2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) | 978-1-6654-4207-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/SM(C52423.2021.9658639

2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

17-20 October, 2021. Melbourne, Australia

A Pedestrian Detection and Tracking Framework for Autonomous
Cars: Efficient Fusion of Camera and LiDAR Data

Muhammad Mobaidul Islam, Abdullah Al Redwan Newaz, and Ali Karimoddini”

Abstract— This paper presents a novel method for pedestrian
detection and tracking by fusing camera and LiDAR sensor
data. To deal with the challenges associated with the au-
tonomous driving scenarios, an integrated tracking and detec-
tion framework is proposed. The detection phase is performed
by converting LiDAR streams to computationally tractable
depth images, and then, a deep neural network is developed to
identify pedestrian candidates both in RGB and depth images.
To provide accurate information, the detection phase is further
enhanced by fusing multi-modal sensor information using the
Kalman filter. The tracking phase is a combination of the
Kalman filter prediction and an optical flow algorithm to track
multiple pedestrians in a scene. We evaluate our framework on
a real public driving dataset. Experimental results demonstrate
that the proposed method achieves significant performance
improvement over a baseline method that solely uses image-
based pedestrian detection.

I. INTRODUCTION

Real-time accurate pedestrian detection and tracking are
crucial to ensure safety and reliability in autonomous driving
[1]. This often requires the estimation of multiple pedestrian
trajectories from multi-modal sensor data. There are, how-
ever, several challenges that make pedestrian detection and
tracking a notoriously hard task. For instance, pedestrians
may appear in a scene with different articulations of body
parts, partial occlusion, and appearance in various poses.
Furthermore, the detection and tracking may fail due to
the sensitivity of some sensors under low illumination or
bright sunlight conditions. Despite all these challenges, it is
vitally important for autonomous driving to achieve accurate
and robust pedestrian detection and tracking under various
conditions in real-time to be able to transition from the
innovation space to real-world operations [2].

Pedestrian tracking consists of two main stages: pedestrian
detection and association of the detected pedestrians with
current and past estimations. Generally, there are two streams
of research directions for pedestrian tracking —either the
use of deep learning models in an end-to-end fashion or the
development of a machine learning pipeline with a mix of
deep learning and classical methods, to enable pedestrian
tracking. Some of the notable end-to-end deep learning-
based pedestrian tracking methods include TrackR-CNN [3],
Tracktor++ [4] and JDE [5]. These methods are created
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Fig. 1: Fusion of multi-modal sensor data can improve pedestrian
detection and tracking accuracy: (a) ground-truth bounding boxes of
two anticipated pedestrians, (b) detector can detect only one pedes-
trian on camera image, (c) and another pedestrian on corresponding
depth image from LiDAR scan. Therefore, the best result can be
achieved by combining these independent results from (b) and (c)
into a joint prediction

by augmenting existing pedestrian/object detectors, e.g., by
adding additional recurrent layers to the detection head in
order to incorporate the temporal context of the scenes. There
are few end-to-end multimodal sensor fusion mechanisms
that use 3D LiDAR and camera data for pedestrian track-
ing [6], [7]. These methods commonly suffer from low run-
time efficiency because of the complex network architecture.
On the contrary, machine learning pipeline-based methods
combine a pedestrian detector with the classical filtering
technique to achieve better runtime efficiency [5], [8], [9].
These methods mostly rely on a specific sensor modality
such as camera data. Nonetheless, these methods suffer from
either rich feature descriptors or sensitivity to environmental
conditions (e.g., illumination variations in case of using a
camera). Hence, these methods are not robust enough for
detecting and tracking pedestrians.

In this work, we hypothesize that a fusion between camera
and LiDAR can enhance the robustness and accuracy of
pedestrian detection and tracking. Fig. 1 shows a realistic
event where it is anticipated from a pedestrian detector to
detect at least two pedestrians. As it is obvious from Fig. 1.b,
the detector can detect only one pedestrian on the camera
image. On the other hand, as shown in Fig. 1.c, another
pedestrian can be detected on the corresponding depth image
from the LiDAR scan. Therefore, in this paper, we propose a
fusion framework that combines LiDAR streams and camera
data as well as the estimation of vehicle motion using the
camera-based optical flow method. To achieve computation-
ally tractable and real-time pedestrian tracking, first, LIDAR
3D streams are converted to 2D depth images and then are
fed to a pedestrian detector by vertically concatenating these
frames with camera images. Finally, the Kalman filter is used
for fusing the prediction over the concatenated images as
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well as the locations of previously detected pedestrians in
the current frame.

In summary, the contributions of this paper are as follows:
1) we develop a method for real-time sensor fusion of
camera and LiDAR data, 2) we develop a real-time accurate
pedestrian detection and tracking framework, 3) we also
integrate optical flow information into the developed tracking
technique for achieving accurate predictions of multiple
pedestrians over the RGB and depth images.

II. RELATED WORK

In recent years, numerous approaches for detecting
and tracking pedestrians in sequential images have grown
steadily. With the recent advancement in deep learning, we
are able to utilize machine learning models to accurately
detect and classify pedestrians in complex scenarios. In this
section, we will begin with a brief overview of learning-
based pedestrian detection, then some existing fusion tech-
niques for combining multimodal sensor data, and finally a
brief overview of pedestrian tracking.

Recent works focus on improving the robustness and
accuracy using deep neural networks [10]-[12]. Though
these methods exhibit satisfactory performance in well-lit
environments, they struggle to detect pedestrians in low light
conditions such as nighttime, dawn, sunrises, and sunsets.
This is because it is hard to generate shape information
from images in ill-lit environments. On the other hand,
the LiDAR can provide comparatively better shape features
under these scenarios. As LiDAR can provide the only
geometric feature of pedestrians, inferring context-aware
relations of pedestrians’ body parts is one way to distinguish
among multiple pedestrians in a complex scenario [13]. To
improve the classification performances of pedestrians, hand-
crafted features such as slice feature and distribution of
reflection intensities are explored [14]. The slice provides
human body information based on body height and width
ratio. Some works are focused on the density enhancement
method for improving the sparse point cloud of LiDAR and
they provide an improved shape feature for long-distance
pedestrian detection [15]. Pioneering work on the conversion
of a 3D point cloud of LiDAR into the 2D plane extracts
both hand-crafted features and learned features, and then
trains a support vector machine (SVM) classifier to detect
pedestrians [16]. Later, 3D point clouds are converted into
2D panoramic depth maps and these depth maps are used in
pedestrian detection [17]. Even though the LiDAR provides
better results in the nighttime while it is difficult to get
shape features using the camera or compare to a distorted
image frame, camera-based methods perform better for long-
distance pedestrians in the daytime where they appear in
small sizes. The best result can be achieved by fusing both
of these sensors to jointly predict pedestrians.

Since using the LiDAR or the camera independently
unveils their limitations, it becomes interesting research
direction to fuse different sensor modalities. In this setting,
the improvement can be achieved from the use of multiple
views of the pedestrian by learning a strong classifier that

accommodates both different 3D points of view and multiple
flexible articulations. In order to integrate multiple sensor
modalities several fusion mechanisms are investigated [18],
[19]. These sensor fusion techniques mostly focus on either
combining feature information from different sensors or
generating candidate regions from one sensor and map these
candidate regions to other sensor information. For instance,
a deformable part detector is trained using optical images
and depth images generated from 3D point clouds using
upsampling technique [20]. Some fusion techniques cluster
the LiDAR point cloud to generate candidate regions and
map these regions on an image frame for detecting pedes-
trians [18], [21]. Most of these methods sacrifice runtime
performance while improving detection accuracy. Therefore,
a balanced fusion mechanism is needed to deal with the
trade-off between accuracy and speed.

Recent pedestrian trackers are designed mostly based on
end-to-end deep learning networks. A common approach is
adding recurrent layers with the detector module. For exam-
ple, the ROLO [22] is the combination of the convolutional
layers of YOLO and the recurrent unit of LSTM. TrackR-
CNN [3] is considered as a baseline method of multi-object
tracking that adds instance segmentation along with multi-
object tracking. Tractor++ is an efficient multiple object
tracking that utilizes the bounding box regression on predict-
ing the position of an object in the next frame where there
is no train or optimization on tracking data [4]. On the other
hand, the machine learning pipeline-based methods such as
the Deep SORT which integrates appearance information
along with Simple Online and Realtime Tracking (SORT)
technique, adopts a single hypothesis tracking methodology
with the recursive Kalman filter and the frame-by-frame
data association. This technique focuses on an offline pre-
training stage where the model learns a deep association
metric on a large-scale person re-identification dataset [9].
A single-stage efficient multi-object tracking is introduced
in [5], where target detection and appearance embedding are
to be learned in a shared model and a Kalman filter is used
for predicting the locations of previously detected objects
in the current frame. While considering the LiDAR data
for pedestrian tracking, a stochastic optimization method is
introduced in [23] that merges the clustering and assignment
task in a single stage.

Inspired by these works, we use both LiDAR and camera
sensors to complement individual sensor limitations on de-
tection and tracking performances. Thus, our solution can be
applied to a wide variety of complex scenarios.

III. PRELIMINARIES

Pedestrian tracking is a challenging problem as pedestrians
need to be firstly detected in the current frame and then
associated frames. The success in deriving a good tracker is
mainly governed by a superior detector. In this work, we use
YOLOVS [24] as a base module of the pedestrian detector.
Therefore, we will briefly explain the working principle
of YOLOvVS as a pedestrian detector. Since the YOLOv5
architecture is the same as the YOLOv4 [25] except the
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Fig. 2: Architecture of YOLOvV5: YOLOvVS5 has four major sections. It starts with input then merges to the backbone for feature extraction.
Feature information is enhanced in the neck section, and the output section produces a bounding box with confidence scores for a specific

class of objects

training procedure, we will describe the architecture of the
YOLOV4 and then will highlight the training differences.

Fig. 2 illustrates the architecture of YOLOv4 which can
be segmented into four major parts: input, backbone, neck,
and output. In the input section, the network takes an image
and completes a data augmentation procedure that uses a
data loader for scaling, color space adjustments, and mosaic
augmentation. Among these augmentation techniques, mo-
saic augmentation firstly introduces in YOLOv4. The mosaic
augmentation combines four training images into one in
certain ratios to simulate four random crops which help to
detect small-scale and partially occluded pedestrians.

After data augmentation, the augmented image is feed
into the backbone of the network. In the backbone sec-
tion, a BottleNeckCSP is used which is a modification
of DenseNet [26]. Using BottleNeckCSP different shallow
features like edges, colors, etc., are extracted. During train-
ing, the backbone module learns these features. Besides, an
additional Spatial Pyramid Pooling (SPP) block is used to
increase the receptive field and separate out the most impor-
tant features from the feature maps of the BottleNeckCSP.
The next part of the network is the neck part where the
network enhances the understanding and extraction of the
shallow features adopted in the backbone part. To do that
a Path Aggregation Network (PANet) is used that includes
a bottom-up augmentation path in conjunction with the top-
down path used in Feature Pyramid Network (FPN). The
PANet processes combine and analyze the extracted features
and finally optimizes based on the target of the model. The
last part of the network is output where the model yields the
detection results using dense predictions. Dense predictions
provide a vector by combining predicted bounding boxes and
confidence scores for the classified pedestrians.

During the training process of YOLOVS, the floating-point
precision is set to 16 bit instead of the 32-bit precision
used in YOLOv4. Therefore, YOLOVS exhibits higher per-
formances than Yolov4 under certain circumstances.

Optical flow [

Camera Image

Pedestrian Translate Kalman
Detection box location Filter
Merged image Pedestrian
Tracking
Depth Image

LiDAR Secan

Fig. 3: The proposed pedestrian detection and tracking frame-
work: A camera image and its synchronized LiDAR scan are the
input of this framework. First, the LiDAR scan is converted into a
depth image and then merge with the camera image. Next, merged
fed into pedestrian detection module and outputs are mapped
into the single-camera image frame by translating the detected
boxes locations. Finally, for pedestrian tracking, a Kalman filter is
implemented in which inputs are these translated bounding boxes
and optical flow of input image.

IV. PROPOSED METHODOLOGY

We propose Fused-YOLO which is an integrated frame-
work of multi-modal sensor information to track pedestrians
at a real-time speed.

A. Conversion from LiDAR Scans to Depth Images

Camera-based pedestrian detection systems suffer from
either low illumination or over-exposed images. It is then a
better idea to complement the system with a LIDAR which
acts as the primary depth sensor due to its high accuracy
and long sensing range. LiDAR scan produces sparse point
clouds, albeit this representation of data is rather challenging
to incorporate as an input to neural networks. Instead, depth
images are better correspondents of point clouds that are
easy to manipulate constructively. Therefore, we convert a
3D LiDAR scan to the depth image in 2D image space.

Formally, the LiDAR stream consists of a sequence of
registered 3D scans {57, 52, ...,.S;} arriving at time points
t1,to,...,t;. Each scan S; is a point cloud, i.e., a set of 3D
points, Sy = {p1, P2, ...,p:} and p; := {x,y, z} represents
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the Euclidean coordinate. Due to the huge amount of memo-
ries that are required over time, it is inefficient to work upon
the raw point clouds. Instead, we can convert the 3D scan
to a 2D depth map. A depth image can be thought of as a
2D grid map comprised of wu,, cells. To generate the depth
image we need to compute the distance of the scan objects
from a viewpoint in such a way that maps p; to u. Then,
we transform each point in point clouds from the Euclidean
coordinate (x,y,z) to Spherical coordinate (6, ¢,r). This
way we can map each point to the corresponding grid cell
such that u : {6, ¢} — r. The pixel values of depth images
lie in either gray or RGB color spaces. For the grayscale
image, we normalize each cell value in the grid map to
0 — 255 to the known maximum depth value and thus the
intensity of the gray image represents the depth information.
On the other hand, For the RGB scale image, we assign a
distinct color from the RGB space to each cell value in the
grid map based on the r parameter.

B. Fusion with Depth Image

Our solution utilizes the Kalman filter along with parallel
processing of RGB and depth images. To predict in a joint
space, first, we project the LiDAR scan as a depth image
to the RGB camera space. Let x, and x4 be the RGB and
depth images, respectively. Since (in common settings) the
positions of camera and LiDAR are fixed but the resolution
of camera image and the depth image from the LiDAR
scan varies in size, we can project the depth image to
the RGB camera space with either zero padding to the
smaller image or cropping each of them into a same size.
We denote this synchronized depth image by zs. Second,
we vertically concatenate the RGB image z,. and the depth
image x; by cropping each of them into a fixed size such
that x = {x,, 2, }. Although it is possible to use an image
classification network to predict pedestrians directly over xz,
it requires multiple calls for the joint prediction, i.e., the x,
and the x5 need to be fed to the pedestrian detection and
pedestrian classification models, respectively. Thus, concate-
nating the z, and the =4 into x reduces the number of calls
to different models and significantly improves the runtime
efficiency. Finally, we feed this concatenated image x to the
pedestrian detector f to obtain bounding boxes and scores
over fused images such that §j = f(x). Form the prediction
Y, we can also separate individual predictions the g, and
the gy, for the x, and the =4 correspondents, respectively.
Since we vertically concatenate the x with the x,., we can
calculate an offset o based on the height of z,.. Then, we
translate each bounding box b, € s to the down by o.

Overlaying ¢, to ¢, may raise three distinct types of
scenarios. Firstly, ¢s reduces the miss detection by accu-
rately detecting pedestrians. Secondly, g5 provides redundant
inference with respect to y,.. Finally, g, does not improve
detection accuracy since it cannot detect any pedestrians.
To overcome these scenarios, we utilize a Kalman filter to
evaluate the joint predictions in a systematic manner. In
our next subsection, we will provide a description of the
proposed Kalman filter in detail.

C. Integrated Framework for Pedestrian Tracking

The Kalman filter has been extensively applied in pedes-
trian tracking from the camera stream. Our framework uses
such a technique to predict and update the pedestrian trajec-
tories from the continuous camera and LiDAR streams. Our
integrated framework augments the capability of the existing
pedestrian tracking method by fusing depth information. To
track multiple pedestrians in a frame, our framework uses
three important information, i.e., bounding boxes from the
RGB images, optical flow between consecutive RGB image
frames, and bounding boxes from the depth images.

One of the important properties of the Kalman filter is

that the state vector is a hidden parameter and the observa-
tion provides useful information to update the state vector.
Therefore, in our setting while using the Kalman filter,
the observations, i.e., bounding boxes, from the detector
are not directly use for tracking of pedestrians. Basically,
the proposed Kalman filter-based tracking has two stages:
the prediction and the update stages. In prediction stage,
the bounding boxes for pedestrians are predicted using the
corresponding state of the bounding boxes in the previous
frames. In the update stage, the observation of pedestrian in
the current frame is used to update the predicted states of
pedestrians.
Let s! be the state vector of i bounding pedestrian window
in frame t. To track multiple pedestrians, it is convenience
to have multiple Kalman filters, e.g., one for each pedestrian
detected in the frame as follows

i i i
si = Fi ysi ) w1,
i TiGi
z; = His; + vy,

where Fi_, and H! denote the state transition and the
measurement matrices for the i'" pedestrian, respectively. The
vectors w;_1 and v; are noise terms which are assumed to
be Gaussians with zero mean and covariance matrices (¢
and R,;. The prediction stage involves reasoning about the
state vectors and their associated error covariance matrices
at time ¢ given the measurements up to t — 1 as follows:

i i i
Stji—1 = Fi_18i_1 + w1,

i _ ppi T
Pl =FP,_,, F +Q.

Next, in the update stage updates, the state vectors and their
error covariance matrices with the current observations are
as follows:

. . . —1
K; =P}, H" (HP},_H"+R) |

S;|t = S;\t—l + K (Zz - S;\t—1) )
£|t71 = (I - K%H) ;|t717
where K! is the Kalman gain which emphasizes how pre-
diction and measurement are intimately related. Therefore,
the process of fusion begins with identifying observation
models and associated measurement noises for each obser-
vation modality. For instance, in our settings, the bounding
boxes from the RGB and depth images are considered as
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positional information whereas the optical flow provides the
velocity information only. This way we can assign a separate
observation model for updating the joint prediction state.

V. EXPERIMENT RESULTS

We evaluate the pedestrian detection performances in
terms of Miss Rate (MR) vs False Positive Per Image (FPPI)
and also provide accuracy, precision, recall, and run-time
efficiency of the model. We conduct our experiments on a
64-bit Ubuntu 18.04 server that has an Intel(R) Core(TM) i9-
7900XCPU @ 3.30GHz with 64GB memory. In our setup,
we also have an NVIDIA GeForce RTX 2080 GPU with
8GB memory.

A. Dataset

We perform our experiments on the Waymo open dataset
which contains a wide range of diverse examples since
data are collected among Phoenix, Mountain View, and San
Francisco cities in the USA, plus it contains daytime and
nighttime driving data [27]. This dataset is recently released
and comprising of large-scale multimodal sensor data, i.e.,
high-resolution camera and LiDAR data. In particular, the
dataset is collected using five LiDAR sensors and five high-
resolution pinhole cameras and contains four object classes:
Vehicles, Pedestrians, Cyclists, Signs. It has 12.6M high-
quality 3D bounding box labels in total for 1,200 segments
for LiDAR data. On the other hand, it has 11.8M 2D tightly
fitting bounding box labels in total for 1,000 segments of
camera data. In our setup, we use front camera images and
project LiDAR data onto their corresponding camera images.
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Fig. 4: The comparison among Fused-YOLO, Fusion without ap-
plying Kalman Filter, and Baseline YOLOVS. Fused-YOLO model
get the lowest miss rate of 33.435% among others.

B. Performance Analysis

We evaluate our proposed Fused-YOLO and the baseline
YOLOVS in terms of Miss Rate vs False Positive Pes Image
(FPPI) curve in Fig. 4. Testing on 456 number of images
from the Waymo dataset, the proposed Fused-YOLO shows

the miss rate of 33.435% whereas the YOLOVS5 has the
miss rate of 41.945%. This is because fusion helps more
for accurately detecting pedestrians in ill-lit conditions. In
low illumination conditions, the shape of pedestrians given
by depth images entails useful features for pedestrian de-
tection, which are more challenging to detect from camera
images. Especially, we notice that the Fused-YOLO achieves
significantly less miss rate in low illumination conditions in
contrast to the baseline YOLOvS5 model. On the other hand,
fusion without the Kalman filter exhibits 38.602% miss rate.
Because when naively fusing the bounding boxes from the
depth and RGB images, it increases the false detection. On
contrary, the Kalman filter provides a systematic approach
to reduce false detection and achieves the lowest miss rate.

We find that our tracking method performs very well
even in the cases where there are some miss detections in
sequential frames. Fig. 5 illustrates the performance of our
tracker on a sequence of images. Our tracking method uses a
Kalman filter to predict multiple pedestrian bounding boxes.
Then, fusing the detection results from RGB images and
depth images, the Kalman filter update pedestrians’ state
estimation. Correlating the previous bounding boxes to the
current estimation, the Kalman filter can track pedestrians
even if the detector might fail to detect pedestrians on the
current frame. Furthermore, additional detected bounding
boxes from depth images help the Fused-YOLO to track
the pedestrians robustly. We observe that the Fused-YOLO
achieves negligible runtime performance overhead (28 FPS)
in contrast to the baseline YOLOvS5 model (30 FPS).

VI. CONCLUSION

We developed a real-time accurate pedestrian detection
and tracking framework by fusing camera and LiDAR sensor
data. The developed framework is integrated with the Kalman
filter to accurately and robustly detect and track multiple
pedestrians. The novelty of our framework lies in the adop-
tion of the Kalman filter for both sensor fusion and tracking
applications while minimizing the overall runtime overhead.
Experimental results demonstrated the improvement over the
baseline YOLOvS model. Our fusion method outperforms
YOLOVS in terms of detection and tracking accuracy with
a negligible amount of runtime overhead. The difference
becomes even more pronounced in ill-lit conditions when
pedestrians are hard to find on camera images. Finally, our
implementation of the Kalman filter along with the optical
flow algorithm reduced the detection miss rate and improved
the overall performance. Future work includes extending our
tracking method for pedestrians’ behavior/intention analysis.
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Fig. 5: Robust pedestrians tracking: In the top row, there are two pedestrians detected in the first frame and then in the second
frame model failed to detect one of the pedestrians. However, in the next two consecutive frames that pedestrian is detected and tracked
again which represents the robustness of our method. The green and cyan bounding boxes in the top row represent detected and tracked
pedestrians, respectively. On the other hand, the bottom row shows the corresponding LiDAR scans where the relative distance of objects
from the ego vehicle is shown by a jet color spectrum.
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