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The Newman-Janis algorithm and its generalizations can be used mathematically to generate rotating
solutions from nonrotating spherically-symmetric solutions within general relativity. The energy-
momentum tensors of these solutions may or may not represent the same physical system, in the sense
of both being a perfect fluid, or an electromagnetic field, or a A-term, and so on. In a series of two papers,
we compare the structure of the eigenvalues and eigenvectors of the rotating and nonrotating energy-
momentum tensors (their Segre types) and look for the existence of equations of state relating the energy
density and the principal pressures. Part I covers Kerr-Schild systems, Part IT more general systems. We find
that there is a unique family of stationary axisymmetric Kerr-Schild systems that obey the same equation of
state in both the rotating and nonrotating configurations. This family includes the Kerr and Kerr-Newman
black holes, as well as rotating spacetimes whose mass function in the nonrotating limit contains a
constrained superposition of a cloud of strings term, a Reissner-Nordstrom term, a cosmological constant
term, and a Schwarzschild term. We describe the common equation of state relating energy density and

pressure in this family of spacetimes and discuss some of its properties.
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I. INTRODUCTION

There is a way to find rotating solutions starting from a
nonrotating spherically symmetric solution. It is the way
Newman, Janis, and collaborators recovered the Kerr
solution and discovered the Kerr-Newman solution starting
from the Schwarzschild and Reissner-Nordstrom metrics
[1-3]. The method of Newman and Janis was extended by
Gurses and Gursey to all systems of the Kerr-Schild type
[4]. This Gurses-Gursey generalization has recently been
used to derive rotating versions of a variety of systems such
as nonsingular black holes [5-9], systems with Kiselev
“quintessence” [10-12], clouds of strings [11], and black
holes with nonlinear electrodynamics charge [12,13], NUT
charge [14], or dilatons [15]. The Newman-Janis algorithm
was further extended by Drake and Szekeres to create
rotating spacetimes from general static spherically sym-
metric metrics [16], a similar scheme with different
notation is described in [12].

Although the Newman-Janis algorithm creates rotating
generalizations of the original metrics, the physics of the
system is in the energy-momentum tensor. We want to find out
if the rotating solutions obtained through the Newman-Janis
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algorithm and its extensions describe the same physical
system as in the nonrotating solution but set into rotation.
We expect that the Segre type of the nonrotating system is a
specialization of the rotating system, for instance, a system
that allows the pressures to be different along different axes in
the rotating solution may well be in a degenerate state with
isotropic pressures in the static spherically symmetric sol-
ution. Also, the rotation should cause momentum density
terms which can be undone locally with an appropriate
comoving boost. Finally, we would expect that any relation
between energy, pressure, and stress obeyed by the under-
lying physical substance can be satisfied in both the rotating
and nonrotating stress-energy tensors.

Some methods for modeling rotating solutions within
general relativity are designed to specifically preserve these
sorts of behaviors. The Hartle perturbative formalism
[17,18] is specifically designed to preserve both the
equation of state and perfect fluid nature for systems in
slow uniform rotation, and more general scenarios of
rotating perfect fluids can be treated numerically in the
ADM framework [19]. The Newman-Janis algorithm is not
specifically designed with the preservation of physical
properties in mind, and there are indications that the
Newman-Janis system does not always correspond with
a physically rotating version of the original spherical
system. For instance, the Newman-Janis algorithm does

© 2021 American Physical Society
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not produce properly rotating monopole fields for Born-
Infeld electrodynamics sources [20]. Additionally, Drake
and Szekeres find the only perfect fluid system generated
by their method is the vacuum Kerr solution [16]. In this
paper, we systematically examine the energy-momentum
tensors of Newman-Janis systems to determine what sort of
physical system it represents and when it can be considered
a physically rotating version of the original system.

II. THE NEWMAN-JANIS METHOD

The original Newman-Janis algorithm involved writing
the Schwarzschild or Reissner-Nordstrom metric in
advanced null coordinates,

2M 2
ds* = — <1 - Qz)du2 — 2dudr
rooor
+ r2(d6? + sin® 0d¢?), (2.1)
expressing g* from null tetrads,
g = —lFn¥ = P + m'm* + mtm", (2.2)

and allowing the coordinate r to take complex values such
that

=4, (2.3a)
1 11\ 0
Ho_— st __ — L =
=8~ (1 m(r + 7) ﬁ)&q‘, (2.3b)
mi = (o), (2.3¢)
V2F 2 sing 3

Here an overbar denotes complex conjugation. Then
performing a complex transformation on the r and u
coordinates to new r*, u* coordinates,

(2.4a)

u* =u—1iacosd,

r*=r+iacos6 (2.4b)
(here the star denotes new coordinates and not complex
conjugation), computing the new tetrad [I**, n**, m**, m**,
and forming the new metric g***, which is real, one can take
it to be the rotating metric.

One can write an analogous process for arbitrary Kerr-
Schild systems. We start with a spherically symmetric Kerr-
Schild metric in Schwarzschild coordinates

ds? :—(1 —Zm—<r)>dz2+ (1 _2m_(r)>—'dr2

r r

+ r2d0* + r? sin® Odg?. (2.5)

The function m(r), which we will oftentimes simply write
as m, may be thought of as giving the enclosed mass in the

spherically symmetric system. Next, we convert to
advanced null coordinates du = dt — (1 —2m(r)/r)"'dr,
obtaining

2
ds? — — (1 _ M) du® = 2dudr + r*(d6* + sin® 0d¢?).

r

(2.6)

This metric can be written in terms of a null tetrad as

g = —lFn¥ = I'n* + m*m" + mm", (2.7)
where in x* = (u, r, 0, ¢) coordinates we have
" =(0,1,0,0), (2.8a)

= (1, —% (1 - 2mr(r)>’0’ 0), (2.8b)

mh = (0,0, (2.8¢)

1 i
\/Er ' \/Er sin 9) )
Notice that [, n, m, m are all null, that #n, = —1, and that
mtm, = 1. Next, we replace n with

= (1,-% <1 —%)o,o), (2.9)

rr

i

where as earlier » is complex and 7 is its complex conjugate.
Note that when r is fully real, Eq. (2.9) reduces to the original
n. Another important point is that in the original Newman-
Janis algorithm, the M term and Q term superficially appear
to have been complexified in a different way from each other,
but one recovers both terms correctly with the single
complexification scheme in Eq. (2.9).

After resetting n, we change coordinates to r*, u* with

u* =u—iacoso, (2.10a)
r* =r+iacos0, (2.10b)
resulting in a new set of vectors

I = (0,1,0,0), (2.11a)

1 2r'm(r*)

H=11l,—=|1 —-———=],0.0], 2.11b
" ( 2 ( r*2 + a* cos? 9> > ( )
m = ! (ia sin 0, —iasin6, 1 L)

V2(r* —iacos @) ’ " sing)’
(2.11c)

if we take r*, a, @ to be real. Now we construct
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g*;w — _l*ﬂn*y _ l*yn*ﬂ + m*ym*y + m*ym*y, (212)
and relabel r* — r for simplicity, to obtain
5 2rm 5 >
dsc=—|1 - du® — 2dudr + Xd6
. 5 darm
+ sin“0|2adrd¢ — 3 dudg
24> in20
+ <r2 T >d¢2} (2.13)
with the notation
X(r,0) = r* + a® cos? 0. (2.14)

Finally converting to Boyer-Lindquist coordinates using

2, 2
du—=di-— g, (2.15a)
a
dep = do — Zdr (2.15b)
with the notation
A(r) = r* +a® = 2rm(r), (2.16)
and relabeling dg — d¢, we get
2rm z
ds?> = —| 1 —=— |df* + —dr* + Zdb?
s < S ) + A re+
oa(2a*rmsin?0 N\
+ sin“0 ?4—61 +r° |de
4 in’6
- %dm{p. (2.17)

which is our rotating metric.

Since we are interested in the properties of the energy
momentum tensors rather than the steps of the algorithm
itself, we can simply consider the Eq. (2.17) is the rotating
version of the static metric Eq. (2.5). When a — 0, metric
(2.17) reproduces the metric (2.5), so we may think of a as
the rotation parameter.

It is helpful to rearrange terms to call attention to the
principal directions in Eq. (2.17),

A by
ds (dt — asin® de)? + A dr® + 2d¢*

2_ _ 2
>
. 29
2102 + a?)dep — adr].

(2.18)

Metrics of the Kerr-Schild class can be written
9w = N — Sk,k,, where S is a scalar function and k* is
a null vector with respect to both g, and 7,, [21]. To put

Eq. (2.5) into explicit Kerr-Schild form, introduce the new
coordinate ¢*, satisfying

2\ -1
dr* = dt + dr — (1 - —m> dr,  (2.19)
r
and obtain
ds* = —(dr*)? + dr* + r*d6?

. 2m
+ r? sin? Odgp* + — (dr* — dr)*. (2.20)

r

The first four terms are the Minkowski metric, and
k,dx* = dt* —dr. Any spherically symmetric Kerr-
Schild metric may be put into this form. For Eq. (2.17),
the Kerr-Schild vector and scalar function in Boyer-
Lindquist coordinates (see e.g. [4])l are

2rm
S=———+—+, 2.21
r* 4+ a?cos? 6 (2.212)
> -
k, = 1,K,O, —asin® 0 ). (2.21b)

In these coordinates, it may be verified that the remaining
portion

Y(a® —4rm + r?)
AZ
+ (a* + r?) sin® Od¢?
4arm sin? 0
A

dr* + =do*

Nydxtdx’ = —di* +

4
drde — % drdt (2.22)

has a fully 0 Riemann tensor, so it is the required flat space
portion of the Kerr-Schild metric.

We will refer to physical systems having rotating Kerr-
Schild metrics of the form in Egs. (2.17) or (2.18) as
Gurses-Gursey rotating systems, with a corresponding
nonrotating metric in Eq. (2.5).

ITII. NONROTATING KERR-SCHILD SYSTEMS

The energy-momentum tensor for a static spherical Kerr-
Schild system (2.5) has nonzero mixed components

! m//
— T0)=T%, = —
drr 0 ¢ 8xr

T, =T",=- . (3.1)
where a prime denotes a derivative with respect to r. The
eigenvalues of the nonrotating energy-momentum tensor
(3.1) can easily be obtained since Eq. (3.1) is already
diagonal,

'Our vector k* is their vector A in the example after their
equation (4.17), and our function S is twice their function V in
their Eq. (4.17).
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! "

m m

_ 0 — _
4r?’ P1

—p0 = p0 — _
=P = s (3.2)

Here pY is the energy density, pﬁ is the principal pressure in

the radial direction r, and pY is the principal pressure in the
tangential directions 6 and ¢.

The Segre type of nonrotating energy-momentum tensor
(3.1) is [(11)(1,1)]. The possible degenerate case [(111,1)]
occurs when —p° = pY, which is equivalent to

m’'=—. (3.3)
The solution to the latter equation is

m(r) :%r3 + M, (3.4)
which in general describes the Schwarzschild/de Sitter
spacetime. When A = 0, the energy-momentum tensor is
T#, = 0, and its Segre type is properly 0, but for simplicity
we will refer to it as being of [(111,1)] type.

In the rest of the section, we examine spherically
symmetric Kerr-Schild systems in the context of their
equations of state. One useful quantity for equations of
state for the spherical systems is the isotropic pressure p
defined by

pr+2p
p :%, (3.5)

using the common notation p, = pﬁ and pr = pY for the

radial and tangential pressure of static spherically sym-
metric systems. It is important to note, because this has
caused confusion [22] about the Kiselev solution [23], that
the existence of this quantity and usage of this quantity in
an equation of state does not imply that the medium has
isotropic pressure.

Spherically symmetric Kerr-Schild systems automati-
cally satisfy one equation of state p, = —p. If a system is
defined with a second equation of state p,(p) or p(p) rather
than the mass function, then deriving the mass function
involves solving one of the differential equation systems

d*m 1 dm

e = smere)p =gy G6)
or
im  ldm 1 dm
—t——=-12 = 3.6b
dr*  rdr zrp(p). P =4z dr (3.6b)

There is ample choice of mass functions m(r) in the
literature, or equivalently of equations of state py(p) or
p(p). As we will see in Sec. V, most of these choices do
not preserve the equation of state in passing from the

nonrotating to the rotating system by means of the
Newman-Janis algorithm. Nevertheless, we have collected
some notable mass functions and corresponding equations
of state for static spherically-symmetric Kerr-Schild space-
times in the Appendix, in particular the class of linear
equations of state p = wp with constant w, and the non-
singular black hole solutions of Bardeen [24], Hayward
[25], and Dymnikova [26].

IV. ROTATING ENERGY-MOMENTUM TENSORS

For a rotating Gursey-Gurses system (2.17), the nonzero
components of the energy-momentum tensor are

! 26in20m”
T, = = 2 P07 + @) = atsintdeostd] + FE
(4.1a)
T¢, = s a23 (2 + a2cos20)rm — 2(r? — a2cos20)m/],
Vs
(4.1b)
r2m/
T ==y 52 (4.1c)
2 2 !
o rm" a‘cos’Om
To0= "8 ™ dm (4.14)
Py = ol )T, 1o
Zm’ 2 2\ 0!
Ty = % [2sin?0 — (> + a?)cos?6)] — %
(4.1f)

The eigenvalues A(;) (i = 1,...,4) of the rotating energy-
momentum tensor (4.1) are obtained by diagonalization.
One finds two pairs of degenerate eigenvalues, A(j) = A(y)
and A(3) = A, with the eigenspace of one pair having a
(normalized) timelike eigenvector #* and giving the
comoving energy density p = T, #*#* and principal par-
allel pressure p| as

r2 m'

- E s (428_)

—p =P =M =Ap) =
and the other pair giving the principal perpendicular
pressure p | as

rm”  a*cos2Om’

875 4nx? (4.2b)

PL =Nz = Ay =~
Details on the eigenvectors and covariant decomposition of
this energy-momentum tensor are explored in Sec. IV B.

In terms of these eigenvalues, the covariant energy
conservation equation V,7*, = 0 in the rotating Gurses-
Gursey spacetime (2.17) becomes
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0 2r

==L+ (4.3
0 a?sin20
Lo _L 0 (pL +0). (4.3b)

900 X
In the nonrotating @ — 0 limit, using the common notation
py= pﬁ and p; = pY for the radial and tangential pressure of

static spherically symmetric systems, these become dp/0r =
—2(pr +p)/r, which is the anisotropic Tollman-
Oppenheimer-Volkov equation [27] with p,=—p, and
Opr/060 = 0, which is a consequence of the spherical
symmetry of the system.

A. Segre types

Regarding the Segre type of the energy-momentum
tensor, since the eigenvalues come in two pairs of degen-
erate eigenvalues, Gurses-Gurses rotating systems are of
Segre type [(11)(1,1)] or its degenerate case [(111,1)], just
like the corresponding nonrotating systems. Further, we see
that the superposition behavior present in spherical systems
[4,28,29] is also preserved in the sense that the eigenvalues
and all the components of the energy-momentum tensor
(4.1) are linear equations in m such that combination
systems may be obtained simply by adding m functions.
The degenerate case p, = —p requires m(r) = M, and no
longer includes the de Sitter cosmological term in A of
the degenerate nonrotating case in Eq. (3.4).

As covariant eigenvectors vff) of Egs. (4.1) in the
t,r,0,¢ coordinates satisfying

T, = Aol (i=1,...,4), (4.4)
we can take
v = (=1,0,0, asin?0) (4.5a)
v =(0,1,0,0) (4.5b)
v =(0,0,1,0) (4.5¢)
o = (—%ﬂz,o, 0, 1). (4.5d)

Note that these eigenvectors are orthogonal to each other
and are the principal directions from Eq. (2.18). Due to the
degeneracy of the eigenvalues, any linear combination of

v,(ll) and v,(,2>, and any linear combination of US) and v,(f), is

also an eigenvector. We call the eigenspace of p| = —p

spanned by v,(,l) and 1),(,2) at any given spacetime point the

“parallel principal plane” of the Gursey-Gurses system at

that point, and the eigenspace of p, spanned by v,(,3) and

11,24) the “transverse principal plane.”

It is also interesting to examine how the rotating
eigenvalues —p = p| and p, are related to the nonrotat-
ing eigenvalues —p® = pﬁ and pY in Eq. (3.2). The rotating
eigenvalues are a linear function of the nonrotating eigen-
values,

4 .0 4 0 2(,,0 0
rp rp?  r(pl -p°)
—?, p1L = + L .

x? z

—p = (4.6)
This suggests the possibility that the rotating system is
some kind of linear deformation of the nonrotating system.

For the special case of Schwarzschild/de Sitter space-
times in Eq. (3.4), which have degenerate Segre type
[(111,1)] with nonrotating eigenvalues pﬁ = pY, the rotat-
ing eigenvalues are no longer degenerate if the cosmologi-
cal term A # 0,

Arta? cos? 0

T 47)

PL—pP|=—
as follows from Egs. (4.2) for m(r) in Eq. (3.4). These
“rotating de Sitter” spacetimes are examined in Sec. V B.
The degenerate case [(111,1)] with A =0 is the Kerr
spacetime.

To summarize, the Segre type of a rotating Kerr-Schild
system obtained via the Newman-Janis algorithm in the way
of Gurses and Gursey is [(11)(1,1)], the same as the Segre
type of the nonrotating system. However, the degenerate
[(111,1)] Segre type in the rotating case includes only the
Kerr spacetime, which originates from the Schwarzschild
term of the nonrotating degenerate [(111,1)] spacetimes. The
other nonrotating Kerr-Schild systems of degenerate Segre
type [(111,1)], namely those with a nonzero cosmological
term in (3.4), become Gurses-Gursey rotating systems with a
nondegenerate Segre type [(11)(1,1)].

In the rest of this section, we further describe the
eigenvector/eigenvalue structure of the energy-momentum
tensor 7*, for Gurses-Gursey rotating systems.

B. Invariant spaces of 7%, and angular velocity

A covariant version of Egs. (4.1) is the spectral decom-
position, common to all spacetimes of Segre type [(11)(1,1)],
T/w = pHLm/ + pJ_H/u/v (48)

where the tensor L, is a projector onto the eigenspace of
p|| = —p, which we called the parallel principal plane, and
the tensor H¥, = ¢", — L*, is the projector onto the eigen-
space of p |, which we called the transverse principal plane.
For these projectors, L*,L*, =L*, Ht,H, = H*,
L#*,H*, = 0. The parallel principal plane contains both
spacelike and timelike vectors and has the structure of a
two-dimensional Minkowski spacetime. In particular, it
contains two independent null directions, which are the
principal null directions of the energy-momentum tensor (or
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equivalently of the Ricci tensor). On the other hand, the
transverse principal plane is composed of spacelike vec-
tors only.

The projector onto the parallel principal plane may be
written in terms of two independent null vectors k, and [,
along the two independent lightlike directions in it as

k,d,+k,l
124 = . yk(xla = (49)
The lightlike directions, i.e., the principal null directions of
the Ricci tensor, are uniquely defined within the parallel
tangent plane, although the normalization of the vectors k,
and [, is arbitrary, all normalizations giving the same
projector L*,. For fixed k“l,, the remaining choice of
normalization amounts to a local Lorentz transformation in
the parallel principal plane, which leaves the principal null
directions invariant. For the Gurses-Gurses system in
Eq. (2.17), k, can be taken to be the Kerr-Schild vector
defined in Eq. (2.21b) and [, as the independent principal
null vector /, = (1,—%,0, —asin? §).

The projector onto the parallel principal plane can also
be written in terms of a timelike vector and a spacelike
vector belonging to it, which can, in particular, be chosen to
be orthonormal. Previous authors (e.g. [30]) have used

L,, = sign(A)(-u,u, +d,d,) (4.10)
with
u”:#[(ﬂ—l—az)ﬁf—kaé’;], dr = 18] v (4.11)
VA z

which they liken to the covariant form for an “anisotropic
fluid.” There is a similar decomposition presented in the
original Gurses-Gursey paper [4], but with a missing square
root in the normalization. Note that the u* and @* vectors
defined here are scaled versions of our eigenvectors »(1)¥
and v In this form, u* is suggestive of a four velocity (in
a region where ¢ is timelike and A > 0) with nonzero ¢ and
¢ components. However, this four velocity is not unique.
One may equivalently use vectors

" = cosh(W)u" + sinh(W)d*,

d" = cosh(W)a* + sinh(W)u*, (4.12)
to construct L* because of the invariance of Segre type
[(11)(1,1)] systems under Lorentz boosts in the parallel
principal plane spanned by #* and d*.

The same invariance can be understood using local
Lorentz frames. We can express the energy-momentum
tensor in a local Lorentz frame using the tetrad

a’+r? asin6
|AlZ 0 0 VE
0 B 0o o
ey = : . (4.13)
0 0 L0
a 1
|AIZ 0 0 sin6vVZ

where the spacetime index p labels the rows and the
orthonormal index /i labels the columns. The vectors e/

are the normalized version of the contravariant vectors v ()
corresponding to Eqgs. (4.5). Note that if A is negative, then
the r coordinate is timelike and the appropriate orthonormal
metric is g, = diag(1, -1, 1, 1) rather than the usual g, =
diag(—1,1,1,1) which applies when A > 0. With the
tetrad (4.13), we find that for A > 0,

Ty = Tye'pe’y = diag(p.—p.p1.p1).  (4.14)
while for A <0, T;; = diag(—p.p.p,.p,). Therefore
Eq. (4.13) is associated with a special local Lorentz frame
in which the energy-momentum tensor is diagonal. Because
this is a local Lorentz frame, we may examine the energy-
momentum tensor in another local Lorentz frame in motion
with respect to the frame in (4.13) by taking standard
Lorentz boosts. We see that boosts in the 0 1 plane, which is
the parallel principal plane, do not change T;; in
Eq. (4.14), nor do rotations in the 23 plane, which is
the transverse principal plane. These symmetries are
characteristic of systems with Segre type [(11)(1,1)]. A
consequence of this symmetry is the ambiguity in defining
a unique four-velocity #* for such systems that we have
already seen in Eq. (4.12).

Regardless of this ambiguity, one can define a coordinate
angular velocity d¢/dt by eliminating the proper time dr
from * = dx*/dr,

dp u? a
P (4.15)
This d¢/dt should not be confused with the frame-drag-
ging angular velocity @ = —g,4/944- The coordinate angu-
lar velocity describes a differential rotation, with d¢/dt
which goes as a/r? for r > a and goes to 1/a for r < a.
Note that the dependence of d¢p/dt on r does not depend on
m(r) at all, so all Gurses-Gursey rotating systems have the
same coordinate angular velocity for a given a, r regardless
of their physical content.

V. EQUATIONS OF STATE

In general, equations of state may be written as a
function containing thermodynamic variables such as
density, pressures, temperature, etc., as

124066-6
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F(p.p,T,...)=0. (5.1)
These thermodynamic variables may depend on position
and time. However, we do not consider functions of the sort

flp.p,....x*)=0 (5.2)
to be equations of state due to the explicit dependence on
position.

All Kerr-Schild systems we consider are Segre type
[(11)(1,1)] and automatically satisfy the simple equations
of state p=—p), pp=p3=p,. We are interested in
when the system can also satisfy an equation of state of the
form

F(p,py)=0. (5.3)
We are especially interested in when systems have the same
equation of state F(p, p ) whether they are rotating or not.

We should not expect that all systems should satisfy an
equation of state as simple as Eq. (5.3). Certain systems
may satisfy a more complicated equation of state, for
example involving temperature F(p, p, T). Another factor
that may be relevant for certain situations is that Kerr-
Schild systems may be superposed (by adding their m
functions). It is possible to have multiple component
systems in which each component satisfies an equation
of state of the form (5.3) but the combined system does not.
In such a case, it should be possible to derive a more
complicated equation of state for the combined system with
additional thermodynamic variables related to the fraction
of the total system at a spacetime point which may be
ascribed to each individual component.

For nonrotating spherical Kerr-Schild systems p, =
pi(r) and p=p(r), so a function of the form in
Eq. (5.2), f(p,pi,r) =0, may be defined. If either
p.(r) or p(r) is invertible, such that r=r(p) or
r=r(p,), then the position dependence in f can be
eliminated and an equation of state of the form p =
p(pL) or p. = p,(p) may be derived. If either p or p|
is monotonic over a domain ry, <7 < rp.e then an
equation of state defined in this manner applies within
that domain. If r;, - 0 and r,, — oo, then the equation
of state applies everywhere. If p = const over some
domain, then the expressions in terms of m from
Eq. (3.1) dictate that p; is minus the same constant,
and the equation of state p, = —p applies. The degenerate
Segre [(111,1)] cases, being Minkowski, Schwarzschild, de
Sitter, and Schwarzschild/de Sitter, all satisfy the equation
of state p, = —p globally. In the Appendix, we examine
Kerr-Schild systems which follow a linear equation of state
and present the equation of state for some nonsingular
black hole models.

For rotating Gursey-Gurses systems, while the Segre
type [(11)(1,1)] is preserved in the standard Newman-Janis

algorithm, the relationship between the eigenvalues is, in
general, not. One can see this especially from Eq. (4.6). The
relationship between p° and p is straightforward, but p |
depends on pY and p°, with a different functional depend-
ence on X (or 6) between the terms in general. However,
when pY = p°, the 1/Z term in p, goes to 0 and both have
the same 6 dependence. Further, we see thatif p = p°, then
p1 = p.If weuse Egs. (3.6) with the nonrotating equation of
state  p% =p°, we obtain rm”(r) +2m'(r) =0, or
m = M — k/r. There are four examples which have this
mass function and hence preserve their equation of state:
Minkowski to Minkowski (k = M = 0), Schwarzschild to
Kerr (k = 0, M # 0), Reissner-Nordstrom to Kerr-Newman
(k#0,M #0), and the massless charged particle case
(k#0,M = 0). The Kerr and Kerr-Newman are conven-
tionally viewed as the “physically correct” rotating versions
of black holes. Further, they are the cases for which the
equation of state is obviously unmodified by the Newman-
Janis algorithm.

A. A special family of stationary
axisymmetric spacetimes

We find that there is a larger class of solutions for which
an equation of state exists for Gurses-Gursey rotating
systems. If we take derivatives of F(p, p,) in Eq. (5.3)
with respect to r and #, we obtain

OFOp =~ OF Op,

dpor op, or (5-4a)
OF0p OF Op,

i R d & S 5.4b

If this condition is not satisfied, then the Gurses-Gursey
system does not satisfy an equation of state of the form
F(p,p1) = 0. In order for Egs. (5.4) to hold for all r, 8 in
nontrivial situations, we require that

apl@_apl@i

or 90 00 or (5:5)

for all r and 6.
Using the expressions for the eigenvalues Eqgs. (4.2) in
Eq. (5.5), we obtain a differential equation for m

rPm"(r)? = 2rm'(r)(m" (r) + rm(3)(r)) +4m'(r)? =0,
(5.6)

having the general solution

Q2

1
m(r) :M——+/1r+6Ar3 (5.7a)
r

with the constraint
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22 =20°A. (5.7b)
Here O may be negative when m(r) is considered as a
solution of (5.6), and thus both positive and negative values
of A are acceptable. If A = 0, then the constraint (5.7b)
forces 4 = 0 and one recovers the Kerr-Newman solution
for Q> > 0. As we can see from Eq. (5.7b), it is not possible
to have a system with only 4 # 0 satisfy an equation of state
in the rotating case, there must a A and Q present.

The static density corresponding to the solution (5.7) is

0_ 0 A A
At 4xr?

A (A+ r?A)? (5.8)
8z  8zArt '

P

where the second equality uses the constraint (5.7b) with
A #0. The rotating system has energy density p and
pressures p; and p, given for A # 0 by

(A+ rPA)?
8xA(r* + a? cos? 0)*’

p=-p|= (5.9a)

A+ r2A) (A= rPA = 2a*A cos? 6
py =1 JA—rAZ2ahcos ) (g g
8zA(r* + a* cos” 0)

The null energy condition p+ p; >0 imposes an
interesting maximum value for the rotation parameter a.
In fact, Egs. (5.9) give

A+ r*A
p+plzm(l—a2A00829), (510)
which is positive at all r, € only if
A>a*A>0. (5.11)

Therefore at given values of the family parameters M, Q, 4,
A, a, the null energy condition is satisfied only if

0 < ey = A/ = 202/ A4,

The equation of state which is satisfied by a system with
the m from Egs. (5.7) in both the rotating and nonrotating
case is

(5.12)

(p=p1)* = 4ppa, (5.13)
where p, = A/8z. Therefore, a Gurses-Gursey system
with a mass function satisfying Egs. (5.7a) and (5.7b)
may be interpreted as a physically rotating object made of a
substance satisfying Eq. (5.13).

Figure 1 shows the equation of state relating p, and p.
The other equation of state is p; = —p. Portions of the
equation of state surface may be unstable against pertur-
bations, and portions may be stable. An analysis of stability
in the case of anisotropic pressures is complicated and is

outside the scope of this work. The equation of state (5.13)
may be of interest for example in cosmology where it may
allow for dark energy to be reached dynamically at late
cosmic times.

Note that in the static case, the mass function Eq. (5.7a)
may be interpreted as having a Schwarzschild term with
mass M, an electromagnetic term with charge Q, a global
monopole [31] or string cloud [32] term with linear mass
density 4, and a de Sitter term with cosmological constant
A. In the rotating case, the physical interpretation of the
system is more subtle. From the Kerr-Newman solution we
know thatif 4 = A = 0, the rotating system may be thought
of as a rotating charged black hole. If the mass function
only has nonzero A, the rotating system does not corre-
spond to what one would expect for rotating vacuum energy
for which the equation of state is p = —p; = —p, as the
system satisfies the equation of state (5.13) with p # —p |
generally (it is the “rotating de Sitter”” spacetime discussed
in the next Subsection).

Figure 2 illustrates the parameter space of the family of
rotating Kerr-Schild spacetimes in Eqgs. (5.7). The param-
eters 0%, 1, A are there given in geometrized units in terms
of an arbitrary, but common, unit of length L. The Kerr-
Newman, Kerr, de Sitter, and anti—de Sitter limits are
indicated, as well as the maximum values a,,, of the
rotation parameter a for which the null energy condition

P1/pa

10 I 2 3 4 5
plpa
FIG. 1. Equation of state p (p) in (5.13) for the unique family

(5.7) of rotating Gursey-Gurses systems that preserves the
equation of state between rotating and nonrotating systems.
The other equation of state is p; = —p. The figure assumes
A #0. When p =p, the system satisfies p| = p, = —p. At
densities p > p,, the behavior approximates p, = p, which is
associated with the Reissner-Nordstrom term Q?/r in m(r).
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FIG. 2. Family of rotating Kerr-Schild spacetimes in the
parameters 0%, A, A in Egs. (5.7) in geometrized units, with L
an arbitrary unit of length. The Kerr-Newman (A =1=0,
0? > 0) and Kerr (A = A = Q = 0) limits are marked. The static
spherically symmetric limits at M = A = Q = 0 (de Sitter and
anti-de Sitter spacetimes) are indicated in parenthesis. Also
indicated are the maximum values a,,,, of the rotation parameter
a in Eq. (5.12) for which the null energy condition p + p;, > 0is
satisfied.

p+ p1 > 0 is satisfied. Notice in particular that the (anti)
de Sitter case satisfies the null energy condition only if they
are nonrotating, as they have a,, = 0. We discuss this
case next.

B. The case of “rotating de Sitter”” spacetime

One illustrative case for rotating Gurses-Gursey solu-
tions obeying the equation of state (5.13) is M = Q =
A =0, A # 0. This system is the easiest case that explicitly
shows a solution and its nontrivial behavior for systems
with the equation of state (5.13). It shows in particular how
the energy density and pressure depend on r and 6 while
obeying the equation of state. This A # 0 spacetime which
results from using the Gurses-Gursey method on de Sitter
space has been referred to as “rotating de Sitter” in
Refs. [28,33,34] and as a “rotating imperfect A-fluid” in
[35]. Because spherical Kerr-Schild spacetimes that have a
nondivergent Kretschmann scalar at the origin have a de
Sitter like core, see Eq. (A6), rotating de Sitter is found in
the cores of the Gurses-Gursey generalizations of these
objects [33,35], and has also been examined as limiting
case for a model of a Kerr-Newman black hole in a de Sitter
background [28,34]. While the rotating de Sitter metric
has been considered in various capacities before, the

interpretation as being filled with a substance obeying
(5.13) seems to be new.

The rotating de Sitter and Kerr systems differ only by
replacement of M with Ar®/6 [34,35], which is funda-
mentally because they are both specific cases of systems of
the form in Eq. (2.17). Using our formulas, we find for the
rotating de Sitter spacetime

Art Ar*(2Z - r?)

g LT g G

p:

Rotating de Sitter space has properties which are not de
Sitter like. For instance, there is a point r = 0,6 = z/2 at
which the Ricci scalar curvature

4Ar?
R=———— 5.15
r? 4+ a*cos? 6 (5.15)

is undefined, ranging between 0 and 4A depending on the
path of approach.

Additionally, the rotating de Sitter system is Segre type
[(11)(1,1)], whereas standard de Sitter is [(111,1)], so the
Newman-Janis algorithm has destroyed one degeneracy.
Moreover, the rotating de Sitter space violates the null
energy condition p 4+ p, > 0 everywhere except on the
equatorial plane 8 = /2, whereas standard de Sitter space
satisfies the null energy condition everywhere. Thus the
underlying origin of the energy-momentum tensor of the
rotating de Sitter space is not a cosmological constant.

If we demand that the vacuum equation of state p, =
p| = —p is maintained, and we were to use a vacuum
energy-momentum tensor decomposed as in Eq. (4.8) in
terms of a timelike four-velocity vector as in Eq. (4.11), we
find that the vectors u* and d* are arbitrary and don’t enter
the energy-momentum tensor, so directly spinning (giving a
four-velocity to) vacuum energy does nothing to its energy-
momentum tensor. A spinning de Sitter space with vacuum
equation of state is described by Carter’s solution [36] with
M = 0. This solution cannot be reached by the Newman-
Janis algorithm, as the only way to obtain p; = —p from
Egs. (4.2), other than using @ = 0, is m = M, and this gives
the Kerr spacetime and not Carter’s.

However, we can interpret the rotating de Sitter space-
time to be fundamentally filled with a substance that
satisfies the equation of state (5.13) and just happens to
be in the special case p = p, = —p | when itis not rotating.

VI. CONCLUSIONS

The Newman-Janis algorithm can be used to create the
Kerr and Kerr-Newman metrics from the Schwarzschild
and Reissner-Nordstrom metrics. Additionally, its gener-
alizations allow for the construction of rotating systems
which reduce to spherical systems in the limit of no
rotation.
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In the Gurses-Gursey generalization, the rotating sys-
tems maintain some properties such as the Segre type
[(11)(1,1)], the Kerr-Schild metric class, and the ability to
create superimposed systems by adding m(r) functions.
Another feature of the Gurses-Gursey rotating systems is
that the coordinate angular velocity Eq. (4.15) is fixed in
terms of r, a without any dependence on the specific m(r)
function in question. However, for general functions m(r),
the relationships between the eigenvalues of the energy-
momentum tensor (equations of state) are not preserved in
going from the nonrotating to the rotating system.

We find a unique family of Kerr-Schild systems that
maintain the same equation of state in the nonrotating static
spherically symmetric case and in the rotating case
obtained by means of the Newman-Janis algorithm in
the implementation of Gurses and Gursey. This family is
described by the mass function m(r) in Egs. (5.7a) with the
parameters constrained by Eq. (5.7b). This family includes
the Kerr and Kerr-Newman black holes, obtained through
the Newman-Janis algorithm from their corresponding
nonrotating Schwarzschild and Reissner-Nordstrom space-
times, respectively. The other members of the family are
rotating spacetimes that correspond in the nonrotating limit
to a constrained superposition of the mass functions m(r)
of a cloud of strings, the Reissner-Nordstrom spacetime,
the (anti) de Sitter spacetime, and the Schwarzschild
spacetime. The common equation of state (5.13) for
systems in this family may include stable and unstable
configurations, and a more detailed analysis of stability is
left for future study.
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APPENDIX: SOME EQUATIONS OF STATE FOR
SPHERICAL KERR-SCHILD SYSTEMS

In this appendix, we examine some interesting equations
of state for static spherically symmetric Kerr-Schild sys-
tems. We use the usual notation p, = pﬁ and pr = p‘i for
the radial and tangential pressure of a static spherically
symmetric system which is not necessarily isotropic.

1. Linear equation of state

One simple application of Egs. (3.6) is showing the
connection between linear equations of state and simple
power laws for m. Within some region, if we have an
equation of state of the form

pr=-—p (A1)

Pr = wrp, P =wp,

where by Eq. (3.5) we have wy = (3w + 1)/2, then the
mass will typically be of the form

cr—3v

= +M.
m 3w

(A2)

This formula had been presented for the Kiselev solution in
[23], but it applies to any case where the mass follows a
power law. In the special case w =0, the solution to
Egs. (3.6) becomes
m=cln(r) + M. (A3)
There are several notable example of systems which
follow linear equations of state of the form (Al).
Minkowski space is a trivial example having m(r) =0
and p=pr=p,=-p=0, and de Sitter space has
m(r) = Ar*/6, p=pr=p,=—p=ANA/(8x7). Minkowski
and de Sitter are special among these simple cases. For
instance, wy = w = —1 applies so the pressure is isotropic
everywhere. Additionally, this is the smallest w; can be and
still satisfy the null energy condition
p+pr=0 (A4)
and the largest wy can be such that it remains nonsingular at
r = 0if M = 0, as can be seen from the Kretschmann scalar

_A8m?* 64mm’ 16m'm”  4m"*  4(8m™+4mm”")

K /6 - i - 3 2 4
(AS)
which becomes
Ko 4¢%(4 + 20w + 51w? + 54w? + 27w*) (A6)
32 p6(1+w)

for mass functions of the form (A2) with M = 0. A local
behavior of wp = w = —1 near r = 0 allows for regularity
and the null energy condition so it is ubiquitous in more
complex spherical Kerr-Schild models like nonsingular
black holes.

Systems with Segre type [(11)(1,1)] following p = wp
with —1 < w < —1/3 are sometimes referred to as quintes-
sence [23], although this nomenclature is incorrect [22].
Kiselev quintessence systems have an infinite total mass
m o r~3", are not asymptotically flat, and have a de Sitter
like outer horizon where 1 —2m/r changes sign. These
systems satisfy the null energy condition but do not satisfy
the strong energy condition.

A system m = Ar, pr =0, p=—p/3 shows up in
different contexts as a collection of radially aligned strings
[32] or a variety of monopole [31]. This is a limiting case
for the strong energy condition because p 4+ 3p = 0. This
system is not asymptotically Minkowski (the geometry is
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hyperconical), and has diverging m, but has no de Sitter-
like horizon.

The case w = 0 has m o In(r). Interestingly, the mass m
as r — oo diverges, but the metric is still asymptotically
Minkowski because m/r — 0. The origin is singular as can
be seen from Eq. (AS).

The Schwarzschild black hole has m(r) = M, and the
pure vacuum equation of state p = pr = p, =p =0.

One final simple case is the Reissner-Nordstrom sol-
ution. If for instance one uses the equation of state for
electromagnetism p = p/3, then pr =p, p, = —p, and
Egs. (3.6) gives m = M — Q?/r which is the mass function
for the Reissner-Nordstrom solution. The mass function at
large radii converges to the constant M, but the mass
function as r — 0 diverges. The density follows p o« r™*.
This is a limiting case for the dominant energy condition, in
that p — |py| = 0.

Of these spherical Kerr-Schild systems with linear
equations of state, the only ones for which the equation
of state is preserved under Gurses-Gursey rotation are the
electromagnetic pr = p, p = p/3 and its subset the pure
vacuum p = pr=p,=p =0.

2. Nonsingular black hole spacetimes

Here we examine some more complicated spherical
Kerr-Schild spacetimes which are used to construct non-
singular black holes. We derive equations of state for the
static Bardeen, Hayward, and Dymnikova nonsingular
black hole spacetimes.

None of these nonsingular black holes have a mass
function of the form Egs. (5.7), so their Gurses-Gursey
rotating versions do not satisfy an equation of state
F(p,p1) =0, despite their spherical versions satisfying
one. It is still possible that a more general fundamental
equation of state involving thermodynamic variables
beyond pressure and energy density applies in the rotating
case, and that it reduces to the nonrotating equations of
state we derive here in the nonrotating case. Finding and
justifying more general equations of state for Gurses-
Gursey rotating nonsingular black holes is a possible area
for future research. For example, since the Hayward and
Dymnikova nonsingular black holes can arise from quan-
tum gravity considerations, it would be an interesting
avenue to see if quantum gravity considerations allow
for the derivation of more general equations of state and
whether these equations of state are satisfied by the Gurses-
Gursey rotating versions. The Bardeen spacetime has been
interpreted as a nonlinear electrodynamics monopole [37],
but it has been shown that the behavior of nonlinear
electrodynamics is not preserved by the Newman-Janis
algorithm [20], so a different physical explanation for the
Bardeen spacetime may be required to allow for derivation
of equations of state which apply in both the rotating and
nonrotating cases.

The systems in this Section have de Sitter like cores to be
nonsingular. Nonsingularity also gives M =0, so the
system is uniquely defined by an equation of state and
has the coordinate ¢ correspond to time for an observer at
the origin. Also, all these examples of nonsingular black
holes have finite total mass. It is possible for the following
spacetimes to lack event horizons for certain parameter
ranges, such a system is referred to as a G-lump in [38].

a. Bardeen solution

The first nonsingular black hole spacetime discovered
was the Bardeen solution [24]. It was originally proposed
as a response to the Penrose singularity theorem [39], and
has

m= (7 i/l;jz)yz ' (A7)
P= 4ﬂ(r%1:2)5/2’ (A8)
b))
b))

where M and R are constants and p, = 3M/(4zR?). Note
that as p — py we approach a de Sitter like configuration
and as p < pg the dominant energy condition p — |py| >0
is violated, which differs from the implication in [40]. A
plot of the equations of state for the Bardeen spacetime is
in Fig. 3.

b. Hayward spacetime

One popular more recent model of a nonsingular black
hole is the Hayward spacetime [25]. One reason it has
gathered attention because it arises in “asymptotically safe
quantum gravity” formulations [41]. For the Hayward
black hole,

2Mr?
m :4}’3 +2[2M’ (All)
312M?
S L — Al12
P = 22(rP + 22M)? (A12)
p\1/2
PT:P<2—3<p> >, (A13)
p\1/2
p:p<1—2<p—0) >, (A14)
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FIG. 3.

plpo

Equation of state plots for the Bardeen, Dymnikova, and Hayward nonsingular black holes. The isotropic pressure p is shown
in blue, the transverse pressure pr is red, and the radial pressure p,

= —p is dashed black. Notice all equations of state have a high

density point p = p, and a low density point p = 0 at which p = pr = —p. Also note that in all cases there is a range of lower densities
for which the transverse pressure is positive including a smaller range of densities for which the isotropic pressure is positive.

where [ and M are parameters and p, = 3/(8xz[*). A plot of
the equations of state for the Hayward spacetime is
in Fig. 3.

¢. Dymnikova solutions

A large number of papers have been published on the
variously named solution by Dymnikova originally pre-
sented in [26]. These were derived with Schwinger vacuum
polarization for the density [42], and also show up under a
renormalization scheme of a Schwarzschild black hole
[43]. The defining functions are

r —8n/)0r3
m = Eg l—e ¢ |,

(A15)

87pg »

p=poe T, (Al6)
3.p

pr=—p 1—|——ln—>, Al7

! ( 2 po ( )
_ 14

p= —p(l + ln—>, (A18)
Po

where p, and r, are parameters. Note that the density falls
off faster than any power law of r, and the dominant energy
condition is violated. In fact, the equations of state become
infinitely stiff as the density approaches zero. A plot of the
equations of state for the Dymnikova spacetime is in Fig. 3.
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