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Quantum anomalous Hall octet driven by 
orbital magnetism in bilayer graphene

Fabian R. Geisenhof1, Felix Winterer1, Anna M. Seiler1, Jakob Lenz1, Tianyi Xu2, Fan Zhang2 ✉ & 
R. Thomas Weitz1,3,4,5 ✉

The quantum anomalous Hall (QAH) effect—a macroscopic manifestation of chiral 
band topology at zero magnetic field—has been experimentally realized only by the 
magnetic doping of topological insulators1–3 and the delicate design of moiré 
heterostructures4–8. However, the seemingly simple bilayer graphene without 
magnetic doping or moiré engineering has long been predicted to host competing 
ordered states with QAH effects9–11. Here we explore states in bilayer graphene with a 
conductance of 2 e2 h−1 (where e is the electronic charge and h is Planck’s constant) that 
not only survive down to anomalously small magnetic fields and up to temperatures 
of five kelvin but also exhibit magnetic hysteresis. Together, the experimental 
signatures provide compelling evidence for orbital-magnetism-driven QAH 
behaviour that is tunable via electric and magnetic fields as well as carrier sign. The 
observed octet of QAH phases is distinct from previous observations owing to its 
peculiar ferrimagnetic and ferrielectric order that is characterized by quantized 
anomalous charge, spin, valley and spin–valley Hall behaviour9.

Intricate interplay between single-particle effects such as the band 
topology and many-body effects such as the electron–electron interac-
tion determines the electronic ground states of many low-dimensional 
systems. An especially interesting class are systems in which quasi-
particle Berry curvature gives rise to orbital instead of spin magnetic 
moments, with the consequence that effects usually requiring substan-
tial spin–orbit coupling and/or intentional magnetic doping can occur 
spontaneously9,10. A prominent example is the quantum anomalous Hall 
(QAH) phase that displays quantized Hall resistance at zero magnetic 
field owing to the presence of orbital magnetic order. The QAH effect 
is characterized by a finite number of topologically protected chiral 
edge channels. So far, it has been experimentally realized in two dis-
tinct types of systems. In magnetically doped topological insulators1–3, 
topological properties and broken time-reversal symmetry (caused by 
spin–orbit coupling and aligned magnetic dopants, respectively) lead to 
topologically non-trivial Chern bands12,13. In these spin Chern insulators, 
magnetism occurs mainly owing to ordering of electron spin moments. 
However, a Chern insulator can also emerge solely owing to a sponta-
neous polarization of the orbital magnetic moments9,10,14, as recently 
observed in delicately designed moiré heterostructures4–8. In these 
orbital Chern insulators, orbital magnetism arises because of spontane-
ous gap opening in the half-filled quasiparticle Dirac bands9–11,14. Gapped 
Dirac bands with non-trivial Berry-curvature-induced orbital mag-
netic moments have also been predicted9,15 and observed in naturally 
occurring purely carbon-based systems such as bilayer graphene16,17 
and its rhombohedral cousins18. However, orbital magnetism9 has not 
been clearly pinpointed experimentally in such a simple system as 
pure bilayer graphene, despite theoretical studies9–11 predicting that 
some of the competing ground states should exhibit non-vanishing 

exchange-interaction-driven quantized Hall conductivities at zero 
magnetic field.

Here we report the observation of filling factor ν = ±2 states at anoma-
lously small magnetic fields of about 20 mT in suspended dually gated 
bilayer graphene devices. In addition, we observe field tuning and mag-
netic hysteresis, which strongly evidences that the ν = ±2 states are 
ferrimagnetic, ferrielectric, QAH phases driven by orbital magnetism 
in pure bilayer graphene. Using bilayer graphene flakes free of elec-
tronically active domain walls19–21 and previously established process-
ing22 (Methods, Extended Data Fig. 1), suspended dually gated bilayer  
graphene devices were fabricated (Fig. 1a).

Sweeping both top and bottom gate voltages, Vt and Vb, at zero mag-
netic field yields the well known map of the differential conductance, 
including the interlayer electric-field-induced insulating states as well 
as the exchange-interaction-induced gapped phase near zero electric 
field (Fig. 1b)23–25. The observation of the latter and the location of the 
charge neutrality point at Vt ≈ Vb ≈ 0 demonstrates the high quality of 
the device (note that such a spontaneous gap is universal for rhombo-
hedral few-layer and Bernal even-layer graphene9,18,26). The dual-gate 
structure allows independent tunability of the charge carrier density n 
and the perpendicular electric field E⊥ (Methods). Sweeping n at E⊥ = 0 
reveals a residual charge density inhomogeneity of less than 109 cm−2 
(Fig. 1b, inset), underlining the high quality of the device27 (Methods).

Varying both n and E⊥ while applying a perpendicular magnetic field 
of B = 3 T (Fig. 1c) reveals the lowest quantum Hall plateaus in bilayer 
graphene with the integer filling factors ranging from ν = −4 to ν = 4 
(refs. 23,28–32), resulting from the spontaneous symmetry breaking in the 
anomalous N = 0 Landau  levels. As identified previously, only the ν = 0 
and ν = ±4 quantum Hall states are resolved at E⊥ = 0 (Fig. 1c), whereas 
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the ν = ±1, ν = ±2 and ν = ±3 states emerge only at a larger finite electric 
field23,32,33. At a lower magnetic field of B = 0.8 T (Fig. 1d), only the ν = 0, 
ν = ±2 and ν = ±4 states emerge. Surprisingly, in contrast to the ν = ±4 
states, the ν = ±2 states are only stable in an intermediate range of elec-
tric field (four green regions in Fig. 1d), that is, both larger and smaller 
electric fields can destabilize the ν = ±2 states.

QAH phases in bilayer graphene
Although the ν = ±2 states in bilayer graphene have been observed previ-
ously at B > 1.2 T (refs. 23,32), their exact nature—especially with lowering 

the magnetic field towards the B = 0 limit where one can expect intricate 
QAH phases and phase transitions as function of electric field—has not 
been identified previously. The order parameters of these states are 
particularly interesting, as they can unveil the yet unclear ground state 
of bilayer graphene in the B = 0 limit9–11,34. Owing to the quadratic band 
touching and non-trivial winding numbers, the exchange interaction in 
bilayer graphene is peculiarly strong and produces non-trivial quasipar-
ticle topological properties10; various symmetry-broken states have been 
suggested as gapped competing ground states9,11 (Methods, Extended 
Data Fig. 2, Table 1), with two families of QAH phases exhibiting orbital 
magnetism9. One family manifesting a Hall conductance of 4 e2 h−1 (where 
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Fig. 1 | Exchange-interaction-driven quantum Hall states in dually gated, 
freestanding bilayer graphene. a, False-colour scanning electron microscope 
image of a suspended bilayer graphene device. Contacts, top gate and bilayer 
graphene are shown in yellow, blue and red, respectively. b, Conductance map 
as a function of top gate voltage and bottom gate voltage at B = 0 and T < 10 mK. 
Inset: conductance as a function of charge carrier density at E⊥ = 0. The red 
lines are linear fits and the dashed red lines are guides to the eye, indicating the 
residual charge carrier inhomogeneity in the device. c, d, Maps of the 
conductance as a function of E⊥ and n at B = 3 T (c) and B = 0.8 T (d). The roman 
numerals in d label the ‘ALL’ phases labelled by the same numerals in f.  

e, Schematic representation of one ‘ALL’ QAH phase showing the classical 
counterpart of its corresponding spontaneous quantum Hall effect for n, E⊥, 
B > 0. T and B refer to the top and bottom graphene layers, respectively. f, Top: 
schematic of the eight different ‘ALL’ phases and their corresponding Hall 
conductance σ(CH) and how they can be accessed by tuning n, E⊥ and/or B. The 
table shows the properties of the QVH and QAH species of the ‘ALL’ octet: the 
layer polarization and orbital magnetization as well as the valley and charge 
Hall conductivities, σ(VH) and σ(CH). +/− indicates whether the observables are 
even/odd under flipping n, E⊥ or B. Bottom: schematics of the layer 
polarizations of the four spin–valley species for four exemplary ‘ALL’ phases.
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e is the electronic charge and h is Planck’s constant), simply termed the 
QAH phase, is a bilayer counterpart of the Haldane QAH state, in which 
electrons from different valleys spontaneously polarize to different layers 
resulting in a Z2 orbital ferromagnetic order. The other family manifesting 
Hall conductance of 2 e2 h−1, termed the ‘ALL’ phase9, is even more exotic; 
as quasiparticles of one spin can choose either one of the two quantum 
valley Hall (QVH) phases—electrons from both valleys polarize to the 
same layer resulting in a Z2 ferroelectric order—whereas quasiparticles 
of the other spin can choose either one of the two aforementioned QAH 
phases (Fig. 1e, Methods, Extended Data Fig. 2). In total, there are eight 
different ALL phases forming an octet with Chern number C = ±2 or Hall 
conductance σ(CH) = ±2 e2 h−1 (Extended Data Fig. 3). Markedly, each ALL 
phase exhibits quantized anomalous charge, spin, valley and spin–valley 
Hall effects and hence the name9,10. Owing to its partial layer polarization, 
each ALL phase can be stabilized with an interlayer electric field, which 
fits well with our observations. At very high electric fields, the phase 
vanishes again, losing stability against a fully layer-polarized QVH phase. 
Furthermore, applying a perpendicular magnetic field should lower 

its energy as the field can couple to the quasiparticle orbital magneti-
zation9,10. Therefore, switching the sign(s) of the applied n, E⊥ and/or B 
results in a quantum phase transition between two different ALL phases, 
as sketched in Fig. 1f. By flipping E⊥ and n, the layer polarization of the 
QVH species and the orbital magnetization of the QAH species become 
opposite, respectively. By flipping B, both the orbital magnetization and 
the spin of the QAH species become opposite. Comparing the measure-
ment at B = 3 T (Fig. 1c) and B = 0.8 T (Fig. 1d), we find that the electric 
field range at which the octet emerges at B = 3 T expands towards higher 
electric fields. This demonstrates the enhanced stability of the octet with 
increasing magnetic field (see Extended Data Fig. 4 for more data on the 
evolution of these phases in magnetic field).

Tracing the ν = ±2 QAH phases to B = 0
So far, we have examined the stability of the ν = ±2 QAH phases at small 
but finite magnetic fields. As these phases are driven by the exchange-
interaction-induced orbital magnetism, they should, however, also 
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Fig. 2 | Extraordinary stability of the tunable ν = ±2 quantum Hall states 
towards zero magnetic field. a, b, Fan diagrams of the differential 
conductance (a) and its derivative δσ/δn (b) at E⊥ = −20 mV nm−1. The slopes of 
the ν = 0, ν = −2 and ν = −4 states are indicated with purple, blue and red arrows, 
respectively. c, Left: δσ/δn plotted as a function of magnetic field and density 

for various E⊥. Right: high-resolution measurements around zero magnetic 
field. The schematics indicate transconductance fluctuations corresponding 
to the ν = 0, ν = −2 and ν = −4 states that are shown with purple, blue and red lines, 
respectively. Solid (dashed) lines indicate the slopes of the respective states in 
case they are present (absent). All measurements were taken at T < 10 mK.
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be stable towards B = 0. To this end, we have recorded multiple fan 
diagrams around B = 0 at various electric fields (Fig. 2). From the fan 
diagram at E⊥ = −20 mV nm−1 (Fig. 2a, b) we can see that both the ν = ±2 
and ν = ±4 states emerge already at unusually small magnetic field. We 
focus here on the ν = ±2 QAH phases, as they previously escaped obser-
vation at such low magnetic fields30,32,35, and because they are the most 
exotic ones among the competing ground states of bilayer graphene 
at B = 0: quasiparticles of one spin form a QVH phase whereas those of 
the other spin form a QAH phase9–11 (Fig. 1e, Methods). Carefully exam-
ining the derivative of the conductance (Fig. 2b) to track fluctuations 
near incompressible quantum states provides more insight36,37, as the 
traceable fluctuations are assignable to specific filling factors using 
their slopes and can appear even before the corresponding quantum 
Hall states emerge in conventional magneto-transport measurements. 
Investigating the derivative of the differential conductance at various 
electric fields (Fig. 2b, c) demonstrates that both the ν = ±2 and ν = ±4 
states already emerge at magnetic fields well below B = 100 mT, but 
that they differ in their electric field dependences. In contrast to the 
number of fluctuations at finite B corresponding to the ν = ±4 states, 
which decreases with increasing negative electric field (Fig. 2c, left), 
the ν = ±2 states are prominent at E⊥ = −15 mV nm−1 but disappear at 
zero and very high negative electric fields. In addition, high-resolu-
tion scans around zero magnetic field (Fig. 2c, right) reveal that the 
ν = ±2 states are also present for B < 100 mT. In fact, they do persist to 
B < 20 mT, which is even further than the ν = ±4 states. This provides 
strong evidence that the QAH ν = ±2 phases are potential ground 
states of bilayer graphene at B = 0 in addition to the previously identi-
fied ν = 0 layer antiferromagnet (LAF) and ν = ±4 QAH phases23–25,30,35.  

The observation that the ν = ±2 states can be stabilized by a combination 
of B and E⊥ fields is consistent with their partial layer polarizations and 
orbital magnetic characters. Finally, for very high electric fields, fluctua-
tions with an infinite slope that trace the fully layer-polarized ν = 0 QVH  
phase dominate the fan diagram (see Extended Data Fig. 5 for more 
data showing fan diagrams in electric fields).

Orbital-magnetism-driven hysteresis
Although the electric and magnetic field dependences and the stabil-
ity down to B ≈ 0 T support the presence of the QAH phases, we have 
looked for more direct proof of the presence of their orbital magnet-
ism. Indeed, hysteretic behaviour indicative of magnetism is observ-
able in the samples, even though in our two-terminal measurements 
the absolute contributions of both longitudinal and Hall resistances 
are measured simultaneously (Methods). As can be seen in Fig 3a, by 
sweeping the magnetic field at constant ν = −2 and E⊥ = −17 mV nm−1, 
we have recorded a magnetic hysteresis. Forward and reverse sweeps 
are mirror symmetric with respect to the B = 0 line, with the hysteretic 
behaviour starting at about B = ±650 mT. In addition, the hysteresis 
is highly reproducible upon repeated sweeps and we also observe it 
in a second device (Extended Data Fig. 6). Sweeping a smaller range 
than that between B = ±650 mT reduces the hysteresis (Extended Data 
Fig. 7). This magnetic hysteresis provides consistent evidence for the 
emergence of orbital magnetism in pure bilayer graphene; notably, 
such hysteretic behaviour is rare for moiréless purely carbon-based 
two-dimensional systems18. Given the vanishing spin–orbit coupling in 
bilayer graphene, the magnetism is primarily of orbital nature, which 
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stems from the opposite mean-field gaps in the two valleys in one of 
the two spin species9–11 (Fig. 1e, Methods).

The intimate relation of the orbital magnetism to the ν = ±2 QAH 
phases can be further validated by a series of test measurements. First, 
cyclic B sweeps for fixed n (and consequently varying ν) do not show 
hysteretic behaviour (Fig. 3b). These measurements were performed 
at n = −0.25 × 1011 cm−2, n = −0.5 × 1011 cm−2 and n = −1.0 × 1011 cm−2 corre-
sponding to the quantum Hall states of ν = −1, ν = −2 and ν = −4 at B = 1 T, 
respectively. This implies that when the magnetic field is swept towards 
B = 0, the sample leaves the ν = −2 QAH phase and reaches quantum Hall 
states with higher filling factors up to ν = −12 for n = −1.0 × 1011 cm−2,  
far away from the ν = −2 QAH phase.

A second set of test measurements addresses the electric field depend-
ence in the region where the ν = −2 QAH phase is stable (Fig. 3c). Consist-
ently, at E⊥ = 0, we do not observe any hysteretic behaviour as a ν = −2 
state is not observable here. At E⊥ = −10 mV nm−1, in agreement with 
the observations from the fan diagrams (Fig. 2), hysteretic behaviour 
starts to emerge, and the hysteresis loop area reaches its maximum at 

E⊥ = −17 mV nm−1. With increasing negative electric field, the hysteresis 
decreases again and vanishes completely at E⊥ = −60 mV nm−1, where the 
fully layer-polarized ν = 0 QVH phase dominates. These observations 
are consistent with the electric field dependence of the ν = −2 state in 
Fig. 2 and the partial layer polarization of the ν = −2 QAH phase in Fig. 1e.

Finally, the hysteretic behaviour vanishes at constant finite elec-
tric field if the filling factor is detuned substantially away from ν = −2 
(Fig. 3d). As the ν = −1 and ν = −3 quantum Hall states do not emerge 
at B < 1 T, all nominal fillings in the range of −1 < ν < −3 correspond to 
the ν = −2 state. In this range, we observe hysteresis with the loop area 
reaching its maximum at ν = −2.5. At higher or lower nominal filling,  
for example, ν = −1 or ν = −3, the hysteresis almost vanishes.

Activation gaps depending on electric field
As a final test of the stability of the ν = −2 QAH phase, we have investi-
gated its temperature dependence at various electric fields at B = 0.5 T 
(Fig. 4); see Extended Data Fig. 8 for the full temperature-dependent 
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Fig. 4 | Temperature dependence of the ν = ±2 and ν = ±4 states show 
distinct electric field dependence. a–c, Conductance as a function of n 
measured for various temperatures for B = 0.5 T and fixed electric fields of 
E⊥ = 0 mV nm−1 (a), E⊥ = 15 mV nm−1 (b) and E⊥ = 50 mV nm−1 (c). The density 
n(ν = −2) = −0.25 × 1011 cm−2 corresponding to ν = −2 at B = 0.5 T is indicated by 
the vertical line in each plot. d, Arrhenius plots of the conductance (normalized 

by its value at 10 K) measured at n(ν = −2) for E⊥ = 0 mV nm−1 (black squares), 
15 mV nm−1 (blue squares) and 50 mV nm−1 (green squares) are shown. In 
addition, the data at n(ν = −4) and E⊥ = 0 mV nm−1 are shown with red triangles. 
The coloured lines are linear fits to the corresponding datasets. e, Electric field 
evolution of the activation gaps in the ν = 0, ν = −2 and ν = −4 states. The error 
bars originate from the uncertainty from the linear fits.
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transport data. Although a quantitative estimation of the bulk gap in 
the ν = −2 state via calculation of its activation energy Δν=−2 is challenging 
due to the potential presence of disorder, we use  such estimates for 
a relative judgement of the stability of the various observed phases. 
Figure 4d shows an Arrhenius plot8 of the conductance at n(ν = −2) 
and various electric fields. As the temperature dependence of the con-
ductance23 follows σ ∝ exp(−Δν/(2kBT)), where T is the temperature and 
kB is Boltzmann constant, in the semi-log graph we can use a linear fit 
to calculate the energy gap. At zero electric field (Fig. 4a), the ν = −2 
state does not persist to B = 0.5 T as we have seen in the fan diagrams, 
and consequently the temperature dependence is very small, indi-
cating a vanishing energy gap. By contrast, at a finite electric field of 
E⊥ = 15 mV nm−1, there is an evident temperature dependence (Fig. 4b) 
with an energy gap of Δν=−2 = (0.09 ± 0.02) meV. Applying an even higher 
electric field of E⊥ = 50 mV nm−1 (Fig. 4c), the ν = −2 state becomes less 
stable with a smaller Δν=−2 = (0.039 ± 0.001) meV, again consistent with 
its predicted partial layer polarization. We point out that the gap ener-
gies measured by activation only give lower bounds for the real gaps 
due to the presence of local disorder (Methods), but their absolute 
magnitudes can be put into perspective by comparing them with 
the gaps of the ν = ±4 and ν = 0 states as functions of electric field, as 
shown in Fig. 4e. The behaviour of the ν = 0 state with a large gap of 
Δν=0 = 3 meV at zero electric field, a vanishing gap for an intermediate 
electric field and a reappearance for a high electric field is consistent 
with the observation of the phase transition from the interaction-driven 
layer-balanced gapped LAF phase to the electric-field-induced fully 
layer-polarized gapped QVH state23,24. The activation gaps of the 
ν = −4 and ν = −2 states show very different electric field dependen-
cies but rather similar magnitudes, with Δν=−4 = (0.08 ± 0.04) meV at 
E⊥ = 0 mV nm−1 and Δν=−2 = (0.09 ± 0.02) meV at E⊥ = 15 mV nm−1. This 
observation is surprising, as in previous experiments Δν=−4 > Δν=−2 has 
been found30,32,38. Whereas these previous measurements of the ν = ±2 
and ν = ±4 states were performed at larger magnetic fields or without 
an independent control of E⊥ and n, where the QAH ν = ±2 phases may 
be unstable, the surprising robustness of the ν = ±2 states evidenced 
by the larger activation gaps arises from the electric field coupling to  
the layer polarization and the magnetic field coupling to the 
orbital  magnetization of the quasiparticles.

Outlook
Since the current measurements have been performed on two-terminal 
devices, future measurements using a four-terminal geometry35,39 could 
distinguish between longitudinal and Hall resistances and determine 
possible switching mechanisms of the exotic ordering of such ν = ±2 
QAH phases by using both magnetic and electric fields. Finally, applica-
tions in low-dissipation electronics or quantum information science40 
could be exciting developments.
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Methods

Device fabrication
The graphene flakes were exfoliated from a highly ordered pyrolytic 
graphite block onto silicon/silicon dioxide (Si/SiO2) substrates. Using 
optical microscopy, suitable bilayer flakes were preselected by examin-
ing the optical contrast. The flakes were scanned with scanning near-
field optical microscopy to avoid any structural domain walls within the 
channel19–21 that might mask fragile quantum Hall phases. The electrodes 
(Cr/Au, 5 nm/100 nm), top gate (Cr/Au, 5 nm/160 nm) and spacer (SiO2, 
140 nm) were fabricated by multiple steps of standard lithography tech-
niques and electron beam evaporation. To suspend both the top gates 
and the bilayer graphene flakes, hydrofluoric acid was subsequently used 
to etch about 150–200 nm of the SiO2. Finally, the suspended dual-gated 
bilayer graphene devices were loaded into a dilution refrigerator.

Electrical transport measurements
The two-terminal conductance measurements were carried out in a 
dilution refrigerator with a base temperature of 7 mK. Unless stated 
otherwise, the measurements were performed with an a.c. bias cur-
rent of 0.1–10 nA at 78 Hz using Stanford Research Systems SR865A 
and SR830 lock-in amplifiers at a temperature of T < 10 mK. Gate volt-
ages were applied using multiple Keithley 2450 SourceMeters. Several 
homebuilt low-pass resistor–capacitor (RC) filters were used in series 
to reduce high-frequency noise.

Device annealing and characterization
Current annealing procedure. Before any measurements can be per-
formed, a current annealing procedure is used to clean the samples. 
Multiple cycles of current annealing at 1.6 K are performed, during 
which the d.c. resistance Rd.c. of the sample is tracked (Extended Data 
Fig. 1a). In general, for an increasing applied d.c. voltage Vd.c., the resist-
ance of the sample decreases. However, when a saturation of the drain 
current is reached, Rd.c. consequently increases again. The maximum 
current flowing was approximately 0.35 mA µm−1 per layer.

Measurement details. The dual-gate structure allows independent 
tunability of the charge carrier density n and the perpendicular electric 
field E⊥. We can define n and E⊥ as a function of the top gate voltage Vt 
and the bottom gate voltage Vb as follows23:
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top gate capacitance Ct and the bottom gate capacitance Cb. Hence, by 
changing Vt and Vb simultaneously, we can directly sweep n or E⊥. A 
Lorentzian fit to a density sweep and a precise electric field sweep were 
used to find the exact charge neutrality point.

For the hysteresis measurements, the filling factor reads
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where h is Planck’s constant and B is the magnetic field. Hence, to sweep 
the magnetic field while fixing the filling factor, Vt, Vb and B need to be 
varied simultaneously.

Calculation of the contact resistance. As in two-terminal transport 
measurements there always pertains a contact resistance, we calculated 

and subtracted it in our data. This was done by recording a resistance 
versus density sweep at B = 2 T and E⊥ = 20 mV nm−1. Appearing resist-
ance plateaus were assigned to a filling factor. Plotting the resistance 
of the quantum Hall plateaus as a function of the inverse filling fac-
tor (Extended Data Fig. 1b) gives a linear behaviour. Using a linear fit 
demonstrates that the slope per filling factor (25,604 ± 712) Ω fits 
well to the von Klitzing constant, while giving a contact resistance of 
RC = (3,545 ± 161) Ω. For all measurements shown in this paper (except 
Fig. 1b), we subtracted RC.

Quality of the device. Extended Data Fig. 1c shows the conductance 
of the device as a function of charge carrier density for zero and finite 
electric field. The narrow width and low conductance of the device at 
E⊥ = 0 mV nm−1 suggest a high quality of the device. Besides calculat-
ing the residual charge disorder (Fig. 1b, inset), we additionally have 
calculated the electron/hole mobility μe/h = 120,000/130,000 cm2  
(Vs)−1 at n = ±5 × 109 cm−2, emphasizing the high quality of the device.

Theoretical fundamentals regarding the ALL QAH phases
Competing ground states  in bilayer graphene at n = E⊥ = B = 0. In 
bilayer graphene at n = E⊥ = B = 0, when spin is ignored only two differ-
ent types of competing ground states can be distinguished9–11: one in 
which the K and K′ valleys are layer-polarized in the opposite sense 
producing a QAH phase with broken time-reversal symmetry (Θ), or-
bital magnetization and quantized charge Hall conductivity  (±2 e2 h−1 
without counting spin degeneracy), and one in which the two valleys 
have the same sense of layer polarization producing a QVH phase with 
broken inversion symmetry (P), net layer polarization and non-trivial 
valley Hall conductivity. When spin is included, there are three addi-
tional types, namely the LAF phase, the ALL phase and the quantum 
spin Hall phase9,10. The five distinct phases in the spinful case can be 
obtained by each spin species choosing to be one of the two QVH phas-
es or one of the two QAH phases, as depicted in Extended Data Fig. 2. 
These phases are distinguished9,10 by their charge, spin, valley and 
spin–valley Hall conductivities, by their layer polarizations, by their 
orbital magnetizations, and by their broken symmetries, as summarized 
in Extended Data Table 1.

Quasiparticle orbital magnetism in bilayer graphene. In ABC-stacked 
N-layer graphene, the presence of a spontaneous gap at the Brillouin 
zone corners K and K′ produces non-trivial momentum-space Berry 
curvature, and the Berry curvature gives rise to non-trivial orbital mag-
netic moments of quasiparticles. The orbital magnetic moment of the 
quasiparticle state in band α of spin sz, valley τz  and momentum p 
reads9,10
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bour interlayer coupling, me is the electron mass, ν0 is the Fermi veloc-
ity in monolayer graphene, λτz is the spontaneous gap term in Extended 
Data Table 1, α = ± denote the two low-energy bands and μB is the Bohr 
magneton. Note that in the presence of a particle–hole symmetry, the 
moments of the particle and hole states are the same; in other words, 
the orbital magnetic moment does not depend on the band index α.

For AB bilayer graphene, the orbital magnetic moment reads
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where Aunitcell is the area of a unit cell and ℏ is the reduced Planck’s con-
stant. For a spontaneous gap of 10 meV, 1 meV and 0.1 meV, the orbital 
magnetization per unit cell for each spin–valley species is 8.0 mμB, 
1.3 mμB and 0.18 mμB, respectively.

Eight possible ALL QAH phases in bilayer graphene. The ALL phase 
in Extended Data Table 1 and Extended Data Fig. 2 can be viewed as 
a phase in which one spin–valley species polarizes into one layer 
whereas the other three species polarize into the opposite layer, or 
alternatively as a phase in which one spin species is in one of the two 
possible QVH phases (that have opposite layer polarization, for exam-
ple, Extended Data Fig. 3a, b) whereas the other spin species is in one 
of the two possible QAH phases (that have opposite Chern numbers, 
for example, Extended Data Fig. 3a, f). Based on either viewpoint, one 
can find eight different ALL phases in total, as depicted in Extended 
Data Fig. 3.

Evolution of the ν = ±2 state in electric and magnetic field
Here we show additional data on how the ν = ±2 state behaves in an 
electric and magnetic field. We have recorded multiple electric field 
versus density conductance maps at various magnetic fields (Extended 
Data Fig. 4a–h). Extended Data Fig. 4a–d shows the conductance map 
for lower magnetic fields B = 0.1 T, B =0.2 T and B =0.5 T as well as a map 
with a reversed field of B = −0.5 T, respectively. Of the four domains 
observed at B = 0.8 T, only three show a quantized conductance of 
2 e2 h−1 at lower fields. The domain at negative electric field and positive 
density shows a higher conductance, possibly due to residual disorder 
providing additional channels for charge transport. Still, this domain 
behaves like the other three, as we also see in the fan diagrams in Fig. 2.

Changing the direction of the magnetic field (Extended Data Fig. 4c, 
d) shows the other four ALL phases (see also Extended Data Fig. 3).

Furthermore, from the conductance map as a function of electric 
field and density at different magnetic fields (Extended Data Fig. 4a–h) 
and the conductance map as a function of electric and magnetic fields 
at a fixed filling factor ν = −2.25 (Extended Data Fig. 4i), we can see the 
evolution of the ALL phases (for example, the ν = −2 state) in electric 
and magnetic fields. The required minimum and maximum electric 
fields and the electric field range for the ν = −2 state to emerge increase 
slightly with increasing the magnetic field. At a very low magnetic field, 
the ν = −2 state is only stable in a very limited electric field range, as at 
larger electric fields a fully layer-polarized ν = 0 state dominates over 
the partially layer polarized ν = −2 state. However, as the magnetic field 
increases, the ν = −2 state becomes more and more stabilized, that is, 
the electric field range increases.

Lastly, we turn to the relevant physics at high magnetic fields. The 
ν = ±2 states discussed in this current work appears near zero magnetic 
field, whereas in previous studies higher magnetic fields were applied. 
In fact, there are two types of ν = ±2 quantum Hall ferromagnetic state at 
large magnetic fields: one without layer polarization (layer XY-like) that 
appears near zero electric field and the other with layer polarization 
(layer Ising-like) that requires a finite electric field. This was mentioned 
in a theoretical study41 and observed in dual-gated devices31,32,42. The 
ALL states adiabatically evolve into the layer-polarized ν = ±2 quantum 
Hall ferromagnetic states with increasing magnetic field. Although 
there is no transition, the required electric field range does evolve 
with the magnetic field.

Additional fan diagrams showing a complete electric field series
Extended Data Fig. 5 shows additional fan diagrams, demonstrating 
the behaviour of quantum Hall states towards zero magnetic field for 
various electric fields. The strength of each Landau level is indicated 

by the number of coloured lines with the corresponding slope in the 
top of each picture.

As the ν = ±4 state is a non-layer-polarized phase, it is less and less 
pronounced for increasing electric field. On the contrary, as discussed 
already in the main text, the ν = ±2 state is strongest for a finite range 
of electric fields. However, it does not emerge at E⊥ = 0 but appears for 
increasing electric fields. For E⊥ = −10 mV nm−1, it does finally emerge 
for the complete magnetic field range shown here. The highest num-
ber of fluctuations corresponding to it appears at E⊥ = −15 mV nm−1 to 
E⊥ = −20 mV nm−1, whereas for higher negative fields they disappear 
again. Lastly, the ν = 0 state is strong for low electric fields (canted 
antiferromagnetic phase) and for very high electric fields, where it is 
a fully layer-polarized phase.

Evidence of the QAH effect in a second device
Extended Data Fig. 6 shows the quantum transport data measured in a 
second device. Extended Data Fig. 6a, b shows the conductance map for 
low magnetic fields of B = 0.2 T and B = 0.5 T, respectively. Although the 
sample is less clean than the one shown in the main text, we still see four 
domains with a conductance of ±2 e2 h−1 (four green regions in Extended 
Data Fig. 6a, b) even at these low magnetic fields. Furthermore, the 
ν = ±2 states have the same behaviour when applying an electric field 
and magnetic field. Extended Data Fig. 6c shows the conductance as a 
function of electric and magnetic field for a fixed filling factor ν = −2. 
The ν = −2 state emerges for only intermediate applied electric fields 
and the range at which it appears increases with increasing magnetic 
field. Lastly, also in this device we see magnetic hysteresis (Extended 
Data Fig. 6d) when sweeping B around zero while fixing ν = −2 and 
E⊥ = −19 mV nm−1. However, the hysteresis is less prominent and the 
conductance breaks down for low magnetic fields, presumably due 
to the lower quality of the device.

More details on the hysteresis
At first sight, the observation of magnetic hysteresis with 
two-terminal measurements might be surprising, as only absolute 
values are measured without resolving the two components, σxx and 
σxy. However, following the previous derivation of the two-terminal 
conductance43

σ σ σ∝ +xx xytwo−terminal
2 2

or, in terms of the longitudinal ρxx and Hall resistivity ρxy

σ
ρ ρ

∝
1

+
,

xx xy

two−terminal 2 2

one can observe a hysteresis if σ σ≠two−terminal
forward

two−terminal
backward . This is true 

around the coercive field, where a transition between two different 
ALL phases occurs, that is, ρ ρ| | ≠ | |xx xx

forward backward  and/or ρ| |≠xy
forward

ρ| |xy
backward . Around zero magnetic field, the hysteresis vanishes in 

two-terminal measurements, as ρ ρ= = 0xx xx
forward backward  and ρ =xy

forward

ρ− xy
backward , even though opposite orbital magnetizations (with 

ρ h e= ± /2xy
2 ) are present and distinguishable in four-terminal  

measurements6.
To further prove the presence of the magnetic hysteresis, we have 

measured it for different ranges of magnetic fields, as shown in 
Extended Data Fig. 7. The degree of the hysteresis increases with the 
field range of the cycle. When the magnetic field is only swept in a small 
range (−0.25 T ≤ B ≤ 0.25 T), there is almost no hysteretic behaviour. 
However, when the magnetic field is swept from a larger field towards 
zero (−0.5 T ≤ B ≤ 0.5 T), the hysteresis appears partially. The fact that 
a sufficiently large magnetic field is needed to observe a hysteresis 
has been seen in twisted bilayer graphene5,6. The maximum degree of 
hysteresis is reached at |B| ≤ 1 T and then remains nearly the same with 
further increasing the magnetic field range.



Temperature-dependent transport data
Extended Data Fig. 8 shows maps of the conductance as a function of 
electric field and density for various temperatures. The temperature-
dependent data shown in Fig. 4 are taken from these measurements, 
with the position of the linecuts indicated by dashed lines in the top 
left image. In general, we see that for T ≤ 0.3 K, the maps are basically 
the same, whereas for higher temperatures, the ν = ±2 and  = ±4 as well 
as the ν = 0 states get less and less well resolved, as fluctuations due to 
increasing temperatures broaden all phase transitions. We point out 
that gap energies measured by activation can only give lower bounds for 
the real gaps due to the presence of local disorder. As a consequence, in 
some measurements (for example, Chen et al.8) activation gaps are—like 
in our case—smaller than the temperature range they are measured in. 
To give an estimate of thermodynamic gaps, direct measurements of 
the inverse compressibility would be required (Martin et al.30). Our gap 
energies should be thus understood as lower bounds and can give an 
estimate to compare the strength of the different phases against one 
another within the same sample and to get a feeling for the dependence 
of the gap strength as function of applied perpendicular electric field.
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Extended Data Fig. 1 | Current annealing, contact resistance and device 
quality. a, Rd.c. as a function of Vd.c. during multiple annealing cycles. b, The 
resistance of quantum Hall plateaus shown as a function of inverse filling factor 

at B = 2 T and E⊥ = 20 mV nm−1. c, The conductance as a function of density for 
E⊥ = 0 mV nm−1 and 60 mV nm−1 at B = 0 T.



Extended Data Fig. 2 | Representatives of the five competing broken 
symmetry ground states in bilayer graphene at n = E⊥ = B = 0. a–e, Bottom 
panel: layer polarizations of the four spin-valley species. Top-left and top-right 
panels: bulk (classical) and edge (quantum) pictures of the corresponding 
spontaneous quantum Hall effect. Note that the edge roughness can produce 

couplings between counter-propagating edge states (of the same spin but 
different valleys) and thus gap them. Spin degeneracy is implicit in a and b.  
See the text for details. T and B refer to the top and bottom graphene layers, 
respectively.
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Extended Data Fig. 3 | Possible 'ALL' quantum anomalous Hall phases in bilayer graphene. a–h, Eight different 'ALL' phases that can be classified by the 
layer polarizations of their two spin species, by which spin species being in which QAH or QVH phases, and by their charge Hall conductivities.



Extended Data Fig. 4 | Additional measurements showing the electric and 
magnetic field dependence of the ν = ±2 state. a–h, Maps of the conductance 
as a function of electric field and density for various magnetic fields. The 
dashed lines in e–h are guides to the eye, and the arrows indicate the range of 
negative electric field at which the ν = −2 state emerges. i, Conductance as a 

function of electric and magnetic fields at a fixed filling factor near ν = −2 (at 
exactly ν = −2.25). The black (white) dots indicating the maximum (minimum) 
electric field for the ν = −2 to emerge are extracted from the data shown in e–h. 
The dashed lines are guides to the eye, highlighting the region where the ν = −2 
state emerges at negative electric fields.
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Extended Data Fig. 5 | Tracing quantum Hall states towards zero magnetic 
field. Derivative of the differential conductance δσ/δn plotted as a function of 
magnetic field and density for various E⊥. The amount of conductance 

fluctuations corresponding to the ν = 0, −2 and −4 state are indicated by the 
number of white, blue and yellow lines in the top of each image.



Extended Data Fig. 6 | Quantum transport data in a second device.  
a, b, Maps of the conductance as a function of E⊥ and n for B = 0.2 T and 0.5 T, 
respectively. c, Conductance as a function of electric and magnetic field for 
fixed filling factor of ν = −2. The dashed lines indicate the region where the 

ν = −2 state at negative electric fields emerges with a conductance of 2 e2 h−1.  
d, Two-terminal conductance hysteresis measured for ν = −2 and  
E⊥ = −19 mV nm−1. The hysteresis loop area is shaded for clarity. The forward 
(reverse) sweep is shown in blue (red), as indicated by the arrows.
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Extended Data Fig. 7 | Magnetic hysteresis loop for different magnetic field 
ranges. Two-terminal conductance hysteresis measured for different 
magnetic field ranges at ν = −2 and E⊥ = −17 mV nm−1. The hysteresis loop areas 
are shaded for clarity. The forward (reverse) sweep is shown in blue (red), as 
indicated by the arrows.



Extended Data Fig. 8 | Temperature dependence of the quantum Hall states at B = 0.5 T. Map of the conductance as a function of density and electric field for 
various temperatures. The dashed lines in the top left images indicate the position of the linecuts shown in Fig. 4 in the main manuscript.
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Extended Data Table 1 | Classification of the five competing broken symmetry ground states in bilayer graphene at n = E  = B = 0

These phases are distinguished by their spin-valley layer polarizations, by the symmetries they break, by their order parameters, and by their charge Hall (CH), spin Hall (SH), valley Hall (VH), 
and spin-valley Hall (SVH) conductivities. The results are general for ABC-stacked N-layer graphene9,10,18 and with N = 2 for AB bilayer graphene.
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