Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Near-Optimal Average-Case Approximate Trace
Reconstruction from Few Traces

Xi Chen* Anindya Def Chin Ho Leet Rocco A. Servedio®
Sandip Sinhal

Abstract

In the standard trace reconstruction problem, the goal is to exactly reconstruct an unknown
source string x € {0,1}" from independent “traces”, which are copies of x that have been
corrupted by a d-deletion channel which independently deletes each bit of x with probability §
and concatenates the surviving bits. We study the approximate trace reconstruction problem,
in which the goal is only to obtain a high-accuracy approximation of x rather than an exact
reconstruction.

We give an efficient algorithm, and a near-matching lower bound, for approximate
reconstruction of a random source string x € {0,1}" from few traces. Our main algorithmic
result is a polynomial-time algorithm with the following property: for any deletion rate
0 < 0 < 1 (which may depend on n), for almost every source string x € {0,1}", given any
number M < ©(1/9) of traces from Dels(x), the algorithm constructs a hypothesis string X that
has edit distance at most n - (JM)??) from x. We also prove a near-matching information-
theoretic lower bound showing that given M < ©(1/6) traces from Dels(x) for a random n-bit
string x, the smallest possible expected edit distance that any algorithm can achieve, regardless
of its running time, is n - (§M)°M),

1 Introduction

1.1 Background and prior work In the trace reconstruction problem [18, 21, 20, 3], there is
an unknown n-bit source string x € {0,1}", and a reconstruction algorithm that has access to
independent traces of x, where a trace of x is a draw from Dels(x). Here Dels(-) is the deletion
channel, which independently deletes each bit of x with probability ¢ and outputs the concatenation
of the surviving bits. The goal of the reconstruction algorithm is to correctly reconstruct the source
string x.

~ *Columbia University. Supported by NSF grants CCF-1703925, 11S-1838154 and CCF-2106429. Email:
xichen@cs.columbia.edu

TUniversity of Pennsylvania. Supported by NSF grants CCF-2045128, CCF-1926872 and CCF-1910534. Email:
anindyad@cis.upenn.edu

fHarvard University. Supported by the Croucher Foundation, the Simons Collaboration on Algorithms and
Geometry, NSF grant CCF-1763299 and a Simons Investigator grant to S. Vadhan. Work done while at Columbia
University. Email: chlee@seas.harvard.edu

§Columbia University. Supported by NSF grants CCF-1814873, 11S-1838154, CCF-1563155, CCF-2106429, and
by the Simons Collaboration on Algorithms and Geometry. Email: rocco@cs.columbia.edu

YColumbia University. Supported by NSF grants CCF-1714818, CCF-1822809, 11S-1838154, CCF-1617955, CCF-
1740833, and by the Simons Collaboration on Algorithms and Geometry. Email: sandip@cs.columbia.edu

779 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1.1.1 Exact trace reconstruction Much research effort has been dedicated to different aspects
of the trace reconstruction problem in recent years [23, 12, 26, 27, 15, 14, 1, 2, 24, 5, 19, 16, 6, 25, 9, 8].
In the “worst-case” version of trace reconstruction, the source string x may be an arbitrary n-bit
string. This is a challenging problem, with the best known information theoretic lower bound on
the number of traces required for trace reconstruction (for constant deletion rates §) being Q(n3/2)

traces [5] and the best known information theoretic upper bound being exp (O(nl/ 5)) traces [6]

(improving on earlier exp (O(n1/2)> and exp (O(n1/3)>—time and sample algorithms due to [17]
and [26, 12] respectively). In the subconstant deletion rate regime, a poly(n)-time and sample
algorithm for worst-case source strings was recently given in [8] for deletion rate § = O(1/n'/3+¢),
improving on an earlier result for deletion rate § = O(1/n'/?*¢) [3]. Turning to the “average-case”
variant of trace reconstruction, the goal is to give algorithms (and lower bounds) that hold for most
possible source strings x (equivalently, hold with high probability for a uniform random source
string x € {0,1}"). For the average-case problem, at constant deletion rate § the current best
known lower bound is Q((logn)%/2) traces [5] and the best known upper bound is exp(O(log n)1/3)
traces [15, 16]. Average-case trace reconstruction has been shown to be essentially equivalent to
coded trace reconstruction; see [10, 4]. In [3] an O(logn)-trace, poly(n)-time algorithm is given for
the average case problem when the deletion rate is § = O(1/logn).

1.1.2 Approximate trace reconstruction Motivation. In this paper we study a relaxation
of the exact trace reconstruction problem in which the goal is only to obtain an approximation
of the unknown source string x. Of course this immediately raises the question of what distance
measure to use; throughout this paper we use edit distance as our distance measure between strings.
We remark that edit distance is a natural metric to consider in the context of trace reconstruction:
in particular, trace reconstruction is motivated by problems such as ancestral DNA reconstruction
where the natural corruption process includes synchronization errors such as insertion and deletion.
Indeed, edit distance is the distance measure used in all of the works discussed below under “Prior
work.”

The study of approximate trace reconstruction has several natural motivations; first, in some
applications a high-accuracy reconstruction of x may be all that is required rather than exact
reconstruction. Second, it is of interest to obtain algorithmic results for trace reconstruction in
settings where insufficiently many traces are available for exact reconstruction (because of known
lower bounds mentioned above); approximate trace reconstruction offers a potential avenue for
obtaining rigorous results in such settings. Finally, as sketched above, there is a frustrating
exponential gap between the known upper and lower bounds for exact trace reconstruction in
both the worst-case and average-case problem variants. Hence it is natural to wonder whether
sharper bounds can be achieved for approximate versions of the problem.

Prior work. Several authors have quite recently considered the approximate trace reconstruction
problem and related questions.

Davies, Ra¢z, Rashtchian, and Schiffer [11] gave several algorithms that use polylog(n) traces
and achieve edit distance n/polylog(n) for certain classes of source strings defined by various run-
length assumptions. They also give other algorithms which, under stronger run-length assumptions,
succeed in performing approximate reconstruction using only a single trace. In another recent
work, Srinivasavaradhan, Du, Diggavi, and Fragouli [29] proposed heuristics for approximate
reconstruction based on a few traces.

780 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Sima and Bruck [28] have recently studied exact trace reconstruction under an edit distance
constraint. They showed that n®®*) traces suffice to distinguish between two (known) worst-case
n-bit strings that are promised to have edit distance at most k£ from each other. In a related but
incomparable result, Grigorescu, Sudan, and Zhu [13] have given lower bounds on “mean-based”
algorithms for distinguishing between worst-case pairs of strings that have small edit distance.

Summarizing the prior results on approximate trace reconstruction, we are not aware of either
algorithms or lower bounds in the previous literature that apply to typical source strings x ~ {0, 1}"
(though see below for a discussion of the recent work of [7] that is simultaneous to ours). It is easy
to see that simply outputting a single trace gives expected edit distance dn (for any source string),
and also that given M traces no algorithm can achieve expected edit distance better than ©(5n)
for random source strings (since in expectation 6™ n bits of the n-bit source string will have been
deleted from all M traces). Other than these simple observations, to the best of our knowledge
no prior results were known, either in terms of algorithms or lower bounds, for approximate trace
reconstruction of random strings. We describe our algorithms and lower bounds for this setting
below.

1.2 Our results Matching upper and lower bounds on approximate reconstruction of
random strings from few traces. Our main contribution is the following algorithmic result:

THEOREM 1.1. (APPROXIMATE AVERAGE-CASE TRACE RECONSTRUCTION ALGORITHM) There is
a poly(n) time algorithm Reconstruct with the following property: Let 0 < § < 1, and let x be
an unknown source string that is uniform random over {0,1}™. Let yM ... y(M) be M < ©(1/6)
independent traces drawn from Dels(x). Then with probability at least 1—1/poly(n) over x ~ {0,1}"
and yO .. yM) ~ Dels(x), the output of Reconstruct on input & and yO oy s string
X € {0,1}* that has deqit(x,X) < n - (5M)Q(M).

An interesting special case of Theorem 1.1 is obtained when the number of available traces
M is ©(1/6). In this case the Reconstruct algorithm achieves edit distance n/2%(1/9 which is
exponentially better than the benchmark of dn edit distance that is trivially achievable using a
single trace.

To complement Theorem 1.1, we prove an information-theoretic lower bound on approximate
trace reconstruction of random strings from M < ©(1/6) traces. This lower bound shows that the
accuracy achieved by Reconstruct is essentially the best possible:

THEOREM 1.2. (LOWER BOUND ON APPROXIMATE AVERAGE-CASE TRACE RECONSTRUCTION)
Let 0 < § < 1, and let x be an unknown source string that is uniform random over {0,1}". Let
y Oy be M independent traces drawn from Dels(x), where M < ©(1/5). Let A be any
algorithm which, given 6 and yV, ..., yM) as input, outputs a hypothesis string X for x. Then the
expected edit distance between X and x is at least n - (M)OM),

We observe that for natural parameter settings, Theorem 1.2 improves on the simple (6% n)
expected edit distance lower bound mentioned earlier; for example, taking M = ©(1/6),
Theorem 1.2 proves that the best possible accuracy is n/ 20(M) rather than §™n.

REMARK 1.1. In simultaneous and independent work to ours, Chase and Peres [7] have also
considered the problem of approximate trace reconstruction of random source strings x. Their
main result is that for any constant deletion rate § (bounded away from 1) and any constant e
(bounded away from 0), there is an algorithm that uses Os (1) traces and, with high probability

781 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

over a random source string x ~ {0, 1}", succeeds in reconstructing a hypothesis string ¥ with edit
distance at most en from x.

The work of [7] and the current paper focus on different parameter settings, in particular
different regimes for the number of traces available to the algorithm, and establish complementary
results. The results of [7] apply in the regime where “many traces ” (significantly more than ©(1/6))
are available, and give high-accuracy reconstruction in this regime. In contrast, our results apply
in the “few traces” regime where only some number 1 < M < ©(1/4) of traces are available, and
give essentially optimal reconstruction for any such small number of traces.

1.3 Discussion and future work A number of directions suggest themselves for future work on
approximate trace reconstruction; we close this introduction by briefly mentioning a few of these.

One natural goal is to obtain results for average-case approximate trace reconstruction which
generalize both the results of the current paper and the results of [7], by establishing sharp bounds
on approximate average-case trace reconstruction in the regime where more than ©(1/§) many
traces are available. It is clear that the n - (6M)®M) form of our edit distance bound no longer
holds once M is w(1/0); it would be interesting to understand the best achievable edit distance, as
a function of § and M, in this regime.

Another natural goal is to obtain algorithmic results for approximate trace reconstruction of
worst-case rather than random strings. Here we observe that the current state of the art for worst-
case exact trace reconstruction places significant limitations on how much better than edit distance
on (trivially achievable by simply outputting a random trace) it is possible to do for approximate
reconstruction of worst-case strings. As noted earlier, until quite recently the best result known
for the low deletion rate regime was that of [3], which gave an algorithm using O(nlogn) traces
to reconstruct an arbitrary source string x at deletion rate & = n~(1/2t¢). This was recently
strengthened to a poly(n)-trace algorithm that reconstructs at rate § = n~(1/3+2) [8]. For the worst
case approximate trace reconstruction problem, achieving edit distance §3n for all §, even using
poly(n) traces, would require improving the recently established state of the art from [8] for the
low-deletion-rate regime of the exact reconstruction problem.

2 Our approach

2.1 Overview of our algorithmic approach (Theorem 1.1)

2.1.1 Some preliminary observations and simplifications We begin by observing that to
prove Theorem 1.1 it suffices to prove it under the assumptions that

1 1 1
2.1 < _— K2<M< — MYM/K > 1/p?2

for a sufficiently large absolute constant K. The upper bounds on § and M follow directly from
our assumption M < ©(1/6) in Theorem 1.1. For the lower bound on &, note that if § < 1/n?,
then with probability at least 1 — 1/n a single input trace will have no bits deleted and hence will
trivially yield a string X that has deqjt(x,X) = 0.

For the lower bound on M, we observe that if M < K?, then a single trace would satisfy the
claimed edit distance bound in Theorem 1.1. Indeed, since a single trace has edit distance from x
distributed as Bin(n, §), and the probability that a draw from Bin(n,d) exceeds n - 6! is at most
n~1) (by a standard multiplicative Chernoff bound, using that 1/n?> < § < 1/K), the trivial

782 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

algorithm that simply outputs a single input trace would satisfy edit distance
nd®l < n((SM)O.l < n((SM)O.lM/KQ _ n((SM)Q(M).

For our final simplifying observation that M and ¢ jointly satisfy (6M)M/K > 1/n?, note that
if (§M)M/K is less than 1/n2, then the claimed high-probability edit distance bound n - (5.0)2(M)
of Theorem 1.1 is less than 1 (for a suitable choice of the hidden constants), and hence the
claim of Theorem 1.1 is that with high probability the edit distance achieved is zero. In this
case since (6M)M/K is decreasing for M € [0,6/e], we can simply use M’ < M traces so that
1/n2 < (6M")YM'/E < 1/n, and achieve edit distance n - (6M")M'/K which will also achieve edit
distance 0 (which of course suffices to achieve the edit distance required by the theorem statement).
Therefore we will assume that the conditions given in (2.1) hold throughout the rest of our proof
of Theorem 1.1.

2.1.2 The high-level approach Our main algorithm Reconstruct makes essential use of one
particular distinguished trace, which we denote y* and refer to as the reference trace, as well as M
other traces y(U, ...,y The overall Reconstruct algorithm works by repeatedly executing two
different subroutines. Below we first give a high level description of what each of these subroutines
does and then we present the overall algorithm and explain how it uses these subroutines.

First subroutine: Alignment. The first subroutine is an alignment procedure which we call
Align. It takes as input the reference trace y* and a pointer £* to a location in the reference trace,
as well as the M other traces y), ...y Tt outputs a list of M pointers (E(l), . ,E(M)) where
each pointer (™) specifies a location in the m-th trace y(™). Roughly speaking, Align uses the
reference trace to “align” the other M traces, i.e. to come up with a pointer into each trace so that
most of the pointers agree (Align does not change the location £* of the pointer into the reference
trace). In more detail but still at a high level, the main guarantee of the Align algorithm is that
with high probability, a clear majority of the M pointers all point to locations that came from the
same bit x; of the source string x. (Another important guarantee is that with high probability this
location i € [n] is “not too far” from the location in x that yj. came from; we give more details
on this below.) Thus a successful run of Align results in a clear majority of the M + 1 pointers
(including the reference trace’s pointer £*) all being in agreement. We refer to a specification of
the pointer locations (6(1)7 e ,K(M)) as a configuration, and we say that a configuration for which
there is a clear majority in agreement as described above is in consensus. (We give a fully detailed
definition in Section 2.2, along with a detailed statement of the Align algorithm’s performance
guarantee.) We emphasize that the correctness of this subroutine, i.e., Alignment, crucially relies
on the source string & being uniform random.

Second subroutine: Bitwise Majority. The second subroutine is a “Bitwise Majority
Alignment” procedure, which we call BMA. This procedure was first introduced in the work of [3]
and was further analyzed in the recent work [8]. (As we explain below, a crucial ingredient in our
proof of Theorem 1.1 is a new refined analysis of BMA that goes significantly beyond the results of
[8].) All of the output bits that our algorithm constructs are produced by BMA. The BMA procedure
takes as input the M + 1 traces y*,y, ...,y and the corresponding pointers ¢*, ¢ ... ¢(M),
The BMA algorithm is run for R := (6M)~®™) many stages to reconstruct R output bits; in the
course of its execution it updates the pointers into all M + 1 of the traces y*,y(®), ... y®),

To explain the performance guarantee of the BMA procedure we need the notion of a k-desert.
Roughly speaking, a binary string z € {0, 1}* is said to be a k-desert if (i) it is sufficiently long, and
(ii) it is a prefix of s for some s € {0,1}=F (we give a precise definition in Section 2.3). The main

783 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 1: Reconstruct (slightly simplified)
Input: A positive integer n and (M + 1) traces y*,y™), ... y™) for some M < 1/(K6)
Output: A binary string w

=

Set /* =1 and w = ¢ (the empty string)

2 while /* < |y*| do

3 Run Align (¢*,y*,y(M, ... y()) to obtain a tuple of locations (¢(1), ..., ¢())

4 Run BMA (y*,y™), .. y@D g p() (M) £ obtain a binary string (¢ or in {0, 1}%)
5 Concatenate the string returned by BMA to the end of w

6 Set £* to be the final pointer of y* in the run of BMA above and increment it

7 return w.

Figure 1: A slightly simplified version of our main algorithm Reconstruct (the actual algorithm

differs in some small details and is given in Figure 6).

guarantee of the BMA procedure is that if it is run on a configuration that is in consensus at some
location ¢ in the source string x, then with high probability it produces a R-bit string that agrees
with (x;,;+1,...) up to the location (if any) where a k-desert of length L := O(M log(1/(Md)))
first appears, for some k < L/2. We note that unlike the first subroutine Alignment, the guarantee
of BMA procedure is a worst-case guarantee.

The overall Reconstruct algorithm. As stated earlier, the overall algorithm repeatedly runs
Align, then BMA, then Align, then BMA, and so on. We present a slightly simplified version of the
algorithm in Figure 1 (see Section 6 for the formal algorithm; the version in Figure 1 differs only
in that some parameter settings have been slightly simplified for the sake of readability).

The high level intuition for why the algorithm succeeds is as follows. Each run of Align with
high probability succeeds in putting the M traces in consensus at a location “not too far” from
the location in x corresponding to yj.. Given that this consensus has been achieved by Align,
then the subsequent run of BMA with high probability succeeds in correctly reconstructing the next
R:= (M)_@(M) many bits of x. In the course of running BMA the pointer ¢* is with high probability
advanced to “approximately the right location” corresponding to the last-reconstructed bit of x,
so the next run of Align again establishes consensus at approximately the right location. Thus
the overall output string w of the algorithm is the concatenation of many length-R strings, most
of which correspond to subwords of x from approximately the right locations. From this it can be
shown that the overall reconstructed string is not too far in edit distance from x.

The above high-level explanation sketches an idealized version of the actual scenario and glosses
over a number of technical difficulties. In more detail, there are many sources of error from different
possible failure events and a careful analysis is required (and is provided in Section 6) to keep the
failure probabilities from all of these under control and not “give away too much” in the overall
edit distance. The issues that must be handled include the following:

e Align may fail to align the traces to a consensus location, or may misalign the traces and
achieve consensus at a location that is far away from the location in x corresponding to yj..
Our analysis shows that this happens with small (but non-negligible probability), and
bounds the cumulative error (edit distance) incurred by the runs of Align for which this

784 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

happens.

e Even when Align aligns the traces at a location that is “not too far” from the correct
location, the alignment location in x may not be exactly the location in x corresponding to
y;-. This contributes to the overall edit distance between and x even when the Align
algorithm succeeds.

e On average the random string x will have a k-desert of length L occuring roughly once every
20(L) positions. When a run of BMA encounters such a location the resulting R-bit string
that it produces may be badly off from the true corresponding portion of x. This contributes
to the overall edit distance between T and x even when the algorithm succeeds.

e Even when the portion of x that a given run of BMA is operating on does not contain a
k-desert of length L, the BMA algorithm may fail to correctly reconstruct the relevant portion
of BMA with small (but non-negligible) probability. Our analysis bounds the overall error in
the reconstructed string that comes from such “failed runs” of BMA.

2.2 The Align procedure As stated earlier, Align takes as input the reference trace y*, a
pointer ¢* to a location in the reference trace, and the M other traces y™, ..., y®) and outputs
a list of M pointers £(1) ... ¢(M) into the M traces y(U, ..., y™) In a successful run of Align, it
generates a list of pointers most of which point to locations that came from the same bit x; of the
source string x.

At a very high level, Align works in two stages. The first stage, which performs an “approximate
alignment,” consists of a sequence of iterative refinement steps; in each successive step of this stage,
for each trace y(™ Align tries to identify successively smaller subwords of y("™) that fairly closely
match (as measured by edit distance) suitable successively smaller subwords, centered at ¢*, of

the reference trace y*. At the end of a successful execution of the first stage, for each trace y(™

a relatively small subword y(Qifn) has been identified which contains the “right location” in y(")

(informally, corresponding to the portion of x that yj. came from). In the second stage, Align

(Qll)7 e ,ygﬁ and uses the location
1 1

of this subword in each y(™) to determine the exact final pointer location £(™),

Correctness of the second stage (given that a successful “approximate alignment” was indeed
achieved in the first stage) is established using an elementary but careful analysis that we do not
describe here but is given in Section 4.4.2. To gain intuition for the iterative approach employed
in the first stage, it is useful to consider the following toy scenario: Fix an a-bit subword w of the
reference trace y* that is centered at location £*. Intuitively, the deletion rate J is relatively low, so
the subword w of y* should have small edit distance from the corresponding subword of the source
string x, and, transitively, should also have small edit distance from the corresponding subwords
of each of the M traces y(I), ..., y(™) However, since x is uniform random (and hence each trace
y(™) is also uniform random), if a is a “small” value that is < logn, then it is very likely that w
will occur as an ¢-bit subword of each y("™) in many locations, and thus a simpleminded approach
of just scanning all of y(™ to try to find w (or a close match to it) will not succeed in uniquely
identifying the correct location. But if a is a “large” value (actually, being just modestly larger
than logn will do), then it is very likely that only one location in each y(™) will be a close match to
the a-bit string w. This reduces the problem of finding the right location in the ~ n-bit string y(")
to the problem of finding the right location in the ~ a-bit subword of y(™) that was just identified
(by virtue of closely matching w); and now we can iterate.

searches for a suitable subword that appears in at least 95% of y

785 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A more complete overview and explanation of Align is given in Section 4.1. Section 4 gives
a detailed proof of Theorem 4.1, which is our main result about Align; since the exact theorem
statement is somewhat cumbersome (involving various specific parameter settings), we give an
informal version here and defer the fully detailed statement to Section 4. Informally, we say that
the Align algorithm succeeds on source string x with respect to a tuple of traces (y*, yoo ,y(M))
if the following condition holds for “almost all” locations ¢* € [ly*|]: The output (¢(1), ... ¢(M))
of Align(¢*,y*,y, ... y(M)) satisfies (1) At least 90% of source(™ (£(™)), m € [M], agree on the
same location i € [n], and (2) The consensus location i is “quite close” to the location in x that
y;- came from. Now we can state an informal version of Theorem 4.1, which gives a performance
guarantee on Align:

THEOREM 2.1. (MAIN RESULT ABOUT Align, INFORMAL STATEMENT) Let x ~ {0,1}" and let
vy ,yD Ly be independent traces drawn from Dels(x), where § and M satisfy Equation (2.1).
Then Align succeeds on x with respect to (y*,y ™, ... yM)) with probability at least 1 —1/poly(n).

2.3 The BMA procedure The Bitwise Majority Alignment, or BMA, procedure, operates in discrete
time steps on a collection of M independent traces. At each time step it outputs one bit of the
hypothesis string that it is reconstructing. Throughout its execution, at each time step ¢, for each
m € [M] the BMA algorithm maintains a pointer into the m-th trace. The idea of BMA is that at each
time step ¢, it should be the case that most of the pointers are correctly aligned, i.e. the majority
of the bits that they point to in their respective traces came from the same bit of the source string
x. In the t-th time step the majority vote of the M bits that are pointed to in the traces is the
output bit BMA produces, and

e For each trace in which the pointer points to a bit that agrees with the majority, the pointer
is incremented by one location;

e For each trace in which the pointer points to a bit that disagrees with the majority, the
pointer stays in the same location.

A first analysis of BMA, for deletion rate § slightly less than n~'/2, was originally given in [3],
and more recently an analysis for deletion rate ¢ slightly less than n~'/3 was given in [8]. We give
a significant extension of [8] by providing a much more refined analysis which yields a considerably
stronger quantitative result.! In more detail, in the current work our analysis of BMA handles
deletion rates even as large as a (small) absolute constant independent of n, and indeed handling
such deletion rates is essential for our overall results.

To state our main theorem about BMA we require the following terminology: Recall that a string
is said to be a k-desert for some k > 1 if it is the prefix of s°°? for some string s € {0,1}*. We say
a string is a long desert if it is a k-desert of length L for some k < L/2.

Our main result about BMA says, roughly speaking, that if the source string does not contain
any long desert then with high probability BMA succeeds in exactly reconstructing the source string,
and moreover does so with a “clear majority” in each round. Similar to Align, the detailed theorem
statement about BMA involves various specific parameter settings, so we defer its exact statement
until later (see Theorem 5.1) and here give an informal statement:

TThis quantitative strengthening plays an essential role in our being able to obtain tight bounds (recall the
essentially matching Theorems 1.1 and 1.2) via our approach.
2For a string s, we use s> to denote the string consisting of infinitely many repetitions of s.

786 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

THEOREM 2.2. (MAIN RESULT ABOUT BMA, INFORMAL STATEMENT) Let x € {0,1}f be a string
that does not contain any long desert. Let z(V, ... z(M) ~ Dels(X) be independent traces. For
suitable settings of R, M, k, L and &, with high probability BMA returns exactly X, and in every round
t € [R] the majority is reached by at least 90% of 2V, ..., z(M),

2.4 Overview of our lower bound approach (Theorem 1.2) Our lower bound approach
is informed by insights arising from the analysis of our algorithm. Given the arguments sketched
above for our algorithmic results, it is natural to pursue a lower bound based on the difficulty
of reconstructing deserts. The high-level idea of our lower bound is that having access to only a
limited number M < ©(1/) of traces imposes strong limitations on the ability of any reconstruction
algorithm to accurately estimate the lengths of deserts, and this inability to accurately reconstruct
deserts translates into an inability to perform overall high-accuracy approximate reconstruction.
Guided by this general idea, it is natural to consider 1-deserts (runs of all 0’s or all 1’s) as potential
sources of hardness, and indeed this is our approach.
In more detail, our lower bound proceeds in four conceptual stages.

1. We first (Section 7.1) consider the following simple distribution distinguishing problem: an
algorithm is given M draws which are guaranteed to come from one of two product
distributions over IN x IN: (a) the product distribution Bin(M,1 —) x Bin(M + 1,1 —§), or
(b) the product distribution Bin(M + 1,1 —) x Bin(M, 1 — ¢), where both (a) and (b) are
equally likely to be the target product distribution. We show that any algorithm for
determining whether it is (a) or (b) must have failure probability at least (§M)°M),

2. Next, in Section 7.2 we consider the algorithmic task of solving B independent instances of
the distinguishing problem described in (1) above; this may be viewed as the problem of
inferring an unknown B-bit string that is uniform over {0, 1} given certain partial /noisy
information about the string. Building on (1) above, we show that the expected edit
distance from the output of any algorithm for this problem to the unknown uniform string
in {0,1}% will be at least B(6M)OM),

3. We then (in Section 7.3) observe that a random string x can be viewed as containing, with
high probability, B = n/ 20(M) independent instances of the distribution distinguishing
problem from (1). Roughly speaking, this is because a random string x ~ {0,1}" can be
viewed as composed of n/(2M + 4) blocks of 2M + 4 bits each, and with high probability
©(n/22M+4) of these blocks will consist of either the string a = 010111 or the string
B =0M+110M11, and these two strings are equally likely for each block. (The specific
structure of these o and f strings is chosen to ensure that they cannot overlap; this is useful
for (4) below.)

4. Using (3), in Section 7.3 we show that any algorithm that achieves a certain n(§M)?M)

expected edit distance for reconstructing a random string from M traces can be used to give
an algorithm that solves B = n/29() independent copies of the distinguishing problem
described in (1) with an expected edit distance that is lower than can possibly be obtained,
contradicting the lower bound from item (2) above. Establishing this reduction is the most
intricate part of our lower bound.

2.5 Organization In Section 3 we set up some preliminaries. In Section 4 we prove Theorem 2.1,
our main result about the Align algorithm. In Section 5 we prove Theorem 2.2, our main result

787 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

about BMA. In Section 6 we use Theorems 2.1 and 2.2 to prove Theorem 1.1. Finally, Section 7
proves our lower bound, Theorem 1.2.

3 Preliminaries

Notation. Given a positive integer n, we write [n] to denote {1,...,n}. Given two integers a < b
we write [a : b] to denote {a,...,b}. We write In to denote natural logarithm and log to denote
logarithm to the base 2. We denote the set of non-negative integers by Z>q. We write “a = b £ ¢”
to indicate that b — ¢ < a < b+ c¢. For a string s, we use s> to denote the string consisting of
infinitely many repetitions of s.

Subwords. It will be convenient for us to index a binary string x € {0,1}"™ using [1 : n]

as X = (X1,...,%,). Given such a string x € {0,1}" and integers 1 < i < j < n, we write
X[i:j] to denote the subword (x;,Xit1,...,%;) of x. An £-subword of x is a subword of x of length /,
given by (Xi,Xi41,--.,Xi+¢—1) for some i € [1 :n — £+ 1].

Distributions. When we use bold font such as D, y, z, etc., it indicates that the entity in question
is a random variable. We write “r ~ P” to indicate that random variable r is distributed according
to probability distribution P. If S is a finite set we write “r ~ S” to indicate that r is distributed
uniformly over S.

Deletion channel and traces. Throughout this paper the parameter 0 < § < 1 denotes the
deletion probability. Given a string x € {0,1}", we write Dels(x) to denote the distribution of the
string that results from passing x through the d-deletion channel (so the distribution Dels(x) is
supported on {0,1}="), and we refer to a string in the support of Dels(x) as a trace of x. Recall
that a random trace y ~ Dels(x) is obtained by independently deleting each bit of x with probability
0 and concatenating the surviving bits. ?

When a trace y is drawn from Dels(x) we write D to denote the set of locations deleted when x
goes through the deletion channel, i.e., D is obtained by including each element of [n] independently
with probability J, and y is set to be x,;\p. (When the trace is denoted y* or y(™) we use D* or
D™ to denote the set of locations deleted.)

As discussed earlier, our algorithm uses a special reference trace y* and M additional traces
y(m) m e [M], and maintains pointers into each of these traces. We write £* to denote the pointer
into y* and £(™) to denote the pointer into y™) for m € [M].

Edit distance and matchings. It will be convenient for us to define the edit distance between
two strings x,x" € {0,1}* as

deait (X, X') == |x| + || = 2 - [LCS(x,)],

where |LCS(x,x')| is the length of the longest common subsequence of x and x’. This is equivalent
to viewing insertions and deletions of characters as being the only allowable “atomic edits” that can
be used to transform x to x’, and is easily seen to be equivalent to the standard definition (in which
substitutions are also allowed) up to at most a factor of 2, since a substitution can be simulated by
a deletion followed by an insertion.

SFor simplicity in this work we assume that the deletion probability § is known to the reconstruction algorithm.
We note that it is possible to obtain a high-accuracy estimate of § simply by measuring the average length of traces

received from the deletion channel.

788 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A matching p between two strings x,x" € {0,1}* is a list of pairs (i1, j1), (42, j2), ... such that
i1 <ig <-oo, g1 < ja < oo+, and for every ¢ we have x;, = x},. The size of a matching is the number
of pairs. We note that the largest matching between x and x’ is of length |[LCS(x,x)|.

For two intervals A = [a1,as] and B = [by, bo| of equal length, we write “u(A) = B” to indicate
that for every element a; + j € A, the pair (a1 + j, by + j) is in the matching (note that this implies
that the subwords x4 and x5 are identical).

Some notational conventions. To aid the reader we adopt the following conventions:

e Locations in strings of different types: The letters i, j are reserved for locations in the
source string x, so these variables refer to integers in the range [1 : n]. We use capital letters
1, J to denote intervals of such locations. The letters p, ¢ are reserved for locations in traces,
so if p is a location in a particular trace y then it refers to an integer in the range [1 : |y|]. We
use capital letters P, Q) to denote intervals of such locations. The letters a, b are reserved for
locations in other incidental strings that arise in our analysis, and intervals of such locations
are denoted A, B.

e Indexing multiple strings: On a number of occasions we deal with collections of multiple
strings (such as our M traces). We index such collections with parenthesized superscripts, so
for example our M traces are denoted y(!),y(®) . . y(M)

e Correspondence between traces and source string x. Given a location ¢ € |y*| in the
reference trace y*, we write source*(q) to denote the location i € [n] such that bit x; gave rise
to y;. For m € [M] we similarly write source(™)(g) to denote the location i € [n] such that

bit x; gave rise to y((]m) in the trace y(™. For an interval Q = [¢1 : ¢a] of locations in y("™), we

write source(™ (Q) to denote the set {source(™ (q) : q € [q1 : ¢2]}. We define source(™)(Q) to
be the interval [source(™ (a) : source(™ (b)] C [n].

Given a location i € [n], if ¢ ¢ D* then image* (i) denotes the element of [|y*|] that x; lands
in (and if i € D* then we define image*(i) to be L). The notation image™ (i) is defined
similarly with respect to trace y(™, m € [M]. We observe that if I C source(™)(Q) then
image™)(I) C Q.

e Notation for bitstrings. To help the reader differentiate between bits and the locations
of bits in bitstrings, we use sans serif font to denote “bit-valued objects.” Hence the uniform
random source string in {0,1}" is x, the traces are y*, yU, etc., a generic fixed word in
{0,1}* which is not a random variable would be denoted w, a generic word in {0, 1}* which
is a random variable would be denoted w, and so on.

Finally we introduce some useful terminology: We refer to a tuple of pointers (6(1), o M)) into
traces y(I, ..., y™) (so each £(™) belongs to [|ly("™|]) as a configuration. We say the configuration
(e MDY s in consensus if at least 0.9M of the values m € [M] all have source(™) (£(™)) equal
to the same location i € [n].

3.1 Useful results We recall McDiarmid’s basic “method of bounded differences” inequality,
which we will use repeatedly in our analysis:

THEOREM 3.1. (THEOREM 3.1 OF [22]) Let X = (Xq,...,X,,) be a family of independent random
variables where each Xy, takes values in a set Ay. Suppose that f : Ay x --- x A, — R satisfies

f(x) = f(a")] < en

789 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

whenever the vectors x and ' differ only in the k-th coordinate. Then for any t > 0, writing p for

E[f(X)], we have
Pr[f(X) —p >t <exp (—2752/2 Ci) :
k=1

We use standard notation for the binary entropy function H(p) = —plogp — (1 — p) log(1 — p),
and we recall the standard upper bound on binomial coefficients in terms of this function, namely
that (p7:7,) < 2"H(®) for any 0 < p < 1.

4 The Align algorithm and proof of Theorem 2.1
Recall from Section 2.1.1 that the two parameters § and M satisfy

1 11 1
4.2 — <6< — < = d K2<M<—
(42) N VA =M =K

where K is some sufficiently large absolute constant. Let

M 1
. = — _— <
(4.3) H K10g<6M) < 2logn,

where the inequality is by Equation (2.1). We observe that Equation (4.2) also gives that H > K,
and that 272(H) = (§M)2M) | Let

(4.4) v=0.01, 7=>5/y=>500

be two constants that will be used in this section.

In this section we describe the (deterministic) Align algorithm and prove Theorem 2.1 about
its performance. Let x € {0,1}" be the source string and y*, vy yM) be traces of x obtained
with corresponding deletion sets D*, DM ... D) C [n], respectively. The algorithm Align takes
4y*,yW oy asinputs, where £ € [571logn ¢ |y*| — 57 logn], and returns a tuple of locations
(e, D),

The following terminology will be useful: we say that the Align algorithm succeeds on source
string x with respect to a tuple of traces (y*, y oy)) if the following condition holds for all
except at most 27 %17y many locations £* € [57logn : |y*| — 57logn]: The output (¢(V), ... (D))
of Align(¢*,y*,y(W, ... y(M)) satisfies

1. The configuration (¢, ..., ¢))is in consensus, i.e. at least 90% of source(" (£0™)), m € [M],
agree on the same location i € [n], and

2. The consensus location 7 satisfies

(4.5) source™(¢*) —2H < i < source™(£*).

Now we can state the main result of this section which gives a performance guarantee on Align:

THEOREM 4.1. (THEOREM 2.1, DETAILED STATEMENT) Let X ~ {0,1}" and let
v,y oy Dels(x) independently, where § and M satisfy Equations (4.2) and (4.3).
Align succeeds on x with respect to (y*,y, ...,y with probability at least 1 — 1/n?.

790 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4.1 Overview We first give a high-level overview of Align. Let ¢* be a location in the special
reference trace y* that is not too close to the left and right ends of y*. Let Q% D --- D Q7 be a
sequence of nested intervals (of locations of y*) centered at ¢*, with |Q%| = t, for each s € [5],

t1 =2H+1, ts41 =3ts, andts=0O(logn)

(note that hence S = O(loglogn)). Let wi = yg). for each s € [S].

The Align algorithm consists of two stages. In this subsection we give some intuition behind
each stage and its analysis. In the intuitive discussion below, we focus chiefly on understanding the
probability that Align succeeds at a particular location ¢*; in the formal proof we need to apply
the bounded difference inequality of McDiarmid to argue that Align succeeds on all but except
2= (H)p, many locations with high probability.

For the rest of this section, we say that an event is most likely to happen if it happens with

probability 1 — 2~%(H),
First stage — locating a small neighborhood of source*(¢*) in each trace y(m).
In the first stage, Align works separately on each y(m me [M]. It iteratively uses wg, ..., wj

(as templates) to find a sequence of nested intervals Q% O --- D Q7" of locations of y(™) such that
(4.6) deait (S,y(Q"Q> < 2vt,, foreachs=S5,...,1.

This is done by first finding Q% C [|y™|] that satisfies (4.6) and then repeatedly finding Q™ C Q™ ,
that satisfies (4.6), for each s = S—1,...,1. When multiple Q7" satisfy (4.6), we pick one arbitrarily;
when no interval Q7" exists for some s and some m, Align fails and returns (V) = = ¢(M) =1,

In the analysis we show that when x ~ {0,1}" and y*,y™), ..., y®™) ~ Dels(x), it is most likely
that every m € [M] satisfies

(4.7) source* (Q*) A source(™) (Qm) | < 4vty, foreach s=S,...,1;

in words, this means that the interval Q™ of y("™) (almost) comes from the subword of x whose
image is Q% in y*. The proof proceeds by induction on s = 5,...,1 (see Lemma 4.2). Assume that
(4.7) holds for s + 1:

(4.8) source*(Q%, ;) A source(™m(QT) | < dytyyq.

Then most likely I} := source*(Q%) is contained in source(™ (QT ;) given (4.8) and that I7 is
roughly the middle one-third of source*(Q%, ;) (also recall that v = 0 01 is a small constant). As a
result, image(™ (I*) would most likely satisfy (4.6) as Q™ (usmg that 0 is sufficiently smaller than
~ and thus, the number of bits deleted from I'* in getting both y* and y("™ is smaller than v¢,). On
the other hand, let Q7" be the interval actually picked by Align. To finish the proof of (4.7), we

show that when (4.8) is violated, since x ~ {0,1}", the two subwords T urce (07) and O ITIOY

most likely have large edit distance (see Claim 4.2), which in turn implies that y,. (i.e., the string
w¥) has large edit distance from y(Q'"}n), which contradicts (4.6).

Second stage — determining a consensus location close to source*(¢*).
In the second stage, Align uses subwords y(m), m € [M], to determine the final locations
(D 0 This is done by first identifying a strlng w that (a) has length at least 0.9¢1, and (b)

791 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

appears as a subword in at least 95% of ygfn), m € [M]. (When multiple strings w satisfy the two

conditions, Align picks one arbitrarily; when no such w exists, Align fails and sets £(™) = 1 for all
m € [M].) Finally Align finds w in Yo m) and sets £("™) to be the location of the first symbol of w in
yé?m) , for each m € [M]. (When w appears in y(m) at multiple locations, Align picks one of them
arbltrarlly as £(™): when w does not appear, Allgn sets (™) =1 by default.)

Using x ~ {0,1}” and y*,y, ... y®) ~ Dels(x), we show that most likely ¢(1), ... ¢(M)
satisfy the two desired conditions in the definition of “success” (i.e. at least 95% of source(™ (£(™)),
m € [M], agree on the same location ¢ € [n], and this consensus location 7 satisfies (4.5)). To
give some intuition behind the analysis, we first assume that every m € [M] satisfies (4.7) and in
particular,

(4.9) source* (Q%) A source(™) (QT) | < 4ty.

Since |Q7| = t1, most likely I := source*(Q7%) has length close to t;. Let I7* denote the interval
obtained from I by extending it in both directions by 4+t (so I7* also has length close to ¢; since
~v = 0.01). Using our choice of t; = 2H + 1, it follows from simple calculations that most likely at
least 95% of y(™, m € [M], are obtained from x with no deletions in I3*. Let G C [M] be the set
of such m € [M]. It follows from (4.9) that yé?m) comes from xym with no deletlons for some interval
I7" such that |I7" A IT| < 4vtq, for each m € G.

At this point it is clear that w = xn,, ..1» would satisfy both conditions (a) and (b) (using
v = 0.01). On the other hand, if there is a string w that appears in at least 95% of all xrm,
m € [M], then for at least 90% of m € [M], w appears in ygrfr? and m € G. Using the randomness
of x ~ {0,1}", one can argue that most likely no string of length at least 0.9¢; can appear as a
subword more than once in x7x-. This implies that at least 90% of £0™) returned are in consensus.
To see that the consensus location i € [n] satisfies (4.5), we recall t; = 2H + 1 and observe that
source®(¢*) appears around the middle of I7* but ¢ (as the unique location where w appears as a
subword in x 11**) lies close to its left end.

4.2 Algorithm Align We now describe the algorithm Align which takes as input
ey, yM oy with 0% € [5rlogn : |y*| — 57logn]. (See Algorithm 2 for a formal presen-
tation of the algorithm.)

Align starts by computing a sequence of nested subwords of y* centered at ¢* as follows.
Let t1 = 2H + 1 (recall that H < 2logn) and t; = 3ts_; for each s > 1, and let S be the smallest
integer such that

ts > 7logn (and hence tg < 37logn)

(recall that 7 = 500). Given y* and ¢*, we define the sequence of subwords w7, ..., w§, where w} is
the t,-bit subword yg). with Q7 = [(* — (¢ts —1)/2: £ + (ts —1)/2] centered at £* in y*. (Given that
ts < 37logn, we always have Q% C [|y*|]; indeed we have that there are more than tg elements to
the left and to the right of Q% in [|y*|], which is the reason why we only consider ¢*’s that are at
least 57 logn away from both ends of y*.)

We divide the analysis of Align into two parts. In the first part (Section 4.3) we begin
by describing some good events over the randomness of D*, x, and D™ m € [M], where D*
and D™ are the sets of deleted locations that gave rise to traces y* and y(™) of x, respectively.
We then show that these events happen with probability at least 1 — 1/n%. The second part of
our analysis (Section 4.4) will be entirely deterministic. We show that Align succeeds on x with

792 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 2: Align

Input: A location ¢* and a tuple of M + 1 strings y*,y("), ... y(M)
Output: M locations £, ... (M) where £() € [ly(®]] is a location in y(*)
1 Compute wi,...,wg from y* as defined in Section 4.2. Let Q¢ | = [ly(™)|] for each
m € [M].
for each m € [M] do // First stage
for s=.5,...,1do
\\ Find any subword ygn) in ygg,) (breaking ties arbitrarily) that has edit distance at

w N

'

1
most 2yt from w?; if such a subword does not exist return ¢() = ... = ¢(M) =1,

Find any string w of length at least 0.9¢; that appears as a subword in at least 95% of

y(Q"lfn), m € [M]. If no such w exists, return /(1) = ... = ¢(M) =1,

for each m € [M] do
If y(QWIL) has w as a subword, set £(™) to be any location such that yg?n) has w as a
subword starting at £(™); otherwise (y("fn) does not contain w as a subword), set
om =1,
return () . ¢(M)

(9}

// Second stage

=}

BN

03]

Figure 2: The Align algorithm.

respect to (y*,y(M, ..., y®)) whenever D*, x and D™ : m € [M] satisfy all conditions described
in the first part (Section 4.3).

4.3 Probabilistic Analysis Let D denote the distribution over subsets of [n] where D ~ D is
drawn by including each integer of [n| independently with probability §. We prove Theorem 4.1 in
two steps. In this subsection we describe an event over x ~ {0,1}" and D*, DO, ... DM ~ D
(as deletions used to obtain y*, y oy from x) and show that it happens with probability at
least 1 — 1/n? (see Corollary 4.2). In Section 4.4, we show that whenever the event occurs, Align
succeeds on x with respect to (y*, y ,y(M)).

We describe the event by imposing conditions on random variables in the following order: first
D* ~ D, then x ~ {0,1}" and finally D™ ~ D, m € [M]. We describe conditions on each random
variable conditioning on the event that previous ones have already met conditions imposed on them.

We start with some preliminary claims.

CrLAM 4.1. Let t be a positive integer and let 1 < i1 < --- <@y <nand 1< g <--- < jy <n with
ix # jk for all k € [t]. For x ~{0,1}", we have Pr[x;, = x;, for all k € [t]] =27".

Proof. The proof is by induction on ¢. The base case when ¢t = 1 is trivial. For the inductive step,
we assume that the statement holds for ¢ — 1. Using the induction hypothesis we have

Pr(x;, = x;, for all k € [t]] = Pr[x;, = x;, | x;, = x;, for all k € [t — 1]] L9,

Without loss of generality we assume that 7; < j;. Note that x;, is still uniform when conditioned

793 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

on values of x;, : K <t and x;, : k < t. Therefore the conditional probability on the right hand side
is 1/2. This finishes the induction step and the proof of the claim. O

Claim 4.1 has the following corollary which we will use later:

COROLLARY 4.1. Lett be a positive integer, and let I # I' C [n] be two distinct (but not necessarily
disjoint) intervals of length t. For x ~ {0,1}", we have Pr[x; = x| = 27,

Claim 4.1 lets us bound the edit distance between subwords of a random string as follows:

CLAIM 4.2. Lett be a positive integer. Let I,1' C [n] be two intervals that satisfy (1) |I| > 25t and
(2) |I AI'| >t. Then we have deqit (X1, xp/) < t with probability at most 275 when x ~ {0,1}™.

Proof. Having deqit (X7, X1/) < t implies that there exist J C I and J' C I’ such that |J| + |J'| < t,
[T\ J| = |I'"\ J'| and xj\ ; = Xy ;-. Fixing such a pair (J,J’) and writing I'\ J as i; <iz < --- and
I'\ J" as j1 < ja <---, we claim that iy # jj for all k. To see this we note that having iy, = jj for
some k implies that we need to delete at least [I A I’| > ¢ bits from I and I’ even just to match
the lengths of I to the left and to the right of k£ with those of I’, a contradiction with |J|+|J'| < t.

Therefore, it follows from Claim 4.1 that xp\ y = X7\ y» with probability at most 2~ (HI+I'[=t)/2
It follows by a union bound on all pairs (J, J') that deqit (X7, X;/) < t with probability at most

2-(U+I =6/ 3 <!I!) 5 (\I") < 9= (IIHI'|=t)/2 | QHOO)(IHI']) ~ 95t
k k)~
K<t K<t

This finishes the proof of the claim. 0

4.3.1 Conditions on D* ~ D We start with conditions on D* ~ D, i.e., the locations of bits
deleted in y*. Given an outcome D* C [n] of D*, we write L* to denote the interval

L* := [57logn :n — |D*| — 57 logn|.
For each £* € L* and s € [S] we write Q} ,. to denote the interval of length ¢ that is centered at
¢*. Let L7 denote the set of £* € L* such that

source*(Q* ,.)| < (1 +9)ts, for all s € [S].

s,0*

CLAIM 4.3. With probability at least 1 — exp(—n"') over D*, we have |L* \ Li| < 2702Hp,

Proof. Given D*, for each £* € L*\ L} there is an s € [S] such that |source*(Q* ,.)| > (1+7)ts. We
can get from it an interval I with [I| = (1 4+ 4)ts and [image*(I)| < |Q* .| = t, by deleting
elements from the right end of source*(Q? ,.). We note that the intervals I obtained from different
¢* € L*\ Ly are different. (To obtain the same interval, we must use the same s € [S] because
of the length of I; on the other hand, sharing the same left end and the same s implies that the
¢* is the same as well.) Therefore, |L* \ L] is at most the number of intervals I C [n] such that
lI| = (1 + 7)ts for some s € [S] and |image™(I)| < ts. Below we upperbound the latter when
D* ~ D.

We apply the McDiarmid inequality (Theorem 3.1). We draw D* by drawing n independent
random indicator variables Xy,...,X,, with X; = 1 with probability ¢ (so k € D* if X}, = 1). We

794 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

use f(Xy,...,X,,) to denote the number of I C [n] such that |[I| = (1 4 7)|ts| for some s € [S] and
limage® (I)| < ts. On the one hand, the probability of an interval I with |I| = (1 + 7)t, satisfying
limage* (I)| < t, is at most 211 - §7% < §7%/2 by using § < 1/K and making K sufficiently large.

As a result,
S
E[f] <n <Z 6”“”) = 52y = 52y,
s=1
On the other hand, flipping one variable X}, can change f by no more than O(tg) = O(logn). Thus
it follows from the McDiarmid inequality that
Xy, Xy) <690 4 O(n05) < 2702y,

with probability at least 1 —exp(—no'l), where we used that ¢ is sufficiently small and H < 2logn in
the last inequality. This finishes the proof of the claim. 0

4.3.2 Conditions on x ~ {0,1}" We fix a D* C [n] that satisfies Claim 4.3 when describing the
conditions for x and D™ below. As D* is fixed, L*, Lt and source*(% ¢) for each £ € L are
all fixed and are no longer random variables. For each ¢* € L7, for brevity we write I ¢+ to denote

source*(Q* ,.), and we observe that for each £* € L} we have

(4.10) ts < |15

< (T+7)ts
The conditions for x ~ {0,1}™ are given in the next three claims.

CLAIM 4.4. With probability at least 1 — 1/n3 over x ~ {0,1}", every £* € L% and every interval
I C [n] with |[I A I o] = 4vts satisfy doqit (X1= _,X7) > 4vtg.

S*’

Proof. Recall that |I§ ;.| > ts and v = 0.01. Fixan £* € L] and an interval I with [IATG .| > 4vts.
By Claim 4.2 we have ‘that doait (X Iz . X 1) < 4vtg occurs Wlth probability at most 2~ 20vts < 1/nto%
using tg > Tlogn and y7 = 5. The clalm follows by a union bound over no more than n? pairs of
¢* and 1. 0

For the next claim we need the following notation. Given ¢* € L* and s € [S], we let N(I7,.)
denote the interval obtained by adding t, elements to both ends of I7,. (so N(IZ,.) has len’gth
|15 - +2t5). Note that N(I],.) is an interval contained in [n] given that £* € L* is at least 57 logn
from both ends of [n — |D*|] (recall that t; <tg < 37logn).

CrLAM 4.5. With probability at least 1—exp(—n0‘1) over x ~ {0,1}", all but at most 2~92Hn many
locations £* € L7 satisfy the following condition: For any s € [2: S] and any interval I C N(I7,.)
such that |I A I3 | pe] = 4yts—1, we have dedit(XI,XI:_l Z*) > 4ytg_ 1.

Proof. Again we use the McDiarmid inequality. Let f(xi,...,X;) denote the number of ¢* € L3
that violates the condition. We first upperbound the probability over xi,...,x, of a fixed ¢* € L}
violating the condition.

For each s € [2 : S] and each interval I C N(I7,.) with |[I AI7 .| > 4yts_1 (note that
I3 | 4+ has length at least ¢5_ 1), by Claim 4.2 the probability of dedlt(xl,xlgiu*) <4ty is at

S—
most 272071 Ag

‘N(sé*)

| s,0* +2t <(3+7)57

795 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

by (4.10), it follows from a union bound that each ¢* in L} violates the condition with probability
at most
Z O(t?) . 2—20’)/755,1 S Z 2—19’yt5,1 S 2—18’yt1 S 2—0.3H,
s€[2:5] s€[2:5]

using t; = 2H + 1 and H is sufficiently large, and hence E[f] < 2793 p, Given that each variable
x; can change f by no more than O(logn), the lemma follows from arguments similar to the proof
of Claim 4.3. 0

CLAIM 4.6. With probability at least l—eXp(—nO'l) over x ~ {0,1}", all but at most 2=92Hn many
¢* € L] are such that no two subwords of XN(I7) of length H are the same.

Proof. The probability of an £* € L} violating the above condition is at most O(¢?) -2=H < 270-5H
by Corollary 4.1. The proof follows from a similar application of McDiarmid inequality. 0

4.3.3 Conditions on DM ... D®™) ~ D We fix an outcome D* that satisfies Claim 4.3 and a
string x € {0, 1}™ that satisfies Claim 4.4, Claim 4.5, and Claim 4.6.

We now describe some useful conditions on DM, ... D) We start with two conditions for
every D),

CLAIM 4.7. With probability at least 1 —1/n> over D ~ D, every interval I C [n] of length at most
(14 37)ts satisfies that |image(I)| > |I| — ~ts.

Proof. For each I C [n] of length at most (1+37v)tg, we have |image(I)| < |I| —~ts with probability
at most 2!11. §7ts < §7ts/2 where the inequality uses that § is sufficiently small. Using tg > 7logn
we have that §76s/2 < §%198n/2 < 1/n5 (as § is sufficiently small). The claim then follows from a
union bound. 0

REMARK 4.1. We note that the event described in Claim 4.7 implies that any interval @ C [n—|D]]
with length at most (1+ 27)ts must satisfy [source(Q)| < |Q|+ ~vts. To see this, let I = source(Q)
and assume for a contradiction that |I| > |Q|+~ts. If [I| < (1+ 37)ts then I violates the event of
Claim 4.7; if |[I| > (1 4 3v)ts then we can delete bits of I from the beginning to obtain an interval
I" with |I'| = (1 + 37)ts, which satisfies |[image(I)| < |image(])| < (14 27v)ts and thus, I’ violates
the condition of Claim 4.7.

Let L3 be the set of all £* € L] that satisfy the conditions in Claim 4.5 and Claim 4.6.

CrLAaM 4.8. With probability at least 1 — exp(—no'l) over D ~ D, all but at most 27°2Hn many
0 € L% satisfy the following condition: For every s € [2 : S| and every interval I C N(I;g*) of
length at most (14 37)ts_1, we have |image(I)| > |I| — vts_1.

Proof. We upper bound the probability of an £* € L3 violating the condition above, and then apply
the McDiarmid inequality. Fixing an £* € L3, a value of s € [2: 5], and any interval I C N(I7 ,.)
of length at most (14 37)t,_1, I violates the condition with probability 2!/l - §7%-1 < §7t-1/2 By
a union bound (over all possibilities for s and I), the probability of ¢* violating the condition is at

most
> o),

s€[2:5]

796 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

and hence the expected number of ¢* € L3 that violate the condition is at most n times this, which
is at most 27934 using that t,_, > t; = 2H + 1 and § is sufficiently small. Finally, given that
the outcome of each independent event (of whether an element in [n] is included in D or not) can
change the number of ¢* that satisfy the condition by at most O(logn), the lemma follows from
arguments similar to the proof of Claim 4.3. d

REMARK 4.2. Remark 4.1 applies similarly: Whenever the condition holds for £* € L3, any interval
@ C image(N (] ,.)) for any s with length at most (14 2v)ts—1 satisfies [source(Q)| < |Q] +vts-1.

The last condition considers DM, ..., D®M) together:

CLAM 4.9. With probability at least 1 — exp(—no‘l) over DO ... DM ~ D, all but at most
27020y many £* € L} satisfy the following condition: At least 95% of m € [M] satisfy

N(I}) ND™ = g,
i.e., no bit of the subword XN(IF ,.) of x is deleted in at least 95% of the traces y(V), ... y(),

Proo}f. Consider drawing DM ... DM) by drawing nM independent indicator random variables
X" k€ [n] and m € [M], with k € D™ if X{"™ = 1. We write f to denote the number of £* € L}
such that at least 5% of m € [M] have N(I7 ,.) N D™ =£ @. On the one hand, fixing an outcome of
£*, the probability of N(I7 ,.) N D™ = & is at most 76H given that IN(I7) < (B3 +7)t1 <T7H,
and hence the probability of £* being one of the locations counted in f is at most 2 - (76 H)9-05M
Recalling the constraint Equation (4.3) on H, we have that

1 1 VoM
. = . —) < X==
(4.11) 0H 7 M log <5M> <%

where the inequality holds given that dM is sufficiently small (observe from Equation (4.2) that
dM < 1/K). Hence the probability is at most

2M . (75H)O.O5M S (5M)0.025M S 2—0.3H

where the first inequality is by Equation (4.11) and the second uses Equation (4.3) and the fact
that K is sufficiently large. Recalling that H = O(logn), the claim follows from the McDiarmid
inequality using similar arguments to those given above and the fact that changing the outcome of
any one of the nM independent indicator random variables can only change f by at most O(H).
0

4.3.4 Conclusion of Probabilistic Analysis We summarize our probabilistic analysis with
the following corollary, which combines all the claims from this subsection.

COROLLARY 4.2. With probability at least 1 — 1/n? over the randomness of D*, x, DM .. , D)
all of the following hold:

1. D* satisfies Claim 4.53;

2. x satisfies Claim 4.4, Claim 4.5 and Claim 4.06;

3. Every D™ m € [M], satisfies Claim 4.7 and Claim 4.8, and

4. DO DWM) yogether satisfy Claim 4.9.

797 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4.4 Deterministic Analysis The rest of Section 4 is dedicated to proving the following lemma,
which finishes the proof of Theorem 4.1 (and hence Theorem 2.1):

LEMMA 4.1. Align succeeds on x with respect to y*, y Oy M) when they satisfy Corollary 4.2.

Assume that x, D*, DWW ... D(M) gatisfy all conditions of Corollary 4.2. Then we have that all
but at most O(M2~92Hp) < 2-0-1Hp (where the M comes from a union bound in item (vi) and the
inequality follows from H > M/K > /M using Equation (4.3) and M > K? from Equation (4.2)
and thus, 207 is enough to cover O(M) when M is sufficient large) many ¢* € L* satisfy the
following list of conditions (below we use I to denote I ,. for convenience given that £* is fixed in
the rest of the proof):

(i) |IZ] < (1 +7)ts for every s € [S] (Claim 4.3);
(ii) Every interval I C [n] with [I A T§| > dvts, has deait(x1,x13) > 4yts (Claim 4.4);

(iii) For all s € [2: S] and intervals I C N(IZ) with |I A I} | > 4vts_1, it holds that
dedit(XhXI;‘il) Z 4’)/t5_1 (Claim 45)7

(iv) No two subwords of x(rs) of length H are the same (Claim 4.6);

v) (Claim 4.7 and Remark 4.1) For all m € [M]|, image(m) 1) > |IE] — ~vts and every interval
S S
Q™ C [ly™]] of length at most (1 4 27)tg satisfies

‘Source(m)(Qm)‘ < |Q™| + ts;

(vi) (Claim 4.8 and Remark 4.2) For all m € [M] and s € [2: 5],
limage™ (I*_,)| > |I*_,| — yts—1 and every interval Q™ C image(N(I*)) of length at most
(1 + 27)ts—1 satisfies

’source(m)(Qm)’ < Q™| + vts—1;
(vii) At least 95% of m € [M] satisfy that N(I3) N D) = & (Claim 4.9).

4.4.1 First stage: Locating a small neighborhood of source*(¢*) in each trace y("™) We
prove the following lemma for the first stage of Align(¢*,y*,y, ... y)) (lines 2 to 4):

LEMMA 4.2. For every m € [M], the final interval Q7 found by Align in the first stage satisfies

(4.12) source(™) (QT) A I | < 4vt;.

Proof. We prove by induction on s = S,...,1 that

(4.13) source(™) (Qm) A IF| < 4yt,.

We start with the base case s = S. First we establish completeness by showing that there is an
interval Q™ C [ly("™|] such that deq; (Wg,ygﬁ?) < 2vtg. To this end, let Q™ = image(m)(lg), and
observe that this is an interval in [|y(™)|]. We have

dedie (W5, Yor!) < dodie (W5, x13) + deait (Yo , x13) < 27ts,

798 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

I7 = source*(Q?%)

source(™) (Qm)

N(I?)

s

image™ (N (I7))

Figure 3: First stage of Align: The 3 red lines are the subwords ya*,y X

I*_ =source*(Q*_,)’

s—1
and y("fn)_. age(m) (1%)" The blue lines are the subwords X omrcetm (@7) and y(nfn?l found
=im [™1 s
by Align. In the completeness argument, we have Q™ = image™ (I*) C Q™ because

I, C I and ‘source(m)(Q;”)AI;k
source(™) (Qm) A I*
Qyy C image™ (N(I7)).

is small. In the soundness argument, as Q7' ; C Q7

and is small, we have I := source™(Q™,) C N(I¥), which implies

where we used (i) [IZ] < (1 4+ v)ts to upper bound the first edit distance by ~tg, and (v)
Q™| > |I§| — vts to upper bound the second edit distance by vts. Next we establish soundness by
showing that any interval Q¥ picked by Align satisfies (4.13). Let I = source(™ (Q%'). Then we
have

(4.14) deait (xr,x13) < dedit (X1, yg?) + dedit()/gin),wg) + deqit (WS, x12) < Yts + 29ts +yts = 49ts.
To see that deait(xr, yggn)) <~Atg we first notice that |Q%| < (1 + 27v)ts because
deait (ygrgn),wjg) <29tg. It then follows from item (v) that [I| <|Q%|+ vts, which gives
dedit(X[,anél) < ~tg. For the last summand, as in the completeness argument (i) gives that
15| < (1 + v)ts and hence degit(Wg,x7z) < vts. The soundness part then follows from (4.14)
and (ii).

With the base case in hand, assume for the inductive step that (4.13) holds for some s € [2: S].
We use this to prove it for s — 1.

The completeness proof is similar to the base case: let Q™ = image(™ (I*_,). It follows from
(4.13) on s that @™ C Q7*. Then

(m)

dedit (W—1,Ygom) < dedit (We_1, X7+) + dedit (Yég":r?,xfgfl) < 291,

799 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

where we used (i) and (vi).

The soundness argument is also similar to the base case. Let Q7' ; be the interval found by
Align and let I = source(") (Q™ ;). Then Q™ ; C Q™ and it follows from (4.13) (and the definition
of N(-)) that

I = source(™) (Q™ ;) C source(™) (Qm) C N(I})

and thus, Q7 ; C image(N(I})). We also have [Q7 ;| < (1 + 2v)t,_1 given that ygﬁil has edit

distance at most 2yts_; from wi_; (which is of length ¢;_1). As a result, analogous to (4.14), we

have

(4.15) dedit (X1, X1) < dedit(thanL) + dedit(yg}il,wz_l) + deait (W1, %7+) < dyts 1,

where degis (X7, yg?% 1) < 4ts—1 follows as in the base case but now using (vi) rather than (v). The

soundness follows from (4.15) and (iii), and the inductive step is completed. O

4.4.2 Second stage: Determining a consensus location close to source*(£*). We finish
the proof of Lemma 4.1 with the following lemma for the second stage of Align:

LEMMA 4.3. Locations (V... ¢ returned by Align satisfy the following two conditions: (A)
at least 90% of source™) (¢(™)) m € [M], agree on the same location i € [n] and (B) the consensus
location © satisfies

(4.16) source™(¢*) — 2H < i < source™(£*).

Proof. It follows from Lemma 4.2 that for every m € [M], the interval Q7" satisfies (4.12). Let

G be the set of m € [M] such that N(I;) N D™ = @; by (vii) we have that |G| > 0.95M. Let

I"™ = source(™) (Q7). It follows from (4.12) that every m € [M] satisfies |[I™ A I}| < 4vt; and thus

I™ C N(If). As N(I;)N D™ = & we have Youm = Xrm (and source(™) induces a bijection between
™ and I"™) for each m € G. Moreover, '

=

meG

(1—2-4y)t; > 0.9,

)

which implies the completeness part: w := xn, _,r= appears as a subword in at least 95% of y(m
(i.e., every m €) and has length at least 0.9¢;.

Finally, we prove the soundness part: Assume that w is a string of length at least 0.9¢; and
appears as a subword in at least 95% of yé?m), m = 1,...,M. Then at least 90% of m € [M]
have m € G and contain w as a subword. Let G/ C G denote the set of such m € G. It follows
from (iv) that source(™ (¢£(")) are the same for all m € G’, which consists of at least 90% of [M].
To prove (4.16), we take any m € G’ and have that source(™ (£("™)) is at least 0.9¢; away from the
right end of I"; on the other hand, source*(£*) is no more than H + +t; away from the right end of
I, using |I7| < (1 +7)t1. Given that the right ends of I™ and I} differ by no more than 4vt;, we
have source™) (£(™)) < source*(¢*). Similarly, source(™ (£("™)) is at least as large as the left end of
I'™ but source*(£*) is similarly no more than H +~t; away from the left end of I7. Given that their
left ends differ by no more than 4vt;, we have that source(™) (£0™)) —source* (¢£*) < 4yt; + H +~t1,
which is at most 2H by (4.4) and the definition of t; = 2H + 1. O

800 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

N(I7)

IT = source*(Q7)

Figure 4: Second stage of Align: The red line is the subword Yo: = wj and it appears as the
disconnected red segments in Xsourcer(@r)- The blue, green and purple lines are the subwords
ygrf),m € G and X —somrcatm (@) M € G. Since m € G, we have that N(I;) N D) = (), and so
- 1
ygrlﬁ? = xrm. The orange line is the common subword xn,,_,r= that appears in the three subwords
(m)
Yo

5 The BMA algorithm and proof of Theorem 2.2

The goal of this section is to prove Theorem 2.2 which is restated below in full detail. As mentioned
in the introduction, the BMA algorithm (which stands for Bitwise Majority Alignment) was first
described and analyzed in [3]. Recall the two parameters 0 (deletion rate) and M (number of
traces) that satisfy (4.2) for some sufficiently large constant K, and the positive integer H < 2logn
given in (4.3). Let us set some parameters: define

(5.17) L:=8H, G:=L/2, andR:= L2%F

We prove in this section that BMA reconstructs any source string x € {0, 1}% exactly with M traces
from Dels(X) with high probability®, when X does not contain any “long deserts.” We now recall
the definition of deserts from [8].

DEFINITION 5.1. A string is said to be a k-desert for some k > 1 if it is the prefix of s> for some
string s € {0,1}*. We say a string is a long desert if it is a k-desert of length L for some k < G.

The algorithm BMA is described in Algorithm 3, and its input consists of M traces z(), ..., z(M)

of x.° We restate the main theorem of this section:
TWe use % instead of x for the source string because later in the next section the role of X will be played by various
different substrings of x of length R.
5Note that in Reconstruct, we run BMA on M + 1 strings obtained from y*,y(l), .. ,y(M) instead of M strings.
In its analysis, however, we pretend the string from y* is not present and focus on what happens when running BMA
on the other M strings only. This is why we focus on analyzing BMA running on M strings in this section.

801 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

THEOREM 5.1. (DETAILED STATEMENT OF THEOREM 2.2) Let x € {0,1}® be a string that does
not contain any long desert. Let zV, ... z(M) ~ Dely (X) be independent traces. With probability at
least 1 — 271 BMA returns exactly X and in every round t € [R], the magjority is reached by at least
90% of the M bits that are pointed to in z™V, ... z(M).

Similar to the previous section, we write D™ C [R] to denote the set of positions deleted in %
to obtain z(™), and use them to define source(m)(-); the only difference is that we set

source(™ (|z(m)| +0)=R+/

for every m € [M] and ¢ > 1 since the pointer into z(™) may move beyond z(™ into the padded
*’s (this can be viewed as adding *’s to the end of the unknown X which are never deleted and are
where the ¥'s at the end of 2™ come from). As introduced in Algorithm 3, let current(™) () denote
the location of the pointer of z("™) at the start of the ¢-th step of BMA. In addition, let

last™ (¢) := source(™ (current(m) (t)) and dist ™ (¢) = last™(¢) — t.

Informally, dist(m)(t) captures the number of positions in X that the pointer into z(™) has gotten
“ahead of where it should be.”

To prove Theorem 5.1, it suffices to show that with high probability, for every ¢* € [R] it holds
that dist™ (¢*) = 0 for at least 90% of m € [M]. We will analyze the behavior of {dist(m)(-)}me[M]
over random traces z(M), ..., z(™) ~ Dels(X). The high level goal of the analysis is to show that
for each m € [M], the sequence of random variables dist™ (1), ..., dist™ (R) are nonnegative and
negatively drifted (i.e., dist™(t) tends to decrease as t grows).

Note that {dist(m)(-)}me[M are not independent over m due to correlations from the consensus
w they produce together and thus this ensemble of random variables can be difficult to analyze.
To ease the analysis we introduce a new set of random variables denoted by disti(gzgl(-) for each
m € [M]. They are identical to dist(™(-) with one key difference: in Step 4 of BMA, we set wy = Xy
instead of the majority of the bits. Note that this makes {disti(;;)l()}me[M independent over m
and in fact, identically distributed. Hence, it suffices to analyze any one of them which we denote
by distigeal(:) over the draw of z ~ Dels(X); we let D denote the set of positions deleted in z. We
define currentigea(-) and lastigeal () similarly.

The following is a key technical lemma.

LEMMA 5.1. For every t* € [R], distigeal(t*) = 0 with probability at least 1 —25L over z ~ Dels(x).
We first use Lemma 5.1 to prove Theorem 5.1.

Proof. [Proof of Theorem 5.1 using Lemma 5.1.] Let 21, ... z(M) ~ Dels (). For each t € [R], let
FE; be the event that

> 1 |distge(6) = 0] = 0.9M
mée[M]

for each ¢ € [R]. When the event F; holds for every t € [R], we have w = X by an induction on t.
This implies that the two sets of random variables (dist™ (-) and dist"™) (1)) are indeed identical,

ideal

which in turn implies for every ¢ € [R], dist™ (¢) = 0 for at least 90% of m € [M].

802 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 3: Algorithm BMA
Input: A multiset {z(1), ... 2™} of M strings
Output: Either ¢, the empty string, or a string w € {0, 1}

1 For each m € [M], concatenate R many #’s to the end of z(™)
2 Set t = 1 and current("™ (¢) = 1 for each m € [M]
3 while t < R do
4 Set wy € {0,1,*} to be the majority of the M symbols z((:’:r)rent(m) (1) M€ [M]
5 For each m € [M], set
(m) e _(m) _
current™ (¢t + 1) = current™™(t) + 1 if 2, yom (ry — Wt
current (™) (t) otherwise
6 Increment ¢

7 return w if w does not contain any * (so w € {0,1}#) or ¢ if w contains at least one *

Figure 5: The Algorithm BMA

As a result it suffices to understand the probability of E;. Given that these random variables
are independent, it follows from Lemma 5.1 and Equation (4.3) that for every ¢ € [R]:

486 M 1 \! 7
1 & > 1 _9-045HK
K 8 5M) -

Pr[E,] >1-2M. (250)""" >1- (

where the last inequality uses

480 M 1
<
I log<5M> < VoM

which holds when K is sufficiently large. It follows from a union bound (using R = L2%-01L) that
Pr[E; holds for all t € [R]] > 1 — R-270%HK > 1 _2~H

by setting K to be sufficiently large. This finishes the proof of the theorem. 0

5.1 Proof of Lemma 5.1 In the rest of the section we prove Lemma 5.1. We start with three
simple claims (which may also be found in [8]); these claims hold for any trace z (and deletions D):

CLAIM 5.1. For each t € [R], letting b be the (lastigeal(t))-th bit of X, we have
1. If x4 7& b, then diStidea|(t + 1) = diStidea|(t) — 1.
2. If X, = b, then distigeal(t + 1) = distigeal(t) + ¢, where £ is the nonnegative integer with

(5.18) lastigeal(t) + 1, ..., lastigeal(t) + £ € D and lastigeal(t) + £+ 1 ¢ D.

803 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. The first item follows from the observation that currentiges (t + 1) = currentigea (%)
For the second item, we have currentigea(t + 1) = currentgea(¢) + 1. It now points to the next
bit in z™) which is the bit of X indexed by lastigear(t) + £ + 1 with £ defined in (5.18). O

We next have the following two easy observations:
CrLamM 5.2. We have distigeal(t) > 0 and lastigea(t) < R+ 1 for every t € [R].

Proof. The proof of the first part is by induction. Using Claim 5.1, distigeal(t + 1) > distigeal () — 1.
So if distigear(t) > 0 then distigeal (t + 1) > 0. Otherwise, if distigeal(t) = 0, we can apply the second
item of Claim 5.1 to conclude that distigeai(t+1) > 0. For the second part note that once lastigear(t)
reaches R + 1 (i.e., currentigea (t) reaches |y*| + 1), it cannot move further as x is a string in {0,1}
but the current bit in y* is x. d

CrLAaM 5.3. If distigeal(t) = + - - = distigeal(t + L) = k for some k € [G], then X has a long desert.

Proof. We have that X;1, is equal to the lastigea(t + £)-th bit of X for all £ € [0 : L — 1], and hence
using Claim 5.1, we have X; ¢ = X¢1,4¢ for all £ € [0 : L — 1]. The claim follows. O

We now start to prove Lemma 5.1. Let t* € [R] be the round we consider in Lemma 5.1, with
t* = to + sL such that ¢ty € {0,1, ..., L — 1} and s < 2°91% We observe that

(519) diStidea|(t0), diStidea|(t0 + L), ce diStidea|(t0 —+ SL)

is a Markov process and look at how distigeal(to + (¢ 4+ 1)L) changes conditioned on distigear(to + ¢L).

To this end, let us condition on distigea(to + L) = A > 0, so lastigeal(to + L) = to + (L + A.
Conditioning on this, each bit of x after to + /L + A is deleted independently and added to D with
probability 4. Let 3 be the nonnegative random variable such that either

to+¢L + A+ 3 is at most R and does not belong to D and
{to+/L+A+1,....t0+{L+A+B}ND =1L,

ie., to+ L+ A+ 3 is the unique location in x that is the L-th undeleted position after g+ ¢L + A,
or (3 is chosen using to+ /L + A+ 3 = R+ 1 if no such B3 exists. Since lastigeal(+) can move forward
by at most L undeleted positions in steps tog +¢L +1,...,to + ({ 4+ 1)L, it follows from the second
part of Claim 5.2 that

lastigeal (fo + ((+ 1)L) <to+{L+ A+

and thus, we have the following upper bound:
distigear (to + (£ + 1)L) < distigea (to + (L) + 8 — L.
Moreover, when A < G and 8 < L (including 8 = L), we have
distigeat (o + (£ + 1)L) < max (dist;dea| (to+€L) — 1, 0).

It holds for 8 = L because otherwise by Claim 5.3, the subword of X in [tg + (L : tg + (£ + 1)L — 1]
would be a long desert, contradicting with our assumption that X has no long deserts.

804 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

In the next portion of the analysis we relate this Markov process to a simpler one for which the
transition probabilities are the same for all states. Note that 3 is distributed as

min(R + 1 — (to + (L + A), 5%)

where 8% denotes the sum of L i.i.d. geometric random variables with success probability 1—6.% So 3
is stochastically dominated by 3*.” Let o := JL, which can be made sufficiently small as 6L < 8/K
and K can be made sufficiently large. We use the following rough estimates for the probability of
B*=L+cforc=0,1,...: When ¢ =0 we have

1 -2«
1l—a

(5.20) Prigr=L=(1-0)F>1-6L=1-a>

(The reason for using the lower bound (1 — 2«)/(1 — «) in the second inequality will become clear
soon.) When ¢ > 1,

L -1 c
(5.21) Pr[3*=L+c| = (e)50(1 —)k < (L8)" =a”
c
Inspired by these estimates, we introduce the following simpler Markov chain Xg, X1,..., X, > 0,

where (1) X is distributed the same as distigeal(t0), and (2) for each X1, if Xy > G, then

(5.22)

Koo = Xy with probability (1 —2a)/(1 —a)
et Xy + ¢ with probability a¢ for each ¢ > 1 ’

if Xy < G, then

(5.23) X {max(Xz —1,0) with probability (1 —2«a)/(1 — «)
: +1 =

X, +ec with probability a“ for each ¢ > 1 '

Note that the use of (1 — 2a)/(1 —) makes sure that the probabilities sum to 1. Below we will
analyze Xg, X1, ..., X; in lieu of Equation (5.19).
Lemma 5.1 follows directly by combining the following two claims:

CLAIM 5.4. Pr[dist;dea|(t*) > c} > Pr[Xs > c} for every c.
CLam 5.5. Pr[X, =0] > 1-2a.

Proof. [Proof of Claim 5.4] We prove by induction that for every ¢ € [0 : s], X, stochastically
dominates distigeal(to + ¢L). The basis is trivial since Xy has the same distribution as distigeal(to)-
To prove the case with Xy using X, we make two simple observations:

1. First, for any a > b, the distribution of Xy, conditioned on X, = a stochastically
dominates the distribution of X,y conditioned on X, = b.

8We use the version of the geometric distribution for which the outcome of a draw is the total number of trials
up to and including the first success (hence the support is {1,2,3,...}).

"Recall that a random variable X is said to stochastically dominate Y if Pr[X > a] > Pr[Y > q] for all a.

805 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2. Next for any a, it follows from Equations (5.20) and (5.21) that the distribution of X4
conditioned on Xy = a stochastically dominates that of distigeal(to + (¢ + 1)L) conditioned on
diStidea|(t0 + KL) = a.

It follows from these two observations, as well as the inductive hypothesis on ¢, that Xy
stochastically dominates distigeai(to + (¢ + 1)H). This finishes the proof of the claim. O

Proof. [Proof of Claim 5.5] We prove by induction on ¢ = 0,1,...,s that the distribution of X,
satisfies

(5.24) Pr(X,=c| < : —a2a . (QO{(i;aa))) , for every c € [G];
G
(5.25) Pr[X, > G] < ((+1)- T (20{(:;)) .

Before working on the induction, we have from these two items that

Pr{X, =0l 21- 1—a2a ; (%)“_ (s+1)- 1fa (2i(i;aa))G

>1 a 2
- 1—4a+2a2 2

>1- 2.

The second inequality used s < 2992 G = [/2 and the fact that a can be made sufficiently small.
The last inequality also used that « is sufficiently small. We work on the induction below.

For the base case Xy, recall that this random variable has the same distribution as distigeai(to),
and hence we have for each ¢ > 1,

Pr[distigeai(fo) = ¢] <3 (to e)5@ << (21(1__23)>01 ,

a>c a>c

(where the second inequality above uses tg < L — 1 and the third uses that « is sufficiently small)
and also

to+c— a aGtl « 2a(1 — a)\ ¢
Pr [dlSt,dea| to >G Z Z(O)6 S(l_a)2gl—a< 1(—204)> ’

c>G+1a>c
For the induction, we assume the statement holds for £ and use it to prove the case with £+ 1.

806 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Using Equation (5.24), for every ¢ € [G — 1], we have
(by Equation (5.23))

Pr[Xeir =] < 30" PrlX, —a] + =20 Pr[X, — o+ 1]
a=0
c—1 a—1 c
. —a @ 20(1 —) 1-2a « 20(1 —)
sa +;a 1—2a< 1-2a) 1-a 1—2a< 1-2a

(5.26) . 1?;(%; (%)a—l i 1i“a <26;(i;aa))c

(5.27) = a’ (%)1 s <2§1_—23>)C>
- (B

The proof for ¢ = G is similar except that we do not have the term for X, = G + 1.
Finally using Equations (5.24) and (5.25) we have

G
(by definition of X.) Pr[Xe >G] <Pr[X,>G]+ Y > o’ Pr[X,=d

b>G a=0
1 G
<Pr[X,>G Grize. priX, =
< Pr[X, >]+1_aa§a r[X; = a
5. < bk Sl
(by Equation (5.24)) < PI‘[XE > G] + 1 —a <1+ 1—204(;(1—_2a)
o) 20(1 —)\ @
2 =Pr(X
(5.28) r| £>G]+1—a(1 -2«)
e 2a(1 —) “
(by Equation (5.25)) §<€+2>'1_a(1 - 9%) ,

where Equation (5.28) used similar derivation between Equations (5.26) and (5.27) earlier. This
finishes the induction and the proof of the claim. a

6 Main Algorithm

Let 6 and M be two parameters that satisfy Equations (4.2) and (4.3). Recall the following
parameters used in our analysis of Align and BMA:

M 1
7 = 500, H:Elog(m>§210gn, L=8H, G=L/2=4H and R = L2091,

807 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 4: Reconstruct

Input: A positive integer n and a tuple of (M + 1) strings y*,y(, ... y()
Output: A binary string w

=

Set ¢* = 571logn and w = ¢

2 while ¢* < |y*| — R and ¢* < |y*| — 57logn do

3 Run Align (¢*,y*,y(M), ... ,y()) to obtain a tuple of locations (¢(1), ..., ¢(M))

4 Run BMA (y*,y™M), ...y, px g ¢(m)) to obtain a binary string (¢ or in {0, 1}%)
5 Concatenate the string returned by BMA to the end of w

6 Set £* to be the final pointer of y* in the run of BMA above and increment it

7 return w.

Figure 6: The Algorithm Reconstruct

(Note that L < 16logn, G < 8logn and R < O(n%!logn).) Our main (deterministic) algorithm
Reconstruct is described in Figure 6, where we use

BMA(y*,y(l), e ,y(M);E*,K(l), e ,E(M))

to denote running BMA on the suffix of y* starting at location ¢* and the suffix of each y("™) starting
at location £(™). Recall that BMA either returns the empty string ¢ or a string w € {0, 1}%.
We prove the following theorem about the performance of Reconstruct:

THEOREM 6.1. Let x ~ {0,1}"* and y*,yD, ...,y ~ Dels(z). With probability at least 1 —1/n,
Reconstruct on y*,y U, ... yM) returns a string w with edit distance at most 2= n from x.

Similar to the analysis of Align in Section 4, we divide the analysis of Reconstruct into two
parts: In Section 6.1, we begin by describing some good events over the randomness of x, D*
and D™ : m € [M], and show that these events happen with probability at least 1 — 1/n. The
rest of the analysis in Section 6.2 will be entirely deterministic. We show that Reconstruct on
y*, vy oy must return a string w with small edit distance from x when all the events described
in Section 6.1 hold.

6.1 Probabilistic Analysis We start by showing that for x ~ {0,1}", the number of length-
(2R) subwords of x that contain at least one long desert is small.

LEMMA 6.1. With probability at least 1—exp(—n0'1) overx ~ {0,1}", the number of i € [n—2R+1]
such that X[;.;42r—1) has at least one long desert is at most 2 0.13Hp
Proof. Fix any k < G. The probability of a random length-L string being a k-desert is at most

1
k

2 * 2_L.

As a result, the probability of a random length-L string being a long desert is at most

G

Qk —0.4L
> oL =27
k=1

808 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Consider the number of length-L subwords in x ~ {0, 1}" that are long deserts. Given that changing
each bit can only change the number by no more than L, it follows from McDiarmid’s inequality
(Theorem 3.1) that with probability at least 1 — exp(—n®!), this number is at most

2—0.4Ln + O(n0.55L) S 2—0,22Hn

using H < 2logn. When this happens, the number of indices ¢ we care about in the statement of
the lemma is at most (4R — L) - 270220y < 270130y ysing R = 120012 and L = 8H. a

We modify the definition of image™ so that it is well-defined for every i € [n]: image(™ () is
the smallest location ¢ € [|y(™|] such that source(™ (¢) > i, or set image™ (i) = |y(™| + 1 if no
such ¢ exists. (Note that when the latter happens, the suffix of y(™) starting at |y(m)| + 1 is the
empty string €.) We say BMA succeeds on y™V), ... ,y(M) at location i € [n— R+ 1] of x if running BMA
on yM ...y starting at image™ (i), ..., image™) (i) returns exactly the R-bit string X[izi4+R—1]
and moreover, the consensus is achieved by at least 90% of strings in every round of BMA’s execution.

The following lemma is a direct corollary of Lemma 6.1 and Theorem 5.1:

LEMMA 6.2. Let x ~ {0,1}" and yM, ...,y ~ Dels(x). With probability at least 1 —
2exp(—n0'1), BMA succeeds on all but at most 279 Hn locations i € [n — R+ 1] in x.

Proof. It follows from Lemma 6.1 that with probability at least 1—exp(—n0'1), arandom x ~ {0,1}"
has no more than 27913 n length-(2R) subwords that contain at least one long desert. Let x be
such a string and fix any location ¢ such that x;;;; r—1] contains no long deserts. If the conclusion
of Theorem 5.1 holds on X := x;.;4 r—1] over subwords of y(™) that originate from X[i:i+R—1], then
BMA must succeed at location i. It follows from Theorem 5.1 that this happens with probability at
least 1 — 27,

We will apply McDiarmid’s inequality. Note that each of the nM independent random variables
(each of which indicates whether or not a bit of x is included in D)) can only change the number
we care about (i.e. the number of locations ¢ such that the conclusion of Theorem 5.1 holds on
X = X[j:i+ R—1] Oover subwords of y(™) that originate from X[i:i+ R—1]) by no more than R. It follows
that with probability at least 1 — exp(—no'l), BMA succeeds on all except 2791 many locations
i in x such that x;.;4 g—1) has no long deserts. The lemma follows. d

LEMMA 6.3. D* ~ D satisfies the following two properties with probability at least 1 —1/n?: (note
that |y*| = n — |D*|)

1. source*(57logn) = O(logn) and

min (source®(ly*| — R), source®(|y*| — 57logn)) > n — (2R + O(logn));

2. There are at most 27°2Hn values of i € [n] such that source*(£) < i < source*({ + 1) for
some { € [|y*| — 1] for which source* (¢ + 1) — source*(¢) > 2H.

Proof. The first part follows from a Chernoff bound.

For the second part, note that for i to be counted, it must be the case that either [i — H + 1 :]
C D*or [i:i+ H — 1] C D*, which occurs with probability at most 2-5% < 27, The second part
then follows from an application of McDiarmid’s inequality. d

809 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

To describe our final condition on x ~ {0,1}" and D* ~ D, we introduce a procedure which
we call BMA*. BMA* takes as input a string y*, a location ¢* such that |y*| > ¢* + R, and a reference
string z € {0,1}#. Let current*(1) = ¢*. The BMA* procedure repeats the following for R rounds: In
the ¢-th round, ¢ € [R], BMA* compares z; with 7, .-, and set current™(¢ + 1) = current*(t) + 1
if they match and current*(t + 1) = current*(¢) if they do not match. For each ¢ we also define
last™ (t) = source* (current*(t)). After the final (R-th) round BMA* outputs

last™(R 4 1) := source™ (current* (R + 1)).

Intuitively, BMA* outputs the final location of the pointer £* after a successful run of BMA. Now
we state the final condition on (x,D*). We say BMA* succeeds on a source string x € {0,1}"™ with
respect to y* if for all but at most 27 n many ¢* € [|ly*| — R], we have

(6.29) BMA* (y*, E*,x[i;HR_l]) <i+ R+ G, forevery i€ [source™(£*) —2H : source™(£*)].
Note that from an argument similar to the proof of Claim 5.2 we always have
(6.30) BMA* (y*, 0, Xsi4m—1)) =i+ R,

so intuitively, BMA* succeeds on x with respect to y* if for almost every £*, the output of BMA* on
input (y*,£*, X+ r—1]) is close to the “right value” i + R.

LEMMA 6.4. With probability at least 1 —2 exp(—no'l) over x ~ {0,1}" and D* ~ D, BMA* succeeds
on x with respect to y*.

Proof. We will show that with high probability, the number of pairs ¢* and i € [source*(¢*) — 2H :
source*(¢*)] that violate Equation (6.29) is at most 27%1Hn. First, note that it follows from
Lemma 6.1 that with probability at least 1 — exp(—no'l), the number of length-(2R) subwords
of x ~ {0,1}" that have at least one long desert is at most 279137y, Fixing such an x € {0,1}"
in the rest of the proof, we show that with probability at least 1 — exp(—no'l) over D* ~ D, BMA*
succeeds on x with respect to y*, from which the lemma follows.

To this end, we consider an £* and an ¢ in the window such that x[;.;42r—1) has no long deserts.
(By doing this we skipped no more than 2H -27%13%»n many pairs, which is much smaller than our
target of 2791 n.) The idea of the argument is to upper-bound the probability that Equation (6.29)
is violated at £* and 7 over D* ~ D, and then apply McDiarmid’s inequality to finish the proof.

We note that whether Equation (6.29) holds or not only depends on the [i : i + R + G] window
of x, because if last™(¢) ever becomes larger than i+ R+ G then Equation (6.29) is already violated.
Since R + G' < 2R, this subword x[;.;4+ gryq) of x has no long deserts. Similar to the analysis of BMA,
we define dist*(¢) for each t =1,..., R, R+ 1 as

dist™(¢) :=last™(t) =t — (: — 1),
where last™(t) is from the execution of BMA*. Note that
dist* (1) = last™(1) — i = source*(¢*) — i € [0,2H].

So the condition (6.29) can be restated as dist"(R+ 1) < G.

810 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Recall the random variables {distigeal (t) } tc[r+1] defined in Section 5. We claim that the random
variable distigeal (t) + (source* (£*) — i) stochastically dominates dist™(¢) for every ¢ € [R+ 1]. To see
this, observe that for every ¢ > 0,

Pr [distigeal (1) < ¢] < Pr[dist*(1) < ¢+ (source™(¢*) —i)] = 1.

Moreover, conditioned on distigeal () + (source* (£*) — i) = dist™(¢), the random variable distigeal(t +
1)+ (source* (£*) —1i) stochastically dominates dist*(t+1). (They are identical when distigeal(t) # 0.)
Also, for any a > b, we have that dist* (¢ + 1) conditioned on dist*(¢) = a stochastically dominates
dist™(¢ 4+ 1) conditioned on dist™(¢) = b.

It follows from Claim 5.4 and Equation (5.25) that

Pr[dist* (R + 1) > G] < Pr[distigeat(R + 1) > G — (source™(¢*) — i)]
< Pr{distigeat (B + 1) > G — 2H]

) a [(2a(1-a)*"
< (5)

11—« 1 -2«

S 27)
where we used s = R/L = 20 and G = 4H, and « sufficiently small.

We now apply McDiarmid’s inequality. The expected number of pairs £* and ¢ such that x in
[i : i+ 2R — 1] has no long deserts and Equation (6.29) is violated is at most 27 - 2Hn. Since
Equation (6.29) only depends on deletions in the window of [i : i + R + 4H], each random variable
can only change the number we care about above by O(R). It follows from McDiarmid’s inequality
that with probability at least 1 — exp(—no'l), the number of such pairs is at most 279157y, When
this happens, the total number of pairs of £* and i that violate Equation (6.29) (including those i’s
in Lemma 6.1 that have at least one long desert in [i : i + 2R] of x) is at most

(2H+1) . 2—0.13Hn + 2—0.15Hn S 2_0'1H7’L.

This finishes the proof of the lemma. a

We are now ready to present the list of conditions on x,y*,y®, ... y().

COROLLARY 6.1. With probability at least 1 — 1/n, x ~ {0,1}" and y*,yV, ...,y ~ Dels(x)
satisfy all conditions stated in Theorem 4.1, Lemma 6.2, Lemma 6.3 and Lemma 6.4.

6.2 Deterministic Analysis We prove that when x,y*,y™", ..., y(™) satisfy all conditions in
Theorem 4.1, Lemma 6.2, Lemma 6.3, and Lemma 6.4, the string w that Reconstruct returns on
y vy yM) must have edit distance at most 2-%91# p from x. This, together with Corollary 6.1,
finishes the proof of Theorem 6.1.

We start the proof with some notation. Let P be the following interval of locations of y*:

P = [STlogn :ly*| — max (STlogn, R)}
Let @ be the set of locations £* € P such that all three conditions below hold:

(i) The output (¢, ..., ¢) of Align (¢*,y*,y(D, ... y)) satisfies

811 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(a) At least 90% of source™) (¢£(™)) m € [M], agree on the same location i* € [n], and
(b) Their consensus location i* satisfies i* € [source* (¢*) — 2H : source™ (£*)];

(ii) Running BMA on y*,y(M) ... y(M) starting at image* (y*), image) (¢%), ..., image™) (i*)
returns Xp;;;+4 g—1] and the consensus is achieved by at least 90% of strings in every round;

(iii) The pair £* and i* satisfies BMA*(y*, £*, X[j+:i+ 4 p—1]) <" + R+ G.

Using conditions from Theorem 4.1 (for (i)) Lemma 6.2 (for (ii)), and Lemma 6.4 (for (iii)), we
have |P\ Q| < O(H27 %1 p). If Reconstruct uses a value £* that belongs to Q in an execution of
the main loop, the string concatenated to w during this execution of the loop must be x;«.;« 4 r—_1]
for some i* € [source*(¢*) — 2H : source*(¢*)]. Furthermore, before incrementing ¢* at the end
of this loop, we have from (iii) that source*(¢*) < i* + R+ G. In the rest of the proof, we write
07,05,... € P to denote the locations of y* that are used in each execution of the main loop of
Reconstruct. We use Good to denote the set of k such that ¢} € @ and Bad to denote the set of £
such that ¢ ¢ Q. For each k, we write wF¥ to denote the binary string concatenated to the end of
w in Step 5 of the k-th execution of the loop, so the output string of Reconstruct is w = wiw? - - .

Our analysis bounding the edit distance between w and x will proceed in three steps.

First step: In the first step we delete from w every w* with ¢; € Bad. Let w’ denote the
concatenation of all and only the w* for which ¢; € Good. We have that the edit distance between
w and w’ is at most

Bad|-R< |P\ Q| -R< O(H2*O'1Hn) ‘R< 2—0.011Hn’

where for the last step we recall that R = 8H20-03H

Second step: After the first step w’ is a concatenation of subwords of x but because these
subwords are not necessarily disjoint w’ is not necessarily a subsequence of x yet. In the second
step we delete some bits of w’ to obtain a subsequence of x. For each k € Good, recall that
it € [source*(¢;) — 2H : source*(¢})] and w* = X[iz:ix +r—1], and that w' is the concatenation of wh
across all k € Good. For any two consecutive k' < k in Good, we also have source*(¢;) > i}, + R using
Equation (6.30) and so the windows [source*(¢}) : ij + R —1] are disjoint and thus, defining w” to be
the concatenation of the subwords X[source* (£3):i% +R—1] of x, we get that w” is a subsequence of x. To
bound the edit distance between w' and w” we note that each new window [source*(¢}) : i} + R —1]
can be obtained from [i} : i}, + R — 1] by deleting no more than 2H indices at the beginning. Using

n = |x| > |w"| > |w'| — |Good| - 2H = |Good| (R —2H) and 2H < R/2,
we have that |Good| < 2n/R and thus, the edit distance between w’ and w” is at most
2
|Good| - 2H < En 2H < 2700THy,

Third step: Given that w” (the concatenation of subwords of x in [i}* : i} + R — 1] for each
k € Good) is a subsequence of x, to bound its edit distance from x it suffices to bound the number
of j € [n] such that j ¢ [i}* : i} + R — 1] for any k € Good. The following two cases cover every
such j € [n]:

1. j < source* (57 logn) or j > source*(|y*| — max (57 logn, R)). There are only O(R + logn)
many such j by the first part of Lemma 6.3.

812 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2. Otherwise, there is a unique k-th loop such that source*({}) < j < source*({;_).

We split the second case further into two cases: k € Good or k € Bad.

We start with the case when k € Bad and bound the total number of x; skipped. In this loop,
BMA starts with location £} of y* and ends at location ¢} ; — 1. Given that BMA only has R rounds
we have £; | —1 < {; + R. The number of j’s skipped because of these loops is thus captured by

-1
Z (source®(£5;,1) — source® (¢})) = Z Z (source™ (£ + 1) — source®(¢))
keBad keBad (=(F
0, -1
< |Bad|R + Z Z (source* (£ 4 1) — source™(£) — 1).
keBad (=£F

Using the second part of Lemma 6.3, the above can be upperbounded by
IBad|R + |Bad|R - 2H + 27 0-2Hy < 9= 0-011H,,

We finish with the case when k € Good and bound the total number of j’s skipped because of
some k € Good. Given that every bit of x in the window of [source*(¢}) : i} + R — 1] is included,
the number of j’s skipped is captured by

source”™ ({5, 1) — (i, + R)

= source” ({}, ;) — source” (¢, — 1) + source™ ({3, — 1) — (i, + R).

Note that from (iii) we have source*(¢;,; — 1) — (if, + R) < G. As a result, the total number of j’s
skipped is at most (again using the second part of Lemma 6.3 and a similar argument as above)

|Good|G + Z (source* (¢}, 1) — source™ (¢, — 1)—1) < |Good|G + 27 %*"n + |Good| - 2H.
keGood

Using |Good| < 2n/R, the above is at most 27007 p,
To summarize, the edit distance between w and x is at most

third step, case 2, third step, case 2,
first step second step third step, case 1 keGood keBad

—l— — —_—— —
270.011Hn_|_ 270.07Hn + O(R+10gn) + 270.011Hn 4 270.O7Hn < 270.01Hn'

This finishes the proof of Theorem 6.1.

7 Proof of Theorem 1.2: Lower bound on expected edit distance from few traces

In this section we prove Theorem 1.2. Recall that x ~ {0,1}", M < 0(1/5), y, ...,y ~
Dels(x), and A is an arbitrary algorithm which, on input § and y oy outputs a hypothesis
string X for x. We prove Theorem 1.2 by showing that E[deqit (X, x)] > n - (6M)O),

The main idea is to reduce the approximate trace reconstruction problem to the problem of
computing the exact length of many runs of 0’s (1-deserts) that are either of length M or of
length M + 1. We consider many instances of (a slight variation of) the following atomic problem:
distinguish between a run of length M and a run of length M + 1, given M “traces” of the run at

813 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

deletion rate §. This problem is equivalent to that of distinguishing between X ~ Bin(M,1 — ¢)
and X’ ~ Bin(M + 1,1 —§) given samples from a distribution that is either X or X’. (For technical
reasons the actual atomic problem we work with, described in the next subsection, is the problem
of distinguishing between two product distributions over non-negative integers which are closely
related to these binomial distributions.)

7.1 The atomic problem Consider the following two product distributions over pairs of non-
negative integers:

Dy :=Bin(M,1 -) x Bin(M + 1,1 —0); D;:=Bin(M + 1,1 —9) x Bin(M,1 —9).

We consider a uniform prior distribution P over {Dy,D1}. In this subsection we prove the
following lemma:

LEMMA 7.1. Let Dy ~ P, and let p be the optimal (minimal) failure probability of any algorithm
which is given a sample Sy; consisting of M independent draws from Dy and aims to identify
whether b=0 or b= 1. Then p > (M) for some absolute constant c > 0.

Proof. The optimal failure probability is achieved by the Bayes optimal predictor, which outputs
0 if Pr[Dy|Sas] > Pr[D1|Sn| and outputs 1 if Pr[Dy|Sas] < Pr[D1|Sa]. By Bayes’ theorem, for
b e {0,1} we have
PI’[SM|D5] PI‘[Db] . PI‘[SM’Db]

PI‘[SM] N QPP[SM]

PI‘[Db‘SM] =

so for any fixed outcome Sy, of the random variable Sy, the Bayes optimal predictor outputs 0 on
Sy if and only if
Prs,, ~)M Sy = Sum] > Prs,, ~(p,)m Sy = Swu].

Consider the particular outcome of the M draws which is

M pairs

AN

Ve

(M, M —1),...,(M,M—1),

i.e., in each draw the outcome of the first coordinate is M and the outcome of the second coordinate
is M — 1. It is clear that the Bayes optimal predictor, on this input, will output 1; to see this
rigorously, the probability of this outcome under D; is

(7.31) ((MJJ 1) (1-0)"s- (MA{ 1) (1- 5>M—15)M — (M +1)M(1 - 8)>M-162)"

while its probability under Dy is

(7.32) ((%) (1—5)M . <% * D (1- 5)M152)M - QLM (731

But the probability of this outcome when the source distribution is Dy is (recalling that M <

O(1/4))
(7.32) = QLM (7.31) = (©(M262))™ = (©(M8))° M.

814 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Since the probability that the source distribution is Dy is 1/2, it follows that the optimal failure
probability for any M-sample algorithm for this distinguishing problem is at least

) (@(M(S))@(M) _ (Mﬁ)@(M)-

N —

a

7.2 Direct sum (Paired Run Length Problem) We define the Paired Run Length
Problem (PRLP) as follows. Fix B € IN. An instance of the PRLP is specified by a binary
vector z = (z1,22,...,z5) € {0,1}B. For an instance z of the PRLP, an algorithm is given as input
samples of B-tuples of M pairs from the product distribution D, = D,, x D,, x --- x D,,. It then
must return some z € {0, 1}*, with the objective of minimizing E|[deqit(z,Z)]-

We begin by recording a warmup lemma which states that the PRLP cannot be solved ezactly
with success probability better than that obtained by solving each instance independently.

LEMMA 7.2. Let p = p(M,d) < 1/2 be the optimal failure probability of any algorithm for the
atomic problem from Lemma 7.1. For a uniform z ~ {0,1}B, let Aprrp be any algorithm for the
PRLP that is given M samples from D,, and let Z be its output. Then Pr[z =2z] < (1 —p)B.

Proof. This is a consequence of the independence of the distributions D,,,i € [B]; we now give

details. We have
B

Prjz=2z| = HPr[zi =2 |zx =72 for all k € [i — 1]].
i=1
Suppose there exists an algorithm Aprpp for the PRLP which outputs Z such that Pr[z = z| >
(1 — p)B. Then there exists an i* € [B] such that

(7.33) Pr[zi* =7Z;«|z, =7 for all k € [i* — IH >1-—np.

We use this to construct a “too good to be true” algorithm A for the atomic problem. Given M
samples of the distribution Dy, for a uniform (unknown) b ~ {0, 1}, A “embeds” the problem into the
PRLP problem. Specifically, it draws z’ ~ {0,1}%~! and simulates M samples of D, i€ [B—1].

Let z € {0,1}7 be defined by

zi_,, 1>
Clearly, z is uniformly random. A generates M samples of D, by appropriately concatenating the
M samples of Dy and the simulated samples of Dy yi € [B — 1]. It then invokes Apgrp on the
generated samples, receives output Z € {0, 1}, and checks whether z;, = Z;, for all k € [i* — 1]; if
this is the case then it returns b := Z;+, and if it is not the case then it tries again by drawing a fresh
independent z’ ~ {0,1}%~1, repeating this until it is the case that z; = Zy. By Equation (7.33),
b = b with probability more than 1 — p, which contradicts the definition of p. 0

We use Lemma 7.2 to give a lower bound on the expected edit distance for any algorithm for
the PRLP:

815 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA 7.3. Letp = p(M,d) < 1/2 be the optimal failure probability of any algorithm for the atomic
problem from Lemma 7.1. For a uniform z ~ {0, 1}B, let Aprrp be any algorithm for the PRLP
that is given M samples from D,, and let z be its output. Then E|deait(z,Z)] > ¢'B - p/log(1/p),
where ¢ > 0 is an absolute constant.

Proof. Let p’ < p be a parameter to be specified later, and let £ be the event that deqit(z,z) < Bp'.
(Since Aprrp can without loss of generality be taken to be deterministic, £ is over the uniform
random draw of z and the M samples from D,.) Fix a potential matching p = (i, jt)re[1—p)B]
between z and Z that is of size (1 — p’)B. Let &, be the event that z;, is actually equal to z;, for
all t (i.e., the potential matching actually is a matching between z and z). By Lemma 7.2, we have
that

Pri&,] < (1 —p) P8 < exp(—pB/2),

where we used 1 — p’ > 1/2 for the second inequality.
Now, by a union bound over all potential matchings of size (1 — p') B, we get that

Pr(e] < 3 Prig,] < (;;)2 - exp (—%) < exp (B (zp’ 1og§ - g)) .

Choosing p’ = ¢1p/log(1/p) for some small enough ¢; > 0, we have Pr[€] < 27287, Hence we have
E[deqic(z,2)] > (1 —27¢8P) . (Bp') = ¢'B - p/log(1/p) for some absolute constant ¢’ > 0, and the
lemma is proved. 0

7.3 Embedding and proof of Theorem 1.2 In this subsection we relate the PRLP to the
average-case approximate trace reconstruction problem and prove Theorem 1.2. To explain the
connection between average-case approximate trace reconstruction and the PRLP, let us define two
subwords

a:=0M10M+111, B = 0M+110M11.

Observe that for any string x € {0,1}" and any pair of distinct intervals I,J C [n] such that
xr,xy € {a, B}, I and J must be disjoint. Note that in a uniform random string x, each of these
subwords occurs with expected frequency ¢ = 2=V, where N := |a| = || = 2M + 4. Intuitively,
given M traces from Dels(x), determining whether a segment of x is in fact o or 8 corresponds to a
single instance of the atomic problem from Section 7.1, and determining this for B disjoint segments
corresponds to an instance of the PRLP. In the rest of this subsection we make this correspondence
precise and show how a high-accuracy algorithm for M-sample average-case approximate trace
reconstruction yields a high-accuracy algorithm for the PRLP; combining this with the lower bound
on the PRLP from Section 7.2 gives Theorem 1.2.

Fix a sufficiently small absolute constant ¢ < 1, and let A be an algorithm for average-case
approximate trace reconstruction which, given M < ¢/§ traces of a random string x € {0,1}"
(and the value of §), returns X € {0,1}* such that E[deqi(x,X)] < n(6M)“M for some constant C.
Building on A, in Figure 7 we provide a “too good to be true” (given Lemma 7.3) algorithm Apgryp
for the Paired Run Length Problem.

We give a description of the algorithm Apgry,p. Consider a uniformly random string x” € {0, 1}",
where n := N -2V . B is chosen such that x’ contains at least B occurrences of o or 3 with high
probability. Given x’ and z ~ {0,1}#, we define another string x € {0,1}" by replacing the b-th

816 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Algorithm 5: ApRLp

Input: A list of M samples s, ..., s(M) from the product distribution D, for an
(unknown) uniformly random z ~ {0,1}% (and the value of § € (0, 1)).

Output: A string z € {0,1}=5.

Set N=2M +4andn=N-2V.B.

Generate a uniformly random string x” € {0,1}".

[y

2

3 Let B’ = min{ B, number of occurrences of a or f in x’}.

4 For b€ [B'], let I® = [i{¥ i(®) + N — 1] be the b-th interval in X' such that x, € {o, 8}.
Also set i(B'+D) =n 41,

5 for m € [M] do

6 Set y(™ ~ Dels (xﬁ,i(l)—l])'
Let (m) — ((m)) (m)) ’ h ((m) (m)) ~D, .
7 et s Sb,l Sb,2 belB] wnere Sb,l s 8b,2 zp

8 for b € [B'] do

(m) (m)

9 Set y;)(m) ~ 0%.1 o Dels(1) 0 0°2 o Dels(11) € {0, 1}=¥.
10 Set yl(;m) ~ Del(; <x/[i(b)+N,’L'(b+1)—1]).
11 Append y;;(m) o ygm) to the end of y(™).

12 Run A on and the M strings y™), ..., y™) to obtain X € {0, 1}*.
13 Let B = min{B, number of occurrences of a or 3 in X}.

14 for b € [E] do

15 \\ Let J® be the b-th interval in X such that X ;) € {o, 3}.

16 Set /Z\bZOifS(\Ju;) = «, and /Z\b:]_if/X\J(b) = p.

17 return Z := (21,2,...,25).

Figure 7: Algorithm Apgrpp for the PRLP problem, given an algorithm A for average-case

approximate trace reconstruction.

occurrence of o or § in x’ with « if z, = 0 and with § if z, = 1 as long as b < B. As any pair of
occurrences of o or 5 are disjoint, the above procedure is well-defined. We show in Lemma 7.4 that
x is uniformly random, and hence a set of M traces from x is a legitimate input to A.

The algorithm Apryp for the PRLP of course does not have access to z, but only to samples
s ..., sM) ~ D,. Hence, it cannot generate x explicitly. However, we show that it can simulate
M independent traces from x by generating x’ ~ {0,1}", followed by generating traces from the
segments in x’ that are disjoint from the occurrences of « or 3, and then concatenating them
appropriately with the traces of a or # that are generated using the samples s . (M) (see the
loop spanning lines 5-11 of the algorithm). It then invokes A on these traces to obtain a string
x € {0,1}*, extracts from X a binary vector Z € {0, 1}* based on the first (at most) B occurrences
of o or 8 in X, and returns it.

We note that the different intervals I in line 4 are disjoint from each other, and likewise for the

817 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

different intervals J in line 15.

LEMMA 7.4. Let z € {0,1}8 be uniformly random, let X' be uniform random over {0,1}". Let B’
be the minimum of B and the number of occurrences of o or 8 in x', and let x be obtained from x’
by replacing the b-th occurrence of a or 3 in X" with o if z, = 0 and with 8 if z, =1 for allb € [B’].
Then x is uniformly random over {0,1}™.

Proof. Fix any possible outcome x € {0,1}" of x and let j = min{ B, number of occurrences of « or
B in x}. There are precisely 27 outcomes x’ € {0,1}" of x’ for which it is possible that x’ = x’ could
give rise to x = x (these are precisely the 27 strings obtained by replacing the first j occurrences of
a or fin x by a or (3 in all possible ways). Each of these outcomes has probability 1/2" under x’
because x is uniform random and for each such outcome there is a 1/27 chance that the replacement
yields x = x from x’ = x’. Hence Pr[x = x| = 27 - (1/2") - (1/27) = 1/2™. O

LEMMA 7.5. X" (and hence x) contains at least B disjoint occurrences of o or 3 with probability at
least 1 — exp(—Q(B)).

Proof. As x’ is a uniformly random string, for any position ¢ € [n — N + 1], we have that

2 1
Pr[xfz';HN—u € {0475}} = 5N T oN-T

Let ¢ = 2=0V=1 We divide x’ into s := 2V - B disjoint segments x'/) of length N. For j € [s],
let F; be the indicator of the event that x'/) € {a, B8}. Then F,; ~ Ber(q), and F;,j € [s] are
independent.

Let F =) . F; denote the number of segments x’ () that are o or 3. Note that F is a lower
bound on the overall number of disjoint occurrences of a or 3, because we are only considering
segments ending at positions which are integral multiples of N. Clearly,

E[F] =) E[F]=sq=2B.
JEls]

By the Chernoff Bound, we have F < B with probability at most exp(—$(B)). Along with the
observations above and the fact that x; € {«, 8} if and only if x; € {«, 5} for an interval I of length
N, this concludes the proof. a

Next we state and prove a crucial lemma which implies that if A is a good algorithm for average-
case approximate trace reconstruction, then Apgryp is a good algorithm for the PRLP problem:

LEMMA 7.6. Ifx' (and hence x) contains at least B disjoint occurrences of a or 3, then degit(z,Z) <
2. dedit (X, 32) .

Proof. Let IM 1) I be intervals of length N corresponding to the occurrences of o or 3
in x (so by the assumption of the lemma, we have S > B). Similarly, let JO g@ T pe
intervals of length N corresponding to the occurrences of o or 8 in X. Fix an optimal matching p
between x and X corresponding to any longest common subsequence between those strings (if there
is more than one choice for p it can be selected from the optimal matchings arbitrarily).

Consider the matching 7 on [S] x [T, where (s,t) € 7 if and only if u(1®)) = J®. Let 7’ be
the induced matching obtained by restricting 7 to [B] X [|z|]. Note that 7/ corresponds to a longest
common subsequence of z and Z. We consider two cases.

818 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1. Suppose (s,t) € 7 for some s < B and t > B. Note that this implies there are at least
t > B occurences of « or § in X, and so we have |z| = |z|. We claim that for every ¢’ < B, if
(s',t') € T for some s’ then s’ < B; this is because otherwise we have s,t’ < B and §',t > B,
but (s,t),(s',t') € 7, contradicting our definition of matching.

Therefore, for every ¢t € [T],t < B that is not matched to an element of [S] in 7/, it is also not
matched to an element of [S] in 7, and hence either (1) some element in J®) is not matched
in y, or (2) the indices in x that are matched to J® do not form an interval. Either case
contributes at least 1 deletion in x or X to deqit (X, X). Since there are deqit(z,z)/2 such t’s, we
have deqit(2,2) < 2 deait (X, X).

2. Otherwise, for every s < B, if (s,t) € 7 then it must be that t < B. Moreover, for every
s < B that is not in 7/, it is also not in 7, and therefore either (1) some element in I(®) is
not in g, or (2) the indices in X that are matched to I®) do not form an interval. Either
case contributes at least 1 deletion in x or X to deait(x,X). Since |z| > [z|, we have at least
dedit(2,2)/2 such s’, and s0 deqit(2,2) < 2 deqit (X, X).

a

Proof. [Proof of Theorem 1.2] Lemma 7.1 and Lemma 7.3 imply that for any algorithm Apgpp that
solves the PRLP given M samples from D,, its output z satisfies

(7.34) E[deqit(2,2)] > B (6M)M

for some absolute constant ¢ > 0.

Now, let A be any algorithm which, given ¢ and traces y™,...,y™) from a random string
x € {0,1}" as input, outputs a hypothesis string X for x such that E[deqis(x,X)] < n - (§M)CM.
Consider the algorithm Aprpp described in Figure 7. By Lemma 7.5, X (and hence x) has at
least B disjoint occurrences of a or 8 with probability at least 1 — e~2(B)_ in which case we have
doqit(2,Z2) < 2 - degit(x,X) by Lemma 7.6. If x has fewer than B disjoint occurrences of « or 3, we
have deqit(z,2) < 2B as z € {0,1}8 and Z € {0,1}=5. So, we obtain

E[dedit(2,2)] < e 5. 2B + (1 — e B . 2 E[deqis(x,X)]

< 4n - (6M)°M
(7.35) < B-(6M)“'M
for some suitable constant C’ > 0. Equations (7.34) and (7.35) lead to the desired contradiction
for C’ > ¢, which concludes the proof of Theorem 1.2. 0
References

[1] Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha. Beyond trace
reconstruction: Population recovery from the deletion channel. In 60th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 745-768. IEEE Computer Society, 2019. 1.1.1

[2] Frank Ban, Xi Chen, Rocco A. Servedio, and Sandip Sinha. Efficient average-case population
recovery in the presence of insertions and deletions. In APPROX/RANDOM 2019, volume 145 of
LIPIcs, pages 44:1-44:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. 1.1.1

819 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3]

[10]
[11]

[12]

[14]

[15]

Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing strings
from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, pages 910-918, 2004. 1.1, 1.1.1, 1.3, 2.1.2, 2.3, 5

Joshua Brakensiek, Ray Li, and Bruce Spang. Coded trace reconstruction in a constant number of
traces. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
482-493, 2020. 1.1.1

Zachary Chase. New lower bounds for trace reconstruction. Ann. Inst. H. Poincaré Probab. Statist.,
57(2):627-643, 2021. 1.1.1

Zachary Chase. Separating words and trace reconstruction. In STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual FEvent, Italy, June 21-25, 2021, pages 21-31.
ACM, 2021. 1.1.1

Zachary Chase and Yuval Peres. Personal communication. Manuscript, 2021. 1.1.2, 1.1, 1.3

Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time trace
reconstruction in the low deletion rate regime. In 12th Innovations in Theoretical Computer Science
Conference, volume 185 of LIPIcs, pages 20:1-20:20, 2021. 1.1.1, 1.3, 2.1.2, 2.3, 5, 5.1

Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time trace
reconstruction in the smoothed complexity model. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 54-73, 2021. 1.1.1

Mahdi Cheraghchi, Joao Ribeiro, Ryan Gabrys, and Olgica Milenkovic. Coded trace reconstruction.
In 2019 IEEE Information Theory Workshop (ITW), page 1-5. IEEE Press, 2019. 1.1.1

Sami Davies, Miklos Z. Racz, Cyrus Rashtchian, and Benjamin G. Schiffer. Approximate trace
reconstruction: Algorithms. In IEEE International Symposium on Information Theory, 2021. 1.1.2
Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for trace
reconstruction. In Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), pages
1047-1056, 2017. 1.1.1

Elena Grigorescu, Madhu Sudan, and Minshen Zhu. Limitations of mean-based algorithms for trace
reconstruction at small distance. In IEEFE International Symposium on Information Theory, 2021.
1.1.2

Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying deletion
probabilities. In Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2018, New Orleans, LA, USA, January 8-9, 2018., pages 54—61, 2018. 1.1.1

Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for random
strings and arbitrary deletion probability. In Conference On Learning Theory, COLT 2018,
Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine Learning Research, pages
1799-1840. PMLR, 2018. 1.1.1

Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction for
random strings and arbitrary deletion probability. Mathematical Statistics and Learning,
2(3/4):275-309, 2019. 1.1.1

Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruction
with constant deletion probability and related results. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages 389-398, 2008. 1.1.1

V. V. Kalashnik. Reconstruction of a word from its fragments. Computational Mathematics and
Computer Science (Vychislitel’naya matematika i vychislitel’naya tekhnika), Kharkov, 4:56-57, 1973.
1.1

Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace
reconstruction: Generalized and parameterized. In 27th Annual European Symposium on
Algorithms, ESA 2019, volume 144 of LIPIcs, pages 68:1-68:25. Schloss Dagstuhl - Leibniz-Zentrum
fir Informatik, 2019. 1.1.1

Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Information
Theory, 47(1):2-22, 2001. 1.1

820 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 05/15/22 to 160.39.44.239 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

Vladimir Levenshtein. Efficient reconstruction of sequences from their subsequences or
supersequences. Journal of Combinatorial Theory Series A, 93(2):310-332, 2001. 1.1

Colin McDiarmid. Concentration, pages 195-248. Springer Berlin Heidelberg, Berlin, Heidelberg,
1998. 3.1

Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In Proceedings
of the 22nd Annual European Symposium on Algorithms, pages 689-700, 2014. 1.1.1

Shyam Narayanan. Improved algorithms for population recovery from the deletion channel. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 1259-1278. STAM, 2021. 1.1.1

Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In 12th Innovations in
Theoretical Computer Science Conference (ITCS 2021), pages 18:1-18:18, 2021. 1.1.1

Fedor Nazarov and Yuval Peres. Trace reconstruction with exp <O(n1/ 3)) samples. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 10421046,
2017. 1.1.1

Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolynomially
many traces suffice. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 228-239. IEEE Computer Society, 2017. 1.1.1
Jin Sima and Jehoshua Bruck. Trace reconstruction with bounded edit distance. In IEEFE
International Symposium on Information Theory, 2021. Manuscript, available at
https://arxiv.org/abs/2102.05372. 1.1.2

Sundara Rajan Srinivasavaradhan, Michelle Du, Suhas Diggavi, and Christina Fragouli. On
maximum likelihood reconstruction over multiple deletion channels. In IEEFE International
Symposium on Information Theory, ISIT 2018, pages 436—440, 2018. 1.1.2

821 Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Background and prior work
	Exact trace reconstruction
	Approximate trace reconstruction

	Our results
	Discussion and future work

	Our approach
	Overview of our algorithmic approach (thm:main)
	Some preliminary observations and simplifications
	The high-level approach

	The Align procedure
	The BMA procedure
	Overview of our lower bound approach (thm:mainlower)
	Organization

	Preliminaries
	Useful results

	The Align algorithm and proof of thm:align
	Overview
	Algorithm Align
	Probabilistic Analysis
	Conditions on DD
	Conditions on x{0,1}n
	Conditions on D(1),…,D(M)D
	Conclusion of Probabilistic Analysis

	Deterministic Analysis
	First stage: Locating a small neighborhood of source() in each trace y(m)
	Second stage: Determining a consensus location close to source().

	The BMA algorithm and proof of thm:bma
	Proof of lemma:rw-easy

	Main Algorithm
	Probabilistic Analysis
	Deterministic Analysis

	Proof of thm:mainlower: Lower bound on expected edit distance from few traces
	The atomic problem
	Direct sum (Paired Run Length Problem)
	Embedding and proof of thm:mainlower

