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Drake and Szekeres have extended the Newman-Janis algorithm to produce stationary
axisymmetric spacetimes from general static spherically symmetric solutions of the Einstein equations.
The algorithm mathematically generates an energy-momentum tensor for the rotating solution, but the
rotating and nonrotating system may or may not represent the same physical system, in the sense of both
being a perfect fluid, or an electromagnetic field, or a A-term, and so on. In Part I [P. Beltracchi and
P. Gondolo, preceding paper, Phys. Rev. D 104, 124066 (2021)], we compared the structure of the
eigenvalues and eigenvectors of the rotating and nonrotating energy-momentum tensors (their
Segre types) and looked for the existence of equations of state relating the rotating energy density
and principal pressures for Kerr-Schild systems. Here we extend our analysis to general static
spherically symmetric systems obtained according to the Drake-Szekeres generalization of the
Newman-Janis algorithm. We find that these rotating systems can have almost all Segre types
except [31] and [(31)]. Moreover, the Segre type of the spacetime can change severely in passing
from the nonrotating to the rotating configurations, for example to [11ZZ] from seed systems which
were initially [(111,1)]. We also find conditions dictating how many equations of state may exist in a

Drake-Szekeres system.
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I. INTRODUCTION

Within general relativity, one may find rotating solu-
tions starting from nonrotating spherically symmetric
solutions utilizing the Newman Janis algorithm and its
generalizations. The original algorithm allowed for a
rederivation of the Kerr solution and initiated the discov-
ery of the Kerr-Newman solution [1-3], by starting with
the Schwarzschild and Riessner-Nordstrom spherical
solutions. The algorithm was extended by Gurses and
Gursey to generate rotating systems from spherically
symmetric solutions of the Kerr-Schild type [4], such
systems have seen extensive use in recent years modeling
rotating exotic objects [5—13]. Recently, we examined
properties of the energy-momentum tensor of these
Gurses-Gursey rotating systems [14], in particular,
whether they satisfy an equation of state. The Newman-
Janis algorithm was further extended by Drake and
Szekeres to create rotating spacetimes from general

fphipbel @aol.com
"paolo.gondolo @utah.edu

2470-0010/2021/104(12)/124067(15)

124067-1

static spherically symmetric metrics [15], the purpose
of this paper is to examine the energy-momentum
tensors of these more general Drake-Szekeres rotating
systems.

The Kerr and Kerr-Newman metrics have a clear
interpretation of rotating and rotating charged black
holes. Other systems with more physical properties
than black holes can be analyzed in more detail to
examine the correspondence between the rotating and
nonrotating versions. We expect several connections
between the rotating and nonrotating systems if they
result from the same physical substance. We expect the
Segre type of the nonrotating system is a specialization of
the rotating system, for instance, a system that allows the
pressures to be different along different axes in the
rotating solution may be in a degenerate state with
isotropic pressures in the static spherically symmetric
solution. Also, the rotation should cause momentum
density terms which can be undone locally with an
appropriate comoving boost. Finally, we would expect
that any relation between energy, pressure, and stress
obeyed by the underlying physical substance can be
satisfied in both the rotating and nonrotating stress-
energy tensors.

© 2021 American Physical Society
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The Newman-Janis algorithm is not specifically
designed with the preservation of physical properties in
mind and is known to distort the physical behavior in
certain situations, such as not producing properly rotating
monopole fields for Born-Infeld electrodynamics sources
[16]. We found that for a specific class of Kerr-Schild
systems could be interpreted as consisting of a substance
obeying an equation of state in both their Gurses-Gursey
rotating and nonrotating forms [14], but for general Gurses-
Gursey systems, the equation of state obeyed by the
spherical system is not obeyed by the rotating system.
The Drake-Szekeres systems are substantially more com-
plicated, although in their paper Drake and Szekeres find
the only perfect fluid system generated by their method is
the vacuum Kerr solution [15], so even if one had a perfect
fluid system originally the Drake-Szekeres rotating version
will not be a perfect fluid. In this paper, we manage to
reproduce this perfect fluid/Kerr result of Drake-Szekeres.
We also find that in general, the Segre type of Drake-
Szekeres rotating systems can change in rather unusual
ways, such as generating regions of Segre type [11ZZ]
in rotating systems, where the nonrotating versions are
[(111,1)] everywhere. This behavior makes physical
interpretation of the Drake-Szekeres systems in general
difficult.

II. THE NEWMAN-JANIS METHOD FOR
GENERAL SYSTEMS

We refer to Part 1 [14] for a review of the original
Newman-Janis method and its extension to Kerr-Schild
systems by Gurses and Gursey [4,11]. Here we focus on the
generalization of the method to work on arbitrary static
spherically symmetric spacetimes due to Drake and
Szekeres [15]. Similarly to what we did in Part I, we
may examine the problem in terms of correspondance
between a spherical metric in Schwarzschild coordinates
and a rotating metric in Boyer-Lindquist coordinates.

(1) We write the metric of the general static spherically

symmetric spacetime in the form

dr?

ds* = —f(r)d® + Gl + r2d6® + r2sin?0dg?,
(2.1a)
with
_ . 2m(r) NG
h(r) =1 p f(r) GO (2.1b)

and j(r) defined in such a way that it is positive
and real. The df*> term is timelike when A(r) > 0
and spacelike when h(r) < 0. The signature of the
spacetime metric imposes f(r)h(r) > 0.

(2) We obtain the corresponding rotating metric ds’> =
G dx" dx” as'

a?cos20+r’h

ds*=-% > dr
%
h—j)rtaZ z
s 0PI G e s s
z; A
2 2 2\2 2A : 29
szl )22. o i, (22)
j
where
T = r? + a*cos? 0, (2.3a)
A =7rh(r)+a*> =r*=2rm(r) +a*,  (2.3b)
2, =r%j(r) + a*cos? 0. (2.3¢)

It is useful to rearrange the terms in the metric to show a set
of four mutually orthogonal one-forms,

A 2
dS2 = - ? (dl — asin29d(/’))2 —+ Kdrz —+ 261’92
J
Ssin?0
S; [(a® + jr*)d¢ — adi]?. (2.4)

We will refer to physical systems with metric as in
Egs. (2.2) or (2.4) as Drake-Szekeres rotating systems, with
corresponding nonrotating metric in Eq. (2.1).

III. STATIC SPHERICAL SYSTEMS

The energy-momentum tensor for the general static
spherically symmetric seed metric given by Eq. (2.1) is

Ttt = =P, T, =p, TGH = T¢¢ =Pr (31&)
with
m/
=— 3.1b
P Axr? ( )

'The notation here is rather unfortunate. The functions 4 and Jj
in Drake-Szekeres are not the same functions we use, as our
definition of j is from [17]. The easiest basis of comparison is
their Eq. (22) with our Eq. (2.2) with the identification y = cos @
and the replacement of their j(r) and k(r) with our r*h(r) and
r?j(r), respectively, and taking a — O to recover our Eq. (2.1).
Additionally, they use the mostly minus metric convention, and
they write f = ¢*® while using complex coordinates, which
makes it unclear if they assume f > 0 or not.
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/

m  (r—2m)j

— — 3.1
Pr 47r? 47[r2j (3.1c)
m"  (3rm' —r—m)j  (r—=2m)(j")?
Pr=—5 + o - %)
8xr 8arsj 4rrj
(r—2m)j"
- 3.1d
8rrj ( )

Recall that # and j are functions of r only. An alternate
form of Eq. (3.1d) is

- [ 2pr=p))
pr——(p+pr)?+f-

(3.2)
The latter equation is the conservation of energy equation
V,T" =0 and is the anisotropic form of the Tolmann-
Oppenheimer-Volkov equation [18].

Often the equations of state of the physical system are
given a priori, and then added to the differential equa-
tions (3.1) to result in a set of equations which is solved for
h(r) and j(r). Alternately, one may start with given j(r)
and h(r), compute the energy density and pressures by
means of Egs. (3.1), and analyze any relation between
them.

In terms of Segre types, Eq. (3.1) shows that the energy-
momentum tensor is generally of Segre type [(11)1,1], with
possible degenerate cases [(111),1], [1(11,1)], [(11)(1,1)]
and [(111,1)]. In particular, it is never of Segre types
containing [ZZ] or [2]. Information about Segre types and
notation may be found in [19], but as a brief overview it
denotes the eigenvalue and eigenvector structure of the
Ricci or energy-momentum tensors with mixed indices.
Eigenvalue degeneracy is denoted by grouping in paren-
theses, the eigenvalue associated with a timelike eigenvec-
tor (if present) comes after a comma, complex conjugate
pairs of eigenvalues are denoted with ZZ, and systems
with double or triple null eigenvectors are denoted with
2 or 3 rather than the 1s. The [(111),1] case (three equal
“space” eigenvalues and a distinct “time” eigenvalue) is the
case of a perfect fluid, and the [(11)(1,1)] and [(111,1)]
cases are Kerr-Schild spacetimes and were discussed in
Part I.

If j =const, it is easy to see from Eq. (3.1c) that
—p = p, and the energy-momentum tensor becomes of
Segre type [(11)(1,1)]. It is important to note that the
components 7#, in (3.1) assume the same value whatever
constant value j has, because all the j-dependent terms in
them are proportional to either j' or j”. A metric of the form
(2.1) with j = const is related to the spherical Kerr-Schild
metric of the same form, which has j = 1 and f(r) = h(r),
by the coordinate transformation dt* = dt/j, and therefore
describes the same manifold. We will see later, however,
that the rotating solution provided by the Drake-Szekeres
method is different for different constant values of j.

If the pressure is isotropic (py = p,), the energy-
momentum tensor is of Segre type [(111),1], which is
the Segre type of a perfect fluid. This occurs when

(Qh—r*h"=2)j24+3r%jj W —4r*h(j')? +2r*hjj" = 2rhjj'.
(3.3)

It is also possible to have Segre type [1(11,1)] when
pr = —p # p,. This occurs when

(2h = PR =2) 2 + 32 jj I

—4rh(j')? + 2r*hjj" = =2rhjj'. (3.4)
Finally, a vacuum Segre type [(111,1)], for which
—p = p, = pr, occurs for j = const (from Eq. (3.1c) since
h is not identically zero) and 2k — r*h" —2 =0 (from
Eq. (3.3) with j/ = j” = 0). Substituting 4 for m in the
latter equation and solving gives the Schwarzschild/de
Sitter mass function m(r) = M + Ar?/6. This is thus the
only case of vacuum Segre type [(111,1)].

Type [(11)1,1] has three distinct eigenvalues so the
system cannot fully be described by an equation of state
between just two of them, and the examples in the literature
have been defined in various ways. Detailed calculations of
these sorts of systems date back to Bowers and Liang [18],
although much of the essential physics was worked out by
Lemaitre [20]. Another relevant example is anisotropic
“gravastar” models which assign p(r) and p,.(r) [21], or
p(r) and p,.(p) [22], and use the equations of (3.1) to
compute & and j (or some other notation for the g,, and g,,
metric functions) and p7.

For types [(111),1] and [1(11,1)] there are only two
distinct eigenvalues. Similarly to the type [(11)(1,1)] case
in Sec. II, if either eigenvalue is an invertible function of r
then one may use that to find an equation of state between
the two eigenvalues. Usage of an equation of state for
perfect fluid type [(111),1] is especially common, and there
are several examples of the perfect fluid in the literature.
Using the condition that py = p, = p with Eq. (3.2) gives
the Tolman-Oppenheimer-Volkoff equation, which may be
solved given an equation of state (at least numerically).
There are also analytic exact solutions in this class. For
instance, the Schwarzschild star has

(3.5a)

1 oM M2\

The equation of state for this (in addition to the p, =
p, = p isotropy condition) is
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M

m. (3.6)

p(p) = const =

Another analytic perfect fluid solution is the relativistic
isothermal sphere [23-26], which arises as the solution
with the equation of state

p = kp. (3.7)
The metric functions are
1 + 6k + k?
Tl4ok1 K2 (3-82)
f=(r(1+k) (3.8b)

In contrast to the relatively common perfect fluid
[(111),1] solutions and Kerr-Schild [(11)(1,1)] solutions,
we are unaware of any spherically symmetric solutions
with Segre type [1(11,1)].

Segre type [(111,1)] is vacuum energy and can only have
the equation of state p = —p.

IV. ROTATING ENERGY-MOMENTUM TENSORS

Drake-Szekeres rotating systems are stationary and
axisymmetric, with Killing vectors given in (z,r,8, )
coordinates by

K* =6, K" :6/(;. (4.1)
The azimuthal Killing vector K* is normalized as usual
with 0 < ¢ < 2z. The time-translation Killing vector K* is
instead allowed to have a normalization different from the
usual one, in which K* equals & in the asymptotically flat
region of large r values, because in general a Drake-
Szekeres system may not be asymptotically flat. Moreover,
K* is timelike when A > 0 and spacelike when A < 0, so

in our choice of metric signature

eaK'K, <0, (4.2)
where

en = signA, (4.3)
ie,epn=1for A>0and e, =—1 for A <0.

It is useful to introduce the projectors P¥, onto the two-
dimensional space spanned by the Killing vectors and Q¥
onto its two-dimensional orthogonal complement,

pt, = GKKkrK, + GKKK* K, + GKKK* K, + GKFKV K,
(4.4a)

Qﬂb = 5”1/ - Pﬂy' (44b)

Here GAZ is the inverse of the 2 x 2 Gram matrix
Gap of the vectors K and K given by Ggx = K°K,,
Gk = Gix = K°K,, Gg; = K?K,. On the horizon the
linear combination K* + @wK* is a null vector and the Gram
matrix G4z becomes degenerate. We omit the horizon from
this discussion.

Because of the separate invariance of the metric under
t+ —t and ¢ — —¢, the components 7., Ty, Ty, T 4ps
must be 0, and the T, splits into a 7¢) block and an r6
block, which correspond respectively to its projections
Pt PP, T%; and Q¥ 0, T 4, onto the space spanned by the
Killing vectors and onto the space orthogonal to it. Thus the
components Ty, Typ, T1p, T,rs Togs Trg, may be nonzero.

The components 7, themselves in the coordinate basis
are rather lengthy. The form of the metric in Eq. (2.4)
suggests the introduction of an orthonormal tetrad e%,
comprised of the normalized dual vectors of the one-forms
in Eq. (2.4),

a +jr asin@
Az 0 0 VE
0 2 0o o
6‘1& = (45)
0 0 /L o0
a 1
Az 0 0 singvE

Here the spacetime index o labels the rows and the
orthonormal index & labels the columns, and we assume
A # 0. The metric in this orthornormal frame can be
computed as

Gap = Gape®ac’y = diag(—ex.£a.1.1),  (4.6)

If A is negative, then the r coordinate is timelike and the
orthonormal metric is g, ; = diag(1,—1,1, 1) rather than
the usual g,; = diag(—1,1,1,1) which applies when
A > 0.

The tetrad (4.5) allows for considerable simplification of
the orthonormal components 7;; of the stress-energy
tensor for the Drake-Szekeres system, but the tetrad
(4.5) is not the principal frame of the stress-energy tensor
where it is diagonal. The components in 6, T, Q, 3 follow the
pattern

—€nflo 0 0 €ab30
0 Eafly © 0
T,, = AAM A12 ’ (4.7)
0 012 M2 0
€a630 0 0 5

with
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612 = fliz\/|A] sin 6, 630 = fizo\/|Asin6,  (4.8)
where the quantities ;(r,6) and fi;;(r, ), besides being
rational functions in cos @, are polynomials in A and its
derivatives A’ and A”, or equivalently m and its derivatives
m’ and m”. They are listed in the Appendix, together with
the expression of the coordinate components 7', and 7%, in
terms of the fi’s.

For j = 1, one has 63y = 61, = 0, and the orthonormal
frame diagonalizes the energy-momentum tensor. This is
the Kerr-Schild case discussed in Part I [14], where we

found

r2m’
—_) = =y =l = ——F . 4.9
p=p| == s (4.9a)
rm”  a*costOm’
=l = [Jx = — B — 4'9b
P1L = Hr = U3 ) 42 ( )

In this case, the only possible Segre types are [(11)(1,1)]
and [(111,1)], which were discussed in Part I [14], where it
was concluded that an equation of state between the distinct
eigenvalues that applies to both rotating and nonrotating
systems exists only for a special family of Kerr-Schild
spacetimes that includes the Kerr and Kerr-Newman black
holes, as well as rotating spacetimes whose mass function
in the nonrotating limit contains a constrained superposi-
tion of a cloud of strings term, a Reissner-Nordstrom term,
a cosmological constant term, and a Schwarzschild term.

A. Segre types

The Segre type is found from the eigenvalues of 7#, (the
energy-momentum, Ricci and Einstein tensors with mixed
indices have the same Segre type, determined by their
traceless parts). Because the metric in the orthonormal
frame is simply g, = diag(—ex.€a.1.1), we get

630
" 0 [l] EAC 0
T, = frcaon (4.10)
0 o2 Ha 0
I 0 i

The block structure allows us to consider the eigenvalues of
the 7¢p and r0 blocks separately. The characteristic equa-
tions of the two blocks are

(2= o) (A = i) + €283, = 0, (4.11a)

(A=) (A= p) —€a8h, =0, (4.11b)
with discriminants

Dy = (fy — in)* + 4e46%,. (4.12a)

Dso = (i3 = fio)* — 4€a6%, (4.12b)
respectively. Despite the appearance of &, in these for-
mulas, the discriminants D, and D+ are polynomials in A,
because €463, = sin’0p3,A and €567, = sin’0fi3,A. The
eigenvalues follow as the solutions

M= % (Blz + Du), (4.13a)
A= ! <B30 + D3O>. (4.13b)
2
where
Biy = iy + fip. Byo = i3 + fig (4.14)

are the traces of the rf and #¢ blocks respectively.

The traces B, and 330, and the discriminants D, and
D5, can also be written in an invariant form by means of
the projectors P¥, and Q*, in Eqs. (4.4a) and (4.4b), after
recalling that for a 2 x 2 matrix the trace equals the sum of
its eigenvalues A, +_ and the discriminant equals the
square of their difference (1, —A_)?. Thus, using (1, +
-+ (A —2_)>=2(22 + 2%) and the matrix notation
T= (T#u)’ P = (Pﬂu)’ Q= (Q”u)’

Byy = t(PT) = P4, T, (4.15a)
Dy = 2ur(PTPT) — [tr(PT))?

= 2P, T¥,P*TV, — (P*,T",)?, (4.15b)
By, = w(QT) = Q" T",. (4.15¢)
Dy, = 2tr(QTQT) — [tr(QT)]?

=204, T, 0%T", — (Q*,T%,)*. (4.15d)

For A > 0, D}, > 0 while 1330 can be positive, negative,
or zero. Thus the r6@ block has Segre type [11] or [(11)], the
latter occurring for D, = 0, and the ¢ block has Segre
type [1,1], [(1,1)], [2], or [ZZ] according to the conditions
D3y > 0, Dyy = 0 with 639 = 0, D3y = 0 with 639 # 0, or
D5y < 0, respectively. For A < 0, the roles of the 70 and t¢p
blocks are interchanged, and their Segre types can be found
by exchanging Dy <> Dy, 63 <> 61, in the previous
sentences.

One expression of the eigenvectors in (@, i, Q, 3) for the
[11], [1, 1], and [ZZ] cases in the t¢» and r6 blocks is

Vi = (=63.0, 0, 4, = fio) (4.16a)

Vg = (/1;]5 - ﬁ?)’ 07 07 £A830) (416b)

124067-5
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VA = (0, e812. 25 — 1. 0) (4.16¢)

Vi = (0,47 — 2, 61, 0). (4.16d)
These eigenvectors become 0 vectors if the respective
block is [(11)] or [(1,1)], but for these degenerate Segre
types any vector of the form P¥ V¥ or Q* V¥ will be an
eigenvector in the degenerate subspace. A 2 x 2 block of
Segre type [2] is a defective matrix and has only one proper
eigenvector, for instance here V| — sign(630)V, when the
t¢ block is type [2].

Notice when A > 0, the D, term inside the square root
of 4,9 [Eq. (4.13a)] is the sum of two squares, as is the Ds,
term from the square root in 4,4 [Eq. (4.13b)] when A < 0.
This means that there can be no complex eigenvalues and
the Segre type must be [11] or [(11)] for the #¢) block when
A < 0 and for the r@ block when A > 0. Another impor-
tant property of the eigenvalues in the 70 block is that when
A > 0, they can only be degenerate if 61, = 0 and ji; = fi,.
The observation of 61, = 0 being necessary for degenerate
eigenvalues in this block” allows us to verify the assertion
from [15] that the only Drake-Szekeres system with a
perfect fluid energy-momentum tensor is the Kerr solution.
We see from Eq. (A.If) that the only way to have 6, =0
forall r, @ 1is j = 1, or a standard Newman-Janis system of
the Kerr-Schild type (covered in Part I [14]). For a perfect
fluid, all the spacelike eigenvalues must be the same, so by
the eigenvalues from Eqgs. (4.9) must be equal. This in turn
implies m = M, which is the Kerr solution.

In the instance where A > 0, the r@ block can only be
Segre [11] or possibly [(11)], but the 7¢ block has more
possible Segre types. The Segre type of the ¢ block is
controlled by the discriminant Dso. If D3y > 0, 639 # 0,
and A > 0, then the Segre type of the ¢ block is [1,1]. In
this case we may diagonalize the t¢ block with a local
azimuthal boost of velocity

|/,’\l0 _ﬂ3| —V [)30

4.17

B = sign(fio — f13)

We can ascribe this to a rotation of the energy comoving
frame at azimuthal velocity f with respect to the local
inertial frame (4.5).

If f)30 = 0, there are two possibilities, [(1,1)] and [2], for
the Segre type of the t¢ block. If 637 = 0 and fi3 = ji, then
it is vacuum energy like and [(1,1)]. If instead 637 # O, it is
type [2]. If D5, < 0, then the #¢ block is Segre type [ZZ].
Such an energy-momentum tensor is less physically rel-
evant, but we have determined it may occur for certain
Drake-Szekeres systems.

If A <0 everywhere an analogous argument can be made
about the #¢ block.

TABLE 1. Table showing the possible Segre types for the
blocks. The Segre type of the energy-momentum tensor is
obtained by juxtaposing the Segre types of the 7¢ and ré blocks,
with the addition of possible degeneracies between the combined
eigenvalues. For example, [2] in the ¢ block and [(11)] in the r0
block combine into the Segre type [2(11)] or its degenerate case

[(211)].

A>0
t¢ block 0 block
Dyy >0 Dyy=0 Dyy<0 D=0 Dj,#0
63 =0 63#0
(1, 11 [(1,D] (2] (2Z] [(AD] [11]
A <O
r6 block t¢p block
Dy, >0 D=0 Dy <0 Dyy=0 Dy#0
61,=0 61n#0
(1, 1] [(1,D)] (2] (ZZ] [AD] (11]

If instead A < 0, then the 7¢ block must be Segre [11] or
[(11)] and the 8 block has the extended possibilities. The
discriminant D, controls the Segre type of the r@ block
when A < 0.If Dy, > 0, the Segre type is [11]. If D, = 0,
the Segre type is [(1,1)] for 61, = 0 and [2] otherwise. If
Dy, < 0, the Segre type is [ZZ]. We summarize the Segre
type of the blocks in Table 1.

In total, we find the Segre type for a Drake-Szekeres
rotating metric may be quite general. We have for instance
[(111,1)] for Kerr (m =const, j=1), [(11)(1,1)] for
(j = 1). We explicitly show [211], [111,1], and [11ZZ]
Segre types at particular points in an example we give
below. Additional degeneracies may be possible at par-
ticular spacetime points, i.e., the Segre type cannot globally
be perfect fluid [(111),1] for nonzero a, but this could occur
on some subspace. The structure of the eigenvectors in
Eq. (4.16) does, however, forbid Segre type [31] and its
degenerate case [(31)].

To summarize our Segre type analysis, the Drake-
Szekeres generalization of the Newman-Janis algorithm
can produce rotating system with points of any Segre type
but [31] and [(31)].

V. SIMPLE EXAMPLE: “SPINNING MINKOWSKI”

One spacetime simple enough to handle explicitly and
see various possible Segre behaviors is the rotating
Newman-Janis version of the spherical space with
m(r) =0, j(r) = const, which is Minkowski space with
a scaled time coordinate. This seed spacetime is the most
general spherically symmetric static spacetime that has no
matter content (7, = 0), zero curvature, no singularities,
and importantly no event horizons (so A > 0 and the r
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coordinate is spacelike). A Newman-Janis rotating system
based on de Sitter space is referred to as “rotating de Sitter”
in various papers [27-29]. We could likewise call metric
(2.2) with m =0, j=const a “spinning Minkowski”
space. These names should not be taken too seriously
however, as the “rotating de Sitter” does not usually have
constant curvature, and the “spinning Minkowski” is not

ifa = 0orif j = 1 we do in fact have flat space. We omit a
list of all components of the Riemann tensor for the sake of
space, but for reference the Ricci scalar is

R:%;%l)wr + @222 + d - )

generally flat. However, we find all 20 independent degrees +2(j = D5 =57 =217 — a’y*)] (5.1)
of freedom in the Riemann tensor have at least one power of
a and one power of j — 1 (or are identically 0) showing that ~ and the Kretchmann scalar is
|
o= 20U = 6 A (1172 427 + 190 + 4472 — 9] — 4)2 + 972 + 10j 19
- T {a®r (1172 + 2]+ 19)7* + 4(42 = 9j = 4)* + 9/ + 10 + 9]
+a®r®[(19/2 4 2j + 11)x* + 2j(9) + 8)x* + 2j2] = 2a*r*/°[5¢* + (8j + 9)x* + 4(j — 3)]
+4a* 2 [(577 + 117+ 5)p* + (4% + 9 — 4)? +2J(3J—1)]+2a10 8 +1)=272r"°522 + 1)} (5.2)

A. Block Segre types

The Drake-Szekeres “spinning Minkowski” spacetime results in the following expressions for the invariants B, By,

Dy, and Dy,

H _a(j-1)
g, =21
27 4az7y?
a4(j—1)2 . . .
27 T6n?2's! a*[(j—1)(j—13)r* =2(j +11)a?

+r(-1)(13j = 1)r* +2(7/* +7j - 2)a*r?

[—a?(4r2 + a®)y* — r*(4jr? = 3ja® + 3a®)y? + jr],

r?+ a4+ 2a%r?(j - 1)*r*

(5.3a)

+272=7j=T)a*r* =2(j = 5)a*]y°

+ 2272+ 117+ 2)a* |y +2jr[(11 + 1)r2 +2(5) — 1)a?]> + j*r8 |,

(5.3b)
= U D (- 2 = - (= DA = 2020+ ) (539
30 = 4”2222 a“(jreo—r-—a’)y j re(r a )y + jre, 3¢
Dy = 7(12(]. — 1 [a®(r* 4+ a®)y® + a*r*(4j%r* — 18jr + 131 — 6ja® + 4a*)y°
16772354
24 (13212 — 18jr% + 412 4+ 552a% — 5a*)y* + jro(jr? — 4ja® + 6a? ) — j>rd). (5.3d)

The t¢ eigenvalues (4.13b) are complex when D, < 0,
giving a Segre type of [11ZZ] or possibly [(11)ZZ] if the r
eigenvalues (4.13a) happen to be degenerate, which occurs
for D, = 0. One can see from these expressions that when
a =0 (no rotation) or j =1 (no time scaling in seed
system), we see that the invariants go to zero as we would
expect for a vacuum spacetime. Note that the polynomial
term in square brackets in Eq. (5.3d) determines the sign of
D5, and hence the Segre type, as the prefactor is always
positive. At y?> = 0, this polynomial becomes —jr®, which
is negative, so the Segre type at points on the equator
cos@ = 0is [11ZZ] or [(11)ZZ]. At y* = 1, the polynomial
in square brackets becomes (a®> + r?)[a® + a(2 — 3j)r?]?,

[

which is nonnegative for nonzero a, so there must be at
least one root at each r in the interval where D5, = 0. Since
the term is a polynomial in y, certain » may have multiple
roots. The Segre type of the ¢ block at the D5, = 0 points
will be [2] if 639 # 0 and [(1,1)] if 63y = 0 as well. The
latter occurs when, see Eq. (Al.e),

sin@(j — 1)(r* — a*cos?0)(jr* — a*cos’0) = 0. (5.4)
The solutions of (5.4) are > = a’cos’d, r> = a’cos*0/],
j =1, and sind = 0. In order to have the [(1,1)] in the 7¢
block we simultaneously need D4, = 0, which happens for
j =1, which is an everywhere flat spacetime, and for
sin@ = 0 with
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r=a/(3j-2)"2, sin@ = 0, (5.5)
which gives isolated points for j > 2/3 where the Segre
type of the 7¢ block is [(1,1)]. The other conditions
2 = a2cos?0, r* = a*cos?d/j do not have Dy, = 0 unless
j =1 which is already covered.

The r@ block in this example has Segre type [11] when
ﬁ]z # 0 and Segre type [(11)] when Dlz = 0. The latter
condition is a quadratic equation in j which has real solutions

only when its discriminant is greater or equal to zero,

14426(1 + Zz)){ﬁ(){z _ 1)()(2 + 12)2()(2 +2 - 22)2 >0,
(5.6)

where z = r/a. Since |y| < 1 and z > 0, this discriminant
cannot be greater than zero. It is zero when either y?> = 7> — 2
or y2=1. The former requires /2 <z <+/3, since
0 < y? <1, and gives one point

2Vj

2
r=a = cosf = -
\V1-Vi 1=/

for every 0 < j < 1/9 as solution of Dy, = 0. For the other
condition )(2 = 1, points on the axis where the 6 block Segre
type is [(11)] have r coordinate satisfying the equation

(5.7)

(6j— Dzt +(3j+1)22—=1=0, (5.8)

which has two solutions for (2v/7 —5)/3 < j < 1/6, one

solution for j > 1/6, and no solutions for j < (2v/7 —5)/3.
We show the points of degeneracy in the 7@ block and their
corresponding j values in Fig. 1.

1.OF—“"‘/'"0"""“"“';
[ j>oo i—>1/6
J ) [ J /_
/
t 247-5
05+ = j E
L 3 ! 0.25¢ ]
0.20F
S i 0.15F 1
g 00 Jj=0 |
S L 0.10f |
0.05}F -
, \ 1
-0.5+ -
i=1/6 \; 1/9
J= J=
1 —— e e —
0 1 2 3 4 5
rla
FIG. 1. Points from Eq. (5.7), the almost vertical arcline, and

Eq. (5.8), the lines at cos @ = £1, where the Segre type of the r0
block is [(11)] in the spacetime example in Sec. V.

By plotting the polynomials in square brackets in
Eq. (5.3d) at a given j as functions of r/a and cos 8, which
we show in Fig. 3, we can see the negative regions where the
Segre type is [11ZZ], the positive regions where itis [111,1],
and the boundary between these regions where the Segre
type is [112]. We also mark the isolated points with extra
degeneracies such as [(11)1,1] and [11(1,1)].

B. Cross block degeneracy

The conditions for degeneracy within a block are fairly
simple, being either D3y = 0 or Dy, = 0. It is possible for
there to be a degeneracy between blocks as well if any of
the t¢ block eigenvalues /1?;5 equals one of the r@ block
eigenvalues /1;—;,. If €,y = £1 and €,9 = +1 correspond to
4 and A7y, respectively, the relations (4.13) transform the
condition 4,5 = 4, into

B30_312+€t¢\/b30_€r9 DIZ =0. (59)
Eliminating the square roots we obtain
[(330 —B1y)? = Dy - DIZ]Z —4Dyby; =0, (5.10)

regardless of which of the four possible combinations of +
and — was chosen in (5.9).

We can use the expressions in (5.3) in (5.10) to find
where the example m = 0, j = const spacetime has cross
block degeneracies. In this case, (5.10) is a polynomial in j,
¥, r/a. The first property worth mentioning is that when the
t¢p block has [ZZ] type, a cross block degeneracy is
impossible because the eigenvalues of the ré block must
be real and can not be degenerate with a complex
eigenvalue from the other block. In terms of (5.10), this
can be seen in that the first term is a positive perfect square
and the product DsyDy, of the D terms is nonpositive since
Dy, >0 and Dy, < 0 in the case of the [ZZ]. A second
property is that when y? = 1, (5.10) is satisfied independ-
ently of j and r/a, which indicates a cross block degen-
eracy there. We show the contours on which Eq. (5.10) is
satisfied and therefore cross block degeneracies exist on our
Segre plots in Fig. 3.

However, (5.10) does not tell us whether it is a “time
space” or “‘space space” pair between the blocks which is
degenerate, i.e., whether the cross-block degeneracy
involves a timelike vector of one block and a spacelike
vector of the other, or both vectors are spacelike. In practice,
for the example m = 0, j = const spacetime along > = 1,
the timelike eigenvector is V, in (4.16) and its corresponding
eigenvalue is 4;,. We can examine which pair of eigenvalues

is degenerate for y> = 1. Eq. (5.9) with y> = 1 becomes

sign(j—1)22[(3j+ 1)22 +4] + e, (22 +1)|(3j-2)2% — 1]
—€,|(6j—1)z* +(3j+1)z*—1|=0. (5.11)
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When this is satisfied for ¢, = —1 (timelike eigenvector) C. Not all Segre types occur in this example

and either sign €, the cross block degeneracy is of the While this example with m =0 and positive con-
[(1,1)] type, when €,, = 1 (spacelike eigenvector) it is of  gtant j#1 shows a wide variety of Segre types, it
the [(11)] type. In Figure 2, we show which eigenvalues  does not show all the Segre types which could
are degenerate along the y*> = 1 for various r and . arise from combinations in Table I. For instance, the

A=Ay

No=Aig

Ao=Ag

Aro=Atgp

rla

FIG. 2. This figure illustrates the particular cross-block degeneracies at y> = 1 for various r/a, j. We have Ay = Ay in light orange
(see legend to the right) and 47, = Ay in dark orange, both of these indicate a [(1,1)] type degeneracy. We have % = 1}, in dark blue and
Atfp = Ay in light blue, both of which are [(11)] cross block degeneracies.

| m————— T — T 10FR= S
- R TRE - [1(11,1)]
(111,1]

05}

> > ¥
g g 00)
—05}
~10} DY o~ _10} . . .
00 05 10 15 20 25 30 0.0 05 1.0 15 20
rla rla

FIG. 3. Plots showing Segre types for values j = 1/10 on the left and j = 3 on the right. The gray regions are where D5, < 0 and the
Segre type of the ¢ block is [ZZ]. The white regions are where Dj, > 0 and the Segre type of the #¢ block is [11]. The boundary
between the two regions (shown as black) with Dy, = 0 are roots of the polynomial in Eq. (5.3d) and generally have Segre type [2] for
the 7 block. Note the lobe structure present at smaller radii which indicate the existence of more than one root of the polynomial in D+.
There are isolated points where D3, = 0 = &5, with [y| = 1 and Eq. (5.5) is satisfied, in which case the Segre type of the 7¢ block is
[(1,1)]; such points are shown with solid blue. The Segre type of the r8 block is generally [11], isolated points where it is the degenerate
[(11D)] given by formulas (5.7), (5.8) are shown with hollow red circles. The blue line shows the location where (5.10) is satisfied and
there is a cross block degeneracy. Notice how it always stays outside the [ZZ] region. Due to the cross block degeneracy on the axis,
some of the red and blue points (those satisfying both 5.11 and 5.8) have a triple degeneracy as in [(111),1] or [1(11,1)]. The [(111),1]
are examples of perfect fluid behavior in the Drake-Szekeres system, but these are isolated occurrences rather than a perfect fluid full
spacetime, which only occurs for the Kerr solution.
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Segre types [2(11)] and its degenerate case [(211)] do
not occur.

In order for the Segre type of the #¢ block to be [2], we
must not be at y> = 1 because then 63, = 0 and the Segre
type of the #¢) block will be [(1,1)]. The only points where
the ré block is [(11)] for which y? # 1 are those from (5.7).
If one uses these values for r and y, one obtains

A (Vi=1)°(3j +44/j +3)
DSO_) 2 4 < 4 )
1287°a*(\/j + 1)%)

which can never be zero when 0 < ;< 1/9 which is
required for the solution to (5.7) to be within the domain
of the coordinates. Therefore there is no manifestation of
Segre [2(11)], which also precludes [(211)].

(5.12)

VI. EQUATIONS OF STATE

The Kerr-Schild systems examined in Part I [14] are
Segre type [(11)(1,1)] and hence automatically obey two
equations of state between the four eigenvalues of the
energy-momentum tensor. A further equation of state
independent of position and time may then be cast into
the form of a single equation between p and p |,

F(p,py) =0. (6.1)

Then the existence of such a relation is connected with the
vanishing of the Jacobian determinant of the derivatives of
p and p, with respect to r and 6,

Op 0p Op dp 0

or 90 90 or (6.2)

for all r and 6. In Part I, this established a particular mass
function m(r) and a unique family of rotating Kerr-Schild
systems that have the same equation of state in the rotating
and nonrotating configurations.
In the more general case discussed here, the situation is
more complicated. Effectively, up to four equations of state
FA(/I],]Q,/’{::,,/’{4):O, Azl,...,N, (63)
with N =1, 2, 3, or 4, may be found when there are
relationships between the eigenvalues 4, (b = 1, ..., 4) that
are independent of the position variables r, 8 (independence
of ¢, ¢ is guaranteed by our symmetries), and the same
equations of state will apply regardless of rotation if the
relationships between the eigenvalues is also independent
of a. The N equations of state (6.3) can be thought
geometrically as relations defining submanifolds in the
four-dimensional space of eigenvalues 4,. One equation
(N = 1) defines a set of three-dimensional hypersurfaces
(or volumes), two equations (N = 2) define a set of two-
dimensional surfaces, three equations (N = 3) a set of
lines, and four equations (N = 4) a discrete set of points.

Each subspace can be parametrized in the form A,(x;)
where x; = (r, 6, a). The dimension of the tangent space of
the submanifolds equals the number of independent tangent
vectors at a submanifold point, and this number equals the
rank of the 4 x 3 matrix 04,/0x;. In practice, it is easier to
use the energy tensor invariants I, = (Bsg, By, D3, D15),
the submanifold coordinates y; = (r, ¥, a*), and the rank
of the 4 x 3 matrix

ol,

Abi = ay .
l

(6.4)

If all the components of A,; vanish, then the invariants 7,
are independent of the parameters y;, the matrix A,; has
rank 0, I,(y;) describes a zero dimensional set, and there
are 4 equations of state. We find this occurs for Drake-
Szekeres systems if and only if

(6.5)

where M is a constant, which is the standard Kerr solution.
In this case, I, = (0,0,0,0), and the equations of state are
M =4, =13 = 44 =0, which are the eigenvalues of the
vacuum stress-energy tensor.

If all 2 x2 minors of A, vanish, but some of its
components do not, then A,; has rank 1, I,(y;) describes
a one dimensional set, and there are three equations of state.
We find this occurs for Drake-Szekeres systems if and
only if

2 A 3
m(r) :M———l—Acr—i—?r, (6.6)
where A, ¢, M are constants, which is the special Kerr-
Schild system we describe in Paper 1 [14]. In this case,
I, (y;) describes the line

A A A N . A 4rB,\?
By =Bp, Dy=Dn D=8 <1 + A12> .
(6.7)
The equations of state are
+ g+ - - + 4 9-)2 AL
Arg=higs Ao =g (Ao +479)" = _gflre’ (6.8)

where in the last equation /1?:6 is ', or A7,. This system is
Segre type [(11)(1,1)] with an extra equation of state
between the eigenvalue pairs.

If all 3 x 3 minors vanish but some 2 x 2 minors do not,
then A,; has rank 2, I,,(y;) describes a two-dimensional set,
and there are two equations of state. We have determined
that this occurs when

jr)=1 (6.9)
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for arbitrary m(r), in which case I, (y;) describes the plane

By = By, Dyy = Dy, (6.10)
and the equations of state are
Xy =2 (6.11)

so it has Segre type [(11)(1,1)]. The case just described is
only a sufficient condition for the matrix A,; to have rank 2.
We have determined that the most general function j(r) for
which all 3 x3 minors of A, vanish must satisfy a
complicated nonlinear differential equation of which we
have not found the solution.

If none of the 3 x 3 minors of A,; vanish, then A,; has
rank 3, I,(y;) describes a 3-dimensional space, and there is
1 equation of state, although finding it in a generic case
seems to be extremely complicated. For example, in case
j(r) and m(r) are given functions, one can in principle
eliminate y; from the equations 7, = I, (y;). However, even
in the simple case m =0, j = const of the “spinning
Minkowski” spacetime, the elimination procedure is very
complicated and leads to cumbersome expressions.

VII. CONCLUSIONS

The Newman-Janis algorithm can be used to create the
Kerr and Kerr-Newman metrics from the Schwarzschild
and Reissner-Nordstrom metrics. Additionally, its gener-
alizations allow for the construction of rotating systems
which reduce to spherical systems in the limit of no
rotation. These distortions of Segre type and the equations
of state would require explanations from a fundamental
theory of the matter content in the systems. One should
therefore be careful in identifying a Newman-Janis system
with a physically rotating version of the seed system.

In the Gurses-Gursey generalization for Kerr-Schild
systems has been discussed in Part I [14], where a unique
family of stationary axisymmetric Kerr-Schild systems was
identified as having the same equation of state both for the
rotating and nonrotating configurations.

The Drake-Szekeres generalization allows for usage of
non Kerr-Schild metrics. The energy-momentum tensors
are significantly more complicated in general than the
Gurses-Gursey type and they can be any Segre type but [31]
and [(31)]. They can for example feature severe distortions
of Segre type such as generation of systems containing
[11ZZ] from seed systems which were initially [(111,1)],
which we explicitly show in our analysis of the “spinning
Minkowski” space. We have analyzed the existence of
equations of state independent of position and rotation for
Drake-Szekeres systems. We find that a Drake-Szekeres
system with 4 equations of state is the Kerr spacetime, that
with 3 equations of state it must be the special Kerr-Schild
system we found in Part I, and that with two equations of
state it is either a general Kerr-Schild system or possibly
something with j(r), m(r) which satisfy complicated
nonlinear differential equations. Finally, by counting argu-
ments of having four eigenvalues with each a function of
three parameters, there should be one equation of state in
general.
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APPENDIX A: COMPONENTS OF THE ENERGY-
MOMENTUM TENSOR

In this appendix we list the explicit expressions of the
quantities fi; and f;; appearing in the components of the
energy-momentum tensor and in its eigenvalues. Notice
that they are rational functions of y = cos@, and are
structured as a prefactor times a polynomial in y. They
are written here as polynomial functions in m, m', m”, j',
and j".

7 1 . . . .
o = 35— (=8P EEpm’ + (1 = )@ PE2(4j 4 1f)j' + 8(j = a? (1 = ) (r* = a'y*) = 31 (T + X )m]
J
+4(j = 1)7aPZ[(1 = )=+ (1= 42)]] (Ala)
1
1 =55 =87 ZE5m! + @ (1= )2 () = 4P E] 2’ (@® +17) + (22 + (a2 +17) (P = a’x?) ) = 4mrE
327X7%;

+8a*r*Z(j—1)[(? =5)Z+6r2(1 =) +2r’m] —4a>r*(j—1)2[6r* (y* = 1) + r*Z(5 +4x%) + 22 (> = 1) — 61 *mi]]

(Alb)
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N 1 .
fiy = T2 [[—4r222?m” —8a%y*3m’ — 4r2222j(r2 +a* —2rm)j"
j
+ #22[7(a% + 1) + = 16rm](j')? + 4rZj' {rm|—jr?(5ay* + r*) + 15a*r*® + 11a*y¥]
+ jrta®r* (2 + 1) + a*y* (4 3) — r*] = & [a?r* (Ty* + 6) + 4a*y* + 9r*] + 3r°ZE;m'}
+8(j = Da®* {Z[m'r* (a®y? + 2jr* — r?) = 5a*r* (y* — 1) — a*y* + r¥] + rm[3a®r?y* + S5a*y*
+ 4 =3j(a@®r? > + 2]} + 4 = 1)2Brt + 11a%r? + 5a*y? = 2a>r*y? + a*y*)a®r?y?] (Alc)
1
i3 =i [—4rZ2%3m" —8a?y*LX;(3Z 2% )m/ + 127225 ;j'm!
j

—16rZm(j')? +8r’L2Lmj" —4r*Z]jrt —a'y* + 5a**(Z; - 3%)|mj’
+8a’ry?(j—1)[r* —a*y* =3a’ Py (j— 1) —6(jr* —a*y*)m—4r* (a® + r*)Z2Z, " + r*2%[5a% (1 — ) +8Z](j')?
—4rZ(6a* Py +9a?rty? - 4aly* - Tat riyt + aPrtj 410 — at jri? —4a’riytj = 3at Pyt ) j

—4a’Zp (j—1)(a®r? +r* +2a*y? +5a* 2y —3a% jr* = 3r*j = 3a’r’ )] (A1d)
N a . . . . .
s = Je—asa [2r(PE; + 22a%)j + 2r([)? = 2,7 = 2(j = 1)(? = &®¢?) (jr? = a’)] (Ale)
j
R 3a%rcosf ) ]
Hip = 82 [2(j - 1)(04)(4 —J”4) +2%rj (Alf)
j

We can see that both a nonconstant j and a j # 1 contribute  traces and discriminants Bj,, By, Dy, and Dj in
many terms. When j = 1, the quantities fiy, i, i, fi3 20t0  Egs. (4.15).
the forms in Eqgs. (4.9), and fi;, = jizo = 0.
The coordinate components of the energy-momentum P - s os
tensor have expressions independent of the sign of A (they I'y=- 3. [ fi3sin°0 — asin“0(A + a” + jr)fiso
are polynomial functions of A and its derivatives A’, A”), /

— fo(a® + )] (A3a)
2
Th=% (@*fi3sin®0 — 2asin®Ofizo A — figA) (A2a) sin’¢
j Ty = = la(a® + jr*) (i3 — o)
j
Z . 29 . . A
v = S; [(@® + ) + a*sin?0) 30 — [@Asin®0 + (a® + jr)?]ji] (A3b)
j
A2 2 5 1
— afiz(a® + r*j) + afipA], (A2b) T?, = 5 [(A + a?sin®0)fi30 — a(fis — fio)] (A3c)
J
Tsin?6
Ty = —— 2 [afipAsin®0 + 2asin’0(a® + 7))o 1
2 T4y = 5 [~ posin’d — asin’O(A + @ + jr) i
f(a2 22 /
~ pala + ). (A2) o
+ fis(a® + r7j)). (A3d)
Zjly
T =g e (A3¢)
Trg — Zﬁlz Sin 97 (Aze) Trg = ﬁle Sin 9, (A3f)
THG == Zﬂz (Azf) Ter == 1[’212 Sin 9, (A3g)
For completeness, we also list the expressions of the mixed ) R
T = ji,. (A3h)

components 7*,, which appear for example in the invariant
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APPENDIX B: TECHNICAL DETAILS OF
EQUATION OF STATE CALCULATION

To find the conditions on the existence and number of
equations of state that DS systems can have, we have used a
Mathematica code that we explain in this appendix. This
code uses some special procedures to obtain the result, as
the usage of standard manipulation functions like Expand,
Collect, and Together fail to produce a result in a
reasonable amount of time on the complicated rational
expressions appearing in the calculation. We use version
12.2.0 of Mathematica [30] on a 2020 Apple M1 MacBook
Pro with 16 GB of RAM. All lengthy output was sup-
pressed to shorten the execution time.

The input quantities B12e, B30e, D1l2e, D30e,
which have been precomputed and whose expressions
we do not include here, are equal

Dl12e = pzblz,
(B1)

Bl2e = pBIZ’ B30e = pBg,()

D30e = p2D30,

where the invariants B, By, D, Ds, follow from
Eqgs. (4.14) and (4.12) after inserting the expressions of
flos f1s flas fi3s fl12, flzp in (A.1), and the factor
= 3273332 B2

P = dimar & (B2)

is introduced to make Bl2e, B30e, Dl2e, D30e
polynomials in a?, y?, j(r), m(r) and the derivatives of

the latter two functions. To exploit this polynomial
dependence, the code uses the variables

D0j =j. Dlj=j. D2j=j".  D3j=j"
(B3)

DOm = m, Dlm = m/, D2m = m", D3m=m".
(B4)

The matrix of tangent vectors A,; = 0I,/0dy; of the three-
dimensional surface in the four-dimensional space of the
invariants /, = (312,33o7b12,f)30), with y; = (r,x%, @%),
is represented in the code by a matrix
tanvectem = pX¥;A,;, (B3)

To avoid nonpolynomial manipulations, the B, and Bj,
components of these vectors are computed as

Factor[ipref D[pref,y;]|Bl2e

+ ipref pref D[B12e,y;] (B6)

and their D, and 1530 components as

Factor[ipref?Dpref?,y;]|D12e

+ ipref?pref? D[D12e,y,], (B7)
where pref = 1/(3222°%7) and ipref = 327¥'%).

At this stage, we have polynomial expressions tan-
vecten for the tangent vectors in the variables aa = a2,
xx :){2, D0j,D1j,D27,D37j, D0m, D1m, D2m, D3m. The
computational problem is now to find the minors of the
4 x 3 matrix tanvectem, extract its coefficients in aa
and yy, and find the algebraic conditions on the variables
DOj, D1j, D23, D3j, DOm, D1m, D2m, D3m, i.e., the
differential equations for j(r) and m(r), that make all those
coefficients vanish simultaneously.

Since we are looking for products of the matrix elements
to be zero simultaneously, we pull out factors in each
matrix element that cannot vanish for all values of y;, giving
us two matrices vsf and v1f containing the pulled-out
factors and the remaining factors, respectively. Then we
extract the coefficients of aa and yy in vsf and v1£ using

v1f =Map|CoefficientList[#, {aa,yy},

{13,13}|&,vem, {2}], (B8)
and similarly for vs £, where the value 13 is large enough to
include all powers of the variables. We do this in order to
compute the coefficients of aa and yy in the minors by
means of ListConvolve rather than direct polynomial
multiplication, which was too slow. For this purpose we
defined a function

listtimes2[pl_ p2.]

:= ListConvolve[pl,p2,{1,-1},0] (B9)
for the product of two polynomials represented by their
coefficients, and analogous functions for the product of
three polynomials and the determinants of matrices with
polynomial elements.

We then proceed to analyze the cases of 1 x 1,2 x 2, and
3 x 3 minors one at a time. The 1 x 1 minors are simply the
elements of the matrix v1 £, since the factors in vsf do not
vanish identically,

minorsl = v1f. (B10)

We select the terms in minors1 that do not contain the
mass function m(r) or its derivatives, and thus are functions
of r, j(r) and the derivatives of j(r) only. To do this, we
avoid the use of the Mathematica function FreeQ, which
was too slow, and use instead a sequence of code lines of
the form

tmp=Select[tmp,Coefficient[#,DXm,e|==0&]|]
(B11)

124067-13



PHILIP BELTRACCHI and PAOLO GONDOLO

PHYS. REV. D 104, 124067 (2021)

where the exponent e ranges successively from 6 to 1, and
DXm is D3m, D2m, ..., DOm. Setting the result of this to
zero, using the function Reduce on the resulting
equalities, followed by FullSimplify, produces the
result

D0j==1& &D1j == 0& &D2j == (B12)
which means that the only case with a third equation of
state is j(r) = 1. We then introduce this function j(r) back
into all the minors minorsl, and solve the resulting
equations minorsl =0 for DXm by means of the
Reduce function. This gives

DOm==1& &DIm==0& &D2m==0& &D3m == 0,
(B13)

that is the only solution is m(r) = M = const. Viceversa, it
is easy to verify that j(r) =1 and m(r) = M = const
imply that all 1 x 1 minors vanish. Therefore all 1 x
1 minors of A,; vanish if and only if j(r) =1 and
m(r) = M = const.

For the 2 x 2 minors, we first pull out of each minor the
factors that do not vanish identically by formally comput-
ing the 2 X 2 minors of a matrix vsf * el f, where elf
is a placeholder matrix, dropping nonidentically vanishing

factors in each minor, and then replacing elf with the
actual matrix v1£f. The distinct elements of the resulting
array of minors is collected in the Mathematica list
minors2. We extract from it the terms that do not contain
m(r) and its derivatives, by the same procedure described
in Eq. (B11). Applying Reduce to the remaining terms
does not produce a result in a reasonable amount of time.
We split each element in minors2 without m(r) and its
derivatives into its factors, and impose that one of the
factors is zero. This gives us conditions on DX j, which we
find have the solution j(r) = 1 only. Using the latter in the
full minors2 matrix gives the differential equation
am = 2rm'm" + r*m" = 2rm'm" =0, (B14)
which is the same as Eq. (5.6) in part I. This shows that the
2 x 2 minors only vanish for the special family of Kerr-
Schild systems we examine in part 1.
For the 3 x 3 minors, we proceed in a similar way to the
2 x 2 minors by usage of the elf placeholder matrix,
dropping nonvanishing factors, and looking for terms
which do not contain DXm to find conditions on j. The
conditions on j we find are: j = 1, which works for any m;
j =1+ c/r?, for which no m will work when ¢ # 0; and
complicated differential equations for j for which we have
not found the explicit form of j or m.
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