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The Newman-Janis algorithm and its generalizations can be used mathematically to generate rotating
solutions from nonrotating spherically-symmetric solutions within general relativity. The energy-
momentum tensors of these solutions may or may not represent the same physical system, in the sense
of both being a perfect fluid, or an electromagnetic field, or a Λ-term, and so on. In a series of two papers,
we compare the structure of the eigenvalues and eigenvectors of the rotating and nonrotating energy-
momentum tensors (their Segre types) and look for the existence of equations of state relating the energy
density and the principal pressures. Part I covers Kerr-Schild systems, Part II more general systems. We find
that there is a unique family of stationary axisymmetric Kerr-Schild systems that obey the same equation of
state in both the rotating and nonrotating configurations. This family includes the Kerr and Kerr-Newman
black holes, as well as rotating spacetimes whose mass function in the nonrotating limit contains a
constrained superposition of a cloud of strings term, a Reissner-Nordstrom term, a cosmological constant
term, and a Schwarzschild term. We describe the common equation of state relating energy density and
pressure in this family of spacetimes and discuss some of its properties.

DOI: 10.1103/PhysRevD.104.124066

I. INTRODUCTION

There is a way to find rotating solutions starting from a
nonrotating spherically symmetric solution. It is the way
Newman, Janis, and collaborators recovered the Kerr
solution and discovered the Kerr-Newman solution starting
from the Schwarzschild and Reissner-Nordstrom metrics
[1–3]. The method of Newman and Janis was extended by
Gurses and Gursey to all systems of the Kerr-Schild type
[4]. This Gurses-Gursey generalization has recently been
used to derive rotating versions of a variety of systems such
as nonsingular black holes [5–9], systems with Kiselev
“quintessence” [10–12], clouds of strings [11], and black
holes with nonlinear electrodynamics charge [12,13], NUT
charge [14], or dilatons [15]. The Newman-Janis algorithm
was further extended by Drake and Szekeres to create
rotating spacetimes from general static spherically sym-
metric metrics [16], a similar scheme with different
notation is described in [12].
Although the Newman-Janis algorithm creates rotating

generalizations of the original metrics, the physics of the
system is in the energy-momentum tensor.Wewant to findout
if the rotating solutions obtained through the Newman-Janis

algorithm and its extensions describe the same physical
system as in the nonrotating solution but set into rotation.
We expect that the Segre type of the nonrotating system is a
specialization of the rotating system, for instance, a system
that allows the pressures to be different along different axes in
the rotating solution may well be in a degenerate state with
isotropic pressures in the static spherically symmetric sol-
ution. Also, the rotation should cause momentum density
terms which can be undone locally with an appropriate
comoving boost. Finally, we would expect that any relation
between energy, pressure, and stress obeyed by the under-
lying physical substance can be satisfied in both the rotating
and nonrotating stress-energy tensors.
Some methods for modeling rotating solutions within

general relativity are designed to specifically preserve these
sorts of behaviors. The Hartle perturbative formalism
[17,18] is specifically designed to preserve both the
equation of state and perfect fluid nature for systems in
slow uniform rotation, and more general scenarios of
rotating perfect fluids can be treated numerically in the
ADM framework [19]. The Newman-Janis algorithm is not
specifically designed with the preservation of physical
properties in mind, and there are indications that the
Newman-Janis system does not always correspond with
a physically rotating version of the original spherical
system. For instance, the Newman-Janis algorithm does
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not produce properly rotating monopole fields for Born-
Infeld electrodynamics sources [20]. Additionally, Drake
and Szekeres find the only perfect fluid system generated
by their method is the vacuum Kerr solution [16]. In this
paper, we systematically examine the energy-momentum
tensors of Newman-Janis systems to determine what sort of
physical system it represents and when it can be considered
a physically rotating version of the original system.

II. THE NEWMAN-JANIS METHOD

The original Newman-Janis algorithm involved writing
the Schwarzschild or Reissner-Nordstrom metric in
advanced null coordinates,

ds2 ¼ −
!
1 −

2M
r

−
Q2

r2

"
du2 − 2dudr

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2:1Þ

expressing gμν from null tetrads,

gμν ¼ −lμnν − lνnμ þ m̄νmμ þ m̄μmν; ð2:2Þ

and allowing the coordinate r to take complex values such
that

lμ ¼ δμ1; ð2:3aÞ

nμ ¼ δμ0 −
1

2

!
1 −m

!
1

r
þ 1

r̄

"
−
Q2

rr̄

"
δμ1; ð2:3bÞ

mμ ¼ 1ffiffiffi
2

p
r̄

!
δμ2 þ

i
sin θ

δμ3

"
: ð2:3cÞ

Here an overbar denotes complex conjugation. Then
performing a complex transformation on the r and u
coordinates to new r%, u% coordinates,

u% ¼ u − ia cos θ; ð2:4aÞ

r% ¼ rþ ia cos θ ð2:4bÞ

(here the star denotes new coordinates and not complex
conjugation), computing the new tetrad l%μ, n%μ, m%μ, m̄%μ,
and forming the new metric g%μν, which is real, one can take
it to be the rotating metric.
One can write an analogous process for arbitrary Kerr-

Schild systems. We start with a spherically symmetric Kerr-
Schild metric in Schwarzschild coordinates

ds2 ¼ −
!
1 −

2mðrÞ
r

"
dt2 þ

!
1 −

2mðrÞ
r

"−1
dr2

þ r2dθ2 þ r2 sin2 θdϕ2: ð2:5Þ

The function mðrÞ, which we will oftentimes simply write
as m, may be thought of as giving the enclosed mass in the

spherically symmetric system. Next, we convert to
advanced null coordinates du ¼ dt − ð1 − 2mðrÞ=rÞ−1dr,
obtaining

ds2 ¼ −
!
1−

2mðrÞ
r

"
du2 − 2dudrþ r2ðdθ2 þ sin2 θdϕ2Þ:

ð2:6Þ

This metric can be written in terms of a null tetrad as

gμν ¼ −lμnν − lνnμ þ m̄νmμ þ m̄μmν; ð2:7Þ

where in xμ ¼ ðu; r; θ;ϕÞ coordinates we have

lμ ¼ ð0; 1; 0; 0Þ; ð2:8aÞ

nμ ¼
!
1;−

1

2

!
1 −

2mðrÞ
r

"
; 0; 0

"
; ð2:8bÞ

mμ ¼
!
0; 0;

1ffiffiffi
2

p
r
;

iffiffiffi
2

p
r sin θ

"
: ð2:8cÞ

Notice that l; n;m; m̄ are all null, that lμnμ ¼ −1, and that
mμm̄μ ¼ 1. Next, we replace n with

nμ ¼
!
1;−

1

2

!
1 −

ðrþ r̄Þmðrþr̄
2 Þ

rr̄

"
; 0; 0

"
; ð2:9Þ

where as earlier r is complex and r̄ is its complex conjugate.
Note that when r is fully real, Eq. (2.9) reduces to the original
n. Another important point is that in the original Newman-
Janis algorithm, theM term andQ term superficially appear
to have been complexified in a different way from each other,
but one recovers both terms correctly with the single
complexification scheme in Eq. (2.9).
After resetting n, we change coordinates to r%, u% with

u% ¼ u − ia cos θ; ð2:10aÞ

r% ¼ rþ ia cos θ; ð2:10bÞ

resulting in a new set of vectors

l%μ ¼ ð0; 1; 0; 0Þ; ð2:11aÞ

n%μ ¼
!
1;−

1

2

!
1 −

2r%mðr%Þ
r%2 þ a2 cos2 θ

"
; 0; 0

"
; ð2:11bÞ

m%μ ¼ 1ffiffiffi
2

p
ðr% − ia cos θÞ

!
ia sin θ;−ia sin θ; 1;

i
sin θ

"
;

ð2:11cÞ

if we take r%; a; θ to be real. Now we construct

PHILIP BELTRACCHI and PAOLO GONDOLO PHYS. REV. D 104, 124066 (2021)

124066-2



g%μν ¼ −l%μn%ν − l%νn%μ þ m̄%νm%μ þ m̄%μm%ν; ð2:12Þ

and relabel r% → r for simplicity, to obtain

ds2 ¼ −
!
1 −

2rm
Σ

"
du2 − 2dudrþ Σdθ2

þ sin2θ
$
2adrdϕ −

4arm
Σ

dudϕ

þ
!
r2 þ a2 þ 2a2rmsin2θ

Σ

"
dϕ2

%
ð2:13Þ

with the notation

Σðr; θÞ ¼ r2 þ a2 cos2 θ: ð2:14Þ

Finally converting to Boyer-Lindquist coordinates using

du ¼ dt −
r2 þ a2

Δ
dr; ð2:15aÞ

dϕ ¼ dφ −
a
Δ
dr ð2:15bÞ

with the notation

ΔðrÞ ¼ r2 þ a2 − 2rmðrÞ; ð2:16Þ

and relabeling dφ → dϕ, we get

ds2 ¼ −
!
1 −

2rm
Σ

"
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
!
2a2rmsin2θ

Σ
þ a2 þ r2

"
dϕ2

−
4armsin2θ

Σ
dtdϕ: ð2:17Þ

which is our rotating metric.
Since we are interested in the properties of the energy

momentum tensors rather than the steps of the algorithm
itself, we can simply consider the Eq. (2.17) is the rotating
version of the static metric Eq. (2.5). When a → 0, metric
(2.17) reproduces the metric (2.5), so we may think of a as
the rotation parameter.
It is helpful to rearrange terms to call attention to the

principal directions in Eq. (2.17),

ds2 ¼ −
Δ
Σ
ðdt − a sin2 θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2 θ
Σ

½ðr2 þ a2Þdϕ − adt'2: ð2:18Þ

Metrics of the Kerr-Schild class can be written
gμν ¼ ημν − Skμkν, where S is a scalar function and kμ is
a null vector with respect to both gμν and ημν [21]. To put

Eq. (2.5) into explicit Kerr-Schild form, introduce the new
coordinate t%, satisfying

dt% ¼ dtþ dr −
!
1 −

2m
r

"−1
dr; ð2:19Þ

and obtain

ds2 ¼ −ðdt%Þ2 þ dr2 þ r2dθ2

þ r2 sin2 θdϕ2 þ 2m
r

ðdt% − drÞ2: ð2:20Þ

The first four terms are the Minkowski metric, and
kμdxμ ¼ dt% − dr. Any spherically symmetric Kerr-
Schild metric may be put into this form. For Eq. (2.17),
the Kerr-Schild vector and scalar function in Boyer-
Lindquist coordinates (see e.g. [4])1 are

S ¼ 2rm
r2 þ a2 cos2 θ

; ð2:21aÞ

kμ ¼
!
1;
Σ
Δ
; 0;−a sin2 θ

"
: ð2:21bÞ

In these coordinates, it may be verified that the remaining
portion

ημνdxμdxν ¼ −dt2 þ Σða2 − 4rmþ r2Þ
Δ2

dr2 þ Σdθ2

þ ða2 þ r2Þ sin2 θdϕ2

þ 4arm sin2 θ
Δ

drdϕ −
4rm
Δ

drdt ð2:22Þ

has a fully 0 Riemann tensor, so it is the required flat space
portion of the Kerr-Schild metric.
We will refer to physical systems having rotating Kerr-

Schild metrics of the form in Eqs. (2.17) or (2.18) as
Gurses-Gursey rotating systems, with a corresponding
nonrotating metric in Eq. (2.5).

III. NONROTATING KERR-SCHILD SYSTEMS

The energy-momentum tensor for a static spherical Kerr-
Schild system (2.5) has nonzero mixed components

Tt
t ¼ Tr

r ¼ −
m0

4πr2
; Tθ

θ ¼ Tϕ
ϕ ¼ −

m00

8πr
; ð3:1Þ

where a prime denotes a derivative with respect to r. The
eigenvalues of the nonrotating energy-momentum tensor
(3.1) can easily be obtained since Eq. (3.1) is already
diagonal,

1Our vector kμ is their vector λμ in the example after their
equation (4.17), and our function S is twice their function V in
their Eq. (4.17).
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−ρ0 ¼ p0
k ¼ −

m0

4πr2
; p0

⊥ ¼ −
m00

8πr
: ð3:2Þ

Here ρ0 is the energy density, p0
k is the principal pressure in

the radial direction r, and p0
⊥ is the principal pressure in the

tangential directions θ and ϕ.
The Segre type of nonrotating energy-momentum tensor

(3.1) is [(11)(1,1)]. The possible degenerate case [(111,1)]
occurs when −ρ0 ¼ p0

⊥, which is equivalent to

m00 ¼ 2m0

r
: ð3:3Þ

The solution to the latter equation is

mðrÞ ¼ Λ
6
r3 þM; ð3:4Þ

which in general describes the Schwarzschild/de Sitter
spacetime. When Λ ¼ 0, the energy-momentum tensor is
Tμ

ν ¼ 0, and its Segre type is properly 0, but for simplicity
we will refer to it as being of [(111,1)] type.
In the rest of the section, we examine spherically

symmetric Kerr-Schild systems in the context of their
equations of state. One useful quantity for equations of
state for the spherical systems is the isotropic pressure p
defined by

p ¼ pr þ 2pT

3
; ð3:5Þ

using the common notation pr ¼ p0
k and pT ¼ p0

⊥ for the
radial and tangential pressure of static spherically sym-
metric systems. It is important to note, because this has
caused confusion [22] about the Kiselev solution [23], that
the existence of this quantity and usage of this quantity in
an equation of state does not imply that the medium has
isotropic pressure.
Spherically symmetric Kerr-Schild systems automati-

cally satisfy one equation of state pr ¼ −ρ. If a system is
defined with a second equation of state pTðρÞ or pðρÞ rather
than the mass function, then deriving the mass function
involves solving one of the differential equation systems

d2m
dr2

¼ −8πrpTðρÞ; ρ ¼ 1

4πr2
dm
dr

; ð3:6aÞ

or

d2m
dr2

þ 1

r
dm
dr

¼ −12πrpðρÞ; ρ ¼ 1

4πr2
dm
dr

: ð3:6bÞ

There is ample choice of mass functions mðrÞ in the
literature, or equivalently of equations of state pTðρÞ or
pðρÞ. As we will see in Sec. V, most of these choices do
not preserve the equation of state in passing from the

nonrotating to the rotating system by means of the
Newman-Janis algorithm. Nevertheless, we have collected
some notable mass functions and corresponding equations
of state for static spherically-symmetric Kerr-Schild space-
times in the Appendix, in particular the class of linear
equations of state p ¼ wρ with constant w, and the non-
singular black hole solutions of Bardeen [24], Hayward
[25], and Dymnikova [26].

IV. ROTATING ENERGY-MOMENTUM TENSORS

For a rotating Gursey-Gurses system (2.17), the nonzero
components of the energy-momentum tensor are

Tt
t ¼ −

m0

4πΣ3
½r2ðr2 þ a2Þ − a4sin2θcos2θ' þ ra2sin2θm00

8πΣ2
;

ð4:1aÞ

Tϕ
t ¼

a
8πΣ3

½ðr2 þ a2cos2θÞrm00 − 2ðr2 − a2cos2θÞm0';

ð4:1bÞ

Tr
r ¼ −

r2m0

4πΣ2
; ð4:1cÞ

Tθ
θ ¼ −

rm00

8πΣ
−
a2cos2θm0

4πΣ2
; ð4:1dÞ

Tt
ϕ ¼ −sin2θða2 þ r2ÞTϕ

t; ð4:1eÞ

Tϕ
ϕ ¼ a2m0

4πΣ3
½r2sin2θ − ðr2 þ a2Þcos2θ' − rða2 þ r2Þm00

8πΣ2
:

ð4:1fÞ

The eigenvalues ΛðiÞ (i ¼ 1;…; 4) of the rotating energy-
momentum tensor (4.1) are obtained by diagonalization.
One finds two pairs of degenerate eigenvalues, Λð1Þ ¼ Λð2Þ
and Λð3Þ ¼ Λð4Þ, with the eigenspace of one pair having a
(normalized) timelike eigenvector ũμ and giving the
comoving energy density ρ ¼ Tμνũμũν and principal par-
allel pressure pk as

−ρ ¼ pk ¼ Λð1Þ ¼ Λð2Þ ¼ −
r2m0

4πΣ2
; ð4:2aÞ

and the other pair giving the principal perpendicular
pressure p⊥ as

p⊥ ¼ Λð3Þ ¼ Λð4Þ ¼ −
rm00

8πΣ
−
a2cos2θm0

4πΣ2
: ð4:2bÞ

Details on the eigenvectors and covariant decomposition of
this energy-momentum tensor are explored in Sec. IV B.
In terms of these eigenvalues, the covariant energy

conservation equation ∇μTμ
ν ¼ 0 in the rotating Gurses-

Gursey spacetime (2.17) becomes
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∂ρ
∂r ¼ −

2r
Σ
ðp⊥ þ ρÞ; ð4:3aÞ

∂p⊥
∂θ ¼ a2 sin 2θ

Σ
ðp⊥ þ ρÞ: ð4:3bÞ

In the nonrotating a → 0 limit, using the common notation
pr¼p0

k andpT ¼ p0
⊥ for the radial and tangential pressure of

static spherically symmetric systems, these become∂ρ=∂r ¼
−2ðpT þ ρÞ=r, which is the anisotropic Tollman-
Oppenheimer-Volkov equation [27] with pr¼−ρ, and
∂pT=∂θ ¼ 0, which is a consequence of the spherical
symmetry of the system.

A. Segre types

Regarding the Segre type of the energy-momentum
tensor, since the eigenvalues come in two pairs of degen-
erate eigenvalues, Gurses-Gurses rotating systems are of
Segre type [(11)(1,1)] or its degenerate case [(111,1)], just
like the corresponding nonrotating systems. Further, we see
that the superposition behavior present in spherical systems
[4,28,29] is also preserved in the sense that the eigenvalues
and all the components of the energy-momentum tensor
(4.1) are linear equations in m such that combination
systems may be obtained simply by adding m functions.
The degenerate case p⊥ ¼ −ρ requires mðrÞ ¼ M, and no
longer includes the de Sitter cosmological term in Λ of
the degenerate nonrotating case in Eq. (3.4).
As covariant eigenvectors vðiÞμ of Eqs. (4.1) in the

t; r; θ;ϕ coordinates satisfying

vðiÞμ Tμ
ν ¼ ΛðiÞv

ðiÞ
ν ði ¼ 1;…; 4Þ; ð4:4Þ

we can take

vð1Þμ ¼ ð−1; 0; 0; a sin2 θÞ ð4:5aÞ

vð2Þμ ¼ ð0; 1; 0; 0Þ ð4:5bÞ

vð3Þμ ¼ ð0; 0; 1; 0Þ ð4:5cÞ

vð4Þμ ¼
!
−

a
a2 þ r2

; 0; 0; 1
"
: ð4:5dÞ

Note that these eigenvectors are orthogonal to each other
and are the principal directions from Eq. (2.18). Due to the
degeneracy of the eigenvalues, any linear combination of
vð1Þμ and vð2Þμ , and any linear combination of vð3Þμ and vð4Þμ , is
also an eigenvector. We call the eigenspace of pk ¼ −ρ
spanned by vð1Þμ and vð2Þμ at any given spacetime point the
“parallel principal plane” of the Gursey-Gurses system at
that point, and the eigenspace of p⊥ spanned by vð3Þμ and
vð4Þμ the “transverse principal plane.”

It is also interesting to examine how the rotating
eigenvalues −ρ ¼ pk and p⊥ are related to the nonrotat-
ing eigenvalues −ρ0 ¼ p0

k and p
0
⊥ in Eq. (3.2). The rotating

eigenvalues are a linear function of the nonrotating eigen-
values,

−ρ ¼ −
r4ρ0

Σ2
; p⊥ ¼ r4ρ0

Σ2
þ r2ðp0

⊥ − ρ0Þ
Σ

: ð4:6Þ

This suggests the possibility that the rotating system is
some kind of linear deformation of the nonrotating system.
For the special case of Schwarzschild/de Sitter space-

times in Eq. (3.4), which have degenerate Segre type
[(111,1)] with nonrotating eigenvalues p0

k ¼ p0
⊥, the rotat-

ing eigenvalues are no longer degenerate if the cosmologi-
cal term Λ ≠ 0,

p⊥ − pk ¼ −
Λr2a2 cos2 θ

4πΣ2
; ð4:7Þ

as follows from Eqs. (4.2) for mðrÞ in Eq. (3.4). These
“rotating de Sitter” spacetimes are examined in Sec. V B.
The degenerate case [(111,1)] with Λ ¼ 0 is the Kerr
spacetime.
To summarize, the Segre type of a rotating Kerr-Schild

system obtained via the Newman-Janis algorithm in the way
of Gurses and Gursey is [(11)(1,1)], the same as the Segre
type of the nonrotating system. However, the degenerate
[(111,1)] Segre type in the rotating case includes only the
Kerr spacetime, which originates from the Schwarzschild
term of the nonrotating degenerate [(111,1)] spacetimes. The
other nonrotating Kerr-Schild systems of degenerate Segre
type [(111,1)], namely those with a nonzero cosmological
term in (3.4), becomeGurses-Gursey rotating systemswith a
nondegenerate Segre type [(11)(1,1)].
In the rest of this section, we further describe the

eigenvector/eigenvalue structure of the energy-momentum
tensor Tμ

ν for Gurses-Gursey rotating systems.

B. Invariant spaces of Tμ
ν and angular velocity

A covariant version of Eqs. (4.1) is the spectral decom-
position, common to all spacetimes of Segre type [(11)(1,1)],

Tμν ¼ pkLμν þ p⊥Hμν; ð4:8Þ

where the tensor Lμ
ν is a projector onto the eigenspace of

pk ¼ −ρ, which we called the parallel principal plane, and
the tensor Hμ

ν ¼ δμν − Lμ
ν is the projector onto the eigen-

space of p⊥, which we called the transverse principal plane.
For these projectors, Lμ

λLλ
ν ¼ Lμ

ν, Hμ
λHλ

ν ¼ Hμ
ν,

Lμ
λHλ

ν ¼ 0. The parallel principal plane contains both
spacelike and timelike vectors and has the structure of a
two-dimensional Minkowski spacetime. In particular, it
contains two independent null directions, which are the
principal null directions of the energy-momentum tensor (or
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equivalently of the Ricci tensor). On the other hand, the
transverse principal plane is composed of spacelike vec-
tors only.
The projector onto the parallel principal plane may be

written in terms of two independent null vectors kμ and lμ
along the two independent lightlike directions in it as

Lμν ¼
kμlν þ kνlμ

kαlα
: ð4:9Þ

The lightlike directions, i.e., the principal null directions of
the Ricci tensor, are uniquely defined within the parallel
tangent plane, although the normalization of the vectors kμ
and lμ is arbitrary, all normalizations giving the same
projector Lμ

ν. For fixed kαlα, the remaining choice of
normalization amounts to a local Lorentz transformation in
the parallel principal plane, which leaves the principal null
directions invariant. For the Gurses-Gurses system in
Eq. (2.17), kμ can be taken to be the Kerr-Schild vector
defined in Eq. (2.21b) and lμ as the independent principal
null vector lμ ¼ ð1;− Σ

Δ ; 0;−a sin
2 θÞ.

The projector onto the parallel principal plane can also
be written in terms of a timelike vector and a spacelike
vector belonging to it, which can, in particular, be chosen to
be orthonormal. Previous authors (e.g. [30]) have used

Lμν ¼ signðΔÞð−uμuν þ dμdνÞ ð4:10Þ

with

uμ¼ 1ffiffiffiffiffiffiffiffiffiffi
jΔjΣ

p ½ðr2þa2Þδμt þaδμϕ'; dμ¼
ffiffiffiffiffiffiffi
jΔj
Σ

r
δμr ; ð4:11Þ

which they liken to the covariant form for an “anisotropic
fluid.” There is a similar decomposition presented in the
original Gurses-Gursey paper [4], but with a missing square
root in the normalization. Note that the uμ and dμ vectors
defined here are scaled versions of our eigenvectors vð1Þμ

and vð2Þν. In this form, uμ is suggestive of a four velocity (in
a region where t is timelike and Δ > 0) with nonzero t and
ϕ components. However, this four velocity is not unique.
One may equivalently use vectors

ũμ ¼ coshðWÞuμ þ sinhðWÞdμ;

d̃μ ¼ coshðWÞdμ þ sinhðWÞuμ; ð4:12Þ

to construct Lμν because of the invariance of Segre type
[(11)(1,1)] systems under Lorentz boosts in the parallel
principal plane spanned by uμ and dμ.
The same invariance can be understood using local

Lorentz frames. We can express the energy-momentum
tensor in a local Lorentz frame using the tetrad

eμμ̂ ¼

0

BBBBBBBBB@

a2þr2ffiffiffiffiffiffiffi
jΔjΣ

p 0 0 a sin θffiffiffi
Σ

p

0
ffiffiffiffiffi
jΔj
Σ

q
0 0

0 0
ffiffiffi
1
Σ

q
0

affiffiffiffiffiffiffi
jΔjΣ

p 0 0 1
sin θ

ffiffiffi
Σ

p

1

CCCCCCCCCA

; ð4:13Þ

where the spacetime index μ labels the rows and the
orthonormal index μ̂ labels the columns. The vectors eμμ̂
are the normalized version of the contravariant vectors vðiÞμ

corresponding to Eqs. (4.5). Note that if Δ is negative, then
the r coordinate is timelike and the appropriate orthonormal
metric is gμ̂ ν̂ ¼ diagð1;−1; 1; 1Þ rather than the usual gμ̂ ν̂ ¼
diagð−1; 1; 1; 1Þ which applies when Δ > 0. With the
tetrad (4.13), we find that for Δ > 0,

T μ̂ ν̂ ¼ Tμνeμμ̂eνν̂ ¼ diagðρ;−ρ; p⊥; p⊥Þ; ð4:14Þ

while for Δ < 0, T μ̂ ν̂ ¼ diagð−ρ; ρ; p⊥; p⊥Þ. Therefore
Eq. (4.13) is associated with a special local Lorentz frame
in which the energy-momentum tensor is diagonal. Because
this is a local Lorentz frame, we may examine the energy-
momentum tensor in another local Lorentz frame in motion
with respect to the frame in (4.13) by taking standard
Lorentz boosts. We see that boosts in the 0̂ 1̂ plane, which is
the parallel principal plane, do not change T μ̂ ν̂ in
Eq. (4.14), nor do rotations in the 2̂ 3̂ plane, which is
the transverse principal plane. These symmetries are
characteristic of systems with Segre type [(11)(1,1)]. A
consequence of this symmetry is the ambiguity in defining
a unique four-velocity uμ for such systems that we have
already seen in Eq. (4.12).
Regardless of this ambiguity, one can define a coordinate

angular velocity dϕ=dt by eliminating the proper time dτ
from ũμ ¼ dxμ=dτ,

dϕ
dt

¼ ũϕ

ũt
¼ a

a2 þ r2
: ð4:15Þ

This dϕ=dt should not be confused with the frame-drag-
ging angular velocity ω ¼ −gtϕ=gϕϕ. The coordinate angu-
lar velocity describes a differential rotation, with dϕ=dt
which goes as a=r2 for r ≫ a and goes to 1=a for r ≪ a.
Note that the dependence of dϕ=dt on r does not depend on
mðrÞ at all, so all Gurses-Gursey rotating systems have the
same coordinate angular velocity for a given a, r regardless
of their physical content.

V. EQUATIONS OF STATE

In general, equations of state may be written as a
function containing thermodynamic variables such as
density, pressures, temperature, etc., as
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Fðρ; p; T;…Þ ¼ 0: ð5:1Þ

These thermodynamic variables may depend on position
and time. However, we do not consider functions of the sort

fðρ; p;…; xμÞ ¼ 0 ð5:2Þ

to be equations of state due to the explicit dependence on
position.
All Kerr-Schild systems we consider are Segre type

[(11)(1,1)] and automatically satisfy the simple equations
of state ρ ¼ −pk, p2 ¼ p3 ¼ p⊥. We are interested in
when the system can also satisfy an equation of state of the
form

Fðρ; p⊥Þ ¼ 0: ð5:3Þ

We are especially interested in when systems have the same
equation of state Fðρ; p⊥Þ whether they are rotating or not.
We should not expect that all systems should satisfy an

equation of state as simple as Eq. (5.3). Certain systems
may satisfy a more complicated equation of state, for
example involving temperature Fðρ; p⊥; TÞ. Another factor
that may be relevant for certain situations is that Kerr-
Schild systems may be superposed (by adding their m
functions). It is possible to have multiple component
systems in which each component satisfies an equation
of state of the form (5.3) but the combined system does not.
In such a case, it should be possible to derive a more
complicated equation of state for the combined system with
additional thermodynamic variables related to the fraction
of the total system at a spacetime point which may be
ascribed to each individual component.
For nonrotating spherical Kerr-Schild systems p⊥ ¼

p⊥ðrÞ and ρ ¼ ρðrÞ, so a function of the form in
Eq. (5.2), fðρ; p⊥; rÞ ¼ 0, may be defined. If either
p⊥ðrÞ or ρðrÞ is invertible, such that r ¼ rðρÞ or
r ¼ rðp⊥Þ, then the position dependence in f can be
eliminated and an equation of state of the form ρ ¼
ρðp⊥Þ or p⊥ ¼ p⊥ðρÞ may be derived. If either ρ or p⊥
is monotonic over a domain rmin ≤ r ≤ rmax, then an
equation of state defined in this manner applies within
that domain. If rmin → 0 and rmax → ∞, then the equation
of state applies everywhere. If ρ ¼ const over some
domain, then the expressions in terms of m from
Eq. (3.1) dictate that p⊥ is minus the same constant,
and the equation of state p⊥ ¼ −ρ applies. The degenerate
Segre [(111,1)] cases, being Minkowski, Schwarzschild, de
Sitter, and Schwarzschild/de Sitter, all satisfy the equation
of state p⊥ ¼ −ρ globally. In the Appendix, we examine
Kerr-Schild systems which follow a linear equation of state
and present the equation of state for some nonsingular
black hole models.
For rotating Gursey-Gurses systems, while the Segre

type [(11)(1,1)] is preserved in the standard Newman-Janis

algorithm, the relationship between the eigenvalues is, in
general, not. One can see this especially from Eq. (4.6). The
relationship between ρ0 and ρ is straightforward, but p⊥
depends on p0

⊥ and ρ0, with a different functional depend-
ence on Σ (or θ) between the terms in general. However,
when p0

⊥ ¼ ρ0, the 1=Σ term in p⊥ goes to 0 and both have
the same θ dependence. Further, we see that ifp0

⊥ ¼ ρ0, then
p⊥ ¼ ρ. If we use Eqs. (3.6) with the nonrotating equation of
state p0

⊥ ¼ ρ0, we obtain rm00ðrÞ þ 2m0ðrÞ ¼ 0, or
m ¼ M − k=r. There are four examples which have this
mass function and hence preserve their equation of state:
Minkowski to Minkowski ðk ¼ M ¼ 0Þ, Schwarzschild to
Kerr ðk ¼ 0;M ≠ 0Þ, Reissner-Nordstrom to Kerr-Newman
ðk ≠ 0;M ≠ 0Þ, and the massless charged particle case
ðk ≠ 0;M ¼ 0Þ. The Kerr and Kerr-Newman are conven-
tionally viewed as the “physically correct” rotating versions
of black holes. Further, they are the cases for which the
equation of state is obviously unmodified by the Newman-
Janis algorithm.

A. A special family of stationary
axisymmetric spacetimes

We find that there is a larger class of solutions for which
an equation of state exists for Gurses-Gursey rotating
systems. If we take derivatives of Fðρ; p⊥Þ in Eq. (5.3)
with respect to r and θ, we obtain

∂F
∂ρ

∂ρ
∂r þ

∂F
∂p⊥

∂p⊥
∂r ¼ 0; ð5:4aÞ

∂F
∂ρ

∂ρ
∂θ þ

∂F
∂p⊥

∂p⊥
∂θ ¼ 0: ð5:4bÞ

If this condition is not satisfied, then the Gurses-Gursey
system does not satisfy an equation of state of the form
Fðρ; p⊥Þ ¼ 0. In order for Eqs. (5.4) to hold for all r, θ in
nontrivial situations, we require that

∂p⊥
∂r

∂ρ
∂θ −

∂p⊥
∂θ

∂ρ
∂r ¼ 0 ð5:5Þ

for all r and θ.
Using the expressions for the eigenvalues Eqs. (4.2) in

Eq. (5.5), we obtain a differential equation for m

r2m00ðrÞ2 − 2rm0ðrÞðm00ðrÞ þ rmð3ÞðrÞÞ þ 4m0ðrÞ2 ¼ 0;

ð5:6Þ

having the general solution

mðrÞ ¼ M −
Q2

r
þ λrþ 1

6
Λr3 ð5:7aÞ

with the constraint
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λ2 ¼ 2Q2Λ: ð5:7bÞ

Here Q2 may be negative when mðrÞ is considered as a
solution of (5.6), and thus both positive and negative values
of Λ are acceptable. If Λ ¼ 0, then the constraint (5.7b)
forces λ ¼ 0 and one recovers the Kerr-Newman solution
forQ2 > 0. As we can see from Eq. (5.7b), it is not possible
to have a system with only λ ≠ 0 satisfy an equation of state
in the rotating case, there must a Λ and Q present.
The static density corresponding to the solution (5.7) is

ρ0 ¼ Q2

4πr4
þ λ
4πr2

þ Λ
8π

¼ ðλþ r2ΛÞ2

8πΛr4
; ð5:8Þ

where the second equality uses the constraint (5.7b) with
Λ ≠ 0. The rotating system has energy density ρ and
pressures pk and p⊥ given for Λ ≠ 0 by

ρ ¼ −pk ¼
ðλþ r2ΛÞ2

8πΛðr2 þ a2 cos2 θÞ2
; ð5:9aÞ

p⊥ ¼ ðλþ r2ΛÞðλ − r2Λ − 2a2Λ cos2 θÞ
8πΛðr2 þ a2 cos2 θÞ2

: ð5:9bÞ

The null energy condition ρþ p⊥ ≥ 0 imposes an
interesting maximum value for the rotation parameter a.
In fact, Eqs. (5.9) give

ρþ p⊥ ¼ λþ r2Λ
4πΛΣ2

ðλ − a2Λ cos2 θÞ; ð5:10Þ

which is positive at all r, θ only if

λ > a2Λ > 0: ð5:11Þ

Therefore at given values of the family parametersM, Q, λ,
Λ, a, the null energy condition is satisfied only if

a ≤ amax ≡
ffiffiffiffiffiffiffiffi
λ=Λ

p
¼ ð2Q2=ΛÞ1=4: ð5:12Þ

The equation of state which is satisfied by a system with
the m from Eqs. (5.7) in both the rotating and nonrotating
case is

ðρ − p⊥Þ2 ¼ 4ρρΛ; ð5:13Þ

where ρΛ ¼ Λ=8π. Therefore, a Gurses-Gursey system
with a mass function satisfying Eqs. (5.7a) and (5.7b)
may be interpreted as a physically rotating object made of a
substance satisfying Eq. (5.13).
Figure 1 shows the equation of state relating p⊥ and ρ.

The other equation of state is pk ¼ −ρ. Portions of the
equation of state surface may be unstable against pertur-
bations, and portions may be stable. An analysis of stability
in the case of anisotropic pressures is complicated and is

outside the scope of this work. The equation of state (5.13)
may be of interest for example in cosmology where it may
allow for dark energy to be reached dynamically at late
cosmic times.
Note that in the static case, the mass function Eq. (5.7a)

may be interpreted as having a Schwarzschild term with
mass M, an electromagnetic term with charge Q, a global
monopole [31] or string cloud [32] term with linear mass
density λ, and a de Sitter term with cosmological constant
Λ. In the rotating case, the physical interpretation of the
system is more subtle. From the Kerr-Newman solution we
know that if λ ¼ Λ ¼ 0, the rotating systemmay be thought
of as a rotating charged black hole. If the mass function
only has nonzero Λ, the rotating system does not corre-
spond to what one would expect for rotating vacuum energy
for which the equation of state is ρ ¼ −pk ¼ −p⊥, as the
system satisfies the equation of state (5.13) with ρ ≠ −p⊥
generally (it is the “rotating de Sitter” spacetime discussed
in the next Subsection).
Figure 2 illustrates the parameter space of the family of

rotating Kerr-Schild spacetimes in Eqs. (5.7). The param-
eters Q2; λ;Λ are there given in geometrized units in terms
of an arbitrary, but common, unit of length L. The Kerr-
Newman, Kerr, de Sitter, and anti–de Sitter limits are
indicated, as well as the maximum values amax of the
rotation parameter a for which the null energy condition

1 0 1 2 3 4 52

1

0

1

2

3

4

FIG. 1. Equation of state p⊥ðρÞ in (5.13) for the unique family
(5.7) of rotating Gursey-Gurses systems that preserves the
equation of state between rotating and nonrotating systems.
The other equation of state is pk ¼ −ρ. The figure assumes
Λ ≠ 0. When ρ ¼ ρΛ the system satisfies pk ¼ p⊥ ¼ −ρ. At
densities ρ ≫ ρΛ, the behavior approximates p⊥ ¼ ρ, which is
associated with the Reissner-Nordstrom term Q2=r in mðrÞ.
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ρþ p⊥ ≥ 0 is satisfied. Notice in particular that the (anti)
de Sitter case satisfies the null energy condition only if they
are nonrotating, as they have amax ¼ 0. We discuss this
case next.

B. The case of “rotating de Sitter” spacetime

One illustrative case for rotating Gurses-Gursey solu-
tions obeying the equation of state (5.13) is M ¼ Q ¼
λ ¼ 0, Λ ≠ 0. This system is the easiest case that explicitly
shows a solution and its nontrivial behavior for systems
with the equation of state (5.13). It shows in particular how
the energy density and pressure depend on r and θ while
obeying the equation of state. This Λ ≠ 0 spacetime which
results from using the Gurses-Gursey method on de Sitter
space has been referred to as “rotating de Sitter” in
Refs. [28,33,34] and as a “rotating imperfect Λ-fluid” in
[35]. Because spherical Kerr-Schild spacetimes that have a
nondivergent Kretschmann scalar at the origin have a de
Sitter like core, see Eq. (A6), rotating de Sitter is found in
the cores of the Gurses-Gursey generalizations of these
objects [33,35], and has also been examined as limiting
case for a model of a Kerr-Newman black hole in a de Sitter
background [28,34]. While the rotating de Sitter metric
has been considered in various capacities before, the

interpretation as being filled with a substance obeying
(5.13) seems to be new.
The rotating de Sitter and Kerr systems differ only by

replacement of M with Λr3=6 [34,35], which is funda-
mentally because they are both specific cases of systems of
the form in Eq. (2.17). Using our formulas, we find for the
rotating de Sitter spacetime

ρ ¼ Λr4

8πΣ2
; p⊥ ¼ −

Λr2ð2Σ − r2Þ
8πΣ2

: ð5:14Þ

Rotating de Sitter space has properties which are not de
Sitter like. For instance, there is a point r ¼ 0; θ ¼ π=2 at
which the Ricci scalar curvature

R ¼ 4Λr2

r2 þ a2 cos2 θ
ð5:15Þ

is undefined, ranging between 0 and 4Λ depending on the
path of approach.
Additionally, the rotating de Sitter system is Segre type

[(11)(1,1)], whereas standard de Sitter is [(111,1)], so the
Newman-Janis algorithm has destroyed one degeneracy.
Moreover, the rotating de Sitter space violates the null
energy condition ρþ p⊥ ≥ 0 everywhere except on the
equatorial plane θ ¼ π=2, whereas standard de Sitter space
satisfies the null energy condition everywhere. Thus the
underlying origin of the energy-momentum tensor of the
rotating de Sitter space is not a cosmological constant.
If we demand that the vacuum equation of state p⊥ ¼

pk ¼ −ρ is maintained, and we were to use a vacuum
energy-momentum tensor decomposed as in Eq. (4.8) in
terms of a timelike four-velocity vector as in Eq. (4.11), we
find that the vectors uμ and dμ are arbitrary and don’t enter
the energy-momentum tensor, so directly spinning (giving a
four-velocity to) vacuum energy does nothing to its energy-
momentum tensor. A spinning de Sitter space with vacuum
equation of state is described by Carter’s solution [36] with
M ¼ 0. This solution cannot be reached by the Newman-
Janis algorithm, as the only way to obtain p⊥ ¼ −ρ from
Eqs. (4.2), other than using a ¼ 0, ism ¼ M, and this gives
the Kerr spacetime and not Carter’s.
However, we can interpret the rotating de Sitter space-

time to be fundamentally filled with a substance that
satisfies the equation of state (5.13) and just happens to
be in the special case ρ ¼ ρΛ ¼ −p⊥ when it is not rotating.

VI. CONCLUSIONS

The Newman-Janis algorithm can be used to create the
Kerr and Kerr-Newman metrics from the Schwarzschild
and Reissner-Nordstrom metrics. Additionally, its gener-
alizations allow for the construction of rotating systems
which reduce to spherical systems in the limit of no
rotation.

FIG. 2. Family of rotating Kerr-Schild spacetimes in the
parameters Q2; λ;Λ in Eqs. (5.7) in geometrized units, with L
an arbitrary unit of length. The Kerr-Newman (Λ ¼ λ ¼ 0,
Q2 > 0) and Kerr (Λ ¼ λ ¼ Q ¼ 0) limits are marked. The static
spherically symmetric limits at M ¼ λ ¼ Q ¼ 0 (de Sitter and
anti–de Sitter spacetimes) are indicated in parenthesis. Also
indicated are the maximum values amax of the rotation parameter
a in Eq. (5.12) for which the null energy condition ρþ p⊥ ≥ 0 is
satisfied.
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In the Gurses-Gursey generalization, the rotating sys-
tems maintain some properties such as the Segre type
[(11)(1,1)], the Kerr-Schild metric class, and the ability to
create superimposed systems by adding mðrÞ functions.
Another feature of the Gurses-Gursey rotating systems is
that the coordinate angular velocity Eq. (4.15) is fixed in
terms of r, a without any dependence on the specific mðrÞ
function in question. However, for general functions mðrÞ,
the relationships between the eigenvalues of the energy-
momentum tensor (equations of state) are not preserved in
going from the nonrotating to the rotating system.
We find a unique family of Kerr-Schild systems that

maintain the same equation of state in the nonrotating static
spherically symmetric case and in the rotating case
obtained by means of the Newman-Janis algorithm in
the implementation of Gurses and Gursey. This family is
described by the mass functionmðrÞ in Eqs. (5.7a) with the
parameters constrained by Eq. (5.7b). This family includes
the Kerr and Kerr-Newman black holes, obtained through
the Newman-Janis algorithm from their corresponding
nonrotating Schwarzschild and Reissner-Nordstrom space-
times, respectively. The other members of the family are
rotating spacetimes that correspond in the nonrotating limit
to a constrained superposition of the mass functions mðrÞ
of a cloud of strings, the Reissner-Nordstrom spacetime,
the (anti) de Sitter spacetime, and the Schwarzschild
spacetime. The common equation of state (5.13) for
systems in this family may include stable and unstable
configurations, and a more detailed analysis of stability is
left for future study.
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APPENDIX: SOME EQUATIONS OF STATE FOR
SPHERICAL KERR-SCHILD SYSTEMS

In this appendix, we examine some interesting equations
of state for static spherically symmetric Kerr-Schild sys-
tems. We use the usual notation pr ¼ p0

k and pT ¼ p0
⊥ for

the radial and tangential pressure of a static spherically
symmetric system which is not necessarily isotropic.

1. Linear equation of state

One simple application of Eqs. (3.6) is showing the
connection between linear equations of state and simple
power laws for m. Within some region, if we have an
equation of state of the form

pr ¼ −ρ; pT ¼ wTρ; p ¼ wρ; ðA1Þ

where by Eq. (3.5) we have wT ¼ ð3wþ 1Þ=2, then the
mass will typically be of the form

m ¼ cr−3w

−3w
þM: ðA2Þ

This formula had been presented for the Kiselev solution in
[23], but it applies to any case where the mass follows a
power law. In the special case w ¼ 0, the solution to
Eqs. (3.6) becomes

m ¼ c lnðrÞ þM: ðA3Þ

There are several notable example of systems which
follow linear equations of state of the form (A1).
Minkowski space is a trivial example having mðrÞ ¼ 0
and p ¼ pT ¼ pr ¼ −ρ ¼ 0, and de Sitter space has
mðrÞ ¼ Λr3=6, p¼pT ¼pr¼−ρ¼Λ=ð8πÞ. Minkowski
and de Sitter are special among these simple cases. For
instance, wT ¼ w ¼ −1 applies so the pressure is isotropic
everywhere. Additionally, this is the smallest wT can be and
still satisfy the null energy condition

ρþ pT ≥ 0 ðA4Þ

and the largest wT can be such that it remains nonsingular at
r ¼ 0 ifM ¼ 0, as can be seen from the Kretschmann scalar

K¼48m2

r6
−
64mm0

r5
−
16m0m00

r3
þ4m002

r2
þ4ð8m02þ4mm00Þ

r4

ðA5Þ

which becomes

K ¼ 4c2ð4þ 20wþ 51w2 þ 54w3 þ 27w4Þ
3w2r6ð1þwÞ ðA6Þ

for mass functions of the form (A2) with M ¼ 0. A local
behavior of wT ¼ w ¼ −1 near r ¼ 0 allows for regularity
and the null energy condition so it is ubiquitous in more
complex spherical Kerr-Schild models like nonsingular
black holes.
Systems with Segre type [(11)(1,1)] following p ¼ wρ

with −1 < w < −1=3 are sometimes referred to as quintes-
sence [23], although this nomenclature is incorrect [22].
Kiselev quintessence systems have an infinite total mass
m ∝ r−3w, are not asymptotically flat, and have a de Sitter
like outer horizon where 1 − 2m=r changes sign. These
systems satisfy the null energy condition but do not satisfy
the strong energy condition.
A system m ¼ λr, pT ¼ 0, p ¼ −ρ=3 shows up in

different contexts as a collection of radially aligned strings
[32] or a variety of monopole [31]. This is a limiting case
for the strong energy condition because ρþ 3p ¼ 0. This
system is not asymptotically Minkowski (the geometry is
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hyperconical), and has diverging m, but has no de Sitter-
like horizon.
The case w ¼ 0 has m ∝ lnðrÞ. Interestingly, the mass m

as r → ∞ diverges, but the metric is still asymptotically
Minkowski becausem=r → 0. The origin is singular as can
be seen from Eq. (A5).
The Schwarzschild black hole has mðrÞ ¼ M, and the

pure vacuum equation of state p ¼ pT ¼ pr ¼ ρ ¼ 0.
One final simple case is the Reissner-Nordstrom sol-

ution. If for instance one uses the equation of state for
electromagnetism p ¼ ρ=3, then pT ¼ ρ, pr ¼ −ρ, and
Eqs. (3.6) gives m ¼ M −Q2=r which is the mass function
for the Reissner-Nordstrom solution. The mass function at
large radii converges to the constant M, but the mass
function as r → 0 diverges. The density follows ρ ∝ r−4.
This is a limiting case for the dominant energy condition, in
that ρ − jpT j ¼ 0.
Of these spherical Kerr-Schild systems with linear

equations of state, the only ones for which the equation
of state is preserved under Gurses-Gursey rotation are the
electromagnetic pT ¼ ρ, p ¼ ρ=3 and its subset the pure
vacuum p ¼ pT ¼ pr ¼ ρ ¼ 0.

2. Nonsingular black hole spacetimes

Here we examine some more complicated spherical
Kerr-Schild spacetimes which are used to construct non-
singular black holes. We derive equations of state for the
static Bardeen, Hayward, and Dymnikova nonsingular
black hole spacetimes.
None of these nonsingular black holes have a mass

function of the form Eqs. (5.7), so their Gurses-Gursey
rotating versions do not satisfy an equation of state
Fðρ; p⊥Þ ¼ 0, despite their spherical versions satisfying
one. It is still possible that a more general fundamental
equation of state involving thermodynamic variables
beyond pressure and energy density applies in the rotating
case, and that it reduces to the nonrotating equations of
state we derive here in the nonrotating case. Finding and
justifying more general equations of state for Gurses-
Gursey rotating nonsingular black holes is a possible area
for future research. For example, since the Hayward and
Dymnikova nonsingular black holes can arise from quan-
tum gravity considerations, it would be an interesting
avenue to see if quantum gravity considerations allow
for the derivation of more general equations of state and
whether these equations of state are satisfied by the Gurses-
Gursey rotating versions. The Bardeen spacetime has been
interpreted as a nonlinear electrodynamics monopole [37],
but it has been shown that the behavior of nonlinear
electrodynamics is not preserved by the Newman-Janis
algorithm [20], so a different physical explanation for the
Bardeen spacetime may be required to allow for derivation
of equations of state which apply in both the rotating and
nonrotating cases.

The systems in this Section have de Sitter like cores to be
nonsingular. Nonsingularity also gives M ¼ 0, so the
system is uniquely defined by an equation of state and
has the coordinate t correspond to time for an observer at
the origin. Also, all these examples of nonsingular black
holes have finite total mass. It is possible for the following
spacetimes to lack event horizons for certain parameter
ranges, such a system is referred to as a G-lump in [38].

a. Bardeen solution

The first nonsingular black hole spacetime discovered
was the Bardeen solution [24]. It was originally proposed
as a response to the Penrose singularity theorem [39], and
has

m ¼ Mr3

ðr2 þ R2Þ3=2
; ðA7Þ

ρ ¼ 3MR2

4πðr2 þ R2Þ5=2
; ðA8Þ

pT ¼ 1

2
ρ

!
3 − 5

!
ρ
ρ0

"
2=5

"
; ðA9Þ

p ¼ 1

3
ρ

!
2 − 5

!
ρ
ρ0

"
2=5

"
; ðA10Þ

where M and R are constants and ρ0 ¼ 3M=ð4πR3Þ. Note
that as ρ → ρ0 we approach a de Sitter like configuration
and as ρ ≪ ρ0 the dominant energy condition ρ − jpT j ≥ 0
is violated, which differs from the implication in [40]. A
plot of the equations of state for the Bardeen spacetime is
in Fig. 3.

b. Hayward spacetime

One popular more recent model of a nonsingular black
hole is the Hayward spacetime [25]. One reason it has
gathered attention because it arises in “asymptotically safe
quantum gravity” formulations [41]. For the Hayward
black hole,

m ¼ 2Mr2

r3 þ 2l2M
; ðA11Þ

ρ ¼ 3l2M2

2πðr3 þ 2l2MÞ2
; ðA12Þ

pT ¼ ρ

!
2 − 3

!
ρ
ρ0

"
1=2

"
; ðA13Þ

p ¼ ρ

!
1 − 2

!
ρ
ρ0

"
1=2

"
; ðA14Þ
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where l andM are parameters and ρ0 ¼ 3=ð8πl2Þ. A plot of
the equations of state for the Hayward spacetime is
in Fig. 3.

c. Dymnikova solutions

A large number of papers have been published on the
variously named solution by Dymnikova originally pre-
sented in [26]. These were derived with Schwinger vacuum
polarization for the density [42], and also show up under a
renormalization scheme of a Schwarzschild black hole
[43]. The defining functions are

m ¼
rg
2

!
1 − e

−8πρ0r3
3rg

"
; ðA15Þ

ρ ¼ ρ0e
−8πρ0r

3

3rg ; ðA16Þ

pT ¼ −ρ
!
1þ 3

2
ln

ρ
ρ0

"
; ðA17Þ

p ¼ −ρ
!
1þ ln

ρ
ρ0

"
; ðA18Þ

where ρ0 and rg are parameters. Note that the density falls
off faster than any power law of r, and the dominant energy
condition is violated. In fact, the equations of state become
infinitely stiff as the density approaches zero. A plot of the
equations of state for the Dymnikova spacetime is in Fig. 3.
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