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Drake and Szekeres have extended the Newman-Janis algorithm to produce stationary
axisymmetric spacetimes from general static spherically symmetric solutions of the Einstein equations.
The algorithm mathematically generates an energy-momentum tensor for the rotating solution, but the
rotating and nonrotating system may or may not represent the same physical system, in the sense of both
being a perfect fluid, or an electromagnetic field, or a Λ-term, and so on. In Part I [P. Beltracchi and
P. Gondolo, preceding paper, Phys. Rev. D 104, 124066 (2021)], we compared the structure of the
eigenvalues and eigenvectors of the rotating and nonrotating energy-momentum tensors (their
Segre types) and looked for the existence of equations of state relating the rotating energy density
and principal pressures for Kerr-Schild systems. Here we extend our analysis to general static
spherically symmetric systems obtained according to the Drake-Szekeres generalization of the
Newman-Janis algorithm. We find that these rotating systems can have almost all Segre types
except [31] and [(31)]. Moreover, the Segre type of the spacetime can change severely in passing
from the nonrotating to the rotating configurations, for example to ½11ZZ̄" from seed systems which
were initially [(111,1)]. We also find conditions dictating how many equations of state may exist in a
Drake-Szekeres system.

DOI: 10.1103/PhysRevD.104.124067

I. INTRODUCTION

Within general relativity, one may find rotating solu-
tions starting from nonrotating spherically symmetric
solutions utilizing the Newman Janis algorithm and its
generalizations. The original algorithm allowed for a
rederivation of the Kerr solution and initiated the discov-
ery of the Kerr-Newman solution [1–3], by starting with
the Schwarzschild and Riessner-Nordstrom spherical
solutions. The algorithm was extended by Gurses and
Gursey to generate rotating systems from spherically
symmetric solutions of the Kerr-Schild type [4], such
systems have seen extensive use in recent years modeling
rotating exotic objects [5–13]. Recently, we examined
properties of the energy-momentum tensor of these
Gurses-Gursey rotating systems [14], in particular,
whether they satisfy an equation of state. The Newman-
Janis algorithm was further extended by Drake and
Szekeres to create rotating spacetimes from general

static spherically symmetric metrics [15], the purpose
of this paper is to examine the energy-momentum
tensors of these more general Drake-Szekeres rotating
systems.
The Kerr and Kerr-Newman metrics have a clear

interpretation of rotating and rotating charged black
holes. Other systems with more physical properties
than black holes can be analyzed in more detail to
examine the correspondence between the rotating and
nonrotating versions. We expect several connections
between the rotating and nonrotating systems if they
result from the same physical substance. We expect the
Segre type of the nonrotating system is a specialization of
the rotating system, for instance, a system that allows the
pressures to be different along different axes in the
rotating solution may be in a degenerate state with
isotropic pressures in the static spherically symmetric
solution. Also, the rotation should cause momentum
density terms which can be undone locally with an
appropriate comoving boost. Finally, we would expect
that any relation between energy, pressure, and stress
obeyed by the underlying physical substance can be
satisfied in both the rotating and nonrotating stress-
energy tensors.
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The Newman-Janis algorithm is not specifically
designed with the preservation of physical properties in
mind and is known to distort the physical behavior in
certain situations, such as not producing properly rotating
monopole fields for Born-Infeld electrodynamics sources
[16]. We found that for a specific class of Kerr-Schild
systems could be interpreted as consisting of a substance
obeying an equation of state in both their Gurses-Gursey
rotating and nonrotating forms [14], but for general Gurses-
Gursey systems, the equation of state obeyed by the
spherical system is not obeyed by the rotating system.
The Drake-Szekeres systems are substantially more com-
plicated, although in their paper Drake and Szekeres find
the only perfect fluid system generated by their method is
the vacuum Kerr solution [15], so even if one had a perfect
fluid system originally the Drake-Szekeres rotating version
will not be a perfect fluid. In this paper, we manage to
reproduce this perfect fluid/Kerr result of Drake-Szekeres.
We also find that in general, the Segre type of Drake-
Szekeres rotating systems can change in rather unusual
ways, such as generating regions of Segre type ½11ZZ̄"
in rotating systems, where the nonrotating versions are
[(111,1)] everywhere. This behavior makes physical
interpretation of the Drake-Szekeres systems in general
difficult.

II. THE NEWMAN-JANIS METHOD FOR
GENERAL SYSTEMS

We refer to Part I [14] for a review of the original
Newman-Janis method and its extension to Kerr-Schild
systems by Gurses and Gursey [4,11]. Here we focus on the
generalization of the method to work on arbitrary static
spherically symmetric spacetimes due to Drake and
Szekeres [15]. Similarly to what we did in Part I, we
may examine the problem in terms of correspondance
between a spherical metric in Schwarzschild coordinates
and a rotating metric in Boyer-Lindquist coordinates.
(1) We write the metric of the general static spherically

symmetric spacetime in the form

ds2 ¼ −fðrÞdt2 þ dr2

hðrÞ
þ r2dθ2 þ r2sin2θdϕ2;

ð2:1aÞ

with

hðrÞ ¼ 1 −
2mðrÞ

r
; fðrÞ ¼ hðrÞ

½jðrÞ"2
; ð2:1bÞ

and jðrÞ defined in such a way that it is positive
and real. The dt2 term is timelike when hðrÞ > 0
and spacelike when hðrÞ < 0. The signature of the
spacetime metric imposes fðrÞhðrÞ > 0.

(2) We obtain the corresponding rotating metric ds2 ¼
gμνdxμdxν as1

ds2¼−Σ
a2 cos2 θþ r2h

Σ2
j

dt2

þ2sin2 θ
ðh− jÞr2aΣ

Σ2
j

dtdϕþ Σ
Δ
dr2þΣdθ2

þΣsin2 θ
ða2þ jr2Þ2−a2Δsin2 θ

Σ2
j

dϕ2; ð2:2Þ

where

Σ ¼ r2 þ a2 cos2 θ; ð2:3aÞ

Δ ¼ r2hðrÞ þ a2 ¼ r2 − 2rmðrÞ þ a2; ð2:3bÞ

Σj ¼ r2jðrÞ þ a2 cos2 θ: ð2:3cÞ

It is useful to rearrange the terms in the metric to show a set
of four mutually orthogonal one-forms,

ds2 ¼ −
ΣΔ
Σ2
j
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ Σsin2θ
Σ2
j

½ða2 þ jr2Þdϕ − adt"2: ð2:4Þ

We will refer to physical systems with metric as in
Eqs. (2.2) or (2.4) as Drake-Szekeres rotating systems, with
corresponding nonrotating metric in Eq. (2.1).

III. STATIC SPHERICAL SYSTEMS

The energy-momentum tensor for the general static
spherically symmetric seed metric given by Eq. (2.1) is

Tt
t ¼ −ρ; Tr

r ¼ pr; Tθ
θ ¼ Tϕ

ϕ ¼ pT; ð3:1aÞ

with

ρ ¼ m0

4πr2
; ð3:1bÞ

1The notation here is rather unfortunate. The functions h and j
in Drake-Szekeres are not the same functions we use, as our
definition of j is from [17]. The easiest basis of comparison is
their Eq. (22) with our Eq. (2.2) with the identification χ ¼ cos θ
and the replacement of their jðrÞ and kðrÞ with our r2hðrÞ and
r2jðrÞ, respectively, and taking a → 0 to recover our Eq. (2.1).
Additionally, they use the mostly minus metric convention, and
they write f ¼ e2Φ while using complex coordinates, which
makes it unclear if they assume f > 0 or not.
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pr ¼ −
m0

4πr2
−
ðr − 2mÞj0

4πr2j
ð3:1cÞ

pT ¼ −
m00

8πr
þ ð3rm0 − r −mÞj0

8πr2j
þ ðr − 2mÞðj0Þ2

4πrj2

−
ðr − 2mÞj00

8πrj
: ð3:1dÞ

Recall that h and j are functions of r only. An alternate
form of Eq. (3.1d) is

p0
r ¼ −ðρþ prÞ

f0

f
þ 2ðpT − prÞ

r
: ð3:2Þ

The latter equation is the conservation of energy equation
∇μTμν ¼ 0 and is the anisotropic form of the Tolmann-
Oppenheimer-Volkov equation [18].
Often the equations of state of the physical system are

given a priori, and then added to the differential equa-
tions (3.1) to result in a set of equations which is solved for
hðrÞ and jðrÞ. Alternately, one may start with given jðrÞ
and hðrÞ, compute the energy density and pressures by
means of Eqs. (3.1), and analyze any relation between
them.
In terms of Segre types, Eq. (3.1) shows that the energy-

momentum tensor is generally of Segre type [(11)1,1], with
possible degenerate cases [(111),1], [1(11,1)], [(11)(1,1)]
and [(111,1)]. In particular, it is never of Segre types
containing [ZZ̄] or [2]. Information about Segre types and
notation may be found in [19], but as a brief overview it
denotes the eigenvalue and eigenvector structure of the
Ricci or energy-momentum tensors with mixed indices.
Eigenvalue degeneracy is denoted by grouping in paren-
theses, the eigenvalue associated with a timelike eigenvec-
tor (if present) comes after a comma, complex conjugate
pairs of eigenvalues are denoted with ZZ̄, and systems
with double or triple null eigenvectors are denoted with
2 or 3 rather than the 1s. The [(111),1] case (three equal
“space” eigenvalues and a distinct “time” eigenvalue) is the
case of a perfect fluid, and the [(11)(1,1)] and [(111,1)]
cases are Kerr-Schild spacetimes and were discussed in
Part I.
If j ¼ const, it is easy to see from Eq. (3.1c) that

−ρ ¼ pr and the energy-momentum tensor becomes of
Segre type [(11)(1,1)]. It is important to note that the
components Tμ

ν in (3.1) assume the same value whatever
constant value j has, because all the j-dependent terms in
them are proportional to either j0 or j00. A metric of the form
(2.1) with j ¼ const is related to the spherical Kerr-Schild
metric of the same form, which has j ¼ 1 and fðrÞ ¼ hðrÞ,
by the coordinate transformation dt' ¼ dt=j, and therefore
describes the same manifold. We will see later, however,
that the rotating solution provided by the Drake-Szekeres
method is different for different constant values of j.

If the pressure is isotropic (pT ¼ pr), the energy-
momentum tensor is of Segre type [(111),1], which is
the Segre type of a perfect fluid. This occurs when

ð2h−r2h00−2Þj2þ3r2jj0h0−4r2hðj0Þ2þ2r2hjj00¼2rhjj0:

ð3:3Þ

It is also possible to have Segre type [1(11,1)] when
pT ¼ −ρ ≠ pr. This occurs when

ð2h − r2h00 − 2Þj2 þ 3r2jj0h0

− 4r2hðj0Þ2 þ 2r2hjj00 ¼ −2rhjj0: ð3:4Þ

Finally, a vacuum Segre type [(111,1)], for which
−ρ ¼ pr ¼ pT , occurs for j ¼ const (from Eq. (3.1c) since
h is not identically zero) and 2h − r2h00 − 2 ¼ 0 (from
Eq. (3.3) with j0 ¼ j00 ¼ 0). Substituting h for m in the
latter equation and solving gives the Schwarzschild/de
Sitter mass function mðrÞ ¼ M þ Λr3=6. This is thus the
only case of vacuum Segre type [(111,1)].
Type [(11)1,1] has three distinct eigenvalues so the

system cannot fully be described by an equation of state
between just two of them, and the examples in the literature
have been defined in various ways. Detailed calculations of
these sorts of systems date back to Bowers and Liang [18],
although much of the essential physics was worked out by
Lemaitre [20]. Another relevant example is anisotropic
“gravastar” models which assign ρðrÞ and prðrÞ [21], or
ρðrÞ and prðρÞ [22], and use the equations of (3.1) to
compute h and j (or some other notation for the gtt and grr
metric functions) and pT .
For types [(111),1] and [1(11,1)] there are only two

distinct eigenvalues. Similarly to the type [(11)(1,1)] case
in Sec. II, if either eigenvalue is an invertible function of r
then one may use that to find an equation of state between
the two eigenvalues. Usage of an equation of state for
perfect fluid type [(111),1] is especially common, and there
are several examples of the perfect fluid in the literature.
Using the condition that pT ¼ pr ¼ p with Eq. (3.2) gives
the Tolman-Oppenheimer-Volkoff equation, which may be
solved given an equation of state (at least numerically).
There are also analytic exact solutions in this class. For
instance, the Schwarzschild star has

h ¼
!
1 −

2Mr2

R3

"
; ð3:5aÞ

f ¼ 1

4

!
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mr2

R3

r "2

: ð3:5bÞ

The equation of state for this (in addition to the p⊥ ¼
pr ¼ p isotropy condition) is
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ρðpÞ ¼ const ¼ 3M
4πR3

: ð3:6Þ

Another analytic perfect fluid solution is the relativistic
isothermal sphere [23–26], which arises as the solution
with the equation of state

p ¼ kρ: ð3:7Þ

The metric functions are

h ¼ 1þ 6kþ k2

1þ 2kþ k2
ð3:8aÞ

f ¼ ðrð1þ kÞÞ 4k
1þk: ð3:8bÞ

In contrast to the relatively common perfect fluid
[(111),1] solutions and Kerr-Schild [(11)(1,1)] solutions,
we are unaware of any spherically symmetric solutions
with Segre type [1(11,1)].
Segre type [(111,1)] is vacuum energy and can only have

the equation of state p ¼ −ρ.

IV. ROTATING ENERGY-MOMENTUM TENSORS

Drake-Szekeres rotating systems are stationary and
axisymmetric, with Killing vectors given in ðt; r; θ;ϕÞ
coordinates by

Kμ ¼ δμt ; K̃μ ¼ δμϕ: ð4:1Þ

The azimuthal Killing vector K̃μ is normalized as usual
with 0 ≤ ϕ ≤ 2π. The time-translation Killing vector Kμ is
instead allowed to have a normalization different from the
usual one, in which Kμ equals δμt in the asymptotically flat
region of large r values, because in general a Drake-
Szekeres system may not be asymptotically flat. Moreover,
Kμ is timelike when Δ > 0 and spacelike when Δ < 0, so
in our choice of metric signature

εΔKμKμ < 0; ð4:2Þ

where

εΔ ¼ signΔ; ð4:3Þ

i.e., εΔ ¼ 1 for Δ > 0 and εΔ ¼ −1 for Δ < 0.
It is useful to introduce the projectors Pμ

ν onto the two-
dimensional space spanned by the Killing vectors and Qμ

ν
onto its two-dimensional orthogonal complement,

Pμ
ν ¼ GKKKμKν þ GKK̃KμK̃ν þ GK̃KK̃μKν þGK̃ K̃K̃μK̃ν;

ð4:4aÞ

Qμ
ν ¼ δμν − Pμ

ν: ð4:4bÞ

Here GAB is the inverse of the 2 × 2 Gram matrix
GAB of the vectors K and K̃ given by GKK ¼ KαKα,
GKK̃ ¼ GK̃K ¼ KαK̃α, GK̃ K̃ ¼ K̃αK̃α. On the horizon the
linear combination Kμ þ ωK̃μ is a null vector and the Gram
matrix GAB becomes degenerate. We omit the horizon from
this discussion.
Because of the separate invariance of the metric under

t ↦ −t and ϕ ↦ −ϕ, the components Ttr, Ttθ, Tϕr, Tϕθ,
must be 0, and the Tμν splits into a tϕ block and an rθ
block, which correspond respectively to its projections
Pμ

αPβ
νTα

β and Qμ
αQβ

νTα
β, onto the space spanned by the

Killing vectors and onto the space orthogonal to it. Thus the
components Ttt, Tϕϕ, Ttϕ, Trr, Tθθ, Trθ, may be nonzero.
The components Tμν themselves in the coordinate basis

are rather lengthy. The form of the metric in Eq. (2.4)
suggests the introduction of an orthonormal tetrad eαα̂
comprised of the normalized dual vectors of the one-forms
in Eq. (2.4),

eαα̂ ¼

0

BBBBBBBBB@

a2þjr2ffiffiffiffiffiffiffi
jΔjΣ

p 0 0 a sin θffiffiffi
Σ

p

0
ffiffiffiffiffi
jΔj
Σ

q
0 0

0 0
ffiffiffi
1
Σ

q
0

affiffiffiffiffiffiffi
jΔjΣ

p 0 0 1
sin θ

ffiffiffi
Σ

p

1

CCCCCCCCCA

: ð4:5Þ

Here the spacetime index α labels the rows and the
orthonormal index α̂ labels the columns, and we assume
Δ ≠ 0. The metric in this orthornormal frame can be
computed as

gα̂ β̂ ¼ gαβeαα̂eββ̂ ¼ diagð−εΔ; εΔ; 1; 1Þ; ð4:6Þ

If Δ is negative, then the r coordinate is timelike and the
orthonormal metric is gα̂ β̂ ¼ diagð1;−1; 1; 1Þ rather than
the usual gα̂ β̂ ¼ diagð−1; 1; 1; 1Þ which applies when
Δ > 0.
The tetrad (4.5) allows for considerable simplification of

the orthonormal components T μ̂ ν̂ of the stress-energy
tensor for the Drake-Szekeres system, but the tetrad
(4.5) is not the principal frame of the stress-energy tensor
where it is diagonal. The components in 0̂, 1̂, 2̂, 3̂ follow the
pattern

T μ̂ ν̂ ¼

0

BBB@

−εΔμ̂0 0 0 εΔσ̂30
0 εΔμ̂1 σ̂12 0

0 σ̂12 μ̂2 0

εΔσ̂30 0 0 μ̂3

1

CCCA; ð4:7Þ

with
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σ̂12 ¼ μ̂12
ffiffiffiffiffiffiffi
jΔj

p
sin θ; σ̂30 ¼ μ̂30

ffiffiffiffiffiffiffi
jΔj

p
sin θ; ð4:8Þ

where the quantities μ̂iðr; θÞ and μ̂ijðr; θÞ, besides being
rational functions in cos θ, are polynomials in Δ and its
derivatives Δ0 and Δ00, or equivalently m and its derivatives
m0 and m00. They are listed in the Appendix, together with
the expression of the coordinate components Tμν and Tμ

ν in
terms of the μ̂’s.
For j ¼ 1, one has σ̂30 ¼ σ̂12 ¼ 0, and the orthonormal

frame diagonalizes the energy-momentum tensor. This is
the Kerr-Schild case discussed in Part I [14], where we
found

−ρ ¼ pk ¼ μ̂0 ¼ μ̂1 ¼ −
r2m0

4πΣ2
; ð4:9aÞ

p⊥ ¼ μ̂2 ¼ μ̂3 ¼ −
rm00

8πΣ
−
a2cos2θm0

4πΣ2
: ð4:9bÞ

In this case, the only possible Segre types are [(11)(1,1)]
and [(111,1)], which were discussed in Part I [14], where it
was concluded that an equation of state between the distinct
eigenvalues that applies to both rotating and nonrotating
systems exists only for a special family of Kerr-Schild
spacetimes that includes the Kerr and Kerr-Newman black
holes, as well as rotating spacetimes whose mass function
in the nonrotating limit contains a constrained superposi-
tion of a cloud of strings term, a Reissner-Nordstrom term,
a cosmological constant term, and a Schwarzschild term.

A. Segre types

The Segre type is found from the eigenvalues of Tμ
ν (the

energy-momentum, Ricci and Einstein tensors with mixed
indices have the same Segre type, determined by their
traceless parts). Because the metric in the orthonormal
frame is simply gμ̂ ν̂ ¼ diagð−εΔ; εΔ; 1; 1Þ, we get

T μ̂
ν̂ ¼

0

BBB@

μ̂0 0 0 −σ̂30
0 μ̂1 εΔσ̂12 0

0 σ̂12 μ̂2 0

εΔσ̂30 0 0 μ̂3

1

CCCA: ð4:10Þ

The block structure allows us to consider the eigenvalues of
the tϕ and rθ blocks separately. The characteristic equa-
tions of the two blocks are

ðλ − μ̂0Þðλ − μ̂3Þ þ εΔσ̂230 ¼ 0; ð4:11aÞ

ðλ − μ̂1Þðλ − μ̂2Þ − εΔσ̂212 ¼ 0; ð4:11bÞ

with discriminants

D̂12 ¼ ðμ̂1 − μ̂2Þ2 þ 4εΔσ̂212; ð4:12aÞ

D̂30 ¼ ðμ̂3 − μ̂0Þ2 − 4εΔσ̂230; ð4:12bÞ

respectively. Despite the appearance of εΔ in these for-
mulas, the discriminants D̂12 and D̂30 are polynomials inΔ,
because εΔσ̂230 ¼ sin2θμ̂212Δ and εΔσ̂212 ¼ sin2θμ̂230Δ. The
eigenvalues follow as the solutions

λ(rθ ¼
1

2

!
B̂12 (

ffiffiffiffiffiffiffiffi
D̂12

q "
; ð4:13aÞ

λ(tϕ ¼ 1

2

!
B̂30 (

ffiffiffiffiffiffiffiffi
D̂30

q "
: ð4:13bÞ

where

B̂12 ¼ μ̂1 þ μ̂2; B̂30 ¼ μ̂3 þ μ̂0 ð4:14Þ

are the traces of the rθ and tϕ blocks respectively.
The traces B̂12 and B̂30, and the discriminants D̂12 and

D̂30, can also be written in an invariant form by means of
the projectors Pμ

ν and Qμ
ν in Eqs. (4.4a) and (4.4b), after

recalling that for a 2 × 2 matrix the trace equals the sum of
its eigenvalues λþ þ λ− and the discriminant equals the
square of their difference ðλþ − λ−Þ2. Thus, using ðλþ þ
λ−Þ2 þ ðλþ − λ−Þ2 ¼ 2ðλ2þ þ λ2−Þ and the matrix notation
T ¼ ðTμ

νÞ, P ¼ ðPμ
νÞ, Q ¼ ðQμ

νÞ,

B̂03 ¼ trðPTÞ ¼ Pμ
νTν

μ; ð4:15aÞ

D̂03 ¼ 2trðPTPTÞ − ½trðPTÞ"2

¼ 2Pμ
νTν

αPα
βTβ

μ − ðPμ
νTν

μÞ2; ð4:15bÞ

B̂12 ¼ trðQTÞ ¼ Qμ
νTν

μ; ð4:15cÞ

D̂12 ¼ 2trðQTQTÞ − ½trðQTÞ"2

¼ 2Qμ
νTν

αQα
βTβ

μ − ðQμ
νTν

μÞ2: ð4:15dÞ

For Δ > 0, D̂12 ≥ 0 while D̂30 can be positive, negative,
or zero. Thus the rθ block has Segre type [11] or [(11)], the
latter occurring for D̂12 ¼ 0, and the tϕ block has Segre
type [1,1], [(1,1)], [2], or [ZZ̄] according to the conditions
D̂30 > 0, D̂30 ¼ 0 with σ̂30 ¼ 0, D̂30 ¼ 0 with σ̂30 ≠ 0, or
D̂30 < 0, respectively. For Δ < 0, the roles of the rθ and tϕ
blocks are interchanged, and their Segre types can be found
by exchanging D̂30 ↔ D̂12, σ̂30 ↔ σ̂12 in the previous
sentences.
One expression of the eigenvectors in ð0̂; 1̂; 2̂; 3̂Þ for the

[11], [1, 1], and ½ZZ̄" cases in the tϕ and rθ blocks is

V μ̂
1 ¼ ð−σ̂30; 0; 0; λþtϕ − μ̂0Þ ð4:16aÞ

V μ̂
2 ¼ ðλ−tϕ − μ̂3; 0; 0; εΔσ̂30Þ ð4:16bÞ
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V μ̂
3 ¼ ð0; εΔσ̂12; λþrθ − μ̂1; 0Þ ð4:16cÞ

V μ̂
4 ¼ ð0; λ−rθ − μ̂2; σ̂12; 0Þ: ð4:16dÞ

These eigenvectors become 0 vectors if the respective
block is [(11)] or [(1,1)], but for these degenerate Segre
types any vector of the form Pμ

νVν or Qμ
νVν will be an

eigenvector in the degenerate subspace. A 2 × 2 block of
Segre type [2] is a defective matrix and has only one proper
eigenvector, for instance here V1 → signðσ̂30ÞV2 when the
tϕ block is type [2].
Notice when Δ > 0, the D̂12 term inside the square root

of λrθ [Eq. (4.13a)] is the sum of two squares, as is the D̂30

term from the square root in λtϕ [Eq. (4.13b)] when Δ < 0.
This means that there can be no complex eigenvalues and
the Segre type must be [11] or [(11)] for the tϕ block when
Δ < 0 and for the rθ block when Δ > 0. Another impor-
tant property of the eigenvalues in the rθ block is that when
Δ > 0, they can only be degenerate if σ̂12 ¼ 0 and μ̂1 ¼ μ̂2.
The observation of σ̂12 ¼ 0 being necessary for degenerate
eigenvalues in this block2 allows us to verify the assertion
from [15] that the only Drake-Szekeres system with a
perfect fluid energy-momentum tensor is the Kerr solution.
We see from Eq. (A.1f) that the only way to have σ̂12 ¼ 0
for all r, θ is j ¼ 1, or a standard Newman-Janis system of
the Kerr-Schild type (covered in Part I [14]). For a perfect
fluid, all the spacelike eigenvalues must be the same, so by
the eigenvalues from Eqs. (4.9) must be equal. This in turn
implies m ¼ M, which is the Kerr solution.
In the instance where Δ > 0, the rθ block can only be

Segre [11] or possibly [(11)], but the tϕ block has more
possible Segre types. The Segre type of the tϕ block is
controlled by the discriminant D̂30. If D̂30 > 0, σ̂30 ≠ 0,
and Δ > 0, then the Segre type of the tϕ block is [1,1]. In
this case we may diagonalize the tϕ block with a local
azimuthal boost of velocity

β ¼ signðμ̂0 − μ̂3Þ
jμ̂0 − μ̂3j −

ffiffiffiffiffiffiffiffi
D̂30

p

2σ̂30
: ð4:17Þ

We can ascribe this to a rotation of the energy comoving
frame at azimuthal velocity β with respect to the local
inertial frame (4.5).
If D̂30 ¼ 0, there are two possibilities, [(1,1)] and [2], for

the Segre type of the tϕ block. If σ̂30 ¼ 0 and μ̂3 ¼ μ̂0, then
it is vacuum energy like and [(1,1)]. If instead σ̂30 ≠ 0, it is
type [2]. If D̂30 < 0, then the tϕ block is Segre type [ZZ̄].
Such an energy-momentum tensor is less physically rel-
evant, but we have determined it may occur for certain
Drake-Szekeres systems.

If instead Δ < 0, then the tϕ block must be Segre [11] or
[(11)] and the rθ block has the extended possibilities. The
discriminant D̂12 controls the Segre type of the rθ block
when Δ < 0. If D̂12 > 0, the Segre type is [11]. If D̂12 ¼ 0,
the Segre type is [(1,1)] for σ̂12 ¼ 0 and [2] otherwise. If
D̂12 < 0, the Segre type is [ZZ̄]. We summarize the Segre
type of the blocks in Table I.
In total, we find the Segre type for a Drake-Szekeres

rotating metric may be quite general. We have for instance
[(111,1)] for Kerr (m ¼ const, j ¼ 1), [(11)(1,1)] for
(j ¼ 1). We explicitly show [211], [111,1], and ½11ZZ̄"
Segre types at particular points in an example we give
below. Additional degeneracies may be possible at par-
ticular spacetime points, i.e., the Segre type cannot globally
be perfect fluid [(111),1] for nonzero a, but this could occur
on some subspace. The structure of the eigenvectors in
Eq. (4.16) does, however, forbid Segre type [31] and its
degenerate case [(31)].
To summarize our Segre type analysis, the Drake-

Szekeres generalization of the Newman-Janis algorithm
can produce rotating system with points of any Segre type
but [31] and [(31)].

V. SIMPLE EXAMPLE: “SPINNING MINKOWSKI”

One spacetime simple enough to handle explicitly and
see various possible Segre behaviors is the rotating
Newman-Janis version of the spherical space with
mðrÞ ¼ 0, jðrÞ ¼ const, which is Minkowski space with
a scaled time coordinate. This seed spacetime is the most
general spherically symmetric static spacetime that has no
matter content (Tμν ¼ 0), zero curvature, no singularities,
and importantly no event horizons (so Δ > 0 and the r

TABLE I. Table showing the possible Segre types for the
blocks. The Segre type of the energy-momentum tensor is
obtained by juxtaposing the Segre types of the tϕ and rθ blocks,
with the addition of possible degeneracies between the combined
eigenvalues. For example, [2] in the tϕ block and [(11)] in the rθ
block combine into the Segre type [2(11)] or its degenerate case
[(211)].

Δ > 0

tϕ block rθ block

D̂30 > 0 D̂30 ¼ 0 D̂30 < 0 D̂12 ¼ 0 D̂12 ≠ 0

σ̂30 ¼ 0 σ̂30 ≠ 0

[1, 1] [(1,1)] [2] ½ZZ̄" [(11)] [11]

Δ < 0

rθ block tϕ block

D̂12 > 0 D̂12 ¼ 0 D̂12 < 0 D̂30 ¼ 0 D̂30 ≠ 0

σ̂12 ¼ 0 σ̂12 ≠ 0

[1, 1] [(1,1)] [2] ½ZZ̄" [(11)] [11]

2If Δ < 0 everywhere an analogous argument can be made
about the tϕ block.
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coordinate is spacelike). A Newman-Janis rotating system
based on de Sitter space is referred to as “rotating de Sitter”
in various papers [27–29]. We could likewise call metric
(2.2) with m ¼ 0, j ¼ const a “spinning Minkowski”
space. These names should not be taken too seriously
however, as the “rotating de Sitter” does not usually have
constant curvature, and the “spinning Minkowski” is not
generally flat. However, we find all 20 independent degrees
of freedom in the Riemann tensor have at least one power of
a and one power of j − 1 (or are identically 0) showing that

if a ¼ 0 or if j ¼ 1 we do in fact have flat space. We omit a
list of all components of the Riemann tensor for the sake of
space, but for reference the Ricci scalar is

R ¼ a2ðj − 1Þ
Σ2Σ2

j
½4ðr2 þ a2χ2Þð2r2χ2 þ a2χ2 − r2Þ

þ 2ðj − 1Þr2ð5r2χ2 − 5a2χ2 − 2r2 − a2χ4Þ" ð5:1Þ

and the Kretchmann scalar is

K ¼ 4a2ðj − 1Þ2

Σ4Σ4
j

fa6r4χ4½ð11j2 þ 2jþ 19Þχ4 þ 4ð4j2 − 9j − 4Þχ2 þ 9j2 þ 10jþ 9"

þ a2r8½ð19j2 þ 2jþ 11Þχ4 þ 2jð9jþ 8Þχ2 þ 2j2" − 2a8r2χ6½5χ4 þ ð8jþ 9Þχ2 þ 4ðj − 3Þ"
þ 4a4r6χ2½ð5j2 þ 11jþ 5Þχ4 þ ð4j2 þ 9j − 4Þχ2 þ 2jð3j − 1Þ" þ 2a10χ8ðχ2 þ 1Þ − 2j2r10ð5χ2 þ 1Þg ð5:2Þ

A. Block Segre types

The Drake-Szekeres “spinning Minkowski” spacetime results in the following expressions for the invariants B̂12, B̂30,
D̂12, and D̂30,

B̂12 ¼
a2ðj − 1Þ
4πΣ2Σ2

j
½−a2ð4r2 þ a2Þχ4 − r2ð4jr2 − 3ja2 þ 3a2Þχ2 þ jr4"; ð5:3aÞ

D̂12 ¼
a4ðj− 1Þ2

16π2Σ4Σ4
j

$
a4½ðj− 1Þðj− 13Þr4 − 2ðjþ 11Þa2r2þa4"χ8þ 2a2r2½ðj− 1Þ2r4þð2j2 − 7j− 7Þa2r2− 2ðj− 5Þa4"χ6

þ r4½ðj−1Þð13j− 1Þr4þ 2ð7j2þ 7j− 2Þa2r2þ 2ð2j2þ 11jþ 2Þa4"χ4þ 2jr6½ð11jþ 1Þr2þ 2ð5j− 1Þa2"χ2þ j2r8
%
;

ð5:3bÞ

B̂30 ¼
a2ðj − 1Þ
4πΣ2Σ2

j
½a2ðjr2 − r2 − a2Þχ4 − ðj − 1Þr2ðr2 − 2a2Þχ2 þ jr4"; ð5:3cÞ

D̂30 ¼
a2ðj − 1Þ2

16π2Σ3Σ4
j
½a6ðr2 þ a2Þχ8 þ a4r2ð4j2r2 − 18jr2 þ 13r2 − 6ja2 þ 4a2Þχ6

þ a2r4ð13j2r2 − 18jr2 þ 4r2 þ 5j2a2 − 5a2Þχ4 þ jr6ðjr2 − 4ja2 þ 6a2Þχ2 − j2r8": ð5:3dÞ

The tϕ eigenvalues (4.13b) are complex when D̂30 < 0,
giving a Segre type of [11ZZ̄] or possibly ½ð11ÞZZ̄" if the rθ
eigenvalues (4.13a) happen to be degenerate, which occurs
for D̂12 ¼ 0. One can see from these expressions that when
a ¼ 0 (no rotation) or j ¼ 1 (no time scaling in seed
system), we see that the invariants go to zero as we would
expect for a vacuum spacetime. Note that the polynomial
term in square brackets in Eq. (5.3d) determines the sign of
D̂30 and hence the Segre type, as the prefactor is always
positive. At χ2 ¼ 0, this polynomial becomes −j2r8, which
is negative, so the Segre type at points on the equator
cos θ ¼ 0 is [11ZZ̄] or ½ð11ÞZZ̄". At χ2 ¼ 1, the polynomial
in square brackets becomes ða2 þ r2Þ½a3 þ að2 − 3jÞr2"2,

which is nonnegative for nonzero a, so there must be at
least one root at each r in the interval where D̂30 ¼ 0. Since
the term is a polynomial in χ, certain r may have multiple
roots. The Segre type of the tϕ block at the D̂30 ¼ 0 points
will be [2] if σ̂30 ≠ 0 and [(1,1)] if σ̂30 ¼ 0 as well. The
latter occurs when, see Eq. (A1.e),

sin θðj − 1Þðr2 − a2cos2θÞðjr2 − a2cos2θÞ ¼ 0: ð5:4Þ

The solutions of (5.4) are r2 ¼ a2cos2θ, r2 ¼ a2cos2θ=j,
j ¼ 1, and sin θ ¼ 0. In order to have the [(1,1)] in the tϕ
block we simultaneously need D̂30 ¼ 0, which happens for
j ¼ 1, which is an everywhere flat spacetime, and for
sin θ ¼ 0 with
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r ¼ a=ð3j − 2Þ1=2; sin θ ¼ 0; ð5:5Þ

which gives isolated points for j > 2=3 where the Segre
type of the tϕ block is [(1,1)]. The other conditions
r2 ¼ a2cos2θ, r2 ¼ a2cos2θ=j do not have D̂30 ¼ 0 unless
j ¼ 1 which is already covered.
The rθ block in this example has Segre type [11] when

D̂12 ≠ 0 and Segre type [(11)] when D̂12 ¼ 0. The latter
condition is a quadratic equation in jwhich has real solutions
only when its discriminant is greater or equal to zero,

144z6ð1þ z2Þχ6ðχ2 − 1Þðχ2 þ z2Þ2ðχ2 þ 2 − z2Þ2 ≥ 0;

ð5:6Þ

where z ¼ r=a. Since jχj ≤ 1 and z ≥ 0, this discriminant
cannot be greater than zero. It is zerowhen either χ2 ¼ z2 − 2

or χ2 ¼ 1. The former requires
ffiffiffi
2

p
≤ z ≤

ffiffiffi
3

p
, since

0 ≤ χ2 ≤ 1, and gives one point

r ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 −
ffiffi
j

p

s

; cos θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffi
j

p

1 −
ffiffi
j

p

s

ð5:7Þ

for every 0 ≤ j ≤ 1=9 as solution of D̂12 ¼ 0. For the other
condition χ2 ¼ 1, points on the axis where the rθ block Segre
type is [(11)] have r coordinate satisfying the equation

ð6j − 1Þz4 þ ð3jþ 1Þz2 − 1 ¼ 0; ð5:8Þ

which has two solutions for ð2
ffiffiffi
7

p
− 5Þ=3 ≤ j < 1=6, one

solution for j ≥ 1=6, and no solutions for j < ð2
ffiffiffi
7

p
− 5Þ=3.

We show the points of degeneracy in the rθ block and their
corresponding j values in Fig. 1.

By plotting the polynomials in square brackets in
Eq. (5.3d) at a given j as functions of r=a and cos θ, which
we show in Fig. 3, we can see the negative regions where the
Segre type is [11ZZ̄], the positive regionswhere it is [111,1],
and the boundary between these regions where the Segre
type is [112]. We also mark the isolated points with extra
degeneracies such as [(11)1,1] and [11(1,1)].

B. Cross block degeneracy

The conditions for degeneracy within a block are fairly
simple, being either D̂30 ¼ 0 or D̂12 ¼ 0. It is possible for
there to be a degeneracy between blocks as well if any of
the tϕ block eigenvalues λ(tϕ equals one of the rθ block
eigenvalues λ(rθ. If ϵtϕ ¼ (1 and ϵrθ ¼ (1 correspond to
λ(tϕ and λ(rθ, respectively, the relations (4.13) transform the
condition λ(tϕ ¼ λ(rθ into

B̂30 − B̂12 þ ϵtϕ

ffiffiffiffiffiffiffiffi
D̂30

q
− ϵrθ

ffiffiffiffiffiffiffiffi
D̂12

q
¼ 0: ð5:9Þ

Eliminating the square roots we obtain

½ðB̂30 − B̂12Þ2 − D̂30 − D̂12"2 − 4D̂30D̂12 ¼ 0; ð5:10Þ

regardless of which of the four possible combinations of þ
and − was chosen in (5.9).
We can use the expressions in (5.3) in (5.10) to find

where the example m ¼ 0, j ¼ const spacetime has cross
block degeneracies. In this case, (5.10) is a polynomial in j,
χ, r=a. The first property worth mentioning is that when the
tϕ block has ½ZZ̄" type, a cross block degeneracy is
impossible because the eigenvalues of the rθ block must
be real and can not be degenerate with a complex
eigenvalue from the other block. In terms of (5.10), this
can be seen in that the first term is a positive perfect square
and the product D̂30D̂12 of the D terms is nonpositive since
D̂12 ≥ 0 and D̂30 < 0 in the case of the ½ZZ̄". A second
property is that when χ2 ¼ 1, (5.10) is satisfied independ-
ently of j and r=a, which indicates a cross block degen-
eracy there. We show the contours on which Eq. (5.10) is
satisfied and therefore cross block degeneracies exist on our
Segre plots in Fig. 3.
However, (5.10) does not tell us whether it is a “time

space” or “space space” pair between the blocks which is
degenerate, i.e., whether the cross-block degeneracy
involves a timelike vector of one block and a spacelike
vector of the other, or both vectors are spacelike. In practice,
for the example m ¼ 0, j ¼ const spacetime along χ2 ¼ 1,
the timelike eigenvector isV2 in (4.16) and its corresponding
eigenvalue is λ−tϕ. We can examinewhich pair of eigenvalues
is degenerate for χ2 ¼ 1. Eq. (5.9) with χ2 ¼ 1 becomes

signðj−1Þz2½ð3jþ1Þz2þ4"þϵtϕðz2þ1Þjð3j−2Þz2−1j
−ϵrθjð6j−1Þz4þð3jþ1Þz2−1j¼0: ð5:11Þ

FIG. 1. Points from Eq. (5.7), the almost vertical arcline, and
Eq. (5.8), the lines at cos θ ¼ (1, where the Segre type of the rθ
block is [(11)] in the spacetime example in Sec. V.
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When this is satisfied for ϵtϕ ¼ −1 (timelike eigenvector)
and either sign ϵrθ the cross block degeneracy is of the
[(1,1)] type, when ϵtϕ ¼ 1 (spacelike eigenvector) it is of
the [(11)] type. In Figure 2, we show which eigenvalues
are degenerate along the χ2 ¼ 1 for various r and j.

C. Not all Segre types occur in this example

While this example with m ¼ 0 and positive con-
stant j ≠ 1 shows a wide variety of Segre types, it
does not show all the Segre types which could
arise from combinations in Table I. For instance, the

0 1 2 3 4 5
0

1

2

3

r/a

j

FIG. 2. This figure illustrates the particular cross-block degeneracies at χ2 ¼ 1 for various r=a, j. We have λ−tϕ ¼ λ−rθ in light orange
(see legend to the right) and λ−tϕ ¼ λþrθ in dark orange, both of these indicate a [(1,1)] type degeneracy. We have λþtϕ ¼ λþrθ in dark blue and
λþtϕ ¼ λ−rθ in light blue, both of which are [(11)] cross block degeneracies.

FIG. 3. Plots showing Segre types for values j ¼ 1=10 on the left and j ¼ 3 on the right. The gray regions are where D̂30 < 0 and the
Segre type of the tϕ block is ½ZZ̄". The white regions are where D̂30 > 0 and the Segre type of the tϕ block is [11]. The boundary
between the two regions (shown as black) with D̂30 ¼ 0 are roots of the polynomial in Eq. (5.3d) and generally have Segre type [2] for
the tϕ block. Note the lobe structure present at smaller radii which indicate the existence of more than one root of the polynomial in D̂30.
There are isolated points where D̂30 ¼ 0 ¼ σ̂30 with jχj ¼ 1 and Eq. (5.5) is satisfied, in which case the Segre type of the tϕ block is
[(1,1)]; such points are shown with solid blue. The Segre type of the rθ block is generally [11], isolated points where it is the degenerate
[(11)] given by formulas (5.7), (5.8) are shown with hollow red circles. The blue line shows the location where (5.10) is satisfied and
there is a cross block degeneracy. Notice how it always stays outside the ½ZZ̄" region. Due to the cross block degeneracy on the axis,
some of the red and blue points (those satisfying both 5.11 and 5.8) have a triple degeneracy as in [(111),1] or [1(11,1)]. The [(111),1]
are examples of perfect fluid behavior in the Drake-Szekeres system, but these are isolated occurrences rather than a perfect fluid full
spacetime, which only occurs for the Kerr solution.
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Segre types [2(11)] and its degenerate case [(211)] do
not occur.
In order for the Segre type of the tϕ block to be [2], we

must not be at χ2 ¼ 1 because then σ̂30 ¼ 0 and the Segre
type of the tϕ block will be [(1,1)]. The only points where
the rθ block is [(11)] for which χ2 ≠ 1 are those from (5.7).
If one uses these values for r and χ, one obtains

D̂30 →
ð

ffiffi
j

p
− 1Þ6ð3jþ 44

ffiffi
j

p
þ 3Þ

128π2a4ð
ffiffi
j

p
þ 1Þ4j

; ð5:12Þ

which can never be zero when 0 ≤ j ≤ 1=9 which is
required for the solution to (5.7) to be within the domain
of the coordinates. Therefore there is no manifestation of
Segre [2(11)], which also precludes [(211)].

VI. EQUATIONS OF STATE

The Kerr-Schild systems examined in Part I [14] are
Segre type [(11)(1,1)] and hence automatically obey two
equations of state between the four eigenvalues of the
energy-momentum tensor. A further equation of state
independent of position and time may then be cast into
the form of a single equation between ρ and p⊥,

Fðρ; p⊥Þ ¼ 0: ð6:1Þ

Then the existence of such a relation is connected with the
vanishing of the Jacobian determinant of the derivatives of
ρ and p⊥ with respect to r and θ,

∂p⊥
∂r

∂ρ
∂θ −

∂p⊥
∂θ

∂ρ
∂r ¼ 0 ð6:2Þ

for all r and θ. In Part I, this established a particular mass
function mðrÞ and a unique family of rotating Kerr-Schild
systems that have the same equation of state in the rotating
and nonrotating configurations.
In the more general case discussed here, the situation is

more complicated. Effectively, up to four equations of state

FAðλ1; λ2; λ3; λ4Þ ¼ 0; A ¼ 1;…; N; ð6:3Þ

with N ¼ 1, 2, 3, or 4, may be found when there are
relationships between the eigenvalues λb (b ¼ 1;…; 4) that
are independent of the position variables r, θ (independence
of t, ϕ is guaranteed by our symmetries), and the same
equations of state will apply regardless of rotation if the
relationships between the eigenvalues is also independent
of a. The N equations of state (6.3) can be thought
geometrically as relations defining submanifolds in the
four-dimensional space of eigenvalues λb. One equation
(N ¼ 1) defines a set of three-dimensional hypersurfaces
(or volumes), two equations (N ¼ 2) define a set of two-
dimensional surfaces, three equations (N ¼ 3) a set of
lines, and four equations (N ¼ 4) a discrete set of points.

Each subspace can be parametrized in the form λbðxiÞ
where xi ¼ ðr; θ; aÞ. The dimension of the tangent space of
the submanifolds equals the number of independent tangent
vectors at a submanifold point, and this number equals the
rank of the 4 × 3 matrix ∂λb=∂xi. In practice, it is easier to
use the energy tensor invariants Ib ¼ ðB̂30; B̂12; D̂30; D̂12Þ,
the submanifold coordinates yi ¼ ðr; χ2; a2Þ, and the rank
of the 4 × 3 matrix

Abi ¼
∂Ib
∂yi : ð6:4Þ

If all the components of Abi vanish, then the invariants Ib
are independent of the parameters yi, the matrix Abi has
rank 0, IbðyiÞ describes a zero dimensional set, and there
are 4 equations of state. We find this occurs for Drake-
Szekeres systems if and only if

jðrÞ ¼ 1; mðrÞ ¼ M; ð6:5Þ

whereM is a constant, which is the standard Kerr solution.
In this case, Ib ¼ ð0; 0; 0; 0Þ, and the equations of state are
λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 0, which are the eigenvalues of the
vacuum stress-energy tensor.
If all 2 × 2 minors of Abi vanish, but some of its

components do not, then Abi has rank 1, IbðyiÞ describes
a one dimensional set, and there are three equations of state.
We find this occurs for Drake-Szekeres systems if and
only if

jðrÞ ¼ 1; mðrÞ ¼ M −
Λc2

2r
þ Λcrþ Λr3

6
; ð6:6Þ

where Λ, c, M are constants, which is the special Kerr-
Schild system we describe in Paper 1 [14]. In this case,
IbðyiÞ describes the line

B̂30 ¼ B̂12; D̂30 ¼ D̂12; D̂12 ¼ B̂2
12

!
1þ 4πB̂12

Λ

"2

:

ð6:7Þ

The equations of state are

λþrθ¼ λþtϕ; λ−rθ¼ λ−tϕ; ðλþrθþλ−rθÞ2¼−
Λ
2π

λ(rθ; ð6:8Þ

where in the last equation λ(rθ is λþrθ or λ−rθ. This system is
Segre type [(11)(1,1)] with an extra equation of state
between the eigenvalue pairs.
If all 3 × 3 minors vanish but some 2 × 2 minors do not,

then Abi has rank 2, IbðyiÞ describes a two-dimensional set,
and there are two equations of state. We have determined
that this occurs when

jðrÞ ¼ 1 ð6:9Þ
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for arbitrary mðrÞ, in which case IbðyiÞ describes the plane

B̂30 ¼ B̂12; D̂30 ¼ D̂12; ð6:10Þ

and the equations of state are

λ(rθ ¼ λ(tϕ; ð6:11Þ

so it has Segre type [(11)(1,1)]. The case just described is
only a sufficient condition for the matrix Abi to have rank 2.
We have determined that the most general function jðrÞ for
which all 3 × 3 minors of Abi vanish must satisfy a
complicated nonlinear differential equation of which we
have not found the solution.
If none of the 3 × 3 minors of Abi vanish, then Abi has

rank 3, IbðyiÞ describes a 3-dimensional space, and there is
1 equation of state, although finding it in a generic case
seems to be extremely complicated. For example, in case
jðrÞ and mðrÞ are given functions, one can in principle
eliminate yi from the equations Ib ¼ IbðyiÞ. However, even
in the simple case m ¼ 0, j ¼ const of the “spinning
Minkowski” spacetime, the elimination procedure is very
complicated and leads to cumbersome expressions.

VII. CONCLUSIONS

The Newman-Janis algorithm can be used to create the
Kerr and Kerr-Newman metrics from the Schwarzschild
and Reissner-Nordstrom metrics. Additionally, its gener-
alizations allow for the construction of rotating systems
which reduce to spherical systems in the limit of no
rotation. These distortions of Segre type and the equations
of state would require explanations from a fundamental
theory of the matter content in the systems. One should
therefore be careful in identifying a Newman-Janis system
with a physically rotating version of the seed system.
In the Gurses-Gursey generalization for Kerr-Schild

systems has been discussed in Part I [14], where a unique
family of stationary axisymmetric Kerr-Schild systems was
identified as having the same equation of state both for the
rotating and nonrotating configurations.

The Drake-Szekeres generalization allows for usage of
non Kerr-Schild metrics. The energy-momentum tensors
are significantly more complicated in general than the
Gurses-Gursey type and they can be any Segre type but [31]
and [(31)]. They can for example feature severe distortions
of Segre type such as generation of systems containing
½11ZZ̄" from seed systems which were initially [(111,1)],
which we explicitly show in our analysis of the “spinning
Minkowski” space. We have analyzed the existence of
equations of state independent of position and rotation for
Drake-Szekeres systems. We find that a Drake-Szekeres
system with 4 equations of state is the Kerr spacetime, that
with 3 equations of state it must be the special Kerr-Schild
system we found in Part I, and that with two equations of
state it is either a general Kerr-Schild system or possibly
something with jðrÞ, mðrÞ which satisfy complicated
nonlinear differential equations. Finally, by counting argu-
ments of having four eigenvalues with each a function of
three parameters, there should be one equation of state in
general.
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APPENDIX A: COMPONENTS OF THE ENERGY-
MOMENTUM TENSOR

In this appendix we list the explicit expressions of the
quantities μ̂i and μ̂ij appearing in the components of the
energy-momentum tensor and in its eigenvalues. Notice
that they are rational functions of χ ¼ cos θ, and are
structured as a prefactor times a polynomial in χ. They
are written here as polynomial functions in m, m0, m00, j0,
and j00.

μ̂0 ¼
1

32πΣ3Σ2
j
⟦−8r2ΣΣ2

jm
0 þ ð1 − χ2Þa2r3Σ2ð4jþ rj0Þj0 þ 8ðj − 1Þa2r2½ð1 − χ2Þðr4 − a4χ4Þ − 3rχ2ðΣþ ΣjÞm"

þ 4ðj − 1Þ2a2r2Σ½ð1 − χ2ÞΣþ r2ð1 − 4χ2Þ"⟧ ðA1aÞ

μ̂1¼
1

32πΣ3Σ2
j
⟦−8r2ΣΣ2

jm
0þa2r4ð1−χ2ÞΣ2ðj0Þ2−4r3Σj0½2a2χ2ða2þr2ÞþðΣ2þða2þr2Þðr2−a2χ2ÞÞj−4mrΣj"

þ8a2r2Σðj−1Þ½ðχ2−5ÞΣþ6r2ð1−χ2Þþ2rχ2m"−4a2r2ðj−1Þ2½6r4ðχ2−1Þþr2Σð5þ4χ2ÞþΣ2ðχ2−1Þ−6r3χ2m"⟧

ðA1bÞ
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μ̂2 ¼
1

32πΣ3Σ2
j
⟦−4rΣ2Σ2

jm
00 − 8a2χ2Σ3m0 − 4r2Σ2Σjðr2 þ a2 − 2rmÞj00

þ r4Σ2½7ða2 þ r2Þ þ Σ − 16rm"ðj0Þ2 þ 4rΣj0frm½−jr2ð5a2χ2 þ r2Þ þ 15a2r2χ2 þ 11a4χ4"
þ jr2½a2r2ð2χ2 þ 1Þ þ a4χ2ðχ2 þ 3Þ − r4" − a2χ2½a2r2ð7χ2 þ 6Þ þ 4a4χ2 þ 9r4" þ 3r2ΣΣjm0g
þ 8ðj − 1Þa2χ2fΣ½m0r2ða2χ2 þ 2jr2 − r2Þ − 5a2r2ðχ2 − 1Þ − a4χ2 þ r4" þ rm½3a2r2χ2 þ 5a4χ4

þ r4 − 3jða2r2χ2 þ 2r4Þ"gþ 4ðj − 1Þ2ð3r4 þ 11a2r2 þ 5a4χ2 − 2a2r2χ2 þ a4χ4Þa2r2χ2⟧ ðA1cÞ

μ̂3¼
1

32πΣ3Σ2
j
⟦−4rΣ2Σ2

jm
00−8a2χ2ΣΣjð3Σ−2ΣjÞm0þ12r3Σ2Σjj0m0

−16r5Σ2mðj0Þ2þ8r3Σ2Σjmj00−4r2Σ½jr4−a4χ4þ5a2χ2ðΣj−3ΣÞ"mj0

þ8a2rχ2ðj−1Þ½r4−a4χ4−3a2r2χ2ðj−1Þ−6ðjr4−a4χ4Þ"m−4r2ða2þ r2ÞΣ2Σjj00þ r4Σ2½5a2ð1−χ2Þþ8Σ"ðj0Þ2

−4rΣð6a4r2χ2þ9a2r4χ2þ4a6χ4þ7a4r2χ4þa2r4jþ r6j−a4jr2χ2−4a2r4χ2j−3a4r2χ4jÞj0

−4a2Σχ2ðj−1Þða2r2þ r4þ2a4χ2þ5a2r2χ2−3a2jr2−3r4j−3a2r2χ2jÞ⟧ ðA1dÞ

μ̂30 ¼
a

16πΣ2Σ2
j
⟦−2rðr2Σj þ 2Σa2χ2Þj0 þ Σr4ðj0Þ2 − ΣΣjr2j00 − 2ðj − 1Þðr2 − a2χ2Þðjr2 − a2χ2Þ⟧ ðA1eÞ

μ̂12 ¼
3a2r cos θ
8πΣ3Σ2

j
⟦2ðj − 1Þða4χ4 − jr4Þ þ Σ2rj0⟧ ðA1fÞ

We can see that both a nonconstant j and a j ≠ 1 contribute
many terms. When j ¼ 1, the quantities μ̂0, μ̂1, μ̂2, μ̂3 go to
the forms in Eqs. (4.9), and μ̂12 ¼ μ̂30 ¼ 0.
The coordinate components of the energy-momentum

tensor have expressions independent of the sign of Δ (they
are polynomial functions of Δ and its derivatives Δ0, Δ00),

Ttt ¼
Σ
Σ2
j
ða2μ̂3sin2θ − 2asin2θμ̂30Δ − μ̂0ΔÞ ðA2aÞ

Ttϕ ¼ Σsin2θ
Σ2
j

½ða2 þ r2jþ a2sin2θÞμ̂30Δ

− aμ̂3ða2 þ r2jÞ þ aμ̂0Δ"; ðA2bÞ

Tϕϕ ¼ −
Σsin2θ
Σ2
j

½a2μ̂0Δsin2θ þ 2asin2θða2 þ r2jÞμ̂30Δ

− μ̂3ða2 þ r2jÞ2"; ðA2cÞ

Trr ¼
Σμ̂1
Δ

; ðA2dÞ

Trθ ¼ Σμ̂12 sin θ; ðA2eÞ

Tθθ ¼ Σμ̂2: ðA2fÞ

For completeness, we also list the expressions of the mixed
components Tμ

ν, which appear for example in the invariant

traces and discriminants B̂12, B̂30, D̂12, and D̂30 in
Eqs. (4.15).

Tt
t ¼ −

1

Σj
½a2μ̂3sin2θ − asin2θðΔþ a2 þ jr2Þμ̂30

− μ̂0ða2 þ r2jÞ" ðA3aÞ

Tt
ϕ ¼ sin2θ

Σj
½aða2 þ jr2Þðμ̂3 − μ̂0Þ

− ½a2Δsin2θ þ ða2 þ jr2Þ2"μ̂30" ðA3bÞ

Tϕ
t ¼

1

Σj
½ðΔþ a2sin2θÞμ̂30 − aðμ̂3 − μ̂0Þ" ðA3cÞ

Tϕ
ϕ ¼ 1

Σj
½−a2μ̂0sin2θ − asin2θðΔþ a2 þ jr2Þμ̂30

þ μ̂3ða2 þ r2jÞ"; ðA3dÞ

Tr
r ¼ μ̂1 ðA3eÞ

Tr
θ ¼ μ̂12Δ sin θ; ðA3fÞ

Tθ
r ¼ μ̂12 sin θ; ðA3gÞ

Tθ
θ ¼ μ̂2: ðA3hÞ
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APPENDIX B: TECHNICAL DETAILS OF
EQUATION OF STATE CALCULATION

To find the conditions on the existence and number of
equations of state that DS systems can have, we have used a
Mathematica code that we explain in this appendix. This
code uses some special procedures to obtain the result, as
the usage of standard manipulation functions like Expand,
Collect, and Together fail to produce a result in a
reasonable amount of time on the complicated rational
expressions appearing in the calculation. We use version
12.2.0 ofMathematica [30] on a 2020 Apple M1 MacBook
Pro with 16 GB of RAM. All lengthy output was sup-
pressed to shorten the execution time.
The input quantities B12e, B30e, D12e, D30e,

which have been precomputed and whose expressions
we do not include here, are equal

B12e ¼ pB̂12; B30e ¼ pB̂30 D12e ¼ p2D̂12;

D30e ¼ p2D̂30; ðB1Þ

where the invariants B̂12, B̂30, D̂12, D̂30 follow from
Eqs. (4.14) and (4.12) after inserting the expressions of
μ̂0, μ̂1, μ̂2, μ̂3, μ̂12, μ̂30 in (A.1), and the factor

p ¼ 32πΣ3Σ2
j ðB2Þ

is introduced to make B12e, B30e, D12e, D30e
polynomials in a2, χ2, jðrÞ, mðrÞ and the derivatives of
the latter two functions. To exploit this polynomial
dependence, the code uses the variables

D0j ¼ j; D1j ¼ j0; D2j ¼ j00; D3j ¼ j000;

ðB3Þ

D0m ¼m; D1m ¼m0; D2m ¼m00; D3m ¼m000:

ðB4Þ

The matrix of tangent vectors Abi ¼ ∂Ib=∂yi of the three-
dimensional surface in the four-dimensional space of the
invariants Ib ¼ ðB̂12; B̂30; D̂12; D̂30Þ, with yi ¼ ðr; χ2; a2Þ,
is represented in the code by a matrix

tanvectem ¼ pΣΣjAbi; ðB5Þ

To avoid nonpolynomial manipulations, the B̂12 and B̂30

components of these vectors are computed as

Factor½iprefD½pref; yi""B12e
þ iprefprefD½B12e; yi" ðB6Þ

and their D̂12 and D̂30 components as

Factor½ipref2 D½pref2; yi""D12e
þ ipref2pref2 D½D12e; yi"; ðB7Þ

where pref ¼ 1=ð32πΣ3Σ2
jÞ and ipref ¼ 32πΣ4Σ3

j .
At this stage, we have polynomial expressions tan-

vectem for the tangent vectors in the variables aa ¼ a2,
χχ ¼ χ2, D0j, D1j, D2j, D3j, D0m, D1m, D2m, D3m. The
computational problem is now to find the minors of the
4 × 3 matrix tanvectem, extract its coefficients in aa
and χχ, and find the algebraic conditions on the variables
D0j, D1j, D2j, D3j, D0m, D1m, D2m, D3m, i.e., the
differential equations for jðrÞ and mðrÞ, that make all those
coefficients vanish simultaneously.
Since we are looking for products of the matrix elements

to be zero simultaneously, we pull out factors in each
matrix element that cannot vanish for all values of yi, giving
us two matrices vsf and vlf containing the pulled-out
factors and the remaining factors, respectively. Then we
extract the coefficients of aa and χχ in vsf and vlf using

vlf ¼ Map½CoefficientList½#; faa; χχg;
f13;13g"&;vem; f2g"; ðB8Þ

and similarly for vsf, where the value 13 is large enough to
include all powers of the variables. We do this in order to
compute the coefficients of aa and χχ in the minors by
means of ListConvolve rather than direct polynomial
multiplication, which was too slow. For this purpose we
defined a function

listtimes2½p1 ;p2 "
≔ ListConvolve½p1;p2; f1;−1g;0" ðB9Þ

for the product of two polynomials represented by their
coefficients, and analogous functions for the product of
three polynomials and the determinants of matrices with
polynomial elements.
We then proceed to analyze the cases of 1 × 1, 2 × 2, and

3 × 3minors one at a time. The 1 × 1minors are simply the
elements of the matrix vlf, since the factors in vsf do not
vanish identically,

minors1 ¼ vlf: ðB10Þ

We select the terms in minors1 that do not contain the
mass functionmðrÞ or its derivatives, and thus are functions
of r, jðrÞ and the derivatives of jðrÞ only. To do this, we
avoid the use of the Mathematica function FreeQ, which
was too slow, and use instead a sequence of code lines of
the form

tmp¼Select½tmp;Coefficient½#;DXm;e"¼¼0&""
ðB11Þ
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where the exponent e ranges successively from 6 to 1, and
DXm is D3m;D2m;…;D0m. Setting the result of this to
zero, using the function Reduce on the resulting
equalities, followed by FullSimplify, produces the
result

D0j ¼¼ 1& & D1j ¼¼ 0& & D2j ¼¼ 0 ðB12Þ

which means that the only case with a third equation of
state is jðrÞ ¼ 1. We then introduce this function jðrÞ back
into all the minors minors1, and solve the resulting
equations minors1 ¼ 0 for DXm by means of the
Reduce function. This gives

D0m¼¼1&&D1m¼¼0&&D2m¼¼0&&D3m¼¼0;

ðB13Þ

that is the only solution ismðrÞ ¼ M ¼ const. Viceversa, it
is easy to verify that jðrÞ ¼ 1 and mðrÞ ¼ M ¼ const
imply that all 1 × 1 minors vanish. Therefore all 1 ×
1 minors of Abi vanish if and only if jðrÞ ¼ 1 and
mðrÞ ¼ M ¼ const.
For the 2 × 2 minors, we first pull out of each minor the

factors that do not vanish identically by formally comput-
ing the 2 × 2 minors of a matrix vsf ' elf, where elf
is a placeholder matrix, dropping nonidentically vanishing

factors in each minor, and then replacing elf with the
actual matrix vlf. The distinct elements of the resulting
array of minors is collected in the Mathematica list
minors2. We extract from it the terms that do not contain
mðrÞ and its derivatives, by the same procedure described
in Eq. (B11). Applying Reduce to the remaining terms
does not produce a result in a reasonable amount of time.
We split each element in minors2 without mðrÞ and its
derivatives into its factors, and impose that one of the
factors is zero. This gives us conditions on DXj, which we
find have the solution jðrÞ ¼ 1 only. Using the latter in the
full minors2 matrix gives the differential equation

4m02 − 2rm0m00 þ r2m002 − 2r2m0m000 ¼ 0; ðB14Þ

which is the same as Eq. (5.6) in part I. This shows that the
2 × 2 minors only vanish for the special family of Kerr-
Schild systems we examine in part 1.
For the 3 × 3 minors, we proceed in a similar way to the

2 × 2 minors by usage of the elf placeholder matrix,
dropping nonvanishing factors, and looking for terms
which do not contain DXm to find conditions on j. The
conditions on j we find are: j ¼ 1, which works for any m;
j ¼ 1þ c=r2, for which no m will work when c ≠ 0; and
complicated differential equations for j for which we have
not found the explicit form of j or m.

[1] E. T. Newman and A. I. Janis, J. Math. Phys. (N.Y.) 6, 915
(1965).

[2] E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A.
Prakash, and R. Torrence, J. Math. Phys. (N.Y.) 6, 918
(1965).

[3] R. P. Kerr, arXiv:0706.1109.
[4] M. Gurses and F. Gursey, J. Math. Phys. (N.Y.) 16, 2385

(1975).
[5] A. Smailagic and E. Spallucci, Phys. Lett. B 688, 82 (2010).
[6] C. Bambi and L. Modesto, Phys. Lett. B 721, 329 (2013).
[7] S. G. Ghosh, Eur. Phys. J. C 75, 532 (2015).
[8] I. Dymnikova and E. Galaktionov, Classical Quantum

Gravity 32, 165015 (2015).
[9] S. G. Ghosh, Eur. Phys. J. C 76, 222 (2016).

[10] F. Atamurotov, S. G. Ghosh, and B. Ahmedov, Eur. Phys. J.
C 76, 273 (2016).

[11] F. Lamy, E. Gourgoulhon, T. Paumard, and F. H. Vincent,
Classical Quantum Gravity 35, 115009 (2018).

[12] M. F. A. R. Sakti, H. L. Prihadi, A. Suroso, and F. P. Zen,
J. Phys. Conf. Ser. 1949, 012016 (2021).

[13] R. Shaikh, Phys. Rev. D 100, 024028 (2019).
[14] P. Beltracchi and P. Gondolo, preceding paper, Phys. Rev. D

104, 124066 (2021).

[15] S. P. Drake and P. Szekeres, Gen. Relativ. Gravit. 32, 445
(2000).

[16] D. J. C. Lombardo, Classical Quantum Gravity 21, 1407
(2004).

[17] J. B. Hartle, Astrophys. J. 150, 1005 (1967).
[18] R. L. Bowers and E. P. T. Liang, Astrophys. J. 188, 657

(1974).
[19] H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoense-

laers, and E. Herlt, Exact solutions of Einstein’s field
equations, Cambridge Monographs on Mathematical Phys-
ics (Cambridge University Press, Cambridge, England,
Cambridge, 2003).

[20] G. A. Lemaître and M. A. H. MacCallum, Gen. Relativ.
Gravit. 29, 641 (1997).

[21] A. DeBenedictis, D. Horvat, S. Ilijić, S. Kloster, and K. S.
Viswanathan, Classical Quantum Gravity 23, 2303
(2006).

[22] C. B. Chirenti and L. Rezzolla, Classical Quantum Gravity
24, 4191 (2007).

[23] G. S. Bisnovatyi-Kogan and Ya. B. Zel’dovich, Astrofiz. 5,
223 (1969) [Astrophys. 5, 105 (1969)].

[24] G. S. Bisnovatyi-Kogan and K. S. Thorne, Astrophys. J.
160, 875 (1970).

PHILIP BELTRACCHI and PAOLO GONDOLO PHYS. REV. D 104, 124067 (2021)

124067-14

https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.1704350
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://arXiv.org/abs/0706.1109
https://doi.org/10.1063/1.522480
https://doi.org/10.1063/1.522480
https://doi.org/10.1016/j.physletb.2010.03.075
https://doi.org/10.1016/j.physletb.2013.03.025
https://doi.org/10.1140/epjc/s10052-015-3740-y
https://doi.org/10.1088/0264-9381/32/16/165015
https://doi.org/10.1088/0264-9381/32/16/165015
https://doi.org/10.1140/epjc/s10052-016-4051-7
https://doi.org/10.1140/epjc/s10052-016-4122-9
https://doi.org/10.1140/epjc/s10052-016-4122-9
https://doi.org/10.1088/1361-6382/aabd97
https://doi.org/10.1088/1742-6596/1949/1/012016
https://doi.org/10.1103/PhysRevD.100.024028
https://doi.org/10.1103/PhysRevD.104.124066
https://doi.org/10.1103/PhysRevD.104.124066
https://doi.org/10.1023/A:1001920232180
https://doi.org/10.1023/A:1001920232180
https://doi.org/10.1088/0264-9381/21/6/009
https://doi.org/10.1088/0264-9381/21/6/009
https://doi.org/10.1086/149400
https://doi.org/10.1086/152760
https://doi.org/10.1086/152760
https://doi.org/10.1023/A:1018855621348
https://doi.org/10.1023/A:1018855621348
https://doi.org/10.1088/0264-9381/23/7/007
https://doi.org/10.1088/0264-9381/23/7/007
https://doi.org/10.1088/0264-9381/24/16/013
https://doi.org/10.1088/0264-9381/24/16/013
https://doi.org/10.1086/150478
https://doi.org/10.1086/150478


[25] S. Chandrasekhar, in General Relativity, edited by L.
O’Raifeartaigh (Clarendon Press, Oxford, 1972),
pp. 185–199.

[26] P.-H. Chavanis, Astron. Astrophys. 483, 673 (2008).
[27] N. Ibohal, Gen. Relativ. Gravit. 37, 19 (2005).

[28] I. Dymnikova, Phys. Lett. B 639, 368 (2006).
[29] E. J. Gonzalez de Urreta and M. Socolovsky, arXiv:

1504.01728.
[30] Wolfram Research, Inc., Mathematica, Version 12.2.0,

Champaign, IL, 2020.

PHYSICAL INTERPRETATION OF …. II. GENERAL SYSTEMS PHYS. REV. D 104, 124067 (2021)

124067-15

https://doi.org/10.1051/0004-6361:20078287
https://doi.org/10.1007/s10714-005-0002-6
https://doi.org/10.1016/j.physletb.2006.06.035
https://arXiv.org/abs/1504.01728
https://arXiv.org/abs/1504.01728

