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Princeton University

We consider a high-dimensional linear regression problem. Unlike many
papers on the topic, we do not require sparsity of the regression coefficients;
instead, our main structural assumption is a decay of eigenvalues of the co-
variance matrix of the data. We propose a new family of estimators, called
the canonical thresholding estimators, which pick largest regression coeffi-
cients in the canonical form. The estimators admit an explicit form and can be
linked to LASSO and Principal Component Regression (PCR). A theoretical
analysis for both fixed design and random design settings is provided. Ob-
tained bounds on the mean squared error and the prediction error of a specific
estimator from the family allow to clearly state sufficient conditions on the
decay of eigenvalues to ensure convergence. In addition, we promote the use
of the relative errors, strongly linked with the out-of-sample R2. The study
of these relative errors leads to a new concept of joint effective dimension,
which incorporates the covariance of the data and the regression coefficients
simultaneously, and describes the complexity of a linear regression problem.
Some minimax lower bounds are established to showcase the optimality of
our procedure. Numerical simulations confirm good performance of the pro-
posed estimators compared to the previously developed methods.

1. Introduction and Setup. Consider the standard linear regression model

y = x>�+ ",

where x 2 R
d is a vector of covariates, � 2 R

d is a vector of coefficients, " 2 R is a noise
term, and y 2 R is a response. Suppose we observe n pairs {(xi, yi)}ni=1 from this model
with the assumption that the underlying noise terms {"i}ni=1 are i.i.d. random variables with
mean zero. In matrix notations, introducing
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we rewrite our model as

(1.1) YYY=XXX�+ ".

Define the covariance matrix of the data b⌃ def
= n

�1
P

n

i=1 xix>
i
= n

�1
XXX

>
XXX 2 R

d⇥d. Our
goal is to estimate the unknown � and analyze the quality of estimation in two different
settings:

• Fixed design. That means, the vectors of covariates {xi}ni=1 are deterministic (without
loss of generality we assume

P
n

i=1 xi = 0). A standard way to measure the error of an
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estimator e� in this case is the mean squared error (MSE):

MSE(e�) def
=

1

n

nX

i=1

(x>
i
e�� x>

i �)
2 =

1

n
kXXXe��XXX�k22 = (e���)> b⌃(e���).

This differs from the prediction error for the fixed design by an amount of E["2] (indepen-
dent of the model) and reflects the model error in the prediction for this case.

• Random design. In this scenario the vectors of covariates {xi}ni=1 come independently
from some unknown distribution with mean zero (for simplicity) and the covariance matrix
⌃

def
= E[xx>] 2 R

d⇥d. We are interested in the performance of an estimator e� measured
by the expected prediction error (PE):

PE(e�) def
= E

h
(x>e�� x>�)2

i
= (e���)>⌃(e���).

This quantity differs also from the prediction error for random design by E["2] and equals
the excess risk

PE(e�) = E

h
(y � x>e�)2

i
�E

h
(y � x>�)2

i
.

In the sequel we refer to these quantities simply as the (absolute) MSE and PE. The reason
we give two names is to differentiate their statistical behavior in high dimensions and to
avoid confusions at various discussions. We will also motivate and analyze the relative errors
MSE(e�)/MSE(0) and PE(e�)/PE(0). Surprisingly, the relative errors in this form, appearing
naturally and being well-motivated, have not gained much attention in the literature (some
related, but still quite different relative measures of performance in different contexts were
considered in Dobriban and Liu (2019); Dobriban and Sheng (2020, 2021+)). As we will see,
the importance of the relative errors arises as a high-dimensional effect.

Being a fundamental statistical problem, the high-dimensional linear regression has been
approached in various ways. Probably the simplest method is Principal Component Regres-
sion (PCR). The idea is to reduce the dimension first via Principal Component Analysis
(PCA) (Pearson, 1901), and then use several leading principal components as covariates to
construct the least squares estimator. This approach heavily relies on a very strong assumption
that the response depends on just a few leading principal components of the data. Various ex-
amples were provided where PCR performs poorly, see Jolliffe (1982). Another related idea
to use supervised principal components was proposed by Bair et al. (2006). See also Chapters
10 and 11 of Fan et al. (2020) for further discussions and applications.

Over the past two decades, the main approach to tackle high-dimensionality of the problem
has been the sparsity assumption on �, which is reasonable for many real-world applications.
This has given rise to such model selection procedures as LASSO (Tibshirani, 1996), SCAD
(Fan and Li, 2001), Least Angle Regression (Efron et al., 2004), Dantzig selector (Candes
and Tao, 2007), SLOPE (Bogdan et al., 2015). The list of papers devoted to these methods
is too long to be presented here, so we just mention some of them: Greenshtein and Ritov
(2004); Paul et al. (2008); Bickel, Ritov and Tsybakov (2009); Dalalyan, Hebiri and Lederer
(2017); Bellec, Lecué and Tsybakov (2018). Typically, a theoretical analysis of such proce-
dures requires assumptions on the design like restricted isometry property (RIP), restricted
eigenvalue (RE) condition, incoherence. These assumptions are needed to make sure that the
correlations among subsets of features are small. See van de Geer and Bühlmann (2009) for
an overview of conditions used in the theoretical analysis of sparse linear regression. We also
refer to Chapters 3–5 of Fan et al. (2020) for an overview of existing methods and theoretical
results for high-dimensional linear regression under sparsity.

The methods from the previous two paragraphs were developed (partially) due to a belief
that the unconstrained least squares estimator is hopeless in high dimensions. Recent papers
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by Bartlett et al. (2020) and later Chinot and Lerasle (2020) have shown that the minimum
`2-norm least squares estimator e�

LS def
= (XXX>

XXX)+XXX>
YYY (where (XXX>

XXX)+ is the generalized
inverse of the matrix XXX

>
XXX) can generalize well (i.e. have small absolute PE) even interpolat-

ing the training data – they call this phenomenon “benign overfitting”. To deliver convergence
of PE(e�

LS

) to zero they require quite specific conditions on ⌃: the decay of its eigenvalues
should be fast, but not too fast. These requirements are quantified by two notions of effective
rank of ⌃. A closely related paper by Hastie et al. (2019) also studies e�

LS

, but in the regime
p/n ! �. They are interested in the dependence of PE(e�

LS

) on �, and focus on the case
�min(⌃) � c > 0, e.g. considering isotropic and equicorrelation covariances. One more work
on the topic is Belkin, Hsu and Xu (2019), where the authors try to mathematically explain
double descent phenomenon in several different models.

Going beyond the linear regression, one basic idea to approach general (nonlinear)
regression problem y = f(x) + " is to decompose the regression function f(x) ⇡P

D

j=1 �j j(x) =  (x)>� over a Fourier basis, wavelet basis, or basis of eigenfunctions
in reproducing kernel Hilbert space (RKHS), denoted here by  1(·), . . . , D(·). This reduces
the nonlinear regression problem to a linear one (potentially very high-dimensional or even
infinite-dimensional), and allows to apply the existing methods. Though we do not pursue
the analysis of nonlinear regression in our work, this setting provides an excellent motivation
for the main structural assumptions we make in our results. One of them is fast decay of the
eigenvalues of ⌃ (or b⌃). For instance, we require that the effective rank

re↵ [⌃]
def
=

Tr[⌃]

k⌃k

 
or re↵ [b⌃]

def
=

Tr[b⌃]

kb⌃k

!

can be well-controlled. The spectral decay has been observed in real-world datasets (e.g.
MNIST, see Figure 5 in Liang and Rakhlin (2020); financial data in Zumbach (2009), Figure
5; economics data in Fan, Ke and Wang (2020), Figure 5), which makes our assumption
reasonable. Importance of the eigenvalue decay (not only of the covariance, but of general
kernel matrices) is highlighted in Liang and Rakhlin (2020), where such kind of conditions
on the spectral decay is called “favorable data geometry”. Moreover, Ma and Belkin (2017);
Belkin (2018) analyze the super-polynomial decay of eigenvalues of smooth kernel matrices.
Going even further in deep learning literature, neural tangent kernels also exhibit the spectral
decay, as shown by Bietti and Mairal (2019), among others. However, the fast eigenvalue
decay is not the only motivation behind our work; another structural assumption that can
make our results meaningful is a fast decay of regression coefficients in eigenbasis. This is a
very well-understood condition as well: it is well-known that Fourier coefficients decay at a
polynomial rate, where the degree depends on the smoothness of the underlying regression
function. In addition, the decay of coefficients in RKHS was studied by Belkin (2018).

With these structural assumptions, the idea behind our family of estimators b� is quite
natural: in some eigendirections (e.g. the ones that correspond to small eigenvalues of ⌃) we
do not gain much by estimating the associated coefficient, so it makes sense to estimate only
those components that allow to significantly reduce the error; specifically, we use threshold-
ing to cut the components associated with the insignificant directions off. When applied to the
nonlinear regression with wavelet basis, one estimator from the proposed family coincides
with the soft thresholding approach studied in the series of papers by Donoho and Johnstone
(1994); Donoho (1995); Donoho and Johnstone (1995); Donoho et al. (1995); Donoho and
Johnstone (1998), among others. We highlight that we will not require sparsity of � or any
restrictive conditions on the design.

Let us summarize some motivations behind our work:
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• Our methods can be viewed as an attempt to fix PCR by relaxing its restrictive assumptions.
Instead of working with the several leading principal components, our estimators automati-
cally screen for the most important principal components, not necessarily the leading ones.

• Remarkably, the procedures that we propose are a modification of LASSO, so one can
view this work as an attempt to extend LASSO to non-sparse high-dimensional linear
regression.

• Though the papers by Bartlett et al. (2020) and Chinot and Lerasle (2020) do not advocate
the use of interpolating estimators rather justify why the overfitting may not be harmful
(very relevant question in modern deep learning research), we aim to show that there is
no necessity to give up the in-sample denoising quality to get good bounds on the predic-
tion error. In fact, our numerical results show that our method is better the least squares
estimator in various situations.

Main contributions of this paper are:

• We propose a new method for high-dimensional linear regression, called Natural Canon-
ical Thresholding (NCT), in Section 2. The connection of this approach to LASSO and
PCR is discussed in Section 2.1 and Section 2.2. In Section 2.3 we extend the suggested
procedure and present a richer family of estimators, called Generalized Canonical Thresh-
olding (GCT). Our estimators b� are given via an explicit expression and do not require
any optimization. Though each estimator from the family has one hyperparameter, it can
be tuned in an efficient way via cross-validation as shown in Section 6. An optimality result
for the cross-validation is also presented.

• We provide theoretical guarantees for the NCT estimator in the fixed design and random
design settings in Section 3. The presented tight bounds have two-fold meaning:
– For the absolute errors MSE(b�) and PE(b�), studied in Section 3.1 and Section 3.2, we

state explicit sufficient conditions of the form “the eigenvalues of b⌃ or ⌃ decay fast
enough” to ensure convergence in high dimensions. No conditions on � are imposed in
this case.

– For the relative errors MSE(b�)/MSE(0) and PE(b�)/PE(0), motivated in Section 3.3.1,
our bounds factorize into the newly defined notion of the joint effective dimension, the
signal-to-noise ratio, and a vanishing factor. To get good rates for the relative errors
in high dimensions it is not enough to assume fast decay of eigenvalues of b⌃ or ⌃
alone, and we need to impose conditions of ⌃ and � together (Section 3.3.2), which is
reflected by the joint effective dimension that we analyze (Section 3.3.3).

We introduce parameter classes for linear regression problems with bounded joint effective
dimension, and demonstrate a minimax optimality of the NCT estimator over this classes
in the fixed design setting (Section 4).

Theoretical analysis of the GCT estimator is not that insightful, however we still present
and discuss a tight bound on the absolute error MSE(b�) (Section 5).

• Numerical experiments, conducted in Section S.1 of the Supplementary Material Silin and
Fan (2021), confirm good performance of NCT and especially GCT in comparison with
other existing methods.

All the proofs are collected in the Supplementary Material Silin and Fan (2021). We conclude
this section with defining some notations used throughout the work.

For a positive integer k, we write [k] as shorthand for the set {1,2, . . . , k}. We use
Ok⇥l for k ⇥ l matrix of zeros and Ik for the identity matrix of size k ⇥ k. For
a vector a = [a1, . . . , ak]> 2 R

k and q > 0, the standard `q-(pseudo)norm in R
k is

kakq
def
=

⇣P
k

j=1 |aj |q
⌘1/q

. We use the following convention for the `0-pseudonorm: kak00 =
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kak0
def
=

P
k

j=1 {aj 6= 0}. Also, the `1-norm is kak1 =maxj2[k] |aj |. For a matrix A, let
kAk be the spectral norm (the largest singular value), rank[A] be the rank, and (if A is
square) Tr[A] be the trace.

For sequences an and bn the relation an . bn means that there exists a positive absolute
constant C such that an  Cbn for all n, while an ⇣ bn means that an . bn and bn . an.
Oftentimes, similar notations will be used to denote inequalities/equalities up to a multiplica-
tive constant not across the sample size n, but across all indices j 2 [d] or j 2 [min(d,n)].
The exact meaning in each case will be clear from the context. By c,C we denote absolute
constants which may differ from place to place.

Throughout the work, � stands for the true vector of regression coefficients in the model
(1.1), b� stands for our NCT or GCT estimators proposed in the next section, and a generic
estimator is denoted as e�. If we want to refer to an abstract vector, for example, as a variable
in an optimization problem, we will be using �0.

2. Estimators. Let r
def
= rank[b⌃]. Typically, r = min(d,n). Consider the SVD of the

data matrix XXX (scaled by n
�1/2):

1p
n
XXX= bVb⇤bU>

,

where b⇤ = diag
⇣
b�1/21 , . . . ,b�1/2r

⌘
2 R

r⇥r is a diagonal matrix consisting of the non-zero

singular values of n
�1/2

XXX in non-increasing order, the columns of bV 2 R
n⇥r are the left

singular vectors of XXX, and the columns of bU = [bu1, . . . , bur] 2 R
d⇥r are the right singular

vectors of XXX. Alternatively, it is also convenient to think of the eigendecomposition of b⌃:

b⌃= bUb⇤2 bU>
,

where now the diagonal entries b�1, . . . ,b�r of b⇤2 are interpreted as the non-zero eigenvalues
of b⌃ in non-increasing order, and the columns bu1, . . . , bur of bU are the corresponding
eigenvectors of b⌃. Similarly, in what follows we will actively use the eigendecomposition of
⌃:

⌃=U⇤2U>
,

where ⇤2 = diag(�1, . . . ,�d) 2 R
d⇥d is a diagonal matrix consisting of the eigenvalues

of ⌃ in non-increasing order, and U= [u1, . . . ,ud] 2 R
d⇥d consists of the corresponding

eigenvectors.
We introduce the following definition, which will be extensively used throughout the work.

DEFINITION 2.1. Rewrite the linear regression model YYY=XXX�+ " as

YYY= (XXXbUb⇤�1)(b⇤bU>�) + "=ZZZ✓+ ".

We call this representation the canonical form of the linear regression model. Here
ZZZ

def
= XXXbUb⇤�1 2 R

n⇥r is the standardized design matrix and

✓
def
= b⇤bU>� 2 R

r

is the new vector of coefficients, called the canonical regression coefficients vector, or simply
canonical coefficients.
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Note that the standardized design coincides with the left singular vectors ZZZ = n
1/2 bV and

satisfies the orthonormality constraints: n
�1
ZZZ
>
ZZZ = Ir . Hence, the least-squares estimator

for the canonical parameter is e✓
LS

= n
�1
ZZZ
>
YYY = n

�1 b⇤�1 bU>
XXX

>
YYY. As in Fan (1996), we

further regularize the estimated canonical coefficients vector by either thresholding or trun-
cation (setting higher indices to zero), depending whether ✓ is approximately sparse or con-
centrates on the leading principal components. Transforming the canonical parameter back
to the original domain leads to the canonical thresholding estimator or principal component
regression estimator, as to be further elaborated below. Our work pushes forward the interac-
tions between the canonical parameters and the design matrix.

More specifically, in the canonical domain our estimator looks like

b✓ def
= SOFT⌧

h
e✓
LS
i
,

which in the original domain brings us to the Natural Canonical Thresholding (NCT) esti-
mator of �, defined as

(2.1) b� def
= bUb⇤�1 SOFT⌧


b⇤�1 bU> XXX

>
YYY

n

�
,

where SOFT⌧ [z]
def
= z ·max(1� ⌧/|z|,0) is the soft thresholding function applied component-

wise and ⌧ � 0 is a hyperparameter to be chosen. Note that in an overparameterized setting
d > n there are infinitely many d-dimensional vectors leading to the same canonical coef-
ficients. Specifically, for any vector h 2 R

d the estimator b� + (Id � bUbU>)h leads to the
same vector of canonical coefficients: b⇤bU>[b�+(Id � bUbU>)h] = b✓. While having the same
in-sample fit, these estimators may produce different predictions for new points x. Among
all of these estimators, b� from (2.1), namely the estimator with h = 0, has the smallest
`2-norm, arguably being the most reasonable choice.

Let us explain some intuition behind the NCT estimator. Neglecting the noise term, we
plug YYY⇡ZZZ✓ in, use the eigendecomposition of b⌃ and get

b✓ ⇡ SOFT⌧ [✓] .

Due to the structure of our error (e.g. in the fixed design case)

MSE(b�) = kb⇤bU> b�� b⇤bU>�k22 = kb✓� ✓k22
and since we assume the eigenvalue decay, it is likely that some components ✓j do not play
role, and the estimation of them with b✓j is not that important. Hence, it is reasonable to
cut such insignificant components off, and this is exactly what the thresholding does. This
reduces the variance of the estimator, while not increasing the bias by too much.

We also mention that when ⌧ = 0, our estimator reduce to the minimum `2-norm least
squares solution

b✓ = e✓
LS

and b� = e�
LS

= b⌃+ XXX
>
YYY

n
= (XXX>

XXX)+XXX
>
YYY

(unbiased or slightly biased, but with large variance), while ⌧ = +1 corresponds to the
trivial solution b✓ = 0 and b� = 0 (very biased, but with zero variance).

2.1. Relation to LASSO. Recall that the standard LASSO estimator is a solution of the
following optimization problem:

e�
LASSO

2 arg min
�02Rd

⇢
1

2n
kYYY�XXX�0k22 + ⌧k�0k1

�
.
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In practice one usually standardizes the columns of XXX so that they are on the same scale and
the coefficients corresponding to different covariates are penalized equally. Now imagine that
we standardize our XXX in the canonical manner as in Definition 2.1. If we run LASSO for the
vector of coefficients ✓, then the solution is expressed via the soft thresholding:

e✓
LASSO

= arg min
✓02Rr

⇢
1

2n
kYYY�ZZZ✓0k22 + ⌧k✓0k1

�
= SOFT⌧


ZZZ
>
YYY

n

�
,

which is exactly our estimator b✓ in the canonical domain. Going back to b� = bUb⇤�1 e✓
LASSO

we recover the NCT estimator (2.1). The solution is the soft thresholding on the canonical
regression coefficients. This is why we call the method canonical thresholding.

We also note that the NCT estimator can be represented as the min-`2-norm solution of
the optimization problem

b� 2 arg min
�02Rd

⇢
1

2n
kYYY�XXX�0k22 + ⌧kb⇤bU>�0k1

�
.

Our estimator is nothing more than LASSO penalized on the canonical regression coeffi-
cients.

2.2. Relation to PCR. Principal Component Regression (PCR) approaches the high di-
mensionality of the problem by taking only m (m< r =min(d,n)) leading principal com-
ponents of the original data. The new design matrix becomes

ZZZm =XXXbUm
b⇤�1
m

2 R
n⇥m

,

where bUm 2 R
d⇥m consists of the first m columns of bU and b⇤m 2 R

m⇥m is m⇥m

leading principal submatrix of b⇤. The new regression problem

YYY=ZZZm✓m + "

is solved via the least squares, yielding the solution

e✓
LS

m =
ZZZ
>
mYYY

n
2 R

m
,

and thus

e�
PCR def

= bUm
b⇤�1
m

e✓
LS

m 2 R
d
.

Note that e✓
LS

m is essentially the first m components of e✓
LS

, and we can express

e�
PCR

= bUb⇤�1 ZEROm


b⇤�1 bU> XXX

>
YYY

n

�
,

where ZEROm[z] = [z1, . . . , zm,0, . . . ,0]> is the operator zeroing out all the components of
a vector z 2 R

r except the first m. (Again, in an overparameterized case this estimator has
the smallest `2-norm among all estimators leading to the canonical coefficients e✓

LS

m .) The
similarity of the PCR estimator to the NCT estimator (2.1) is now clear. While PCR blindly
selects the coefficients corresponding to the first m principal components, our procedure
screens for the most important principal directions, which may be different from the leading
ones, and leaves only those with significant contribution exceeding ⌧ . However, if there is
a strong prior indicating the canonical coefficients spike at the principal directions, then of
course PCR should also be a suitable procedure, and NCT will simply mimic its behavior,
with some small costs. The above contrasts between truncation and thresholding appear in
Fan (1996) under a simpler model.
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2.3. Extension to family of canonical thresholding estimators. PCR focuses only on the
estimators on the principal component directions, and NCT does not have any preferences.
We now propose a family of canonical thresholding estimators to bridge these two extremes,
progressively putting more preferences on the principal directions. In addition, we also gen-
eralize the thresholding function.

First, the soft thresholding can be replaced by generalized thresholding rules (see e.g.
Definition 9.3 in Fan et al. (2020)), introduced for completeness in the following definition.

DEFINITION 2.2. The function T⌧ : R ! R is called a generalized thresholding func-
tion, if

(i) |T⌧ [z]|  c|z0| for all z, z0 satisfying |z � z
0|  ⌧/2 and some constant c;

(ii) |T⌧ [z]� z|  ⌧ for all z 2 R.

The parameter ⌧ is called the thresholding level.

Second, if there is some prior that the spike canonical coefficients are more likely to be in
the lower principal components rather than in the higher ones, we can introduce additional
multiplicative weights, equal to the eigenvalues raised to a non-negative power '/2, under
thresholding to reflect this preference. This is equivalent to applying a larger thresholding on
higher principal components, with ' controlling the degree. Implementing this strategy, we
propose the following more general family of estimators, parameterized by '� 0:

b✓ def
= b⇤�' T⌧

h
b⇤' e✓

LS
i

in the canonical domain, or

(2.2) b� def
= bUb⇤�1�' T⌧


b⇤�1+' bU> XXX

>
YYY

n

�

in the original domain. Here T⌧ [z] is a generalized thresholding function from Definition 2.2
applied component-wise and ⌧ � 0 is a hyperparameter to be chosen. The estimators from
this family are called the Generalized Canonical Thresholding (GCT) estimators.

When '= 0 and the soft thresholding function is used, GCT reduces to the NCT estima-
tor (2.1). The intuition behind GCT is somewhat similar to NCT: the estimators automatically
screen the most significant principal components. However, the choice of ' allows to put dif-
ferent importance to eigenvalue b�j and projection bu>

j
� when deciding whether to threshold

j-th principal component or not. While in NCT this importance is calibrated in accordance to
the scaling appearing in the decomposition of the absolute MSE (this justifies the word “Nat-
ural” in the name), GCT with '> 0 gives more weight to the leading canonical coefficients,
making the method closer to PCR, and selects other components when absolutely necessary.

There is one common situation where PCR is preferable: pervasive latent factors that drives
both the covariates and the response (Fan, Wang and Yao, 2017). In this case, the principal
components are used to learn latent factors and these learned factors are used as the covariates
for regressing the response y. This leads to PCR. We introduce GCT to better accommodate
this situation. Figure 1 visually illustrates the conceptual difference between NCT, GCT,
and PCR approaches. We highlight once again that the selection of the components in NCT
and GCT is data-driven, unlike in PCR where the selected components are fixed before the
data are observed (modulo cross-validation, which helps to select the number of leading
components, but not the components itself).

It turns out that the theoretical results for GCT are not that nice and insightful as for NCT.
However, in practice we observed that GCT may behave much better in some scenarios, as to
be shown in the corresponding section. In principle, one can even tune ' in addition to tuning
⌧ via cross-validation, which might further enhance the practical utility of the procedure.
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1 2 3 4 5 6 7 8 9 10 11 12 j
��

0

�

e�LS
j

(a) Natural Canonical Thresholding: light purple indicates the portion of the active coefficients sub-
tracted during soft thresholding, and purple depicts the remaining surviving coefficients;

1 2 3 4 5 6 7 8 9 10 11 12 j
��

0

�

e�LS
j

(b) Generalized Canonical Thresholding with the hard thresholding rule, ' = 1, and assumed eigen-
value decay b�j = 1.21(�j+1);

1 2 3 4 5 6 7 8 9 10 11 12 j
��

0

�

e�LS
j

(c) Principal Component Regression with m= 4;

Fig 1: Comparison of NCT, GCT, and PCR estimators on an artificial example with r = 12.
On the horizontal axes – an index of the component j, on the vertical axes – the coefficient
of the canonical least squares e✓LS

j
. The red dotted lines depict the thresholding boundaries.

The coefficients falling into the shaded area are thresholded/truncated to zero and depicted
in gray. The coefficients surviving the thresholding/truncation are depicted in purple, orange,
and teal, respectively.
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3. Theoretical properties of the NCT estimator. The first condition needed for our
theoretical analysis is the following assumption on the noise, which will be used in both
fixed design and random design settings.

ASSUMPTION 3.1 (Sub-Weibull noise). The noise vector " is independent of XXX and
is jointly sub-Weibull random vector with parameter 0 < ↵  2 (see Kuchibhotla and
Chakrabortty (2018)). That is, there exists � < 1 such that

sup
kwk2=1

kw>"k ↵
 �,

where k · k ↵
is the Orlicz norm for  ↵ = e

x
↵ � 1. The following tail bound takes place:

P

h
|w>"| � t

i
 2 exp (� (t/�)↵)

for all w, kwk2 = 1 and t > 0.

This allows to go slightly beyond sub-Gaussian and sub-Exponential tails. For i.i.d. sub-
Gaussian noise, �2 coincides (up to a multiplicative constant) with the variance of a single
"i. So, � can be interpreted as the magnitude of the noise.

Define the signal-to-noise ratio of the linear regression problem in the fixed design setting
as

SNR
def
=

✓
n
�1

P
n

i=1(x
>
i
�)2

�2

◆1/2

=

 
�> b⌃�
�2

!1/2

=
k✓k2
�

,

while for the random design we use

SNR
def
=

✓
E[(x>�)2]

�2

◆1/2

=

 
�>⌃�

�2

!1/2

=
k⇤U>�k2

�
.

For our problem to be meaningful, we assume for the rest of the work that SNR> 0 in both
settings.

Recall the canonical regression coefficients ✓ = b⇤bU>� for the fixed design. Its normal-
ized version ✓/k✓k2 has the first k components ✓k/k✓k2 where ✓k = b⇤k

bU>
k
�. Here

as usual b⇤k 2 R
k⇥k is the leading principal submatrix of b⇤ (containing the square roots

of the first k eigenvalues of b⌃ on the diagonal) and bUk 2 R
d⇥k is the matrix consisting

of the first k columns of bU (which are the k leading eigenvectors of b⌃). Measuring the
first k normalized components ✓k/k✓k2 in `q-(pseudo)norm gives

De↵
q,k(b⌃,�)

def
=

k✓kkqq
k✓kq2

.

We call this quantity the joint effective dimension of order q up to index k of b⌃ and �. Note
that when q = 2, it measures the proportion of ✓ explained by ✓k ; when q = 0, it counts
the sparsity among ✓k. Similar quantity can be defined for the random design setting:

De↵
q,k(⌃,�)

def
=

k⇤kU>
k
�kqq

k⇤U>�kq2
.

It turns out that this joint effective dimension will play crucial role in our bounds for the NCT
estimator (2.1).
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For shortness, we introduce the following quantity that will be appearing regularly
throughout the section:

⇢
def
=

2p
n
(log(2r/�))1/↵ ,(3.1)

where � is from the statements “with probability 1� �...”. The thresholding level ⌧ for both
NCT and GCT will be expressed in terms of ⇢.

3.1. Fixed design. We first provide a simple guarantee on the mean squared error
MSE(b�) of the NCT estimator (2.1).

THEOREM 3.1. Suppose Assumption 3.1 is satisfied. Take ⌧ = �⇢ with ⇢ given by (3.1).
Then, with probability 1 � �, the NCT estimator b� from (2.1) with thresholding at level ⌧
satisfies

MSE(b�) ⇣
rX

j=1

min(�⇢, |✓j |)2(3.2)

 inf
q2[0,2]

�
k✓kqq (�⇢)2�q

 
(3.3)

=MSE(0) inf
q2[0,2]

8
<

:De↵
q,r(b⌃,�)

"
SNR�2 (log(2r/�))

2/↵

n

#1�q/2
9
=

; .(3.4)

The proof of this result almost repeats the classical proof for hard and soft thresholding in
case of orthonormal design.

REMARK 3.1 (Choice of ⌧ ). The choice of ⌧ in the above theorem depends on the noise
magnitude �, the probability �, and the quantity ↵, but this is not a significant problem.
Later in Section 6 we will show how to tune ⌧ using an efficient cross-validation procedure.

In Theorem 3.1 we present several bounds on MSE(b�). Note that the bound (3.2) is
tight. One can argue that the matching lower bound is due to the excessive bias introduced
by soft thresholding. However, even if we replace soft thresholding with hard thresholding
HARD⌧ [z]

def
= z · {|z| � ⌧}, the upper bound in probability stays the same as in (3.2), and

at the same time it is not difficult to get a nearly matching lower bound (for Gaussian noise
"⇠ N (0,�2In)) in expectation:

E

h
MSE(b�)

i
&

rX

j=1

min

✓
�p
n
, |✓j |

◆2

.

In any case, the bound (3.2) is not really interpretable. The bounds (3.3) and (3.4) have much
deeper intuition as we will see later. Nevertheless, a reasonable question is how tight the
inequality leading from (3.2) to (3.3) is. Though in general the opposite inequality (up to a
multiplicative constant) does not seem to hold, the following proposition states that in several
important cases the inequality is actually tight (or almost tight).

PROPOSITION 3.2. (i) Sparsity. Assume k✓k0 = s ⌧ r with |✓j | & �⇢ for all j such
that ✓j 6= 0. Then (taking q = 0)

rX

j=1

min(�⇢, |✓j |)2 & inf
q2[0,2]

�
k✓kqq (�⇢)2�q

 
.
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(ii) Approximate sparsity. Assume there exists a small ⌫ > 0 such that k✓k⌫ . �, and there
are at least s significant canonical coefficients: |{j 2 [r] : |✓j | & �⇢}| � s. Then (taking
q = ⌫)

rX

j=1

min(�⇢, |✓j |)2 & inf
q2[0,2]

�
k✓kqq (�⇢)2�q

 
⇥ s⇢

⌫
.

(iii) Polynomial decay. Let |✓(1)| � |✓(2)| � . . . � |✓(r)| be the absolute values of the compo-
nents of ✓ arranged in descending order. Assume polynomial decay of the ordered canonical
coefficients: for some a > 0 holds

|✓(j)|
|✓(1)|

⇣ j
�a for all j 2 [r].

Then (taking q =min(1/a, 2))
rX

j=1

min(�⇢, |✓j |)2 & inf
q2[0,2]

�
k✓kqq (�⇢)2�q

 
⇥
(
1/ log(r), a � 1/2,

1, a < 1/2.

Continuing the discussion on the bounds presented in Theorem 3.1, we claim that though
(3.3) and (3.4) coincide, the way we state them reflects two different messages. The first one,
if we take q = 1 and apply the inequality k✓k1  kb⌃k1/2k�k2re↵ [b⌃]1/2 (which follows
from the Cauchy-Schwarz inequality), then from the bound (3.3) we get

(3.5) MSE(b�) . �kb⌃k1/2k�k2

s
re↵ [b⌃] (log(2r/�))2/↵

n

with high probability. This means that if one is interested in the absolute error MSE(b�),
then essentially re↵ [b⌃]/n = o(1) is enough to guarantee MSE(b�) = �kb⌃k1/2k�k2 · o(1),
omitting logarithmic terms. No additional assumptions on � are required, and there is no
necessity to worry about the joint effective dimension and the signal-to-noise ratio from the
bound (3.4) in this situation. Note that the bound (3.5) is tight up to a logarithmic factor when
b�j = b�1/j and |bu>

j
�| ⇣ k�k2/(

p
j log(r)).

Nevertheless, the bound (3.4) is useful to better understand the structure of the error.
Taking into account that the main motivation in our work is the decay of eigenvalues
of b⌃ or ⌃, it may easily be the case that even the trivial estimator e� = 0 has a very
small error MSE(0) = �> b⌃�. Hence, it makes sense to care more about the relative er-
ror MSE(e�)/MSE(0). In this case, the joint effective dimension and the signal-to-noise ratio
control the upper bound on the relative error. We will get back to the analysis of the rela-
tive error and the joint effective dimension after we state an analogous result for the random
design case.

3.2. Random design. In addition to the noise assumption, to study the performance of
the NCT estimator in the random design setting we need to impose a couple more conditions
on the distribution of the covariates.

ASSUMPTION 3.2 (Sub-Gaussian covariates). The scaled generic random vector of co-
variates ⌃�1/2x is sub-Gaussian.
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ASSUMPTION 3.3 (Convex decay of eigenvalues). There exists a convex decreasing
function �(·) such that the eigenvalues of ⌃ satisfy �j = �(j) for j 2 [d].

The previous assumption is technical and we impose it in our main result just for concrete-
ness. Later in Remark 3.9 we mention how our result can be modified if this assumption does
not hold.

One more assumption is needed just to make the rates more friendly-looking. If it is not
satisfied, our result below will be meaningless, so there is no loss of generality in this condi-
tion.

ASSUMPTION 3.4 (Technical conditions). The effective rank satisfies re↵ [⌃]  n. Also,
whenever we say “with probability 1� �...”, we suppose that the quantity

✏
def
=

r
log(d/�)

n

satisfies ✏  c for properly chosen implicit absolute constant c > 0 (this constant comes
from the proof).

In addition to the assumptions above, in the sequel we take the convention �k = 0 for all
k > d. Now we are ready to present the following result.

THEOREM 3.3. Suppose Assumptions (3.1) – (3.4) are fulfilled. Recall ⇢ from (3.1),
✏

def
=

p
log(d/�)/n, and define k

⇤ def
= (✏ log(1/✏))�2/3 (essentially, k⇤ ⇣ n

1/3 up to a log-
arithmic term). Then:

(i) With probability 1� �, the NCT estimator b� from (2.1) with thresholding at level

⌧ = �⇢

satisfies

PE(b�) . inf
q2[0,2]

n
k⇤kU

>
k�kqq (�⇢)2�q

o
+

+ k⌃kk�k22

0

@�k

�1
+

r
re↵ [⌃] + log(1/�)

n
+ ✏

kX

j=1

�j(1 + ✏ j
2)

�1

1

A

for all 1  k  k
⇤.

(ii) With probability 1� �, the NCT estimator b� from (2.1) with thresholding at level

⌧ = �⇢+Ck⌃k1/2k�k2 ✏1/2max
j2[k]

✓
�j (1 + ✏j

2)

�1

◆1/2

for some C satisfies

PE(b�) . inf
q2[0,2]

n
k⇤kU

>
k�kqq ⌧2�q

o
+ k⌃kk�k22

 
�k

�1
+

r
re↵ [⌃] + log(1/�)

n

!

for all 1  k  k
⇤.

Several comments are in order.
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REMARK 3.2 (Why two bounds?). We present two separate bounds in (i) and (ii) for
distinct thresholds ⌧ and ⌧ , because they behave differently for various eigenvalue regimes.
The bound from (i) outperforms the bound from (ii) in a wide variety of settings (e.g. in
polynomial and superpolynomial decay scenario), however there are cases when the bound
(ii) can be better (e.g. specific cases in factor model regime).

REMARK 3.3 (Meaning of terms). We call the term infq2[0,2] {. . .} in the bounds of
Theorem 3.3 (i) and (ii) the “main term”, since it is almost the same as what we had in
Theorem 3.1 for the fixed design. The other terms in these bounds are referred to as “addi-
tional terms” as they appear only in the random design case. Allowing 1  k  k

⇤ provides
a tradeoff, as some of the terms increase with growing k, while others decrease. In what
follows we are typically interested in k = k

⇤ just for concreteness. The meaning of different
parts of the “additional terms” is the following. The parts including re↵ [⌃] are the payment
for the covariance matrix estimation. The part �k⇤/�1 appears due to the difficulty of con-
trol of the empirical eigenvectors beyond k

⇤-th. The parts with
P

k
⇤

j=1 �j (1 + ✏j
2)/�1 and

maxj2[k⇤] �j (1 + ✏j
2)/�1 are the payment for the control of the sample eigenvalues and

eigenvectors up to index k
⇤.

REMARK 3.4 (Moderate noise: simplifications and sufficient conditions for conver-
gence). Consider the moderate noise situation �2 . k⌃kk�k22. In this case the “additional
terms” become dominating: simply taking k = k

⇤ and q = 1, applying k⇤kU>
k
�k1 

k⌃k1/2k�k2re↵ [⌃]1/2 and plugging in ⌧ and ⌧ makes the “main term” negligible. Omit-
ting logarithmic terms, the bound (i) reduces to

(3.6) PE(b�) . k⌃kk�k22

0

@�k⇤

�1
+

r
re↵ [⌃]

n
+ ✏

k
⇤X

j=1

�j(1 + ✏ j
2)

�1

1

A ,

while the bound (ii) reduces to

PE(b�) . k⌃kk�k22

 
�k⇤

�1
+

✓
re↵ [⌃]2

n

◆1/4

max
j2[k⇤]

✓
�j (1 + j

2
/
p
n)

�1

◆1/2
!

with high probability.
From here we can easily deduce sufficient conditions to ensure the convergence of the

absolute error PE(b�) = k⌃kk�k22 · o(1) as n ! 1 without any conditions on �. In partic-
ular, �n = o(1), re↵ [⌃] = o(n), and

P
k
⇤

j=1
�j (1+j

2
/
p
n)

�1
= o(n1/2) is enough (again, up to

logarithmic factors). Essentially, these sufficient conditions require the decay of eigenvalues
to be fast enough (but in a more sophisticated fashion than for MSE).

REMARK 3.5 (Moderate noise: further simplifications in specific examples). Continuing
the moderate noise situation, for the sake of exposition, let us consider a couple of specific
examples of eigenvalue regimes and illustrate how the bound from Theorem 3.3 (i) simplifies.
As above, we omit logarithmic terms.

• Polynomial decay. If �j . j
�a with a � 1 or d . n

(3�2a)/(3�3a) with a < 1, it is easy
to verify that the bracket factor of (3.6) is dominated by �k⇤/�1 + n

�1/2 (again ignoring
logarithmic terms), and with high probability

PE(b�) . k⌃kk�k22
nmin(a/3,1/2)

.
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In particular, when a= 1 (the boundary that has a good control of re↵ [⌃] in high dimen-
sions), we have with high probability

PE(b�) . k⌃kk�k22
n1/3

.

When a � 3/2, we have with high probability

PE(b�) . k⌃kk�k22
n1/2

.

• Factor model regime. If �1 ⇣ . . . ⇣ �m ⇣ d, �m+1 ⇣ . . . ⇣ �d ⇣ 1 for some m . k
⇤,

then taking k =m+ 1 yields with high probability

PE(b�) . k⌃kk�k22
✓
1

d
+

mp
n
+

m
3

n

◆
.

REMARK 3.6 (Large noise). In the large noise case, when �
2 � k⌃kk�k22, the “main

term” dominates. Similarly to the fixed design case, we can factorize the “main term” into the
error of the trivial estimator PE(0) = �>⌃�, the joint effective dimension and the signal-
to-noise ratio: the “main term” from (i) becomes

PE(0) inf
q2[0,2]

(
De↵
q,k⇤(⌃,�)

"
SNR�2 (log(2d/�))

2/↵

n

#1�q/2)
,

and the “main term” from (ii) can be rewritten as

PE(0) inf
q2[0,2]

(
De↵
q,k⇤(⌃,�)

"
SNR�2 (log(2d/�))

2/↵

n
+

+
k⌃kk�k22
�>⌃�

✏ max
j2[k⇤]

✓
�j (1 + ✏j

2)

�1

◆#1�q/2)
.

In this regime, the relative error PE(b�)/PE(0) is essentially controlled by the joint effective
dimension and the signal-to-noise ratio. More detailed analysis of the joint effective dimen-
sion De↵

q,k
(⌃,�) is conducted in the next section.

REMARK 3.7 (Comparison with the least squares). It is straightforward to notice that the
faster decay of eigenvalues, the better bound we obtain. This contrasts the min-norm least
squares estimator considered in Bartlett et al. (2020); Chinot and Lerasle (2020), where the
decay is required to be not too fast. It also reveals the benefits of the thresholding even in
such a situation.

REMARK 3.8 (Dependence on the dimension d). One can see that while the bound of
Theorem 3.1 contains log(r) term with r = min(d,n) and gives meaningful result even
in ultra-high or infinite dimension, the results of Theorem 3.3 contain the factor log(d)
directly. This logarithmic factor appears through the definition of ✏, which is an upper bound
in Lemma S.2.3 of the Supplementary Material Silin and Fan (2021): with probability 1� �

max
l,l02[d]

���(⌃�1/2 b⌃⌃�1/2 � Id)l,l0
��� ✏.

This condition is crucial for application of the relative perturbation bounds from Jirak and
Wahl (2018), which are the foundation of our proof technique for Theorem 3.3. If we could
choose ✏ in a completely dimension-free way to satisfy the above, it would yield totally
dimension-free bounds in Theorem 3.3, but currently applying the union bound inevitably
brings log(d) factor.
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REMARK 3.9 (Relaxing Assumption 3.3). Assumption 3.3 can be avoided. If one defines
k
⇤ as

k
⇤ =min

0

BB@(✏ log(1/✏))�2/3
, max

8
>><

>>:
j 2 [d]

�����

dX

l=1
l 6=j

�l

|�j � �l|
+

�j

min(�j�1 � �j ,�j � �j+1)
 1

3✏

9
>>=

>>;

1

CCA ,

then the same conclusion as in Theorem 3.3 is true with a slightly different rate.

To compare the natural canonical thresholding with the canonical truncation of higher
index components, i.e. PCR, we state the next proposition.

PROPOSITION 3.4. Assume the conditions of Theorem 3.3 hold and let k⇤ be defined in
the same way. Then, with probability 1 � �, the PCR estimator e�

PCR

with the number of
leading principal components set to m. k

⇤ satisfies

PE(e�
PCR

) . k⌃kk�k22

 
�m

�1
+

r
re↵ [⌃] + log(1/�)

n

!
+
�
2
m

n
(log(2m/�))1/↵ .

We omit the proof of this result, since it essentially uses the same techniques and follows the
same strategy as the proof of Theorem 3.3. Note that in the moderate noise scenario the rate
essentially coincides with what we obtained for the NCT estimator estimator in Remark 3.4.
The adaptivity of our estimator b� comes into play in large noise case: the “main term” in the
bounds on PE(b�) is better than �

2
m/n in situations when U>

k
� is approximately sparse.

3.3. Relative errors and joint effective dimension. So far we were able to establish some
sufficient conditions for convergence of absolute errors MSE(b�) and PE(b�) of the NCT
estimator without any assumptions on � by simply taking q = 1 (bound (3.5) and Re-
mark 3.4). The analysis of the relative errors for fixed design and (in large noise case) ran-
dom design requires more careful study of De↵

q,k
(⌃,�). Let us motivate why relative errors

MSE(b�)/MSE(0) and PE(b�)/PE(0) might be of interest in the first place.

3.3.1. Motivation for relative errors. One reason behind studying the relative errors was
already mentioned previously. Note that if there is no relation between b⌃ and �, meaning
that bU>� is a “random” vector, then we can expect kbU>�k1 ⇣ k�k2

p
log(d)/d. In this

case, the trivial estimator e� = 0 achieves error

MSE(0) = �> b⌃�  Tr[b⌃]kbU>�k21 ⇣ kb⌃kk�k22
re↵ [b⌃] log(d)

d
.

As long as the eigenvalues of b⌃ decay fast, even the trivial estimator gives error close to
zero in high dimensions. Here we should highlight that this effect does not appear in low
dimensions (and even in high-dimensional but isotropic situations), where the absolute and
relative errors are just a multiplicative constant apart. (Same reasoning works for the PE.)
Hence, it is not satisfactory for us to show that the absolute error of our estimator goes to zero
with growing sample size and dimension. We would like to get more meaningful conclusions
from our results, which would confirm that the proposed estimator does better than the trivial
estimator. This naturally leads to the relative errors.

Another motivation comes from the way statisticians evaluate and compare estimators in
practical applications. In particular, a widely used performance measure is the coefficient
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of determination, or simply R
2. For instance, the in-sample version for an estimator e� is

defined as

R
2
in(e�)

def
= 1�

P
n

i=1(yi � x>
i
e�)2P

n

i=1 y
2
i

.

The larger this quantity is, the better method we have; its largest possible value is 1, and the
value of 0 indicates that the estimator does no better than the trivial estimator. Maximization
of R

2
in
(e�) would try to fit the observed data perfectly, and in this sense it is not equivalent to

minimizing MSE(e�)/MSE(0). Nevertheless, a crucial observation is that R
2
in
(e�) is a rela-

tive quantity, which takes into account the performance of the trivial estimator. This supports
our choice of the relative MSE as an error measure.

Similar intuition applies to the out-of-sample R
2
out and the relative prediction error

PE(e�)/PE(0), and intuitively it seems that they are linked even stronger. Note that in ap-
plications it is often the case that even small but positive R

2 (e.g. 0.05) can be considered
a success. Therefore, the hope to have MSE(e�)/MSE(0) or PE(e�)/PE(0) converging to
0 might be too optimistic in some situations. Having these relative errors smaller than 1
already means that the procedure is able to extract some useful signal from the data.

3.3.2. Why joint conditions on design and regression coefficients?. Prior to describing
the properties of De↵

q,k
(⌃,�), let us show why imposing conditions on the design alone, or

imposing conditions on � alone can be not enough to establish convergence of the relative
errors. It is easier to do for the fixed design case, so let us focus on this setting for now.

For a given design matrix XXX and an estimator e� we can construct another estimator
e✓ = b⇤bU>e�. Therefore,

(e���)> b⌃(e���)
�> b⌃�

=
ke✓� ✓k22

k✓k22
.

The relative MSE in canonical domain has nothing to do with b⌃. This demonstrates that
getting a good rate is hopeless in high dimension assuming only fast decay of eigenvalues of
b⌃.

On the other hand, we might impose strong conditions on �, such as sparsity, in which case
one could expect even MSE(e�) ⇣ �

2
s/n (up to a logarithmic factor) for some appropriate

estimator e�, where s measures the degree of sparsity. However, as we mentioned previously,
if b⌃ and � are not related and the eigenvalues of b⌃ decay fast, we might have MSE(0) ⇣
kb⌃kk�k22/d (again up to logarithmic factors) for the trivial estimator. This implies that there
is no much hope in getting vanishing relative error MSE(e�)/MSE(0) in high dimensions.
That is why it seems natural that our bound on the relative error depends on the joint effective
dimension, that takes into account not only decay of eigenvalues or only assumptions on �,
but the joint structure of b⌃ and �.

3.3.3. Joint effective dimension. Now, once we supported the appearance of the joint
effective dimension, let us mention its basic properties. (For concreteness we choose the ran-
dom design setting and consider De↵

q,k
(⌃,�), though the following ideas apply to De↵

q,r(b⌃,�)
appearing in the fixed design case.)

• De↵
q,k

(⌃,�)  k.
• De↵

q,k
(⌃,�) is decreasing in q and increasing in k.

• De↵
2,k(⌃,�)  1, De↵

2,d(⌃,�) = 1.
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• De↵
0,k(⌃,�) = k⇤kU>

k
�k0 is essentially the sparsity of U>

k
�.

For now let us assume SNR � c > 0 and focus on De↵
q,k

(⌃,�) only. Recall that the “main
term” in the relative bounds looks like

inf
q2[0,2]

(
De↵
q,k(⌃,�) ⇣1�q/2

n

)

where ⇣n is some vanishing rate like 1/n. Hence, the properties above reveal a tradeoff in
the main term:

• When q is large, i.e. closer to 2, it is easier to control De↵
q,k

(⌃,�); however, the vanishing
rate ⇣n is raised to a small power, making the convergence slow.

• When q is small, i.e. closer to 0, it is more difficult to control De↵
q,k

(⌃,�); in contrast, ⇣n
is raised to a large power potentially enabling fast convergence rate.

So, the bound allows to find largest q for which De↵
q,k

(⌃,�) can be bounded in dimension-
free and sample size-free manner (or at least the dependence on d and n should not be that
severe) to facilitate faster convergence rate.

Some scenarios where De↵
q,k

(⌃,�) can be bounded more explicitly (for some q < 2) are
discussed below:

• Sparsity of UT

k
�. Denote s

def
= kU>

k
�k0 to be the sparsity level. Then, as already men-

tioned previously ,De↵
0,k(⌃,�) = s.

• Approximate sparsity of ⇤kUT

k
�. Suppose there exists a small set J ✓ [k] (of size

|J | = s) of significant components, so that the rest of the components satisfy

�
1/2
j

|u>
j �| . 1

d
k⇤U>�k2 for all j 2 [k] \ J .

Then De↵
1,k(⌃,�) . s.

• Polynomial decay. Let �j/�1 ⇣ j
�a, |u>

j
�|/|u>

1 �| ⇣ j
�b, where a � 0. We have several

cases:
– If a+ 2b � 1 and q � 2/(a+ 2b), then De↵

q,k
(⌃,�) ⇣ 1.

– If a+ 2b � 1 and q < 2/(a+ 2b), then De↵
q,k

(⌃,�) ⇣ k
1�(a+2b)q/2.

– If a+ 2b < 1, then De↵
q,k

(⌃,�) ⇣ k
1�(a+2b)q/2

/d
(1�a�2b)q/2.

Here we omitted logarithmic factors. To better understand the dependence of De↵
q,d

(⌃,�)
on d in specific case k = d, in Figure 2 we depict this dependence in (a+2b) – q axes. In
the green region De↵

q,d
(⌃,�) does not grow with d, while in the yellow region De↵

q,d
(⌃,�)

grows with d polynomially, and the contours of constant power are illustrated with differ-
ent colors.

3.3.4. Bounds on relative errors in polynomial decay scenario. Since the “main term”
conveniently decomposes into several factors, among which the most interesting one – the
joint effective dimension – was discussed above, the analysis of the relative errors of the NCT
estimator in the fixed design and (for large noise case) random design is pretty much com-
plete. It is intriguing though, what happens to the bounds on PE in moderate noise case: recall
that in this scenario the “main term” is absorbed by the “additional term”, which does not
have a structure allowing a direct analysis of the bounds on the relative error PE(b�)/PE(0).
It is not clear whether they can be stated in a way that will provide better understanding
of the relative error. Instead, we can take a look at the particular case of polynomial decay
of eigenvalues and regression coefficients: �j/�1 ⇣ j

�a, |u>
j
�|/|u>

1 �| ⇣ j
�b. After tedious
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d0.9

const

grows with d

Fig 2: Dependence of De↵
q,d

(⌃,�) on d.

calculations, one may express the bounds from Theorem 3.1 and Theorem 3.3 (i), (ii) in terms
of d,n, a, b only. It turns out, that in this scenario the bound from Theorem 3.3 (ii) is always
worse than the bound from Theorem 3.3 (i), so we exclude it from consideration. In Fig-
ure 3 we plot the contours of constant convergence rate on a – b plane for the bounds from
Theorem 3.1 and Theorem 3.3 (i). Different colors of the contours correspond to different
rates. The background color describes the assumptions on d and n that we make in different
regions: in light green zones d can be much larger than n (though this is not necessary), in
light yellow zones d is allowed to be at most of the same order as n, i.e. d . n, and in grey
zone the rates do not go to zero unless d is significantly smaller than n. We again disregard
the logarithmic terms.

4. (Near) minimax optimality of the NCT estimator. This section focuses on the fixed
design setting. In light of the above discussion, we introduce the following parameter classes
for the fixed design linear regression problem (with Gaussian noise, for simplicity): for any
design matrix XXX 2 R

n⇥d

PXXX(q,D,S)
def
=

n
(�,�) 2 R

d ⇥R+ : De↵
q,r(b⌃,�)  D, SNR � S

o
.

Clearly, we have the following relations:

PXXX(q,D,S) ⇢ PXXX(q0,D,S) for q < q
0
,

PXXX(q,D,S) ⇢ PXXX(q,D0
,S) for D<D0

,

PXXX(q,D,S) ⇢ PXXX(q,D,S0) for S> S0.

In a sense, this orders instances of problems by difficulty. Note that for fixed d,n the family
of classes is parameterized by three quantities: q, D and S. While S is independent of the
other two (since it is the only quantity related to the magnitude of noise), q and D bring
some ambiguity. More specifically, if a specific instance of a problem belongs to PXXX(q,D,S),
it also belongs to PXXX(q � �q,D exp(� logD),S) for some perturbations �q and � logD.
To reduce this indeterminacy, we restrict D to be at most of logarithmic order when q > 0, i.e.
D. log(r). Hence, just two quantities essentially control a “complexity” of an instance of the
linear regression problem: smallest q for which De↵

q,r(b⌃,�) ⇣ log(r) and the signal-to-noise
ratio.

It is reasonable to ask whether our NCT estimator is minimax optimal over these classes
with respect to the relative MSE. The following theorem answers this question.
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(a) Bound on the relative mean squared error MSE(b�)/MSE(0) from Theorem 3.1;
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(b) Bound on the relative prediction error PE(b�)/PE(0) from Theorem 3.3 (i);

Fig 3: Rates for the relative errors of the NCT estimator in polynomial decay scenario.

THEOREM 4.1. (i) Let q 2 (0; 2) and D . log(r) be large enough. Then for any design
matrix XXX 2 R

n⇥d

inf
e�

sup
PXXX(q,D,S)

E

"
MSE(e�)
MSE(0)

#
& 1

(S2 n)1�q/2
.

(ii) Let q = 0 (in this case D plays role of the sparsity of the principal components). Then
for any design matrix XXX 2 R

n⇥d

inf
e�

sup
PXXX(q,D,S)

E

"
MSE(e�)
MSE(0)

#
& D log(er/D)

S2 n
.

This result almost directly follows from classical minimax lower bounds for Gaussian se-
quence model, with some slight adjustments. The bounds align well with Raskutti, Wain-
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wright and Yu (2011), which studies minimax lower bounds over `q-balls. We emphasize
that the lower bounds presented here hold for any design matrix XXX, unlike a lot of minimax
optimality results that just find one “difficult” design to show the lower bound or impose
restrictive assumptions on XXX. This supports our intuition that for the relative bounds design
matrix does not play role as much as the interactions of the covariance and the regression
coefficients.

One could notice that in (i) the rate does not completely match the upper bound of Theo-
rem 3.1, which also contains a factor D and a logarithmic factor. However, as we highlighted
earlier, without much loss of generality we restrict D to be of at most of order log(r). There-
fore, the discrepancy between the upper bound for NCT and the associated minimax lower
bounds is just in the logarithmic factors.

5. Theoretical properties of the GCT estimator. Now we move to a brief study of the
theoretical guarantees for the GCT estimator (2.2). The results are not as insightful as the
ones for the NCT estimator, and we focus on the fixed design setting only. However, once we
state the MSE bound, the theory for the random design can be developed in the same way as
for the NCT estimator.

THEOREM 5.1. Suppose Assumption 3.1 is satisfied. Let '� 0. Take ⌧ = b�'/21 �⇢ with
⇢= 2p

n
(log(2r/�))1/↵. Then, with probability 1� �, the GCT estimator b� from (2.2) with

parameter ' and thresholding at level ⌧ satisfies

MSE(b�) .
rX

j=1

min

 
b�'/21

b�'/2
j

�⇢, |✓j |
!2

.

Moreover, when T⌧ [ · ] = SOFT⌧ [ · ], the matching lower bound takes place, i.e. the above
upper bound is tight:

MSE(b�) &
rX

j=1

min

 
b�'/21

b�'/2
j

�⇢, |✓j |
!2

with probability 1� �.

The obtained bound may be difficult to comprehend, but we state it in the most general form
to make sure it is tight and applicable in wide range of scenarios. When ✓j = 0 for j � m,
it has no estimation errors beyond the first m principal components, adapting very well to
focusing only on the low dimensions estimation like PCR. If, in addition, b�1/b�m is bounded,
we have

MSE(b�) .
mX

j=1

min(�⇢, |✓j |)2 ,

which is not much larger than the MSE of PCR. It can even be much smaller than PCR when
|✓j | are small for many indices j. In general, GCT outperforms NCT when |✓j | decays fast
enough.

The next corollary allows to make sure that in general the bound is essentially dimension-
free: as for Theorem 3.1, the rate can be expressed in terms of the effective rank re↵ [b⌃].

COROLLARY 5.2. Under assumptions of Theorem 5.1, with probability 1� �, the GCT
estimator b� from (2.2) with parameter '� 0 satisfies

MSE(b�) .
⇣
kb⌃kk�k2 + �kb⌃k1/2k�k re↵ [b⌃]1/2

⌘ (log(2r/�))2/(2+')↵

n1/(2+')
.
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Note that when '= 0 we essentially recover the rate obtained after Theorem 3.1. The rate
deteriorates when ' is far from 0, and this is explainable: the GCT procedure significantly
deviates from the natural one, leading to a worse bound in the worst case, i.e. when the
only assumption is the control of effective rank, and spikiness of canonical coefficients is not
justified.

REMARK 5.1 (Simplifications in specific cases). In several specific cases the rate from
Theorem 5.1 can be made much more explicit. We omit logarithmic terms.

• Polynomial decay. If b�j/c�1 ⇣ j
�a and |u>

j
�|/|u>

1 �| ⇣ j
�b for a � 0, a+ 2b � 1, then

with high probability

MSE(b�) .
✓
�
2

n

◆ a+2b�1
a('+1)+2b

.

• Sparsity. If there exists a set J of size |J | = s such that u>
j
� = 0 for j /2 J and

b�maxJ & b�1, then with high probability

MSE(b�) . s�
2

n
.

• Approximate sparsity. If there exists a set J of size |J | = s such that b�1/2
j

|u>
j
�| .

k✓k2/d for j /2 J and b�maxJ & b�1, then with high probability

MSE(b�) . s�
2

n
+

k✓k22
d

.

• Factor Model regime. If �1 ⇣ . . . ⇣ �m ⇣ d, �m+1 ⇣ . . . ⇣ �d ⇣ 1 for some m, then with
high probability

MSE(b�) . m�
2

n
+

k�k22
d

.

Therefore, the rate from Theorem 5.1 can adapt well to these specific structures despite the
deteriorating rate of Corollary 5.2, which is only an upper bound.

6. Miscellaneous aspects.

6.1. Computational complexity for single ⌧ . To start with, we focus on the case when
a good value of ⌧ is somehow known, and analyze the computational complexity of the
GCT estimators. In particular, this includes the NCT estimator. The computation of SVD
of XXX (specifically, b⇤ and bU) takes O(dnmin(d,n)) time. Once we have SVD, comput-
ing the matrix A

def
= bUb⇤�1�' and the vector b

def
= b⇤�1+' bU> XXX>YYY

n
needed before the

generalized thresholding takes O(dn) time. Obtaining b� for already computed A and
b takes O(dmin(d,n)) time. Therefore, the total computational time of our procedure is
O(dnmin(d,n)). The computation is as fast as the SVD of the design matrix.

Note that computational complexity of the LASSO is O(nmin(d,n)2), when we compute
its solution path via a modification of Least Angle Regression, see Efron et al. (2004).

6.2. Efficient tuning of thresholding level ⌧ . Our approach requires to tune the hyper-
parameter ⌧ . Whatever ⌧ is, we anyway have to compute A and b. This already takes
O(dnmin(d,n)) time. Applying the generalized thresholding and combining the result into
the vector b� takes O(dmin(d,n)) time. This means that we can try n different values of



CANONICAL THRESHOLDING FOR LINEAR REGRESSION 23

⌧ “for free” — the computational complexity will be still of the same order as computing b�
for a single value of ⌧ . But we can go even further, if we focus on the GCT estimators with
the soft or hard thresholding.

Notice that varying ⌧ continuously from 0 to +1, we still can get only (min(d,n) +

1) different solutions b� for given XXX, YYY because we threshold a vector of size min(d,n).
Therefore, we can compute the whole solution path for ⌧ from 0 to +1. However, we are
not that interested in the solution path, since we do not expect to get coefficients entering the
picture one by one as in LASSO for sparse regression. Instead, this can be useful for L-fold
cross validation, where we will have at most (Lmin(d,n) + 2) “interesting” values of ⌧
giving different solutions b�. In total, this implies that we need

O(dnmin(d,n)) + (Lmin(d,n) + 2) ·O(dmin(d,n)) =O(dnmin(d,n) +Ldmin(d,n)2)

operations to find the best ⌧ (providing smallest cross-validation error). In practice, we typ-
ically use L of constant order, e.g. L = 5 or L = 10, which leads to the total computa-
tional complexity of O(dnmin(d,n)) for our optimally tuned estimator – same as for a
single value of ⌧ . Leave-one-out cross validation takes slightly more computations, namely,
O(dnmin(d,n)2).

Similar “free tuning” property holds for LASSO (we again refer to Efron et al. (2004)).
However, for example the ridge regression does not posses this nice properties: different
values of regularization parameter will lead to different estimators, and one has to “guess” a
discrete set of values to be tried.

6.3. Optimality of cross-validation. More formally, let {Bl}Ll=1 be the split of the data
point indices [n] into L approximately equally-sized disjoint blocks, i.e.

Bl \ Bl0 =? for all l 6= l
0
, l, l

0 2 [L] and
L[

l=1

Bl = [n]

satisfying bn/Lc  |Bl|  bn/Lc+1 for all l 2 [L]. The L-fold cross-validation leads to the
following choice of the hyperparameter ⌧ :

⌧
cv def

= argmin
⌧�0

1

L

LX

l=1

1

|Bl|
X

i2Bl

⇣
yi � x>

i
b�
(l)
⌧

⌘2
(6.1)

= argmin
⌧2T

1

L

LX

l=1

1

|Bl|
X

i2Bl

⇣
yi � x>

i
b�
(l)
⌧

⌘2
,

where b�
(l)
⌧ is the NCT estimator with thresholding at level ⌧ computed on the part of the

sample {(xi, yi)}i2[n]\Bl
. Note that here T is a set of |T |  Lr + 2 known “interesting”

values giving all possible variety of estimators (i.e. {b�
(l)
⌧ }l2[L], ⌧�0 = {b�

(l)
⌧ }l2[L], ⌧2T ), as

discussed in Section 6.2. An oracle counterpart of ⌧ cv , defining optimal value of the hyper-
parameter w.r.t. the expected cross-validation error, is given by

⌧
oracle def

= argmin
⌧�0

1

L

LX

l=1

E

⇣
y � x> b�

(l)
⌧

⌘2�
(6.2)

= argmin
⌧2T

1

L

LX

l=1

PE(b�
(l)
⌧ ).

We have the following result stating that the choice of ⌧ based on cross-validation performs
as well as the oracle choice (in terms of the expected cross-validation error). .
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THEOREM 6.1. Suppose Assumptions (3.1) – (3.4) are fulfilled. For technical simplicity,
consider the truncated NCT estimator:

b�⌧
def
= bUk⇤ b⇤�1

k⇤ SOFT⌧


b⇤�1
k⇤

bU>
k⇤

XXX
>
YYY

n

�

with k
⇤ from Theorem 3.3. Then, with probability 1� �, the above estimator with threshold-

ing at level ⌧ cv chosen by L-fold cross-validation satisfies

1

L

LX

l=1

PE(b�
(l)
⌧cv) . 1

L

LX

l=1

PE(b�
(l)
⌧oracle)

+
⇣
k⌃kk�k22 + �

2(log(2r/�))2/↵
⌘ r

L log(Lr/�)

n
+

L(log(Lr/�))2/↵

n

!
.

The result resembles, for instance, Györfi et al. (2002); Dudoit and van der Laan (2005)
(see Theorem 7.1 in the former and Theorem 1 in the latter) and many other works, and
the logic behind it is quite standard. However, since our framework is not as general as in
Györfi et al. (2002) or Dudoit and van der Laan (2005), we state the high probability bound
rather than in expectation, and we avoid almost sure boundedness condition on the response
and the possible predictions of our estimator (unlike the aforementioned literature). We also
emphasize once again that ⌧ cv and ⌧

oracle from (6.1) and (6.2) are minimizers across all
⌧ � 0, and the structure of our estimator allows to compute ⌧ cv defined in such a way in a
reasonable time, which is quite unusual feature.

From Theorem 3.3 and Theorem 6.1 it follows that L�1
P

L

l=1PE(
b�
(l)
⌧cv) . ⌃� with prob-

ability 1� �, where ⌃� is the error bound from Theorem 3.3 (best of (i) and (ii)). This bound
holds since ⌧ oracle is no worse than the choices of ⌧ from Theorem 3.3 in terms of the ex-
pected cross-validation error, and because the extra term in Theorem 6.1 does not exceed the
error bounds from Theorem 3.3 (treating L as constant).

It worth mentioning that the result of Theorem 6.1 is not really what one aims for. Ideally,
we would like to obtain a high probability bound of the form PE(b�⌧cv) . PE(b�⌧opt) +��

with small �� , where ⌧ opt def
= argmin⌧�0 PE(b�⌧ ) is the optimal value of the hyperparam-

eter, which may differ from ⌧
oracle. This would consequently imply PE(b�⌧cv) . ⌃� +��

with high probability. Instead of analyzing the expected prediction error of the estimator
trained on the whole sample, Theorem 6.1 is concerned with the expected cross-validation
error. However, as we already mentioned, even classical works on cross-validation, such as
Györfi et al. (2002) and Dudoit and van der Laan (2005), also state results of this flavor,
and many papers focusing specifically on cross-validation actually work with the expected
cross-validation error, which anyway is believed to be a good proxy for the expected pre-
diction error. With this in mind, we hope our result gives a convincing confirmation that the
cross-validation procedure applied to our estimator is reasonable, even though in terms of
the expected cross-validation error. Since the main focus of this paper is not on the cross-
validation, we do not go beyond this.

To conclude the discussion on the cross-validation, we mention that in principle one may
want to tune ' in addition to ⌧ using cross-validations as well. In that case, pairs of the
hyperparameters (⌧,') should be chosen from some prespecified candidate set T ⇥ � ⇢
R+ ⇥R+ (e.g. the Cartesian product of two grids) of a finite size |T | ⇥ |�| < 1. Optimal
pairs (⌧ cv,'cv) and (⌧ oracle,'oracle) should be defined as the solutions to similar optimiza-
tion problems as (6.1) ad (6.2), respectively, but this time the estimator b�⌧,' depends also on
', and the optimization is over the finite candidate set. Then a result similar to Theorem 6.1
holds, but with log(Lr) in the bound replaced by log(|T | ⇥ |�|).
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7. Discussion. We provide a new prospective on the non-sparse high-dimensional linear
regression problem. The proposed family of GCT estimators serves as a bridge between two
classical paradigms: sparse regression and principal components regression. W.r.t. the abso-
lute errors, the fast decay of eigenvalues of the covariance is enough to ensure convergence
even in high dimensions without any assumptions on the regression coefficients. Moreover,
we argue that the relative errors are more appropriate in the high-dimensional regression with
the eigenvalue decay, and that the complexity of a linear regression problem is characterized
by the signal-to noise ratio (instead of the magnitude of noise) and the interaction between the
covariance and regression coefficients, expressed by the joint effective dimension (instead of
assumptions on the regression coefficients). It is not really important what the design matrix
is, and we do not need to impose restrictive assumptions on it, if we choose relative errors
as a measure of performance and standardize the data properly. The NCT estimator is mini-
max optimal for any design over suitable parameter classes in this paradigm. Hopefully, our
insights shed some light on the nature of the non-sparse high-dimensional linear regression.

We leave several important directions for further investigation. First of all, despite our
joint effective dimension is quite well-motivated, it does not mean that there are no other
structural assumptions related to the eigenvalue decay. New discoveries in the structure of the
high-dimensional linear regression can potentially lead to other procedures, whose minimax
optimality should be analyzed over appropriate parameter classes.

Also, even though the analysis of our structural assumptions and procedures for fixed de-
sign seems quite complete, there are unanswered questions in the random design setting. It
is not clear whether the bounds of Theorem 3.3 can be improved and whether the associated
relative errors can be represented in a convenient way. An uncertainty brought by the covari-
ance matrix requires developing and applying new advanced statistical tools for the analysis
of minimax optimality in random design linear regression in high dimensions.

Furthermore, from the numerical experiments, postponed to the Supplementary Material
Silin and Fan (2021), we observe that even regularized estimators (such as NCT) behave
unexpectedly around the interpolation threshold d= n. Our theoretical results do not predict
the bumps that errors as functions of the dimension exhibit in this region. This definitely
worth studying in the future.

In addition, the uncertainty quantification for the estimated parameters and function values
is of significant interest, as well as possible extensions of our ideas to nonparametric regres-
sion in reproducing kernel Hilbert space (RKHS). Beyond the linear model, can penalized
quasi-likelihood on canonical parameters share similar properties to those in the regression
problem?
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SUPPLEMENTARY MATERIAL

Supplement to “Canonical thresholding for non-sparse high-dimensional linear re-
gression”. Simulation studies and proofs of the results presented in this paper can be found
in the Supplementary Material (Silin and Fan, 2021).
().
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S.1. Simulation studies. We compare the following methods:

• “NCT”: Natural Canonical Thresholding estimator (2.1) with efficient hyperparameter tun-
ing by 10-fold CV.

• “GCT”: Generalized Canonical Thresholding estimator (2.2) with '= 1, the soft thresh-
olding, and with efficient hyperparameter tuning by 10-fold CV.

• “OLS”: Ordinary Least Squares. When d > n, the min norm solution is considered.
• “PCR”: Principal Component Regression. The number of PCs is chosen by 10-fold CV.
• “Ridge”: Ridge regression with 10-fold CV (default implementation from R-package glm-

net).
• “LASSO”: LASSO with 10-fold CV (default implementation from R-package glmnet).

We fix n = 200, SNR = 10 or SNR = 1, and focus on how the relative errors
MSE(b�)/MSE(0) and PE(b�)/PE(0) of these methods behave when the dimension d
grows. The covariates x1, . . . ,xn ⇠N (0,⌃), where ⌃ depends on the eigenvalue scenario,
and the noise vector " ⇠N (0,�2

In) (where �2 is chosen to ensure SNR= 10 or SNR= 1
for given ⌃ and �). Without loss of generality we take ⌃ a diagonal matrix, or equivalently
U = Id. The results are presented in Figure S1–S4. Figure S1 and Figure S2 correspond
to SNR = 10, Figure S3 and Figure S4 correspond to SNR = 1. Figure S1 and Figure S3
cover the scenarios of polynomial decay of the eigenvalues �j = j�a and the coefficients
u
>
j � = j�b with

MSC 2010 subject classifications: Primary 62J05; secondary 62H12, 62H25.
Keywords and phrases: High-dimensional linear regression, covariance eigenvalues decay, thresholding, rela-

tive errors, principal component regression.
1
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Fig S1: The relative errors MSE(b�)/MSE(0) (left) and PE(b�)/PE(0) (right) for different
estimators with n = 200, SNR = 10. Polynomial decay of eigenvalues and coefficients in
eigenbasis: �j = j�a, u>

j � = j�b.

(a) a= 2, b= 2;
(b) a= 1, b= 0.5;
(c) a= 0.5, b= 1;

while Figure S2 and Figure S4 also consider polynomial decay of the eigenvalues �j = j�a

but U>� is different:

(a) a= 1; u>
j � = 1 for j = 1, . . . ,10 and 0 otherwise;

(b) a= 0.1; u>
j � = 1 for 10 randomly chosen j 2 {d�25, . . . , d}, and the rest components

are i.i.d. N (0, d�1);
(c) a= 0.5; U>� ⇠N (0, Id).

In each scenario, for each method and dimension we run the corresponding experiment 100
times and plot the median errors.
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j � = 1 for 10 randomly chosen j 2 {d� 25, . . . , d}, and the rest components are i.i.d.
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(c) a= 0.5, U>� ⇠N (0, Id);

Fig S2: The relative errors MSE(b�)/MSE(0) (left) and PE(b�)/PE(0) (right) for different
estimators with n= 200, SNR= 10. Polynomial decay of eigenvalues �j = j�a and differ-
ent regimes of coefficients in eigenbasis u

>
j �.

We notice that the NCT estimator (among some others) in some settings suffer around
d = n. This is so called “interpolation threshold” – when the dimension exceeds the num-
ber of data points, a model has enough features to interpolate training points. The behavior
around this point and the associated “double descent” phenomenon has been an active area
of research for the last couple of years. We do not focus on this in our work.

Otherwise, from the plots it is clear that in the presented settings the proposed procedure
performs quite good compared to the other methods. In particular, the persistent performance
of GCT suggests the benefit of varying thresholding to better adapt to various scenarios with
different priors. However, it is worth mentioning that other methods also perform quite un-
expectedly well in a variety of settings, though previous theoretical results for them do not
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Fig S3: The relative errors MSE(b�)/MSE(0) (left) and PE(b�)/PE(0) (right) for different
estimators with n = 200, SNR = 1. Polynomial decay of eigenvalues and coefficients in
eigenbasis: �j = j�a, u>

j � = j�b.

predict such performance. This may engender an interest in more thorough study of classical
linear regression methods in high-dimensional setting under different structural assumptions.

S.2. Main proofs. We start with the following lemma that allows to bound the properly
scaled noise vector in `1-norm. The lemma simultaneously deals with both fixed and random
design settings.

LEMMA S.2.1. Suppose Assumption 3.1 is fulfilled. Let ⇢ be as in (3.1). Define the event

⌦1
def
=

n
k⇠k1  �⇢

2

o
with ⇠

def
=

ZZZ
>"

n
=

b⇤�1 bU>
XXX

>"

n
.
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Fig S4: The relative errors MSE(b�)/MSE(0) (left) and PE(b�)/PE(0) (right) for different
estimators with n= 200, SNR= 1. Polynomial decay of eigenvalues �j = j�a and different
regimes of coefficients in eigenbasis u

>
j �.

Then

P[⌦1]� 1� �.

S.2.1. Proof of Theorem 3.1. Using b⌃= bUb⇤2 bU> we write for b� from (2.1)

MSE(b�) = (b� ��)> b⌃(b� ��) = kb⇤bU> b� � b⇤bU>�k22.
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Now we plug our estimator b� and YYY=XXX� + " in to get

MSE(b�) =
����SOFT⌧


b⇤�1 bU>XXX

>
YYY

n

�
� b⇤bU>�

����
2

2

=

�����SOFT⌧

"
b⇤bU>� +

b⇤�1 bU>
XXX

>"

n

#
� b⇤bU>�

�����

2

2

= kSOFT⌧ [✓ + ⇠]� ✓k22 ,

where we recall the canonical coefficients ✓ = b⇤bU>� from Definition 2.1 and ⇠ from
Lemma S.2.1. From now on, the proof basically repeats the classical derivation for the soft
and hard thresholding. Let us analyze its j-th component on ⌦1 from Lemma S.2.1 of prob-
ability at least 1� �.

• If |✓j + ⇠j |> ⌧ , then |✓j |� ⌧ � |⇠j |� ⌧/2 and

|SOFT⌧ [✓j + ⇠j ]� ✓j |= |✓j + ⇠j ± ⌧ � ✓j |= |⇠j ± ⌧ | |⇠j |+ ⌧  3⌧

2
 3min (⌧, |✓j |) ,

where ± means that we take either + or � depending on the sign of (✓j + ⇠j), but this
doesn’t play any role. For the lower bound,

|SOFT⌧ [✓j + ⇠j ]� ✓j |= |⇠j ± ⌧ |� ⌧ � |⇠j |� ⌧/2� 1

2
min (⌧, |✓j |) .

• If |✓j + ⇠j | ⌧ , then |✓j | ⌧ + |⇠j | 3⌧/2 and

|SOFT⌧ [✓j + ⇠j ]� ✓j |= |0� ✓j |= |✓j | 3min (⌧, |✓j |) .

For the lower bound,

|SOFT⌧ [✓j + ⇠j ]� ✓j |= |✓j |�
1

2
min (⌧, |✓j |) .

Hence, on ⌦1

1

4

rX

j=1

min(⌧, |✓j |)2  kSOFT⌧ [✓ + ⇠]� ✓k22  9
rX

j=1

min(⌧, |✓j |)2 .

Continuing the upper bound, note that for any 0  q  2 we have min(⌧, |✓j |) 
⌧1�q/2 |✓j |q/2 (we use convention 00 = 0). Thus,

rX

j=1

min(⌧, |✓j |)2  ⌧2�q
rX

j=1

|✓j |q = ⌧2�qk✓kqq,

using convention k ·k00 = k ·k0. Taking infimum over q 2 [0,2], extracting �> b⌃� =MSE(0)

and recalling the definitions of SNR and D
e↵
q,d(

b⌃,�), we conclude the proof.

S.2.2. Proof of Theorem 3.3. To begin with, we state the following well-known result on
the concentration of the sample covariance around the true covariance in terms of the effective
rank. See Koltchinskii and Lounici (2017), Theorem 9; also, Vershynin (2018), Theorem
9.2.4 and Exercise 9.2.5.

LEMMA S.2.2. Suppose Assumption 3.2 is fulfilled. Then, with probability 1� �

kb⌃�⌃k Ck⌃k
 r

re↵ [⌃] + log(1/�)

n
+

r
e↵ [⌃] + log(1/�)

n

!
.



CANONICAL THRESHOLDING FOR LINEAR REGRESSION 7

Using Assumption 3.4 we can leave only the first term in the bound above. Let ⌦2 be the
event on which this bound holds.

Our main tools to prove the main result is the beautiful work by Jirak and Wahl (2018) that
develops tight relative perturbation bounds for eigenvalues and eigenvectors of covariance
matrix. Let us describe the framework of that paper. By Assumption 3.3 we consider the case
of simple eigenvalues of ⌃. The following quantities play important role: the relative rank

rj(⌃)
def
=

dX

l=1
l 6=j

�l

|�j � �l|
+

�j

min(�j�1 � �j ,�j � �j+1)
for j 2 [d]

(here �0 =+1 and �d+1 = 0 for convenience) and the entries of ⌃�1/2(b⌃�⌃)⌃�1/2

⌘ll0
def
=

u
>
l (

b⌃�⌃)ul0p
�l�l0

for l, l0 2 [d].

Relative perturbation bounds for j-th eigenvalue and eigenvector hold under the condition
that there exist x such that

|⌘ll0 | x for all l, l0 2 [d], and rj(⌃) 1

3x
.

The following lemma helps to control the first condition.

LEMMA S.2.3. Suppose Assumption 3.2 and Assumption 3.4 hold. Then, with probability
1� �

max
l,l02[d]

|⌘ll0 | ✏,

where

✏= ✏n,d,�
def
= C

r
log(d/�)

n
.

for some C .

Define ⌦3 to be the event where the inequality from the previous lemma holds.
So, the relative perturbation bounds hold true on ⌦3 for indices j for which rj(⌃) 

1/(3✏). We would like to have this property for as many indices as possible. Under Assump-
tion 3.3 we have (see Jirak and Wahl (2018), inequalities (3.30); Jirak (2016), Lemma 7.13;
Cardot, Mas and Sarda (2007), Lemma 6.1)

rj(⌃) 1 + 2
dX

l=1
l 6=j

�l

|�j � �l|
 1 + 2Cj log(j).

Note that with

k⇤
def
= (✏ log(1/✏))�2/3

we indeed have rj(⌃) 1/(3✏) for all j 2 [k⇤] due to Assumption 3.4. Hence, the following
relative perturbation bounds from Jirak and Wahl (2018) hold true.

LEMMA S.2.4. For all j 2 [k⇤] on ⌦3 holds

|b�j � �j |C✏�j and kbuj � ujk2 C✏

vuuut
dX

l=1
l 6=j

�j�l

(�j � �l)2
.
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Furthermore, for all j 2 [k⇤] and l 2 [d], l 6= j on ⌦3 holds

|bu>
j ul|C✏

p
�j�l

|�j � �l|
.

Note that the bounds from the previous lemma apply even for larger indices j, which can be
up (✏ log(1/✏))�1 (of order n1/2), while we restrict k⇤ to be of order n1/3. Later in the proof
it will be clear how this specific k⇤ arises.

Now we are ready to proceed to the main part of the proof.

PROOF OF THEOREM 3.3. We prove the theorem for k = k⇤, and it will be clear that the
same proof works with any k < k⇤. The proof for part (i) and part (ii) coincides up to the
last step. Denote ⌧ 0 to be the general thresholding level, which is ⌧ for part (i) and ⌧ for
part(ii). Using the definition of b� given in (2.1), the eigendecompositions ⌃ = U⇤

2
U

>,
b⌃= bUb⇤2 bU> and the model YYY=XXX� + ", write the prediction error as

PE(b�) = (b� ��)>⌃(b� ��)

= k⇤U
> bUb⇤�1

SOFT⌧ 0


b⇤�1 bU>XXX

>
YYY

n

�
�⇤U

>�k22

= k⇤U
> bUb⇤�1

SOFT⌧ 0 [b⇤bU>� + ⇠]�⇤U
>�k22

with ⇠ from Lemma S.2.1. Let us add and subtract ⇤U
> bUbU>� inside the norm and apply

ka+ bk22  2kak22 + 2kbk22:

PE(b�) 2k⇤U
>� �⇤U

> bUbU>�k22+

+ 2k⇤U
> bUb⇤�1

SOFT⌧ 0

h
b⇤bU>� + ⇠

i
�⇤U

> bUbU>�k22 =: I1 + I2.

We first deal with I1:
I1
2

= k⇤U
>� �⇤U

> bUbU>�k22 = �>(Id � bUbU>)⌃ (Id � bUbU>)�

= �>(Id � bUbU>) (⌃� b⌃) (Id � bUbU>)�  kb⌃�⌃kk(Id � bUbU>)�k22

 kb⌃�⌃kk�k22 Ck⌃kk�k22

r
re↵ [⌃] + log(1/�)

n
,

where the last inequality holds on ⌦2 due to Lemma S.2.2 and Assumption 3.4.
Next, we focus on I2. We will decompose it into two parts: one will correspond to the first

k⇤ eigenvectors and eigenvalues, while the other will correspond to the rest (r� k⇤). Let us
split

bU= [bUk⇤ bU>k⇤ ] and b⇤=

"
b⇤k⇤ Ok⇤⇥(r�k⇤)

O(r�k⇤)⇥k⇤ b⇤>k⇤

#
,

where b⇤k⇤ 2 R
k⇤⇥k⇤

, bUk⇤ 2 R
d⇥k⇤

correspond to the first k⇤ eigenvalues and eigen-
vectors, while b⇤>k⇤ 2 R

(r�k⇤)⇥(r�k⇤), bU>k⇤ 2 R
d⇥(r�k⇤) correspond to the rest. Also let

⇠ =
⇥
⇠>k⇤ ⇠>>k⇤

⇤> with ⇠k⇤ 2R
k⇤

and ⇠>k⇤ 2R
r�k⇤

. Then

bUb⇤�1
SOFT⌧ 0

h
b⇤bU>� + ⇠

i
� bUbU>� =

= bUk⇤ b⇤�1
k⇤SOFT⌧ 0

h
b⇤k⇤ bU>

k⇤� + ⇠k⇤

i
� bUk⇤ bU>

k⇤�

+ bU>k⇤ b⇤�1
>k⇤SOFT⌧ 0

h
b⇤>k⇤ bU>

>k⇤� + ⇠>k⇤

i
� bU>k⇤ bU>

>k⇤�.
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Again applying ka+ bk22  2kak22 + 2kbk22 we obtain

I2
2

= k⇤U
> bUb⇤�1

SOFT⌧ 0

h
b⇤bU>� + ⇠

i
�⇤U

> bUbU>�k22

 2k⇤U
> bUk⇤ b⇤�1

k⇤SOFT⌧ 0

h
b⇤k⇤ bU>

k⇤� + ⇠k⇤

i
�⇤U

> bUk⇤ bU>
k⇤�k22

+ 2k⇤U
> bU>k⇤ b⇤�1

>k⇤SOFT⌧ 0

h
b⇤>k⇤ bU>

>k⇤� + ⇠>k⇤

i
�⇤U

> bU>k⇤ bU>
>k⇤�k22

=: I3 + I4.

So, to upper bound I2 we will upper bound I3 and I4 separately.
Consider I4. Denote

�
def
= b⇤�1

>k⇤SOFT⌧ 0

h
b⇤>k⇤ bU>

>k⇤� + ⇠>k⇤

i
� bU>

>k⇤� 2R
r�k⇤

.

Let us analyze j-th component �j , for j 2 [r � k⇤], using the definition of SOFT⌧ 0 [ · ]. We
have two cases:

• If |b�1/2
j+k⇤bu>

j+k⇤� + ⇠j+k⇤ |> ⌧ 0, then �j = b��1/2
j+k⇤(⇠j+k⇤ ± ⌧ 0) (the actual sign will play no

role). Since by Lemma S.2.1 on ⌦1

b�1/2
j+k⇤ |bu>

j+k⇤�|� ⌧ 0 � |⇠j+k⇤ |� ⌧ 0/2,

we have

|�j | b��1/2
j+k⇤(|⇠j+k⇤ |+ ⌧ 0) b��1/2

j+k⇤ ·
3⌧ 0

2
 3|bu>

j+k⇤�|.

• If |b�1/2
j+k⇤bu>

j+k⇤� + ⇠j+k⇤ | ⌧ 0, then �j =�bu>
j+k⇤�, and we directly get

|�j |= |bu>
j+k⇤�|.

In any case, |�j | 3|bu>
j+k⇤�| for all j 2 [r�k⇤], and therefore k�k22  9k�k22 on ⌦1. Hence,

I4
2

= k⇤U
> bU>k⇤�k22 = �> bU>

>k⇤⌃bU>k⇤� = �> bU>
>k⇤(⌃� b⌃)bU>k⇤� + �> bU>

>k⇤ b⌃bU>k⇤�

 kb⌃�⌃kkbU>k⇤�k22 + �> b⇤2
>k⇤�  kb⌃�⌃kk�k22 + b�k⇤+1k�k22.

We bound the first term on the right-hand side on ⌦2 by Lemma S.2.2, and for the second term
on ⌦3 holds b�k⇤+1  b�k⇤  (1 +C✏)�k⇤ C 0�k⇤ due to Lemma S.2.4 and Assumption 3.4.
Taking into account k�k2 Ck�k2 on ⌦1, we get on ⌦1 \⌦2 \⌦3

I4 Ck⌃kk�k22

 r
re↵ [⌃] + log(1/�)

n
+

�k⇤

�1

!
.

Finally, it is left to bound I3. Denote

b! def
= SOFT⌧ 0

h
b⇤k⇤ bU>

k⇤� + ⇠k⇤

i
� b⇤k⇤ bU>

k⇤� 2R
k⇤
.

Then,
I3
2

= k⇤U
> bUk⇤ b⇤�1

k⇤ b!k22  k⇤U
> bUk⇤ b⇤�1

k⇤k2kb!k22.

An upper bound on k⇤U
> bUk⇤ b⇤�1

k⇤k is provided in the next lemma.
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LEMMA S.2.5. Suppose Assumption 3.2 holds. Then on ⌦3 holds

k⇤U
> bUk⇤ b⇤�1

k⇤k C.

REMARK S.2.1. The previous lemma is the only place where we use k⇤ = (✏ log(1/✏))�2/3.
The rest of the proof would go through if k⇤ was defined as (✏ log(1/✏))�1.

REMARK S.2.2. Interestingly, a closely related to ⇤U
> bUk⇤ b⇤�1

k⇤ matrix appears also
in Bartlett et al. (2020). The main difficulty of their proof is to find regimes of eigenvalues
such that for C defined as

C
def
= (XXXXXX>)�1

XXX⌃XXX
>(XXXXXX>)�1

holds Tr[C] = o(1) as n!1. Using SVD n�1/2
XXX= bVb⇤bU> one can show

Tr[C] =
1

n
Tr[b⇤�1 bU>

U⇤
2
U

> bUb⇤�1],

while in Lemma S.2.5 we essentially upper bound the operator norm of somewhat simpler (in
a sense that we truncate the sample eigenvalues and eigenvector beyond k⇤-th) matrix
b⇤�1
k⇤

bU>
k⇤U⇤

2
U

> bUk⇤ b⇤�1
k⇤ . The latter task turns out to be much easier and does not

require specific regimes of eigenvalues, unlike the former one.

To deal with kb!k22, we first state the following lemma which has two parts, one of which
will help to conclude the proof of claim (i), and the other one will be useful for claim (ii).

LEMMA S.2.6. On ⌦3 holds

(i)

kb⇤k⇤ bU>
k⇤� �⇤k⇤U

>
k⇤�k22 Ck⌃kk�k22 ✏

0

@r
e↵ [⌃] + ✏

k⇤X

j=1

�j j2

�1

1

A .

(ii)

kb⇤k⇤ bU>
k⇤� �⇤k⇤U

>
k⇤�k1  ⌧1

2
def
= Ck⌃k1/2k�k2 ✏1/2 max

j2[k⇤]

✓
�j (1 + ✏j2)

�1

◆1/2

.

So, to deal with part (ii) of Theorem 3.3, we notice that our thresholding level ⌧ 0 = ⌧ =
⌧ + ⌧1, where ⌧ from Lemma S.2.1 is responsible for the noise and ⌧1 from Lemma S.2.6
is responsible for the estimation of the eigenvalues and eigenvectors. Now we analyze the
components b!j of b! for j 2 [k⇤].

• If |b�1/2
j bu>

j � + ⇠j |> ⌧ , then b!j = ⇠j ± ⌧ (the sign again doesn’t matter). Moreover, due
to Lemma S.2.1 and Lemma S.2.6 (ii) on ⌦1 \⌦3

|�1/2
j u

>
j �|� ⌧ � |⇠j |� |b�1/2

j bu>
j � � �1/2

j u
>
j �|� ⌧ � ⌧

2
� ⌧1

2
=

⌧

2
.

Hence,

|b!j | 3min(⌧ , |�1/2
j u

>
j �|).
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• If |b�1/2
j bu>

j � + ⇠j |  ⌧ , then b!j = �b�1/2
j bu>

j �. Furthermore, again by Lemma S.2.1 and
Lemma S.2.6 (ii) on ⌦1 \⌦3

|�1/2
j u

>
j �| ⌧ + |⇠j |+ |b�1/2

j bu>
j � � �1/2

j u
>
j �| ⌧ +

⌧

2
+

⌧1

2
=

3⌧

2
.

Thus,

|b!j | 3min(⌧ , |�1/2
j u

>
j �|).

In both cases, |b!j | 3min(⌧ , |�1/2
j u

>
j �|), and based on the same derivation as in the proof

of Theorem 3.1, we obtain on ⌦1 \⌦3

kb!k22  9 inf
q2[0,2]

n
⌧2�qk⇤k⇤U

>
k⇤�kqq

o
.

For part (i) we act slightly differently. Now ⌧ 0 = ⌧ . We decompose

b! = ! +�!,

where

!
def
= SOFT⌧

h
⇤k⇤U

>
k⇤� + ⇠k⇤

i
�⇤k⇤U

>
k⇤� 2R

k⇤
.

By Lemma S.2.6 (i) it is easy to bound on ⌦3

k�!k22 = kb! �!k22 Ck⌃kk�k22 ✏

0

@r
e↵ [⌃] + ✏

k⇤X

j=1

�j j2

�1

1

A .

The norm k!k22 with thresholding at level ⌧ can be bounded as in the proof of Theorem 3.1:
on ⌦1

k!k22  9 inf
q2[0,2]

n
⌧2�qk⇤k⇤U

>
k⇤�kqq

o
,

which, together with the bound on k�!k22, gives bound on kb!k22 on ⌦1 \⌦3.
Putting all the bounds for I1 and I2 (in particular, for I3 and I4) together on the intersection

of high probability events ⌦1 \ ⌦2 \ ⌦3, adjusting � ! �/3 so that the intersection has
probability at least 1� �, we conclude the proof.

S.2.3. Proof of Theorem 4.1. We first reduce the general linear regression model to the
Gaussian sequence model, and then apply some classical results from the literature. Our
original linear regression problem (restricted to the Gaussian noise case)

YYY=XXX� + ", " ⇠N (0,�2
Ir)

can be rewritten in the canonical form

YYY=
p
nbV✓ + ", " ⇠N (0,�2

Ir)

with ✓ = b⇤bU>� 2R
r , and then as the Gaussian sequence model

bV>
YYYp
n

= ✓ + ", " ⇠N (0,�2
Ir).

Recall that the joint effective dimension and the signal-to-noise ratio can be expressed in
terms of the canonical parameter as D

e↵
q,r(b⌃,�) = k✓kqq/k✓kq2 and SNR= k✓k2/�. Hence,

the parameter space PXXX(q,D,S) for the initial model translates into the parameter space

Qr,n(q,D,S)
def
=

�
(✓,�) 2R

r⇥R+ : k✓kqq/k✓k
q
2 D, k✓k2/� � S
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for the Gaussian sequence model. Also, any estimator e� = e�(XXX,YYY) in the original problem
corresponds to an estimator e✓ = b⇤bU>e�(XXX,YYY), and since XXX is a fixed known design, we can
write e✓ = e✓(bV>

YYY/
p
n), so that it is indeed an estimator in the Gaussian sequence model

(the reverse is also true). Therefore,

inf
e�

sup
PXXX(q,D,S)

E

"
MSE(e�)
MSE(0)

#
= inf

e✓
sup

Qr,n(q,D,S)
E

"
ke✓ � ✓k22
k✓k22

#
,

and to establish the desired minimax lower bounds for the general problem it is enough to
study the minimax lower bound for the Gaussian sequence model in the right-hand side,
which we will do next.

(i) We take the following subset of Qr,n(q,D,S) to prove the minimax lower bound:

Qpoly
r,n (q,S)

def
=

n
(✓,�) 2R

r⇥R+ : |✓j |= j�1/q, � = k✓k2/S
o
.

It is easy to check that indeed Qpoly
r,n (q,S)✓Qr,n(q,D,S) for large enough constant D. Also,

all ✓ from this new set of parameters have the same `2-norm of constant order, which we
denote h for concreteness, even though its value will not play a role. We can write

inf
e✓

sup
Qr,n(q,D,S)

E

"
ke✓ � ✓k22
k✓k22

#
� inf

e✓
sup

Qpoly
r,n (q,S)

E

"
ke✓ � ✓k22
k✓k22

#
=

1

h2
inf
e✓

sup
Qpoly

r,n (q,S)

E

h
ke✓ � ✓k22

i
.

The minimax risk on the right-hand side is easy to deal with using, for instance, Johnstone
(2019). In particular, by Proposition 4.16 and (4.47) of Johnstone (2019) the minimax risk
decomposes into the sum of univariate minimax risks, which are given in (4.40) of Johnstone
(2019). Thus,

inf
e✓

sup
Qpoly

r,n (q,S)

E

h
ke✓ � ✓k22

i
&

rX

j=1

min

✓
�p
n
, j�1/q

◆2

.

One subtlety is that the results of Johnstone (2019) that we used are derived for hyperrectan-
gles, i.e. in the definition of Qpoly

r,n (q,S) we should have |✓j | j�1/q instead of |✓j |= j�1/q .
(It is important for us to use equality here, because otherwise k✓k2 cannot be bounded from
below, and it is not clear how to get the minimax lower bound for the relative error.) However,
the analysis of their proof shows that the lower bound holds also for Qpoly

r,n (q,S) defined in
our way, since the underlying least favorable prior used to obtain the lower bound for the
univariate minimax risk puts mass 1/2 at the extremes of the interval, forcing its support to
be contained in our parametric set.

The right-hand side of the above display can be computed similarly to the proof of Propo-
sition 3.2 (iii), and we have

rX

j=1

min

✓
�p
n
, j�1/q

◆2

&
✓

�p
n

◆2�q

.

Putting this all together, we obtain

inf
e✓

sup
Qr,n(q,D,S)

E

"
ke✓ � ✓k22
k✓k22

#
& 1

h2

✓
�p
n

◆2�q

=
1

hq
1

(S2 n)1�q/2
⇣ 1

(S2 n)1�q/2
.
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(ii) The classical minimax lower bound for sparse linear regression are derived via a re-
duction to multiple hypothesis testing. In particular, one constructs a specific finite set of
hypotheses {✓(1), . . . ,✓(M)} (each of which has the desired sparsity) and using techniques
from Tsybakov (2009) shows (see, for instance, Rigollet (2019), Corollary 4.15 together with
equivalence of Definition 4.1 and Definition 4.2 by (4.5))

inf
e✓

sup
✓2Rr

k✓k0D

E

h
ke✓ � ✓k22

i
& inf

e✓
sup

✓2{✓(l)}M
l=1

E

h
ke✓ � ✓k22

i
& �2D log(er/D)

n
.

To get a minimax lower bound for the relative error, we need to make one slight modifica-
tion. The construction of {✓(1), . . . ,✓(M)} is based on the sparse Varshamov-Gilbert lemma
(e.g. Lemma 4.14 in Rigollet (2019)): it produces binary vectors !(l) 2 {0,1}r , l 2 [M ],
satisfying some properties, and then one sets ✓(l) = C(r,n,�, ...)!(l) for all l 2 [m], where
C(r,n,�, ...) is carefully chosen and may depend on r,n,�, etc. With a simple linear trans-
form ! ! 2! � e (here e = [1, . . . ,1]> 2 R

r) we modify the binary vectors produced by
the Varshamov-Gilbert lemma so that they belong to {�1,1}r after this modification. This
forces the transformed vectors {✓(1), . . . ,✓(M)} to have the same `2-norm without changing
the essence of the argument. Now we can deal with the relative errors. Define for concreteness
h= k✓(1)k2 = . . .= k✓(M)k2, and write

inf
e✓

sup
Qr,n(0,D,S)

E

"
ke✓ � ✓k22
k✓k22

#
& inf

e✓
sup

✓2{✓(l)}M
l=1

�=k✓k2/S

E

"
ke✓ � ✓k22
k✓k22

#

& 1

h2
inf
e✓

sup
✓2{✓(l)}M

l=1

�=h/S

E

h
ke✓ � ✓k22

i
& 1

h2
h2

S2

D log(er/D)

n
=

D log(er/D)

S2 n
,

as desired.

S.2.4. Proof of Theorem 5.1. Similarly to the proof of Theorem 3.1, we write for b�
from (2.2)

MSE(b�) =
���b⇤�'

T⌧

h
b⇤'(✓ + ⇠)

i
� ✓

���
2

2
=

rX

j=1

���b��'/2
j T⌧ [b�'/2j (✓j + ⇠j)]� ✓j

���
2
.

For each individual term we apply the following two bounds. On one hand,
���b��'/2

j T⌧ [b�'/2j (✓j + ⇠j)]� ✓j
���=

���b��'/2
j

⇣
T⌧ [b�'/2j (✓j + ⇠j)]� b�'/2j (✓j + ⇠j)

⌘
+ ⇠j

���

 b��'/2
j ⌧ + |⇠j |

 
b�'/21

b�'/2j

+
1

2

!
�⇢ 3

2

b�'/21

b�'/2j

�⇢,

where the first inequality uses property (ii) from Definition 2.2 and the triangle inequality,
and the second inequality holds on ⌦1 by Lemma S.2.1. On the other hand,

���b��'/2
j T⌧ [b�'/2j (✓j + ⇠j)]� ✓j

��� b��'/2
j

���T⌧ [b�'/2j (✓j + ⇠j)]
���+ |✓j |

 b��'/2
j · c|b�'/2j ✓j |+ |✓j |= (c+ 1) |✓j |,

where the second inequality is due to property (i) from Definition 2.2 applied to z =
b�'/2j (✓j + ⇠j) and z0 = b�'/2j ✓j satisfying |z � z0| = b�'/2j |⇠j |  b�'/21 �⇢/2 = ⌧/2 on ⌦1
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by Lemma S.2.1. Thus, on ⌦1

MSE(b�) =
���b⇤�'

T⌧

h
b⇤' (✓ + ⇠)

i
� ✓

���
2

2
.

rX

j=1

min

 
b�'/21

b�'/2j

�⇢, |✓j |
!2

.

Now we choose T⌧ [ · ] = SOFT⌧ [ · ] to prove the desired lower bound. We again consider
two cases:

• If
���b�'/2j (✓j + ⇠j)

���> ⌧ , then on ⌦1 using Lemma S.2.1
���b��'/2

j SOFT⌧ [b�'/2j (✓j + ⇠j)]� ✓j
���

=
���b��'/2

j

⇣
SOFT⌧ [b�'/2j (✓j + ⇠j)]� b�'/2j (✓j + ⇠j)

⌘
+ ⇠j

���

� b��'/2
j ⌧ � |⇠j |�

 
b�'/21

b�'/2j

� 1

2

!
�⇢� 1

2

b�'/21

b�'/2j

�⇢.

• If
���b�'/2j (✓j + ⇠j)

��� ⌧ , then
���b��'/2

j SOFT⌧ [b�'/2j (✓j + ⇠j)]� ✓j
���= |b��'/2

j · 0� ✓j |= |✓j |

In any case,
���b��'/2

j SOFT⌧ [b�'/2j (✓j + ⇠j)]� ✓j
���&min

 
b�'/21

b�'/2j

�⇢, |✓j |
!
,

implying the matching lower bound.

S.2.5. Proof of Corollary 5.2. We need to upper bound the right-hand side of the in-
equality obtained in Theorem 5.1. Let us define the following auxiliary set:

P def
=

n
j 2 [r]

��� b�j � b�1 ⇢
2/(2+')

o
.

We first bound

X

j /2P

min

 
b�'/21

b�'/2j

�⇢, |✓j |
!2


X

j /2P

|✓j |2 =
X

j /2P

b�j(bu>
j �)2  b�1k�k22 ⇢2/(2+'),

where we used only the definition of P (more specifically its complement). Then, we bound

X

j2P
min

 
b�'/21

b�'/2j

�⇢, |✓j |
!2


X

j2P

b�'/21

b�'/2j

�⇢ |✓j | �⇢�
2

2+'
·'
2
+1

X

j2P
|✓j | �⇢2/(2+') k✓k1,

where we again used the definition of P . Now we apply k✓k1  kb⌃k1/2k�k2 re↵ [b⌃]1/2, and
adding the above two inequalities yields the desired statement.

S.2.6. Proof of Theorem 6.1. Using standard “empirical risk minimization” reasoning,
we write

1

L

LX

l=1

E

⇣
y� x

> b�
(l)
⌧cv

⌘2�
 1

L

LX

l=1

1

|Bl|
X

i2Bl

⇣
yi � x

>
i
b�
(l)
⌧cv

⌘2
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+
1

L

LX

l=1

sup
�02{ b�(l)

⌧ }⌧�0

�����
1

|Bl|
X

i2Bl

⇣
yi � x

>
i �0

⌘2
�E

⇣
y� x

>�0
⌘2�

�����

 1

L

LX

l=1

1

|Bl|
X

i2Bl

⇣
yi � x

>
i
b�
(l)
⌧oracle

⌘2

+
1

L

LX

l=1

sup
�02{ b�(l)

⌧ }⌧�0

�����
1

|Bl|
X

i2Bl

⇣
yi � x

>
i �0

⌘2
�E

⇣
y� x

>�0
⌘2�

�����

 1

L

LX

l=1

E

⇣
y� x

> b�
(l)
⌧oracle

⌘2�

+
2

L

LX

l=1

sup
�02{ b�(l)

⌧ }⌧�0

�����
1

|Bl|
X

i2Bl

⇣
yi � x

>
i �0

⌘2
�E

⇣
y� x

>�0
⌘2�

����� .

Here in the second inequality we used the definition of ⌧ cv , namely the fact that it minimizes
the cross-validation error. The expectations in the above expressions are over (x, y) only, so

using E

⇣
y� x

> b�
(l)
⌧

⌘2�
= PE(b�

(l)
⌧ ) + �2 the only thing left is to bound the supremums

in the right-hand side. We will do this for each l 2 [L] similarly, so from now on we fix
l 2 [L]. Note that due to the structure of our estimator b�

(l)
⌧ , the set {b�

(l)
⌧ }⌧�0 contains at

most (r + 1) distinct estimators, each derived from the training sample of the l-th fold
{(xi, yi)}i2[n]\Bl

, and thus independent of the validation set of the l-th fold {(xi, yi)}i2Bl
.

Working conditionally on {(xi, yi)}i2[n]\Bl
, we can bound

�����
1

|Bl|
X

i2Bl

⇣
yi � x

>
i �0

⌘2
�E

⇣
y� x

>�0
⌘2�

�����

with high probability for each single �0 2 {b�
(l)
⌧ }⌧�0 (which are treated as deterministic vec-

tors), and the rest of the proof will easily follow. Let us focus on an arbitrary �0 2 {b�
(l)
⌧ }⌧�0.

To apply some concentration results, we first show that (yi � x
>
i �0) are sub-Weibull

random variables with parameter ↵/2. Indeed, k"ik ↵
 � by Assumption 3.1 and

kx>
i (� ��0)k ↵

 kx>
i (� ��0)k 2

= k(⌃�1/2
xi)

>
⌃

1/2(� ��0)k 2

=

����(⌃
�1/2

xi)
> ⌃

1/2(� ��0)

k⌃1/2(� ��0)k2

����
 2

·
q

(� ��0)>⌃(� ��0)

.
q

(� ��0)>⌃(� ��0),

where in the first inequality we used the monotonicity of the Orlicz norm w.r.t. parameter ↵,
and in the last inequality we used Assumption 3.2 together with the fact that the inner product
of a sub-Gaussian vector with a unit vector is a sub-Gaussian random variable. By properties
of the Orlicz norm we further have

kyi � x
>
i �0k ↵

= kx>
i (� ��0) + "ik ↵

. kx>
i (� ��0)k ↵

+ k"ik ↵
.
q

(� ��0)>⌃(� ��0) + �.
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and due to Proposition D.2 of Kuchibhotla and Chakrabortty (2018)
���(yi � x

>
i �0)2

���
 ↵/2

 kyi � x
>
i �0k2 ↵

. (� ��0)>⌃(� ��0) + �2 . �>
⌃� +�0>

⌃�0 + �2.

After subtracting the expectation, the same bound holds for the centered random variable,
but with a different hidden constant. Now we readily apply Theorem 3.1 of Kuchibhotla
and Chakrabortty (2018) with Xi

def
= (yi � x

>
i �0)2 � E

⇥
(y� x

>�0)2
⇤
, ai = 1/|Bl| for all

i 2 [|Bl|] and parameter ↵/2:

P

" �����
1

|Bl|
X

i2Bl

(yi � x
>
i �0)2 �E

h
(y� x

>�0)2
i�����&(S.1)

& (�>
⌃� +�0>

⌃�0 + �2)

 s
t

|Bl|
+

t2/↵

|Bl|

! ����� {(xi, yi)}i2[n]\Bl

#
 2e�t

for all t � 0. Now we need to carefully integrate out {(xi, yi)}i2[n]\Bl
, and before this, we

need to bound �0>
⌃�0 with high probability over {(xi, yi)}i2[n]\Bl

.
In this paragraph, to keep the notation light, we drop the superscript (l), but keep in mind

that we work with the sample {(xi, yi)}i2[n]\Bl
, and for the purposes of this paragraph the

quantities b⌃, b⇤, bU, ✓, ⇠ correspond to the training sample of l-th fold {(xi, yi)}i2[n]\Bl

only. With any ⌧ � 0, we have the following:

�0>
⌃�0 = b�

(l)
⌧

>
⌃b�

(l)
⌧

= SOFT⌧ [✓k⇤ + ⇠k⇤ ]> b⇤�1
k⇤

bU>
k⇤U⇤

2
U

> bUk⇤ b⇤�1
k⇤ SOFT⌧ [✓k⇤ + ⇠k⇤ ]


���⇤U

> bUk⇤ b⇤�1
k⇤

���
2 ��SOFT⌧ [✓k⇤ + ⇠k⇤ ]

��2
2
.

By Lemma S.2.5,
���⇤U

> bUk⇤ b⇤�1
k⇤

���. 1

on some set ⌦(l)
3 , defined similarly to ⌦3 (which is introduced after Lemma S.2.3) but for

{(xi, yi)}i2[n]\Bl
rather than for the whole sample. Also,

��SOFT⌧ [✓k⇤ + ⇠k⇤ ]
��2
2

��✓k⇤ + ⇠k⇤

��2
2
. k✓k⇤k22 + k⇠k⇤k22

with

k✓k⇤k22 = �> b⌃�  �>
⌃� + k⌃kk�k22

s
re↵ [⌃] + log(1/�)

n� |Bl|
. k⌃kk�k22

by Lemma S.2.2 on ⌦(l)
2 (defined similarly to ⌦2 after Lemma S.2.2, but for {(xi, yi)}i2[n]\Bl

)
and Assumption 3.4, and

k⇠k⇤k22  rk⇠k⇤k21 . �2(log(2r/�))2/↵

by Lemma S.2.1 on ⌦(l)
1 (defined similarly to ⌦1 after Lemma S.2.1, but for {(xi, yi)}i2[n]\Bl

).
Putting this all together,

�0
⌃�0 . k⌃kk�k22 + �2(log(2r/�))2/↵
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on ⌦(l)
1 \⌦(l)

2 \⌦(l)
3 . Note that P[⌦(l)

1 \⌦(l)
2 \⌦(l)

3 ]� 1�3�, with the probability taken over
the randomness of {(xi, yi)}i2[n]\Bl

.
Taking the bound in the previous display into account, we integrate (S.1). We split the

integral into two parts: the integration over ⌦(l)
1 \ ⌦(l)

2 \ ⌦(l)
3 allows to replace �0>

⌃�0

inside the conditional probability with its deterministic bound on this set and gives 2e�t

in the right-hand side, and the integration over
⇣
⌦(l)
1 \⌦(l)

2 \⌦(l)
3

⌘c
, where the bound on

�0>
⌃�0 may be violated, adds at most 3� to the probability of the bad event. Therefore,

P

" �����
1

|Bl|
X

i2Bl

(yi � x
>
i �0)2 �E

h
(y� x

>�0)2
i�����&

&
⇣
k⌃kk�k22 + �2 (log(2r/�))2/↵

⌘ s t

|Bl|
+

t2/↵

|Bl|

!#
 2e�t + 3�.

Now we apply the union bound (recall that the cardinality of {b�
(l)
⌧ }⌧�0 does not exceed

r+ 1)

P

"
sup

�02{ b�(l)

⌧ }⌧�0

�����
1

|Bl|
X

i2Bl

(yi � x
>
i �0)2 �E

h
(y� x

>�0)2
i�����&

&
⇣
k⌃kk�k22 + �2(log(2r/�))2/↵

⌘ s t

|Bl|
+

t2/↵

|Bl|

!#
 2(r+ 1)e�t + 3�.

Finally, by yet another application of the union bound we obtain

P

"
2

L

LX

l=1

sup
�02{ b�(l)

⌧ }⌧�0

�����
1

|Bl|
X

i2Bl

(yi � x
>
i �0)2 �E

h
(y� x

>�0)2
i�����&

&
⇣
k⌃kk�k22 + �2(log(2r/�))2/↵

⌘ s t

|Bl|
+

t2/↵

|Bl|

!#
 2L(r+ 1)e�t + 3L�.

We conclude the proof by picking t = log(2Lr/�) and adjusting the constants throughout
the proof to make sure that the desired result holds with probability 1� �.

S.3. Additional proofs.

S.3.1. Proof of Proposition 3.2. (i) and (ii) follow trivially by taking q = 0 and q = ⌫,
respectively. Now we focus on (iii). Define j⇤ such that |✓(j⇤)| ⇣ �⇢, i.e. take j⇤ =

b(�⇢/|✓(1)|)�1/ac.
If j⇤ � r, then taking q = 0 we have

rX

j=1

min(�⇢, |✓(j)|)2 ⇣ r(�⇢)2 � inf
q2[0,2]

�
k✓kqq(�⇢)2�q

 
.

For the rest of the proof assume j⇤ < r. Then
rX

j=1

min(�⇢, |✓(j)|)2 ⇣
j⇤X

j=1

(�⇢)2 +
rX

j=j⇤+1

|✓(j)|2 ⇣ j⇤(�⇢)2 + |✓(1)|
rX

j=j⇤+1

j�2a
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⇣

8
><

>:

j⇤(�⇢)2 + |✓(1)| (j⇤�2a+1 � r�2a+1), a > 1/2,

j⇤(�⇢)2 + |✓(1)| log(r/j⇤), a= 1/2,

j⇤(�⇢)2 + |✓(1)| (r�2a+1 � j⇤�2a+1), a < 1/2;

⇣

8
><

>:

|✓(1)|1/a (�⇢)2�1/a, a > 1/2,

|✓(1)| log(er/j⇤), a= 1/2,

|✓(1)| r�2a+1, a < 1/2;

At the same time, taking q = 1/a 2 (0, 2] for a� 1/2 and q = 2 for a < 1/2, we get

inf
q2[0,2]

�
k✓kqq(�⇢)2�q

 
.

8
>><

>>:

(�⇢)2�1/a |✓(1)|1/a
rP

j=1
(j�a)1/a, a� 1/2,

|✓(1)|
rP

j=1
j�2a, a < 1/2;

⇣
(
|✓(1)|1/a (�⇢)2�1/a log(r), a� 1/2,

|✓(1)| r�2a+1, a < 1/2;

Comparing this to the expressions for
Pr

j=1min(�⇢, |✓(j)|)2 above, we conclude the proof.

S.3.2. Proof of Lemma S.2.1. It is straightforward to verify that ⇠ is also a sub-Weibull
random vector conditionally on XXX:

sup
kwk2=1

�����w
>
b⇤�1 bU>

XXX
>"

n

�����
 ↵

 1p
n

sup
kwk2=1

kw>"k ↵
 �p

n
,

where the first inequality holds given XXX since kXXXbUb⇤�1
w/

p
nk2 = 1, and the last inequality

is due to Assumption 3.1. Then, taking e1, . . . ,er (the standard basis in R
r) we have

P

h
|e>j ⇠|� t

��XXX
i
 2 exp

�
�
�
t
p
n/�

�↵� for j 2 [r].

Applying the union bound and plugging in t= �⇢/2, we get the desired.

S.3.3. Proof of Lemma S.2.3. The proof is pretty standard and can be found in numerous
papers. Fix l, l0 2 [d]. We have

⌘ll0 =
u
>
l (

b⌃�⌃)ul0p
�l�l0

= u
>
l (⌃

�1/2 b⌃⌃
�1/2 � Id)ul0

=
1

n

nX

i=1

n
(u>

l ⌃
�1/2

xi) · (u>
l0 ⌃

�1/2
xi)�E

h
(u>

l ⌃
�1/2

xi) · (u>
l0 ⌃

�1/2
xi)

io
.

Since by Assumption 3.2 ⌃
�1/2

xi is sub-Gaussian for i 2 [n], then by Lemma 2.7.7 of Ver-
shynin (2018) (u>

l ⌃
�1/2

xi) · (u>
l0 ⌃

�1/2
xi) is sub-Exponential and by Exercise 2.7.10 of

Vershynin (2018) its centered version is also sub-Exponential for i 2 [n]. Bernstein’s in-
equality (e.g. Corollary 2.8.3 of Vershynin (2018)) applied to this centered random variables
implies

P [|⌘ll0 |� t] 2exp

✓
�cn min

✓
t2

C2
,
t

C

◆◆
.

By union bound,

P


max
l,l02[d]

|⌘ll0 |� t

�
 2d2 exp

✓
�cn min

✓
t2

C2
,
t

C

◆◆
.
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Taking t= C
p

log(2d2/�)/n for some other properly chosen C and using Assumption 3.4
to make sure t2/c2  t/c, we conclude the proof.

S.3.4. Proof of Lemma S.2.4. The first part follows from Corollary 2 of Jirak and Wahl
(2018), and the second part follows from Lemma 4 of Jirak and Wahl (2018). Conditions
(2.1) and |⌘ll0 | x for all l, l0 2 [d] are satisfied since we work on ⌦3 from Lemma S.2.3 and
consider j 2 [k⇤] with properly defined k⇤.

S.3.5. Proof of Lemma S.2.5. We first apply inequalities

k⇤U
> bUk⇤ b⇤�1

k⇤k= k⇤U
> bUk⇤⇤

�1
k⇤⇤k⇤ b⇤�1

k⇤k  k⇤U
> bUk⇤⇤

�1
k⇤kk⇤k⇤ b⇤�1

k⇤k


✓����⇤U

> bUk⇤⇤
�1
k⇤ �


Ik⇤

O(d�k⇤)⇥k⇤

�����+ 1

◆
k⇤k⇤ b⇤�1

k⇤k.

The spectral norm of ⇤k⇤ b⇤�1
k⇤ is easy to control:

k⇤k⇤ b⇤�1
k⇤k=

 
max
j2[k⇤]

�j

b�j

!1/2

 1

(1�C✏)1/2
 4,

where the first inequality is due to Lemma S.2.4 on ⌦3 and in the last inequality we assumed
that ✏ is small enough by Assumption 3.4.

Next, let us focus on ⇤U
> bUk⇤⇤

�1
k⇤ � [Ik⇤ Ok⇤⇥(d�k⇤)]

>, which we denote by H for
shortness. Denote its columns as h1, . . . ,hk⇤ . We can bound `1-norm of each column, using
Lemma S.2.4, as

khjk1 =
dX

l=1
l 6=j

�����
�1/2
l u

>
l buj

�1/2
j

�����+ |u>
j buj � 1|=

dX

l=1
l 6=j

�����
�1/2
l u

>
l buj

�1/2
j

�����+
1

2
kbuj � u

>
j k22

 ✏
dX

l=1
l 6=j

�1/2
l

�1/2
j

�1/2
j �1/2

l

|�j � �l|
+C✏2

dX

l=1
l 6=j

�j�l

(�j � �l)2

on ⌦3. Applying Jirak and Wahl (2018), inequalities (3.30), or Jirak (2016), Lemma 7.13,
together with Assumption 3.3, we get

khjk1  ✏ j log(j) +C✏2 j2.

Since j  k⇤ and ✏k⇤ C , we have

khjk1 C✏ j log(k⇤) for all j 2 [k⇤].

Finally, we have for the Frobenius norm kHkF on ⌦3

kHk2F =
k⇤X

j=1

khjk22 C
k⇤X

j=1

✏2j2 log(k⇤)2 =C✏2k⇤3 log(k⇤)2 C 0,

where we used the definition of k⇤. The inequality between the spectral and the Frobenius
norms completes the proof.
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S.3.6. Proof of Lemma S.2.6. Fix arbitrary j 2 [k⇤]. We have the following chain of
inequalities:

|b�1/2
j bu>

j � � �1/2
j u

>
j �| kb�1/2

j buj � �1/2
j ujk2k�k2

 kb�1/2
j buj � �1/2

j buj + �1/2
j buj � �1/2

j ujk2k�k2


⇣���b�1/2

j � �1/2
j

��� kbujk2 + �1/2
j kbuj � ujk2

⌘
k�k2


⇣
|b�j � �j |1/2 + �1/2

j kbuj � ujk2
⌘
k�k2.

Applying Lemma S.2.4 we have on ⌦3

|b�1/2
j bu>

j � � �1/2
j u

>
j �|Ck�k2

0

BB@�1/2
j ✏1/2 + �1/2

j ✏

vuuut
dX

l=1
l 6=j

�j�l

(�j � �l)2

1

CCA

Ck�k2
⇣
�1/2
j ✏1/2 + �1/2

j ✏ j
⌘
,

where in the second inequality we used Jirak and Wahl (2018), inequalities (3.30), or Ji-
rak (2016), Lemma 7.13, together with Assumption 3.3. Taking maximum over j 2 [k⇤] we
obtain the claim (i), and raising to the square and summing over j 2 [k⇤] we get the claim
(ii).
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