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Abstract

Many sparse regression methods are based on the assumption that covariates are weakly cor-

related, which unfortunately do not hold in many economic and financial datasets. To address

this challenge, we model the strongly-correlated covariates by a factor structure: strong correla-

tions among covariates are explained by common factors and the remaining variations are inter-

preted as idiosyncratic components. We then propose a factor-adjusted sparse regression model

with both common factors and idiosyncratic components as decorrelated covariates and develop

a semi-Bayesian method. Parameter estimation rate-optimality and model selection consistency

are established by non-asymptotic analyses. We show on simulated data that the semi-Bayesian

method outperforms its Lasso analogue, manifests insensitivity to the overestimates of the num-

ber of common factors, pays a negligible price when covariates are not correlated, scales up well

with increasing sample size, dimensionality and sparsity, and converges fast to the equilibrium

of the posterior distribution. Numerical results on a real dataset of U.S. bond risk premia and

macroeconomic indicators also lend strong supports to the proposed method.

keywords: factor model, Bayesian sparse regression, posterior contraction rate, model selection.

1 Introduction

High-dimensional linear regression models are useful for a wide array of economic problems (Fan et al.,

2011b; Belloni et al., 2012). A typical form of these models is given by

Yn⇥1 = Xn⇥p�p⇥1 + �"n⇥1, (1)

where Y is an n-dimensional response vector, X = [X1, . . . ,Xp] is a design matrix of n observations

and p covariates, � = (�1, . . . ,�p)T is a p-dimensional vector of regression coe�cients, � is (unknown)

standard deviation, and " is an n-dimensional vector of standard Gaussian noises, independent withX.

Both the response vector Y and covariates Xj are assumed to be centered without loss of generality,

and thus no intercept term is included in the model. Of interest is the high-dimensional regime in

which the dimensionality p is much larger than the sample size n. A crucial prerequisite to estimate

this model in the high-dimensional regime is the sparseness of �. That is, the number of non-zero

regression coe�cients s = k�k0, called sparsity, is much smaller than the dimensionality p. Model (1)

is thereafter referred to as the sparse regression model in the rest of this paper.
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Popular procedures to identify and estimate the non-zero regression coe�cients are regularized

M-estimation methods (Tibshirani, 1996; Fan and Li, 2001; Candes and Tao, 2007; Fan and Lv, 2008;

Zhang and Huang, 2008; Fan and Lv, 2010; Su and Candes, 2016, among others). Meanwhile, Bayesian

methods, including those exploiting shrinkage priors (e.g., Park and Casella, 2008; Polson and Scott,

2012; Armagan et al., 2013; Bhattacharya et al., 2015; Ročková and George, 2018) and those exploiting

spike-and-slab priors (e.g., Narisetty and He, 2014; Castillo et al., 2015), has been developed.

Much work in this branch of statistical literature is based on the condition that covarites are weakly

correlated (Fan and Lv, 2010). Specific types of the weak correlation condition include the mutual

coherence condition (Donoho and Huo, 2001; Donoho and Elad, 2003; Donoho et al., 2006; Bunea

et al., 2007), the irrepresentable condition (Zhao and Yu, 2006), the restricted eigenvalue condition

(Bickel et al., 2009; Fan et al., 2018), the uniform compatibility condition (Bühlmann and van de Geer,

2011, page 157), and the sparse eigenvalue condition (Castillo et al., 2015; Song and Liang, 2017; Fan

et al., 2018).

However, many real datasets, especially those in economic and financial studies, are featured by

strongly correlated covariates. In an economic or financial dataset, covariates are usually stock returns

or macroeconomic indicators over a period of time, which are often influenced by similar economic

fundamentals and are thus heavily correlated due to the existence of co-movement patterns (Forbes

and Rigobon, 2002; Stock and Watson, 2002a,b; Ludvigson and Ng, 2009).

The above argument shows the necessity to take the underlying correlation structure of covariates

into account of the sparse regression analysis, and adjust the weak correlation condition accordingly.

For this purpose, we consider factor models (Stock and Watson, 2002a,b; Bai and Ng, 2002; Bai,

2003; Fan et al., 2008, 2011a), in which each observation (row) xi 2 Rp in the design matrix Xn⇥p is

decomposable as

xi = Bp⇥kfi + ui, i = 1, . . . , n,

where fi is a vector of k common factors, B is a p⇥ k matrix of factor loading coe�cients, and ui is a

vector of p idiosyncratic components, uncorrelated with fi. Let F = [f1, . . . ,fn]T be the n⇥ k matrix

formed by piling up fi’s, and U = [u1, . . . ,un]T be the n ⇥ p matrix formed by piling up ui’s, then

the matrix form of the factor model is written as

Xn⇥p = Fn⇥kB
T
p⇥k +Un⇥p. (2)

Each covariate Xj is now decomposable as the strong correlation part Fbj and the idiosyncratic

component Uj , where bj is the vector of factor loading coe�cients of covariate Xj , i.e., the j-th row

of B. Both common factors F and idiosyncratic components U are assumed latent, but they are

estimatable by using Principal Component Analysis (PCA) (Bai and Ng, 2002; Bai, 2003; Fan et al.,

2013; Wang and Fan, 2017). Model (2) embraces the well-known CAPM model (Sharpe, 1964; Lintner,

1975) and Fama-French model (Fama and French, 1993), in which common factors are observable.

If variables [F,U] in the factor model (2) are observable or estimable at a high accuracy given

X, cross-fertilizing the sparse regression model (1) and the factor model (2) leads to a substantial

improvement

Y = F↵+U� + �", where ↵ = BT�. (3)

where strong correlation parts Fbj ’s of covariates Xj ’s contribute to the response aggregately. We

further propose to drop the constraint ↵ = BT� and use the following factor-adjusted sparse regression

model instead.

Y = F↵+U� + �", (4)
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We favor this model over model (3) for three reasons. First, model (3) is nested in model (4), thus

any method that consistently estimates model (4) would consistently estimate model (3). Second,

with no constraint, model (4) is more flexible to explain the variation of the response vector in the

regression analysis than model (3). Third, if F, U are observed or estimated at a high accuracy given

X, it is possible to extend the current framework of sparse regression methods towards a systematic

methodology for model (4). In contrast, it is inconvenient to enforce the constraint ↵ = BT� on the

sparse high-dimensional vector � in iterative optimization algorithms for regularized M-estimation

methods or posterior computation algorithms for Bayesian methods.

In the factor-adjust model (4), the weak correlation condition shall be imposed on idiosyncratic

components U rather than original covariates X. Each idiosyncratic component Uj is the “decorre-

lated” version of its original covariate Xj excluding the strong correlation part Fbj . Consequently,

idiosyncratic components U comply with the weak correlation condition more likely than original

covariates X do. Take the sparse eigenvalue (SE) condition, a specific type of the weak correlation

condition, as example. A non-vanishing sparse eigenvalue of covariates SE(X) is required by Bayesian

methods to ensure the statistical consistency (Castillo et al., 2015; Song and Liang, 2017) and the

computational e�ciency (Yang et al., 2016). As we will prove in Section 2,

SE(X)  SE(U)⇥ p
max
j=1

kUjk2

kXjk2
⇥ R(U),

where R(U) ⇣ 1 is a quantity related to the restricted isometry property of U (Candes and Tao,

2007). Random matrix theories can verify the constant order of this quantity for a broad range of

random matrices arising from the field of sparse regression. Clearly, if the strong correlation part Fbj

of each covariate Xj dominates the individual component Uj and explains a large portion of the total

variation kXjk2 = kFbj +Ujk2 ⇡ kFbjk2 + kUjk2, then SE(X) would be much smaller than SE(U).

We also remark that the sparseness assumption on � has been implicitly adjusted by model (4). A

non-zero �j in model (4) means that covariate Xj , excluding strong correlations with other covariates,

has a specific e↵ect on the response. This is conceptually more reasonable than the original sparseness

assumption when covariates are factor-structured. In model (1), if covariates are strong correlated, it

does not make sense to assume that any particular covariate Xj for some 1  j  p processes a specific

influence on the response variable, meanwhile many other covariates that are strongly correlated with

Xj do not.

The factor-adjusted model (4) considered in this paper di↵ers from the factor-augmented models

of Stock and Watson (2002b,a); Bai and Ng (2006) in the form

Y = Fn⇥k↵+Wn⇥q� + �". (5)

In model (5), common factors F are extracted from a large panel of dataXn⇥p via PCA, yet the q other

covariates W are introduced from outside of the panel. These models are typically low-dimensional

with small q. In model (4), covariates U other than common factors F are created internally from

the panel of data X, allowing to explore an additional explanatory power of the panel. Moreover, the

analysis of high-dimensional model (4) in this paper is applicable to the low-dimensional model (5),

as model (4) can easily incorporate external variables W as part of F and/or U. For simplicity of

presentation, we omit the details.

Kneip and Sarda (2011) gave an insightful discussion on the limitation of traditional sparse regres-

sion methods on model (1) with factor-structured covariates, and proposed another factor-augmented
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model in the form

Y = F↵0 +X� + �". (6)

This model can be transformed as model (4) by the reparameterization ↵0 = ↵ � BT�. However,

model (6) still requires the weak correlation condition on original covariates X, which, as we have

discussed before, is more restrictive than that on decorrelated covariates U.

Fan et al. (2020a) pointed out the failure of regularized M-estimation methods on model (1) with

factor-structured covariates and proposed to use the factor-adjusted model (4). They estimated latent

variables [F,U] in the factor model by PCA, and then performed Lasso to with estimates [bF, bU] in

place of true variables [F,U]. Similarly to this paper, they imposed the weak correlation condition on

idiosyncratic components U rather than original covariates X.

We are curious if any Bayesian method consistently identify and estimate the nonzero regression

coe�cients in the factor-adjusted model (4), and to what extent the factor adjustment and the latent

variable estimation decline the performance of the Bayesian method. Given theoretical results on the

factor-adjusted Lasso method (Fan et al., 2020a), both questions are still challenging, because the

definition of the parameter estimation error rate, the definition of model selection consistency and

technical conditions of Bayesian methods are significantly di↵erent from those of frequentist methods

(Castillo et al., 2015). Even if a Bayesian method is theoretically sound in the asymptotic regime, it

is unclear whether it performs better or worse than frequentist methods on finite data.

This paper proposes a semi-Bayesian approach for model (4). As detailed in Section 3, a full-

Bayesian approach cannot work easily due to the involvement of latent variables [F,U] in the posterior

computation. Inspired by Fan et al. (2020a), we consider estimating latent variables by PCA and

performing a Bayesian spike-and-slab method with these estimates as covariates. This semi-Bayesian

approach results in a pseudo posterior distribution. Theoretical analyses reveal that the pseudo

posterior distribution achieves the rate-optimality of parameter estimation and adapts to the unknown

sparsity s and unknown standard deviation �. For these results, we only need the sparse eigenvalue

condition on idiosyncratic components U and the estimation error rate
p
log p/n of latent variables

[F,U]. The first condition is easy to hold since U have been decorrelated, and the second condition is

examined under generic conditions of the factor model. Moreover, under a commonly-seen beta-min

condition in the literature, the pseudo-posterior distribution correctly identifies the non-zero regression

coe�cients. Interestingly, although the factor adjustment does not change the estimation error rate of

the Bayesian method, it does result in larger constant factors of estimation errors and require stronger

sparse eigenvalue and beta-min conditions.

The rest of this paper proceeds as follows. Section 2 compares the sparse eigenvalues of original

covariates X and decorrelated covarites U. Section 3 presents the semi-Bayesian approach for the

factor-adjusted model (4). Section 4 establishes the estimation error rate
p
log p/n of latent variables

in the factor model. Section 5 follows to investigate the parameter estimation error rate and model

selection consistency of the pseudo-posterior distribution. Section 6 collects experimental results on

simulated datasets. Section 7 evaluates the proposed method on a real dataset of U.S. bond risk

premia. Section 8 concludes the paper with a brief discussion. Technical proofs and algorithmic

implementation details are detailed in the appendices.

Notation. For an index set ⇠, write |⇠| as its cardinality and ⇠c as its complement. For two index

sets ⇠, ⇠0, write ⇠ \ ⇠0 as the set di↵erence. For a vector v, let v⇠ denote the sub-vector assembling

components indexed by ⇠, let kvk denote the `2 norm, and let kvk0 denote the number of non-zero
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entries. For a matrix Am1⇥m2 = [aij ]1im1,1jm2 , write uppercase Aj for its j-th column, and

lowercase ai for its i-th row. Let A⇠ = [Aj : j 2 ⇠] be the sub-matrix of A assembling the columns

indexed by ⇠ ✓ {1, . . . ,m}. Let kAkmax = maxi,j |aij | be its element-wise maximum norm, kAk be

its operator norm (induced by the `2 norm of vectors), and kAkF =
qP

i,j a
2
ij be its Frobenius norm.

Let vec(A) be the vectorization of A formed by concatenating column vectors of A. For a symmetric

matrix A, write its largest eigenvalue as �max(A), its smallest eigenvalue as �min(A), and its trace

as trace(A). Write diag(a1, . . . , am) for a diagonal matrix of elements a1, . . . , am. For two positive

sequences an, bn, an < bn (or bn 4 an) means bn = O(an); an � bn (or bn � an) means bn = o(an);

and an ⇣ bn means both an < bn and an 4 bn.

2 Sparse Eigenvalue of Covariates

This section compares the sparse eigenvalues of original covariates X and decorrelated covariates U

and evidences that the sparse eigenvalue condition on U in model (4) holds more likely than that on

X in models (1) and (6) does.

Definition 1 (Sparse Eigenvalue, Definition 2.3 of Castillo et al. (2015)). The s̄-order sparse eigen-

value of (the scaled Gram matrix) of the design matrix Xn⇥p is defined as

SE(X; s̄) =
min⇠: |⇠|s̄ �min(XT

⇠X⇠)

maxpj=1 kXjk2
.

Definition 2 (Restriced Isometry Property, Definition 10.5.8 of Vershynin (2018)). An n⇥ p matrix

U satisfies the s̄-order restricted isometry property (RIP) with parameters 0, 1 if

0k�k  kU�k  1k�k

for all vectors � 2 Rp such that k�k0  s̄.

Lemma 1. In the factor model (2), for any integer s̄ > k,

SE(X; s̄)  SE(U; s̄)⇥ p
max
j=1

kUjk2

kXjk2
⇥ R(U; s̄), with R(U; s̄) = max

⇠: |⇠|s̄

�max(UT
⇠U⇠)

�min(UT
⇠U⇠)

.

If U satisfies s̄-order RIP (Definition 2) with parameters 0, 1 then R(U; s̄)  
2
1/

2
0.

Proof. From Cauchy Interlacing Theorem it follows that �min(XT
⇠X⇠)  �min(XT

⇠0X⇠0) for two nested

models ⇠ ◆ ⇠
0, implying that �min(XT

⇠X⇠) of model ⇠ with size ⇠  s̄ achieves the minimum value at

some model of size s̄. That is,

min
⇠: |⇠|s̄

�min(X
T
⇠X⇠) = min

⇠: |⇠|=s̄
�min(X

T
⇠X⇠).

Let smin(A) denote the smallest singular values of matrix A and let b⇠ = [bj : j 2 ⇠]. From Weyl’s

theorem on perturbed singular values and the fact that Fb⇠ is of rank at most k, it follows that

�min(X
T
⇠X⇠) = s

2
min(X⇠)  (smin(Fb⇠) + kU⇠k)2 = kU⇠k2 = �max(U

T
⇠U⇠)  �min(U

T
⇠U⇠)⇥ R(U)

for each model ⇠ of size s̄ > k. On the other hand,

p
max
j=1

kUjk =
p

max
j=1

kXjk ⇥
kUjk
kXjk

 p
max
j=1

kXjk ⇥
p

max
j=1

kUjk
kXjk

.
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Therefore,

SE(X) =
min⇠: |⇠|=s̄ �min(XT

⇠X⇠)

maxpj=1 kXjk2


min⇠: |⇠|=s̄ �min(UT
⇠U⇠)

maxpj=1 kUjk2
⇥ p
max
j=1

kUjk2

kXjk2
⇥ R(U),

proving the first claim. The second claim is trivial.

The concept of RIP, first introduced by a seminar work of Candes and Tao (2007) in compressed

sensing, plays an important role in the recovery of the nonzero regression coe�cients by `1 minimization

in place of `0 minimization, and guarantees the estimation consistency of the Lasso method (Vershynin,

2018, Sections 10.5 and 10.6). In general, a matrix with the concentration of measure property is a

good restricted isometry with 0/1 being of constant order (Baraniuk et al., 2008). Concrete examples

include subgaussian random matrices with independent rows (Vershynin, 2012, Theorem 5.65). To

ensure s̄-order RIP, these examples require n < s̄ log(p/s̄), which is usually satisfied in the sparse

regression setup.

3 Model and Methodology

The goal of this paper is to study the factor-adjusted sparse regression model (4), in which common

factors and idiosyncratic components [F,U] are latent, but X are observed through the factor model

(2). Each datum (row) xi in X is assumed decomposable as xi = Bfi+ui with Efi = 0, Eui = 0, and

E[fiuT
i ] = 0. Note that {(fi,ui)}1in are not necessarily identically or independently distributed.

E[FTF/n] is normalized as I without loss of generality, and E[UTU/n] is denoted by ⌃. The Gaussian

noises " are independent of F and U. The number of common factors k is fixed, but the dimensionality

p of U and the sparsity s of its regression coe�cients � may grow as n increases. Assume p � n but

s log p � n so that the desired estimation error rate ✏n =
p

s log p/n ! 0 as n ! 1.

The first step is to estimate latent variables [F,U] given X. We follow Bai and Ng (2002); Bai

(2003); Fan et al. (2013); Wang and Fan (2017) to use a PCA-based method for this task. Let
b�1 � · · · � b�n be the eigenvalues of XXT

/np in the descending order. It is natural to estimate the

column space of F by the eigenspace corresponding to the k largest eigenvalues of XXT
/np. Write

the eigenequation as
XXT

np
⇥
bFp
n
=

bFp
n
⇥ b⇤,

bFTbF
n

= I,

where b⇤ = diag(b�1, . . . , b�k) is the diagonal matrix of the k largest eigenvalues of XXT
/np, and bF is

p
n times their corresponding eigenvectors. Further, B and U are estimated as

bB =
XTbF
n

, bU = X� bFbBT =

 
I�

bFbFT

n

!
X.

If the number of common factors k is unknown, one may estimate it by

bk = argmax
1jk̄

b�j
b�j+1

, (7)

where k̄ is a prescribed upper bound for k (Luo et al., 2009; Lam and Yao, 2012; Ahn and Horenstein,

2013). Another viable method for estimating unknown k is by Bai and Ng (2002).
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Given estimates [bF, bU] for latent variables [F,U], we propose a Bayesian spike-and-slab method

for parameter estimation and model selection tasks. Let ⇠ = {j : �j 6= 0} be the support of �. A

hierarchical prior ⇡(�2,↵,�) with a slab prior on ↵ and a spike-and-slab prior on � is assigned.

�
2 ⇠ g(�2),

↵ ⇠
kY

j=1

h1(↵j),

1{j 2 ⇠} ⇠ Bernoulli(s0/p),

�⇠ ⇠
Y

j2⇠
h2(�j/⌧j)/⌧j , �⇠c = 0,

(8)

where g is a positive continuous density function on (0,1), e.g., the inverse-gamma density; h1 and

h2 are “slab” positive density functions on (�1,+1), e.g., the Gaussian density e
�z2/2

/
p
2⇡ or

the Laplace density e
�|z|/2

/2; hyperparameters ⌧1, . . . , ⌧p control the scales of regression coe�cients

�1, . . . ,�p; and hyperparameter s0 controls the sparsity of model ⇠. For the scaling hyperparameters,

we set ⌧�1
j = kbUj/

p
nk so that the e↵ects of possibly heterogeneous scales of bUj ’s are appropriately

adjusted. For the sparsity hyperparameter, we simply set s0 = 1 in the simulation experiments. On

a real dataset, one could make an informative choice of s0 according to expertise knowledge in the

specific area, or tune s0 by sophisticated cross-validation or empirical Bayes procedures.

Combining the prior (8) with the pseudo data generating process Y = bF↵+ bU�+ �" results in a

pseudo posterior distribution

b⇡(�2,↵,�|bF, bU,Y) / ⇡(�2,↵,�)N (Y|bF↵+ bU�,�2I), (9)

where N (y|µ,�2I) is the n-dimensional Gaussian density function with mean µ and covariance �2I.

This pseudo posterior distribution (9) di↵ers from the exact posterior distributions ⇡(�2,↵,�|F,U,Y),

obtained by a Bayesian procedure with true variables [F,U] as covariates, and ⇡(�2,↵,�|X,Y),

obtained by a full-Bayesian procedure.

It is worth noting that, even in the simple setup where {(fi,ui)}1in are identically and in-

dependently distributed (i.i.d.) and fi ⇠ Pf ,ui ⇠ Pu are jointly independent, the exact posterior

distribution

⇡(�2,↵,�|X,Y) / ⇡(�2,↵,�)

Z
N (Y|F↵+ (X� FBT)�,�2I)

nY

i=1

Pf (fi)Pu(xi �Bfi)dfi,

is computationally intractable due to the involvement of latent variables in the integral. Thus a

full-Bayesian procedure does not estimate model (4) easily.

4 Theoretical Results on Factor Model

Section 4.1 establishes the estimation error rate
p
log p/n of the PCA-based method for latent common

factors F. Two conditions are needed. The first (Assumption 1) concerns convergence rates of the

sample covariance matrices FTF/n, FTU/n, UTU/n towards their ideal counterparts I, 0 and ⌃. The

second (Assumption 2) concerns the eigen (or singular) structures of factor loading coe�cients B and

the covariance matrix ⌃. Section 4.2 proceeds to estimate each idiosyncratic component Uj under an

additional condition (Assumption 3) on the magnitudes of entries in B and ⌃. Section 4.3 highlights

the technical novelty of these results.
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4.1 Estimation of Common Factors

We summarize assumptions and results for the estimation error rate of F first, and commend on them

later.

Assumption 1 (On Sample Covariance Matrices). There exists constant L0 such that

kFTF/n� Ikmax  L0

p
log p/n,

kFTU/n� 0kmax  L0

p
log p/n,

kUTU/n�⌃kmax  L0

p
log p/n.

with high probability at least 1� on.

Assumption 2 (On Eigen Structures of B and ⌃).

(i) Let �1 � �2 · · · � �k be the eigenvalues of BTB/p. For each 1  j  k, �j ⇣ 1.

(ii) k⌃k 4 p
p

log p/n.

(iii) trace(BT⌃B) � p
2 log p/n.

Theorem 1. Under Assumptions 1-2, the following statements hold.

(a) Recall that b�j, j = 1, . . . , n are eigenvalues of XXT
/np. There exists constant L1 such that

max
1jk

|b�j � �j |  L1

p
log p/n, max

k+1jn
|b�j � 0|  L1

p
log p/n

with high probability at least 1� on.

(b) Let ⇧ and b⇧ be the projection matrices onto the column spaces of F and bF, respectively. There

exists constant L2 such that the sin-theta distance between two column spaces is bounded as

k(I�⇧) b⇧kF = k(I� b⇧)⇧kF = k b⇧�⇧kF/
p
2  L2

p
log p/n

with high probability at least 1� on � trace(BT
⌃B)

p2 log p/n .

(c) There exist constant L3 and some orthogonal matrix Hk⇥k such that

kbFH/
p
n� F/

p
nkF  L3

p
log p/n

with high probability at least 1� on � trace(BT
⌃B)

p2 log p/n .

Assumption 1 is a high-level condition not requiring samples {(fi,ui)}ni=1 to be identically or

independently distributed. Kneip and Sarda (2011, Assumption A2 and Proposition 1) assumed the

same error rate
p

log p/n for the factor-augmented sparse regression model (6) and provided a su�cient

condition for i.i.d. samples {(fi,ui)}ni=1. Fan et al. (2013) derived this error rate for stationary and

weakly-correlated time-series {(fi,ui)}i�1. Our recent works on concentration inequalities for Markov

chains (Jiang et al., 2018; Fan et al., 2019) can verify this error rate in case that {(fi,ui)}i�1 are

functions of ergodic Markov chains. Below are two concrete examples in which Assumption 1 holds.

Their proofs are provided in the appendix.
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Example 1. Let {(fi,ui)}ni=1 be independent (not necessarily identically distributed) samples with

Efi = 0, Eui = 0, and E[fiuT
i ] = 0. If fij’s and uij’s have subgaussian norms at most c, then

Assumption 1 holds. Note that a mean-zero variable bounded by c log(2) or a Gaussian variable with

mean zero and variance less than c
2
/2 has a subgaussian norm at most c.

Example 2. Let {(fi,ui)}i�1 be functions of a stationary, general-state-space Markov chain {Zi}i�1,

i.e., fij = fij(Zi) and uij = uij(Zi), with Efi(Zi) = 0, Eui(Zi) = 0, and E[fi(Zi)ui(Zi)T] = 0. If

the Markov chain admits a non-zero L2-spectral gap, and there exist envelop functions f̄(z), ū(z) such

that maxi,j |fij(z)|  f̄(z), maxi,j |uij(z)|  ū(z) for any z in the state space of the Markov chain

and E[f̄4(Z1)]  c
4
,E[ū4(Z1)]  c

4, then Assumption 1 holds.

Assumption 2(i) concerns the eigen spectrum of BBT
/p. The positive definiteness of BTB/p

indicates that each factor Fj makes a non-trivial contribution to the variations of covariates X. This

condition is commonly seen in the literature of factor models. Assumption 2(ii) allows the operator

norm (largest eigenvalue) of ⌃ to grow with increasing n, p. Assumption 2(iii) amounts to

vec(⌃)Tvec(BBT) � p
2 log p/n,

where vec(A) denotes the vector formed by concatenating column vectors of matrix A. As ⌃ con-

tain p
2 entries, this condition actually encourages the sparseness of ⌃ and weak correlations among

idiosyncratic components Uj ’s by anchoring most entries of ⌃ around zero.

Assumption 2 ensures the pervasiveness of latent factors by characterizing a “low-rank spike plus

sparse” eigen structure of the covariance matrix of covariates

E[XTX/n] = BBT +⌃.

All non-zero eigenvalue of BBT are of order ⌦(p) due to Assumption 2(i), while all eigenvalues of ⌃

is of order o(p) due to Assumption 2(ii). This large gap between eigenvalues is crucial for estimating

the column space of F through PCA (Wang and Fan, 2017; Fan et al., 2020b). In contrast, if this

gap is relatively small compared to the eigenvalues of ⌃, PCA may result in inconsistent estimation

(Johnstone and Lu, 2009). Conditions on B,⌃ used in previous works (Bai and Ng, 2002; Fan et al.,

2020a) are special cases of Assumption 2.

Example 3. In addition to Assumption 2(i), Bai and Ng (2002) assumed that maxj kbjk  c1,

maxj ⌃jj  c2, and
P

i,j |⌃ij |  c3p. Their conditions imply that k⌃k  p
c2c3p and trace(BT⌃B) 

c
2
1c3kp.

Example 4. In addition to Assumption 2(i), Fan et al. (2020b) assumed that k⌃k  c4. Their

conditions imply trace(BT⌃B)  trace(BTB)k⌃k  c4(�1 + · · ·+ �k)p.

4.2 Estimation of Idiosyncratic Components

Estimating each idiosyncratic component Uj is more challenging than estimating common factors.

We need an additional assumption to control the magnitudes of entries of B and ⌃.

Assumption 3 (On Magnitudes of Entries of B and ⌃). maxpj=1 kbjk 4 1, where bj is the j-th row

of B, and maxpj=1⌃jj 4 1, where ⌃jj is the j-th diagonal entry of ⌃.

9



Corollary 1. Suppose Assumptions 1 to 3 hold. There exists constant L4 such that

p
max
j=1

kbUj/
p
n�Uj/

p
nk  L4

p
log p/n

with high probability at least 1� on � trace(BT
⌃B)

p2 log p/n .

To motivate Assumption 3, let us have a close look at the estimation error

bUj �Uj = (⇧� b⇧)Xj �⇧Uj ,

where ⇧ and b⇧ are projection matrices onto the column spaces of F and bF introduced by Theo-

rem 1(b). It follows that

kbUj/
p
n�Uj/

p
nk  L2

p
2 log p/nkXj/

p
nk+ k⇧Uj/

p
nk.

Assumption 3 is intended to bound the term kXj/
p
nk2 ⇡ kbjk2 + ⌃jj . The term k⇧Uj/

p
nk, the

projection of Uj/
p
n onto the column space of F, is small due to the weak correlation between F

and U. Bai and Ng (2002) used Assumption 3 to estimate common factors F (see Example 3). Here

we only need it for estimating idiosyncratic components U. Without this assumption, Theorem 1 for

estimating common factors F still stands.

4.3 Technical Novelty

Theorem 1(b) measures the estimation error of the column space of F by the sin-theta distance, a

metric in the matrix perturbation theory (Stewart, 1990) to quantify the di↵erence between two linear

spaces.

Definition 3 (Principal Angles and Sin-Theta Distance). Let b n⇥k and  n⇥k be orthonormal bases

of two linear subspaces bL and L of rank k in Rn. The principal or canonical angle between two linear

subspaces bL and L is defined as

\( bL,L) = (cos�1
s1, . . . , cos

�1
sk)

T
,

where s1, . . . , sk 2 [0, 1] are the singular values of b T or  T b . The sin-theta distance between two

linear subspaces bL and L is defined as

k sin\( bL,L)k =

vuut
kX

j=1

sin2(cos�1 sj).

Equivalently, with b⇧ = b b T and ⇧ =   T being the projection matrices onto the two linear sub-

spaces,

k sin\( bL,L)k2 = k(I�⇧) b⇧k2F = k(I� b⇧)⇧k2F = k b⇧�⇧k2F/2.

To devise the proof of Theorem 1(b), we develop a novel extension of the Davis-Kahan theorem

(Davis and Kahan, 1970; Yu et al., 2014). The eigendecomposition of BTB/p = R⇤RT deduces that

FBTBFT

np
⇥ FRp

n
=

FRp
n

⇥⇤+�, where � =
Fp
n
⇥ BTB

p
⇥
✓
FTF

n
� I

◆
R.
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We call this equation a “�-approximate” eigenequation of FBTBFT
/np and compare it with the exact

eigenequation
XXT

np
⇥
bFp
n
=

bFp
n
⇥ b⇤.

A novel variant of Davis-Kahan theorem (Lemma A3) relates the di↵erence between bF ⇡ FR to

di↵erences between X ⇡ FBT, b⇤ ⇡ ⇤, 0 ⇡ �. This variant of Davis-Kahan theorem gives a clear

insight on roles of eigen structures of B,⌃ and concentration properties of sample covariance matrices

in the estimation of factor models. It may be potential applicable to the analyses of PCA-based

methods for other problems.

Theorem 1(c) follows from Theorem 1(b). Both sides of the equation are divided by a factor
p
n

such that bF/
p
n and F/

p
n are (nearly) orthogonal. This result can be viewed as the non-asymptotic

version of Bai and Ng (2002, Theorem 1). The former gives a non-asymptotic error bound
p
log p/n

with a precise characterization of the tail probability, while the latter gives an asymptotic error bound

Op(
p

1/n). The additional factor log p arises from the essential di↵erence between non-asymptotic

analyses and asymptotic analyses. The starting point of the proof of Theorem 1 is to deduce from

Assumption 1 non-asymptotic error bounds

kFTF/n� Ik  kkFTF/n� Ikmax  L0k
p
log p/n,

kFTU/n� 0k 
p
kpkFTU/n� 0kmax  L0

p
kp log p/n,

kUTU/n�⌃k  pkUTU/n�⌃kmax  L0p
p
log p/n,

The assumptions of Bai and Ng (2002) can deduce asymptotic error bounds

kFTF/n� Ik = Op(
p
1/n),

kFTU/n� 0k = Op(
p

p/n),

kUTU/n�⌃k = Op(p
p
1/n).

Using the asymptotic error bounds instead of the non-asymptotic error bounds in the technical proof

of Theorem 1 would reproduce the asymptotic result of Bai and Ng (2002, Theorem 1).

5 Theoretical Results on Bayesian Sparse Regression

This section summarizes the theoretical properties of the pseudo-posterior distribution given by (9).

The `2-error rate ✏n =
p
s log p/n is achieved for regression coe�cients ↵?, �? under commonly-seen

assumptions for Bayesian sparse regression. This rate is so far the best achievable rate by Bayesian

methods even with true variables [F,U] (Castillo et al., 2015; Song and Liang, 2017). Byproducts of

the analysis include the adaptivity to the unknown sparsity s and unknown standard deviation �
?.

When the beta-min condition holds, the pseudo-posterior distribution consistently selects the true

sparse model ⇠? = {j : �?j 6= 0}. Interestingly, although the factor adjustment does not change the

order ✏n =
p

s log p/n of the estimation error, it does require a stronger sparse eigenvalue condition

and result in larger constant factors of the estimation error.

Section 5.1 makes three assumption. The first is the sparse eigenvalue condition on U, the second

is a high-level condition controlling the estimation error of bF ⇡ F, bU ⇡ U in the factor model, and

the last is on the magnitude of the true regression coe�cients. Sections 5.2 and 5.3 present the main

theorem and its sketch of proof.
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5.1 Assumptions

Following the literature of sparse regression, we assume p � n but s log p � n such that the desired

estimation error rate ✏n =
p
s log p/n ! 0 as n ! 1. Other assumptions are stated as follows.

Assumption 4 (On Sparse Eigenvalue). There exist constants M0 > 0, 0, 1 such that

min
⇠: |⇠|(1+M0)s

�min(U
T
⇠U⇠/n) � 

2
0,

and that maxpj=1 kUj/
p
nk  1 with high probability. Therefore, the (1+M0)s-order sparse eigenvalue

(Definition 1) of U is at least 20/
2
1.

Variants of this sparse eigenvalue condition have been imposed on original covariatesX by Bayesian

sparse regression methods to ensure both estimation consistency (Castillo et al., 2015; Song and Liang,

2017) and computational e�ciency (Yang et al., 2016). Here this condition is imposed on decorrelated

covariates U. As discussed in Section 2, on decorrelated covariates U rather than original covariates

X this condition holds more likely. When U consists of independent subgaussian rows, random matrix

theories (Vershynin, 2012, Theorem 5.39) can verify Assumption 4.

Assumption 5 (On Estimation of Factor Model). There exist constants L3, L4 such that

�����
bFHp
n

� Fp
n

�����
F

 L3

r
log p

n
, max

1jp

�����
bUjp
n
� Ujp

n

�����  L4

r
log p

n
,

with high probability, where H is some k ⇥ k rotation (orthogonal) matrix.

The estimation error rate
p

log p/n of latent variables has been verified by Theorem 1 and Corol-

lary 1. Note that bF/
p
n is an orthonormal basis whose span approximates the column space of F, and

bFH/
p
n spans the same linear space.

Assumption 6 (On True Parameters). �? > 0 is fixed, k↵?k 4 1, k�?k 4 1.

The assumed constant orders of ↵? and �? are not restrictive. When Assumption 5 is in place,

both vectors of regression coe�cients have bounded `2-norms if the response variable has a bounded

variance. To see this point, write

E[kYk2/n] = k↵?k2 + (�?⇠?)
TE[UT

⇠?U⇠?/n]�
?
⇠? + �

?2 � k↵?k2 + (1� o(1))20k�?k2 + �
?2
.

Assumptions 5 and 6 together control the di↵erence between the true data generating process Y =

F↵? +U�? + �
?" and the pseudo data generating process Y = bFH↵? + bU�? + �

?" in terms of the

deviation between their conditional means

k(bFH↵? + bU�?)� (F↵? +U�?)k  L5�
?p

n✏n, with L5 = L3k↵?
/�

?k+ L4k�?/�?k.

We remark that, when more accurate estimation methods of latent variables than the PCA-based

method are available, larger magnitudes of regression coe�cients are allowed.
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5.2 Main Results

Before presenting main results, we formally define the estimation error rate in the Bayesian setup,

which is di↵erent to that in the frequentist setup. The following definition of the posterior contraction

rate is adopted from the Bayesian literature (Ghosal et al., 2000; Shen and Wasserman, 2001; Castillo

et al., 2015; Song and Liang, 2017).

Definition 4 (Posterior Contraction Rate). Consider a parametric model {P✓ : ✓ 2 ⇥}. Let Dn for

n � 1 be a sequence of data generations from P✓?. Let �(✓) be a function of ✓, and `(�(✓),�?) be

a loss function between the estimate �(✓) and the estimand �?. A sequence of posterior distributions

(random measures) ⇡(✓|Dn) for n � 1 is said to achieve the contraction rate ✏n of estimation error

`(�(✓),�?) if

⇡(`(�(✓),�?)  M✏n|Dn) ! 1

in P✓?-probability as n ! 1 for some constant M > 0.

In this paper, we consider

Dn = (X,Y), ✓ = (�,↵,�), �(✓) =

✓
↵

�

◆
, �? =

✓
H↵?

�?

◆
,

where H is the rotation matrix introduced in the estimation of the factor model. The objective is to

show that the pseudo-posterior distribution b⇡(�2,↵,�|bF, bU,Y) given by (9) achieves the contraction

rate ✏n =
p
s log p/n in terms of `2 error

`(�(✓),�?) = k�(✓)� �?k =

����

✓
↵

�

◆
�
✓
H↵?

�?

◆���� .

Note that bF and F span almost the same linear space, and bFH ⇡ F element-wisely. Thus the pseudo-

posterior distribution is expected to concentrate around ↵ ⇡ H↵? such that bF↵ ⇡ bFH↵? ⇡ F↵?.

Now we are ready to present the main results of the paper.

Theorem 2. Define an “✏n-neighborhood” of parameter (�0,↵0
,�0) as

A(�0,↵0
,�0

,M0,M1,M2, ✏n) = {(�,↵,�) : Eq. (10)}
8
>>>>>>><

>>>>>>>:

|⇠ \ ⇠0|  M0s,

�
2

�02
2

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�
,

k↵�↵0k  M2�
0
✏n,

k� � �0k  M3�
0
✏n/0,

(10)

where M0, M1, M2, M3 are absolute constants, ⇠ and ⇠0 are supports of � and �0, respectively. Suppose

Assumptions 4 to 6 holds with M0 � 2 > L
2
5, where L5 = L3k↵?

/�
?k + L4k�?/�?k. The following

statements hold with some constants M1, M2, M3, M4.

(a) (Estimation Error) For any constant C1 < M0 � 2� L
2
5,

b⇡
⇣
A(�?,H↵?

,�?,M0,M1,M2,M3, ✏n)|bF, bU,Y
⌘
� 1� e

�C1s log p

with high probability.
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(b) (Prediction Error) For any C2 < M0 � 2� L
2
5,

b⇡
⇣
k(bF↵+ bU�)� (F↵? +U�?)k  M4�

?p
n✏n|bF, bU,Y

⌘
� 1� e

�C2s log p

with high probability.

(c) (Model Selection) Suppose the beta-min condition minj2⇠? |�?j | � ✏n holds in addition. For any

C3 < M0 � 2� L
2
5,

b⇡
⇣
A(�?,H↵?

,�?,M0,M1,M2,M3, ✏n) \ {⇠ ◆ ⇠
?}|bF, bU,Y

⌘
� 1� e

�C3s log p

with high probability, implying that

b⇡
⇣
|⇠ \ ⇠?|  M0s, ⇠ ◆ ⇠

?|bF, bU,Y
⌘
� 1� e

�C3s log p

b⇡
⇣n

j : |�j | � 2M3�
p

|⇠| log p/n
o
= ⇠

?
��� bF, bU,Y

⌘
� 1� e

�C3s log p.

Part (a) establishes the posterior contraction rate ✏n in terms of `2 error for regression coe�cients

↵? (up to some rotation matrix H) and �?. It also asserts that the posterior model ⇠ overshoots the

true sparse model ⇠? by no more than a constant factor M0, and that the relative estimation error of

the standard deviation �? is M1✏n. Part (b) shows that bF↵+ bU� predicts the true conditional mean

E[Y|F,U] = F↵? +U�? with mean squared error M4✏n for each single datum instance on average.

The beta-min condition in part (c) has been used by Bayesian sparse regression methods to achieve

the model selection consistency (Castillo et al., 2015; Song and Liang, 2017). Without this condition,

the Bayesian methods cannot tell whether a nearly-zero regression coe�cient �j 4 ✏n is truly non-zero

or faked by the randomness of data generations. The first implication of part (c) asserts that the

pseudo-posterior distribution selects all variables in ⇠? and at most M0s false positives. In simulation

experiments, the pseudo posterior distribution overestimates the true model size s = |⇠?| by less than

5%. The second implication of part (c) enables a posterior model selection rule. Simply speaking,

one can consistently select the true model ⇠? by filtering out coe�cients �j ’s larger than threshold

2M3�
p

|⇠| log p/n. In simulation experiments, the majority of pseudo-posterior samples of ⇠ are

exactly the true model ⇠? even without the posterior model selection rule.

Recall that the constant L5 relates to estimation errors of latent variables in the factor model. The

constant M0 indicates the strength of the sparse eigenvalue condition (Assumption 4), and determines

the quality of the posterior distribution (if true variables [F,U] are used). The constraint M0�2 > L
2
5

in Theorem 2 arises when the Bayesian sparse regression method copes with the estimated latent

variables. A less accurate estimation of latent variables in the factor model would result in large L5.

Consequently, the factor-adjusted Bayesian method would need a stronger sparse eigenvalue condition

with larger M0.

5.3 Sketch of Proof

Let P(�?,↵?,�?) and bP(�?,H↵?,�?) be the probability measures associated with the true data generating

process Y = F↵? + U�? + �
?" and the pseudo data generating process Y = bFH↵? + bU�? + �

?",

respectively. Fig. 1 illustrates the paradigm of proof of Theorem 2. The analysis is first moved from

the probability space of the true data generating process into that of the pseudo data generating

process by conditioning on a realization of F, U, bF, bU, H. In the space of the pseudo data generating
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Figure 1: paradigm of Proof of Theorem 2

process, theoretical properties of the pseudo-posterior distribution b⇡(�,↵,�|bF, bU,Y) are established.

These theoretical properties are then translated back to the probability space of P(�?,↵?,�?).

More precisely, the objective is to show events

E1 : b⇡
⇣
A

c(�?,H↵?
,�?,M0,M1,M2,M3, ✏n)|bF, bU,Y

⌘
� e

�C1s log p,

E2 : b⇡
⇣
k(bF↵+ bU�)� (F↵? +U�?)k > M4�

?p
n✏n|bF, bU,Y

⌘
� e

�C2s log p,

E3 : b⇡
⇣
A

c(�?,H↵?
,�?,M0,M1,M2,M3, ✏n) [ {⇠ 6◆ ⇠

?}|bF, bU,Y
⌘
� e

�C3s log p

happen with vanishing probability under P(�?,↵?,�?). The first step (Appendix B.1) is to show that

F :

8
>>><

>>>:

min⇠: |⇠|(M0+1)s �min(bUT
⇠
bU⇠/n) � 

2
0/4

maxpj=1 kbUj/
p
nk  21

k(bFH↵? + bU�?)� (F↵? +U�?)k  L5�
?p

n✏n

(11)

happens with high P(�?,↵?,�?)-probability. Set M4 � 2L5 and define another event

E 0
2 : b⇡

⇣
k(bF↵+ bU�)� (bFH↵? + bU�?)k > M4�

?p
n✏n/2|bF, bU,Y

⌘
� e

�C2s log p.

Evidently, E2 \ F ✓ E 0
2 \ F , Write

P(�?,↵?,�?)(E1)  P(�?,↵?,�?)(E1|F)P(F) + P(Fc),

P(�?,↵?,�?)(E2)  P(�?,↵?,�?)(E2|F)P(F) + P(Fc)  P(�?,↵?,�?)(E 0
2|F)P(F) + P(Fc),

P(�?,↵?,�?)(E3)  P(�?,↵?,�?)(E3|F)P(F) + P(Fc).
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Since the event F happens with high P(�?,↵?,�?)-probability, it su�ces to bound conditional probabil-

ities of events E1, E 0
2 and E3 given event F . The second step (Appendix B.2) is to show that

P(�?,↵?,�?)(E1|F,U, bF, bU,H) 
h
bP(�?,H↵?,�?)(E1|bF, bU,H)

i1/2
⇥ e

L2
5s log p/2,

P(�?,↵?,�?)(E 0
2|F,U, bF, bU,H) 

h
bP(�?,H↵?,�?)(E 0

2|bF, bU,H)
i1/2

⇥ e
L2
5s log p/2,

P(�?,↵?,�?)(E3|F,U, bF, bU,H) 
h
bP(�?,H↵?,�?)(E3|bF, bU,H)

i1/2
⇥ e

L2
5s log p/2,

(12)

for any realization of (F,U, bF, bU,H) belonging to event F . In (12), the term e
L2
5s log p/2 relates to

the estimation of latent variables in the factor model, and the terms bP(�?,H↵?,�?)(Ei|bF, bU,H) relates

to the quality of Bayesian sparse regression. Given minj2⇠? |�j | �
p
32M0�?✏n/0, the third step

(Appendix B.3) is to show that

bP(�?,H↵?,�?)(E1|bF, bU,H)  e
�C0

1s log p

bP(�?,H↵?,�?)(E 0
2|bF, bU,H)  e

�C0
2s log p

bP(�?,H↵?,�?)(E3|bF, bU,H)  e
�C0

3s log p

(13)

for any constants C
0
1 < M0 � 2 � C1, C 0

2 < M0 � 2 � C2, C 0
3 < M0 � 2 � C3 if M1, M2, M3, M4 are

su�ciently large. The theorem is concluded by choosing suitable C 0
i 2 (L2

5,M0� 2�Ci) for i = 1, 2, 3.

As mentioned above, the proof critically depends on the non-asymptotic error bounds character-

izing the contraction rate of the pseudo-posterior distribution. Classical works in Bayesian sparse

regression (Narisetty and He, 2014; Castillo et al., 2015) are inadequately quantitative for the analysis

in this paper. Our technique is inspired by a recent non-asymptotic analysis of Bayesian shrinkage

methods (Song and Liang, 2017). However, given their results on Bayesian shrinkage methods, the

analysis of Bayesian spike-and-slab methods in this paper is still challenging.

6 Simulation Experiments

This section harvests experimental results on simulated data. The default setting of experiments

is as follows. For the data generating process, (n, p, s, k) = (200, 500, 5, 3), fi
i.i.d.⇠ N (0, I), ui

i.i.d.⇠
N (0, I), B ⇠ Uniform[�3.0,+3.0]p⇥k. For the true parameters, �?2 = 0.5, ⇠? = {1, 2, 3, 4, 5}, �?⇠? =

(3.0, 3.0, 3.0, 3.0, 3.0)T, and ↵? = BT�?.

For prior (8), we choose the inverse-gamma density g with shape 1 and scale 1, the Gaussian

densities h1(z) = N (z|0, 102), h2(z) = N (z|0, 1) and hyperparameters s0 = 1 and ⌧�1
j = kbUjk/

p
n.

Starting from (�,↵,�) = (1.0,0,0), we iterate a Gibbs sampler T = 20 times and drop the first

T/2 = 10 iterations as the burn-in period. The implementation details of the Gibbs sampler are put

in the appendix.

The pseudo-posterior distribution are evaluated in terms of five metrics. The posterior mean of �

is compared to �? in terms of `2 error. The model selection rate, the portion of the posterior samples

that select the true model (i.e., ⇠ = ⇠
?) and the sure screening rate, the portion of the posterior

samples that select all sparse coe�cients (i.e., ⇠ ◆ ⇠
?) are computed. To evaluate the adaptivity to

unknown sparsity s, the average model size |⇠| is computed. To evaluate the adaptivity to unknown

standard deviation �?, the posterior mean of �2 is compared to �?2 in terms of relative error. These

metrics are evaluated and averaged over 100 replicates of the datasets.

16



The factor-adjusted Bayesian method is compared to the routine Bayesian method, the routine

Lasso method (Friedman et al., 2010, R package glmnet) and the factor-adjusted Lasso method (Fan

et al., 2020a, R package FarmSelect). The `1-penalty hyperparameters of the Lasso methods are

optimized by ten-fold cross-validation. Note that the Bayesian/Lasso methods with covariates X can

be seen as the factor-adjusted Bayesian/Lasso methods with the underestimated number of common

factors bk = 0.

6.1 Insensitivity to Overestimates of k

Table 1 summarizes the performances of four methods in the default setting. The factor-adjusted

Bayesian method outperforms other three methods on both parameter estimation and model selection

tasks. Its performance is insensitive to overestimated numbers of common factors bk = 6, 9, 12. The

factor-adjusted Lasso method tends to select two or three more covariates other than covariates of the

true model. This issue is alleviated when larger nonzero coe�cients are set.

Method k� � �?k ⇠ = ⇠
?

⇠ ◆ ⇠
? |⇠| |�2/�?2 � 1|

Lasso, bk = 0 0.914 0% 100% 18.37 1.697

Factor-adjusted Lasso, bk = 3 0.409 31% 100% 6.90 0.311

Factor-adjusted Lasso, bk = 6 0.409 23% 100% 7.14 0.304

Factor-adjusted Lasso, bk = 9 0.410 24% 100% 7.39 0.292

Factor-adjusted Lasso, bk = 12 0.411 23% 100% 7.62 0.285

Bayes, bk = 0 0.189 42.2% 100.0% 5.80 0.110

Factor-adjusted Bayes, bk = 3 0.125 84.5% 100.0% 5.16 0.080

Factor-adjusted Bayes, bk = 6 0.128 83.9% 100.0% 5.18 0.084

Factor-adjusted Bayes, bk = 9 0.135 83.7% 100.0% 5.18 0.082

Factor-adjusted Bayes, bk = 12 0.133 85.6% 100.0% 5.16 0.086

Table 1: Experimental results in the default setting.

In case that covariates X1, . . . ,Xp are not correlated, the factor-adjusted Bayesian method per-

forms slightly worse than the Bayesian method (Table 2).

Method k� � �?k ⇠ = ⇠
? (%) ⇠ ◆ ⇠

? (%) |⇠| |�2/�?2 � 1|
Lasso, bk = 0 0.311 0% 100% 31.27 0.134

Factor-adjusted Lasso, bk = 3 0.414 32% 100% 6.53 0.317

Factor-adjusted Lasso, bk = 6 0.415 27% 100% 6.67 0.310

Factor-adjusted Lasso, bk = 9 0.417 24% 100% 7.06 0.305

Factor-adjusted Lasso, bk = 12 0.419 20% 100% 7.16 0.297

Bayes, bk = 0 0.119 85.7% 100.0% 5.16 0.091

Factor-adjusted Bayes, bk = 3 0.123 85.7% 100.0% 5.16 0.091

Factor-adjusted Bayes, bk = 6 0.124 84.4% 100.0% 5.17 0.090

Factor-adjusted Bayes, bk = 9 0.127 84.6% 100.0% 5.17 0.091

Factor-adjusted Bayes, bk = 12 0.129 85.2% 100.0% 5.16 0.091

Table 2: Experimental results in the setting with no common factor.
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The model selection rate for the Bayesian methods has a di↵erent meaning to that for the Lasso

methods. For example, 50% model selection rate given by a Lasso method means that the true sparse

model is selected in 50 out of 100 replicates of the dataset. 90% model selection rate given by a

Bayesian method means that every 9 of 10 posterior samples select the true sparse model in each

replicate of the dataset on average. In the experiments summarized by Tables 1 and 2, at least every 7

of 10 pseudo-posterior samples obtained by the factor-adjusted Bayesian method select the true sparse

model in each of 100 replicates of the dataset. A majority voting rule would definitely enhance the

model selection rate of the factor-adjusted Bayesian methods.

6.2 Impacts of Correlations among Covariates

As discussed in the introduction, the sparse regression methods on model (1) fail to work when the

covariates are strongly correlated, and the factor adjustment are intended to address the issue. To

showcase this issue, we vary the magnitude of factor loading coe�cients B in the default setting and

draw B ⇠ Uniform[�Bmax,+Bmax]p⇥k with Bmax = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5. A larger Bmax indicates

a smaller sparse eigenvalue of X. Neither the routine Lasso method nor the routine Bayesian method

works when Bmax � 4.0 (Fig. 2).

Figure 2: `2-estimation error of � (left), model selection rate of ⇠ (middle) and relative estimation error

of �2 (right) influenced by the magnitude of entries in B. Factor-adjusted methods use bk = k = 3.

6.3 Scalability as n, p, s Increase

The proposed method is tested with various setups of the sample size n, the dimensionality p and

the sparsity s. In Fig. 3(a), p = 500 and s = 5 are fixed, and n is varied. In Fig. 3(b), n = 200

and s = 5 are fixed, and p is varied. In Fig. 3(c), n = 200 and p = 500 are fixed, and s is varied.

For factor-adjusted methods, bk = k = 3 are used. Overall, the factor-adjusted Bayesian method

outperforms the other three methods on both parameter estimation and model selection tasks under

most combinations of (n, p, s).

6.4 Convergence Diagnostics for Gibbs Sampler

A Gibbs sampler is designed for the posterior computation of the factor-adjusted Bayesian method.

We provide a graphics tool to diagnose the convergence of this Gibbs sampler towards the target
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(a)

(b)

(c)

Figure 3: `2-estimation error of � (left), model selection rate of ⇠ (middle) and relative estimation error

of �2 (right) influenced by (a) sample size n, (b) dimensionality p and (c) sparsity s. Factor-adjusted

methods use bk = k = 3.

distributions (Fig. 4). At each iteration t, the current regression coe�cients �(t) is compared to the

previous regression coe�cients �(t�1) in terms of the Euclidean distance, and the current model ⇠(t) is

compared to the previous model ⇠(t�1) in terms of Jaccard distance 1� |⇠(t)\⇠(t�1)|
|⇠(t)[⇠(t�1)| . In Fig. 4, the Gibbs
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sampler converges to the target distribution for the factor-adjust Bayesian method after 6 iterations.

However, it does converge for the routine Bayesian method after 20 iterations, because the routine

Bayesian method is performed on strongly correlated covariates with a small sparse eigenvalue. A

small sparse eigenvalue often leads to slow convergence speeds of Bayesian sparse regression methods

(Yang et al., 2016).

Figure 4: Convergence diagnostics for the Gibbs sampler.

7 Predicting U.S. Bond Risk Premia

This section applies our method to predict U.S. bond risk premia with a large panel of macroeconomic

variables. The response variables are monthly U.S. bond risk premia with maturity of m = 2, 3, 4, 5

years spanning the period from January, 1964 to December, 2003 (Ludvigson and Ng, 2009). The

m-year bond risk premium at period i+1 is defined as the (log) holding return from buying an m-year

bond at period i and selling it as an (m� 1)-year bond at period i+ 1, exceeding the (log) return on

one-year bond bought at period i. The covariates are p = 131 macroeconomic variables collected in

the FRED-MD database (McCracken and Ng, 2016) during the same period. The scree plot of PCA

of these covariates (Fig. 5) shows the strong correlations among p = 131 covariates. The first principal

component accounts for 55.9% of the total variation of the covariates, and that the first 5 principal

components account for 89.7% of the total variation of the covariates.

The rolling window regression and next value prediction are considered. Specifically, each of two-

year, three-year, four-year and five-year U.S. bond risk premia is regressed on the macroeconomic

variables in the previous month. For each time window of size n = 120 ahead of month t = n +

2, . . . , 480, fit the sparse regression model

yi = f(xi�1) + �"i, i = t� n, . . . , t� 1,

and give an out-of-sample prediction byt = bf(xt�1). The standard sparse regression model (1) and

the factor-adjusted model (4) are considered, and corresponding Bayesian and Lasso methods are

performed. For the factor-adjusted methods, the number of common factors k is estimated by the

maximum eigenvalue ratio method as (7). For the Bayesian methods, we set s0 = 20 in the prior

distribution (8). The principal component regression method (Wehrens and Mevik, 2007) is also
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Figure 5: Proportion of variances explained by the first 10 principal components.

included for comparison. In a similar vein to (Ludvigson and Ng, 2009), the top eight principal

components are taken from PCA to be covariates in the regression analysis.

The performances of these regression methods are evaluated in terms of the out-of-sample R2-value.

R
2 = 1�

P480
t=n+2(byt � yt)2P480
t=n+2(ȳt � yt)2

,

where yt is one of two-year, three-year, four-year and five-year U.S. bond risk premia, byt is the pre-

diction of yt given by the fitted regression model, and ȳt is the average of {yt�n, . . . , yt�1}. Tables 3

and 4 collect the out-of-sample R
2 values and the average model sizes the five methods achieve on

the dataset of U.S. bound risk premia. The factor-adjusted Bayesian method achieves the highest

out-of-sample R
2 value and select the sparsest models among all methods in comparison.

Method 2-yr bond 3-yr bond 4-yr bond 5-yr bond

Principal Component Regression 0.646 0.603 0.568 0.540

Lasso 0.728 0.721 0.703 0.685

Factor-adjusted Lasso 0.761 0.751 0.736 0.719

Bayes 0.737 0.715 0.698 0.674

Factor-adjusted Bayes 0.765 0.763 0.752 0.728

Table 3: Out-of-sample R
2 values achieved on the dataset of U.S. bond risk premia.

8 Discussion

We propose a factor-adjusted sparse regression model (4) to handle highly correlated covariates. We

decompose the covariates into strong correlation parts driven by common factors and idiosyncratic
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Method 2-yr bond 3-yr bond 4-yr bond 5-yr bond

Lasso 24.32 24.77 25.99 26.27

Factor-adjusted Lasso 26.47 26.94 27.29 26.44

Bayes 19.74 22.55 24.43 25.04

Factor-adjusted Bayes 14.92 19.36 21.48 22.38

Table 4: The average sizes of sparse models selected for the dataset of U.S. bond risk premia.

components, where the common factors explain most of the variations. All common factors but a small

number of idiosyncratic components are assumed to contribute to the response. The corresponding

Bayesian methodology is then developed for estimating such a model. Theoretical results suggest that

the proposed methodology can consistently identify and estimate nonzero regression coe�cients.

In the factor-adjusted model, sparse regression methods require the weak correlation condition on

idiosyncratic components U, which is easier to hold than that on original covariates X in the sparse

regression model (1) and the factor-augmented regression model (6). Section 2 makes this intuition

precise by quantitatively characterizing the ratio between sparse eigenvalues ofU andX. When covari-

ates are strongly correlated, the factor-adjusted Bayesian method outperforms the routine Bayesian

method (Table 1). When covariates are not correlated (although it is unlike the case in practice),

the factor-adjusted Bayesian method pays a negligible price for model misspecification (Table 2). In

case of extremely strong correlation among covariates, both routine Bayesian and Lasso methods fail

to work, but the factor-adjust Bayesian and Lasso methods perform robustly (Fig. 2). The factor

adjustment also enhances the computational e�ciency of the Bayesian method (Fig. 4).

The factor-adjusted model covers the standard sparse regression model as a sub-model. Thus it

provides more flexibility in the regression analysis and potentially explores more explanatory power

from the data. On the dataset of U.S. bond risk premia, the factor-adjusted Bayesian method achieves

2.8%-5.4% more out-of-sample R
2 values with 3-5 less variables (Tables 3 and 4). We hereby recom-

mend the factor-adjusted model over the standard model for regression analyses on real datasets with

highly correlated covariates.
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Appendices

All notation used in the appendices are listed as follows. Some of them may have been defined in the

main body of the paper.

For an index set ⇠, write |⇠| as its cardinality and ⇠c as its complement (with respect to the whole

index set {1, . . . , p}). For two index sets ⇠, ⇠0, write ⇠ \ ⇠0 as the set di↵erence. For a vector v,

v⇠ denotes the sub-vector assembling components indexed by ⇠, kvk denotes the `2 norm, and kvk0
denotes the number of non-zero entries.

For a matrix Am1⇥m2 = [aij ]1im1,1jm2 , write uppercase Aj for its j-th column, and lowercase

ai for its i-th row. Let A⇠ = [Aj : j 2 ⇠] be the sub-matrix of A assembling the columns indexed by

⇠ ✓ {1, . . . ,m}. Let kAkmax = maxi,j |aij | be its element-wise maximum norm, kAk be its operator

norm induced by the `2 norm of vectors, and kAkF be its Frobenius norm. Let vec(A) be the

vectorization of A formed by concatenating column vectors of A. For a matrix A of full column

rank, write A† = (ATA)�1AT as its left pseudo-inverse, then AA† is the projection matrix on the

column space of A.

For a symmetric matrix A, write its largest eigenvalue as �max(A), its smallest eigenvalue as

�min(A), and its trace as trace(A). Write diag(a1, . . . , am) for a diagonal matrix of elements a1, . . . , am.

For two squared matrices A,B of the same dimension, we write A � B (or B  A) if A�B is positive

semidefinite.

For two positive sequences an, bn, an < bn (or bn 4 an) means bn = O(an); an � bn (or bn � an)

means bn = o(an); and an ⇣ bn means both an < bn and an 4 bn. an & bn (or bn . an) means that

an > bn for su�ciently large n.

A Technical Proofs for Factor Model Estimation

This appendix collects technical proofs for Theorem 1, Corollary 1, and Examples 1 and 2 concerning

the estimation of factor models.

A.1 Proof of Theorem 1

We first prepare four preliminary results as Lemmas A1 to A4 and then prove Theorem 1 and Corol-

lary 1.

Lemma A1. Suppose Assumption 1 holds. With high probability at least 1� on,

kFTF/n� Ik  kFTF/n� IkF  L0k
p
log p/n,

kFTU/n� 0k  kFTU/n� 0kF  L0

p
kp log p/n,

kUTU/n�⌃k  kUTU/n�⌃kF  L0p
p
log p/n.

Proof. The proof uses merely the relations between the operator norm, the Frobenius norm, and the

element-wise maximum norm of matrices.

Lemma A2. With probability at least 1� trace(BT
⌃B)

p2 log p/n ,

kUBkF  p

p
log p.
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Proof. Applying Markov’s inequality yields

P
⇣
kUBkF � p

p
log p

⌘
= P

�
kUBk2F � p

2 log p
�


E
⇥
kUBk2F

⇤

p2 log p
.

And,

E
⇥
kUBk2F

⇤
= E [trace(BTUTUB)] = trace(BTE [UTU]B) = n⇥ trace(BT⌃B).

Lemma A3 (Variant of Davis-Kahan Theorem). Let bA be an n⇥n symmetric matrix with eigenvalues
b�1 � b�2 � · · · � b�n and corresponding eigenvectors b 1, . . . ,

b n. Fix 1  l  r  n and assume that

min{b�l�1 � b�l, b�r � b�r+1} > 0, where b�0 := +1 and b�n+1 := �1. Let b⇤ be the diagonal matrix

of eigenvalues b�l, . . . , b�r, and b⇤c be the diagonal matrix of other eigenvalues. Let b and b c be their

corresponding eigenvectors of ⇤ and ⇤c, respectively. Let A be an n⇥n matrix with “�-approximate”

eigenequation

A =  ⇤+�,

where ⇤ = diag(�l, . . . ,�r) and  = ( l, . . . , r) consists of k = l�r+1 (not necessarily orthonormal)

vectors. Then

k b T
c kF  k�kF + k(bA�A) kF + k kkb⇤�⇤kF

min{b�l�1 � b�l, b�r � b�r+1}
.

Proof. The �-approximate eigenequation derives that

� = A � ⇤ = bA � b⇤+ (A� bA) � (⇤� b⇤),

implying

kbA � b⇤kF  k�kF + k(bA�A) kF + k kkb⇤�⇤kF.

It is left to show that

kbA � b⇤kF � min{b�l�1 � b�l, b�r � b�r+1}k b T
c kF.

To this end, from the facts that bA = b b⇤ b T + b c
b⇤c
b T
c and that I = b b T + b c

b T
c it follows that

bA � b⇤ = b (b⇤ b T � b T b⇤)| {z }
S1

+ b c (b⇤c
b T
c � b T

c b⇤)| {z }
S2

.

Further,

kbA � b⇤k2F = k b S1 + b cS2k2F = trace
h
( b S1 + b cS2)

T( b S1 + b cS2)
i

= trace [ST
1S1 + ST

2S2] � trace [ST
2S2] = kS2k2F.

Proceed to lower bound the term kS2kF. For real matrices T1,T2,T3, we write vec(T1) as the

vectorization of T1 formed by concatenating column vectors of T1, and denote by T1 ⌦ T2 the

Kronecker product of matrices T1 and T2. Using the identity vec(T1T2T3) = TT
3 ⌦ T1vec(T2) for

any matrices T1,T2,T3 with appropriate dimensions, we have

kS2kF = k b T
c b⇤� b⇤c

b T
c kF = kvec(In�k

b T
c b⇤)� vec(b⇤c

b T
c Ik)k

= kb⇤⌦ In�kvec( b T
c )� Ik ⌦ b⇤cvec( b T

c )k

� min{b�l�1 � b�l, b�r � b�r+1}kvec( b T
c )k = min{b�l�1 � b�l, b�r � b�r+1}k b T

c kF.

This concludes the proof.
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Lemma A4. Suppose Assumption 1 holds. Let Dk⇥k be the diagonal matrix of k singular values of

F/
p
n. With high probability at least 1� on,

kD2 � IkF  L0k
p

log p/n.

Proof. This claim immediately follows from Lemma A1. Indeed, let V be the right singular vectors

of F then

kD2 � IkF = kVTFTFV/n� IkF = kVT(FTF/n� I)VkF = kFTF/n� IkF.

Proof of Theorem 1(a). It su�ces to bound

kXTX/n�BBTk  L1p
p
log p/n

for some constant L1, then Weyl’s theorem on perturbed eigenvalues can apply. Indeed,

XTX/n�BBT = (FBT +U)T(FBT +U)/n�BBT

= B(FTF/n� I)BT +UTFBT
/n+BFTU/n+UTU/n.

Each of four terms can be bounded by Lemma A1 and Assumption 2(i)(ii). Precisely,

kB(FTF/n� I)BTk  kBk2kFTF/n� Ik  �1p⇥ L0

p
k2 log p/n,

kUTFBT
/nk = kBFTU/nk  kBkkFTU/nk 

p
�1p⇥ L0

p
kp log p/n,

kUTU/nk  kUTU/n�⌃k+ k⌃k = L0

p
p2 log p/n+O(p

p
log p/n).

Proof of Theorem 1(b). Write the eigendecomposition of BTB/p as R⇤RT with ⇤ = diag(�1, . . . ,�k)

being the diagonal matrix of eigenvalues of BTB/p, then

FBTBFT

np
⇥ FRp

n
=

FRp
n

⇥⇤+�, with � = (F/
p
n)(BTB/p)⇤(FTF/n� I)R.

Recall that b⇤ = diag(b�1, . . . , b�k) is the diagonal matrix of k largest eigenvalues of XXT
/np, and write

the eigenequation of XXT
/np as

XXT

np
⇥
bFp
n
=

bFp
n
⇥ b⇤.

Let bFc be
p
n times other n� k eigenvectors XXT

/np that are orthogonal to those in bF/
p
n. By the

variant of Davis-Kahan theorem (Lemma A3) and the orthogonality of R,

kbFT
cF/nkF  k�kF + k(XXT � FBTBFT)FkF/(n3/2

p) + kF/
p
nkk⇤� b⇤kF

b�k � b�k+1

.

Proceed to bound each term in the quotient.

(a) For the term kF/
p
nk, from Lemma A1 it follows that

��kF/
p
nk2 � 1

�� = |kFTF/nk � kIk|  kFTF/n� Ik  L0k
p
log p/n.
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(b) For the term k�kF, from Lemma A1 and Assumption 2(i) it follows that

k�kF  kF/
p
nkFkBTB/pkkFTF/n� Ik 

p
kkF/

p
nkk⇤kkFTF/n� Ik


p
k

⇣
1 + L0k

p
log p/n

⌘
⇥ �1 ⇥ L0k

p
log p/n 4

p
log p/n.

(c) For the term k(XXT � FBTBFT)FkF, write

(XXT � FBTBFT)F = XUTF+UBFTF.

By part (a) and Lemma A1 ,

kXUTFkF  kXkFkFTUk 
p
nkXkkFTUk =

q
npb�1 ⇥ kFTUk


q
np(�1 + L1

p
log p/n)⇥

p
knp log p 4 np

p
log p.

By part (a), Lemmas A1 and A2,

kUBFTFkF  kUBkFkFk2 = p

p
log p⇥ n

⇣
1 + L0k

p
log p/n

⌘
4 np

p
log p.

(d) For the term b�k+1 � b�k, from part (a) it follows that

|b�k+1 � 0|  L1

p
log p/n, |b�k � �k|  L1

p
log p/n.

Collecting these four pieces together yields that, for some constant L0
2,

kbFT
cF/nkF  L

0
2

p
log p/n.

Next, recall the singular value decomposition F/
p
n = (eF/

p
n)DVT in Lemma A4, and write

kbFT
c
eF/nkF = kbFT

cFVD�1
/nkF  kbFT

cF/nkFkD�1k  L
0
2

s
log p/n

1� L0k
p

log p/n
 L2

p
log p/n.

for some constant L2. This derives the desired result, as ⇧ = eFeFT
/n, b⇧ = bFbFT

/n and

kbFT
c
eF/nkF = k(I�⇧) b⇧kF = k(I� b⇧)⇧kF = k b⇧�⇧kF/

p
2.

Proof of Theorem 1(c). Recall the singular value decomposition F/
p
n = (eF/

p
n)DVT in Lemma A4.

Let V1 and V2 be left and right singular vectors of bFTeF/n, respectively. Set H = V1VT
2V

T then

kbFH� FkF  kbFV1V
T
2 (I�D)VTkF + k(bFV1 � eFV2)V

T
2DVTkF

 kbFkkI�DkF + kbFV1 � eFV2kFkDk.

Since kbFk =
p
n and all entries in the diagonal matrix D are O(

p
log p/n)-close to 1, it is left to

bound the term kbFV1 � eFV2kF. Let s1, . . . , sk be singular values of bFTeF/n. Clearly, all of them are

bounded by kbFTeF/nk  kbF/
p
nkkeF/

p
nk = 1. Write

kbFV1 � eFV2k2F = trace
h
(bFV1 � eFV2)

T(bFV1 � eFV2)
i
= 2n

0

@k �
kX

j=1

sj

1

A  2n

0

@k �
kX

j=1

s
2
j

1

A ,

where k �
Pk

j=1 s
2
j is the sin-theta distance (Definition 3) between column spaces of bF and F, which

has been bounded by part (b).

30



Proof of Corollary 1. Recall that ⇧ and b⇧ are projection matrices onto the column spaces of F and
bF, respectively, in Theorem 1(b). By the construction of bU, the estimation error of bUj for Uj is

written as
bUj �Uj = (⇧� b⇧)Xj �⇧Uj .

Putting it together with Theorem 1(b) yields

kbUj/
p
n�Uj/

p
nk  L2

p
2 log p/nkXj/

p
nk+ k⇧Uj/

p
nk.

For the first term,

kXj/
p
nk2 = kFbj/

p
nk2 + kUj/

p
nk2 + bT

jF
TUj/n

 (1 + L0k
p
log p/n)kbjk2 + (⌃jj + L0

p
log p/n) + kbjk ⇥

p
kL0

p
log p/n,

where bj is the j-th row of B. For the second term, recall that the singular value decomposition of

F/
p
n is given by eF/

p
nDVT in Lemma A4. Write

k⇧Uj/
p
nk = k(eFeFT

/n)Uj/
p
nk = k(eF/

p
n)VD�1(FTUj/n)k  kD�1kkFTUj/nk,

where eigenvalues (diagomal entries) of D are O(
p
log p/n)-close to 1, and kFTUj/nk  L0

p
k log p/n

due to Assumption 1.

A.2 Proof of Example 1

This example is a consequence of the properties of subexponential and subgaussian random variables,

which are commonly seen in the literature of high-dimensional statistics.

Definition 5 (Subexponential Random Variable, also Definition 2.7.5 of Vershynin (2018)). The

subexponential norm of a random variable Z is defined as

kZk 1 := inf{t > 0 : Ee�|Z|/t  2}.

A random variable is said subexponential if its subexponential norm is finite.

Definition 6 (Subgaussian Random Variable, also Definition 2.5.6 of Vershynin (2018)). . The

subgaussian norm of a random variable Z is defined as

kZk 2 := inf{t > 0 : EeZ2/t2  2}.

A random variable is said subgaussian if its subgaussian norm is finite.

Proof of Example 1. We present the proof of the third inequality in Assumption 1 here. The proofs

of the other two inequalities are similar. For each 1  j  p and each 1  l  p, write

[UTU/n�⌃]jl =
1

n

nX

i=1

(uijuil � E[uijuil]) .

By Vershynin (2018, Lemma 2.7.7), the product of two subgaussian random variables is subexponential.

Formally, kuijuilk 1  kuijk 2kuilk 2 = c1. By Vershynin (2018, Exercise 2.7.10), the centered version

of uijuil is still subexponential. Formally, kuijuil � E[uijuil]k 1  c2 for some constant c2. By
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Bernstein’s inequality for independent sub-exponential random variables (Vershynin, 2018, Theorem

2.8.2),

P
 
1

n

nX

i=1

(uijuil � E[uijuil]) > ✏

!
 2 exp

✓
�c3min

⇢
n✏

2

c22

,
n✏

c2

�◆

for some constant c3. The union bound for all pairs of 1  j, l  p gives that

P (kUTU/n�⌃kmax > ✏) = P
 
[p
j=1 [

p
l=1

(
1

n

nX

i=1

(uijuil � E[uijuil]) > ✏

)!

 2p2 exp

✓
�c3min

⇢
n✏

2

c22

,
n✏

c2

�◆

Setting ✏ =
p

3c22 log p/c3n yields that

kUTU/n�⌃kmax 
q
3c22 log p/c3n

with probability at least 1� 2/p.

A.3 Proof of Example 2

This example is proven by the truncation technique in the literature of high-dimensional matrix

estimation (Bickel and Levina, 2008; Fan et al., 2011a, 2013) and a generalized version of Bernstein’s

inequality for general-state-space Markov chains (Jiang et al., 2018). A proof is provided here for

convenience of readers, although it is almost the same with that of Fan et al. (2019, Lemma 1),

Proof of Example 2. We present the proof of the third inequality in Assumption 1 here. The proofs

of the other two inequalities are similar. Let the L2-spectral gap of the Markov chain be 1��. Define

a truncation operator

Tt(w) =

8
>>><

>>>:

�t if w < �t

w if |w|  t

+t if w > +t.

(14)

For each 1  j  p and each 1  l  p, write

[UTU/n�⌃]jl =
1

n

nX

i=1

(uijuil � E[uijuil])  D1jl +D2jl +D3jl,

where

D1jl =

�����
1

n

nX

i=1

ETt(uijuil)�
1

n

nX

i=1

E[uijuil]
����� ,

D2jl =

�����
1

n

nX

i=1

Tt(uijuil)�
1

n

nX

i=1

uijuil

����� ,

D3jl =

�����
1

n

nX

i=1

Tt(uijuil)�
1

n

nX

i=1

E[Tt(uijuil)]
����� .

Using the fact that |Tt(w)�w|  |w|1{|w| > t}  |w|2/t, Cauchy-Schwarz inequality and the assump-

tion that |uij(z)|  ū(z),

max
j,l

D1jl  max
j,l

1

tn

nX

i=1

E[|uijuil|2]  max
j,l

1

tn

nX

i=1

E[ū4i ] 
c
4

t
.
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Similarly,

max
j,l

D2jl  max
j,l

1

tn

nX

i=1

ū
4
i 

c
4 + op(1)

t
.

where 1
n

Pn
i=1 ū

4
i ! E[ū41]  c

4 almost surely by the Strong Law of Large Number for Markov Chains.

Note that |Tt[W ]�ETt[W ]|  2t. Applying the Bernstein’s inequality for Markov chains (Jiang et al.,

2018, Theorem 1.1) yields

P (D3jl > ✏)  2 exp

 
� n✏

2

2 · 1+�
1�� · Vn,t + 10t✏

!
,

with

Vn,t =
1

n

nX

i=1

Var{Tt[uijuik]}  1

n

nX

i=1

E[u2iju2ik]  c
4
.

The union bound of all pairs of 1  j, l  p gives that

P
✓
max
j,k

D3jk > ✏

◆
 2p2 exp

 
� n✏

2

2 · 1+�
1�� · c4 + 10t✏

!
.

Let t = c2

30

q
1+�
1�� · n

log p , and ✏ = 3c2
q

1+�
1�� · log p

n . Then

max
j,k

D3jk  3c2

s
1 + �

1� �
· log p

n

with probability at least 1 � 2/p. Putting upper bounds for maxj,l D1jl, maxj,l D2jl and maxj,l D3jl

together completes the proof.

B Technical Proofs for Bayesian Sparse Regression

This appendix details the proof of Theorem 2. Throughout the proof, let P(�,↵,�) and bP(�,↵,�) denote

the probability measures associated with the data generating processes Y = F↵ + U� + �" and

Y = bF↵+ bU� + �", respectively.

B.1 Proof of (11)

Suppose Assumption 5 holds. For any model ⇠ of size at most (1 +M0)s,

kbU⇠ �U⇠k  kbU⇠ �U⇠kF 
p
(1 +M0)s

p
max
j=1

kbUj �Ujk  L4

p
(1 +M0)s log p.

implying

min
⇠: |⇠|(1+M0)s

�min(bUT
⇠
bU⇠/n) �

⇣
0 � L4

p
(1 +M0)s log p/n

⌘2
& 

2
0/4,

p
max
j=1

kbUj/
p
nk  p

max
j=1

kUj/
p
nk+ p

max
j=1

kbUj/
p
n�Uj/

p
nk  1 + L4

p
log p/n . 21.

The last bound is derived as follows.

k(bFH↵? + bU�?)� (F↵? +U�?)k  kbFH� FkFk↵?k+ p
max
j=1

kbUj �Ujkk�?k1

 L3k↵?k
p
log p+ L4k�?k

p
s log p  L5�

?p
n✏n.
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B.2 Proof of (12)

Let N (y|µ,⌃) denote the density function of the multivariate normal distribution. Using a change-

of-measure trick and Cauchy-Schwarz inequality, write

P(�?,↵?,�?)(E1|F,U, bF, bU,H)

=

Z
1
n
b⇡(Ac|bF, bU,y) � e

�C1s log p
o
N (y|F↵? +U�?,�?2I)dy

=

Z
1
n
b⇡(Ac|bF, bU,y) � e

�C1s log p
o N (y|F↵? +U�?,�?2I)

N (y|bFH↵? + bU�?,�?2I)
⇥N (y|bFH↵? + bU�?,�?2I)dy


Z

12
n
b⇡(Ac|bF, bU,y) � e

�C1s log p
o
N (y|bFH↵? + bU�?,�?2I)dy

�1/2

⇥

2

4
Z  N (y|F↵? +U�?,�?2I)

N (y|bFH↵? + bU�?,�?2I)

!2

N (y|bFH↵? + bU�?,�?2I)dy

3

5
1/2

,

=
h
bP(�?,H↵?,�?)(E1|bF, bU)

i1/2
⇥ exp

⇣
k(bFH↵? + bU�?)� (F↵? +U�?)k2/2�?2

⌘

The second term is bounded by e
L2
5s log p/2, due to the last bound of (11). This concludes the first

bound of (12). Other bounds of (12) are proven similarly.

B.3 Proof of (13)

The below theorem concern the estimation error rate, the prediction error rate and the model selection

consistency of Bayesian sparse regression for the data generating process Y = bF↵ + bU� + �" with

fixed design [bF, bU] and true parameters (�?,↵?
,�?). Substituting ↵?, 0, 1, M2, M3, M4 in this

theorem with H↵?, 0/2, 21, M2/2, M3/2, M4/2, respectively, proves (13).

Theorem 3 (Bayesian Factor-adjusted Sparse Regression with Fixed Design). Consider data gen-

erating process Y = bF↵ + bU� + �" with fixed design [bF, bU] and true parameters (�?,↵?
,�?). Let

bP(�,↵,�) denote the probability measure associated with the data generating process. Suppose

bFTbF/n = I, bFT bU/n = 0

min
⇠: |⇠|(M0+1)s

�min(bUT
⇠
bU⇠/n) � 

2
0

p
max
j=1

kbUjk  1

k↵?k 4 1, k�?k 4 1.

(15)

The following statements hold with some constants M1, M2, M3, M4.

(a) (Estimation Error) For any constants C1, C
0
1 such that C1 + C

0
1 < M0 � 2,

b⇡(Ac(�?,↵?
,�?,M0,M1,M2,M3, ✏n)|bF, bU,Y) � e

�C1s log p

with bP(�?,↵?,�?)-probability at most e�C0
1s log p.

(b) (prediction error rate) For any constants C2, C
0
2 such that C2 + C

0
2 < M0 � 2,

b⇡(k(bF↵+ bU�)� (bF↵? + bU�?)k > M4�
?p

n✏n|bF, bU,Y) � e
�C2s log p.

with bP(�?,↵?,�?)-probability at most e�C0
2s log p.
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(c) (model selection consistency) Suppose minj2⇠? |�?j | �
p
8M0�?✏n/0 in addition. For any con-

stants C3, C
0
3 such that C3 + C

0
3 < M0 � 2,

b⇡(Ac(�?,↵?
,�?,M0,M1,M2,M3, ✏n) [ {⇠ 6◆ ⇠

?}|bF, bU,Y) � e
�C3s log p

with bP(�?,↵?,�?)-probability at most e�C0
3s log p.

Next lemma, borrowed from Barron (1998, Lemma 6) and Song and Liang (2017, Lemma A4), is

the central technique to prove Theorem 3.

Lemma B1. Consider a parametric model {P✓ : ✓ 2 ⇥}. Let ⇥0n and ⇥n be two subsets of the

parameter space. Let {Dn}n�1 be a sequence of data generations according to true parameter ✓?. Let

⇡(✓) be a prior distribution over the parameter space. If

(1) ⇡(⇥0n)  �0n,

(2) there exists a test function �n(Dn) such that

sup
✓2⇥n

E✓(1� �n)  �1n, E✓?�n  �
0
1n,

(3) and

P✓?

✓R
⇡(✓)P✓(Dn)d✓

P✓?(Dn)
 �2n

◆
 �

0
2n,

then for any �3n,

P✓?

✓
⇡(⇥0n [⇥n|Dn) �

�0n + �1n

�2n�3n

◆
 �

0
1n + �

0
2n + �3n.

The intuition of this lemma is that any less preferred parameter guess ✓ 2 ⇥0n [⇥n should either

excluded by the prior (for ✓ 2 ⇥0n) or distinguished from the true parameter ✓? by a uniformly

powerful test �n (for ✓ 2 ⇥n). We are going to set up suitable ⇥n and �n for each part of Theorem 3

and apply Lemma B1.

Lemmas B2 to B5 are useful to verify three conditions of Lemma B1 in the setup of Theorem 3.

Lemma B2 is a novel tail probability bound for the Binomial distribution taken from Pelekis (2016,

Theorem 1). Proving Lemmas B3 and B4 takes a substantial amount of work. We postpone their

proofs to the next subsection.

Lemma B2 (Theorem 1.1 of Pelekis (2016)). For random variable Z ⇠ Binomial(p, q), if pq < t  p�1

then

P (Z � t)  µ
2(et+1)

2

✓
p

et+ 1

◆�✓
t

et+ 1

◆
,

where et = b(t� pq)/(1� q)c < m.

Lemma B3. Let o stand for any small constant. In the setup of Theorem 3, the following statements

hold.

(a) Let

⇥1n =

8
><

>:
(�2,↵,�) :

|⇠ \ ⇠?|  M0s,

�
2

�?2
62

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�

9
>=

>;
,

�1n = 1

⇢
max

⇠: |⇠\⇠?|M0s

���YT
h
I� bFbFT

/n� bU⇠[⇠? bU†
⇠[⇠?

i
Y/n�

?2 � 1
��� � M1✏n

�
,
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then

bE(�?,↵?,�?)�1n . exp(�(M2
1 /8�M0 � o)s log p),

sup
(�,↵,�)2⇥1n

bE(�,↵,�)(1� �1n) . exp(�(M2
1 /8� o)s log p).

(b) Let

⇥2n =

8
>>>><

>>>>:

(�2,↵,�) :

|⇠ \ ⇠?|  M0s,

�
2

�?2
2

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�
,

k↵�↵?k > M2�
?
✏n,

9
>>>>=

>>>>;

,

�2n = 1
n
kbFTY/n�↵?k � M2�

?
✏n/2

o
,

then

bE(�?,↵?,�?)�2n . exp(�(M2
2 /8� o)s log p),

sup
(�,↵,�)2⇥2n

bE(�,↵,�)(1� �2n) . exp(�(M2
2 /8� o)s log p).

(c) Let

⇥3n =

8
>>>>>>><

>>>>>>>:

(�2,↵,�) :

|⇠ \ ⇠?|  M0s,

�
2

�?2
2

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�
,

k↵�↵?k  M2�
?
✏n,

k� � �?k > M3�
?
✏n/0

9
>>>>>>>=

>>>>>>>;

,

�3n = 1

⇢
max

⇠: |⇠\⇠?|M0s
kbU†

⇠[⇠?Y � �?⇠[⇠?k � M3�
?
✏n/20

�
.

then

bE(�?,↵?,�?)�3n . exp(�(M2
3 /8�M0 � o)s log p),

sup
(�,↵,�)2⇥3n

bE(�,↵,�)(1� �3n) . exp(�(M2
3 /8� o)s log p).

(d) Let

⇥4n =

8
>>>><

>>>>:

(�2,↵,�) :

|⇠ \ ⇠?|  M0s,

�
2

�?2
2

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�

k(bF↵+ bU�)� (bF↵? + bU�?)k > M4�
?p

n✏n

9
>>>>=

>>>>;

,

�4n = 1

⇢
max

⇠: |⇠\⇠?|M0s

���
h
bFbF† + bU⇠[⇠? bU†

⇠[⇠?
i
Y �

⇣
bF↵? + bU�?

⌘��� � M4�
?p

n✏n/2

�
,

then

bE(�?,↵?,�?)�4n . exp(�(M2
4 /8�M0 � o)s log p),

sup
(�,↵,�)2⇥4n

bE(�,↵,�)(1� �4n) . exp(�(M2
4 /8� o)s log p).
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(e) Suppose minj2⇠? |�?j | � M5�
?
✏n/0 in addition. Let

⇥5n =

8
>>>>>>><

>>>>>>>:

(�2,↵,�) :

|⇠ \ ⇠?|  M0s,

�
2

�?2
2

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�

k↵�↵?k  M2�
?
✏n,

⇠ 6◆ ⇠
?

9
>>>>>>>=

>>>>>>>;

,

�5n = 1

⇢
min

⇠ 6◆⇠?: |⇠\⇠?|M0s

���
⇣
bU⇠[⇠? bU†

⇠[⇠? � bU⇠
bU†
⇠

⌘
Y
���  M5�

?p
n✏n/2

�
,

then

bE(�?,↵?,�?)�5n . exp(�(M2
5 /8� o)s log p),

sup
(�,↵,�)2⇥5n

bE(�,↵,�)(1� �5n) . exp(�(M2
5 /8� o)s log p).

(f) Let

⇥6n =

8
>>>>>>>>>><

>>>>>>>>>>:

(�2,↵,�) :

|⇠ \ ⇠?|  M0s,

�
2

�?2
2

1�M1✏n

1 +M1✏n
,
1 +M1✏n

1�M1✏n

�

⇠ ◆ ⇠
?
,

k↵�↵?k  M2�
?
✏n,

k� � �?k > M3�
?
✏n/0

9
>>>>>>>>>>=

>>>>>>>>>>;

,

�6n = 1

⇢
max

⇠◆⇠?: |⇠\⇠?|M0s
kbU†

⇠Y � �?⇠k � M3�
?
✏n/20

�
,

then

bE(�?,↵?,�?)�6n . exp(�(M2
3 /8�M0 � o)s log p),

sup
(�,↵,�)2⇥6n

bE(�,↵,�)(1� �6n) . exp(�(M2
3 /8� o)s log p).

Lemma B4. In the setup of Theorem 3, for any constants C4 > 2 and C
0
4 > 0,

bP(�?,↵?,�?)

 Z N (Y|bF↵+ bU�,�2I)

N (Y|bF↵? + bU�?,�?2I)
d⇡(�,↵,�)  e

�C4s log p

!
. e

�C0
4s log p.

Lemma B5. For parameter subspaces ⇥j, j = 1, . . . ,m and test functions �j, j = 1, . . . ,m,

sup
✓2[m

j=1⇥j

E✓
✓
1� m

max
j=1

�j

◆
 m

max
j=1

(
sup
✓2⇥j

E✓(1� �j)

)
.

Proof of Lemma B5.

sup
✓2[m

j=1⇥j

E✓
✓
1� m

max
j=1

�j

◆
=

m
max
j=1

(
sup
✓2⇥j

E✓
✓
1� m

max
k=1

�k

◆)

=
m

max
j=1

(
sup
✓2⇥j

E✓
✓

m
min
k=1

(1� �k)

◆)

 m
max
j=1

(
sup
✓2⇥j

E✓ (1� �j)

)
.
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Proof of Theorem 3(a). Verify the three conditions of Lemma B1 with

⇥0n = {(�2,↵,�) : |⇠ \ ⇠?| > M0s}, ⇥n = ⇥1n [⇥2n [⇥3n, �n = max{�1n,�2n,�3n},

where ⇥1n,⇥2n,⇥3n,�1n,�2n,�3n are defined in Lemma B3(a)(b)(c). Evidently,

⇥0n [⇥n = ⇥0n [⇥1n [⇥2n [⇥3n = A
c(�?,↵?

,�?,M0,M1,M2,M3, ✏n).

Applying Lemma B2 yields that

⇡(⇥0n)  ⇡(|⇠| > M0s) .
1

2

✓
s0

p

◆2(M0s�s0+1)✓
p

M0s� s0 + 1

◆
 p

�(M0s�s0+1)

2
. �0n = e

�(M0�o)s log p
.

From Lemma B3(a)(b)(c) and Lemma B5, it follows that

sup
⇥n

bE(�,↵,�)(1� �n)  max
i=1,2,3

sup
⇥in

bE(�,↵,�)(1� �in)  �1n = e
�(min{M2

1 ,M
2
2 ,M

2
3 }/8�o)s log p

,

bE(�?,↵?,�?)�n 
X

i=1,2,3

bE(�?,↵?,�?)�in  �
0
1n = e

�min{M2
1 ,M

2
2+8M0,M2

3 }/8�M0�o)s log p
.

By Lemma B4, the third condition in Lemma B1 hold with

�2n = e
�C4s log p, �

0
2n = e

�C0
4s log p

for any C4 > 2 and C
0
4 > 0. Setting su�ciently large M1, M2, M3, C 0

4 and suitable C
0
1, C4, �3n such

that
�0n + �1n

�2n�3n
 e

�(M0�C4�C0
1)s log p, �

0
1n + �

0
2n + �3n  e

�C0
1s log p

completes the proof.

Proof of Theorem 3(b). Verify the three conditions of Lemma B1 with

⇥n = ⇥1n [⇥2n [⇥4n, �n = max{�1n,�2n,�4n},

where ⇥1n,⇥2n,⇥4n,�1n,�2n,�4n are defined in Lemma B3(a)(b)(d). Evidently,

⇥0n [⇥n = ⇥0n [⇥1n [⇥2n [⇥4n ◆ {(�2,↵,�) : k(bF↵+ bU�)� (bF↵? + bU�?)k > M4�
?p

n✏n}.

From Lemma B3(a)(b)(d) and Lemma B5, it follows that

sup
⇥n

bE(�,↵,�)(1� �n)  max
i=1,2,4

sup
⇥in

bE(�,↵,�)(1� �in)  �1n := e
�(min{M2

1 ,M
2
2 ,M

2
4 }/8�o)s log p

bE(�?,↵?,�?)�n  bE(�?,↵?,�?)�1n + bE(�?,↵?,�?)�4n, �
0
1n := e

�(min{M2
1 ,M

2
2+M0,M2

4 }/8�M0�o)s log p
.

The other two conditions of Lemma B1 have been verified in the proof of part (a).

Proof of Theorem 3(c). Verify the three conditions of Lemma B1 with

⇥n = ⇥1n [⇥2n [⇥5n [⇥6n, �n = max{�1n,�2n,�5n,�6n},

where ⇥1n,⇥2n,⇥5n,⇥6n,�1n,�2n,�5n,�6n are defined in Lemma B3(a)(b)(e)(f). Evidently,

⇥0n [⇥n = ⇥0n [⇥1n [⇥2n [⇥5n [⇥6n = A
c(�?,↵?

,�?,M0,M1,M2,M3, ✏n) [ {⇠ 6◆ ⇠
?}.

From Lemma B3(a)(b)(e)(f) and Lemma B5, it follows that

sup
⇥n

bE(�,↵,�)(1� �n)  max
i=1,2,5,6

sup
⇥in

bE(�,↵,�)(1� �in)  �1n := e
�min{M2

1 ,M
2
2 ,M

2
3 ,M

2
5 }/8�o)s log p

bE(�?,↵?,�?)�n 
X

i=1,2,5,6

bE(�?,↵?,�?)�in  �
0
1n := e

�(min{M2
1 ,M

2
2+8M0,M2

3 ,M
2
5+8M0}/8�M0�o)s log p

.

The other two conditions of Lemma B1 have been verified in the proof of part (a).
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B.4 Technical Proofs of Lemmas

The proofs of Lemmas B3 and B4 use two preliminary results as follows.

Lemma B6 (Probability bounds of chi-squared random variables). Let �2
d be a chi-squared random

variable of degree d, and o stands for any small constant.

(a) For any ✏n such that n✏n > dn,

P(�2
n�dn/n � 1 + ✏n)  e

�min

⇢
(n✏n+dn)2

8(n�dn) ,n✏n+dn
8

�

,

P(�2
n�dn/n  1� ✏n)  e

�min

⇢
(n✏n�dn)2

8(n�dn) ,n✏n�dn
8

�

,

In addition, if ✏n ! 0 but n✏n � dn,

P(�2
n�dn/n � 1 + ✏n) . e

�(1/8�o)n✏2n

P(�2
n�dn/n � 1 + ✏n) . e

�(1/8�o)n✏2n .

(b)

P(�2
dn � tn)  e

�(
p
2tn�dn�

p
dn)

2
/4
.

In addition, if tn � dn then for any etn such that etn/tn ! 1

P(�2
dn � tn) . e

�(1/2�o)etn .

Proof. For part (a), the first assertion follows from the sub-exponential tail of chi-squared distributions,

and the second assertion is due to

(1/8� o)n✏2n . (n✏n + dn)2

8(n� dn)
. n✏n + dn

8

(1/8� o)n✏2n . (n✏n � dn)2

8(n� dn)
. n✏n � dn

8

For part (b), the first assertion is a corollary of Laurent and Massart (2000, Lemma 1), and the second

assertion follows from

(1/2� o)etn .
⇣p

2tn � dn �
p

dn

⌘2
/4.

Lemma B7 (Lancaster and Tismenetsky (1985, p. 294)). Suppose a p ⇥ p symmetric matrix S has

the partitioned form

S =

"
S11 S12

S21 S22

#
,

where S11 is a non-singular principal submatrix of S. Then

�min(S22 � S21S
�1
11 S12) � �min(S).

Proof of Lemma B3(a). Under the null hypothesis,

bE(�?,↵?,�?)�1n = bP(�?,↵?,�?)

✓
max

⇠: |⇠\⇠?|M0s
|"T(I� bFbFT

/n� bU⇠[⇠? bU†
⇠[⇠?)"/n� 1| � M1✏n

◆
.
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Projection matrices bU⇠0[⇠? bU†
⇠0[⇠?  bU⇠00[⇠? bU†

⇠00[⇠? for nested models ⇠0 ✓ ⇠
00, and thus the term

"T bU⇠[⇠? bU†
⇠[⇠?" achieves its maximum value at some ⇠ with |⇠| = M0s and ⇠ \ ⇠? = ; and its minimum

value at ⇠ = ;. Thus

bE(�?,↵?,�?)�1n 
X

⇠: |⇠|=M0s, ⇠\⇠?=;

bP(�?,↵?,�?)

⇣
"T(I� bFbFT

/n� bU⇠[⇠? bU†
⇠[⇠?)"/n  1�M1✏n

⌘

+ bP(�?,↵?,�?)

⇣
"T(I� bFbFT

/n� bU⇠?
bU†
⇠?)"/n � 1 +M1✏n

⌘

=

✓
p� s

M0s

◆
P
⇣
�
2
n�k�(1+M0)s

/n  1�M1✏n

⌘
+ P

�
�
2
n�k�s/n � 1 +M1✏n

�
.

Applying Lemma B6(a) yields

bE(�?,↵?,�?)�1n . (pM0s + 1)⇥ e
�(M2

1 /8�o)n✏2n . e
�(M2

1 /8�M0�o)n✏2n .

Under the alternative hypothesis, write �1n = max⇠0: |⇠0\⇠?|M0s �
⇠0

1n with

�
⇠0

1n = 1
n���YT

h
I� bFbFT

/n� bU⇠[⇠? bU†
⇠[⇠?

i
Y/n�

?2 � 1
��� � M1✏n

o
,

then, by Lemma B5,

sup
⇥1n

bE(�,↵,�)(1� �1n)  max
⇠0: |⇠0\⇠?|M0s

sup
⇥1n\{⇠=⇠0}

bE(�,↵,�)(1� �
⇠0

1n).

On each partition ⇥1n \ {⇠ = ⇠
0} of ⇥1n, due to the restriction �2

�?2 62
h
1�M1✏n
1+M1✏n

,
1+M1✏n
1�M1✏n

i
of ⇥1n,

bE(�,↵,�)(1� �
⇠0

1n) =
bP(�,↵,�)

⇣���"T
h
I� bFbFT

/n� bU⇠[⇠? bU†
⇠[⇠?

i
"/n⇥ (�2/�?2)� 1

��� < M1✏n

⌘

 bP(�,↵,�)

⇣
"T
h
I� bFbFT

/n� bU⇠[⇠? bU†
⇠[⇠?

i
"/n 62 [1�M1✏n, 1 +M1✏n]

⌘

= bP(�,↵,�)

⇣
�
2
n�k�|⇠[⇠?|/n 62 [1�M1✏n, 1 +M1✏n]

⌘

 P
⇣
�
2
n�k�(1+M0)s

/n < 1�M1✏n

⌘
+ P

�
�
2
n�k�s/n > 1 +M1✏n

�

This bound holds for any ⇠0 such that |⇠0 \ ⇠?|  M0s and any (�,↵,�) 2 ⇥1n \ {⇠ = ⇠
0}. Applying

Lemma B6(a) yields

sup
⇥1n

bE(�,↵,�)(1� �1n) . e
�(M2

1 /8�o)n✏2n .

Proof of Lemma B3(b). Under the null hypothesis,

bE(�?,↵?,�?)�2n = bP(�?,↵?,�?)

⇣
kbFT"/nk � M2✏n/2

⌘
= P

�
�
2
k � M

2
2n✏

2
n/4
�
 e

�(M2
2 /8�o)n✏2n ,

where the last step uses Lemma B6(b). Under the alternative hypothesis,

bE(�,↵,�)(1� �2n) = bP(�,↵,�)

⇣
k↵�↵? + �bFT"/nk < M2�

?
✏n/2

⌘
.

Using the restrictions k↵�↵?k > M2�
?
✏n and �?2

�2 >
1�M1✏n
1+M1✏n

of ⇥2n and Lemma B6(b),

bE(�,↵,�)(1� �2n)  bP(�,↵,�)

 
kbFT"/nk >

r
1�M1✏n

1 +M1✏n
⇥M2✏n/2

!

= P
✓
�
2
k >

1�M1✏n

1 +M1✏n
⇥M

2
2n✏

2
n/4

◆
. e

�(M2
2 /8�o)n✏2n .
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Proof of Lemma B3(c). Under the null hypothesis, write

bE(�?,↵?,�?)�3n = bP(�?,↵?,�?)

✓
max

⇠: |⇠\⇠?|M0s
kbU†

⇠[⇠?"k � M3✏n/20

◆

= bP(�?,↵?,�?)

✓
max

⇠: |⇠\⇠?|M0s
"T bU†T

⇠[⇠?
bU†
⇠[⇠?" � M

2
3 ✏

2
n/4

2
0

◆

Using the fact that bU†T
⇠[⇠?

bU†
⇠[⇠? 

�
n

2
0

��1 bU⇠[⇠? bU†
⇠[⇠? ,

bE(�?,↵?,�?)�3n  bP(�?,↵?,�?)

✓
max

⇠: |⇠\⇠?|M0s
"T bU⇠[⇠? bU†

⇠[⇠?" � M
2
3n✏

2
n/4

◆
.

Projection matrices bU⇠0[⇠? bU†
⇠0[⇠?  bU⇠00[⇠? bU†

⇠00[⇠? for nested models ⇠0 ✓ ⇠
00, and thus the term

"T bU⇠[⇠? bU†
⇠[⇠?" achieves its maximum value at some ⇠ with |⇠| = M0s and ⇠ \ ⇠? = ;. Thus

bE(�?,↵?,�?)�3n 
X

⇠: |⇠|=M0s, ⇠\⇠?=;

bP(�?,↵?,�?)

⇣
"T bU⇠[⇠? bU†

⇠[⇠?" � M
2
3n✏

2
n/4
⌘

=

✓
p� s

M0s

◆
P
⇣
�
2
(1+M0)s

� M
2
3n✏

2
n/4
⌘

Applying Lemma B6(b) yields

bE(�?,↵?,�?)�3n . p
M0se

�(M2
3 /8�o)n✏2n = e

�(M2
3 /8�M0�o)n✏2n .

Under the alternative hypothesis, write �3n = max⇠0: |⇠0\⇠?|M0s �
⇠0

3n with

�
⇠0

3n = 1
n
kbU†

⇠0[⇠?Y � �?⇠0[⇠?k � M3�
?
✏n/20

o
,

then, by Lemma B5,

sup
⇥3n

bE(�,↵,�)(1� �3n)  max
⇠0: |⇠0\⇠?|M0s

sup
⇥3n\{⇠=⇠0}

bE(�,↵,�)(1� �
⇠0

3n).

On each partition ⇥3n \ {⇠ = ⇠
0} of ⇥3n, due to the constraints k�⇠[⇠? � �?⇠[⇠?k = k� � �?k >

M3�
?
✏n/0 and �?2

�2 >
1�M1✏n
1+M1✏n

of ⇥3n,

bE(�,↵,�)(1� �
⇠0

3n) =
bP(�,↵,�)

⇣
k�⇠[⇠? � �?⇠[⇠? + � bU†

⇠[⇠?"k < M3�
?
✏n/20

⌘

 bP(�,↵,�)

 
kbU†

⇠[⇠?"k >

r
1�M1✏n

1 +M1✏n
⇥M3✏n/20

!

= bP(�,↵,�)
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Proof of Lemma B3(d). Under the null hypothesis,
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This bound holds for any ⇠0 such that |⇠0 \ ⇠?|  M0s and any (�,↵,�) 2 ⇥4n \ {⇠ = ⇠
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Proof of Lemma B3(e). Claim that
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Indeed, for any ⇠ 6◆ ⇠
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Proof of Lemma B3(f). Since �6n  �3n,
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The last event happens with probability P(�2
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Putting these bounds together proves claim (17).
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C Gibbs Sampler

For the prior (8), we set g as the inverse-gamma density function with shape a0 = 1 and scale b0 = 1,

h1(z) = N (z|0,�21) and h2(z) = N (z|0,�22). A Gibbs sampler is implemented to learn the pseudo-

posterior distribution b⇡(�,↵,�|bF, bU,Y) given by (9). This Gibbs sampler converges towards the

pseudo-posterior joint distribution of (�2,↵,�) by iterating the following steps: (1) draw ⇠ given ↵

and �2, (2) draw � given ⇠, ↵ and �2, (3) draw ↵ given ⇠,� and �2, (4) draw �
2 given ⇠,� and ↵.

For simplicity, implementation details with ⌧j = 1 for j = 1, . . . , p are presented.
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1 I)�1. However, it is computationally prohibitive to directly sample

from this conditional distribution, as ⇠ takes 2p possible values. As a remedy, we flip Zj = 1{j 2
⇠} in random scans with probability

b⇡(Zj = 1|{Zj0}1j0 6=jp,�
2
,↵, bF, bU,Y) =

"
1 +

b⇡(⇠ = !|�2,↵, bF, bU,Y)

b⇡(⇠ = ! [ {j}|�2,↵, bF, bU,Y)

#�1

,

where ! = {j0 6= j : Z 0
j = 1}. For ! 6= ;, the Bayes factor between models ! and ![ {j} is given

by

p� s0

s0
⇥ �1

�
⇥


det(S!)

det(S![{j})

�1/2
exp

 
YT bU!S! bUT

!Y

2�2
�

YT bU![{j}S![{j} bUT
![{j}Y

2�2

!
,

where

det(S!)

det(S![{j})
=

det(bUT
![{j}

bU![{j} + �
2
�
�2
1 I)

det(bUT
!
bU! + �2�

�2
1 I)

=
⇣
bUT
j
bUj + �

2
�
�2
1

⌘
� bUT

j
bU!S! bUT

!
bUj ,

due to the property of the Schur complement. For ! = ;, the Bayes factor between models ;
and {j} is given by

p� s0

s0
⇥ �1

�
⇥
⇣
bUT
j
bUj + �

2
�
�2
1

⌘1/2
⇥ exp

 
�
YT bU{j}S{j} bUT

{j}Y

2�2

!
,

In experiments, we find that just one random scan su�ces for the proposed method to perform

well.
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(2) For the conditional distribution of �,

b⇡(�⇠|�2,↵, ⇠, bF, bU,Y) ⇠ N
⇣
S⇠ bUT

⇠Y,�
2S⇠
⌘
, �⇠c ⌘ 0.

(3) For the conditional distribution of ↵,

b⇡(↵|�2,�, ⇠, bF, bU,Y) ⇠ N
 

bFTY

n+ �2/�22

,
�
2

n+ �2/�22

!
.

(4) For the conditional distribution of �2,

b⇡(�2|↵,�, ⇠, bF, bU,Y) / g(�2|a0, b0)N
⇣
Y|bF↵+ bU⇠�⇠,�

2I
⌘

/ g

 
�
2

�����a0 +
n

2
, b0 +

kY � bF↵� bU⇠�⇠k2

2

!
.

The overall time complexity of the factor-adjusted Bayesian method is O(np2) + O(Tps3), where

T is the number of iterations of the posterior computation algorithm. As suggested by Yang et al.

(2016), T = O(s2 log p) may su�ce for the posterior sampler to converge. Below are details of the time

complexity analysis. The truncated singular value decomposition algorithms can compute bF, bU with

time complexity O(npk) (Allen-Zhu and Li, 2016). Computing bFTY, bUTY and bUT bU takes O(np2)

flops. Given bFTY, bUTY and bUT bU, each iteration of the posterior computation algorithm takes

O(ps3) flops (per random scan) to sample from the conditional distribution of ⇠, because computing

the conditional probability ratio between models ⇠ = ! and ⇠ = ! [ {j} for each flip update takes

O(|!|3) = O(s3) flops, and each random scan consists of p flip updates. Each iteration also takes

O(s3), O(1), O(ns) flops to sample from the conditional distributions of �, ↵, �2, respectively.

D Response

We would like to thank two reviewers for their comments. We have revised and improved the

manuscript to address their concerns.

To Reviewer 1:

On Interpretation of Model Setup

Reviewer 1: My first major concern is about the interpretation of the model setup. Instead of focusing

on the conventional regression model

Y = X� + �", (1) in the updated manuscript

the paper considers the factor-adjusted regression model

Y = F↵+U� + �", (4) in the updated manuscript.

...I believe model (4) is equivalent to the factor-augmented high-dimensional linear regression model

Y = F↵0 +X� + �", , (6) in the updated manuscript.
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I wonder if the paper can provide some discussions along this line, so that we may better understand

the implications of the model. I also feel model (6) might be a more intuitive representation than model

(4) in the sense that (6) clearly separates the roles played by X and F.

We provide more discussions on the di↵erences between models (1),(4) and (6) in the introduction

section. We agree with you that model (6) is equivalent to model (4) up to reparametrization ↵0 =

↵�BT�. Model (6) has been studied by (Kneip and Sarda, 2011). However, for models (1) and (6),

the sparse regression methods need to impose the weak correlation condition on X. Bayesian sparse

regression methods need the sparse eigenvalue (SE) condition, a specific type of weak correlation

condition. The sparse eigenvalue ofX could be much smaller than the sparse eigenvalue ofU. Section 2

in the updated manuscript makes this intuition precise as

SE(X)

SE(U)
 p

max
j=1

kUjk2

kXjk2
⇥ R(U), with R(U) ⇣ 1.

Note that the total variation of Xj mainly consists of two parts kXjk2 ⇡ kFbjk2 + kUjk2. When the

strong correlation part Fbj accounts for a large portion of the total variation, the sparse eigenvalue

of X is small, causing incorrect estimation and slow convergence speed of the Bayesian method.

Experimental results also verify this intuition (see Figs. 2 and 4 in the updated manuscript).

We feel that model (4) is a more better representation than model (6). Each covariate Xj has two

parts Fbj and Uj . In model (4), the strong correlation parts Fbj ’s of all covariates contribute to the

response Y aggregately, while idiosyncratic components {Uj : j 2 ⇠
?} of a small number of covariates

have specific e↵ects on Y. In model (6), the e↵ects of common factors F and strong correlation parts

Fbj ’s of Xj ’s are not clearly separated.

Adjusted Sparseness Assumption as Motivation

Reviewer 1: ”My second major concern is about the motivation part. If the authors agree that models

(1) and (4) are equivalent, then using sparsity of model (1) as a motivation seems not appropriate,

given that a sparse � in model (4) is the same as a sparse � in model (1).

We change the motivation part of the proposed method in the introduction section. The adjustment

of the sparseness assumption is a consequence of the adjustment of the weak correlation condition. We

agree with you that a sparse � in model (4) is the same as a sparse � in model (1). But, the meaning

of the sparseness of � has been changed. In (1), a nonzero �j means an overall e↵ect of Xj (sum of

the e↵ects of Fbj and Uj). In (1), a nonzero �j means the specific e↵ect of Xj (or Uj), excluding

Fbj .

On Constraint ↵ = BT�

Reviewer 1: If the authors do not agree with the equivalence between models (1) and (4), I would like

to know the following.

(a) The paper argues that model (4) covers model (1) as a special case by restricting the side con-

straint that ↵ = BT�. I wonder how to interpret � and ↵ in (4) when the constraint does not

hold.

(b) The paper assumes that � is sparse. How is this assumption di↵erent from the sparsity assump-

tion for model (1)?
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(c) In general, how to evaluate a particular covariate’s impact on Y in model (4) when ↵ 6= BT�?

(d) Is it possible to test ↵ 6= BT� within the Bayesian framework? I think using the representation

(6), a test for ↵ 6= BT� is equivalent to a test for ↵0 = 0 in (1), which looks more straight-

forward.”

Model (1) is equivalent to

Y = F↵+U� + �", ↵ = BT�, (3) in the updated manuscript.

We think model (4) is more general than model (1) or equivalently (3), as the former drops the

constraint ↵ = BT�.

(a) When the constraint is removed, covariates Xj ’s do not directly contribute to Y. They are

outcomes of some underlying factor model. The common factors and idiosyncratic components

contribute to Y, with coe�cients ↵ and �.

(b) As we have discussed, a sparse � in model (4) is the same as a sparse � in model (1). But, the

meaning of the sparseness of � has been changed. In (1), a nonzero �j means an overall e↵ect

of Xj (sum of the e↵ects of Fbj and Uj). In (1), a nonzero �j means the specific e↵ect of Xj

(or Uj), excluding Fbj .

(c) In model (4) with ↵ 6= BT�, each covariate Xj does not directly contribute to Y.

(d) This is an interesting question we had not thought about before. We can test ↵ = BT� in the

Bayesian framework by looking into the posterior distribution of ↵� bBT�, since we have sample

of (↵,�) from the pseudo posterior distribution and the estimate bB ⇡ B from PCA. We will

leave it to future research.

On Estimated Latent Variables and Rate-optimality of Sparse Regression

Review 1: “The paper shows in Section 3 that the pseudo posterior distribution (9) achieves the best

rate Bayesian methods can achieve with observed [F,U]. Can the authors provide more discussion

why conditioning on [bF, bU] does not a↵ect the convergence rate? In general, what are the implications

for inference if the posterior is conditional on [bF, bU] instead of on [F,U]?

We add a paradigm Fig. 1 to illustrate the idea to prove Theorem 2. Conditioning on [bF, bU], the

properties of Bayesian sparse regression are established in the probability space of the pseudo data

generating process Y = bF↵ + bU� + �". Then the properties are translated back to the probability

space of the pseudo data generating process Y = F↵+U�+�". In the probability space of the pseudo

data generating process, the error arising from the Bayesian sparse regression method is determined

by the strength of the sparse eigenvalue condition, measured by a constant M0. The deviation between

two probability spaces is controlled in terms of the `2 distance between their conditional means

k(bFH↵? + bU�?)� (F↵? +U�?)k  L5�
?p

n✏n.

When M0 � 2 > L
2
5, the error due to the estimation [bF, bU] ⇡ [F,U] in the factor model is relatively

small compared to that arising from the Bayesian sparse regression, and therefore the estimation of

the factor model does not change the order of the error rate of the Bayesian method, but do change

the constant factor of the error rate. If an inaccurate estimation of latent variables leads to a large

L5, a stronger sparse eigenvalue condition with larger M0 is needed by the Bayesian sparse regression

method.
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On Assumption 1 regarding [bF, bU]

Review 1: “Can the authors provide more discussions on Assumption 1 regarding [bF, bU]? Are there

any examples of DGP so that Assumption 1 holds? When will Assumption 1 be violated?

We add two concrete examples Examples 1 and 2 in which Assumption 1 holds. Roughly speaking,

when [F,U] contain subgaussian entries, Assumption 1 holds. It might be violated when entries of

[F,U] have heavy tails. In that case, we need to use some robust covariance matrix estimator in place

of the sample covariance matrix XTX/n in the PCA procedure.

On Theorem 1

Review 1: “Can the authors provide more discussions about Theorem 1, in particular, how do As-

sumptions 1 to 3 imply Assumption 5? What is the relationship between the assumptions in this paper

and those in (Bai and Ng, 2002; Bai, 2003).

We add Section 4.3 to discuss the similarity and di↵erence of Theorem 1 to (Bai and Ng, 2002).

Theorem 1 can be viewed as a non-asymptotic version of (Bai and Ng, 2002). In general, the non-

asymptotic analysis is more quantitative than the asymptotic analysis and more suitable for high-

dimensional statistics.

On Table 2 in Simulation Experiment Section

Review 1: “In simulation experiment section’s Table 2, I do not think a direct comparison with the

generic Bayes or generic lasso is fair as models (1) and (4) are not the same models when ↵ = BT�.

A more appropriate comparison should be with the Bayesian analysis of model (6), or maybe other

similar models.”

We redesign the experiments by setting ↵? = BT� for a fair comparison between factor-adjusted

methods and routine methods.

To Reviewer 2:

On Iteration Number of Gibbs Sampler

Reviewer 2: “Based on my personal experience, when the model is complex, the Bayesian Gibbs sam-

pling algorithm is very di�cult to converge. Hence, how to show the convergence of MCMC drawings

is still an important concern for the applied Bayesian readers. However, in page 13, you said that ’we

iterate a Gibbs sampler T = 20 times and drop the first T/2 = 10 iterations as the burn-in period.’

I am very confusing about this sentence. Is it enough for convergence? Could you check this claim?

However, from your proof from your appendix, the number of drawing requires an order with O(tpns2)

in page 48. May I suggest that in the real data analysis in section 6, could you give some graphical

tools or test statistics to show that the burn-in length is enough to achieve the convergence?”

We add Fig. 4 to show the fast convergence of the proposed Bayesian method in the setup of

n = 200, p = 500 (larger than n = 120, p = 131 in the real dataset of U.S. bond risk premia). T = 20

iterations are indeed enough.

We revise the time complexity analysis in the appendix. The overall time complexity of the factor-

adjusted Bayesian method is O(np2) + O(Tps3), where O(np2) is for multiplication of large matrices

and T is the number of iterations of the posterior computation algorithm. Details are given. As

suggested by Yang et al. (2016), T = O(s2 log p) may su�ce for the posterior sampler to converge
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in case that the covariates are weakly correlated. Fortunately, the proposed method has remove

the strong correlation parts from covariates. The routine Bayesian method with strongly correlated

covariates does encounter the slow convergence issue.

On Information-based Model Selection Criteria

Reviewer 2: “In Bayesian literature, as to model selection, Bayes factor or DIC, which are Bayesian

version of BIC or AIC respectively, are very popular criterion for model selection. Hence, could you

give a remark or discussion why these popular criteria cannot be used? After all, many Bayesian

readers are familiar with the use of Bayes factor or DIC. I think that this kind of discussion can

strengthen your motivation of your paper about why we need develop a new approach.”

AIC, BIC and DIC are popular criteria for classical model selection problems. However, in the high-

dimensional regression models considered in this paper, there are 2p possible models and n � p � e
n.

It is computationally prohibitive to perform these criteria. A short and good notes on this topic is

Section 2.4 in Philippe Rigollet and Jan-Christian Hütter’s lecture notes on high-dimensional statistics

http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf. To extend these criteria to the high-

dimensional regime, a remedy to restrict the focus on models of size at most Cs (Kim et al., 2012,

JMLR, consistent model selection criteria on high dimensions). Still these criteria need to consider

p
Cs possible models. In contrast, the Bayesian sparse regression method needs O(s2 log p) iterations,

and each iteration visits p possible models (Yang et al., 2016).

The presented paper is mainly motivated from the field of the high-dimensional linear regression,

which has grew apart from information-based criteria in the last decade.
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