MqV_c.

V. CONCLUSIONS AND FUTURE WORK

This paper developed an adjustable autonomy framework
for an HRC setting to enable a robot to learn correct actions
in an initially unknown workspace. An MDP model was
developed and incorporated into the proposed framework to
mathematically represent the collaboration setting between
the human operator and the robot in a given workspace. A
(Q—learning mechanism with an integrated e-greedy approach
was developed for enabling the robot to learn the workspace
and make correct intended choices of actions for adjusting the
robot’s autonomy level. The developed algorithm was applied
to an HRC setting in a manufacturing process. In this process,
a 7—DoF Baxter robot collaborated with a human operator to
inspect and sort the incoming objects. The experimental results
showed the effectiveness of the proposed adjustable autonomy
algorithm for adapting to different cases involving either
changes in the workspace or human operator’s commands.
As future work, we will go beyond the laboratory setting
experiments and will explore the application of the proposed
framework to an HRC system in a manufacturing setting with
more complex collaboration scenarios. We will also explore
the impact of the human operator’s performance and behavior
change when the human operator does not consistently provide
correct/rational reward values for the robot’s actions. We will
also extend the proposed framework to uniformly address both
the high-level decision-making (action selection) and low-level
control (motion planning and action execution).
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(b)

Fig. 4: Baxter robot collaborates with a human operator to inspect and sort objects using the proposed algorithm: (a) A
human operator inspects an object and places it in the source container, (b) The Baxter robot picks the object from the Source
Container, (c) The Baxter robot places the object in one of the containers.
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APPENDIX A
PROOF FOR LEMMA 1 ,
Q" (st,ar,) = cru(ss, ar,)+ (17)
/
v Z T (st,ar,,st41) max Q" (se+1,aR,,,)
St41€S g4y SAR

In an MDP-based (Q—learning, assume that the op-
timal policy can be described as 7*(ag,.,|si+1) =
argmaxQ*(s;41,aR,., ), in which the optimal (Q—value can

ARy €EAR 1 i
be captured by the Bellman equation described in (2). EQ (st;ar,) =ru(st,ar,)+ (18)

Dividing both sides of (17) by ¢, we will have

1
v Z T (st,ar,,st+1) max *Q*/(8t+1,aRt+1)

aRt+1 €AR C

. . st+1€S
Suppose that there exists another reward mechanism as ‘ )
iy (st,ar,) = cru(si,ar,), where c is a positive scaling From (18) we can conclude that Q* = QT Therefore, as
factor, resulting in a new (Q—value function Q*' as: shown in (19), the new optimal policy is the same as the
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previous optimal policy:

, /
T (aRt-Fl‘St-'rl) = argmaz Q~ (5t+17aRt+1) (19)
aRt+1 GAR
= argmax cQ*(S¢41,0R,,,)
LLRt+1 €AR
= argmazr Q*(si41,0aR,.,,)
aRt+1 GAR

=" (aRt+1 |St+1>

APPENDIX B
PROOF FOR LEMMA 2

Similar to Lemma 1, assume that the optimal pol-
icy of the MDP-based ()—learning can be described as
(AR, |St4+1) = argmax Q*(si41, ar,,, ), in which the op-

aRr,,, €AR
timal @Q—value can be captured by the Bellman equation given
in (2). Suppose that there exists another reward mechanism as
iy (st,ar,) = ru(se,ar,) + ¢, where c is a shifting value,
resulting in a new (Q—value function as:

Q*I(St, ar,) =ru(s:,ar,) + ct+ (20)
*/
0 § T (st,aR,,St+1) maxA Q (3t+1aaRt+1)

aR €AR
st+1ES t+1

Similar to the proof of Lemma 1, it can be shown that Q* =
Q*' — ¢, concluding that 7' (ag,,,|si+1) = 7 (ar, ., |Si4+1)-

APPENDIX C
PROOF FOR LEMMA 3

Assume that in a @Q—learning mechanism, Q(s¢,ap,) is
an element of (Q—matrix at time instant ¢ corresponding to
the state s for an intended action ap. Now, if the robot
uses the exploitation approach, according to (4), the robot
chooses the intended action with maximum ()—values, i.e.,

agr, = argmax @Q(s¢, ar), which is equivalent to the one that
ar€AR
has received the maximum reward in the past experiences.

With the rational reward mechanism described in (6), if there
is only one action with maximum )—value, it is the correct
action, i.e., Pr(ar(t) = correct action) = 1. Even though
it is less likely but it may happen, if there are multiple
choices of actions with the maximum but equal (Q—values,
then the robot randomly chooses one of them. In the worst
case, if all actions have the same (Q—value, the exploitation
would become equivalent to exploration (a completely random
search). Therefore, Pr(agr(t) = correct action) is larger
under the exploitation as compared to the exploration.

APPENDIX D
PROOF FOR COROLLARY 1

The proof is by induction. Initially, at £ = 0, the matrix
Q is set to be zero for both policies 7, and mo. Therefore,
using Q-learning update formula [26], the value for policy 7y
leading to an action a g, and receiving the reward r g (so, ar, ),
k = 1,2, will be updated as:

9

Q(s0,ar,) = arm(so,ar,) 21

Hence, at ¢ = 0, if the robot chooses an action ar, following
a policy m, the value of (Q—matrix will be updated as
Qr,(s0,aRr,) = arg(so,ar, ), which is greater than or equal
t0 Qr,(S0,ar,) = armg(so,ar,) for an action ag, selected
by policy 7o, if and only if rg(s,ar,) > ru(s,ar,). Now,
assume that Qr, (s;,ar,) > Qx,(s;,ar,) at t = j. Following
Q-learning formula [26], the updated (Q—matrix for policy 7
leading to an action ag, and receiving the reward 7 (s;, aR, )
will be:

Qn, (Sj’aRk) :(1 - O‘)Qm (Sj7a’Rk)+ (22)
a{ru(sj,ar,) + Max Qr, (8j+1,aR,)}

From (22), it can be seen that Qr, (sj,ar,) = (1 —
@)Qn (85, ar,) + a{ru(sj,ar,) + ymaxQnr, (sj+1,ar, )}

1
2 Qﬂ'2(3j7a32) = (1 - a)QTm(Sj?aRz) + a{TH(Sj7aR2) +
ymax Qnr,(Sj+1,ar,)}, if and only if rg(s;,ar,) >
ARy

ru(sj,ar,).
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