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Abstract

In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal
in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical
description of all gapped/gapless quantum liquids, including symmetry-breaking phases,
topological orders, SPT/SET orders and CFT-type gapless quantum phases. In particular,
we show explicitly that, in each gapped phase realized by these two models, the spacetime
observables form a fusion category enriched in a braided fusion category such that its monoidal
center is trivial. We also study the categorical descriptions of the boundaries of these models.
In the end, we obtain the classification of and the categorical descriptions of all 1-dimensional
(spatial dimension) gapped quantum phases with a bosonic/fermionic finite onsite symmetry.
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1 Introduction

In this work, we restudy the Ising chain and the Kitaev chain from a categorical point of view.
Physics oriented readers can skip this section and start from later sections directly, and come
back later for the historical development of the main idea. Throughout this work, we use nd
to represent a spatial dimension and n+1D to represent a spacetime dimension, and all fusion
(higher) categories are assumed to be unitary [KZ20b].

The study of topological orders and symmetry protected/enriched topological (SPT/SET)
orders has attracted a lot of attention in recent years because it goes beyond Landau’s paradigm
of phases and phase transitions (see [Wen19] for a review and references therein). A topological
order, as a macroscopic notion that defines the universal class of quantum many body systems,
can be described by observables in the long wave length limit (LWLL). These observables often
form categorical structures. For example, a 2d anomaly-free topological order can be described
by the fusion and braiding structures of its particle-like topological excitations (or anyons) up to
chiral central charges. These fusion-braiding structures form a unitary modular tensor category
(see [Kit06, Appendix E] for a review). A potentially anomalous 1d topological order can be
described by a unitary (multi-)fusion category [KK12]. These two categorical descriptions can
be checked directly from concrete lattice models (see for example [Kit03, BK98, LW05, KK12,
LW14, HLPWW18, CCW17]). The categorical descriptions of higher dimensional topological
orders can be found in [KW14, KWZ15, LKW18, LW19, KTZho20, JF20, KZ20b]. Some of them
were checked in lattice models [BD19, KTZha20, BD21]. These categorical descriptions provide
a unified approach towards the classification of all topological orders.

Ever since the introduction of the notion of a SPT/SET order [GW09, CGW10a, CLW11,
CGLW13], it is natural to expect that it also has a categorical description. However, the story of
developing this description is full of twists and turns. We review this development in Section 1.1,
and explain the main result of a unified classfication theory developed in [KLWZZ20a]. However,
this classification theory is still one step away from a physically natural description of an SPT/SET
order. The last missing step was made in [KZ20b]. Based on the idea of topological Wick rotation
[KZ20a], a notion which is reviewed in Section 1.2, two of the authors proposed in [KZ21, Section
7][KZ20b, Section 5.2] a unified categorical description of all gapped/gapless quantum liquids1,
including symmetry-breaking phases, topological orders, SPT/SET orders and CFT-type gapless
phases, in terms of enriched higher categories. The main goal of this work is to check the validity
of this proposal through concrete 1d models: the Ising chain and the Kitaev chain.

In Section 2.3 and 2.4, by carefully analyzing the Ising chain and the Kitaev chain, we prove
that, in each gapped phase (an SPT order or a symmetry-breaking phase) realized in these
two models, observables in spacetime form a fusion category enriched in a braided fusion
category such that its monoidal center is trivial. In Section 3, we provide the classification
and the categorical descriptions of all 1d gapped phases with a bosonic/fermionic finite onsite
symmetry. The notion of an enriched category is briefly explained in Appendix A. The hom
spaces of all enriched categories appeared in this work are all computed in Appendix A.

1.1 Towards a categorical description of SPT/SET orders

In 2d, a categorical description of bosonic SPT/SET orders with a finite onsite symmetry was
first introduced by Barkeshli, Bonderson, Cheng and Wang in [BBCW19] based on the idea of
gauging the symmetry by introducing 1d symmetry defects. Later, a new description for both
bosonic and fermionic 2d SPT/SET orders was introduced in [LKW17a, LKW17b] also based on
the idea of gauging the symmetry but in a different way [LG12]. It is useful to recall the key
idea of [LG12, LKW17a, LKW17b]. In a 2d SPT/SET order, local (non-topological) excitations are
given by the symmetry charges. They form a symmetric fusion subcategory E in the braided

1There are non-liquid quantum phases (see for example [Cha05, Haa11] and [ZW15]).
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fusion category S of all local and topological excitations. Since the symmetry charges cannot
be detected via double braidings in S, this can be viewed as a sign of “anomaly” but somehow
“protected by the symmetry” in a not-fully-understood way, which is clarified in this work (see
Remark 1.4 and 2.10). The idea of gauging the symmetry is to introduce additional particles
to S in a minimal way such that all old and new particles can be detected by double braidings
again. In mathematical language, it amounts to finding a minimal modular extension of S

[Mue00, LKW17b].
Although the idea of gauging the symmetry works and can be generalized to higher dimen-

sions [KLWZZ20a], it is unsatisfying because the SPT/SET orders are well-defined before the
gauging. There should be an intrinsic but missing data canonically associated to S that can char-
acterize a 2d SPT/SET order without gauging the symmetry. This dissatisfaction motivated a new
description of SPT/SET orders without gauging the symmetry [KLWZZ20a]. This description is
based on the idea of boundary-bulk relation [KWZ15, KWZ17]. More precisely, an anomaly-free
nd SPT/SET order should have a trivial n+1d bulk, i.e. the trivial n+1d SPT order, which has
a categorical description in the minimal modular extension approach. Using the fact that the
bulk is the center of the boundary [KWZ15, KWZ17], we obtain a mathematical description of
an anomaly-free nd SPT/SET order, summarized in the following physical theorem.

Theoremph 1.1. [KLWZZ20a] For n ≥ 1, letR be a unitary symmetric fusion n-category viewed as
a higher symmetry. We call an nd (spatial dimension) SPT/SET order with the higher symmetry
R an nd SPT/SET/R order.

1. An anomaly-free nd SET/R order is uniquely (up to invertible topological orders) charac-
terized by a pair (S, ϕ), where S is a unitary fusion n-category equipped with an embedding
ιS : R ֒→ Z1(S) such that

the composed functor (R ֒→ Z1(S)→ S) is faithful (1.1)

and ϕ : Z1(R) → Z1(S) is a braided equivalence between the monoidal centers of R and S

rendering the following diagram commutative (up to a natural isomorphism):

RjJιR
ww

� u
ιS
''

Z1(R) ≃
ϕ

// Z1(S).

(1.2)

2. When S = R, the pair (R, ϕ) describes an SPT/R order and (R, idZ1(R)) describes the trivial
SPT/R order. Moreover, the group of all SPT/R orders (with the multiplication defined by
the stacking and the identity element by the trivial SPT order) is isomorphic to the group

Autbr(Z1(R), ιR), which denotes the underlying group of the braided autoequivalences of
Z1(R) preserving ιR, i.e. ϕ ◦ ιR ≃ ιR.

Remark 1.2. It was proposed later in [KZ20b] that this classification should automatically in-
cludes all gapped symmetry-breaking phases if we drop the condition (1.1).

The physical meaning of Theorem 1.1 is illustrated in Figure 1. In particular, we regarded
Z1(R) (resp. Z1(S)) as the 1-dimensional higher bulk of the nd SPT (resp. SET) order, and vertical
direction in Figure 1 is the (n+1)-th spatial direction. The braided auto-equivalence ϕ in (1.2)
is precisely the missing data, and can be realized physically by an invertible domain wall Yϕ
between Z1(R) and Z1(S). Note that when S = R, the pair (R, ϕ) describes an nd SPT, which is
precisely realized by the nd invertible domain wall Yϕ.

Example 1.3. Let R = Rep(G) or Rep(G, z), where G is a finite group, and Rep(G) is the category
of finite dimensional G-representations, and Rep(G, z) denotes the same category but equipped
with a new symmetric braiding respecting the fermion parity z. All 1d anomaly-free SET/R orders
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Yϕ

Z1(S)Z1(R)

Figure 1: This picture depicts the physical meaning of the classification theorem of nd SPT/SET
orders given in Theorem 1.1. There are two ways to interpret this picture. One was provided in
[KLWZZ20a], whereZ1(R) is regarded as the 1-dimensional higher bulk of the SPT/SET order and
the vertical direction is the (n+1)-th spatial direction. The other one was provided in [KZ20b],
where the vertical direction is the time direction and Z1(R) is viewed as the background category
of an enriched n-category Z1(R)R or Z1(R)S (see Appendix A), the hom spaces of which encode the
spacetime observables of the SPT/SET orders.

are SPT/R orders. The group of 1d SPT/R orders is isomorphic to the group Autbr(Z1(R), ιR) and
to the Picard group Pic(R) of R [DN13], which was computed in [Ca06]:

Pic(Rep(G)) ≃ H2(G,U(1));

Pic(Rep(G, z)) ≃
{

H2(G,U(1)) × Z2 if G = Gb × ⟨z⟩;
H2(G,U(1)) otherwise.

(1.3)

When G = Z2, there is a unique non-trivial fermionic SPT order, which can be realized by the
Kitaev chain.

1.2 Topological Wick rotations

Although Theorem 1.1 is successful in that it unifies all earlier classification results and is gen-
eralized to all dimensions, the classifying data given there cannot be the direct description of
the observables of an SPT/SET order in LWLL. Indeed, on the one hand, the crucial data ϕ is
associated to the categorical description of the 1-dimensional higher bulk; on the other hand,
in a concrete nd lattice model realization of an anomaly-free nd SPT/SET order, its n+1d bulk is
completely empty. Therefore, there should be a direct categorical description of the observables
in an anomaly-free nd SPT/SET order without using its empty bulk.

How to find such a description? The most obvious approach is to analyze a concrete lattice
model realization of an SPT/SET order, and collect all observables in LWLL to see what mathe-
matical structure they form. Ironically, this obvious approach has never been seriously studied.
Perhaps, a partial reason for the delay is that, without knowing what you are looking for, it
is rather difficult to walk through the labyrinth of rich ingredients in a lattice model, often
misguided by old conventions and misunderstandings, to crystallize the hidden and unknown
mathematical structures. In this work, we do the long-overdue homework but with a new
mathematical guidance.

The guidance came from a rather mysterious process called topological Wick rotation, which
was first introduced in the study of gapless boundaries of 2d topological orders [KZ20a, Section
5.2], and was generalized to all dimensions [KZ21, Section 7]. In a special case, it says that given
an anomalous nd topological order, whose topological defects form a fusion n-category S, and its
n+1d bulk described by the monoidal center (or the E1-center) Z1(S) of S [KWZ17] (as depicted
in the first picture in (1.4)), one can “rotate” the n+1d bulk to the time direction to obtain an
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Figure 2: This picture depicts all observables in LWLL in a 1+1D CFT. In particular, V denotes
the local quantum symmetry, and Ma,b is a space of defects fields, and Ma,a defines a topological
defect line (TDL). All Ma,b, together with the labels a, b, c, · · · ∈ S, form an enriched category Z1(S)S

with homZ1(S)S(a, b) =Ma,b.

anomaly-free nd phase (potentially gapless) as illustrated in the second picture in (1.4).

Z1(S)

(n+1)-th spatial direction

S
Z1(S)

the time direction

S

(1.4)

After the topological Wick rotation, the pair (Z1(S), S) represents a fusion n-category Z1(S)S

enriched in Z1(S) (or a Z1(S)-enriched fusion n-category). The enriched fusion n-category Z1(S)S

is called the topological skeleton2 of the anomaly-free nd phase. It turns out that the topological
skeleton Z1(S)S does not contain all the information of the anomaly-free nd phase. The physical
meaning of this topological skeleton is better explained together with the missing information.
In a 1+1D rational CFT, the missing information is the so-called local quantum symmetry V,
which is either a chiral symmetry (defined by a vertex operator algebra (VOA)) or a non-chiral
symmetry (defined by a full field algebra [HK07]), together with a braided functor ϕ : Rep(V)→
Z1(S), where Rep(V) denotes the category of V-representations. In other words, the triple
(V, ϕ, Z1(S)S) gives a complete information of a 1+1D rational CFT. The braided equivalence ϕ
endows the abstract enriched category Z1(S)S with a precise physical meaning. In particular, the
objects in Z1(S)S are objects in S, and are the labels of topological defect lines (TDL) admitted by
the local quantum symmetry. We illustrate these TDL’s and 0D defects among them in Figure 2.
For a, b ∈ S, the hom space homZ1(S)S(a, b) consists of (chiral or non-chiral) fields operators3 that
respect the local quantum symmetry (see [KZ20a, Section 3.4] for more details). These cover all
observables in a 1+1D CFT.

What we mean by respecting the local quantum symmetry is that the space homZ1(S)S(a, b) of
field operators is a V-representation, and the operator product expansion (OPE) among these
operators are defined by chiral vertex operators [MS89], or more precisely, by the intertwin-
ing operators of V [FHL93]. By the representation theory of VOA’s [HL95], it means that
homZ1(S)S(a, b) can be viewed as an object in Rep(V) and all the composition maps among these
hom spaces are morphisms in Rep(V). This is just another way to say that the category is
enriched in Rep(V). See [KZ20a, KZ21] for more details.

Remark 1.4. In the first picture in (1.4), before the topological Wick rotation, S is anomalous as
an nd topological order, and the anomaly is fixed by its n+1d (spatial dimension) bulk. After
the topological Wick rotation, the anomaly is fixed by the operators in n+1D spacetime.

2The topological skeleton can also be defined by S as in [KZ20b] because Z1(S)S does not contain more information
than S.

3They are also called boundary-condition changing operators in CFT.
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In [KZ21, Section 7], two of the authors proposed to generalize above picture (including the
topological Wick rotation) to higher dimensions to give a unified theory for gapped/gapless
phases without knowing how to include SPT/SET orders. Inspired by the classification of
SPT/SET orders in [KLWZZ20a] and the observation that an onsite symmetry should be a special
case of local quantum symmetries, two of the authors proposed in [KZ20b, Section 5.2] to apply
the topological Wick rotation to all boundary-bulk configurations (e.g. Figure 1) to obtain a new
description of SPT/SET orders in terms of enriched higher categories. This leads to a grand
unification of all gapped/gapless quantum liquids with/without onsite symmetries (including
symmetry-breaking phases). In particular, the results in Theorem 1.1 can be reinterpreted by
“rotating” the n+1d bulk in Figure 1 to the time direction and reinterpreting the pair (S, ϕ) as an
Z1(S)-enriched fusion n-category Z1(S)Sdetermined by the braided equivalenceϕ : Z1(R)→ Z1(S).
In this process, the n+1d bulk excitations in Z1(S) before the rotation are replaced by symmetric
(non-local) operators in the n+1D spacetime after the rotation.

Example 1.5. For an nd SPT order with a finite onsite symmetry G, topological excitations in S

consist of all the symmetry charges and their condensation descendants. They form a symmetric
fusion n-category nRep(G) in the bosonic case or nRep(G, z) in the fermionic case [KLWZZ20a],
where z ∈ G is the fermion parity. Therefore, an nd SPT order with the bosonic onsite symmetry
G should be categorically described by an enriched fusion n-category Z1(nRep(G))S for S = nRep(G),
which is defined by a braided equivalenceϕ : Z1(nRep(G))→ Z1(S) preserving nRep(G) ֒→ Z1(S).
In the fermionic cases, nRep(G) is replaced by nRep(G, z).

Remark 1.6. The same topological skeleton Z1(S)S can be associated to different gapped/gapless
phases depending on what local quantum symmetry we assign. We discuss a few examples for
a fusion 1-category S.

1. Given two different unitary rational VOA’s V and V′ with non-trivial central charges and
two braided equivalences ϕ : Rep(V) → Z1(S) and ϕ′ : Rep(V′) → Z1(S). Then the triples
(V, ϕ, Z1(S)S) and (V′, ϕ′, Z1(S)S) describe two different anomalous 1d gapless phases. Any
two holomorphic VOA’s are examples of such pairs of VOA’s. One can also choose V′

to be a modular invariant closed CFT (i.e. a rational full field algebra). Then the triple
(V′, ϕ′, Z1(S)S) describes an anomaly-free 1d gapless phase [KZ21].

2. Let S = Rep(G) for a finite group G. If we identify Z1(S) with Rep(VG) by a braided
equivalence ϕ : Rep(VG)→ Z1(S), where VG is the G-invariant sub-VOA of a holomorphic
VOA V (assuming the folklore conjecture [DVVV89, Kir02, DNR21]), we obtain a 1d
anomalous gapless phase. If we associate Z1(S) to an onsite symmetry G, which can be
viewed as a proper orbifold theory4 of the trivial VOA C, we obtain a 1d gapped SPT order.
Moreover, there is the braided equivalence ϕ : Z1(Rep(G))→ Z1(S) defining the SPT order
(see [KZ22, Corollary 2.25, Remark 2.26]). For example, if ϕ ≃ idZ1(Rep(G)), then it defines
the trivial 1d SPT order; otherwise, it defines a non-trivial SPT order.

Example 1.7. This enriched-category description of topological skeleton also works for symmetry-
breaking phases. Let nVecG be the category of G-graded n-vector spaces. Applying topological
Wick rotations to Remark 1.2, one can see that Z1(nRep(G))nVecG should describe a (spontaneous)
symmetry-breaking phase. In this work, we prove this fact explicitly for n = 1 and G = Z2.

The operators (or chiral/non-chiral fields) in V should be viewed as symmetric local operators.
An object in Rep(V) should be viewed as a topological sector of symmetric nonlocal operators,
i.e. an invariant subspace of all symmetric operators under the action of all symmetric local
operators. For example, the operators in Ma,b are all non-local operators because they can only
live at the end point of a non-trivial TDL unless both a and b are the trivial TDL. The mathematical

4In [KZ22], we provide an alternative mathematical theory of local quantum symmetries based on certain nets of
local operators.

6



theory of local quantum symmetries for general gapped/gapless quantum liquids is far beyond
this work and is developed in [KZ22].

An object in S is a TDL (or a topological excitation from a spatial point of view). In a lattice
model realization of the phase, a TDL amounts to a topological sector of states in the total
Hilbert space Htot of the lattice model. By a topological sector of states, we mean an invariant
subspace of states in Htot under the action of symmetric local operators and the symmetries.
For example, in the 2d toric code model realization of the 2d Z2 topological order, the four
particle-like excitations 1, e,m, f are precisely given by four topological sectors of states.

In summary, the enriched fusion category Z1(S)S summarizes all observables in spacetime for
all 1d gapped/gapless phases with/without symmetries up to the local quantum symmetry. In a
lattice model realization of a 1d gapped phase, we expect that

1. objects in S are the topological sectors of states in Htot;

2. objects in Z1(R) (or Z1(S)) are the topological sectors of symmetric non-local operators.

In this work, we check the validity of this proposal by rediscovering the topological skeleton
Z1(S)S from two concrete 1d lattice models: the Ising chain and the Kitaev chain.

Acknowledgments: We would like to thank Chun-Yu Bai, Gang Chen, Xiao-Liang Qi, Chenjie
Wang, Zheng-Yu Weng, Rongge Xu and Zhi-Hao Zhang for helpful discussion and comments.
LK is supported by NSFC under Grant No. 11971219 and Guangdong Provincial Key Laboratory
(Grant No.2019B121203002) and Guangdong Basic and Applied Basic Research Foundation
under Grant No. 2020B1515120100. XGW is partially supported by NSF DMR-2022428 and
by the Simons Collaboration on Ultra-Quantum Matter, which is a grant from the Simons
Foundation (651440). HZ is supported by NSFC under Grant No. 11871078.

2 Ising chain and Kitaev chain

In Section 2.1, we explain that a gapped quantum liquid can be described by the observables
in the long wave length limit (LWLL). In Section 2.2, for 1d gapped lattice models, we explain
that there are two types of observables in LWLL: the topological sectors of operators and those
of states, and together they form an enriched fusion category with a trivial monoidal center. In
Section 2.3 and 2.4, we show explicitly that observables in all gapped phases realized by the Ising
chain and the Kitaev chain indeed form enriched fusion categories with trivial centers. We also
show that the observables on the boundaries of these phases form enriched categories such that
the boundary-bulk relation holds, i.e. the bulk is the center of a boundary [KWZ15, KWZ17].
These results provide solid evidence of the proposal in [KZ20b] that the enriched-categorical
description works for all gapped symmetry-breaking phases, topological orders, SPT/SET orders
and CFT-type gapless phases. All examples of enriched (fusion) categories that appear in this
section are briefly reviewed in Appendix A.

2.1 Quantum phases and observables

Landau’s theory of phases and phase transitions is based on the idea of symmetry breaking.
This theory was so successful that it led to the wrong belief that Landau’s theory works for
all quantum phases until the discovery of exotic new phases beyond Landau’s paradigm. In
retrospect, we can see that Landau’s theory was not developed from the first principle5, by which
we mean first defining the notion of a phase, then finding a way to characterize a phase transition.

5The meaning of “the first principle” varies as we change our point of view. From a categorical point of view, a notion
of a phase can be understood via its relation (i.e. domain walls or phase transitions) to all phases. The point of view
taken here is a reductionist one, i.e. defining a phase by its microscopic realizations or its macroscopic observables.
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Instead, Landau’s theory was developed from the study of a concrete phase transition. The tools
and the language developed from this study automatically provide a way to distinguish different
phases by the so-called order parameters and symmetries. However, it does not provide a priori
reason for the completeness of the characterization of a phase by its symmetries.

The discovery of new gapped quantum phases beyond Landau’s paradigm (such as fractional
quantum Hall states) provides us a chance and motivation to study the notion of a gapped
quantum phase from the first principle. Indeed, it has already motivated many attempts to
define the notion of a gapped quantum liquid precisely from both the microscopic perspective
[CGW10a, ZW15] and the macroscopic perspective (see for example [Kit06, KW14, KWZ15,
LKW18, LW19, KTZho20, JF20, KLWZZ20a, KZ20b]).

First, since a gapped quantum liquid can be realized by lattice models, there should be a
microscopic definition based on lattice models. More precisely, a gapped quantum liquid phase
should be defined as an equivalence class of lattice models. The general idea of the equivalence
relation between two models is a path connecting two models in the space of models without
closing the gap and without changing the ground state degeneracy anywhere on the path. More
precisely, since only the ground state is physically relevant at zero temperature, in two interesting
attempts [CGW10a, ZW15], the equivalence relation was defined directly for the ground state
by local unitary transformations and the stacking of the product states. This is, however, not
the final word about the equivalence relation. The real challenge lies in how to formulate it
precisely and prove its compatibility with the macroscopic definition6.

Secondly, the notion of a quantum phase is defined at the thermodynamics limit and at
zero temperature. At zero temperature, regardless gapped or gapless, only physically relevant
observables are those survived in LWLL. Therefore, a quantum phase should be described by
all observables (in LWLL) of a family of lattice models connected by small symmetry-allowed
perturbations. A careful analysis of all observables in a lattice model should lead us to such a
description. Indeed, this analysis was done for many lattice models, such as the quantum double
models [Kit03] and the Levin-Wen models [LW05], and led to the correct categorical descriptions
of 2d topological orders [Kit03, KK12]. Ironically, this analysis has never been carried out for
symmetry-breaking phases within Landau’s paradigm. It turns out that this study is not so easy
if you do not know what you are looking for. In this work, guided by the proposal in [KZ20b]
that 1d quantum phases should be described by enriched fusion categories (see Section 1.2), we
start to do this long-overdue homework for two simple 1d lattice models: the Ising chain and
the Kitaev chain.

2.2 Topological sectors of operators and states

For a given 1d lattice model with a total Hilbert space Htot = ⊗i∈ZHi and a Hamiltonian with
only local interactions, many microscopic degrees of freedom are not observable in LWLL. For
example, individual states in Htot and microscopic local operators are not observable in LWLL.
It is similar to our daily experience. A physical object is always screened by the invisible cloud
of microscopic degrees of freedom (or local operators) around the object. The observables in
LWLL are those that can be moved in and out of the cloud freely. They can come from non-local
operators that are required to be unconfined (see Remark 2.1). For convenience, by a non-local
operator we always mean a unconfined one unless it is declared otherwise. Moreover, from the
LWLL perspective, such a non-local operator is necessarily screened by local operators. Therefore,
observables in LWLL are not the individual non-local operators but the subspaces of non-local
operators that are invariant under the action of local operators. Such an invariant subspace is

6As far as we know, there is no work on how to connect microscopic definition with a macroscopic one. For example,
it is not clear or even puzzling that two lattice models defined at different RG fixed points realize the same quantum
phase, such as the Levin-Wen models [LW05], can be connected by a path without closing the gap nor changing GSD.
One way out is to add local quantum symmetry to the description of a topological order [KZ20b] (see also Section 3).
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called a topological sector of operators (see Remark 2.2). The sector consisting of only local operators
is denoted by 1B. A morphism between two such sectors are operators that intertwine the action
of local operators. We denote the category of the topological sectors of operators by B. This
category B has an obvious monoidal structure defined by the multiplication of operators. It
turns out that B also has a braiding structure (see Remark 2.2). As a consequence, we expect
the category B to be a braided fusion category. Similar to the situation in 2+1D topological
orders [Kit03, KW14], we expect that all sectors of operators can detect themselves via double
braidings, or equivalently, the braidings of B should be non-degenerate.

Remark 2.1. In this work, for convenience, we can treat a non-local operator as an infinitely long
string of operators. Such a string of operators is called unconfined if the string remain tensionless
under all symmetry allowed perturbations; it is called confined otherwise.

Remark 2.2. A rigorous study of topological sectors of operators is beyond this work, and is
given in [KZ22]. In a nutshell, “local operators” should be replaced by the net of local operators
as in algebraic quantum field theories (see a review [Haa92] and references therein). Then a
topological sector of operators indeed becomes a sector of the net. The fusion and braiding
structures of B are defined in [KZ22]. Now we provide some intuition about the braiding
structure on B. The braiding structure on B is encoded by operators living in 2D spacetime.
It is different from that of anyons (or defect lines) defined in 2+1D spacetime. Two non-local
operators x and y in 2D spacetime can be “braided” in the following sense:

x
y

double braiding−−−−−−−−−−→ x
y {

y

ȳ

x
y

In the second step{, we introduce a local operator that creates a pair (y, ȳ) such that the purple
line breaks into two parts. The ȳy part becomes a local operator. This is possible because B has
duals (a natural physical requirement). Similarly, we introduce a local operator that creates a pair
(x, x̄) near x, then annihilates the x̄ with the original x, we obtain the third picture. Comparing
the third picture with the first one, we see an additional local operator ȳx̄xyx̄x. By choosing
x, x̄, y, ȳ properly, this local operator can encode the information of the double braiding of the
two sectors associated to x and y (see Section 2.3.1 for an example).

There is another type of observables, which are called topological excitations from a spatial
perspective, or equivalently, topological defect lines (TDL) from a spacetime perspective. It is
well known from the lattice model realizations of 2+1D topological orders, such as the toric code
model [Kit03], a TDL (or an anyon) can be defined as a topological sector (or superselection sectors)
of states, which is defined to be a subspace of Htot that are invariant under the action of local
operators. The sector containing the vacuum is called the vacuum sector denoted by 1S. The
1+1D cases are entirely the same.

It is clear that the topological sectors of operators act on those of states. We denote the space
of operators mapping a sector of states a to another sector b by hom(a, b), then hom(a, b) can be
viewed as an object in B. The set of all sectors of states, together with the spaces of morphisms

hom(a, b), form a category S♯ enriched in B. A portrait of these hom(a, b) as observables on the
1+1D world sheet is given in Figure 2 with Ma,b representing hom(a, b). If we replace the hom

space hom(a, b) in S♯ by a vector space homS(a, b) := homB(1,hom(a, b)), we obtain an ordinary
category S, which is reasonable to be called the category of the topological sectors of states (or
TDL’s or topological excitations).

Both S♯ and S are equipped with fusion products because TDL’s can be fused (horizontally
in Figure 2). The vacuum sector 1S plays the role of the tensor unit. Moreover, the fusion of
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two sectors of states should be compatible with the fusion of operators that can create these
two sectors of states from the vacuum. This compatibility is rather complicated but can be
mathematically summarized by the condition that S is equipped with a braided monoidal
functor ϕ : B → Z1(S), where Z1(S) is the Drinfeld center of S [KZ20b]. The braided monoidal
functor ϕ provides a canonical construction of a B-enriched fusion category BS [MP19]. It is

natural to expect that S♯ = BS asB-enriched fusion categories7. Note that, when we choose to use
BS instead of Z1(S)S, we have already include some information of the local quantum symmetry
(see Section 1.2). By the boundary-bulk relation [KWZ15, KWZ17], the enriched fusion category
BS describes an anomaly-free 1d phase if and only if Z1(BS) = Vec.

Remark 2.3. If the 1d phase is anomaly-free, i.e. Z1(BS) = Vec, then the vacuum sector 1S of states
provides a condensation of B [KZ18]. More precisely, A := homBS(1S,1S) defines a Lagrangian
algebra in B and is condensed on the the vacuum sector 1S of states [Kon14]. Moreover, S can be
recovered from A as the category BA of right A-modules in B. This condensation interpretation
is rather convenient for later studies.

When we do not impose any symmetry, all non-local operators are confined by introducing
arbitrary perturbations. In other words, without imposing any symmetry, we obtain B = Vec. If
the phase is anomaly-free, then it is necessary that S = Vec. This is just another way to see that
there is no non-trivial anomaly-free 1d topological order. Moreover, we also recover the fact that
an anomalous 1d topological order can be described by a fusion category S.

If we impose an onsite symmetry given by a finite group G, then all the small perturbations
are required to respect the symmetry. In this case, the term “local operators” needs to be replaced
by “symmetric local operators”, and the topological sectors of operators need to be replaced by
those of symmetric operators. More precisely, in the presence of an onsite symmetry, we again
have two categories B and S:

1. an object in S is a TDL (or a particle-like topological excitation) or a topological sector of
states, which is defined by an invariant subspace of Htot under the action of symmetric
local operators and the symmetries.

2. an object in B is a topological sector of symmetric operators, which is defined by a sub-
space of all (potentially non-local) operators invariant under the action of symmetric local
operators and the symmetries (see Remark 2.5).

Altogether they form an enriched fusion category BS defined by a braided equivalence ϕ : B→
Z1(S). We demonstrate this picture in later subsections through concrete 1d lattice models.

2.3 Ising chain

Consider a 1d Ising chain8: Htot = ⊗i∈ZC2
i

with the Hamiltonian defined as follows:

H = −
∑

i

BXi −
∑

i

JZiZi+1,

where Xi and Zi are Pauli matrices

X =

(

0 1
1 0

)

, Z =

(

1 0
0 −1

)

.

7A lengthy proof of this fact in the case of 1+1D CFT’s was given in [KZ20a, Section 6]. We expect that a similar
proof works for gapped 1d phases (with symmetries) with the vertex operator algebra in [KZ20a, Section 6] replaced
by a more general local quantum symmetry, which is clarified in [KZ22].

8Note that ⊗i∈ZC
2
i

is not mathematically well-defined but should be viewed as a proper N → ∞ limit of ⊗−N<i<NC
2
i

spanned by finite energy states.
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We set |0⟩i, |1⟩i ∈ Ci to be the eigenstates of Zi, i.e. Zi|0⟩i = |0⟩i and Zi|1⟩i = −|1⟩i, and set

|+⟩i =
1
√

2
(|0⟩i + |1⟩i), |−⟩i =

1
√

2
(|0⟩i − |1⟩i).

It is clear that Xi|±⟩i = ±|±⟩i.

2.3.1 The J = 0 case

Now we consider the case J = 0 and B ≈ 1. In this case, the ground state is

|Ω⟩ = | · · · + + + + · · · ⟩.

The system is gapped. Note that Xi is a local Z2 symmetry, and U = ⊗iXi defines a global onsite
Z2 symmetry.

If we do not impose any symmetry, the only topological sector of states is the vacuum sector,
denoted by 1. The only topological sector of operators is the trivial one. Indeed, in this case,
all non-local operators can be confined by adding proper small perturbations. For example, the
operators

mi = ⊗k≤iXk and Um j

are confined by adding the term −
∑

i KZi to the Hamiltonian. As a consequence, when J = 0, the
phase is the trivial 1d topological order and can be mathematically described by the category
Vec of finite dimensional vector spaces, which has a unique simple object 1.

Now we impose the U-symmetry. The ground state |Ω⟩ preserves the U-symmetry. We call
an operator P preserving the U-symmetry (i.e. [P,U] = 0) a U-symmetric operator. For example,
both the identity operator 1 and ZiZi+1 are U-symmetric local operators, and m j is a U-symmetric
non-local operator. Although the operator Zi breaks the U-symmetry as a local operator, it can
be viewed as a U-symmetric non-local operator because Zi = ⊗k≥i(ZkZk+1) (see Remark 2.4).
Moreover, Zi and m j are unconfined by any U-symmetric perturbations of the Hamiltonian.

Remark 2.4. We set Zi, j := ⊗i≤k≤ jZkZk+1. Strictly speaking, Zi is not the same as Zi,∞ because the
later has another Z j at j ≈ ∞. However, Zi catches all the corrected local properties of Zi,∞ near
the site i. So it is harmless and convenient to apply this identification Zi = Zi,∞. Alternatively,
one can use the string operator Zi, j with the string length | j − i| much longer than the given
characteristic length (or simply Zi,∞). The final result is irrelevant to the choice.

Now the total Hilbert space splits into two topological sectors of states labeled by symmetry
charges. We denote the sector associated to the vacuum |Ω⟩ by 1, and the sector associated to
the non-trivial symmetry charges by e. The trivial sector 1 is viewed as a trivial particle or a
1-particle. The lowest energy states in the sector e are

|e⟩i := Zi|Ω⟩ = | · · · + + −i + + + · · · ⟩, ∀i ∈ Z,

each of which represents an e-particle located at site i. The following state

ZiZ j|Ω⟩ = | · · · + + −i + + + − j + + + · · · ⟩

represents two e-particles located at site i and site j. This immediately implies the following
fusion rules: 1 ⊗ e = e ⊗ 1 = e, e ⊗ e = 1, which coincide with the fusion rules in the category
Rep(Z2) of Z2-representations.

A topological sector of U-symmetric operators is invariant under the action of U-symmetric
local operators and the symmetries. For example, all U-symmetric local operators and U are
in the trivial sector; and Yk,Zk belong to the same topological sector because Yk = −iZkXk. The
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operator mi is a U-symmetric non-local operator. Although mi does not create a new particle
from |Ω⟩, it plays a non-trivial role in the model.

By abusing the notation, we denote the topological sectors associated to the U-symmetric
operators 1,mi,Z j,miZ j by 1,m, e, f , respectively. For x, y = 1, e, we denote the space of U-

symmetric operators that map from x to y by homJ=0

bulk
(x, y). Then we immediately obtain

homJ=0

bulk
(1,1) = 1 ⊕m, homJ=0

bulk
(1, e) = homJ=0

bulk
(e,1) = e ⊕ f , homJ=0

bulk
(e, e) = 1 ⊕m. (2.1)

Note that we have given the topological sectors associated to the operators 1,mi,Zi,miZ j the
same notations as those of anyons in the 2d toric code model or the simple objects in Z1(Rep(Z2))
(see Appendix A) because these topological sectors of operators provide a physical realization
of the unitary module tensor category Z1(Rep(Z2)) (recall Remark 2.5). Indeed, first note that
these topological sectors of U-symmetric operators automatically satisfy the same fusion rules
(defined by multiplying operators) as those of Z1(Rep(Z2)). Moreover, they also recover the
braidings in Z1(Rep(Z2)). For example, one can recover the double braiding between e and m
in Z1(Rep(Z2)) by first creating a pair of “m-particles” at site i and j for i < j (by applying mim j

to |Ω⟩), then applying Zk for i < k < j, then annihilating two m-particles, then annihilating
Zk, one obtains Zkmim jZkmim j = −1, which is precisely the double braiding between e and m
in Z1(Rep(Z2)) (recall Remark 2.2). One can recover the double braiding between m and e by
mkZiZ jmkZiZ j = −1.

Remark 2.5. Similar discussion of these operators and their relation to Z1(Rep(Z2)) have already
appeared in [JW20], where these operators were called patch symmetry operators, and Z1(Rep(Z2))
was called the categorical symmetry and interpreted as the bulk of a boundary, which has the
algebraic higher symmetry Rep(Z2). The point of view taken in [JW20] is different from but
connected to ours precisely through a topological Wick rotation (see Section 1.2).

In [KZ22], the symmetric local operators are reformulated precisely as the topological net of
symmetric local operators, and a topological sector of operators is defined precisely as a sector
of this topological net. For a 1d gapped quantum system with a finite onsite symmetry G, the
category of all the sectors of the associated topological net is proved rigorously to be Z1(Rep(G))
(see Appendix A) [KZ22, Corollary 2.25, Remark 2.26].

Comparing (2.1) with (A.4), we obtain our first main result.

Theoremph 2.6. The Ising chain when J = 0,B ≈ 1 realizes the trivial 1d Z2 SPT order, which can
be described mathematically by the enriched fusion category Z1(Rep(Z2))Rep(Z2).

Remark 2.7. Strictly speaking, we have to check the identity morphisms (A.15), the compositions
of morphisms (A.16)-(A.17) and the horizontal fusion morphisms, such as (A.20), before we make
the claim in Theoremph 2.6. Since these defining structures of enriched fusion categories are
mathematically technical, and checking their coincidence with lattice models is straightforward
and rather trivial in the Z2-symmetry case, we decide to leave this checking as an exercise for
all cases in this work. But for a non-abelian onsite symmetry G, this exercise can be non-trivial
and interesting.

Remark 2.8. The categorical symmetry Z1(Rep(Z2)) does not depend on the Hamiltonian. It
only depends on the symmetry. This justifies the proposal that the bulk Z1(Rep(Z2)) of the
anomalous 1d phase defined by Rep(Z2) should be viewed as the categorical symmetry of the 1d
phase [JW20, KLWZZ20b] (see also Remark 3.6). Moreover, Rep(Z2) is called the algebraic higher
symmetry of the 1d phase [JW20, KLWZZ20b].

Remark 2.9. The trivial action of mi on |Ω⟩ can be interpreted as a condensation of the “m-
particles” (or equivalently, the Lagrangian algebra 1 ⊕ m [Kon14]) in the categorical symmetry
provided by the vacuum sector of states (recall Remark 2.3). The multiplication of the Lagrangian
algebra 1 ⊕m is given by (A.16) and the unit is given by (A.15).
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Remark 2.10. Mathematically, the categorical description Z1(Rep(Z2))Rep(Z2) is anomaly-free in the
sense that this enriched fusion category Z1(Rep(Z2))Rep(Z2) has a trivial monoidal center [KZ18],
i.e.

Z1(Z1(Rep(Z2))Rep(Z2)) = Vec. (2.2)

It is worthwhile to compare the “anomaly-fixing” mechanics in this approach with that in the
gauging-the-symmetry approach and that in the boundary-bulk-relation approach introduced
in [KLWZZ20a].

(1) In the gauging-the-symmetry approach, since the category Rep(Z2) of symmetry charges
cannot be detected by the braidings, it was viewed in some sense as “anomalous”. The
anomaly is fixed by the gauging process of introducing new particles. The total particles
after gauging form a multi-fusion 1-category Fun(Rep(Z2),Rep(Z2)), which has a trivial
monoidal center [KLWZZ20a, Section 2.2.1].

(2) In the boundary-bulk-relation approach, the category Rep(Z2) of symmetry charges is
also viewed as anomalous, and the anomaly is fixed by the 1-dimensional higher bulk
Z1(Rep(Z2)). In particular, the m-particles in the bulk can detect the e-particles via the
half-braidings, thus fixed the anomaly [KLWZZ20a, Section 3.2].

(3) What we have shown in this subsection is that once we impose the U-symmetry, the
category of the topological sectors of symmetric operators is changed to Z1(Rep(Z2)). By
replacing Rep(Z2) with Z1(Rep(Z2))Rep(Z2), we fix the “anomaly” in Rep(Z2) by operators in
1+1D spacetime in the sense that an e-particle is now detectable by a U-symmetric local
operator mim j as explained in the paragraph below Eq. (2.1).

Notice that (2) and (3) are essentially equivalent if we apply topological Wick rotation (see
Section 1.2). Moreover, one can recover the category Fun(Rep(Z2),Rep(Z2)) in (1) by closing the
fan around the left-bottom corner of Picture (b) in Figure 3 as the consequence of the following
identity:

Fun(Rep(Z2),Rep(Z2)) = Rep(Z2) ⊠Z1(Rep(Z2)) Rep(Z2).

See [KWZ15, Eq. (3.4)] for more details, and see [KLWZZ20a, KLWZZ20b] for more discussion
of this closing-fan realization of gauging the symmetry.

2.3.2 Two gapped boundaries when J = 0

It is also natural to consider the model with a gapped boundary, i.e. Htot = ⊗i≥0C
2
i
.

If we do not impose any symmetry, there is only one possible boundary condition. The
precise boundary Hamiltonian is irrelevant because there is no non-trivial particles and no
non-trivial (unconfined) non-local operators. Therefore, the boundary phase can be described
mathematically by the category Vec. We illustrate this fact by the following picture.

VecVec Vec
(2.3)

If we impose the U-symmetry, there are two choices of boundary conditions.

1. U-symmetric boundary condition: The precise boundary Hamiltonian is irrelevant as long
as it preserves the U-symmetry. For convenience, we can choose the following boundary
Hamiltonian that preserves the U-symmetry:

H = −
∑

i≥0

Xi.
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In this case, there are still two topological excitations on the boundary: 1 and e. On the
boundary m0 becomes a U-symmetric local operator now, so are U and Um0 because the
U-symmetry is preserved on the boundary. Hence, we obtain the following topological
sectors of operators:

homJ=0
s−bdy

(1,1) = 1, homJ=0
s−bdy

(1, e) = homJ=0
s−bdy

(e,1) = e, homJ=0
s−bdy

(e, e) = 1. (2.4)

Comparing (2.4) with (A.6), we conclude that the boundary phase can be described by the
RepZ2-enriched 1-category RepZ2 RepZ2.

2. U-symmetry broken boundary condition: For example, we can choose the following
boundary Hamiltonian to break the U-symmetry only on the boundary:

H = −Z0 −
∑

i>0

Xi.

In this case, the ground state is |1 + + + · · · ⟩, and Z0 does not create a new sector of states
from the vacuum. Or equivalently, we can say that e-particles condense on this boundary.
Moreover, Z0 becomes a local operator because the U-symmetry is broken on the boundary.
So is Z0,∞ because Z0Z0,∞ is now a local operator. Although m0 becomes a local operator,
Um0 remains a non-local operator and defines a non-trivial topological sector of operators
because the U-symmetry is broken on the boundary. As a consequence, we obtain

homJ=0
sb−bdy

(1,1) = 1 ⊕m. (2.5)

Comparing (2.5) with (A.9), we see that the observables on the U-symmetry broken bound-
ary form an enriched category VecZ2 Vec.

Remark 2.11. If we consider the boundaries on the right side, i.e. Htot = ⊗i≤0C
2
i
. The categorical

descriptions of the boundaries remain the same.

Remark 2.12. It is clear that the observables in the bulk act on those on the boundary. Therefore,
the categorical description of a boundary is necessarily a module over that of the bulk. Indeed,
RepZ2 RepZ2 and VecZ2 Vec are both closed modules over Z1(Rep(Z2))Rep(Z2) (see [KZ21, Definition
3.18]). By [KYZZ21, Corollary 4.39], and the boundary-bulk relation (i.e. the bulk is the center
of a boundary) [KWZ17] holds for both boundaries, i.e.

Z0(RepZ2 RepZ2) = Z1(Rep(Z2))Rep(Z2) = Z0(VecZ2 Vec), (2.6)

where Z0 denotes the E0-center of an enriched category [KYZZ21, Section 4.4]. The identity
(2.2) automatically follows from (2.6) by the fact that the center of a center is trivial [KYZZ21,
Remark 5.28]. This fact is the mathematical counterpart of the obvious physical fact that the
bulk of a bulk is trivial.

In Picture (a) of Figure 3, we illustrate the 1d Z2 SPT order, together with its two gapped
boundaries that are constructed in this subsection. Picture (b) of Figure 3 depicts a 2d Z2

topological order described by Z1(Rep(Z2)), together with two gapped boundaries described by
two fusion 1-categories Rep(Z2) and VecZ2

, respectively, and the trivial domain wall (defined
by Rep(Z2)) in Rep(Z2) and an invertible domain wall (defined by Vec) between Rep(Z2) and
VecZ2

. In particular, the vertical direction is the 2nd spatial direction. We see that Picture (a)
can be obtained from Picture (b) by applying the topological Wick rotation [KZ20a] (see also
Section 1.2).
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Z1(Rep(Z2))Rep(Z2)

Rep(Z2)Rep(Z2) VecZ2 Vec

Rep(Z2)

Rep(Z2) VecZ2

Rep(Z2) Vec

Z1(Rep(Z2))

(a) (b)

Figure 3: These pictures illustrate two gapped boundaries of the trivial 1d Z2 SPT order in two
different ways.

2.3.3 The B = 0 case

Now we consider the case B = 0 and J ≈ 1. we have H = −
∑

i ZiZi+1. In this case, U = ⊗iXi is
still a global symmetry, but Xi is not a local symmetry. The following two states

| · · · 000 · · · ⟩ and | · · · 111 · · · ⟩

are both ground states representing U-symmetry broken phases.

If we do not impose any symmetry and if we ignore perturbations, then total Hilbert space
splits into four sectors Hab for a, b = 0, 1, where Hab is spanned by states (⊗k<i|a⟩k)(⊗k≥i|b⟩k) for
i ∈ Z. We denote the topological sector associated to Hab by sab. Then we see immediately the
fusion rules among them:

sab ⊗ scd = δbcsad. (2.7)

Similar to the no-symmetry case when J = 0, there are no non-local operators. Therefore,
this phase is described mathematically by the unitary multi-fusion 1-category that consists of
four simple objects s00, s01, s10, s11 satisfying the fusion rules (2.7). Mathematically, this multi-
fusion category is precisely the category Fun(VecZ2

,VecZ2
). However, this nice mathematical

description requires fine tuning and is not stable under perturbations. By adding a small
perturbation term say −

∑

i KZi for 0 < K ≪ 1, all sectors s01, s10, s11 are gone. We obtain again
the trivial phase described by Vec.

Remark 2.13. Although it needs fine tuning, the mathematical description Fun(VecZ2
,VecZ2

) of a
1d bulk is natural and anomaly-free because the E1-center (or Drinfeld center) of Fun(VecZ2

,VecZ2
)

is trivial, i.e. Z1(Fun(VecZ2
,VecZ2

)) = Vec. It naturally appears in the process of dimensional
reductions of a 2d topological order [KWZ15, AKZ17] (see Remark 2.20).

Now we impose the U-symmetry. Note that none of sab for a, b = 0, 1 are U-symmetric
because the ground states break the symmetry. They form two U-symmetric topological sectors
of states:

1 := s00 ⊕ s11, m = s01 ⊕ s10,

The fusion rules are 1 ⊗m = m ⊗ 1 = m and m ⊗m = 1, coinciding with those in VecZ2
.

Remark 2.14. Although the states in the sector s00 ⊕ s11 (such as | · · · 000 · · · ⟩ ± | · · · 111 · · · ⟩) can
carry different “U-charges”, it is physically meaningless to split s00 ⊕ s11 further into two sectors
according to the “U-charges” because the relative phase factors in the superposition of two states
in two different superselection sectors are meaningless according to [WWW52].9 The sector m
is similar.

9This fact is compatible with the fact that the difficulty of creating a Schrödinger Cat state grows exponentially (i.e.
∼ 2N) as the number of qubits N approach∞ (see a discussion of this fact from a modern perspective [QR20]).
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The U-symmetric non-local operator Zi (or rather Zi,∞ recall Remark 2.4) acts on the vacuum
| · · · 000 · · · ⟩ trivially. Using the same analysis as in Section 2.3.1, we immediately obtain

homB=0
bulk(1,1) = 1 ⊕ e, homB=0

bulk(1,m) = homB=0
bulk(m,1) = m ⊕ f , homB=0

bulk(m,m) = 1 ⊕ e.

Comparing them with (A.5), we obtain the following result (recall Remark 2.7).

Theoremph 2.15. The Ising chain when B = 0 and J ≈ 1 with the U-symmetry realizes a
spontaneous symmetry-breaking phase, which can be described mathematically by the enriched
fusion category Z1(Rep(Z2))VecZ2

.

Remark 2.16. The trivial action of Zi on the vacuum can be interpreted as the condensation
of the “e-particles” (or equivalently, the Lagrangian algebra 1 ⊕ e [Kon14]) in the categorical
symmetry provided by the vacuum sector of states (recall Remark 2.3).

Remark 2.17. Note that Rep(Z2) = VecZ2
as fusion categories. We can identify Z1(Rep(Z2))VecZ2

with
Z1(Rep(Z2))

m↔e Rep(Z2). The enrichment in
Z1(Rep(Z2))

m↔e Rep(Z2) is twisted by the braided auto-
equivalence (e↔ m) of Z1(Rep(Z2)). Note that this braided auto-equivalence does not preserve
the symmetry charges Rep(Z2) in Z1(Rep(Z2)). This coincides with the fact that H2(Z2,U(1)) is
trivial.

2.3.4 Two gapped boundaries when B = 0

Now we consider the same model with a boundary on the left side, i.e. Htot = ⊕i≥0C
2
i
.

Without imposing any symmetry, and without fine tuning, there is only one sector of states
associated to the lattice with a boundary. It consists of the lowest energy state |000 · · · ⟩. The
same boundary condition can be imposed on the right side. We illustrate two side boundaries
in the following picture:

VecVec Vec
(2.8)

Remark 2.18. It is worthwhile to discuss the boundaries of the fine tuned bulk (consisting of four
sectors sab for a, b = 0.1) without imposing any symmetry because they often occur in the process
of dimensional reductions. There are only two non-trivial sectors s′0 and s′

1
of states associated

to the lattice with a boundary. The sector s′0 consists of the state |000 · · · ⟩. The sector s′
1

consists
of the state |111 · · · ⟩. There is no unconfined non-local operators. Therefore, the boundary phase
can be described by the category VecZ2

(forgetting its monoidal structure). Moreover, we have
the following fusion rules:

s′a ⊗ sbc = δabs′c, ∀a, b, c = 0, 1.

This fusion rule endows the category VecZ2
with a structure of right Fun(VecZ2

,VecZ2
)-module.

Similarly, if we choose a boundary on the right side, i.e. Htot = ⊕i≤0C
2
i
. Again the boundary

phase can be described by the 1-category VecZ2
with two simple objects s′′a and the fusion rules:

sab ⊗ s′′c = δbcsa, ∀a, b, c = 0, 1.

This fusion rule defines a structure of a left Fun(VecZ2
,VecZ2

)-module on VecZ2
. We illustrate

them in the following picture:

Fun(VecZ2
,VecZ2

)VecZ2
VecZ2

(2.9)

If we impose the U-symmetry, there are two choices of boundary conditions.
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Z1(Rep(Z2))VecZ2

Rep(Z2)Vec
VecZ2 VecZ2

VecZ2

Rep(Z2) VecZ2

Vec VecZ2

Z1(Rep(Z2))

(a) (b)

Figure 4: These pictures illustrate two gapped boundaries of the Z2-symmetry broken phase in
two different ways.

1. U-symmetric boundary condition: For example, we can choose the boundary Hamiltonian
as H = −

∑

i≥0 ZiZi+1. Now m-particles condense on the boundary. Only surviving particle
on the boundary is 1. Hence, the category of boundary particles is Vec (forgetting the
monoidal structure). In the neighborhood of the boundary, m0 and Um0 become local U-
symmetric operators. The operator Z0 is still a U-symmetric non-local operator. Therefore,
we obtain

homB=0
s−bdy(1,1) = 1 ⊕ e.

Comparing it with (A.8), we see that the observables on this gapped boundary form the
enriched category Rep(Z2)Vec.

2. U-symmetry broken boundary condition: For example, we can choose the boundary
Hamiltonian as H = −Z0−

∑

i>0 ZiZi+1. In this case, U-symmetry is broken on the boundary.
There are still two sectors of states consisting of

|0000 · · · ⟩ and Um0|0000 · · · ⟩ = |0111 · · · ⟩,

respectively. Note that a bulk m-particle acts on the two boundary sectors of states as a non-
trivial permutation. Hence, the boundary particles form the category VecZ2

(forgetting the
monoidal structure). The operator Z0 is now a local operator. The only non-trivial sector
of operators consists of U (because the symmetry is broken on the boundary). Therefore,
we obtain

homB=0
sb−bdy(1,1) = homB=0

sb−bdy(m,m) = 1, homB=0
sb−bdy(1,m) = homB=0

sb−bdy(m,1) = m.

Comparing them with (A.7), we see that the observables on this gapped boundary form
the enriched category VecZ2 VecZ2

.

Remark 2.19. By [KYZZ21, Corollary 4.39], the boundary-bulk relation still holds, i.e.

Z0(Rep(Z2)Vec) = Z1(Rep(Z2))VecZ2
= Z0(VecZ2 VecZ2

).

Figure 4 (a) illustrates the Z2-symmetry broken 1d phase with two gapped boundaries. In
Figure 4 (b), we depict a 2d topological order Z1(Rep(Z2)), together with two different gapped
boundaries Rep(Z2) and VecZ2

and two 0d domain walls VecZ2
and Vec. In particular, the vertical

direction is the 2nd spatial direction. Again Figure 4 (a) can be obtained from Figure 4 (b) via a
topological Wick rotation (see Section 1.2).

Remark 2.20. If we fuse the left vertical line in Figure 4 (b) with the horizontal line, we obtain
a 1d bulk phase with a boundary as depicted in (2.8); if we fuse the right vertical line with the
horizontal line, we obtain a fine-tuned 1d bulk with a boundary as depicted in (2.9).
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Remark 2.21. When J = B = 1, the system is at the critical point of a phase transition. We

denote the Ising vertex operator algebra by VIs, its right moving counterpart by VIs and the
Ising unitary modular tensor category by Is, i.e. Is =ModVIs

. Then this critical point (as a 1+1D

gapless phase) might10 be described by a pair (VIs ⊗C VIs, Z1(Is)Is) [KZ21]. This also means that
the enriched-category description works for both gapped and gapless phases.

Remark 2.22. One can also use a domain wall to connect two 1d gapped phases realized by the
Ising chain by considering the following Hamiltonian

H = −
∑

i<0

BXi −
∑

i≥0

JZiZi+1

for J = B ≈ 1. Note that both m−1 and Z0 acts trivially on the vacuum | · · · + + + 000 · · · ⟩.
Similar to Remark 2.9 and 2.16, all “particles” in the categorical symmetry are condensed by the
vacuum sector 1wall of states on the wall, i.e. hom(1wall,1wall) = 1 ⊕m ⊕ e ⊕ f . Comparing it with
(A.14), it is clear that the wall can be described by the enriched category Z1(Rep(Z2))Vec, which is
an invertible Z1(Rep(Z2))Rep(Z2)-Z1(Rep(Z2))VecZ2

-bimodule. This implies that two different gapped
phases realized in the Ising chain are Morita equivalent. Actually, the representation theory of
enriched fusion categories predicts that there are other bimodules or domain walls. We illustrate
one in the following picture:

Z1(Rep(Z2))Rep(Z2)

Rep(Z2)Rep(Z2) VecZ2 Vec

VecZ2 Vec ⊠ Rep(Z2)Vec

Z1(Rep(Z2))VecZ2

Rep(Z2)Vec
VecZ2 VecZ2

By the spatial equivalence introduced in [Zhe17, KZ21], all of this bimodules or domain walls
are spatially equivalent due to the lack of thermodynamic limit of “0d phases”.

Remark 2.23. Our restudy of the Ising chain explicitly shows that the enriched-category ap-
proach is capable of unifying the SPT orders with the (spontaneous) symmetry-breaking orders.

2.4 1d Kitaev chain

Consider the Kitaev chain [Kit03].

H =
⊗

j

H j,

H = −µ
∑

j

c†j c j − t
∑

j

(c†j+1c j + c†j c j+1) + ∆
∑

j

(c jc j+1 + c†j+1c†j ),

where H j is the super vector space of dimension 1|1. We can rewrite the Hamiltonian by
Majorana operators:

γ j,1 = c j + c†j , γ j,2 = i(c j − c†j ).

We have γ†
j,a = γ j,a and {γ j,a, γk,b} = 2δ jkδab for a, b = 1, 2. Then we obtain

H =
µ

2

∑

j

(1 − iγ j,1γ j,2) +
t − ∆

2

∑

j

iγ j,1γ j+1,2 −
t + ∆

2

∑

j

iγ j,2γ j+1,1

There is a fermion parity operator
U = ⊗ j iγ j,1γ j,2.

10There are other candidates. For example, one can replace VIs ⊗C VIs by the full field algebra A = 1⊠ 1⊕ψ⊠ψ, i.e. a
condensation algebra in Z1(Is), we obtain another pair (A, Z1(Rep(Z2))Rep(Z2). This is an interesting direction to explore.
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The U-symmetric local operators are generated by γ j,1γ j,2 and γ j,1γ j+1,2. There are U-
symmetric nonlocal operators

mk =
∏

j≤k

iγ j,1γ j,2, fk =
∏

j≤k

γ j,2γ j+1,2, ek = mk fk.

There are again four simple sectors of symmetric operators 1,m, f , e associated to the identity
operator, mk, fk, ek, respectively. The category of the topological sectors of operators form the
braided fusion category Z1(sVec). As a braided fusion category, Z1(sVec) is braied equivalent to
Z1(Rep(Z2)), but the symmetry charges are embedded into Z1(sVec) according to 1 7→ 1, f 7→ f .

It is helpful to compare this model with the Ising chain under the correspondence X j 7→
iγ j,1γ j,2 and Z j 7→ γ j,2. However, different from Z j, the operator γ j,2 is a super operator. Thus the
category Rep(Z2) is generally replaced by the category sVec of finite dimensional supervector
spaces in this model. Note that Rep(Z2) and sVec are the same fusion category but different
in their braidings. It is helpful to remind the readers of three different fusion subcategories of
Z1(Rep(Z2)) given in (A.2), which also explains our notations.

2.4.1 The case µ = 1 and t = ∆ = 0

In the bulk, there are two topological sectors of states (or bulk excitations) labeled by symmetry
charges 1 (the even parity) and f (the odd parity) with the following obvious fusion rules:

1 ⊗ 1 = f ⊗ f = 1, 1 ⊗ f = f ⊗ 1 = f .

Moreover,
homkc1

bulk(1,1) = homkc1
bulk( f , f ) = 1 ⊕m,

homkc1
bulk(1, f ) = homkc1

bulk( f ,1) = f ⊕ e.

Comparing them with (A.10), we see that the observables in this 1d phase form the enriched
fusion category Z1(sVec)sVec. According to Example 1.5 (see also Remark 1.6), this phase is the
trivial fermionic 1d SPT order with a Z2 onsite symmetry.

When there is a boundary on the left defined by the same Hamiltonian restricting i ≥ 0, there
are two boundary excitations 1, f , and we have

homkc1
bdy(1,1) = homkc1

bdy( f , f ) = 1,

homkc1
bdy(1, f ) = homkc1

bdy( f ,1) = f .

Comparing them with (A.12), we see that the observables on this boundary form the enriched
category sVecsVec. The 1d bulk phase and its boundary can be obtained from the 2d spatial
configuration depicted in the left half of Figure 5 via a topological Wick rotation.

Remark 2.24. By [KYZZ21, Corollary 4.39], the boundary-bulk relation holds, i.e.

Z0(sVecsVec) ≃ Z1(sVec)sVec.

2.4.2 The case µ = 0 and t = −∆ ≈ −1

This case is obtained from the previous one by making a replacement γ j,2 7→ γ j+1,2, thus is related
to the previous case under the involution m↔ m f .

In the bulk, there are two topological sectors of states (or bulk excitations) 1, f with the
following fusion rules:

1 ⊗ 1 = f ⊗ f = 1, 1 ⊗ f = f ⊗ 1 = f .
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sVec

sVec sVec

Ym↔e

sVec Vec

Z1(sVec)

Z1(sVec)

Figure 5: This picture depicts a 2d spatial configuration that can realize two 1+1D gapped phases
appeared in 1d Kitaev chain and their boundaries via topological Wick rotation. We use Ym↔e

to denote the invertible domain wall associated to the braided auto-equivalence Z1(sVec) →
Z1(sVec) defined by m ↔ e. By [KZ18], Ym↔e can be mathematically described by the category
FunsVec|sVec(Vec,Vec) of sVec-sVec-bimodule functors.

Moreover, we have
homkc2

bulk(1,1) = homkc2
bulk( f , f ) = 1 ⊕ e,

homkc2
bulk(1, f ) = homkc2

bulk( f ,1) = f ⊕m.

Comparing them with (A.11), we see that the observables in this 1d phase form the enriched

fusion category Z1(sVec)
m↔e sVec, where the enrichment is twisted from the standard one by the

involution m↔ e. According to Eq. (1.3) and Example 1.5 (see also Remark 1.6), this 1d phase is
the unique non-trivial 1d SPT order with a fermionic Z2 onsite symmetry, which is also called a
1d p-wave topological superconductor.

When there is a boundary on the left by restricting the model to i ≥ 0, there is only one
boundary excitation 1′ and we have

homkc2
bdy(1′,1′) = 1 ⊕ f .

Comparing it with (A.13), we see that the observables on this boundary form the enriched
category sVecVec. The 1d bulk phase and its boundary can be obtained from the 2d spatial
configuration depicted in the right half of Figure 5 via a topological Wick rotation.

Remark 2.25. By [KYZZ21, Corollary 4.39], the boundary-bulk relation holds, i.e.

Z0(sVecVec) ≃ Z1(sVec)
m↔e sVec.

Remark 2.26. One can construct a domain wall between two 1d gapped phases realized in the
Kitaev chain. We leave it as an exercise to show that it can be described mathematically by the
enriched category FunsVec|sVec(Vec,Vec)Vec (see Figure 5).

Remark 2.27. Note that sVec = Rep(Z2) = VecZ2
as fusion categories. Therefore, we can simply

identify them. As a consequence, we can have the following identifications:

Z1(sVec)sVec = Z1(Rep(Z2))Rep(Z2) and Z1(sVec)
m↔e sVec = Z1(Rep(Z2))VecZ2

.

In other words, enriched fusion categories appeared in Kitaev chain and those appeared in Ising
chain are entirely the same. However, the bosonic symmetry charges Rep(Z2) and the fermionic
symmetry charges sVec play different roles in Z1(Rep(Z2)), i.e.

Rep(Z2) ֒→ Z1(Rep(Z2)) sVec ֒→ Z1(Rep(Z2))

1, e 7→ 1, e 1, f 7→ 1, f . (2.10)

This difference provides different physical meanings to the topological skeletons in bosonic
and fermionic cases. This observation leads us to the classification of all fermionic 1d gapped
quantum phases given in Theoremph 3.4.
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3 Classification of 1d gapped quantum phases

In [KZ21, Section 7][KZ20b, Section 5.2], a unified mathematical framework was proposed for
the study of all gapped/gapless quantum liquid phases with/without onsite symmetries in all
dimensions. In particular, a quantum liquid X can be described by a pair X = (Xlqs,Xsk), where
Xlqs encodes the information of the so-called local quantum symmetry and Xsk is the topological
skeleton, which is mathematically described by an enriched (higher) category. In a 1+1D chiral
(resp. non-chiral) CFT, Xlqs is given by a vertex operator algebra (resp. a full field algebra). For
gapped phases, Xlqs is more subtle. A proper treatment of Xlqs requires us to work within the
framework of a proper generalization of conformal nets. Indeed, in a recent work [KZ22], local
quantum symmetries and topological skeletons are unified into a single mathematical theory of
topological nets. Many subtle issues related to local quantum symmetries are clarified there.

In this work, we have focused on the topological skeleton. Although we have checked only
two simple lattice models in 1d, we believe that the unifying power of the enriched-category
description revealed by these two models is very convincing. It is certainly important to check
more known lattice models in higher dimensions. We want to emphasize, however, that it is
already interesting and non-trivial to check more 1d models. One can start from more general
onsite symmetry given by a finite group G. In this case, the categorical symmetry (recall
Remark 2.8) should be given by Z1(Rep(G)) (see also [KZ22]). All possible topological skeletons
associated to it can be classified by all fusion categories S equipped with a braided equivalence
ϕ : Z1(Rep(G))→ Z1(S), or equivalently, by S = (Z1(Rep(G)))A, where A is a Lagrangian algebra in
Z1(Rep(G)) and (Z1(Rep(G))A denotes the category of right A-modules in Z1(Rep(G). Moreover,
the Lagrangian algebras in Z1(Rep(G)) are classified by pairs (H, ω), where H is a subgroup of G
and ω ∈ H2(H,U(1)) [Dav10]. We denote the Lagrangian algebra associated to (H, ω) by A(H,ω).
As a consequence, we have rediscovered the following well-known classification result.

Theoremph 3.1 ([CGW11a, SPGC11]). All 1d bosonic gapped quantum phases11 with a finite
onsite symmetry are classified by a triple (G,H, ω), where G is the onsite symmetry defined by
a finite group, H is a subgroup of G and ω ∈ H2(H,U(1)) is a 2-cocycle.

Moreover, the general theory in [KZ20b] provides us with the following new result begging
to be checked in concrete lattice models.

Theoremph 3.2. The topological skeleton of the 1d bosonic gapped phase associated to (G,H, ω)
is given by the enriched fusion category Z1(Rep(G))((Z1(Rep(G)))A(H,ω)

).

Remark 3.3. In the well-known classification [CGW11a, SPGC11], G is the symmetry group of
the Hamiltonian, and the ground state breaks the symmetry G to a subgroup H. This coincides
precisely with the fact that the vacuum sector of states provides a condensation of the Lagrangian
algebra A(H,ω) in the categorical symmetry Z1(Rep(G)) (recall Remark 2.9 and 2.16).

We use the pair (G, z) to denote a fermionic finite onsite symmetry. In particular, G is a
finite group and z is an element in the center of G defining the fermion parity. We denote
the category of G-representations equipped with a new braiding structure that are compatible
with the fermion parity by Rep(G, z). Since Rep(G) = Rep(G, z) as fusion categories, we can
also identify their Drinfeld centers, i.e. Z1(Rep(G)) = Z1(Rep(G, z)). But keep in mind that
bosonic symmetry charges Rep(G) and fermionic symmetry charges Rep(G, z) are embedded
in Z1(Rep(G)) differently (recall the Z2-case (2.10)). We immediately recover the classification
of all 1d gapped quantum phases with onsite fermionic symmetry (G, z), a result which was
first obtained in [CGW11b] based on the idea that fermionic systems and spin systems can be
mapped to each other via the Jordan-Wigner transformations.

11All gapped quantum phases in 1d are quantum liquids.
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Theoremph 3.4. All 1d gapped quantum phases with a finite fermionic onsite symmetry (G, z)
are classified by the same triples (G,H, ω) as the bosonic cases, and the associated topological
skeleton is Z1(Rep(G))((Z1(Rep(G)))A(H,ω)

), where A(H,ω) is a Lagrangian algebra in Z1(Rep(G)). The
fermionic symmetry charges are embedded in Z1(Rep(G)) canonically according to Rep(G, z) ֒→
Z1(Rep(G, z)) = Z1(Rep(G)).

Remark 3.5. Each topological skeleton Z1(Rep(G))((Z1(Rep(G)))A(H,ω)
) is associated to two 1d gapped

quantum phases. One is bosonic, and the other is fermionic. Note that, in the fermionic cases,
the fermion parity never breaks by a boson condensation.

It was conjectured in [JW20, KLWZZ20b] that there should exist two lattice models realizing
in low energy two given and Morita equivalent algebraic higher symmetries (recall Remark 2.8),
respectively, such that they are actually dual to each other, i.e. existing an explicit non-local
duality transformation mapping one model to the other and symmetric local operators to sym-
metric local operators. By Theoremph 3.2 and 3.2, this conjecture says, in particular, that there
are lattice models realizing all 1d gapped phases with a fixed finite onsite symmetry G, respec-
tively, such that they are dual to each other. When G = Z2, two from the Ising chain (i.e. the
B = 0 case and the J = 0 case) and two from the Kitaev chain are actually dual to each other
via the Kramers-Wannier duality transformation and the Jordan-Wigner transformation. It is an
interesting project to provide a systematic construction of appropriate 1d lattice models and the
duality transformations for an arbitrary G (see an interesting and related work [LDOV21]).

Remark 3.6. The appearance of the enriched category BS is rare in literature, but B and S

have appeared in various contexts under different names. The category S of TDL’s was called
an “algebraic higher symmetry” in [JW20, KLWZZ20b], but was called a “fusion categorical
symmetry” in [TW19] and was called a “categorical symmetry” by many others. Before we
apply the topological Wick rotation, the category B can be viewed as the bulk of the gapped
boundary phase S, and was called the “categorical symmetry” in [JW20, KLWZZ20b].

Remark 3.7. The importance of enriched fusion categories in the study of topological phases was
discovered in the study of gapless phases [KZ20a, KZ21]. Its higher dimensional analogues were
proposed to give a unified framework to study all gapped/gapless liquid phases with/without
symmetries [KZ20a, KZ21, KZ20b]. Its relevance in the study of topological phase transitions
was demonstrated in [CJKYZ20]. However, its significance has not yet been recognized by
condensed matter theorists. Perhaps a partial reason for this delay is the abstractness of the
categorical language. We hope that through the study of two simple and well-known lattice
models in this work we can help some readers to break the language barrier.

A Enriched categories

We briefly explain all mathematical results that are needed in this work.

Given a fusion category C and a finite simple left C-module M with a left C-action⊙ : C×M→
M, there is a C-enriched category CM obtained from the so-called canonical construction [Kel67].
The objects in CM are precisely objects in M. The hom spaces homCM(x, y) for x, y ∈M are given
by the so-called internal hom: [x, y], which is defined by the following conditions:

homM(a ⊙ x, y) ≃ homC(a, [x, y]), ∀a ∈ C, x, y ∈M.

The hom spaces homCM(x, y) = [x, y] ∈ C for x, y ∈M determines the structure of CM completely.
In particular, the composition of morphisms and identity morphisms:

[y, z] ⊗ [x, y]→ [x, z] and 1C → [x, x] (A.1)
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are naturally induced by the universal property of the internal homs. If, in addition, C is braided,
and M is monoidal and is equipped with a braided functor ϕ : C→ Z1(M), then CM becomes a
C-enriched fusion 1-category [MP19, KZ20a].

Let Vec be the category of finite dimensional vector spaces. Let Rep(Z2) be the category of
finite dimensional Z2-representations and VecZ2

the category of Z2-graded finite dimensional
vector spaces. Let sVec be the category of finite dimensional super vector spaces. Note that
Rep(Z2), VecZ2

and sVec are all equivalent as fusion categories. Therefore, their Drinfeld centers
can be identified, i.e.

Z1(Rep(Z2)) = Z1(VecZ2
) = Z1(sVec).

We denote the only simple object of Vec by 1. We denote the two simple objects of Rep(Z2) by
1, e, and those of VecZ2

by 1,m, and those of sVec by 1, f , and those of Z1(Rep(Z2)) by 1, e,m, f
(i.e. the same four simple anyons in 2d toric code model). These notations are justified by three
different braided embeddings:

Rep(Z2) ֒→ Z1(Rep(Z2)) VecZ2
֒→ Z1(Rep(Z2)) sVec ֒→ Z1(Rep(Z2)) (A.2)

1 7→ 1, e 7→ e, 1 7→ 1,m 7→ m, 1 7→ 1, f 7→ f . (A.3)

The non-trivial fusion rules of Z1(Rep(Z2)) are e ⊗ e = m ⊗m = f ⊗ f = 1 and e ⊗m = f .

Now we give a few examples of enriched (fusion) categories all obtained from canonical
constructions. All of them are used in this work.

1. Z1(Rep(Z2))Rep(Z2):

[1,1] = 1 ⊕m, [1, e] = [e,1] = e ⊕ f , [e, e] = 1 ⊕m. (A.4)

2. Z1(Rep(Z2))VecZ2
:

[1,1] = 1 ⊕ e, [1,m] = [m,1] = m ⊕ f , [m,m] = 1 ⊕ e. (A.5)

3. Rep(Z2)Rep(Z2):
[1,1] = 1, [1, e] = [e,1] = e, [e, e] = 1. (A.6)

4. VecZ2 VecZ2
:

[1,1] = 1, [1,m] = [m,1] = m, [m,m] = 1. (A.7)

5. Rep(Z2)Vec:
[1,1] = 1 ⊕ e. (A.8)

6. VecZ2 Vec:
[1,1] = 1 ⊕m. (A.9)

7. Z1(sVec)sVec:
[1,1] = [ f , f ] = 1 ⊕m, [1, f ] = [ f ,1] = f ⊕ e. (A.10)

8. Z1(sVec)
m↔e sVec with the enrichment twisted by the non-trivial braided auto-equivalence of

Z1(sVec) defined by m↔ e.

[1,1] = [ f , f ] = 1 ⊕ e, [1, f ] = [ f ,1] = f ⊕m. (A.11)

9. sVecsVec:
[1,1] = [ f , f ] = 1, [1, f ] = [ f ,1] = f . (A.12)
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10. sVecVec:
[1,1] = 1 ⊕ f . (A.13)

11. Z1(Rep(Z2))Vec:
[1,1] = 1 ⊕m ⊕ e ⊕ f . (A.14)

Remark A.1. This paper is written for physicists. In order to keep the paper not too mathe-
matically technical, we decide to hide some technical parts in Remarks. In Eq. (A.4)-(A.14), we
have only presented all internal homs as objects (recall (A.1). We have not given the the identity
morphisms and the compositions of morphisms. In this remark, we illustrate them in a single
example: the enriched category Z1(Rep(Z2))Rep(Z2):

1. Identity morphisms:

1
11⊕ 0−−−→ 1 ⊕m = [1,1] = [e, e]. (A.15)

Since the only morphism from 1 to m is the zero morphism, we will not spell out this type
of zero morphisms explicitly from now on.

2. Compositions of morphisms:

[1,1] ⊗ [1,1] = (1 ⊕ 1) ⊕ (m ⊕m)
(11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1 ⊕m = [1,1], (A.16)

[1, e] ⊗ [e,1] = (1 ⊕ 1) ⊕ (m ⊕m)
(11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1 ⊕m = [e, e], (A.17)

[e,1] ⊗ [1, e] = (1 ⊕ 1) ⊕ (m ⊕m)
(11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1 ⊕m = [1,1], (A.18)

[e, e] ⊗ [e, e] = (1 ⊕ 1) ⊕ (m ⊕m)
(11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1 ⊕m = [e, e]. (A.19)

Moreover, since the enriched category Z1(Rep(Z2))Rep(Z2) is also monoidal, it has another defining
data: the horizontal fusion morphism [x′, y′]⊗[x, y]→ [x′⊗x, y′⊗y], which is canonically induced
from the following morphism (via the universal property of the internal hom [x′ ⊗ x, y′ ⊗ y]):

([x′, y′] ⊗ [x, y]) ⊙ (x′ ⊗ x)
≃−→ ([x′, y′] ⊙ x′) ⊗ ([x, y] ⊙ x)→ y′ ⊗ y,

where “≃” uses a half-braiding to exchange [x, y] with x′ and the second morphism is defined
by the universal morphisms of the internal homs [x′, y′] and [x, y]. Explicit computation gives
the following horizontal fusion morphisms:

[1,1] ⊗ [1,1] = (1 ⊕ 1) ⊕ (m ⊕m)
(11⊕11)⊕(1m⊕1m)−−−−−−−−−−−−→ 1 ⊕m = [1,1]. (A.20)

We leave the rest of horizontal fusion morphisms as exercises.
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