


well as the locations of previously detected pedestrians in

the current frame.

In summary, the contributions of this paper are as follows:

1) we develop a method for real-time sensor fusion of

camera and LiDAR data, 2) we develop a real-time accurate

pedestrian detection and tracking framework, 3) we also

integrate optical flow information into the developed tracking

technique for achieving accurate predictions of multiple

pedestrians over the RGB and depth images.

II. RELATED WORK

In recent years, numerous approaches for detecting

and tracking pedestrians in sequential images have grown

steadily. With the recent advancement in deep learning, we

are able to utilize machine learning models to accurately

detect and classify pedestrians in complex scenarios. In this

section, we will begin with a brief overview of learning-

based pedestrian detection, then some existing fusion tech-

niques for combining multimodal sensor data, and finally a

brief overview of pedestrian tracking.

Recent works focus on improving the robustness and

accuracy using deep neural networks [10]–[12]. Though

these methods exhibit satisfactory performance in well-lit

environments, they struggle to detect pedestrians in low light

conditions such as nighttime, dawn, sunrises, and sunsets.

This is because it is hard to generate shape information

from images in ill-lit environments. On the other hand,

the LiDAR can provide comparatively better shape features

under these scenarios. As LiDAR can provide the only

geometric feature of pedestrians, inferring context-aware

relations of pedestrians’ body parts is one way to distinguish

among multiple pedestrians in a complex scenario [13]. To

improve the classification performances of pedestrians, hand-

crafted features such as slice feature and distribution of

reflection intensities are explored [14]. The slice provides

human body information based on body height and width

ratio. Some works are focused on the density enhancement

method for improving the sparse point cloud of LiDAR and

they provide an improved shape feature for long-distance

pedestrian detection [15]. Pioneering work on the conversion

of a 3D point cloud of LiDAR into the 2D plane extracts

both hand-crafted features and learned features, and then

trains a support vector machine (SVM) classifier to detect

pedestrians [16]. Later, 3D point clouds are converted into

2D panoramic depth maps and these depth maps are used in

pedestrian detection [17]. Even though the LiDAR provides

better results in the nighttime while it is difficult to get

shape features using the camera or compare to a distorted

image frame, camera-based methods perform better for long-

distance pedestrians in the daytime where they appear in

small sizes. The best result can be achieved by fusing both

of these sensors to jointly predict pedestrians.

Since using the LiDAR or the camera independently

unveils their limitations, it becomes interesting research

direction to fuse different sensor modalities. In this setting,

the improvement can be achieved from the use of multiple

views of the pedestrian by learning a strong classifier that

accommodates both different 3D points of view and multiple

flexible articulations. In order to integrate multiple sensor

modalities several fusion mechanisms are investigated [18],

[19]. These sensor fusion techniques mostly focus on either

combining feature information from different sensors or

generating candidate regions from one sensor and map these

candidate regions to other sensor information. For instance,

a deformable part detector is trained using optical images

and depth images generated from 3D point clouds using

upsampling technique [20]. Some fusion techniques cluster

the LiDAR point cloud to generate candidate regions and

map these regions on an image frame for detecting pedes-

trians [18], [21]. Most of these methods sacrifice runtime

performance while improving detection accuracy. Therefore,

a balanced fusion mechanism is needed to deal with the

trade-off between accuracy and speed.

Recent pedestrian trackers are designed mostly based on

end-to-end deep learning networks. A common approach is

adding recurrent layers with the detector module. For exam-

ple, the ROLO [22] is the combination of the convolutional

layers of YOLO and the recurrent unit of LSTM. TrackR-

CNN [3] is considered as a baseline method of multi-object

tracking that adds instance segmentation along with multi-

object tracking. Tractor++ is an efficient multiple object

tracking that utilizes the bounding box regression on predict-

ing the position of an object in the next frame where there

is no train or optimization on tracking data [4]. On the other

hand, the machine learning pipeline-based methods such as

the Deep SORT which integrates appearance information

along with Simple Online and Realtime Tracking (SORT)

technique, adopts a single hypothesis tracking methodology

with the recursive Kalman filter and the frame-by-frame

data association. This technique focuses on an offline pre-

training stage where the model learns a deep association

metric on a large-scale person re-identification dataset [9].

A single-stage efficient multi-object tracking is introduced

in [5], where target detection and appearance embedding are

to be learned in a shared model and a Kalman filter is used

for predicting the locations of previously detected objects

in the current frame. While considering the LiDAR data

for pedestrian tracking, a stochastic optimization method is

introduced in [23] that merges the clustering and assignment

task in a single stage.

Inspired by these works, we use both LiDAR and camera

sensors to complement individual sensor limitations on de-

tection and tracking performances. Thus, our solution can be

applied to a wide variety of complex scenarios.

III. PRELIMINARIES

Pedestrian tracking is a challenging problem as pedestrians

need to be firstly detected in the current frame and then

associated frames. The success in deriving a good tracker is

mainly governed by a superior detector. In this work, we use

YOLOv5 [24] as a base module of the pedestrian detector.

Therefore, we will briefly explain the working principle

of YOLOv5 as a pedestrian detector. Since the YOLOv5

architecture is the same as the YOLOv4 [25] except the
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the Euclidean coordinate. Due to the huge amount of memo-

ries that are required over time, it is inefficient to work upon

the raw point clouds. Instead, we can convert the 3D scan

to a 2D depth map. A depth image can be thought of as a

2D grid map comprised of un cells. To generate the depth

image we need to compute the distance of the scan objects

from a viewpoint in such a way that maps pi to u. Then,

we transform each point in point clouds from the Euclidean

coordinate (x, y, z) to Spherical coordinate (θ, φ, r). This

way we can map each point to the corresponding grid cell

such that u : {θ, φ} → r. The pixel values of depth images

lie in either gray or RGB color spaces. For the grayscale

image, we normalize each cell value in the grid map to

0 → 255 to the known maximum depth value and thus the

intensity of the gray image represents the depth information.

On the other hand, For the RGB scale image, we assign a

distinct color from the RGB space to each cell value in the

grid map based on the r parameter.

B. Fusion with Depth Image

Our solution utilizes the Kalman filter along with parallel

processing of RGB and depth images. To predict in a joint

space, first, we project the LiDAR scan as a depth image

to the RGB camera space. Let xr and xd be the RGB and

depth images, respectively. Since (in common settings) the

positions of camera and LiDAR are fixed but the resolution

of camera image and the depth image from the LiDAR

scan varies in size, we can project the depth image to

the RGB camera space with either zero padding to the

smaller image or cropping each of them into a same size.

We denote this synchronized depth image by xs. Second,

we vertically concatenate the RGB image xr and the depth

image xf by cropping each of them into a fixed size such

that x = {xs, xr}. Although it is possible to use an image

classification network to predict pedestrians directly over xs,

it requires multiple calls for the joint prediction, i.e., the xr

and the xs need to be fed to the pedestrian detection and

pedestrian classification models, respectively. Thus, concate-

nating the xr and the xs into x reduces the number of calls

to different models and significantly improves the runtime

efficiency. Finally, we feed this concatenated image x to the

pedestrian detector f to obtain bounding boxes and scores

over fused images such that ŷ = f(x). Form the prediction

ŷ, we can also separate individual predictions the ŷr and

the ŷs for the xr and the xs correspondents, respectively.

Since we vertically concatenate the xs with the xr, we can

calculate an offset o based on the height of xr. Then, we

translate each bounding box bs ∈ ŷs to the down by o.

Overlaying ŷs to ŷr may raise three distinct types of

scenarios. Firstly, ŷs reduces the miss detection by accu-

rately detecting pedestrians. Secondly, ŷs provides redundant

inference with respect to ŷr. Finally, ŷs does not improve

detection accuracy since it cannot detect any pedestrians.

To overcome these scenarios, we utilize a Kalman filter to

evaluate the joint predictions in a systematic manner. In

our next subsection, we will provide a description of the

proposed Kalman filter in detail.

C. Integrated Framework for Pedestrian Tracking

The Kalman filter has been extensively applied in pedes-

trian tracking from the camera stream. Our framework uses

such a technique to predict and update the pedestrian trajec-

tories from the continuous camera and LiDAR streams. Our

integrated framework augments the capability of the existing

pedestrian tracking method by fusing depth information. To

track multiple pedestrians in a frame, our framework uses

three important information, i.e., bounding boxes from the

RGB images, optical flow between consecutive RGB image

frames, and bounding boxes from the depth images.

One of the important properties of the Kalman filter is

that the state vector is a hidden parameter and the observa-

tion provides useful information to update the state vector.

Therefore, in our setting while using the Kalman filter,

the observations, i.e., bounding boxes, from the detector

are not directly use for tracking of pedestrians. Basically,

the proposed Kalman filter-based tracking has two stages:

the prediction and the update stages. In prediction stage,

the bounding boxes for pedestrians are predicted using the

corresponding state of the bounding boxes in the previous

frames. In the update stage, the observation of pedestrian in

the current frame is used to update the predicted states of

pedestrians.

Let sit be the state vector of ith bounding pedestrian window

in frame t. To track multiple pedestrians, it is convenience

to have multiple Kalman filters, e.g., one for each pedestrian

detected in the frame as follows

sit = Fi
t−1

sit−1
+ wt−1,

zit = Hi
ts

i
t + vt,

where Fi
t−1

and Hi
t denote the state transition and the

measurement matrices for the ith pedestrian, respectively. The

vectors wt−1 and vt are noise terms which are assumed to

be Gaussians with zero mean and covariance matrices Qt

and Rt. The prediction stage involves reasoning about the

state vectors and their associated error covariance matrices

at time t given the measurements up to t− 1 as follows:

sit|t−1
= Fi

t−1
sit−1

+ wt−1,

Pi
t|t−1

= FPi
t−1|t−1

FT +Qt.

Next, in the update stage updates, the state vectors and their

error covariance matrices with the current observations are

as follows:

Ki
t = Pi

t|t−1
HT

(

HPi
t|t−1

HT +Rt

)−1

,

sit|t = sit|t−1
+Ki

t

(

zit − sit|t−1

)

,

Pi
t|t−1

=
(

I −Ki
tH

)

Pi
t|t−1

,

where Ki
t is the Kalman gain which emphasizes how pre-

diction and measurement are intimately related. Therefore,

the process of fusion begins with identifying observation

models and associated measurement noises for each obser-

vation modality. For instance, in our settings, the bounding

boxes from the RGB and depth images are considered as
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positional information whereas the optical flow provides the

velocity information only. This way we can assign a separate

observation model for updating the joint prediction state.

V. EXPERIMENT RESULTS

We evaluate the pedestrian detection performances in

terms of Miss Rate (MR) vs False Positive Per Image (FPPI)

and also provide accuracy, precision, recall, and run-time

efficiency of the model. We conduct our experiments on a

64-bit Ubuntu 18.04 server that has an Intel(R) Core(TM) i9-

7900XCPU @ 3.30GHz with 64GB memory. In our setup,

we also have an NVIDIA GeForce RTX 2080 GPU with

8GB memory.

A. Dataset

We perform our experiments on the Waymo open dataset

which contains a wide range of diverse examples since

data are collected among Phoenix, Mountain View, and San

Francisco cities in the USA, plus it contains daytime and

nighttime driving data [27]. This dataset is recently released

and comprising of large-scale multimodal sensor data, i.e.,

high-resolution camera and LiDAR data. In particular, the

dataset is collected using five LiDAR sensors and five high-

resolution pinhole cameras and contains four object classes:

Vehicles, Pedestrians, Cyclists, Signs. It has 12.6M high-

quality 3D bounding box labels in total for 1,200 segments

for LiDAR data. On the other hand, it has 11.8M 2D tightly

fitting bounding box labels in total for 1,000 segments of

camera data. In our setup, we use front camera images and

project LiDAR data onto their corresponding camera images.
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Fig. 4: The comparison among Fused-YOLO, Fusion without ap-
plying Kalman Filter, and Baseline YOLOv5. Fused-YOLO model
get the lowest miss rate of 33.435% among others.

B. Performance Analysis

We evaluate our proposed Fused-YOLO and the baseline

YOLOv5 in terms of Miss Rate vs False Positive Pes Image

(FPPI) curve in Fig. 4. Testing on 456 number of images

from the Waymo dataset, the proposed Fused-YOLO shows

the miss rate of 33.435% whereas the YOLOv5 has the

miss rate of 41.945%. This is because fusion helps more

for accurately detecting pedestrians in ill-lit conditions. In

low illumination conditions, the shape of pedestrians given

by depth images entails useful features for pedestrian de-

tection, which are more challenging to detect from camera

images. Especially, we notice that the Fused-YOLO achieves

significantly less miss rate in low illumination conditions in

contrast to the baseline YOLOv5 model. On the other hand,

fusion without the Kalman filter exhibits 38.602% miss rate.

Because when naively fusing the bounding boxes from the

depth and RGB images, it increases the false detection. On

contrary, the Kalman filter provides a systematic approach

to reduce false detection and achieves the lowest miss rate.

We find that our tracking method performs very well

even in the cases where there are some miss detections in

sequential frames. Fig. 5 illustrates the performance of our

tracker on a sequence of images. Our tracking method uses a

Kalman filter to predict multiple pedestrian bounding boxes.

Then, fusing the detection results from RGB images and

depth images, the Kalman filter update pedestrians’ state

estimation. Correlating the previous bounding boxes to the

current estimation, the Kalman filter can track pedestrians

even if the detector might fail to detect pedestrians on the

current frame. Furthermore, additional detected bounding

boxes from depth images help the Fused-YOLO to track

the pedestrians robustly. We observe that the Fused-YOLO

achieves negligible runtime performance overhead (28 FPS)

in contrast to the baseline YOLOv5 model (30 FPS).

VI. CONCLUSION

We developed a real-time accurate pedestrian detection

and tracking framework by fusing camera and LiDAR sensor

data. The developed framework is integrated with the Kalman

filter to accurately and robustly detect and track multiple

pedestrians. The novelty of our framework lies in the adop-

tion of the Kalman filter for both sensor fusion and tracking

applications while minimizing the overall runtime overhead.

Experimental results demonstrated the improvement over the

baseline YOLOv5 model. Our fusion method outperforms

YOLOv5 in terms of detection and tracking accuracy with

a negligible amount of runtime overhead. The difference

becomes even more pronounced in ill-lit conditions when

pedestrians are hard to find on camera images. Finally, our

implementation of the Kalman filter along with the optical

flow algorithm reduced the detection miss rate and improved

the overall performance. Future work includes extending our

tracking method for pedestrians’ behavior/intention analysis.
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