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We provide a first systematic and quantitative discussion of the phenomenology of the nonrelativistic
effective Hamiltonian describing the nuclear scattering process for a weakly interacting massive particle
(WIMP) of arbitrary spin jχ . To this aim we obtain constraints from a representative sample of present
direct detection experiments assuming the WIMP-nucleus scattering process to be driven by each one of the
44 effective couplings that arise for jχ ≤ 2. We find that a high value of the multipolarity s ≤ 2jχ of the
coupling, related to the power of the momentum transfer q appearing in the scattering amplitude, leads to a
suppression of the expected rates and pushes the expected differential spectra to large recoil energies ER.
For s ≤ 4 the effective scales probed by direct detection experiments can be suppressed by up to five orders
of magnitude compared to the case of a standard spin-independent interaction. For operators with large s
the expected differential spectra can be pushed to recoil energies in the MeV range, with the largest part
of the signal concentrated at ER ≳ 100 keV and a peculiar structure of peaks and minima arising when
both the nuclear target and the WIMPs are heavy. As a consequence the present bounds on the effective
operators can be significantly improved by extending the recoil energy intervals to higher recoil energies.
Our analysis assumes effective interaction operators that are irreducible under the rotation group. Such
operators drive the interactions of high-multipole dark matter candidates, i.e., states that possess only the
highest multipole allowed by their spin. As a consequence our analysis represents also the first
phenomenological study of the direct detection of quadrupolar, octupolar, and hexadecapolar dark matter.

DOI: 10.1103/PhysRevD.104.063018

I. INTRODUCTION

Weakly interacting massive particles (WIMPs) are the
most popular particle candidates to provide the invisible
halos of Galaxies, including the Milky Way. WIMPs are
expected to have only weak-type interactions and to have a
mass mχ falling in the GeV–TeV range. Direct detection
(DD) experiments look for the interaction of WIMPs with
ordinary matter through the measurement of the recoil
energy ER ≲ 10–100 keV imparted by WIMPs when they
scatter elastically off the nuclear targets of a wide range
of solid-state and liquid low-background underground
detectors.

Model-independent approaches have become increas-
ingly popular to interpret dark matter (DM) search experi-
ments [1–24] due to the growing tension between the
WIMPs arising in popular extensions of the Standard
Model (SM) such as supersymmetry or large extra dimen-
sions and the constraints from the Large Hadron Collider.
In particular, since the DD process is nonrelativistic the
WIMP-nucleon interaction can be parametrized with an
effective Hamiltonian H that complies with Galilean
symmetry. The effective Hamiltonian H to zeroth order
in the WIMP-nucleon relative velocity v⃗ and momentum
transfer q⃗ has been known since at least Ref. [25], and
consists of the usual spin-dependent (SD) and spin-inde-
pendent (SI) terms. To first order in v⃗, the effective
Hamiltonian H has been systematically described in
[26,27] for WIMPs of spin 0 and 1=2, and less system-
atically described in [28,29] for WIMPs of spin 1 and in
[30] for WIMPs of spin 3=2.
Recently in [31] the nonrelativistic effective Hamiltonian

for WIMP-nucleous scattering has been extended to
include WIMPs of arbitrary spin jχ in the approximation
of one-nucleon currents. In Ref. [31] H is written in a
complete basis of rotationally invariant operators organized
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according to the rank of the 2jχ þ 1 irreducible operator
products of up to 2jχ WIMP spin vectors. In particular, for a
WIMP of spin jχ a basis of 4þ 20jχ independent operators
arise that can be matched to any high-energy model of
particle dark matter, including elementary particles and
composite states.
So far, only 20 of such operators for a WIMP with jχ ≤ 1

have been considered in the literature [26–29]. As a
consequence, the introduction in [31] of so many new
interaction terms for jχ ≥ 1 has potentially interesting
phenomenological consequences.
In particular, for each new interaction term a different

scaling law for the WIMP cross section, needed to compare
the results of experiments using different target nuclei, is
expected to arise. Moreover, the new high-rank operators
that arise at high values of the spin jχ depend on increasing
powers of the transferred momentum q≡ jq⃗j. On the one
hand such increasing momentum suppression implies lower
expected rates, so that present experimental sensitivities are
expected to probe increasingly low values of the effective
energy scale of the effective theory. Moreover, for a given
choice of the WIMP velocity distribution andmχ≳100GeV
the increasing powers of q shift the expected rate spectra to
high recoil energies ER ≃ 1 MeV, much higher than those
usually expected.
The goal of the present paper is to provide a first

systematic and quantitative discussion of the phenomeno-
logical aspects outlined above for the effective interaction
operators introduced in [31]. To this aim, we will consider
each of the 44 operators that can arise in the nuclear
scattering of a WIMP with jχ ≤ 2. Due to the large
dimensionality of the parameter space of high-spin DM,
starting with analyzing the phenomenology of one operator
of such basis at a time appears like a sensible approach. In
Sec. II B we elaborate on the possibility that such basis may
have indeed a connection to the physical world, and that
DM candidates whose phenomenology is driven by only
one operator do exist. On the other hand, in case several
effective operators contribute to the scattering process, for
example in the nonrelativistic limit of a higher energy
theory, their interference may weaken the bounds, up to one
order of magnitude in the couplings for spin 1=2 [15,32]. In
light of this the results that we obtain in Sec. IV B can then
be interpreted as the maximal sensitivity to the interaction
strength of each operator achievable by present DM direct
detection experiment.
Throughout the paper we will assume a standard

Maxwellian in the Galactic rest frame cut at the WIMP
escape velocity uesc ¼ 550 km=s and with reference values
for the other relevant parameters: ρχ ¼ 0.3 GeV=cm3 for
the number density of the WIMPs in the neighborhood of
the Sun and vrms ¼ 270 km=s for the WIMP root-mean-
square velocity.
The paper is organized as follows. In Sec. II we discuss

the theoretical motivation of DM candidates of arbitrary

spin (Sec. II A) and high multipole (Sec. II B). In Sec. III
we outline the results of Ref. [31], where the nonrelativistic
effective operators for jχ ≥ 1 are introduced and the
analytic expressions of the relevant expected rates are
calculated. Sec. IV is devoted to our phenomenological
discussion: in Sec. IVA we summarize the expressions for
the scattering rate; Sec. IV B provides a discussion of the
values of the energy scale of the effective theory probed by
a representative selection of present direct-detection experi-
ments; in Sec. IV C we discuss the expected differential
rate, showing that when the scattering process is driven by a
high-rank (high-spin) operator and both the target and the
WIMP are heavy the largest part of the signal is concen-
trated at ER ≳ 100 keV with a characteristic pattern of
peaks and minima at high recoil energies; in Sec. IV D we
show how the present bounds can be significantly improved
by extending the recoil energy intervals to higher recoil
energies. Finally, we provide our conclusions in Sec. V. The
details of the procedure followed to obtain the upper
bounds is described in the Appendix.

II. HIGH-SPIN AND MULTIPOLAR
DARK MATTER

In the present section we discuss the theoretical motiva-
tion for DM candidates of arbitrarily high spin. Moreover,
we wish to elaborate on the possibility that it possesses only
the highest anomalous moment allowed for its spin, imply-
ing that its interaction with ordinary matter is driven by the
high-rank irreducible operators introduced in Eq. (3.10) and
whose phenomenology is the subject of our analysis.

A. High-spin DM

While most (but not all) of the theoretical and exper-
imental work on detection of particle dark matter has been
focused on dark matter particles that are elementary and
have spin 0 or 1=2, there is no compelling reason for dark
matter particles to be elementary, or for their spin to be
limited to 0 and 1=2. In fact, as is well-known, nonel-
ementary particles and particles of spin higher than 1=2
exist in nature. We include here not only the states of
particle physics, such as protons, neutrons, hadrons, gauge
bosons, etc., but also larger composite objects like atomic
nuclei, atoms, molecules, etc. In particular, the possibility
to distinguish between pointlike and nonpointlike dark
matter candidates in direct detection searches through the
shape of the nuclear recoil energy spectrum has been
discussed in the literature [33]. Higher-spin dark matter
has been considered in [34–36] and references therein.
Sometimes one hears that particles with high spin cannot

have gauge interactions, but this is an incorrect generali-
zation of two quite specific statements in the construction
of interacting theories: there are difficulties in coupling a
massless [37] or massive particle [38] of spin higher than 2
to gravity and there are difficulties in coupling a massless
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particle to the photon [37]. On the other hand there are no
difficulties in coupling any particle to photons at the
effective lagrangian level, i.e., in a theory valid at energy
scales smaller than the binding energy of the particle.
Witness to this is the coupling of complex atoms and
molecules, and even macroscopic objects, to the electro-
magnetic field. Even theoretically, consistent effective
Lagrangians coupling towers of particles of higher and
higher spin to gravity have been constructed as low energy
limits of string theory (see, e.g., [39]). And consistent
effective couplings of particles to the electromagnetic
field have been obtained as four-dimensional reductions
of field theories in spacetimes with extra dimensions (see,
e.g, [40–42]). The nonlocal character of the fundamental
theories involved bypasses the limits of local theories with
a single particle of high spin.
Composite dark matter has been introduced for example

in technicolor theories (where a new strongly interacting
sector is postulated) [43] or as another example in mirror
dark matter models (where dark copies of the standard
model particles are assumed, complete with dark protons,
dark neutrons, dark atomic nuclei, and so on; see for
example [44] and the review [45]). The continuing interest
in composite dark matter can be gathered for example from
the references in [46]. In most of these scenarios, the dark
matter particles have spin 1=2 and interact with the standard
model through kinetic mixing of the dark and visible
photon, or the dark and visible Higgs bosons, or the dark
and visible neutrinos. Models of this kind have also been
considered in the so-called asymmetric dark matter scenar-
ios [47]. Most but not all mirror dark matter candidates are
elementary particles of spin 0 or 1=2. An exception we
found in the literature is the pangenesis model of [48] in
which dark matter is atomic, being a mirror hydrogen atom
composed of a mirror proton and a mirror electron.
There are stable light atomic nuclei with spin 3=2 (7Li,

11Be, 11B) and spin 3 (10B), and heavier stable nuclei can
have spins up to 9=2 (e.g., 73Ge or 87Sr). While it may not
be easy to find a theoretical mechanism in which heavy
dark nuclei would be more abundant that light ones, so little
is known about the dynamics in the dark sector that it may
well be possible that only dark nuclei with high spin
(1; 3=2; 2;…) interact with ordinary nuclei and are in
principle detectable in direct dark matter search experi-
ments. For example, dark heavy elements such as O, Ne, N,
C, and Fe (besides H and He) have been considered in the
context of direct dark matter detection [49] with a long
range interaction mediated by a kinetically mixed photon–
dark photon coupled to the electric charge of the dark
nuclei.
Among the particles of spin 1, it is worth mentioning the

deuteron and the massive gauge bosons W and Z. The
deuteron, which is stable, was produced in the early
Universe during primordial nucleosynthesis. Its primordial
abundance was delicately determined by the particular

values of binding energies, lifetimes, and reaction cross
sections of hydrogen, deuterium, helium, and the neutron.
An analog of the deuteron in the dark sector may have a
completely different, and perhaps much larger abundance,
thanks to a more favorable dynamics in the dark sector; in
fact, in models with mirror dark matter, the dark primordial
nucleosynthesis is set to happen at a slightly lower temper-
ature than in the SM sector, to avoid issues with the number
of neutrino species and other measures of the abundance of
relativistic particles in the early Universe, and the lower
nucleosynthesis temperature produces a different pattern of
primordial abundances, with 4He being dominant over the
other species [50].
One can also imagine a “quasimirror” sector that is

almost a copy of the SM but has small differences in the
values of some parameters (models with broken mirror
symmetry can be found for example in [51–54]). In a
quasimirror dark sector the dark neutron may be lighter
than the dark proton. Indeed, the experimental fact that the
mass of the proton is slightly smaller than the mass of the
neutron is not well understood theoretically, as the proton-
neutron mass difference is moved one level lower into a
mass difference between up and down quarks, which is
obtained phenomenologically by fits to experimental data
and for which there is no theoretical calculation from first
principles. Thus it may well be that a slightly different
dynamics in the dark sector produces a dark neutron lighter
than the dark proton. Then a free dark proton may decay
into a dark neutron, a dark positron, and a dark neutrino, but
a dark neutron bound in a dark nucleus may not decay, and
the stability of atomic nuclei would be completely changed.
This would open the possibility that dark neutrons form
dark multineutron states. There is in principle no obstacle
for these dark multineutrons to have a large value of their
spin. In addition, given enough symmetry, many of the
lower electric and magnetic multipoles of the dark multi-
neutron may vanish, making the dominant dark multi-
neutron-photon interaction a multipole of high order in the
dark photon-photon kinetic mixing scenario.

B. High-multipole DM

In Sec. IV we discuss the phenomenology of high-spin
DM states assuming that their interaction with ordinary
matter is driven by one of the irreducible operators
introduced in [31] and given in Eq. (3.10). In particular,
for a WIMP of spin jχ in Sec. IV the phenomenology of the
operators of maximal rank s ¼ 2 jχ is shown (although
such results can be easily rescaled to lower s values using
the coefficient plotted in Fig. 1). As discussed in Ref. [31]
the use of the operators of Eq. (3.10) as a basis for the
effective Hamiltonian of the WIMP-nucleus interaction has
several advantages: for instance, it is complete, it avoids
double counting and simplifies the calculation of the cross
section, which results in a sum of cleanly separated
contributions from irreducible operators of different ranks
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that do not interfere. From this point of view, however, to
use such specific basis of operators instead of any other
appears to be a mere technicality, and one may argue that
the nonrelativistic limit of a generic Hamiltonian should
naturally contain a mix of operators of all ranks, with the
contribution of the highest rank operators unavoidably
suppressed. In this section we wish to elaborate on the
possibility that, instead, such a basis may have indeed a
connection to the physical world, i.e., it is possible to
conceive DM candidates whose interaction with ordinary
matter is driven by the highest multipole moments con-
nected to the high rank operators whose phenomenology is
the subject of our analysis.
There is a general relation between the spin of the

particle and the highest nonzero multipole moment it can
possess. The Wigner-Eckart theorem and analogous group
theoretic arguments in special relativity, allow a particle of
spin-jχ to have moments up to order 2jχ þ 1: a monopole
for spin-0, a dipole for spin-1=2, etc. As a real world
example, the neutron has zero net electric charge, nonzero
magnetic moment, and all of its higher moments vanish.
Molecules in the dark sector provide an example of both

compositeness and high multipole moments. Dipolar mol-
ecules (having zero net charge and nonzero permanent
electric dipole moment) are well known, while quadrupolar,
octupolar, and hexadecapolar molecules may be less
known. Which multiple moment a molecule possesses is
determined by the kind of symmetry its distribution of
charges has. Examples of quadrupolar molecules, which
have zero charge and zero dipole moment but nonzero
quadrupole moment, are the linear molecules of carbon
dioxide CO2, CS2, and the planar molecules of C6H6.
Among the octupolar molecules, whose first nonzero
multipole is the octupole, are molecules with tetrahedral
symmetry like CH4 and CF4. Hexadecapole molecules,

which possess a nonzero hexadecapole but have neither a
dipole, quadrupole, nor octupole moment, include the
octahedral symmetry molecules of SF6 and UF6.
It is possible to envisage a dynamics in the dark sector that

may lead to dark molecules of similarly high symmetry. It is
important to notice that for what concern the detection of
dark matter molecules, it is the charge distribution of the
charges coupled to ordinary standard model particles that
matters, while the formation and stability of dark molecules
may be governed by forces that act within the dark sector
exclusively. In addition, one needs to consider the phe-
nomenon of induced polarization. In the case of multipolar
dark molecules in the vicinity of ordinary matter one may
worry that induced dipole (or other low) moments would
come to dominate the interaction at low energies. This may
not happen either because of a fortuitous arrangement of
charges giving a small polarizability, or more generally
because the interaction range of the force between dark and
ordinary matter may be so small that there is no time for
induced multipoles to develop during the scattering of dark
matter molecules with ordinary matter.
The idea that dark matter may carry only multipoles of

high order generates the possibility that dark matter may be
a neutral particle that possesses only the highest anomalous
moment allowed for its spin. The highest multiple moment
for a particle of spin jχ is the 22jχ multipole, e.g., the dipole
for spin-1=2, the quadrupole for spin-1, the octupole for
spin-3=2, and the hexadecapole for spin-2. The anomalous
moment could be an electric or magnetic moment (exam-
ples from the literature are recalled later in this section) or it
could be a multipole moment in the interaction of dark
matter with new gauge fields in the dark sector, Abelian or
non-Abelian. One can thus have “magnetic-dipole dark
matter” or “electric-octupole dark matter” or even higher
multipole dark matter according to which multipole
moment is the lowest nonvanishing moment.
For electromagnetic interactions and multipoles, effec-

tive Lagrangians involve the electromagnetic field strength
Fμν multiplied by an increasing number of derivatives of
the particle fields, or of the momentum exchange in the
corresponding amplitude, multiplied by an appropriate
power of the particle radius or of the inverse of the particle
mass. It is important to stress that it is the particle mass, or
the particle radius, that accompany the nonrenormalizable
operators in a multipolar effective Lagrangian, and not an
energy cutoff scale at which the interactions become weak
or strong, or at which new degrees of freedom become
dynamical. This is exemplified by the Fermi weak theory
on one hand and hadrons on the other, for which in the first
case the mediator mass is (much) larger than the energy
scale involved in the weak processes, and in the second
case the scale of strong interactions is lower than the mass
of the hadrons.
In absence of CP violation the highest anomalous

multipole alternates between electric and magnetic as the

FIG. 1. Factor Bjχ ;s as given in Eq. (3.17) as a function of s and
for jχ ¼ 0; 1=2; 1; 2=3 and 2. For each operator OX;s;l of
Eq. (3.10) this factor encodes the dependence on the WIMP
spin jχ of the response functions Rττ0

X in Eq. (3.16).
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spin of the particle increases: a magnetic dipole for spin
1=2, an electric quadrupole for spin 1, a magnetic octupole
for spin 3=2, an electric hexadecapole for spin 2, and so on.
If Fμν is replaced by its dual F̃μν ¼ ϵμνλρFλρ=2, the multi-
poles in the series switch character: an electric dipole for
spin 1=2, a magnetic quadrupole for spin 1, an electric
octupole for spin 3=2, a magnetic hexadecapole for spin 2,
and so on.
For spin-1=2, a particle can have an electric and a

magnetic dipole, the latter with a contribution from the
charge (the Dirac magnetic moment) to which an extra
contribution may be added (the anomalous magnetic
moment). The classic example of a neutral spin-1=2 particle
with nonzero anomalous magnetic moment is the neutron.
A dark neutron analog for dark matter was suggested
already in [55,56], where dipolar dark matter was intro-
duced. In that case, the dark matter was considered to
interact with the usual electromagnetic field and have zero
electric charge but nonzero anomalous magnetic moment,
or nonzero electric dipole moment in case parity-violating
interactions were allowed. The interaction lagrangian of a
magnetic-dipole dark matter particle χ, of spin 1=2 and zero
electric charge, reads

Lint ¼ −
ieκ
2m2

χ
χ̄σμνχFμν; ð2:1Þ

where Fμν is the electromagnetic field strength tensor, σμν is
the usual combination of Dirac γ matrices, e the elementary
unit charge (not the particle charge, which is set to zero),
and κ is the anomalous magnetic moment of the particle.
The contributions of the anomalous magnetic dipole term
in Eq. (2.1) can be distinguished in the three-particle
χðp1Þ − χðp2Þ − AμðqÞ vertex (momentum p1 incoming,
momenta p2 and q ¼ p1 − p2 outgoing) by being those
terms that contain the highest allowed power of the
momentum qμ carried by the photon

ieκ
m2

χ
σμνqν: ð2:2Þ

The same scenario can be setup for particles of higher
spin by keeping only their highest possible multipole. The
highest-multipole terms in the three-particle χ − χ − γ
vertex can be distinguished as being the terms that carry
the 2jχ th power (the highest power) of the photon momen-
tum qμ (the completely symmetric homogenous combina-
tion of 2jχ vectors qμ).
For spin-1, the W boson has a measured magnetic

dipole and electric quadrupole moments, in agreement
with the gauge symmetry of the Standard Model [57].
Its magnetic dipole moment is usually parametrized as
μW ¼ eð1þ κ þ λÞ=2mW , and its electric quadrupole
moment as QW ¼ −eðκ − λÞ=m2

W , where the parameters
κ and λ appear in the effective Lagrangian [58]:

LWWγ¼−ieð1þκÞFμνWþμW−ν−i
eλ
m2

W
FνλWþ

λμW
−μ
ν : ð2:3Þ

In the Standard Model, κ ¼ 1 and λ ¼ 0. The matrix
element for the elastic scattering of spin-1 quadrupolar
dark matter by one-photon exchange can be borrowed from
the analogous matrix element for a deuteron [59]:

hp2λ2jjμjp1λ1i ¼
G3ðq2Þ
2m2

χ
ðp1 þ p2Þμϵ1 · qϵ%2 · q; ð2:4Þ

where jμ is the electromagnetic current,pμ
1, ϵ

μ
1 andp

μ
2, ϵ

μ
2 are

the incoming and outgoing momenta and polarization
vectors (of polarization λ1 and λ2) of the darkmatter particle,
mχ is the DM particle mass, and qμ ¼ pμ

1 − pμ
2 is the

momentum transfer. Perturbative expressions are known
explicitly for a quadrupolar particle χμ the Feynman rule
for the χαðp1Þ − χβðp2Þ − AμðqÞ vertex (see, e.g., [60];
the momentum p1 is incoming, the momenta p2 and
q ¼ p1 − p2 are outgoing)

ieλ
m2

χ
ðp1 þ p2Þμ

!
1

2
q2gαβ − qαqβ

"
; ð2:5Þ

and as a Lagrangian term [61]

Lint ¼ −
ieλ
m2

χ
χ†μλχ

λ
νFμν; ð2:6Þ

where χμν ¼ ∂μχν − ∂νχμ. Here λ is the anomalous quadru-
pole moment of the spin-1 particle.
In principle, the above considerations on anomalous

multipole dark matter are not limited to the exchange
of a massless vector mediator. A massive mediator would
present the same structure for the interaction Lagrangian
and the interaction vertex, and would provide short range
interactions. A scalar or fermion mediator, whether massive
or massless, would also be subjected to a multipole
expansion, as the multipole expansion is basically an
expansion of a potential in spherical harmonics, or essen-
tially an expansion in (symmetric traceless combinations
of) derivatives of the mediator field.
We are not aware of any study of multipolar dark matter

beyond the dipole. This paper provides the first phenom-
enological study of the direct detection of quadrupolar,
octupolar, and hexadecapolar dark matter.

III. EFFECTIVE THEORY OF NUCLEAR
SCATTERING FOR AWIMP OF ARBITRARY SPIN

In Ref. [31] a systematic approach is introduced to
characterize the most general nonrelativistic WIMP-
nucleus interaction allowed by Galilean invariance for a
WIMP of arbitrary spin jχ in the approximation of one-
nucleon currents, i.e., assuming that the WIMP interacts
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with one nucleon at time. The procedure consists in
organizing the WIMP currents according to the rank of
the 2jχ þ 1 irreducible operator products of the up to the
2jχ WIMP spin vectors S⃗χ required to mediate transitions
where the third component of the WIMP spin changes from
&jχ to ∓jχ . Using index notation Si for the ith component
of the vector S⃗χ (and dropping the subscript χ in Sχ;i for
more readability), these interaction terms contain no Si or a
product of s factors Si up to s ¼ 2jχ ,

1; Si1 ; Si1Si2 ; Si1Si2Si3 ; …; Si1Si2 ' ' 'Si2jχ : ð3:1Þ

The calculation of the cross section for WIMP-nucleus
scattering is greatly simplified if for the products of WIMP
spin operators one uses irreducible tensors (i.e., belonging
to irreducible representations of the rotation group).
Irreducible tensors are completely symmetric under
exchange of any two of their indices and have zero trace
under contraction of any number of pairs of indices (they
are symmetric traceless tensors). In particular, irreducible
tensor operators of different rank are independent in the
sense that the trace of their product is zero, so that there are
no interference terms in the cross section between irreduc-
ible operators of different spin. Therefore, the products of
Eq. (3.1) are conveniently substituted by the following
2jχ þ 1 irreducible spin tensors:

1; Si1 ; Si1Si2 ; Si1Si2Si3 ; …; Si1Si2 ' ' 'Si2jχ ; ð3:2Þ

where we use an overbracket over an expression containing
a set of indices to indicate that the free indices under the
bracket are completely symmetrized and all of their
contractions are subtracted.
Besides being a convenient basis to describe the WIMP

current in spin space the symmetric traceless products of
spin operators of Eq. (3.2) can also be seen as the
interaction terms appearing in the multipole expansion of
the WIMP-nucleus effective potential. For instance, given a
scalar potential VðrχNÞ (with rχN the WIMP-nucleus
distance) the symmetric traceless combinations of l of its

derivatives ∂i1∂i2 ' ' ' ∂isV represents the lth multipole in its
multipole expansion, and when coupled to a generic
combination of WIMP spin operators singles out the one
with the highest multipole:

Si1Si2 ' ' ' Sis∂i1∂i2 ' ' ' ∂isVðrχNÞ

¼ Si1Si2 ' ' ' Sis ∂i1∂i2 ' ' ' ∂is VðrχNÞ: ð3:3Þ

Analogous expansions in derivatives of vector potentials
exist [31]. So operators that are irreducible tensors under
the rotation group can drive the effective interaction of the
high-multipole DM candidates discussed in Sec. II B.

Once the number of WIMP spin factors is fixed to s, one
couples the WIMP currents to one of the five nucleon
currents that arise in WIMP-nucleon scattering from the
nonrelativistic limit of the free nucleon Dirac bilinears
ψ̄fΓψ i (with Γ any combination of Dirac γ matrices and ψ
the Dirac spinor for a relativistic free nucleon) and the most
general interaction Hamiltonian depending on the WIMP
spin operator and the nucleon spin operator:

ÔM ¼ 1;
ˆ
O
!

Σ ¼ σ⃗N;
ˆ
O
!

Δ ¼ v⃗þχN;

ˆ
O
!

Φ ¼ v⃗þχN × σ⃗N; ÔΩ ¼ v⃗þχN · σ⃗N: ð3:4Þ

In the equation above σ⃗N is the vector of Pauli spin matrices
acting on the spin states of the nucleon N, while

v⃗þχN ¼ v⃗þχ − v⃗þχ ð3:5Þ

with:

ˆv⃗þN ¼ −
i

mN

! ∂⃗
∂r⃗N −

∂⃖
∂r⃗N

"
ð3:6Þ

(in the position representation), where r⃗N and mN are the
position vector and the mass of the nucleon N, while

v⃗þχ ¼ v⃗χ −
q⃗

2mχ
: ð3:7Þ

For each operator ÔX (X ¼ 1, Σ, Δ, Φ, Ω) the number of
q̃≡ q=mN factors is constrained by rotational invariance.
In particular, in the case of a scalar nucleon operator ÔX
(X ¼ M;Ω), the WIMP operator ô must be a scalar, and
all the indices i1 ' ' ' is in Si1 ' ' 'Sis must be saturated by
terms q̃i1 ' ' ' q̃is . The resulting WIMP operator is
Si1 ' ' ' Sis q̃i1 ' ' ' q̃is . On the other hand, in the case of a

vector nucleon operator ⃗ÔX (X ¼ Σ;Δ;Φ), a vector WIMP
operator ˆo⃗ is needed, and the s indices in Si1 ' ' ' Sis must be
saturated by an appropriate number of q̃ factors in order to
obtain a vector. This can be achieved in three ways: (1) by
using s − 1 factors of q̃ to produce Si1 ' ' 'Sis q̃i1 ' ' ' q̃is−1
with free index is, (2) by using s factors of q̃ to produce
ϵislmSi1 ' ' ' Sis−1Slq̃i1 ' ' ' q̃is−1 q̃m, again with free index is,
and (3) by using sþ 1 factors of q̃ to produce
Si1 ' ' ' Sis q̃i1 ' ' ' q̃is q̃isþ1

, with free index isþ1. Using the
irreducible spin products in Eq. (3.2) in place of those in
Eq. (3.1), one introduces the scalar WIMP operators

isSi1 ' ' ' Sis q̃i1 ' ' ' q̃is ; ð3:8Þ

and the vector WIMP operators
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isSi1 ' ' 'Sis q̃i1 ' ' ' q̃is−1 ðfree index isÞ;

isϵijkSi1 ' ' 'Sis−1Sjq̃i1 ' ' ' q̃is−1 q̃k ðfree index iÞ;

isþ1Si1 ' ' 'Sis q̃i1 ' ' ' q̃is q̃isþ1
ðfree index isþ1Þ; ð3:9Þ

so that the following basis of WIMP-nucleon operators
OX;s;l, all of which are irreducible in WIMP spin space and
Hermitian, is obtained:

OM;s;s ¼ ðie⃗q · S⃗χÞs ; ðs≥ 0Þ;

OΩ;s;s ¼ ðie⃗q · S⃗χÞsðv⃗þχN · S⃗NÞ; ðs≥ 0Þ;

OΣ;s;s−1 ¼ ðie⃗q · S⃗χÞs−1ðS⃗N · S⃗χÞ; ðs≥ 1Þ;

OΣ;s;s ¼ ðie⃗q · S⃗χÞs−1ðie⃗q× S⃗N · S⃗χÞ ; ðs≥ 1Þ;

OΣ;s;sþ1 ¼ ðie⃗q · S⃗χÞsðie⃗q · S⃗NÞ; ðs≥ 0Þ;

OΔ;s;s−1 ¼ ðie⃗q · S⃗χÞs−1ðv⃗þχN · S⃗χÞ; ðs≥ 1Þ;

OΔ;s;s ¼ ðie⃗q · S⃗χÞs−1ðie⃗q× v⃗þχN · S⃗χÞ ; ðs≥ 1Þ;

OΔ;s;sþ1 ¼ ðie⃗q · S⃗χÞsðie⃗q · v⃗þχNÞ; ðs≥ 0Þ;

OΦ;s;s−1 ¼ ðie⃗q · S⃗χÞs−1ðv⃗þχN × S⃗N · S⃗χÞ; ðs≥ 1Þ;

OΦ;s;s ¼ ðie⃗q · S⃗χÞs−1ðv⃗þχN · S⃗χÞðie⃗q · S⃗NÞ; ðs≥ 1Þ;

OΦ;s;sþ1 ¼ ðie⃗q · S⃗χÞs ðie⃗q× v⃗þχN · S⃗NÞ; ðs≥ 0Þ: ð3:10Þ

In terms of the Wilson coefficients cτX;s;lðqÞ the WIMP-
nucleon effective HamiltonianH is a linear combination of
the WIMP-nucleon operators listed above:

H ¼
X

Xτsl

cτX;s;lðqÞOX;s;ltτN; ð3:11Þ

with τ as an isospin index (0 for isoscalar and 1 for
isovector) and t0 ¼ 1, t1 ¼ τ3 are nucleon isospin operators
(the 2 × 2 identity and the third Pauli matrix, respectively).
The relation between the isoscalar and isovector coupling
constants c0X;s;l and c1X;s;l and the proton and neutron
coupling constants cpX;s;l and cnX;s;l is

cpX;s;l ¼
c0X;s;l þ c1X;s;l

2
; cnX;s;l ¼

c0X;s;l − c1X;s;l
2

: ð3:12Þ

In Table I we provide a dictionary between the oper-
ator basis used in the literature for a WIMP of spin jχ ≤ 1
[26–29] and the basis introduced in [31] and summarized
in Eq. (3.10).

The unpolarized differential cross section for WIMP-
nucleus scattering is given by the expression:

dσT
dER

¼ 2mT

2Ji þ 1

1

v2χT

X

τ¼0;1

X

τ0¼0;1

X

X

Rττ0
X ðvþ2

χT ; q̃
2Þ
X

Jf

W̃ττ0
TXðqÞ;

ð3:13Þ

where vχT ≡ jv⃗χT j is the WIMP speed in the reference
frame of the nucleus center of mass and

v⃗þχT ¼ v⃗þχ − v⃗þT ¼ v⃗χT −
q⃗

2μχT
; ð3:14Þ

with μχT as the reduced WIMP-nucleus mass. The sum in
Eq. (3.13) is over X ¼ M, Φ00, Φ00M, Φ̃0, Σ00, Σ0, Δ, ΔΣ0

while

TABLE I. Nonrelativistic Galilean invariant operators dis-
cussed in the literature ([27–29]) for a dark matter particle of
spin 0, 1=2, and 1, and their relation with the WIMP-nucleon
operators OX;s;l defined in Eq. (3.10). Notice that the sign
convention for the momentum transfer q⃗ used in this table and
throughout the paper is opposite to that of Refs. [27–29].

O1 1 OM;0;0
O2 ðv⃗þχNÞ2 N.A.
O3 −iS⃗N · ðe⃗q × v⃗þχNÞ −OΦ;0;1

O4 S⃗χ · S⃗N OΣ;1;0

O5 −iS⃗χ · ðe⃗q × v⃗þχNÞ −OΔ;1;1

O6 ðS⃗χ · e⃗qÞðS⃗N · e⃗qÞ −OΣ;1;2

O7 S⃗N · v⃗þχN OΩ;0;0

O8 S⃗χ · v⃗
þ
χN

OΔ;1;0

O9 −iS⃗χ · ðS⃗N × e⃗qÞ OΣ;1;1

O10 −iS⃗N · e⃗q −OΣ;0;1

O11 −iS⃗χ · e⃗q −OM;1;1

O12 S⃗χ · ðS⃗N × v⃗þχNÞ −OΦ;1;0

O13 O10O8 −OΦ;1;1
O14 O11O7 −OΩ;1;1
O15 −O11O3 −OΦ;1;2
O16 −O10O5 −OΦ;1;2 − q̃2OΦ;1;0
O17 −ie⃗q · S · v⃗þχN OΔ;2;1

O18 −ie⃗q · S · S⃗N OΣ;2;1 − 1
3OΣ;0;1

O19 e⃗q · S · e⃗q OM;2;2 þ 1
3 q̃

2OM;0;0

O20 ðS⃗N × e⃗qÞ · S · e⃗q −OΣ;2;2

O21 v⃗þχN · S · S⃗N
1
3OΩ;0;0

O22 ð−ie⃗q × v⃗þχNÞ · S · S⃗N −OΦ;2;1 − 1
3OΦ;0;1

O23 −ie⃗q · S · ðS⃗N × v⃗þχNÞ −OΦ;2;1 þ 1
3OΦ;0;1

O24 −v⃗þχN · S · ðS⃗N × ie⃗qÞ −OΦ;2;1 − 1
3OΦ;0;1
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W̃ττ0
TXðqÞ¼Wττ0

TXðqÞ; forX¼M;Σ0;Σ00;

W̃ττ0
TXðqÞ¼ q̃2Wττ0

TXðqÞ; forX¼Δ;Φ̃0;Φ00;Σ0Δ;Φ00M; ð3:15Þ

and the nuclear response functionsWTX are available in the
literature for the most common nuclear targets used in

direct detection experiments [27,62]. Notice that they do
not depend on jχ thanks to the factorization betweenWIMP
and nuclear currents valid in one-nucleon approximation.
On the other hand the WIMP response functions Rττ0

X are
given by [31]

Rττ0
M ðvþ2

χT ; q̃
2Þ ¼ vþ2

χT R
ττ0
Δ ðvþ2

χT ; q̃
2Þ þ

X2jχ

s¼0

Bjχ ;sc
τ
M;s;sc

τ0%
M;s;sq̃

2s;

Rττ0
Φ00ðvþ2

χT ; q̃
2Þ ¼ 1

4
cτΦ;0;1c

τ0%
Φ;0;1q̃

2 þ 1

4

X2jχ

s¼1

Bjχ ;sq̃
2s−2ðcτΦ;s;s−1 − cτΦ;s;sþ1q̃

2Þðcτ0%Φ;s;s−1 − cτ
0%
Φ;s;sþ1q̃

2Þ;

Rττ0
Φ00Mðv

þ2
χT ; q̃

2Þ ¼ −cτΦ;0;1c
τ0%
M;0;0 þ

X2jχ

s¼1

Bjχ ;sq̃
2s−2ðcτΦ;s;s−1 − cτΦ;s;sþ1q̃

2Þcτ0%M;s;s;

Rττ0

Φ̃0 ðvþ2
χT ; q̃

2Þ ¼
X2jχ

s¼1

Bjχ ;s
sþ 1

8s
q̃2s−2ðcτΦ;s;s−1c

τ0%
Φ;s;s−1 þ cτΦ;s;sc

τ0%
Φ;s;sq̃

2Þ;

Rττ0
Σ00 ðvþ2

χT ; q̃
2Þ ¼ vþ2

χT R
ττ0

Φ̃0 ðvþ2
χT ; q̃

2Þ þ 1

4
cτΣ;0;1c

τ0%
Σ;0;1q̃

2 þ
X2jχ

s¼1

1

4
Bjχ ;sq̃

2s−2ðcτΣ;s;s−1 − cτΣ;s;sþ1q̃
2Þðcτ0%Σ;s;s−1 − cτ

0%
Σ;s;sþ1q̃

2Þ;

Rττ0
Σ0 ðvþ2

χT ; q̃
2Þ ¼ 1

2
vþ2
χT R

ττ0
Φ00ðvþ2

χT ; q̃
2Þ þ

X2jχ

s¼0

1

8
Bjχ ;sc

τ
Ω;s;sc

τ0%
Ω;s;sv

þ2
χT q̃

2s þ
X2jχ

s¼1

1

8
Bjχ ;s

sþ 1

s
q̃2s−2ðcτΣ;s;s−1cτ

0%
Σ;s;s−1 þ cτΣ;s;sc

τ0%
Σ;s;sq̃

2Þ;

Rττ0
Δ ðvþ2

χT ; q̃
2Þ ¼

X2jχ

s¼1

Bjχ ;s
sþ 1

2s
q̃2s−2ðcτΔ;s;s−1cτ

0%
Δ;s;s−1 þ cτΔ;s;sc

τ0%
Δ;s;sq̃

2Þ;

Rττ0
ΔΣ0ðvþ2

χT ; q̃
2Þ ¼ −

X2jχ

s¼1

Bjχ ;s
sþ 1

2s
q̃2s−2ðcτΔ;s;scτ

0%
Σ;s;s−1 þ cτΔ;s;s−1c

τ0%
Σ;s;sÞ; ð3:16Þ

where

Bjχ ;s ¼
s!

ð2sþ 1Þ!!
s!

ð2s − 1Þ!!
Kjχ ;0 ' ' 'Kjχ ;s−1; ð3:17Þ

with

Kjχ ;i ¼ jχðjχ þ 1Þ − i
2

!
i
2
þ 1

"
: ð3:18Þ

For a WIMP of spin jχ all the operators OX;s;l with
s ≤ 2jχ contribute to the cross section. Conversely, for a
given operator OX;s;l the dependence on jχ of the squared
amplitude is encoded in the Bjχ ;s factors. A plot of Bjχ ;s is
provided in Fig. 1.
Writing

Rττ0
X ¼ Rττ0

0X þ Rττ0
1Xðv⊥T Þ2 ¼ Rττ0

0X þ Rττ0
1Xðv2T − v2minÞ; ð3:19Þ

the correspondence between each of the couplings of
Eq. (3.10) and the values of X in the nuclear response
functions W̃ττ0

TX is provided in Table II.

IV. EXPERIMENTAL SENSITIVITIES TO THE
EFFECTIVE OPERATORS

A. The scattering rate

In this section we will assume that the WIMP-nucleus
scattering process is driven by each one of the 44 effective
couplings in Eq. (3.10) for jχ ≤ 2, and obtain constraints
from a representative sample of the present DD experi-
ments by comparing the expected rate in each model to the
corresponding experimental upper bound. In particular the
expected number of events in a WIMP direct detection
experiment in the interval of visible energy E0

1 ≤ E0 ≤ E0
2 is

given by

R½E0
1;E

0
2) ¼

X

T

Z
E0
2

E0
1

dE0
!
dR
dE0

"

T
; ð4:1Þ
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where T indicates the target nuclei present in the detector.
For a given target T:

!
dR
dE0

"

T
¼
Z

∞

0
dER

!
dR
dER

"

T
G½E0;qTðERÞER)ϵðE0Þ: ð4:2Þ

In the equations above ER is the recoil energy deposited
in the scattering process (indicated in keVnr), while
Eee ¼ qTðERÞER (indicated in keVee) is the fraction of
ER that goes into ionization and scintillation [with qTðERÞ
as the target quenching factor] and GðE0; EeeÞ is the effect
of the energy resolution (so that E0 is measured instead of
Eee through a calibration procedure). Finally ϵðE0Þ is the
measured experimental acceptance. The theoretical differ-
ential rate is given by

!
dR
dER

"

T
¼MNTT0

Z
vesc

vT;minðERÞ

ρχ
mχ

v
!

dσ
dER

"

T
fðv⃗Þd3v; ð4:3Þ

with fðv⃗; tÞ the WIMP velocity distribution in the Earth’s
rest frame, while

vT;minðERÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mTER

2μ2χT

s
; ð4:4Þ

with mT the nuclear target and μχT the WIMP-target
reduced mass.

B. Present constraints

For each of the 44 couplings we parametrize the
corresponding Wilson coefficient as

cτX;s;lðqÞ ¼
g2

M2 þ q2
; ð4:5Þ

where g represents an effective coupling constant whileM a
mediator mass. In the central plot of Fig. 2 we show the
upper bound on the coupling g as a function of M for the
effective operator OΦ;4;5, mχ ¼ 1 TeV and jχ ¼ 2. In our
analysis we consider 5 representative direct detection
experiments (XENON1T [63], XENON100 [64],
SuperCDMS [65], PICO-60 [66] and COSINE-100 [67]
that use four different targets: Xe, Ge, C3F8, and NaI (see
the Appendix for a summary of our procedure). In
particular, in Fig. 2 the bound is driven by XENON100,
which provides the stronger constraint.
The central plot of Fig. 2 shows a clear transition from the

regime M ≪ q, for which cτΦ;4;5 ≃ g2=q2 (long-range inter-
action) to the regime for which M≫q and cτΦ;4;5≃g2=M2

TABLE II. The values of X for the nuclear response functions W̃ττ0
TX corresponding to each of the couplings of Eq. (3.10), for the

velocity-independent and the velocity-dependent components parts of the WIMP response function, decomposed as in Eq. (3.19). In
parenthesis the power of q in the cross section.

Coupling Rττ0
0X Rττ0

1X Coupling Rττ0
0X Rττ0

1X

M; s; s Mðq2sÞ … Φ; s; s − 1 Φ00ðq2sÞ; Φ̃0ðq2sÞ Σ0ðq2s−2Þ;Σ00ðq2s−2Þ
Ω; ss … Σ0ðq2sÞ Φ; s; s Φ̃0ðq2sþ2Þ Σ0ðq2sÞ
Σ; s; s − 1 Σ00ðq2s−2Þ;Σ0ðq2s−2Þ … Φ; s; sþ 1 Φ00ðq2sþ4Þ Σ00ðq2sþ2Þ
Σ; s; s Σ0ðq2sÞ … Δ; s; s − 1 Δðq2sÞ Mðq2s−2Þ
Σ; s; sþ 1 Σ00ðq2sþ2Þ … Δ; s; s Δðq2sþ2Þ Mðq2sÞ

FIG. 2. Present upper bounds from XENON100 [64]) on the effective operator OΦ;4;5 for jχ ¼ 2. Central plot: upper bound on the
coupling g as a function ofM formχ ¼ 1 TeV if the Wilson coefficient cτΦ;4;5ðqÞ is parametrized according to Eq. (4.5). Square markers:
result of an accurate evaluation of the bound using the full expression (4.5); solid line: curve g2=ðM2 þ q20Þ ¼ K, where the two constant
parameters q0 and K are determined by fixing the bounds forM ≪ q andM ≫ q. Left-hand plot: upper bound on g as a function of mχ

assuming cτΦ;4;5 ≃ g2=q2 (long-range interaction). Right-hand plot: lower bound on M=g as a function of mχ assuming cτΦ;4;5 ≃ g2=M2

(contact interaction).
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(contact interaction). In particular the square (green) mark-
ers, that show the result of an accurate evaluation of the
bound using the full expression (4.5), follow closely the
solid line that represents the curve g2=ðM2 þ q20Þ ¼ K,
where the two parameters q0 and K are fixed so that the
bound forM ≪ q coincides to the constraint g < glim shown
in the left plot for a long–range interaction (i.e., assuming
cτΦ;4;5 ≃ g2=q2) and for M ≫ q coincides to the constraint
M=g < ðM=gÞlim shown in the right plot for a short-range
interaction (i.e., assuming cτΦ;4;5 ≃ g2=M2). The transition
between the two asymptotic regimes, represented in
the central plot of Fig. 2 by the horizontal (red) dotted
line and by the dot-dashed (black) line corresponds to
M ¼ q0 ¼ glimðM=gÞlim.
In Figs. 3 and 4 we show the result of a systematic

analysis on the most constraining lower bound ðM=gÞlim for
mχ ¼ 100 GeV and mχ ¼ 1 TeV, respectively, for all the
44 models and for a contact interaction (cτX;s;l ¼ g2=M2). In
particular the plots of Figs. 3(a) and 4(a) assume that the
WIMP couples to protons only, while those for Figs. 3(b)
and 4(b) that the WIMP couples to neutrons only. For each
operatorOX;s;l the bound assumes jχ ¼ s=2. The constraint
for jχ > s=2 can be obtained from that for jχ ¼ s=2 by
multiplication times the factor ðBs=2;s=Bjχ ;sÞ

1=4 [with Bjχ ;s

given in Eq. (3.17) and plotted in Fig. 1]. In all the figures

each filled marker represents the most constraining present
bound from one among the five experiments that we
analyze while, if present, an open marker indicates an
estimation of the improvement that could be obtained in the
limit by extending the experimental energy ranges beyond
the present ones (see Sec. IV D). Moreover, for each
effective model, a vertical line represents the minimal
value of M=g compatible to the assumption of a contact
interaction, obtained by combining M > q0 (following for
each model the procedure outlined in Fig. 2) and the
perturbativity requirement g2=ð4πÞ < 1.
A first conclusion one can draw from Figs. 3(a) and 4(b)

is that for all the couplings the bound onM=g is compatible
to the assumption of a contact interaction. Moreover, one
observes an anticorrelation between the value of ðM=gÞlim
and the s parameter. This is due to the fact that a larger
value of s corresponds to stronger momentum suppression
in the expected rate and, as a consequence, to a weaker
bound. More specifically, as shown in Table II for a given
value of s the power of the transferred momentum q ranges
from 2s − 2 and 2sþ 4.
In Figs. 3 and 4 the bounds on M=g span about five

orders of magnitude, ranging from ∼10–20 TeV down to
∼90–200 MeV, the strongest constraint always corre-
sponding to the operator OM;0;0 and the weaker constraint
corresponding to the operator OΩ;4;4. This hierarchy is not

FIG. 3. (a) Most constraining lower bound on (M=g) for mχ ¼ 100 GeV and for all the 44 operators of Eq. (3.10) with jχ ≤ 2, and
assuming a contact WIMP-proton interaction [cτX;s;l ¼ g2=M2 in Eq. (4.5)]. For each operatorOX;s;l the bound assumes jχ ¼ s=2. Filled
markers: most constraining present bound from one among the experiments analyzed in the Appendix. Open markers: estimation of the
improvement on the limits by extending the experimental energy ranges beyond the present ones, as explained in Sec. IV D. Vertical
solid lines: minimal value ofM=g compatible with the assumption of a contact interaction. (b) Same as in Fig. 3(a) for a WIMP-neutron
interaction.
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surprising, since OM;0;0 corresponds to the standard spin-
independent interaction (scaling with the square of the
nuclear mass number) with no momentum or velocity
suppression, while OΩ;4;4 is the operator with the highest
momentum suppression in our analysis (i.e., for jχ ≤ 2)
among the velocity-suppressed ones [i.e., with Rττ0

0X ¼ 0 in
Eq. (3.19)]. Moreover, with the exception of the case s ¼ 0
for which only four operators are defined, for each of the
other values of s the corresponding constraints on the M=g
for the corresponding 10 operators appear to present a
similar structure. Focusing for instance on s ¼ 1, the bound
forOM;1;1 is the most constraining, withOΦ;1;0 coming next
in order of size. This can be understood by noticing that, as
shown in Table II, the cross section for OΦ;0;1 has the same
momentum suppression as OM;1;1 and depends on the
nuclear response function Wττ0

Φ00 . Such nuclear response
function favors heavier elements with large nuclear shell
and scales with the nuclear target similarly to the SI
interaction, so that for most isotopes it is the most sizeable
among the Wττ0

TX with the exception of X ¼ M [26,27] (this
holds for all the nuclear targets that we consider with the
exception of the semimagic isotope 72Ge, for which Wττ0

Φ00

vanishes). As far as the other operators are concerned, for
X ¼ Δ, Σ the constraint gets systematically less stringent at
growing l, as one expects due to the enhanced momentum
suppression, i.e., ðM=gÞlimðΔ;1;0Þ> ðM=gÞlimðΔ;1;1Þ>
ðM=gÞlimðΔ;1;2Þ and ðM=gÞlimðΣ;1;0Þ>ðM=gÞlimðΣ;1;1Þ>
ðM=gÞlimðΣ;1;2Þ. An exception to this pattern is pro-
vided by X ¼ Φ for which one observes instead
ðM=gÞlimðΦ;1;0Þ> ðM=gÞlimðΦ;1;2Þ> ðM=gÞlimðΦ;1;1Þ.

One understands this inversion between ðM=gÞlimðΦ; 1; 1Þ
and ðM=gÞlimðΦ; 1; 2Þ by noticing that, as again shown in
Table II, OΦ;1;1 couples to Wττ0

Φ̃0 ðqÞ, while OΦ;1;2 and OΦ;1;0

couple to Wττ0
Φ00ðqÞ, with Wττ0

Φ00ðq̃Þ ≫ Wττ0

Φ̃0 ðq̃Þ, as already
pointed out. The same pattern among the 10 corresponding
constraints on M=g repeats also for s ¼ 2; 3; 4.
Another feature arising from Figs. 3 and 4 is that in most

cases the strongest constraint is provided by xenon detec-
tors (XENON1T and XENON100) with the few exceptions
of fluorine (PICO-60) and NaI (COSINE-100), but only for
a WIMP-proton interaction.
Indeed in most cases xenon experiments are the most

competitive due to the large exposure. In order to under-
stand why there are exceptions to this one needs again to
consider the mapping provided in Table II between each
effective coupling and the nuclear response functions Wττ0

X .
In particular the 10 operators arising at a given value of s
can be divided into four broad classes: (i) operators whose
cross section is driven by the Wττ0

M response function:
OM;s;s, OΔ;s;s−1 and OΔ;s;s; (ii) operators driven by either
the Wττ0

Σ00 or the Wττ0
Σ0 response function: OΣ;s;−1, OΣ;s;s,

OΣ;s;sþ1 and OΩ;s;s; (iii) operators driven by the Wττ0
Φ00

response function: OΦ;s;s−1 and OΦ;s;sþ1; (iv) the operator
OΦ;s;s, which is driven by Wττ0

Φ̃0 . In particular we notice that
the operators OΔ;s;s−1 and OΔ;s;s couple to Wττ0

M through a
velocity-suppressed term [i.e., Rττ0

1X in Eq. (3.19)]. However,
in spite of the v2T=c

2 ≃ 10−6 suppression, for heavy nuclei
(Xe, I) the scattering amplitude of such operators is
dominated by the Rττ0

1X terms thanks to the huge hierarchy

FIG. 4. (a) Same as in Fig. 3(a) for mχ ¼ 1 TeV. (b) Same as in Fig. 3(b) for mχ ¼ 1 TeV.
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between the two response functions Wττ0
M ≫ Wττ0

Δ . On the
other hand, for lighter targets (Ge, Na, F) the contributions
from Rττ0

0X and Rττ0
1X are of the same order. This feature was

already observed in the context of spin–1=2 WIMPs for
O5 ¼ −OΔ;1;1 and O8 ¼ OΔ;1;0 [23].
The mapping summarized above allows us to understand

that xenon experiments are the most sensitive to the
couplings driven by Wττ0

M and Wττ0
Φ00 , which favor heavy

elements. On the other hand,Wττ0
Σ00 andWττ0

Σ0 correspond to a
coupling of the WIMP to the nucleon spins. Since inside
nuclei the nucleon spins tend to cancel each other the
contribution from even-numbered nucleons to such
response functions is strongly suppressed. As a conse-
quence of this for such interactions neutron-odd targets
(such as xenon and germanium) are mostly sensitive to the
WIMP-neutron coupling, while proton-odd targets (such as
fluorine, sodium, and iodine) are mostly sensitive to the
WIMP-proton coupling. This implies that in Figs. 3(a) and
4(a) the rate in xenon detectors is strongly suppressed for
X ¼ Σ,Ω. In such cases the strongest constraint is provided
by fluorine in PICO-60 which, due to the large exposure, is
the most competitive among proton-odd detectors, albeit
only for moderate values of s. Indeed, for s ¼ 3, 4 the
strongest constraint can instead be provided by xenon or
iodine.We postpone the explanation of this fact to Sec. IV C,
where the expected spectral shape of the differential rate in
our scenarios will be discussed. Finally, the response
functionWττ0

Φ̃0 requires a nuclear spin ≥ 1 [26] and vanishes
in fluorine, so that also in this case xenon turns out to be the
most competitive target.
The results shown in Figs. 2, and 3(b) and 4(b) are also

valid in the case of the multipolar DMdiscussed in Sec. II B.
Notice that the interaction driving the scattering process and
the binding forcewithin the DM composite state need not be
the same, and that the latter is not accessible experimentally.
If, on the other hand, one assumes the same interaction, and
that during the scattering process polarization does not
induce lower multipoles in the DM state, the nonrenorma-
lizable operators in the multipolar effective Lagrangian
depend on the particle mass or the particle radius and not
on the energy cutoff scale at which the interactions become
weak or strong, or at which new degrees of freedom become
dynamical. For instance, the analysis in [68] concludes
that the generic energy cutoff for effective theories of
electromagnetic interactions of a particle with massm, spin
j, and coupling g is ∼m=g1=ð2j−1Þ for j ≥ 3=2.
We conclude this section by pointing out that within the

context of the nonrelativistic effective theory used in our
analysis it is not possible to assess the compatibility of the
bounds obtained in Figs. 3(b) and 4(b) for the mediator
mass M with other constraints, such as those from accel-
erator physics. Instead, in the next section we will use such
bounds to calculate the expected maximal signals in future
direct detection experiments.

C. Energy spectra for high-spin WIMPs

Besides leading to a suppression of the expected rates,
the larger powers of the momentum transfer q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p

that arise in high-multipole operators lead to another
important effect: they push the expected differential spectra
to larger recoil energies ER. An example of this is shown in
Figs. 5 and 6, where the differential rate of Eq. (4.2) is
plotted for each of the 44 couplings fixing mχ ¼ 1 TeV,
assuming an isoscalar interaction (cpX;s;l ¼ cnX;s;l) and fix-
ing M=g to the present upper bound, calculated as in
Figs. 3 and 4.
Indeed, in some cases the WIMP signal not only extends

well beyond ER ¼ 1 MeV (for high multipoles s and for
large enough values of the WIMP mass mχ and of the
target mass mT) but its largest part is concentrated to
ER ≳ 100 keV, showing there a structure of peaks and
minima. The peculiar features of such plots can be under-
stood as a combination of three ingredients: the nuclear
structure function Wττ0

X , the WIMP velocity distribution
fðv⃗Þ and the power of q that appears in the cross section of
each operator (as summarized in Table II). In particular the
peaks appearing in Figs. 5 and 6 descend directly from the
diffractive nature of the Wττ0

TX nuclear structure response
functions, which are calculated as Fourier transforms of
nuclear current densities. An example of the Wττ0

M and Wττ0
Φ00

functions for xenon as calculated in [27] is shown in Fig. 7
for an isoscalar interaction (τ ¼ τ0 ¼ 0). In the differential
rate the Wττ0

TX function is convoluted with the velocity
distribution fðv⃗Þ, which in the standard halo model we
adopt is exponentially suppressed when vT;minðERÞ
approaches the escape velocity. For a standard SI or SD
interaction with no explicit momentum dependence such
suppression prevents the peak structure of the Wττ0

TX to
emerge, and leads to an energy spectrum that falls mono-
tonically with the recoil energy. However, in the general
case of the OX;s;l operators when s is large enough the
power of q appearing in the cross section enhances the
peaks at high recoil energies, so that they become visible, if,
at the same energies, the spectrum is not cut by the velocity
distribution. For heavy nuclei (Xe, I) this is indeed the case,
so that at large s the diffractive peaks become visible
(notice that, in the most extreme case, the cross section for
OΦ;4;5 is enhanced at high recoil energy by a q12 ≃ E6

R
factor). This effect is also enhanced for heavier WIMP
masses, as illustrated in Fig. 8, where the expected
differential rates, calculated with the same assumptions of
Figs. 5 and 6, are shown for OΦ;4;5 and mχ¼100GeV,
300 GeV and 1 TeV: in particular as mχ is increased the
overall signal rate at high energy gets larger while the
spectrum becomes harder, with a growing relative size of
the peak with the highest energy. A different situation is
observed however for lighter nuclei (F, Ge, Na). In this
case, irrespective on mχ , the escape velocity cut on the
recoil energy is in the 100–200 keV range, and the
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FIG. 5. Differential rate as given by Eq. (4.2) as a function of the nuclear recoil energy ER for each of the 44 couplings in Eq. (3.10) for
mχ ¼ 1 TeV and an isoscalar interaction (cpX;s;l ¼ cnX;s;l) with X ¼ M, Σ and Ω. In each plot jχ ¼ s=2, whileM=g is fixed to the present
upper bound. The horizontal lines show the residual background levels achieved by present experiments in the low–energy part of the
spectrum.
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FIG. 6. Same figure as in Fig. 5 for X ¼ Δ and Φ.
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diffractive peaks correspond to values of vT beyond
the escape velocity. As a consequence, as far as the overall
size of the expected signal for OX;s;l is concerned, larger l
values (i.e., larger powers of q in the operator) increasingly
favor larger-mass targets compared to lighter ones. Another
way to see this is that, due to the cut from the escape
velocity, the average momentum transfer qlight of the
expected spectrum of a light target is smaller than the
corresponding qheavy of the spectrum of a heavy target, so
that the overall rate of a heavy target is enhanced compared
to that of a light one by a factor ðqheavy=qlightÞn ≫ 1 if the
scattering amplitudes depend on qn with n ≫ 1. This effect
is observed in the Figs. 3(a) and 4(a), where large enough
values of l suppress the sensitivity of F in favor of the
heavier Xe and I targets, that pick up and become the more
competitive ones. In particular the latter turn out to have a
comparable sensitivity because Xe is neutron-odd and is
disfavored by the coupling, although it is favored by the
large exposure and low residual background of the
XENON1T and XENON100 experiments, while I is pro-
ton-odd, so is favored by the coupling, although it is

disfavored by the much lower exposure and the higher
residual background of the COSINE-100 experiment.
In light of the above discussion, heavy targets are

the most suitable to search for large-spin WIMPs, if
their expected rate is driven by a large-multipole
operator.1 The high recoil energy behavior of the spectra
in Figs. 5 and 6 is at strong variance with the usual WIMP
DD paradigm, where the search for new physics is focused
on the lowest energy part of the spectrum. Indeed, among
present experiments only PICO-60, that is a threshold
detector, includes the full range of recoil energies in its
analysis (although, as already explained, F targets are
only sensitive to ER ≲ 100–200 KeVnr because of the
cut from the velocity distribution). For instance, the
region of interest analyzed by XENON1T [63] is limited
to ER ≲ 27 keV, that of SuperCDMS [65] stops at

FIG. 7. Nuclear structure functions W00
M and W00

Φ00 for xenon as calculated in [27] as a function of the nuclear recoil energy ER for an
isoscalar interaction (τ ¼ τ0 ¼ 0).

FIG. 8. Expected differential rates for OΦ;4;5 calculated with the same assumptions of Fig. 6. Left-hand plot: mχ ¼ 100 GeV. Central
plot: mχ ¼ 300 GeV. Right-hand plot: mχ ¼ 1 TeV.

1For this reason also tungsten (W) in CRESST [69] would be
an excellent target to search for high-spin WIMPs. We did not
include CRESST in our analysis because the nuclear response
functions Wττ0

TX for tungsten are not available in the literature.
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ER ¼ 100 keV, while that from COSINE-100 [67] is
limited to Eee≤6keVee, corresponding to ER≤18keVnr
for sodium targets and ER ≤ 60 keVnr for iodine targets.
Clearly, all such experimental searches are not optimized to
look for some of the signals shown in Figs. 5 and 6. In
addition, COSINE-100 achieved an exclusion plot at the
level of the DAMA effect (using the same NaI target
material) in spite of measuring a residual background a
factor ≃3 higher than that of DAMA, thanks to an
aggressive background subtraction. However such fit
was performed using the energy part of the spectrum for
Eee ≥ 6 keVee assuming it signal free, an assumption that
is clearly not valid for high-s effective operators. Actually,
the role of the high-energy part of the spectrum in
momentum-dependent effective models was already parti-
ally understood for jχ ¼ s=2 in [17,70]. In particular in [17]
the data from XENON100 were reanalyzed extending
the recoil energy interval up to 240 keVnr. For this
reason to estimate the present bounds for a xenon target
in Figs. 3(b) and 4(b) we included the result of Ref. [17]
besides that from XENON1T [63].2

D. Prospects of improvement of present constraints
by extending the experimental energy range

In light of what pointed out above, with the exception of
PICO-60 the present bounds on high-multipole effective
operators are expected to be substantially improved by
extending the experimental energy windows beyond the
present ones. In order to estimate such improvement, for
each model we have recalculated the bounds on M=g for a
xenon, germanium, and sodium iodide target by requiring
that the corresponding expected differential rate in the full
energy range where it is nonvanishing stays below the
same residual background levels (in events/kg/day/keV)
achieved by present experiments at lower energies.
Such background levels are shown as horizontal lines in
Figs. 5 and 6, and their estimation is explained in the
Appendix.
The bounds improved in this way are shown in

Figs. 3(b) and 4(b) with open markers. An example of
the improvement in the cross section is presented in Fig. 9,
where the cross section σref ¼ c2M;4;4μ

2
χN=π for the operator

OM;4;4 is plotted as a function of the WIMP mass mχ . The
solid line shows the current limit from XENON1T and the
dashed line shows the possible reach of XENON1T with a
high-energy analysis. The expected improvements on the
cross sections are about one or two orders of magnitude at
masses mχ ≳ 100 GeV.
Notice that experimentally the large energy part of the

spectrum is devoid of all the uncertainties that arise close to
threshold, where the efficiency of applied cuts, the energy

scale from light yields or quenching factors or the energy
resolution are sometimes challenging to determine. In
particular such effects can be safely neglected in the
calculation of the differential rate at high recoil energies.

V. CONCLUSIONS

While most of the theoretical and experimental work on
detection of particle dark matter has been focused on dark
matter particles that are elementary and have spin 0 or 1=2,
there is no compelling reason for dark matter particles to be
elementary, or for their spin to be limited to 0 and 1=2.
In the present paper we have provided a first systematic

and quantitative discussion of the phenomenology of
the nonrelativistic effective Hamiltonian introduced in
Ref. [31] to describe the nuclear scattering process for a
WIMP of arbitrary spin jχ . To this aim we obtained
constraints from a representative sample of present direct
detection experiments assuming the WIMP-nucleus scat-
tering process to be driven by each one of the 44 effective
couplingsOX;s;l that arise for jχ ≤ 2. We have neglected the
effect of interference among operators, so our limits are to
be interpreted as the maximal sensitivity to the interaction
strength of each operator achievable by present DM direct
detection experiment.
We found that high values of the multipole parameter s,

related to powers of the momentum transfer q appearing in
the scattering amplitude, can push the expected differential
spectra to recoil energies ER much larger than usually
assumed, with the largest part of the signal concentrated at
ER ≳ 100 keV and a peculiar structure of peaks and
minima arising when both the nuclear target and the
WIMP are heavy. This phenomenology is at strong vari-
ance with the usual WIMP DD paradigm, where the search
for new physics is focused on the lowest-energy part of the
spectrum. In particular we have shown that the present
bounds on the effective operators can be significantly

FIG. 9. Possible improved bounds on the cross section σref ¼
c2M;4;4μ

2
χN=π for the operator OM;4;4 from extending the XEN-

ON1Tanalysis to higher recoil energies. Solid (black) line: current
XENON1T limit. Dashed (red) line: possible improvement.

2The potential importance of the large-energy part of the
spectrum in DD experiments was also discussed in the context of
inelastic DM models [71].
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improved by extending the recoil energy intervals to recoil
energies up to ≃1 MeV.
A large multipolarity s leads also to a suppression of the

expected rates. In particular we found quantitatively that for
s ≤ 4 the effective scales probed by direct detection experi-
ments can be suppressed by up to five orders of magnitude
compared to the case s ¼ 0.
It is possible to conceive DM candidates whose inter-

action with ordinary matter is driven by the highest
multipole moments connected to the high-rank operators
whose phenomenology is the subject of our analysis. An
example is provided by molecules in the dark sector, where
a particularly high symmetry cancels all lower multipoles
except the highest one. In this sense this paper provides the
first phenomenological study of the direct detection of
quadrupolar, octupolar, and hexadecapolar dark matter.
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APPENDIX: EXPERIMENTS

In this Appendix we summarize the procedure that we
adopted to obtain the upper bounds discussed in Sec. IV,
categorizing them according to the target: Xe, Ge, F,
and NaI.

1. Xenon target: XENON1T and XENON100

For XENON1T we have assumed 7 WIMP candidate
events in the range of 3 PE ≤ S1 ≤ 70 PE, as shown in
Fig. 3 of Ref. [63] for the primary scintillation signal S1
(directly in photo electrons, PE), with an exposure of
278.8 days and a fiducial volume of 1.3 ton of xenon
(corresponding to a residual background bres;XENON1T ≃
7.7 × 10−7 events=kg=day=keV). We have used the effi-
ciency taken from Fig. 1 of [63] and employed a light
collection efficiency g1 ¼ 0.055; for the light yield Ly we
have extracted the best estimation curve for photon yields
hnphi=E fromFig. 7 in [74] with an electric field of 90 V=cm
(with these assumptions the energy range analyzed by
XENON1T corresponds to 2 keVnr ≲ ER ≲ 27 keVnr).
The energy resolution was modeled combining a Poisson

fluctuation for the observedprimary signalS1 and aGaussian
response of the photomultiplier with σPMT ¼ 0.5 [75].
Given the relevance of high recoil energies to constrain

the effective models discussed in the present paper, in our
analysis we have included the study of Ref. [64], where the
data from run II of XENON100 (34 kg A 224.6 live days)
were reanalyzed in the increased recoil energy interval
ð6.6 − 240Þ keVnr. To calculate the bounds we combined
the number of observed events nk and the expected back-
ground rates bk for the nine bins (k ¼ 1...9) listed in Table I
of [64] with the corresponding expected rates rkðmχ ;M=gÞ
in the likelihood:

Lðmχ ;M=gÞ

¼ 2
X

k

½rkðmχ ;M=gÞ þ bk − nk logðrk þ bkÞ) ðA1Þ

and found the upper bounds on M=g imposing the
condition Lðmχ ;M=gÞ − Lmin ≤ 1.642 at 90% C.L., with
Lmin the minimum of L. To calculate the expected rates rk
we have directly convoluted the signal model detector
response tables provided for each of the nine analysis
bins in numerical form in [64] with the differential rate
dR=dER calculated in each effective model [see Eq. (B5)
of [64]].
In Sec. IV Dwe estimate the improvements to the present

bounds by extending the experimental energy windows
beyond the present ones. To do so for a xenon target we
require the corresponding expected differential rate as given
in Eq. (4.3) to be below the same residual background
bres;XENON1T ≃ 7.7 × 10−7 events=kg=day=keV presently
achieved by XENON1T at low energy in the full energy
range where it is nonvanishing. In the calculation of the
differential rate at high recoil energies we assume efficiency
equal to unity and neglect the effects from the energy
resolution.

2. Germanium target: SuperCDMS

The SuperCDMS analysis [65] in 2017 observed 1 event
between 4 and 100 keVnr with an exposure of 1690 kg days
(corresponding to a residual background bres;SuperCDMS ≃
6.2 × 10−6 events=kg=day=keV). We have taken the effi-
ciency from Fig. 1 of [65] and the energy resolution σ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.2932 þ 0.0562Eee

p
from [76]. To analyze the observed

spectrum we apply the optimal interval method [77].
In Sec. IV D for a germanium target we follow the

same procedure of Sec. A 1 using bres;SuperCDMS ≃
6.2 × 10−6 events=kg=day=keV.

3. Fluorine target: PICO-60

PICO-60 is a threshold experiment utilizing a bubble
chamber. We analyzed the data obtained with a C3F8 target
[66] using two thresholds: an exposure of 1404 kg day at
threshold Eth ¼ 2.45 (with three observed candidate events
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and one event from the expected background, implying an
upper bound of 6.42 events at 90% C.L. [78]) and an
exposure of 1167 kg day keV at threshold Eth ¼ 3.3 keV
(with zero observed candidate events and negligible
expected background, implying a 90% C.L. upper bound
of 2.3 events). For the two runs we have assumed the
nucleation probabilities in Fig. 3 of [66].

4. Sodium iodide target: COSINE-100

The exclusion plot for COSINE-100 [67] relies on a
Monte Carlo simulation to subtract the different back-
grounds of each of the eight crystals used in the analysis. In
Ref. [67] the amount of residual background after sub-
traction is not provided, so we have assumed a constant

background b at low energy (2 keVee < Eee < 8 keVee),
and estimated b by tuning it to reproduce the exclusion
plot in Fig. 4 of Ref. [67] for the isoscalar spin-independent
elastic case. The result of our procedure yields
bres;COSINE−100≃0.13 events=kg=day=keVee, which implies
a subtraction of about 95% of the background. We take
the energy resolution σ=keV ¼ 0.3171

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eee=keVee

p
þ

0.008189Eee=keVee averaged over the COSINE-100 crys-
tals [79] and the efficiency for nuclear recoils from Fig. 1 of
Ref. [67]. Quenching factors for sodium and iodine are
assumed to be equal to 0.3 and 0.09, respectively, the
same values used by DAMA. In Sec. IV D for a sodium
iodide target we follow the same procedure of Sec. A 1
using bres;COSINE−100 ¼ 0.13 events=kg=day=keV.
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