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Abstract— State-of-the-art lane detection methods use a va-
riety of deep learning techniques for lane feature extraction
and prediction, demonstrating better performance than conven-
tional lane detectors. However, deep learning approaches are
computationally demanding and often fail to meet real-time
requirements of autonomous vehicles. This paper proposes a
lane detection method using a light-weight convolutional neural
network model as a feature extractor exploiting the potential
of deep learning while meeting real-time needs. The developed
model is trained with a dataset containing small image patches
of dimension 16 x 64 pixels and a non-overlapping sliding
window approach is employed to achieve fast inference. Then,
the predictions are clustered and fitted with a polynomial to
model the lane boundaries. The proposed method was tested
on the KITTI and Caltech datasets and demonstrated an
acceptable performance. We also integrated the detector into
the localization and planning system of our autonomous vehicle
and runs at 28 fps in a CPU on image resolution of 768 x 1024
meeting real-time requirements needed for self-driving cars.

Index Terms— Lane Detection, Deep learning, Convolutional
Neural Network, Self-driving Cars, Autonomous Vehicles

I. INTRODUCTION

Vision-based lane detection systems often consist of three
main components: preprocessing, feature extraction, and
post-processing including curve fitting [1]. The feature ex-
traction stage is considered as a critical component of a
lane detector since features such as edges and color contain
information about the lane [1]-[4].

Lane detection systems based on conventional image
processing techniques usually use predetermined parameters
such as threshold values to extract edge and color features.
These categories of algorithms are vulnerable to various
challenging scenarios like illumination and road texture
changes which could result in low performance. Recognizing
the issues with fixed parameter values, works such as [5] and
[6] attempted to improve robustness by introducing adaptive
thresholding and steerable filters. Similarly, the method pro-
posed in [7] incorporates SVM classifier with HOG features
to verify whether an image patch has a valid lane marking
to improve the performance of the lane detector.Despite the
improvements reported on the performance of conventional
image processing techniques in the literature, lane detection
systems using manually-tuned feature extractors produce
unreliable results when tested in different settings such as
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in urban environments where lane markings may be covered
by shadows and other vehicles.

Recent developments on lane detection systems show
growing interest in deep learning based approaches such as
Convolutional Neural Networks (CNN). This is due to the
ability of the CNN methods to learn from example images
(training data) and automatically fine tune the parameters
required to extract lane features and perform classification
tasks. For instance, the method proposed in [8] predicts the
location of the vanishing point to enhance the lane detection
process to classify the lane boundary types and colors.
Similarly, in [9] a modified region based convolutional neural
network (RCNN) with the popular VGG16 back-end for
feature extraction is used to determine the presence of a lane
marking in a small image patch. At the post-processing stage
the predictions are analyzed to create the final lane boundary
result which can be very complex as indicated in [10]. Se-
mantic segmentation using an encoder-decoder architecture
is also used in [11] and [12] where each pixel in the input
image is grouped into lane marking or background. Semantic
segmentation approaches often require an extensive post-
processing effort by employing clustering methods to put the
lane marking pixels into their respective lane boundaries. In
an attempt to avoid or minimize the post-processing efforts,
end-to-end architectures have been proposed in [13]-[15].
Long short-term memory (LSTM) deep learning architecture
is also used in [16] and [17] to exploit temporal correlation
between consecutive image frames.

The main issue with most of the deep learning based
lane detectors is their slow speed due to the large number
of convolution operations in the CNN architecture which
often leads to delayed inference results. To address this
challenge, we propose a lane detection system that employs
a lightweight CNN model as a lane marking or feature ex-
tractor. We used a non-overlapping sliding window approach
with our CNN model predicting the presence of lane marking
for each image patch. The proposed method is implemented
in C++ using OpenCV API for image processing in an
Ubuntu-18 machine with Intel Xeon CPU (88 cores) and
32GB RAM resulting in inference speed of 28 frames
per second(fps), without GPU acceleration, at a reasonable
accuracy.

II. PROPOSED METHOD

Lane detection systems that are based on conventional
image processing techniques rely on manually-tuned pro-
cessing techniques which may not adapt to scene changes
(see e.g. [3], [18]). To minimize the effect of environmental
factors on the detector we developed a data driven approach
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(using CNNs) for feature extraction. The general block
diagram representation of the proposed lane detection system
is shown in Figure 1. As it can be seen in this figure,
the proposed method consists of a CNN block for lane
marking extraction followed by the post-processing block
for analyzing the detected lane markings and performing
polynomial curve fitting to represent the lane boundaries.

Feature Extractor

Post-processing

Average Point Est.
Clustering
(' Curve Fitting )

Fig. 1: Block diagram representation of the proposed lane detection
framework.

Image Lane lines

CNN model

A. Feature Extraction/classification

One of the main objectives of this paper is to replace
handcrafted lane marking feature extraction method by an
equivalent deep convolutional neural network to make the
lane feature extraction invariant to various environmental
factors.

Unlike instance or segmentation models which classify
every pixel, our method uses a sliding window approach by
considering a small image patch and performing predictions
on each image patch. The size of the selected window size is
small enough that in one image patch only a single segment
of lane marking can be captured while sliding it across the
image width as shown in Figure 2. On the other hand, the
size of the window selected is big enough that a segment
of lane marking will not fill the width of the window.
Although overlapping of windows is possible while sliding,
we intentionally avoided it to minimize the computation cost.

Fig. 2: The size of image patch is selected to better capture lane
marking lines. Red window indicates the window filled by the zebra
crossing line whereas the blue windows capture a segment of the
lane line.

The architecture of our proposed feature detection method
is shown in Figure 3. It consists of three convolutional layers,
one maximum pooling layer, and three fully connected
layers. The Rectified Linear Unit (RELU) is used as the
activation function in between each layer and the Softmax
function is applied to the output layer. The input to the model
is an image patch of size 16 x 64 pixels and the output is the
binary classification result. For each image frame, the output
of the feature extractor block is an array in the form of

CNN architecture

i 16x64x3
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Conv2D: 3x3
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Fig. 3: The proposed CNN Model Architecture. When a lane
marking is detected in the image patch, the average pixel position
is calculated for the image patch, (dz, dy), and then, the reference
position, (x, yr), is added to find the exact location in the original
image.

Po,0 Po,1 Po,m—1
P10 Pia P1m—1
Poers = . . . (D)
Pn—-1,0 Pn-1,1 Pn—-1,m—1

where each element P; j = (2, Yr;, @mi ;> Qs 5)s Tr; and
yr; Tepresent reference pixel coordinates, cu,, ; and ap; ;
represent the prediction results for each image patch whether
it is marking or background. The number of rows, n, of
Ppers is determined by the image height, H, and the starting
row, g, of the the region of interest (ROI), which can be
calculated as n = (H —rs;)/16. The number of columns, m,
of Py, depends on the image width, W, and patch/window
width, which can be calculated as m = W/64.

Fig. 4: Predicted lane marking points overlaid on the original
images with different textures. Orange points are the average pixel
point for the image patch colored in cyan.

B. Post-processing

1) Compute Average Lane Marking Point: The first stage
of the post-processing block is filtering out the patches in
Ppers with low confidence value for lane marking class.
The remaining matrix elements that satisfy conditions o, >
ap and «, > MIN_THR, are considered to contain
lane marking in the image patch. Then, we compute the
average pixel point, (dx,dy), of the lane marking in the
patch followed by converting its location with respect to the
original image by adding the reference coordinate (z,.,y;)
to it as shown in Figure 3. Therefore, the coordinates of
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accepted predictions in the same row of P, (with the
same y,-value) can be represented as a vector row; =
([, 96", [, ya] s oo [0, —1 U, 1] "], Where (2, %) is
the coordinate of the average pixel point of the jth lane
marking in row ¢, and m; is the number of image patches
considered to have lane markings in the i*” row (of thickness
16 pixels).

At this stage, lane marking features are available in a
2D vector/list containing the spatial information of pixel
coordinates as shown in Figure 4. For easier curve fitting and
analysis, we first transform each of the vector elements in
row; from the perspective view to the bird’s eye view. The
vector dimensions are first adjusted to make it compatible
with the 3 x 3 homography/transformation matrix, as row; =
Hx()a Yo, l]Ta [:Bh Y1, 1}T, s [:Emifla meifla 1]T] The modi-
fied vectors are put together by the P, as follows:

Tow
~ row
Ppers = (2)
TOWyn—1

Transforming Ppers to the bird’s eye view is done by
multiplying each element in the row; as follows

H x rowy Towq
H x row; Tow,
Pbe'u = = (3)
H x row,_1 TOWy, 1

where Py, represents the detected points in the bird’s eye
view and H is a transformation matrix which can be esti-
mated from the camera calibration parameters and orientation
of the camera on the vehicle [2] or from correspondence
points in the original and bird’s eye view images. The latter
approach works well if the road is flat. Otherwise, roads with
some slope can introduce an error specially on the top side
of the image (further points from the camera).

2) Clustering Predicted Points: To group points that be-
long to the same lane boundary, we propose a clustering
method that uses Euclidean distance and angle as a criteria.
Unlike the K-means clustering algorithm that searches for
points closer to a center point in all directions, our method
searches for points around an imaginary curve. As illustrated
in Figure 5b, the search starts by arbitrarily selecting a
point, p; in Fow,_1, from the last row of Pj,, followed
by calculating the Euclidean distance and angle between p;
and all points in T7ow,,_o. Figure 5a shows the distance d and
angle o between the points p; in Fow,,—; and p; in Fow, _»
which will be compared with a predefined distance and angle
thresholds. If d and « are in the desired range, then point
p; is considered to belong to the same cluster as p;. The
process continues for points in the next rows until the top
row, Towy, is reached as shown in Figure 5c. This process
is detailed in Algorithm 1.

Once the clusters are found, we refine the results as
there might exist some overlapping clusters depending on
the number of points in Py, 2D vector. To avoid these

ki ;Pr. 1 2 ik, ;P:. 1
@ (b) ©

Fig. 5: (5a) The clustering criteria: Euclidean distance, d, and
angle, o between points p; and p; for ¢ # j, (5b) finding
a point in Tow,_o that belongs to the same lane cluster
as P,_1, (5¢) selected points belonging to the same lane
boundary shown by cyan arrow.

overlapped clusters, we simply sort the clusters based on the
number of points in the clusters. Then, the cluster with the
largest number of points is considered a good candidate to
represent a lane boundary and it can be used as a reference
to search for other lane boundaries by taking advantage of
information about lane width, L,,, and assuming that lane
lines are parallel.Other clusters representing the remaining
lane boundaries are searched by defining a search region +
L,, from the reference cluster as shown in Figure 6.

—T" X |

Ly Log LuiL, i* g

D AL SR ¥

(@) (b)

Fig. 6: (6a) The reference cluster is shown in cyan and search
regions are average lane width L,, apart from the reference
location. (6b) The points around the estimated regions(dotted
lines) are collected to form other lane boundaries.

f(ybcv) = aygev + bybcv +c (4)

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

Our test vehicle is a GM Bolt EV which is equipped
with various sensors including a GIGE color camera (by
The Imaging Source) as shown in Figure 7. This camera is
configured to run at 30 fps streaming an image of resolution
768 x 1024 pixels and is mounted on the roof along the
longitudinal axis of the vehicle as shown in Figure 7. Our
computing platform is a Crystal Rugged Server with Intel
Xeon Scalable CPU having 88 cores and 32 GB RAM.
Algorithms are implemented using Robot Operating System
(ROS) framework in Ubuntu-18 OS.

1529



Algorithm 1: Clustering Algorithm

Input: P, points in bird’s eye view
Result: P, =[], list of clusters
1 aupr = angle threshold
2 dipr = distance threshold
sforr=1:n—1do

4 row = Ppey[n — 7]

5 for i =0 : length(row) — 1 do

6 p; = rowli]

7 tempyector = [pz]

8 m=1

9 while True do

10 if (n —r —m) <0 then

1 | break

12 end

13 a, d, pj = getNearestPoint(p;,
Pyey[n — 1 —m])

14 //Get the next point from the row above
the current row

15 if o < ayp, and d < dyp,, then

16 tempyector = [tempvectorapj]

17 pi =Dy

18 end

19 m=m-+1

20 end

21 P, = [Pcl; tempvector]

22 end

23 end

Fig. 7: Test vehicle - GM Chevy Bolt EV equipped with a color
camera mounted on the roof of the vehicle and other sensors.

B. Training Data

To train the feature detector model, we collected images
from various sources such as the TuSimple [19] dataset in
addition to the data collected using our own test vehicle
in different parts of Greensboro area. To train and validate
our model, image patches of about 40,000 are prepared of
which half of the image patches contain lane markings and
the remaining data has no lane markings or considered as
background as shown in Figure 8.

C. Performance Evaluation

To evaluate the performance of the proposed method,
we considered two popular datasets: Caltech [2] and the
KITTI ego-lane dataset [20]. The KITTI ego-lane dataset

Background
[

Lane Markin
e

|

] 1 ———\ (B S
| & S S . [V

¥ | & 70 L[5 N
| W™ /7 [N | == |
LaTE.. . Te s T
== \| L . A
N | /7 | i g
[N\ TN —
/A | == B~ | [

Fig. 8: Image patches containing lane markings and without lane
markings/background are used to train the developed model.

already has ground-truth label and performance evaluation
script whereas for the Caltech dataset, we manually labeled
more than 580 images for ego-lane analysis and the com-
monly used evaluation metrics, distance between ground-
truth and prediction lane boundaries, are used [20], [21].
Each lane boundary in the ground-truth label contains up
to 10 discrete points in the perspective view to represent
the lane boundaries, Py = {(z0,%0), ..., (&, yx)}, Where
k < 10. To compare the output of our lane detector with
the ground-truth data, we convert the estimated polynomial
in (4) to the perspective view and compare it with the
ground-truth, which is also in the perspective view. This
evaluation process is shown in Figure 9. Mathematically, we
first discretize the estimated polynomial in (4) by finding
points Prey = [Toew = f (Yvew)s Yoews 1]7. We then transform
each sample point to the perspective view using the inverse
transformation matrix, H !, using ppra = H ' * Ppeo.
Then, the polynomial representing estimated lane boundary
in the perspective view is reconstructed from a group of p,,q
points, given by f'(ypra) = ¢ ygrd + V'ypra + ¢'. The error
at a sample point is computed as the difference between the
ground-truth and the polynomial output along the horizontal
axis (row) as:

Error = |2gr — Tprd| (5)

where (Zgre, Ygrt) € Pgre and (zpra, Ypra) is a sample point
evaluated from f'(ypra), i-e. Tpra = ['(Ygre) = @'yl +
blygrt + ¢’ and Ygrt = Yprd-

For a lane boundary to be considered as correctly detected
or true positive (TP), more than 70% of the sample points
need to have an error less than a defined threshold (in our
case 15 pixels, which is approximately the same as the
thickness of double yellow lines). Otherwise, the prediction
is considered incorrect or false negative (FN). Estimates of
lane lines by the lane detector without a matching ground-
truth label are counted as false positives (FP).

Sample output of our method and ground-truth label points
are shown in Figure 10, where the left image indicates correct
detection as the predicted points are within the threshold
whereas in the right side image, the right lane boundary
is considered as FN since more than 60% of the predicted
points have error higher than the threshold. The evaluation
results summary for the Caltech dataset ego-lane detection is
shown in Table I. Sample outputs of the developed method
when applied to the Caltech dataset are shown in Figure 11.
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Fig. 9: Performance evaluation in the perspective view. Estimated
lane boundaries are first transformed from bird’s eye view to per-
spective view for comparison with ground-truth at discrete points.

TABLE I: Evaluation of the developed method on the Caltech
dataset

Dataset #frames TP FN FP
Cordoval 250 0.9254 | 0.0746

Washington1 337 0.9298 | 0.0701

0.0080
0.0267

The results show the robustness of the developed method
under strong shadow conditions.

Fig. 10: Green dots indicate ground-truth labels and red dots are
predictions. In the left image, the lane boundary predictions are
counted as TP whereas in the right image, right lane boundary
prediction is counted as FN as the majority of the sample points
deviate from the ground-truth beyond the threshold.

Fig. 11: Sample results of the developed method when applied to
the Caltech dataset.

The developed method is also applied to the KITTI ego-
lane dataset [20]. The evaluation script of KITTI considers
false positive rate (FPR), false negative rate (FNR), preci-
sion (PRE), recall (REC), average precision (AP), and the
maximized harmonic mean (F-measure or MaxF) parameters
as a performance measures. The evaluation results for the
KITTI dataset are shown in Table II. The results indicate
that the proposed method has a very low FPR and FNR

as well as reasonable PRE, REC, AP, and MaxF values.
The AP and PRE are significantly affected by missing right
side lane boundary in the dataset which is estimated by the
lane detector based on left boundary detection. Nevertheless,
the result obtained is comparable to the top 40 methods in
the leader-boards posted in the KITTI website [20]. Sample
outputs of our method when applied to KITTI dataset are
shown in Figure 12. The results show robust performance
of the detector under challenging conditions such as strong
shadow and interference by the rails.

TABLE II: Evaluation of the developed method on the KITTI
Ego-lane dataset

MaxF | AP
83.72

PRE
76.98

REC
91.75

FPR | FNR

8.25

70.73 244

L S T s

Fig. 12: Sample results of our method when applied to the KITTI
dataset where the green curves indicate the ego-lane boundaries.

D. Run-time Efficiency

The proposed feature extraction model is trained in Tensor-
flow framework; optimization and inference are facilitated by
the Intel’s OpenVINO model optimizer and inference engine
toolkit [22], and implementation is in C++ using the OpenCV
library support. We tested the proposed method on three
computer platforms targeting only the CPUs. We achieved
an average inference speed of 28 fps with a CPU having 6
to 8 CPU cores/threads for an input image of resolution of
768 x 1024 pixels. Less or more CPU cores causes relatively
slower performance due to lack of threads or threading
overhead respectively. Although our main computer has 88
cores, maximum performance (28 fps) is achieved when the
threading is restricted to only 8 cores as shown in the last
row in Table III.

To evaluate the real-time performance of the proposed
method, we deployed the lane detector (as a separate ROS
node) in our test vehicle where its output is used as a part
of the localization and planning modules. The run-time effi-
ciency is unaffected after integration. Our test result for path
planning is shown in Figure 13. The video demonstration of
the lane detection algorithm (without tracking) implemented
on the developed autonomous test vehicle is available at
https://youtu.be/O2iV3f7TKMM:s.

IV. CONCLUSIONS

This paper proposed a fast, and robust lane detection
system using a light-weight CNN model for lane feature
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TABLE III: Run-time Efficiency Result

Platform #Cores | fps
Dell Precision 7520, Intel Xeon | 8 25
E3-1505M

Intel NUC, Intel Core i7-6770HQ | 8 29
*Crystal Rugged Server, Intel | 88 28
Xeon Scalable

*The fps is achieved using only 8 cores.

(b)

Fig. 13: (13a) Top view of lane detection results overlaid
with the map data: Red indicates detected lane boundary,
blue shows map data and green shows the path estimated by
combining map data and the lane center output of the lane
detector. (13b) Perspective view of all data in (13a).

extraction. The developed lane detector takes a small patch
from the input image and performs predictions in each image
patch searching for lane markings followed by a clustering
algorithm, which collects predictions belonging to the same
lane boundary using lane geometry as a reference guide.
Finally, the clustered points are fitted with a polynomial. The
lane detector is also deployed in our development vehicle
to confirm real-time performance when used with other
software modules. The experimental results show that the
developed method is robust enough for the tested driving
scenarios with challenging conditions like interference with
other road signs, texture changes and worn out lane markings
and fulfills real-time requirements for self-driving cars. Fur-
ther real-world testing is necessary to assess the robustness
of this approach under other variety of driving conditions.
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