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Abstract

Many sparse regression methods are based on the assumption that covariates are weakly cor-
related, which unfortunately do not hold in many economic and financial datasets. To address
this challenge, we model the strongly-correlated covariates by a factor structure: strong correla-
tions among covariates are explained by common factors and the remaining variations are inter-
preted as idiosyncratic components. We then propose a factor-adjusted sparse regression model
with both common factors and idiosyncratic components as decorrelated covariates and develop
a semi-Bayesian method. Parameter estimation rate-optimality and model selection consistency
are established by non-asymptotic analyses. We show on simulated data that the semi-Bayesian
method outperforms its Lasso analogue, manifests insensitivity to the overestimates of the num-
ber of common factors, pays a negligible price when covariates are not correlated, scales up well
with increasing sample size, dimensionality and sparsity, and converges fast to the equilibrium
of the posterior distribution. Numerical results on a real dataset of U.S. bond risk premia and
macroeconomic indicators also lend strong supports to the proposed method.

keywords: factor model, Bayesian sparse regression, posterior contraction rate, model selection.

1 Introduction

High-dimensional linear regression models are useful for a wide array of economic problems (Fan et al.,
2011b; Belloni et al., 2012). A typical form of these models is given by

Yox1 = anpﬁpxl + 0enxi, (1)
where Y is an n-dimensional response vector, X = [Xy,...,X,] is a design matrix of n observations
and p covariates, 8 = (f1,...,0p)" is a p-dimensional vector of regression coefficients, o is (unknown)

standard deviation, and € is an n-dimensional vector of standard Gaussian noises, independent with X.
Both the response vector Y and covariates X; are assumed to be centered without loss of generality,
and thus no intercept term is included in the model. Of interest is the high-dimensional regime in
which the dimensionality p is much larger than the sample size n. A crucial prerequisite to estimate
this model in the high-dimensional regime is the sparseness of 3. That is, the number of non-zero
regression coefficients s = ||3||o, called sparsity, is much smaller than the dimensionality p. Model (1)

is thereafter referred to as the sparse regression model in the rest of this paper.
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Popular procedures to identify and estimate the non-zero regression coefficients are regularized
M-estimation methods (Tibshirani, 1996; Fan and Li, 2001; Candes and Tao, 2007; Fan and Lv, 2008;
Zhang and Huang, 2008; Fan and Lv, 2010; Su and Candes, 2016, among others). Meanwhile, Bayesian
methods, including those exploiting shrinkage priors (e.g., Park and Casella, 2008; Polson and Scott,
2012; Armagan et al., 2013; Bhattacharya et al., 2015; Rockovd and George, 2018) and those exploiting
spike-and-slab priors (e.g., Narisetty and He, 2014; Castillo et al., 2015), has been developed.

Much work in this branch of statistical literature is based on the condition that covarites are weakly
correlated (Fan and Lv, 2010). Specific types of the weak correlation condition include the mutual
coherence condition (Donoho and Huo, 2001; Donoho and Elad, 2003; Donoho et al., 2006; Bunea
et al., 2007), the irrepresentable condition (Zhao and Yu, 2006), the restricted eigenvalue condition
(Bickel et al., 2009; Fan et al., 2018), the uniform compatibility condition (Bithlmann and van de Geer,
2011, page 157), and the sparse eigenvalue condition (Castillo et al., 2015; Song and Liang, 2017; Fan
et al., 2018).

However, many real datasets, especially those in economic and financial studies, are featured by
strongly correlated covariates. In an economic or financial dataset, covariates are usually stock returns
or macroeconomic indicators over a period of time, which are often influenced by similar economic
fundamentals and are thus heavily correlated due to the existence of co-movement patterns (Forbes
and Rigobon, 2002; Stock and Watson, 2002a,b; Ludvigson and Ng, 2009).

The above argument shows the necessity to take the underlying correlation structure of covariates
into account of the sparse regression analysis, and adjust the weak correlation condition accordingly.
For this purpose, we consider factor models (Stock and Watson, 2002a,b; Bai and Ng, 2002; Bali,
2003; Fan et al., 2008, 2011a), in which each observation (row) x; € R? in the design matrix X,y is
decomposable as

;i =By fi+u, i=1,...,n,
where f; is a vector of & common factors, B is a p X k matrix of factor loading coefficients, and u; is a
vector of p idiosyncratic components, uncorrelated with f;. Let F = [f1,..., fu]" be the n x k matrix
formed by piling up fi’s, and U = [uy,...,u,|" be the n X p matrix formed by piling up wu;’s, then

the matrix form of the factor model is written as
Xn><p = FnXkngk + Un><p- (2)

Each covariate X; is now decomposable as the strong correlation part Fb; and the idiosyncratic
component Uj;, where b; is the vector of factor loading coefficients of covariate X;, i.e., the j-th row
of B. Both common factors F and idiosyncratic components U are assumed latent, but they are
estimatable by using Principal Component Analysis (PCA) (Bai and Ng, 2002; Bai, 2003; Fan et al.,
2013; Wang and Fan, 2017). Model (2) embraces the well-known CAPM model (Sharpe, 1964; Lintner,
1975) and Fama-French model (Fama and French, 1993), in which common factors are observable.
If variables [F, U] in the factor model (2) are observable or estimable at a high accuracy given
X, cross-fertilizing the sparse regression model (1) and the factor model (2) leads to a substantial
improvement
Y = Fa + U + oe, where a = B'3. (3)

where strong correlation parts Fb;’s of covariates X;’s contribute to the response aggregately. We
further propose to drop the constraint a« = B3 and use the following factor-adjusted sparse regression
model instead.

Y =Fa+UB+oe¢, (4)



We favor this model over model (3) for three reasons. First, model (3) is nested in model (4), thus
any method that consistently estimates model (4) would consistently estimate model (3). Second,
with no constraint, model (4) is more flexible to explain the variation of the response vector in the
regression analysis than model (3). Third, if F, U are observed or estimated at a high accuracy given
X, it is possible to extend the current framework of sparse regression methods towards a systematic
methodology for model (4). In contrast, it is inconvenient to enforce the constraint a« = BT on the
sparse high-dimensional vector 3 in iterative optimization algorithms for regularized M-estimation
methods or posterior computation algorithms for Bayesian methods.

In the factor-adjust model (4), the weak correlation condition shall be imposed on idiosyncratic
components U rather than original covariates X. Each idiosyncratic component Uj; is the “decorre-
lated” version of its original covariate X; excluding the strong correlation part Fb;. Consequently,
idiosyncratic components U comply with the weak correlation condition more likely than original
covariates X do. Take the sparse eigenvalue (SE) condition, a specific type of the weak correlation
condition, as example. A non-vanishing sparse eigenvalue of covariates SE(X) is required by Bayesian
methods to ensure the statistical consistency (Castillo et al., 2015; Song and Liang, 2017) and the
computational efficiency (Yang et al., 2016). As we will prove in Section 2,

p |G

SE(X) < SE(U) x max
) = SR G e

x R(U),

where R(U) =< 1 is a quantity related to the restricted isometry property of U (Candes and Tao,
2007). Random matrix theories can verify the constant order of this quantity for a broad range of
random matrices arising from the field of sparse regression. Clearly, if the strong correlation part Fb;
of each covariate X; dominates the individual component U; and explains a large portion of the total
variation ||X;||? = |[Fb; + Uj|? ~ ||Fb;||? + ||U,||, then SE(X) would be much smaller than SE(U).

We also remark that the sparseness assumption on 3 has been implicitly adjusted by model (4). A
non-zero ; in model (4) means that covariate X;, excluding strong correlations with other covariates,
has a specific effect on the response. This is conceptually more reasonable than the original sparseness
assumption when covariates are factor-structured. In model (1), if covariates are strong correlated, it
does not make sense to assume that any particular covariate X; for some 1 < j < p processes a specific
influence on the response variable, meanwhile many other covariates that are strongly correlated with
X; do not.

The factor-adjusted model (4) considered in this paper differs from the factor-augmented models
of Stock and Watson (2002b,a); Bai and Ng (2006) in the form

Y =Fpa+ W,y + o€ (5)

In model (5), common factors F are extracted from a large panel of data X,,, via PCA, yet the ¢ other
covariates W are introduced from outside of the panel. These models are typically low-dimensional
with small ¢. In model (4), covariates U other than common factors F are created internally from
the panel of data X, allowing to explore an additional explanatory power of the panel. Moreover, the
analysis of high-dimensional model (4) in this paper is applicable to the low-dimensional model (5),
as model (4) can easily incorporate external variables W as part of F and/or U. For simplicity of
presentation, we omit the details.

Kneip and Sarda (2011) gave an insightful discussion on the limitation of traditional sparse regres-

sion methods on model (1) with factor-structured covariates, and proposed another factor-augmented



model in the form
Y =Fa' + X3+ oe. (6)

This model can be transformed as model (4) by the reparameterization o = a — B*3. However,
model (6) still requires the weak correlation condition on original covariates X, which, as we have
discussed before, is more restrictive than that on decorrelated covariates U.

Fan et al. (2020a) pointed out the failure of regularized M-estimation methods on model (1) with
factor-structured covariates and proposed to use the factor-adjusted model (4). They estimated latent
variables [F, U] in the factor model by PCA, and then performed Lasso to with estimates [f, ﬁ] in
place of true variables [F, U]. Similarly to this paper, they imposed the weak correlation condition on
idiosyncratic components U rather than original covariates X.

We are curious if any Bayesian method consistently identify and estimate the nonzero regression
coefficients in the factor-adjusted model (4), and to what extent the factor adjustment and the latent
variable estimation decline the performance of the Bayesian method. Given theoretical results on the
factor-adjusted Lasso method (Fan et al., 2020a), both questions are still challenging, because the
definition of the parameter estimation error rate, the definition of model selection consistency and
technical conditions of Bayesian methods are significantly different from those of frequentist methods
(Castillo et al., 2015). Even if a Bayesian method is theoretically sound in the asymptotic regime, it
is unclear whether it performs better or worse than frequentist methods on finite data.

This paper proposes a semi-Bayesian approach for model (4). As detailed in Section 3, a full-
Bayesian approach cannot work easily due to the involvement of latent variables [F, U] in the posterior
computation. Inspired by Fan et al. (2020a), we consider estimating latent variables by PCA and
performing a Bayesian spike-and-slab method with these estimates as covariates. This semi-Bayesian
approach results in a pseudo posterior distribution. Theoretical analyses reveal that the pseudo
posterior distribution achieves the rate-optimality of parameter estimation and adapts to the unknown
sparsity s and unknown standard deviation o. For these results, we only need the sparse eigenvalue
condition on idiosyncratic components U and the estimation error rate \/W of latent variables
[F, U]. The first condition is easy to hold since U have been decorrelated, and the second condition is
examined under generic conditions of the factor model. Moreover, under a commonly-seen beta-min
condition in the literature, the pseudo-posterior distribution correctly identifies the non-zero regression
coefficients. Interestingly, although the factor adjustment does not change the estimation error rate of
the Bayesian method, it does result in larger constant factors of estimation errors and require stronger
sparse eigenvalue and beta-min conditions.

The rest of this paper proceeds as follows. Section 2 compares the sparse eigenvalues of original
covariates X and decorrelated covarites U. Section 3 presents the semi-Bayesian approach for the
factor-adjusted model (4). Section 4 establishes the estimation error rate \/W of latent variables
in the factor model. Section 5 follows to investigate the parameter estimation error rate and model
selection consistency of the pseudo-posterior distribution. Section 6 collects experimental results on
simulated datasets. Section 7 evaluates the proposed method on a real dataset of U.S. bond risk
premia. Section 8 concludes the paper with a brief discussion. Technical proofs and algorithmic
implementation details are detailed in the appendices.

Notation. For an index set &, write || as its cardinality and &¢ as its complement. For two index
sets &, &, write £\ ¢ as the set difference. For a vector v, let ve denote the sub-vector assembling

components indexed by &, let ||v]| denote the ¢5 norm, and let ||v|lg denote the number of non-zero



entries. For a matrix A, xme = [Gijli<i<mi,1<j<m., Write uppercase A; for its j-th column, and
lowercase a; for its i-th row. Let A¢ = [A; : j € £] be the sub-matrix of A assembling the columns
indexed by £ C {1,...,m}. Let ||Almax = max;;|a;;| be its element-wise maximum norm, ||A|| be
its operator norm (induced by the > norm of vectors), and [[Alfle = />, ; a?j be its Frobenius norm.
Let vec(A) be the vectorization of A formed by concatenating column vectors of A. For a symmetric
matrix A, write its largest eigenvalue as Apmax(A), its smallest eigenvalue as Apin(A), and its trace
as trace(A). Write diag(ay,...,a,) for a diagonal matrix of elements ay,...,a,. For two positive
sequences @y, by, ay = b, (or b, < a,) means b, = O(ay,); an = b, (or b, < a,) means b, = o(ay,);

and a,, =< b, means both a,, = b, and a,, < by,.

2 Sparse Eigenvalue of Covariates

This section compares the sparse eigenvalues of original covariates X and decorrelated covariates U
and evidences that the sparse eigenvalue condition on U in model (4) holds more likely than that on
X in models (1) and (6) does.

Definition 1 (Sparse Eigenvalue, Definition 2.3 of Castillo et al. (2015)). The 5-order sparse eigen-

value of (the scaled Gram matriz) of the design matriz X, is defined as

ming; g<s Amin(XgXe)

SE(X;s) =
max_y || X5

Definition 2 (Restriced Isometry Property, Definition 10.5.8 of Vershynin (2018)). An n X p matriz

U satisfies the §-order restricted isometry property (RIP) with parameters ko, K1 if

kol Bl < 1UB] < k1|8l
for all vectors B € RP such that ||Bllo < 5.
Lemma 1. In the factor model (2), for any integer s > k,

. . 1,117
SE(X;5) < SE(U; 5) x miax
=1 [|X]12

R(U;5), with R(U;3) Amax (U Ue)
X :5),  wi :5) = max ———————.
& EI<s )\mln(UgUé)

If U satisfies 5-order RIP (Definition 2) with parameters ko, 1 then R(U;3) < k3/K2.

Proof. From Cauchy Interlacing Theorem it follows that )\min(Xng) < )\min(Xg/ng) for two nested
models £ 2 ¢, implying that Amin(X{X¢) of model § with size { < § achieves the minimum value at

some model of size 5. That is,

§:H|l§1|r%§ mm( ¢ §) E:n|ni§ mm( ¢ 6)

Let Smin(A) denote the smallest singular values of matrix A and let be = [b; : j € &]. From Weyl’s

theorem on perturbed singular values and the fact that Fb; is of rank at most k, it follows that

Amin(XFXe) = 5210 (Xe) < (smin(Fbe) + [[Ue]))? = [[Uel* = Amax(UF Ue) < Amin(UF Ug) x R(U)

min
for each model £ of size 5§ > k. On the other hand,

1951 _ » p |G|
< max || X;|| x max .
X[ = =1 =X

p p
max || U;|| = max || X x
7=1 7=1

5



Therefore,

SE(X) — ming, |¢|=s Amin(XgX£) < ming; |¢=z )\min(UgUg) W HUjH2
maX?:l (1% - maX?:l 10,12 =1 ||1X]12

x R(U),

proving the first claim. The second claim is trivial. O

The concept of RIP, first introduced by a seminar work of Candes and Tao (2007) in compressed
sensing, plays an important role in the recovery of the nonzero regression coefficients by £; minimization
in place of ¢y minimization, and guarantees the estimation consistency of the Lasso method (Vershynin,
2018, Sections 10.5 and 10.6). In general, a matrix with the concentration of measure property is a
good restricted isometry with ko/k1 being of constant order (Baraniuk et al., 2008). Concrete examples
include subgaussian random matrices with independent rows (Vershynin, 2012, Theorem 5.65). To
ensure $-order RIP, these examples require n = slog(p/s), which is usually satisfied in the sparse

regression setup.

3 Model and Methodology

The goal of this paper is to study the factor-adjusted sparse regression model (4), in which common
factors and idiosyncratic components [F, U] are latent, but X are observed through the factor model
(2). Each datum (row) x; in X is assumed decomposable as ¢; = B f; +u; with Ef; = 0, Eu; = 0, and
E[fiu]] = 0. Note that {(fi,u;)}1<i<n are not necessarily identically or independently distributed.
E[FTF /n] is normalized as I without loss of generality, and E[UTU/n] is denoted by ¥. The Gaussian
noises € are independent of F and U. The number of common factors k is fixed, but the dimensionality
p of U and the sparsity s of its regression coefficients 3 may grow as n increases. Assume p > n but
slogp < n so that the desired estimation error rate €, = \/W — 0 asn— oo
The first step is to estimate latent variables [F, U] given X. We follow Bai and Ng (2002); Bai
(2003); Fan et al. (2013); Wang and Fan (2017) to use a PCA-based method for this task. Let
/)\\1 > > /)\\n be the eigenvalues of XX /np in the descending order. It is natural to estimate the
column space of F by the eigenspace corresponding to the k largest eigenvalues of XX /np. Write
the eigenequation as R R
XXT F F
np Vn n n

where A = diag(xl, e ,Xk) is the diagonal matrix of the k largest eigenvalues of XX /np, and Fis

v/n times their corresponding eigenvectors. Further, B and U are estimated as

. X'F o FFT
B = , U:X—FBT:<I— )X

n n

If the number of common factors &k is unknown, one may estimate it by

~ s
k = argmax = J , (7)
1<j<k - Aj41

where k is a prescribed upper bound for k£ (Luo et al., 2009; Lam and Yao, 2012; Ahn and Horenstein,
2013). Another viable method for estimating unknown & is by Bai and Ng (2002).



Given estimates [f‘,ﬁ] for latent variables [F, U], we propose a Bayesian spike-and-slab method
for parameter estimation and model selection tasks. Let & = {j : 5; # 0} be the support of 8. A

hierarchical prior (02, cr, @) with a slab prior on « and a spike-and-slab prior on 3 is assigned.

o? ~ g(a?),
k
a~ [ (e,
j=1

1{j € £} ~ Bernoulli(so/p),
Be ~ [ 1 n2(85/m) /75, Bee =0,
VIS

where ¢ is a positive continuous density function on (0,00), e.g., the inverse-gamma density; hy; and
he are “slab” positive density functions on (—oo,+0o0), e.g., the Gaussian density e~ /2 /V2m or
the Laplace density e~ l21/2 /2; hyperparameters 71, ..., 7, control the scales of regression coefficients
B1, ..., Bp; and hyperparameter sy controls the sparsity of model {. For the scaling hyperparameters,
we set 7'j_1 = ||IAJJ /+/nl| so that the effects of possibly heterogeneous scales of ﬁj’s are appropriately
adjusted. For the sparsity hyperparameter, we simply set sg = 1 in the simulation experiments. On
a real dataset, one could make an informative choice of sy according to expertise knowledge in the
specific area, or tune sg by sophisticated cross-validation or empirical Bayes procedures.

Combining the prior (8) with the pseudo data generating process Y = Fa + 6,@ + o€ results in a

pseudo posterior distribution
702, a, BIF,U,Y) x 7(0?, o, BN (Y|Fex + U, 021), (9)

where N (y|u, 0?I) is the n-dimensional Gaussian density function with mean p and covariance o1.
This pseudo posterior distribution (9) differs from the exact posterior distributions 7 (02, o, B|F, U, Y),
obtained by a Bayesian procedure with true variables [F, U] as covariates, and 7(o?, o, 3|X,Y),
obtained by a full-Bayesian procedure.

It is worth noting that, even in the simple setup where {(fi,u;)}1<i<n are identically and in-
dependently distributed (i.i.d.) and f; ~ Py, u; ~ P, are jointly independent, the exact posterior

distribution

n

n(o?, o, B|X,Y) x (02, a, B) /N(Y|Fa + (X = FB")B,0°T) [ [ Pt(£:)Pulzi — Bf)df:,
i=1
is computationally intractable due to the involvement of latent variables in the integral. Thus a

full-Bayesian procedure does not estimate model (4) easily.

4 Theoretical Results on Factor Model

Section 4.1 establishes the estimation error rate /log p/n of the PCA-based method for latent common
factors F. Two conditions are needed. The first (Assumption 1) concerns convergence rates of the
sample covariance matrices F*F /n, F*U/n, UTU /n towards their ideal counterparts I, 0 and ¥. The
second (Assumption 2) concerns the eigen (or singular) structures of factor loading coefficients B and
the covariance matrix 3. Section 4.2 proceeds to estimate each idiosyncratic component U, under an
additional condition (Assumption 3) on the magnitudes of entries in B and 3. Section 4.3 highlights

the technical novelty of these results.



4.1 Estimation of Common Factors

We summarize assumptions and results for the estimation error rate of F first, and commend on them

later.

Assumption 1 (On Sample Covariance Matrices). There exists constant Lo such that

||FTF/n - I”max < Loy logp/na
HFTU/n - OHmax < Loy 10gp/nu
IUTU/n — X||lmax < Loy/log p/n.

with high probability at least 1 — oy,.

Assumption 2 (On Eigen Structures of B and X).
(1) Let Ay > Aa -+ > A be the eigenvalues of B"B/p. For each 1 < j <k, \; < 1.
(ii) |%]| < py/logp/n.

(iii) trace(BTXB) < p?logp/n.

Theorem 1. Under Assumptions 1-2, the following statements hold.

(a) Recall that /)\\j, j=1,...,n are eigenvalues of XX /np. There exists constant Ly such that

max |XJ — \j| < Liy/logp/n, e ]XJ — 0] < Liy/logp/n

1<5<k
with high probability at least 1 — oy,.

(b) Let II and II be the projection matrices onto the column spaces of F and f, respectively. There

exists constant Lo such that the sin-theta distance between two column spaces is bounded as

(T~ T = [|(T — I = || - TT|e/V2 < Loy/log p/n

_ trace(BTEB)

with high probability at least 1 — oy, pZlogp/n

(¢) There exist constant Ly and some orthogonal matrix Hyy such that

|FH/v/n — F//nllr < Ly\/logp/n

trace(BTEB)

with high probability at least 1 — 0, — pZlogp/n

Assumption 1 is a high-level condition not requiring samples {(f;,u;)}!; to be identically or
independently distributed. Kneip and Sarda (2011, Assumption A2 and Proposition 1) assumed the
same error rate \/logw for the factor-augmented sparse regression model (6) and provided a sufficient
condition for i.i.d. samples {(f;, u;)}l" ;. Fan et al. (2013) derived this error rate for stationary and
weakly-correlated time-series {(fi, u;)}i>1. Our recent works on concentration inequalities for Markov
chains (Jiang et al., 2018; Fan et al., 2019) can verify this error rate in case that {(fi,u;)}i>1 are
functions of ergodic Markov chains. Below are two concrete examples in which Assumption 1 holds.

Their proofs are provided in the appendix.



Example 1. Let {(fi,u;)}", be independent (not necessarily identically distributed) samples with
Ef; = 0, Eu; = 0, and E[f;u]] = 0. If fij’s and u;;’s have subgaussian norms at most c, then
Assumption 1 holds. Note that a mean-zero variable bounded by clog(2) or a Gaussian variable with

mean zero and variance less than ¢?/2 has a subgaussian norm at most c.

Example 2. Let {(fi,u;)}i>1 be functions of a stationary, general-state-space Markov chain {Z;};>1,
i.e., fij = [ij(Z;) and wij = uij(Z;), with Efi(Z;) = 0, Eu;(Z;) = 0, and E[f;(Z;)ui(Z;)"] = 0. If
the Markov chain admits a non-zero La-spectral gap, and there exist envelop functions f(z),u(z) such
that max; ; |fi;(2)| < f(2), max; ;|uij(2)| < @(2z) for any z in the state space of the Markov chain
and E[f*(Z1)] < ¢t Ela*(Z1)] < ¢*, then Assumption 1 holds.

Assumption 2(i) concerns the eigen spectrum of BBT/p. The positive definiteness of BTB/p
indicates that each factor F; makes a non-trivial contribution to the variations of covariates X. This
condition is commonly seen in the literature of factor models. Assumption 2(ii) allows the operator

norm (largest eigenvalue) of ¥ to grow with increasing n,p. Assumption 2(iii) amounts to
vec(X) vec(BBT) < p? logp/n,

where vec(A) denotes the vector formed by concatenating column vectors of matrix A. As 3 con-
tain p? entries, this condition actually encourages the sparseness of 3 and weak correlations among
idiosyncratic components U;’s by anchoring most entries of 3 around zero.

Assumption 2 ensures the pervasiveness of latent factors by characterizing a “low-rank spike plus

sparse” eigen structure of the covariance matrix of covariates
E[X"X/n] = BB" + .

All non-zero eigenvalue of BB™ are of order (p) due to Assumption 2(i), while all eigenvalues of 3
is of order o(p) due to Assumption 2(ii). This large gap between eigenvalues is crucial for estimating
the column space of F through PCA (Wang and Fan, 2017; Fan et al., 2020b). In contrast, if this
gap is relatively small compared to the eigenvalues of 3, PCA may result in inconsistent estimation
(Johnstone and Lu, 2009). Conditions on B, ¥ used in previous works (Bai and Ng, 2002; Fan et al.,

2020a) are special cases of Assumption 2.

Example 3. In addition to Assumption 2(i), Bai and Ng (2002) assumed that max;|b;|| < c1,
max; X;; < ¢z, and ), ; | ;| < csp. Their conditions imply that | X[ < \/cacsp and trace(BTEB) <
2

cicskp.

Example 4. In addition to Assumption 2(i), Fan et al. (2020b) assumed that ||X| < c4. Their
conditions imply trace(BTYXB) < trace(B™B)||X|| < ca(A1 + -+ + Ak)p.
4.2 Estimation of Idiosyncratic Components

Estimating each idiosyncratic component U; is more challenging than estimating common factors.

We need an additional assumption to control the magnitudes of entries of B and X.

Assumption 3 (On Magnitudes of Entries of B and X). max?zl lbj|| < 1, where b; is the j-th row
of B, and max!_, ¥;; < 1, where X;; is the j-th diagonal entry of X.



Corollary 1. Suppose Assumptions 1 to 3 hold. There exists constant Ly such that
P .
max |[U;/v/n —U;/vn|| < Lay/logp/n

trace(BTEB)

with high probability at least 1 — o, — pZlog p/n

To motivate Assumption 3, let us have a close look at the estimation error

U, - U; = (0 - M)X; - U,
where IT and II are projection matrices onto the column spaces of F and F introduced by Theo-
rem 1(b). It follows that

1T, /v/n = U/ V/nl| < Lav/2logp/n|X; /vl + |TIU; //n.

Assumption 3 is intended to bound the term || X;//n||* ~ ||bj||* + £;;. The term |IIU;/\/n|, the
projection of Uj/y/n onto the column space of F, is small due to the weak correlation between F
and U. Bai and Ng (2002) used Assumption 3 to estimate common factors F (see Example 3). Here
we only need it for estimating idiosyncratic components U. Without this assumption, Theorem 1 for

estimating common factors F still stands.

4.3 Technical Novelty

Theorem 1(b) measures the estimation error of the column space of F by the sin-theta distance, a
metric in the matrix perturbation theory (Stewart, 1990) to quantify the difference between two linear

spaces.

Definition 3 (Principal Angles and Sin-Theta Distance). Let \ilnxk and W, be orthonormal bases
of two linear subspaces L and L of rank k in R™. The principal or canonical angle between two linear

subspaces L and L is defined as

~

Z(L,L) = (cosLsy,...,cos Lsp)T,

where s1,...,s, € [0,1] are the singular values of U™ or W™, The sin-theta distance between two

linear subspaces L and L is defined as

k
|sin Z(Z, L)|| = Z:sinQ(cos—1 Sj).
j=1

Equivalently, with I = UPT and II = TP being the projection matrices onto the two linear sub-
spaces,
Isin (L, £)|1* = ||(T - IDIL|| = ||(I - I)IT|7 = || T - IT|| /2.

To devise the proof of Theorem 1(b), we develop a novel extension of the Davis-Kahan theorem
(Davis and Kahan, 1970; Yu et al., 2014). The eigendecomposition of BTB/p = RAR™ deduces that

X X A+ A, where A = — X
np vnoooyn vnoop

FB"™BF" FR FR F B'B F'F
= X -I)|R.
n
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We call this equation a “A-approximate” eigenequation of FBTBF™ /np and compare it with the exact

eigenequation
XXT " F F

np - Vno vn

A novel variant of Davis-Kahan theorem (Lemma A3) relates the difference between F ~ FR to

X A.

differences between X ~ FBT, A~ A, 0 = A. This variant of Davis-Kahan theorem gives a clear
insight on roles of eigen structures of B, X and concentration properties of sample covariance matrices
in the estimation of factor models. It may be potential applicable to the analyses of PCA-based
methods for other problems.

Theorem 1(c) follows from Theorem 1(b). Both sides of the equation are divided by a factor /n
such that F/\/n and F/\/n are (nearly) orthogonal. This result can be viewed as the non-asymptotic
version of Bai and Ng (2002, Theorem 1). The former gives a non-asymptotic error bound \/logw
with a precise characterization of the tail probability, while the latter gives an asymptotic error bound
Op( \/1/7) The additional factor logp arises from the essential difference between non-asymptotic
analyses and asymptotic analyses. The starting point of the proof of Theorem 1 is to deduce from

Assumption 1 non-asymptotic error bounds

IF"F/n —1|| < k|F"F/n — I||lmax < Loky/logp/n,
IFTU/n — 0| < /Ekp||F"U/n — O||max < Lo/ kplogp/n,
[UTU/n — 2| < p||lU'U/n — X||lmax < Lopy/logp/n,

The assumptions of Bai and Ng (2002) can deduce asymptotic error bounds

[F*F/n —1|| = Op(v/1/n),
[F*U/n = 0[] = Op(v/p/n),
[UTU/n = 3| = Op(pv/1/n).

Using the asymptotic error bounds instead of the non-asymptotic error bounds in the technical proof

of Theorem 1 would reproduce the asymptotic result of Bai and Ng (2002, Theorem 1).

5 Theoretical Results on Bayesian Sparse Regression

This section summarizes the theoretical properties of the pseudo-posterior distribution given by (9).
The ¢o-error rate €, = \/W is achieved for regression coefficients a*, 8* under commonly-seen
assumptions for Bayesian sparse regression. This rate is so far the best achievable rate by Bayesian
methods even with true variables [F, U] (Castillo et al., 2015; Song and Liang, 2017). Byproducts of
the analysis include the adaptivity to the unknown sparsity s and unknown standard deviation o*.
When the beta-min condition holds, the pseudo-posterior distribution consistently selects the true
sparse model &* = {j : B # 0}. Interestingly, although the factor adjustment does not change the
order €, = \/m of the estimation error, it does require a stronger sparse eigenvalue condition
and result in larger constant factors of the estimation error.

Section 5.1 makes three assumption. The first is the sparse eigenvalue condition on U, the second
is a high-level condition controlling the estimation error of F ~ F, U ~ U in the factor model, and
the last is on the magnitude of the true regression coefficients. Sections 5.2 and 5.3 present the main

theorem and its sketch of proof.
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5.1 Assumptions

Following the literature of sparse regression, we assume p = n but slogp < n such that the desired

estimation error rate €, = /slogp/n — 0 as n — co. Other assumptions are stated as follows.

Assumption 4 (On Sparse Eigenvalue). There exist constants My > 0, ko, k1 such that

min_ Amin(UFUe/n) > k3,
€ 1€[<(14+Mo)s min ( 13 &/ ) = kg
and that max?zl U, /v/n|| < k1 with high probability. Therefore, the (1+My)s-order sparse eigenvalue
(Definition 1) of U is at least k2 /K73.

Variants of this sparse eigenvalue condition have been imposed on original covariates X by Bayesian
sparse regression methods to ensure both estimation consistency (Castillo et al., 2015; Song and Liang,
2017) and computational efficiency (Yang et al., 2016). Here this condition is imposed on decorrelated
covariates U. As discussed in Section 2, on decorrelated covariates U rather than original covariates
X this condition holds more likely. When U consists of independent subgaussian rows, random matrix

theories (Vershynin, 2012, Theorem 5.39) can verify Assumption 4.

Assumption 5 (On Estimation of Factor Model). There exist constants L3, Ly such that

g L4\/ logpa
n

with high probability, where H is some k X k rotation (orthogonal) matriz.

~

U, U

FH F ;
Jn n

VnooVn

logp
, max
n 1<5<p

< Lj

F

The estimation error rate y/logp/n of latent variables has been verified by Theorem 1 and Corol-
lary 1. Note that F /+/n is an orthonormal basis whose span approximates the column space of F, and

FH /+/n spans the same linear space.
Assumption 6 (On True Parameters). o* > 0 is fized, |a*|| < 1, ||B*] < 1.

The assumed constant orders of a* and B* are not restrictive. When Assumption 5 is in place,
both vectors of regression coefficients have bounded #s-norms if the response variable has a bounded

variance. To see this point, write
E[|[Y[[*/n] = [le*||” + (82)"E[UE Ug- /0] B + ™% > |la*||* + (1 - o(1))x3 18| + o™,

Assumptions 5 and 6 together control the difference between the true data generating process Y =
Fa* + UB* 4+ o*¢ and the pseudo data generating process Y = FHa* + IAJB* + o*e in terms of the

deviation between their conditional means
|(FHo* + UBY) — (Fa* + UBY)| < Lso*V/ne,, with Ls = Ls||a* /o™|| + La|| 8" /o”]].

We remark that, when more accurate estimation methods of latent variables than the PCA-based

method are available, larger magnitudes of regression coefficients are allowed.
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5.2 Main Results

Before presenting main results, we formally define the estimation error rate in the Bayesian setup,
which is different to that in the frequentist setup. The following definition of the posterior contraction
rate is adopted from the Bayesian literature (Ghosal et al., 2000; Shen and Wasserman, 2001; Castillo
et al., 2015; Song and Liang, 2017).

Definition 4 (Posterior Contraction Rate). Consider a parametric model {Pg : 0 € ©}. Let D,, for
n > 1 be a sequence of data generations from Pg«. Let v(0) be a function of 0, and £(v(0),~v*) be
a loss function between the estimate v(0) and the estimand v*. A sequence of posterior distributions

(random measures) w(0|Dy,) for n > 1 is said to achieve the contraction rate €, of estimation error

(v(0),v) if
T(l(v(0),7*) < Men|Dy) — 1

i Pg«-probability as n — oo for some constant M > 0.

In this paper, we consider

D= x¥). 0=@ad. 10 =(5) = ("),

where H is the rotation matrix introduced in the estimation of the factor model. The objective is to

show that the pseudo-posterior distribution 7(o?, o, 3 ]f‘, ﬁ,Y) given by (9) achieves the contraction

rate €, = y/slogp/n in terms of ¢y error

Uv(0),7") = Ilv(0) —v*|| = H <g> - <Hg(f*> H

Note that F and F span almost the same linear space, and FH~F element-wisely. Thus the pseudo-
posterior distribution is expected to concentrate around o« ~ Ha* such that Fa ~ FHo* ~ Fa*.

Now we are ready to present the main results of the paper.

Theorem 2. Define an “e,-neighborhood” of parameter (o', o/, 3') as

Ao’ o, B', Mo, My, My, en) = {(0, e, 8) = Eq. (10)}

1€\ €' < Mops,
o2 c 1— Mye, 14 Mie,
o'? 14+ Me,’ 1 — Mie, |’ (10)

o — || < Mao'e,,
18— B8]l < Maoen /o,
where My, My, My, M3 are absolute constants, & and & are supports of 3 and (3, respectively. Suppose

Assumptions 4 to 6 holds with My — 2 > L%, where Ly = Ls||a*/o*|| + L4||3%/c*||. The following
statements hold with some constants My, Mo, Ms, My.

(a) (Estimation Error) For any constant Cq < Mo —2 — L2,
% (A(U*7 Ha*v 6*7 M07 M17 MQ-; M3, En)’f‘, 6, Y) Z 1— eicllegp

with high probability.
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(b) (Prediction Error) For any Cy < Mo —2 — L2,
7 (H(}?a +UB) — (Fa* + UBY)| < Myo*vne,|F, U, Y) >1 — ¢~Ceslogp
with high probability.

(¢) (Model Selection) Suppose the beta-min condition minjee« |B7| = €, holds in addition. For any
C3 < My—2-— Lg,

T (14(0'*’HC,¥*,5*7 ]\407 M17 ]\427 ]\437 En) N {6 D 5*}|f" ‘[/j?Y) >1-— e—Cgslogp
with high probability, tmplying that

T <|€\§*| < M()S, g 2 5*‘1—1\‘76’Y> >1-— e*Cgslogp

7 ({5181 = 2Ma0 /[eTlogp/n } = ¢*

f‘, ﬁ,Y) > 1 — e Csslogp,

Part (a) establishes the posterior contraction rate €, in terms of ¢2 error for regression coefficients
a* (up to some rotation matrix H) and 8*. It also asserts that the posterior model £ overshoots the
true sparse model £* by no more than a constant factor My, and that the relative estimation error of
the standard deviation o, is Mje€,. Part (b) shows that Fa + ﬁ,@ predicts the true conditional mean
E[Y|F,U] = Fa* + UB* with mean squared error Mye,, for each single datum instance on average.

The beta-min condition in part (c) has been used by Bayesian sparse regression methods to achieve
the model selection consistency (Castillo et al., 2015; Song and Liang, 2017). Without this condition,
the Bayesian methods cannot tell whether a nearly-zero regression coefficient 3; < €, is truly non-zero
or faked by the randomness of data generations. The first implication of part (c) asserts that the
pseudo-posterior distribution selects all variables in £* and at most Mys false positives. In simulation
experiments, the pseudo posterior distribution overestimates the true model size s = |£*| by less than
5%. The second implication of part (c) enables a posterior model selection rule. Simply speaking,
one can consistently select the true model £* by filtering out coefficients ;s larger than threshold
2M30\/m. In simulation experiments, the majority of pseudo-posterior samples of £ are
exactly the true model £* even without the posterior model selection rule.

Recall that the constant Ly relates to estimation errors of latent variables in the factor model. The
constant M indicates the strength of the sparse eigenvalue condition (Assumption 4), and determines
the quality of the posterior distribution (if true variables [F, U] are used). The constraint My —2 > L2
in Theorem 2 arises when the Bayesian sparse regression method copes with the estimated latent
variables. A less accurate estimation of latent variables in the factor model would result in large Ls.
Consequently, the factor-adjusted Bayesian method would need a stronger sparse eigenvalue condition

with larger M.

5.3 Sketch of Proof

Let P(yx o+ g+) and @(U*,Ha*,ﬁ*) be the probability measures associated with the true data generating
process Y = Fa* + UB* + o*¢ and the pseudo data generating process Y = FHo* + ﬁﬁ* + o*e,
respectively. Fig. 1 illustrates the paradigm of proof of Theorem 2. The analysis is first moved from
the probability space of the true data generating process into that of the pseudo data generating

process by conditioning on a realization of F, U, f‘, [AJ, H. In the space of the pseudo data generating
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Figure 1: paradigm of Proof of Theorem 2

process, theoretical properties of the pseudo-posterior distribution 7 (o, ¢, 3 ]f‘, ﬁ, Y) are established.
These theoretical properties are then translated back to the probability space of Py« ox g+)-

More precisely, the objective is to show events
&1+ 7 (A%(0* Hot, 8%, My, My, My, My, e)[F, U, Y ) > e=Crobsr,
&: 7 (|(Fa+ UB) — (Fa’ + US| > Mio*Vinen [P, 0, Y ) > e Covos,
Ey: (AC("*aHa*aﬂ*,Mo,Ml,Mz,Ms,en) Ul 5*}|f,ﬁ,Y) > ¢~Caslogp

happen with vanishing probability under P, o+ g+). The first step (Appendix B.1) is to show that

ming, |¢j< (Mo +1)s Amin(UF Ug/n) > /4
7 maX?zl Hﬁj/\/ﬁn < 2k (11)
H(f‘Ha* + ﬁﬁ*) — (Fa* + UBY)| < Lso*/nen

happens with high P(;+ o+ g«)-probability. Set My > 2L5 and define another event
g 7 (H(ﬁa +UB) — (FHa* + UBY)|| > Muyo*Vnen/2|F, U, Y) > ¢~ Caslogp,
Evidently, & N F C & N F, Write

P(U*7a*,ﬁ*)(gl) S P(U*7a*75*)(€1‘f)1[»(./_'.) +]P)(.FC),
P(O’*,a*,ﬂ*)(SQ) S P(a*7a*7ﬁ*)(82‘f)ﬂl)(f> +]P><./_"C) S P(U*’a*7ﬁ*)(gé’f)P(.F) + P(Fc)7
P(g*7a*7ﬁ*)((€3) S P(U*7a*7ﬁ*)(53‘F)]P)(f) +]P)(fc)
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Since the event F happens with high P(;+ o+ g«)-probability, it suffices to bound conditional probabil-
ities of events &1, &) and &3 given event F. The second step (Appendix B.2) is to show that

1/2

Ploe o gy (E1[F, U, F, T H) < [Pl 1o g (& [F, T H) | x elislorr/2

11/2

P o+ o g0 (EF, U, F, U, H) < 'ﬁ(g*7Ha*ﬂ*)(5§|ﬁ,ﬁ, H)| '~ x LEslosn/2, (12)

1/2

P(or o 3)(E3F, U, F, U H) < Pios piar g (EF, U H) | x elislosr/2,

for any realization of (F,U,f‘,ﬁ,H) belonging to event F. In (12), the term el3s108p/2 relates to
the estimation of latent variables in the factor model, and the terms @(U*Ha*ﬁ*)(&\f‘, U, H) relates
to the quality of Bayesian sparse regression. Given minjees |3j] > +/32Mooyen /Ko, the third step
(Appendix B.3) is to show that

@(a*,Ha*’B*)(Eﬂf‘,ﬁ,H) < e*Cislogp
@(0*,Ha*’lg*)((€é|f‘,ﬁ,H) S e—céslogp (13)
@(a*vHa*ﬁ*)(&,ﬂ«A‘,ﬁ,H) < ¢~ Chslogp

for any constants C < My —2 — Cy, C4 < My —2 — Cq, C% < My — 2 — C3 if My, My, Ms, My are
sufficiently large. The theorem is concluded by choosing suitable C! € (L%, My —2—C;) for i = 1,2,3.

As mentioned above, the proof critically depends on the non-asymptotic error bounds character-
izing the contraction rate of the pseudo-posterior distribution. Classical works in Bayesian sparse
regression (Narisetty and He, 2014; Castillo et al., 2015) are inadequately quantitative for the analysis
in this paper. Our technique is inspired by a recent non-asymptotic analysis of Bayesian shrinkage
methods (Song and Liang, 2017). However, given their results on Bayesian shrinkage methods, the

analysis of Bayesian spike-and-slab methods in this paper is still challenging.

6 Simulation Experiments

This section harvests experimental results on simulated data. The default setting of experiments
is as follows. For the data generating process, (n,p,s, k) = (200,500,5,3), f; S N(0,1), u; i
N(0,1), B ~ Uniform[—3.0, +3.0]P*%. For the true parameters, c*2 = 0.5, £~ = {1,2,3,4,5}, B =
(3.0,3.0,3.0,3.0,3.0)", and a* = B"3*.

For prior (8), we choose the inverse-gamma density g with shape 1 and scale 1, the Gaussian
densities h1(z) = N(z|0,10?%), ha(z) = N(2]0,1) and hyperparameters sy = 1 and ijl = HI/:TJH/\/E
Starting from (o, ,3) = (1.0,0,0), we iterate a Gibbs sampler 7" = 20 times and drop the first
T/2 = 10 iterations as the burn-in period. The implementation details of the Gibbs sampler are put
in the appendix.

The pseudo-posterior distribution are evaluated in terms of five metrics. The posterior mean of 3
is compared to 3* in terms of £5 error. The model selection rate, the portion of the posterior samples
that select the true model (i.e., { = £*) and the sure screening rate, the portion of the posterior
samples that select all sparse coefficients (i.e., £ O £*) are computed. To evaluate the adaptivity to
unknown sparsity s, the average model size || is computed. To evaluate the adaptivity to unknown
standard deviation o*, the posterior mean of o2 is compared to o*2 in terms of relative error. These

metrics are evaluated and averaged over 100 replicates of the datasets.
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The factor-adjusted Bayesian method is compared to the routine Bayesian method, the routine
Lasso method (Friedman et al., 2010, R package glmnet) and the factor-adjusted Lasso method (Fan
et al., 2020a, R package FarmSelect). The ¢;-penalty hyperparameters of the Lasso methods are
optimized by ten-fold cross-validation. Note that the Bayesian/Lasso methods with covariates X can
be seen as the factor-adjusted Bayesian/Lasso methods with the underestimated number of common

factors k = 0.

6.1 Insensitivity to Overestimates of k

Table 1 summarizes the performances of four methods in the default setting. The factor-adjusted
Bayesian method outperforms other three methods on both parameter estimation and model selection
tasks. Its performance is insensitive to overestimated numbers of common factors k= 6,9,12. The
factor-adjusted Lasso method tends to select two or three more covariates other than covariates of the

true model. This issue is alleviated when larger nonzero coefficients are set.

Method 1B-=8* | E=¢& €2¢ [ ||o*/o* 1]
Lasso, k = 0 0.914 0%  100% 18.37 1.697
Factor-adjusted Lasso, k = 3 0.409 31% 100%  6.90 0.311
Factor-adjusted Lasso, k = 6 0.409 23% 100%  7.14 0.304
Factor-adjusted Lasso, k = 9 0.410 24% 100%  7.39 0.292
Factor-adjusted Lasso, k=12 0.411 23% 100% 7.62 0.285
Bayes, k = 0 0.189 | 42.2% 100.0% 5.80 0.110
Factor-adjusted Bayes, k=3 0.125 84.5% 100.0% 5.16 0.080
Factor-adjusted Bayes, k = 6 0.128 83.9% 100.0% 5.18 0.084
Factor-adjusted Bayes, k = 9 0.135 83.7% 100.0% 5.18 0.082
Factor-adjusted Bayes, k = 12 0.133 85.6% 100.0% 5.16 0.086

Table 1: Experimental results in the default setting.

In case that covariates Xy,...,X, are not correlated, the factor-adjusted Bayesian method per-

forms slightly worse than the Bayesian method (Table 2).

Method 1B=B* | £=¢ (%) €26 (%) [¢] | |o*/o** =1
Lasso, k=0 0.311 0% 100% 31.27 0.134
Factor-adjusted Lasso, k = 3 0.414 32% 100% 6.53 0.317
Factor-adjusted Lasso, k = 6 0.415 27% 100% 6.67 0.310
Factor-adjusted Lasso, k=9 0.417 24% 100% 7.06 0.305
Factor-adjusted Lasso, k =12 | 0.419 20% 100% 7.16 0.297
Bayes, k = 0 0.119 85.7% 100.0%  5.16 0.091
Factor-adjusted Bayes, k = 3 0.123 85.7% 100.0% 5.16 0.091
Factor-adjusted Bayes, k = 6 0.124 84.4% 100.0% 5.17 0.090
Factor-adjusted Bayes, k = 9 0.127 84.6% 100.0% 5.17 0.091
Factor-adjusted Bayes, k = 12 0.129 85.2% 100.0% 5.16 0.091

Table 2: Experimental results in the setting with no common factor.
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The model selection rate for the Bayesian methods has a different meaning to that for the Lasso
methods. For example, 50% model selection rate given by a Lasso method means that the true sparse
model is selected in 50 out of 100 replicates of the dataset. 90% model selection rate given by a
Bayesian method means that every 9 of 10 posterior samples select the true sparse model in each
replicate of the dataset on average. In the experiments summarized by Tables 1 and 2, at least every 7
of 10 pseudo-posterior samples obtained by the factor-adjusted Bayesian method select the true sparse
model in each of 100 replicates of the dataset. A majority voting rule would definitely enhance the

model selection rate of the factor-adjusted Bayesian methods.

6.2 Impacts of Correlations among Covariates

As discussed in the introduction, the sparse regression methods on model (1) fail to work when the
covariates are strongly correlated, and the factor adjustment are intended to address the issue. To
showcase this issue, we vary the magnitude of factor loading coefficients B in the default setting and
draw B ~ Uniform|[—Buax, +Bmax|P** with Bpax = 2.0,2.5,3.0,3.5,4.0,4.5. A larger Bp.y indicates

a smaller sparse eigenvalue of X. Neither the routine Lasso method nor the routine Bayesian method

works when By > 4.0 (Fig. 2).

1.0 R T 100 1.0 T T
’ S Lasso

— { —— Factor-adjusted Lasso
i § --- Bayes

—— Factor-adjusted Bayes

o©
©

80

o
o]
S~

601 AN 0.6

o
)
A

~

~~

40 N

o
ESY
!
|

<

I

1

I

1

1

1

1

1

s 1
4 7 1
0.4 : !
1

1

[

£,-estimation error of B
model selection rate (%) of §
7’
relative estimation error of 0?2

o
N]

201 o

o
N]

4.5 2.0 2.5 3.0 3.5 4.0 4.5 2.0 2.5 3.0 3.5 4.0 4.5

20 25 30 35 40
magnitude of entries in B magnitude of entries in B

magnitude of entries in B

Figure 2: f5-estimation error of 3 (left), model selection rate of £ (middle) and relative estimation error

of o2 (right) influenced by the magnitude of entries in B. Factor-adjusted methods use k=k=3.

6.3 Scalability as n,p, s Increase

The proposed method is tested with various setups of the sample size n, the dimensionality p and
the sparsity s. In Fig. 3(a), p = 500 and s = 5 are fixed, and n is varied. In Fig. 3(b), n = 200
and s = 5 are fixed, and p is varied. In Fig. 3(c), n = 200 and p = 500 are fixed, and s is varied.
For factor-adjusted methods, k =k = 3 are used. Overall, the factor-adjusted Bayesian method

outperforms the other three methods on both parameter estimation and model selection tasks under

most combinations of (n,p, s).

6.4 Convergence Diagnostics for Gibbs Sampler

A Gibbs sampler is designed for the posterior computation of the factor-adjusted Bayesian method.
We provide a graphics tool to diagnose the convergence of this Gibbs sampler towards the target
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Figure 3: ¢s-estimation error of 8 (left), model selection rate of £ (middle) and relative estimation error
of o2 (right) influenced by (a) sample size n, (b) dimensionality p and (c) sparsity s. Factor-adjusted
methods use k = k = 3.

distributions (Fig. 4). At each iteration ¢, the current regression coefficients B is compared to the
previous regression coefficients B1=1 in terms of the Euclidean distance, and the current model & @ is

(t)e(t—1)
compared to the previous model £(=1) in terms of Jaccard distance 1 — %ﬁ;_i)l In Fig. 4, the Gibbs

19



sampler converges to the target distribution for the factor-adjust Bayesian method after 6 iterations.
However, it does converge for the routine Bayesian method after 20 iterations, because the routine
Bayesian method is performed on strongly correlated covariates with a small sparse eigenvalue. A

small sparse eigenvalue often leads to slow convergence speeds of Bayesian sparse regression methods
(Yang et al., 2016).
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Figure 4: Convergence diagnostics for the Gibbs sampler.

7 Predicting U.S. Bond Risk Premia

This section applies our method to predict U.S. bond risk premia with a large panel of macroeconomic
variables. The response variables are monthly U.S. bond risk premia with maturity of m = 2,3,4,5
years spanning the period from January, 1964 to December, 2003 (Ludvigson and Ng, 2009). The
m-year bond risk premium at period i+ 1 is defined as the (log) holding return from buying an m-year
bond at period i and selling it as an (m — 1)-year bond at period i 4 1, exceeding the (log) return on
one-year bond bought at period i. The covariates are p = 131 macroeconomic variables collected in
the FRED-MD database (McCracken and Ng, 2016) during the same period. The scree plot of PCA
of these covariates (Fig. 5) shows the strong correlations among p = 131 covariates. The first principal
component accounts for 55.9% of the total variation of the covariates, and that the first 5 principal
components account for 89.7% of the total variation of the covariates.

The rolling window regression and next value prediction are considered. Specifically, each of two-
year, three-year, four-year and five-year U.S. bond risk premia is regressed on the macroeconomic
variables in the previous month. For each time window of size n = 120 ahead of month ¢t = n +

2,...,480, fit the sparse regression model

yi = f(xic1) +oei, i=t—mn,...,t—1,

~

and give an out-of-sample prediction §; = f(x;—1). The standard sparse regression model (1) and
the factor-adjusted model (4) are considered, and corresponding Bayesian and Lasso methods are
performed. For the factor-adjusted methods, the number of common factors k is estimated by the
maximum eigenvalue ratio method as (7). For the Bayesian methods, we set sp = 20 in the prior

distribution (8). The principal component regression method (Wehrens and Mevik, 2007) is also

20



v _
o
2 <
OO
[
o
p -
g o |
'-460
[
.
T
o . ]
Q O
(@]
—
o
-
o
O__ CCOl m/—— ——
o

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Figure 5: Proportion of variances explained by the first 10 principal components.

included for comparison. In a similar vein to (Ludvigson and Ng, 2009), the top eight principal
components are taken from PCA to be covariates in the regression analysis.

The performances of these regression methods are evaluated in terms of the out-of-sample R2-value.

480 ~
R2—1 t=nt2 (Ut — yt)?
T T 480 97

t=nro (Ut — Yt)

where y; is one of two-year, three-year, four-year and five-year U.S. bond risk premia, 7; is the pre-
diction of y; given by the fitted regression model, and g; is the average of {y;—n,...,yt—1}. Tables 3
and 4 collect the out-of-sample R? values and the average model sizes the five methods achieve on
the dataset of U.S. bound risk premia. The factor-adjusted Bayesian method achieves the highest

out-of-sample R? value and select the sparsest models among all methods in comparison.

Method 2-yr bond 3-yr bond 4-yr bond 5-yr bond
Principal Component Regression 0.646 0.603 0.568 0.540
Lasso 0.728 0.721 0.703 0.685
Factor-adjusted Lasso 0.761 0.751 0.736 0.719
Bayes 0.737 0.715 0.698 0.674
Factor-adjusted Bayes 0.765 0.763 0.752 0.728

Table 3: Out-of-sample R? values achieved on the dataset of U.S. bond risk premia.

8 Discussion

We propose a factor-adjusted sparse regression model (4) to handle highly correlated covariates. We

decompose the covariates into strong correlation parts driven by common factors and idiosyncratic
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Method 2-yr bond 3-yr bond 4-yr bond 5-yr bond
Lasso 24.32 24.77 25.99 26.27
Factor-adjusted Lasso 26.47 26.94 27.29 26.44
Bayes 19.74 22.55 24.43 25.04
Factor-adjusted Bayes 14.92 19.36 21.48 22.38

Table 4: The average sizes of sparse models selected for the dataset of U.S. bond risk premia.

components, where the common factors explain most of the variations. All common factors but a small
number of idiosyncratic components are assumed to contribute to the response. The corresponding
Bayesian methodology is then developed for estimating such a model. Theoretical results suggest that
the proposed methodology can consistently identify and estimate nonzero regression coefficients.

In the factor-adjusted model, sparse regression methods require the weak correlation condition on
idiosyncratic components U, which is easier to hold than that on original covariates X in the sparse
regression model (1) and the factor-augmented regression model (6). Section 2 makes this intuition
precise by quantitatively characterizing the ratio between sparse eigenvalues of U and X. When covari-
ates are strongly correlated, the factor-adjusted Bayesian method outperforms the routine Bayesian
method (Table 1). When covariates are not correlated (although it is unlike the case in practice),
the factor-adjusted Bayesian method pays a negligible price for model misspecification (Table 2). In
case of extremely strong correlation among covariates, both routine Bayesian and Lasso methods fail
to work, but the factor-adjust Bayesian and Lasso methods perform robustly (Fig. 2). The factor
adjustment also enhances the computational efficiency of the Bayesian method (Fig. 4).

The factor-adjusted model covers the standard sparse regression model as a sub-model. Thus it
provides more flexibility in the regression analysis and potentially explores more explanatory power
from the data. On the dataset of U.S. bond risk premia, the factor-adjusted Bayesian method achieves
2.8%-5.4% more out-of-sample R? values with 3-5 less variables (Tables 3 and 4). We hereby recom-
mend the factor-adjusted model over the standard model for regression analyses on real datasets with

highly correlated covariates.
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Appendices

All notation used in the appendices are listed as follows. Some of them may have been defined in the
main body of the paper.

For an index set £, write || as its cardinality and £¢ as its complement (with respect to the whole
index set {1,...,p}). For two index sets &, &, write £ \ ¢ as the set difference. For a vector v,
v¢ denotes the sub-vector assembling components indexed by &, ||v| denotes the ¢3 norm, and ||v||o
denotes the number of non-zero entries.

For a matrix Ay, xmy = [@ij]1<i<mi,1<j<ms, Write uppercase A; for its j-th column, and lowercase
a; for its i-th row. Let A¢ = [A; : j € ] be the sub-matrix of A assembling the columns indexed by
€ C{1,...,m}. Let [|[A|lmax = max; |a;;| be its element-wise maximum norm, ||A| be its operator
norm induced by the ¢ norm of vectors, and ||Al|r be its Frobenius norm. Let vec(A) be the
vectorization of A formed by concatenating column vectors of A. For a matrix A of full column
rank, write AT = (ATA)7'AT as its left pseudo-inverse, then AAT is the projection matrix on the
column space of A.

For a symmetric matrix A, write its largest eigenvalue as Apax(A), its smallest eigenvalue as
Amin(A), and its trace as trace(A). Write diag(az, ..., ay,) for a diagonal matrix of elements ay, . .., an,.
For two squared matrices A, B of the same dimension, we write A > B (or B < A) if A —B is positive
semidefinite.

For two positive sequences ay, by, a, = by, (or b, < a,) means b, = O(ay); a, > b, (or b, < ay)

2 by, (or b, < ap) means that

~

means b, = o(ay); and a, =< b, means both a, = b, and a, < b,. a,

an > by for sufficiently large n.

A Technical Proofs for Factor Model Estimation

This appendix collects technical proofs for Theorem 1, Corollary 1, and Examples 1 and 2 concerning

the estimation of factor models.

A.1 Proof of Theorem 1

We first prepare four preliminary results as Lemmas Al to A4 and then prove Theorem 1 and Corol-

lary 1.

Lemma Al. Suppose Assumption 1 holds. With high probability at least 1 — oy,

[F"B/n 1| < [F*F/n — 1] < Loky/logp/n,
[F*U/n — 0| < |[[F"U/n -0z < Loy/kplogp/n,
|UTU/n — 32| < ||[U'U/n — X||¢ < Lopy/log p/n.

Proof. The proof uses merely the relations between the operator norm, the Frobenius norm, and the

element-wise maximum norm of matrices. O

trace(BTEB)
p?logp/n ’

[UB||r < py/logp.

Lemma A2. With probability at least 1 —
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Proof. Applying Markov’s inequality yields

E [|UB|
P ([UBJl > pv/logs) = B (JUBJ2 > p*logp) < ngp]
And,
E [|UB|?] = E [trace(B"UTUB)] = trace(B"E [U"U] B) = n x trace(B"EB).

O
Lemma A3 (Variant of Davis-Kahan Theorem). Let A be annxn symmetric matrix with eigenvalues
Xl > /)\\2 > 0> Xn and corresponding eigenvectors 12}\1, .. ,Jn. Fiz 1 <[ <r <n and assume that
min{xl_l — XZ,XT — XT_H} > 0, where Xo = 400 and Xn+1 = —o0o. Let A be the diagonal matriz
of eigenvalues /)\\17 . ,XT, and ./AXC be the diagonal matrixz of other eigenvalues. Let U and \TIC be their

corresponding eigenvectors of A and A., respectively. Let A be an n x n matriz with “A-approximate”
eigenequation

AT = DA + A,

where A = diag(Ay, ..., A\r) and ¥ = (¢, ..., 1) consists of k = l—r+1 (not necessarily orthonormal)
vectors. Then

[A[lr + (A — A) Tl + [T]fA — Al
min{Alfl - )\l; Ar - A7‘—&—1}

Proof. The A-approximate eigenequation derives that

[T, <

A=AV - WA =A¥ - PA+(A—A)¥ - ¥(A-A),

implying
AW — WA[p <[[Allr + [[(A - A)®lp + [[T][|A = Al
It is left to show that
AW — WAl > min{N_1 — A, A — Ayt H .
To this end, from the facts that A = WAWT + \/I\ICKC\/I}E and that I = WW¥T 4 \/I\lc\/I\lZ it follows that
AU — WA =0 (AP"T — U"WA) +¥, (AT T — TTWA).
Sl SQ

Further,
IA® — A|2 = [ TS + U.Sof2 = trace [(@sl +0,.8,)" (TS + @ng)]
= trace [STS; + S5 Ss] > trace [S3Ss] = ||Sa]|2.

Proceed to lower bound the term [|Sy||r. For real matrices Ti, Ty, T3, we write vec(Tp) as the
vectorization of T; formed by concatenating column vectors of Ti, and denote by T; ® Ty the
Kronecker product of matrices T; and Ty. Using the identity vec(T1T2T3) = T3 ® Tivec(T2) for
any matrices Ty, Ty, T3 with appropriate dimensions, we have
1So]lr = [ ¥TOA — A BT = [[vec(L,_r T A) — vec(A TTWL,)|
= |A ®I,_pvec(¥T W) — I, ® Acvec(T W)
> min{\_1 — A Ar — Argr Hivee(¥2®) || = min{ A1 — Aiy Ar — Ag1 [ @I

This concludes the proof. O
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Lemma A4. Suppose Assumption 1 holds. Let Dy be the diagonal matriz of k singular values of
F/\/n. With high probability at least 1 — oy,

ID? — 1|y < Loky/logp/n.

Proof. This claim immediately follows from Lemma Al. Indeed, let V be the right singular vectors
of F then

ID* ~ Il = [[VTFTFV/n —I|e = [VI(FF/n ~ DV||e = [F'F/n—1|.

O
Proof of Theorem 1(a). It suffices to bound
[X*X/n —BB"|| < Lipy/logp/n
for some constant Li, then Weyl’s theorem on perturbed eigenvalues can apply. Indeed,
X™X/n — BBT = (FB” + U)"(FB” + U)/n — BB”
= B(F'F/n — I)B” + U"FB" /n + BF"U/n + U™U/n.
Each of four terms can be bounded by Lemma A1l and Assumption 2(i)(ii). Precisely,
IB(F'F/n—DB"| < |B|*|F"F/n —I|| < Mip x Lov/k?logp/n,
[U"FB"/n|| = [BF"U/n| < [B||[F"U/n|| < \/Aip x Lo/ kplogp/n,
[UTU/n| < [[UTU/n - S| + |2 = Lov/p*logp/n + O(py/log p/n).
O

Proof of Theorem 1(b). Write the eigendecomposition of B"B/p as RAR™ with A = diag(A1,...,Ax)
being the diagonal matrix of eigenvalues of B"B/p, then

FB™BF* FR FR

— X —==—xA+A ith A = (F B'B/p)A(F'F/n - IR.

DX TR =T A A, with A = (F/Vi)(BTB/p)AFTF/n -
Recall that A = diag(xl, . ,Xk) is the diagonal matrix of k largest eigenvalues of XX /np, and write
the eigenequation of XX /np as
XX' F _F
np vnoon

Let F. be \/n times other n — k eigenvectors XX /np that are orthogonal to those in F /v/n. By the
variant of Davis-Kahan theorem (Lemma A3) and the orthogonality of R,

X A.

IA[|r + [[(XXT — FB"BF")F|[¢/(n*/?p) + |[F/v/nl[| A — Alls

IFIF /n|e < Mkl
¢ Ak — Agr1

Proceed to bound each term in the quotient.

(a) For the term ||F/y/n||, from Lemma A1 it follows that

I[E/v/nl? = 1] = [|[E"F/n| — |1]]| < |F"F/n — 1| < Lok+/logp/n.
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(b) For the term ||A||g, from Lemma Al and Assumption 2(i) it follows that
1Alle < |F/Valle|B*B/pll|FTF/n — 1| < VE|F/Va| |A[|[ETF/n - 1|
<Vk (1 + Ldm/logp/n) x A\ X Lok+/logp/n < \/logp/n.

(c) For the term [|(XXT — FB"BF")F ||y, write

(XX" — FB'BF?)F = XU'F + UBF'F.
By part (a) and Lemma Al ,
IXU™F|le < [|X[[c|[FU| < va| X|[|[FU| = \/npAs x [[F*U|

< \/np(A1 + Liy/log p/n) x /knplogp < npy/log p.

By part (a), Lemmas Al and A2,
|UBF"F|x < ||UB|s|[F||* = p/log p x n (1 + Lok+/logp/n ) < np\/logp.
(d) For the term Xk+1 — A, from part (a) it follows that
Ner1 — 0] < Liy/logp/n, A, — M| < Liy/log p/n.

Collecting these four pieces together yields that, for some constant L,

IFEF/nlle < Ly\/logp/n.

Next, recall the singular value decomposition F/v/n = (F/y/n)DVT in Lemma A4, and write

A =~ _ =~ _ logp/n
IECF/nllr = |[F;FVD ™! /n||p < [[FCF/nl D7 < L’g\/ / < Lyy/logp/n.

1 — Lok+/logp/n —
for some constant Ly. This derives the desired result, as IT = FF*/n, II = FF"/n and
JETE fnlle = [I(T — TR = (1 - TOTT, = [T — 1) /v/2.
O

Proof of Theorem 1(c). Recall the singular value decomposition F//n = (F/y/n)DV? in Lemma A4.
Let V1 and V3 be left and right singular vectors of FTF /n, respectively. Set H=V;VIVT then
|IFH - |l < [EV1V3(I - D)V p + [ (FV, - FV2) V3DV,
< [IFJIT = Df[s + [[FV1 = FVs | D]].
Since |F|| = /7 and all entries in the diagonal matrix D are O(y/log p/n)-close to 1, it is left to

bound the term Hf‘Vl — FVyllp. Let s1,...,s; be singular values of f‘Tf‘/n Clearly, all of them are
bounded by ||[FTF/n|| < |F//nl||||F/vnl = 1. Write

k k
Hf‘Vl — FV,|2 = trace (f‘Vl - f‘Vg)T(f‘Vl - 1~3‘V2)} =2n| k- Z si| <2n | k- Z sjz ,
j=1 j=1

where k — Z?Zl s? is the sin-theta distance (Definition 3) between column spaces of F and F, which

has been bounded by part (b). O
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Proof of Corollary 1. Recall that IT and II are projection matrices onto the column spaces of F and
f‘, respectively, in Theorem 1(b). By the construction of fJ, the estimation error of ﬁj for U; is

written as

~

U; - U; = (I - )X, — IIU;.
Putting it together with Theorem 1(b) yields

1T;/v/n = U;/v/nl| < Lay/2log p/nl|X; /v/nl| + [TIU; /v/n]|.
For the first term,

IX;/v/nll* = [Fb;/V/nl* + [|U;/v/nll* + b]F"U/n

< (1+ Loky/log p/m) b2 + (S5 + Lov/iog p/n) + ;1| x VELov/logp/n,

where b; is the j-th row of B. For the second term, recall that the singular value decomposition of
F/\/n is given by F//nDVT in Lemma A4. Write

U,/ /|| = ||(FE™ /n)U; /|| = [|(F/v/n) VD™ (F7U; /n)|| < |D7|[F7U;/n],

where eigenvalues (diagomal entries) of D are O(y/logp/n)-close to 1, and ||[FTU;/n|| < Loy/klogp/n
due to Assumption 1. O
A.2 Proof of Example 1

This example is a consequence of the properties of subexponential and subgaussian random variables,

which are commonly seen in the literature of high-dimensional statistics.

Definition 5 (Subexponential Random Variable, also Definition 2.7.5 of Vershynin (2018)). The

subexponential norm of a random variable Z is defined as
1Z||p, := inf{t > 0: Ee 121/t < 2}.
A random variable is said subexponential if its subexponential norm is finite.

Definition 6 (Subgaussian Random Variable, also Definition 2.5.6 of Vershynin (2018)). . The

subgaussian norm of a random variable Z is defined as
12|, = inf{t > 0: EeZ* /% < 2},
A random variable is said subgaussian if its subgaussian norm is finite.

Proof of Example 1. We present the proof of the third inequality in Assumption 1 here. The proofs
of the other two inequalities are similar. For each 1 < j < p and each 1 <[ < p, write
1 n
[UTU/n - E]jl = E Z; (uijuil — E[uwuzl]) .
1=
By Vershynin (2018, Lemma 2.7.7), the product of two subgaussian random variables is subexponential.
Formally, ||uijwirlly, < ||wijlle, || willy, = c1. By Vershynin (2018, Exercise 2.7.10), the centered version

of w;juy is still subexponential. Formally, |uijuy — Eluijjuillly, < c2 for some constant cp. By
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Bernstein’s inequality for independent sub-exponential random variables (Vershynin, 2018, Theorem

2.8.2),
1 — . nez ne
P - z;(uijuil — Efujjuq]) > € | <2exp | —c3min % T
1=
for some constant c3. The union bound for all pairs of 1 < 5,1 < p gives that

n

1
P([UTU/n — Bllmax > €) =P <U§—1 Uiz {n > (uijui — Elugjui]) > e

i=1

< 2p“exp | —czming —5, —
C5 (&)

Setting € = /3c3 log p/csn yields that
UTU/n — Z|max < 1/3c3logp/csn

with probability at least 1 — 2/p.

A.3 Proof of Example 2

This example is proven by the truncation technique in the literature of high-dimensional matrix

estimation (Bickel and Levina, 2008; Fan et al., 2011a, 2013) and a generalized version of Bernstein’s

inequality for general-state-space Markov chains (Jiang et al., 2018). A proof is provided here for

convenience of readers, although it is almost the same with that of Fan et al. (2019, Lemma 1),

Proof of Example 2. We present the proof of the third inequality in Assumption 1 here. The proofs

of the other two inequalities are similar. Let the L£o-spectral gap of the Markov chain be 1 —~. Define

a truncation operator
—t ifw<—t
Ti(w) =<Cw if jw| <t

+t if w> +t.
For each 1 < j < p and each 1 <[ < p, write
1 n
U'U/n -3 = - Z (wijuy — Elugjug]) < Diji + Doji + D3y,
i=1

where

Dy = |- Z]ET (wijuqr) ZE Wi Uit
D2jl =|= Z T uzyuzl Z U5 UG
D3jl == Z T ul]ull - = ZE ul]ull

)

(14)

Using the fact that | T;(w) —w| < |w|1{|w| > ¢} < |w|?/t, Cauchy-Schwarz inequality and the assump-

tion that |u;;(2)] < u(z),

C4

InaXD1ﬂ<maX—ZE|uwuzl| ] <maX—ZIE §7.
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Similarly,

1 & A c +o,(1)

max Dy < max — < P
Jsl 2t 3l tn ; i = t

where + S5 ut — IE[ 1] < ¢* almost surely by the Strong Law of Large Number for Markov Chains.

=1 "1

Note that |T:{W] —ET:[W]| < 2t. Applying the Bernstein’s inequality for Markov chains (Jiang et al.,
2018, Theorem 1.1) yields

P(Dsj; >€) <2exp | — ne’
i € X s
31 2. H . Ln,t + ].OtE

with

ZVar{T tluijuik]} < — ZE uzjuzk

The union bound of all pairs of 1 < j,1 < p gives that
]P’( Dii > ) < 2p? ne’
max D3 € exp | — )
Sk =P exp 2-%-644-10156

_ e 1+7 _ 14y logp
Let t = 554/ 122 1ng,amde 3c? T— Then

1 lo
max Dzjp, < 3¢? ~ 7y losp
j.k l—v n

with probability at least 1 — 2/p. Putting upper bounds for max;; D1, max;; Dyj; and max;; Ds;
together completes the proof. O
B Technical Proofs for Bayesian Sparse Regression

This appendix details the proof of Theorem 2. Throughout the proof, let P(, o g) and I@(U,aﬁ) denote
the probability measures associated with the data generating processes Y = Fa + U3 + o€ and
Y = Fa + ﬁﬁ + o€, respectively.

B.1 Proof of (11)

Suppose Assumption 5 holds. For any model £ of size at most (1 + Mjy)s,
10¢ = Uell < 10¢ = Uglle < /(1 + Mo)smwlax||U; = Uj| < La/(1+ Mo)s logp.

implying

i Aan(O0e/n) 2 (ko — Lo/ T Mo)sogp/m) 2 /A
miax [ U /v/nl| < miae [ U /v/nl] + mia [ U /v = Uj /V/ll < 1 + Lay/log p/n S 261.
The last bound is derived as follows.
|(FHa" +TB") — (Fa* + US| < |[FH - Fllefj’]| + max | T; - U;1]118"]
< Llo*||\/log p + Lal|B*|[\/s1ogp < Lso*v/ney.
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B.2 Proof of (12)

Let NV (y|u,X) denote the density function of the multivariate normal distribution. Using a change-

of-measure trick and Cauchy-Schwarz inequality, write
]P)(U*,Ol*7ﬁ*) (51 |:E‘7 U, f, fj, H)
- / HRAR, T y) > e Olosr ) Ny [For +UB", oT)dy

N(y|[Far + UB*, 0*21)
N(y|FHa* + Ug*, 0*20)

- / 1 {%(A0|f,ﬁ,y) > e—Clslogp} % N(y|FHa* + UB*, 0*21)dy
A R =R 1/2
< [ [ 2 {FATR T.y) > e (| FHa + Uﬁ*,a*21>dy]

1/2

2

Fao* * *21 R R

/ Ny[For + UB"0™1) o iFHa + 08, 02 D)dy| |
N(y|[FHa* + UB*, 0*21)

™ NENEL = * T ax * * (12 *2
— |Blor 1o o) (EIF, 0)] 7 x exp (|(FHQ” + UB”) — (Fa* + UB)|2/20°2)

The second term is bounded by eZ851°87/2 due to the last bound of (11). This concludes the first
bound of (12). Other bounds of (12) are proven similarly.

B.3 Proof of (13)

The below theorem concern the estimation error rate, the prediction error rate and the model selection
consistency of Bayesian sparse regression for the data generating process Y = Fo + [AJ,B + oe with
fixed design [f,ﬁ] and true parameters (o*, a*, 3%). Substituting o*, ko, K1, M2, M3, M, in this
theorem with Ha*, ko/2, 2k1, My/2, M3/2, M,/2, respectively, proves (13).

Theorem 3 (Bayesian Factor-adjusted Sparse Regression with Fixed Design). Consider data gen-
erating process Y = Fa + ﬂ'ﬁ + oe with fixed design [ﬁ,ﬁ] and true parameters (o*,a*,3*). Let

@(a,a,ﬁ) denote the probability measure associated with the data generating process. Suppose

F'F/n=1, F'U/n=0

min  Auin(UFUg/n) > w3
: <(Mp+1)s
& [61<(Mo+1) (15)

miax [T < iy
j=1
e’ <1, 187 < 1.
The following statements hold with some constants My, Mo, Ms, My.
(a) (Estimation Error) For any constants Cq,CY such that C1 + C] < My — 2,
7(A(0*, %, B, Mo, My, My, M3, ¢,)|F, U, Y) > e~ Creloer
with I/P\’(U*,a*ﬁ*)—pmbability at most e~ C15108p,
(b) (prediction error rate) For any constants Ca, CY such that Co + Ch < My — 2,
7(|(Fa+UB) — (Far + US| > Myo*v/nen|F, U, Y) > ¢~ C2slogp,

with I@(J*?a*ﬂ*)—pmbability at most e~ C2s108p,
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(¢) (model selection consistency) Suppose minjees |85 > v/8Moosen /Ko in addition. For any con-
stants Cs, C% such that Cs + C4 < My — 2,

%(AC(O'*, Oé*,I@*’ M(]’ M17 Mg, Mg, 6n) ] {5’ 2 5*}|f‘,ﬁ,Y) > e—Cgslogp
with I/P\’(g*,a*ﬁ*)—pmbability at most e~ C3slogp,

Next lemma, borrowed from Barron (1998, Lemma 6) and Song and Liang (2017, Lemma A4), is
the central technique to prove Theorem 3.

Lemma B1. Consider a parametric model {Py : 8 € ©}. Let ©g, and O, be two subsets of the
parameter space. Let {Dy}n>1 be a sequence of data generations according to true parameter 0*. Let

7(0) be a prior distribution over the parameter space. If
(1) 7"'(@On) < 50n;
(2) there exists a test function ¢ (D) such that

sup Eg(l - d)n) < 51n’ E0*¢n < 5/17;,7
0cO,

(3) and

Py. <f 7(0)Pg(D,,)dO

< < ¢
Pg-(Dy) = 52”) < Oy

then for any 63y,
5071 + 5171
52716371

The intuition of this lemma is that any less preferred parameter guess 8 € 0, U ©,, should either

Po- <7r(@0n Ue,|D,) > ) < 8%, + 05, + Oan.

excluded by the prior (for @ € Oy,) or distinguished from the true parameter 8* by a uniformly
powerful test ¢, (for @ € ©,,). We are going to set up suitable ©,, and ¢,, for each part of Theorem 3
and apply Lemma B1.

Lemmas B2 to B5 are useful to verify three conditions of Lemma B1 in the setup of Theorem 3.
Lemma B2 is a novel tail probability bound for the Binomial distribution taken from Pelekis (2016,
Theorem 1). Proving Lemmas B3 and B4 takes a substantial amount of work. We postpone their

proofs to the next subsection.

Lemma B2 (Theorem 1.1 of Pelekis (2016)). For random variable Z ~ Binomial(p, q), ifpqg <t < p—1

then )
2(t+1

Pz>ty<t _— (P P,

2 t+1 t+1

where t = | (t — pq) /(1 — q)] < m.

Lemma B3. Let o stand for any small constant. In the setup of Theorem 3, the following statements
hold.

(a) Let

€\ €| < Mos,
2
O = (G’a’ﬁ):ig 1 — Mie, 14 Mje, )
o*2 1+ Me,’ 1 — Mie,

¢1n =1 { max
" & |6\er|<Mos

¥ 1 FF 0 - Oger Ol | Y/ - 1] 2 b,
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then

E (o ar,g)b1n S exp(— (M7 /8 — My — 0)slog p),
sup  E(ya8 (1 — d1n) S exp(—(ME/8 — 0)slogp).

(Uvaaﬁ)ee)ln
(b) Let
€\ €[ < Mos,
2 1— Me, 14 Mie
@ = 27 ) : L = = )
2n (U 87 /6) o2 € |:1+M1€n’ 1—M16n )
|l — || > Mao™ep,
Pon = 1 {Hf‘TY/n PN MQU*en/z} ,
then
E(a*,a*,ﬁ*)@n < exp(—(MQQ/S —o0)slogp),
sup  E(y a8 (1 — ¢on) S exp(—(M3/8 — 0)slogp).
(O’,a,,@)€®2n
(c) Let
( 1€\ €% < Mos,
o2 c 1— Me, 1+ Mlen]
@37’L: (0’2,0,,6) : o*? 1+M1€n? 1_M16" ’ ’
|la — || < Mao™e,,
18 = B*|| > Mso™en/ ko )
_ 7t
then
E(g*,a*,ﬁ*)%n < exp(—(M32/8 — My — o)slogp),
sup  E(ya.8)(1 — ¢3n) S exp(—(M3/8 — 0)slogp).
(U7a,ﬁ)€®3n
(d) Let
1€\ &*] < Mys,
2 1— Mie, 1+ Mje
O, — 27 : : L c 1€n 1€n ’
n (0%, e, 8) o*2 14 Mie,’ 1 — Me,
|(Fo+TB) — (For + TBY)|| > Mao*V/nen
_ ot - =% (A T 2% *
ban =1 {5: s [FF +U§U§*U§U8} Y (Fa + U8 ) ’ > Myo \/ﬁen/Q},
then

E(O’*,a*,,@*)¢4n < exp(—(Mf/S — My — o0)slogp),

sup  E(pap)(l— ¢an) S exp(—(M37/8 — o)slogp).
(0,0,8)€O4n,
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(e) Suppose minjees |B5| > Mso™en /Ko in addition. Let

1€\ &*] < Mys,
o? [1—M16n 1+M16n]
Osn =1 (0%, a,B): 0~ [1+ My’ 1= Miey

|l — || < Mao™ey,

\ §2¢ )

b5n = 1{ min (ﬁ UL .. T ﬁT) YH < Mso*\/ne 2},
o £26% [E\er|<Mps ||\ ST e T e n/
then
IE(a*,oﬁ,ﬁ*ybsn < exp(—(MZ/8 — o)slogp),
sup E(g,aﬁ)(l — ¢5n) S exp(—(M§/8 —o0)slogp).
(U,a,,@)e@5"
(t) Let
€\ €] < Mos, )
i c 1 — Mye, 14 Mie,
) o*2 1+ Mie,’ 1 — Mie,
O¢n = (U 70"’6):525*, 5
|lae — || < Mao™e,,
18 — B[] > Mzo™en/ro
=1 UlY — B|| > Mso*e,/2
o =1{ o x| OY = G711 > Mao*ea /20 |
then

E(U*,a*,ﬁ*)%n < exp(—(Mg/S — My — o)slogp),

sup  E(ga, (1 — don) S exp(—(M3/8 — 0)slog p).
(o,0,,8)EO6n,

Lemma B4. In the setup of Theorem 3, for any constants Cy > 2 and C} > 0,

F U3. o2
I/P\)(U* o84 / ./\/’(Y/|\Fa +P;67 g I) dﬂ'(O‘, Oz,,@) < e~ Caslogp < e—Cislogp‘
o N(Y|Far +UB*, 0*21)

Lemma B5. For parameter subspaces ©;, j = 1,...,m and test functions ¢;, j =1,...,m,
sup [Eg (1 — max qu) < max { sup Eg(1 — ®j) ¢ -
e, o, j=1 J=1 | 6co;

Proof of Lemma BS.

sup [y <1 — Igliéll,lx gbj) = max

USELNCY { i
m m
= max < sup Eg ( min(1 — ¢)
J=1 | 6eo; k=1



Proof of Theorem 3(a). Verify the three conditions of Lemma B1 with
Oon = {(0%, @, B) : [€\ & > Mys}, ©p = 0O1,UO2,UBz,, ¢y = max{din, d2n, P3n},
where O1,, O, O3y, d1n, Gon, ¢3, are defined in Lemma B3(a)(b)(c). Evidently,
Oon U Oy, = Opp, UBO1, UBOs, UB3, = A°(c*, a*, 3%, My, My, My, Ms, e,).

Applying Lemma B2 yields that

1 s 2(M05—80+1) —(MoS—SO—l-l) _ B
7(O0n) < w(le] > Mos) < 5 (;) <MOS v 1) < gy = e (Molos,

From Lemma B3(a)(b)(c) and Lemma B5, it follows that

~ ~ (mind M2. M2 M2 /8—
S(l)lp E(U,a,ﬁ)(l — ¢n) < ir:nlag(g S@up E(U,a,ﬁ)(l — d)zn) <dip,=c¢ (min{M7{,M5,M5}/8 o)slogp7

E(J* a* ,3*)¢n < Z IE(J* a* B*)¢in < 5/1n =e min{M%7M22+8M0’M§}/8_M0_0)S10gp'
i=1,2,3
By Lemma B4, the third condition in Lemma B1 hold with

Son = e—C4slogp, 5& _ e—Cﬁslogp

n

for any Cy > 2 and C} > 0. Setting sufficiently large My, My, M3, C and suitable C7, Cy, 3, such

that 5 5
on 1+ 01n < e—(Mofczlfc'{)slogp7 lln +6én+63n < efC{slogp
62715311

completes the proof. ]
Proof of Theorem 3(b). Verify the three conditions of Lemma B1 with

On =01, UO2, UBup,  ¢n = max{din, doan, dan},
where O1,,, O, Ogn, G1n, G2, G4 are defined in Lemma B3(a)(b)(d). Evidently,
Oon U Oy = Ogn UB1, UBs, UBy, 2 {(0%, 0, 8) : ||(Fa+ UB) — (For + UBY)|| > Myo* ey}
From Lemma B3(a)(b)(d) and Lemma B5, it follows that

~

sup E(U,a”@)(l — (Z)n) < 'rnla2x4 sup E(U,a,,@)(l — ¢zn) < 1p = e*(min{M%MzQ,Mf}/B*O)Slogp
(C) =1%4% 9;,

n 3

~ ~ ~ . 2 272 27 /@ M
E(U*7a*,ﬁ*)¢n < E(J*,a*,ﬁ*)(bln + E(U*,a*,ﬂ*)¢4n7 < 6171 =€ (min{ M7 ,M5+Moq,M};}/8—Mo o)slogp_

The other two conditions of Lemma B1 have been verified in the proof of part (a). O]
Proof of Theorem 3(c). Verify the three conditions of Lemma B1 with
Oy = O1, UBO2, UBOs5, U B,  ¢n = max{@in, P2n, P5n, Pen}
where O1y,, O2y,, O5, O6n, P1ns P2n, Psn, Pn are defined in Lemma B3(a)(b)(e)(f). Evidently,
Oon U BO,, = Og,, U B1, UO2gy, UBs, UBg, = A°(c™, ™, 3%, My, My, Ma, M3, €,) U{E P £}
From Lemma B3(a)(b)(e)(f) and Lemma B5, it follows that

Sup]ﬁ(a,a,ﬁ)(l — d)n) < max sup E(o,a,ﬂ)(l — ¢2n) < (51” = min{M12,M227M32,M52}/870)slogp
@n in

i=1,256 o
~ ~ . 2 272 2 272 Y
Eigrary0n < Y Eiorar g bin < 0, 1= e ({IMLMoH8Mo, My, Mo +8Mo} /8= Mo —0)slogp

i=1,2,5,6

The other two conditions of Lemma B1 have been verified in the proof of part (a). O
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B.4 Technical Proofs of Lemmas

The proofs of Lemmas B3 and B4 use two preliminary results as follows.

Lemma B6 (Probability bounds of chi-squared random variables). Let X?z be a chi-squared random

variable of degree d, and o stands for any small constant.

(a) For any €, such that ne, > d,,

(’ﬂ€n+dn)2 nentdn }

IP)(Xi—dn/n >1+4e,) < e mm{ 8(n—dn) * 8 :

(”Len—ﬂln)2 nep—dn }

P(Xiidn/n S 1_ En) S e— mln{ 8(n—dn) ’ 8 7
In addition, if €, — 0 but ne, = dy,

P(X%—dn/n >1+e)
P(xp_g,/n > 1+ €n)

e—(l/S—o)nE%

S
<e (1/8—0)ne2

(b)
BOG, > t) < (VI di—Vi) /1

In addition, if t,, = dy, then for any t, such that fn/tn — 1

P(xG, > ta) S e /2700,

Proof. For part (a), the first assertion follows from the sub-exponential tail of chi-squared distributions,

and the second assertion is due to

+dy)? _ ne,+d
1 _ 2 < (nen n) n n

—dn)? _ ne,—d
1 _ 2 < (nen n < n n

For part (b), the first assertion is a corollary of Laurent and Massart (2000, Lemma 1), and the second

(1/2 — 0)tn < (\/215,1 “d, - \/CTH)Z /4.

assertion follows from

O]

Lemma B7 (Lancaster and Tismenetsky (1985, p. 294)). Suppose a p X p symmetric matriz S has

S S
g_ 11 Si2 ’
So1 Soo

where S11 is a non-singular principal submatriz of S. Then

the partitioned form

Amin(S22 — $21871S12) > Amin(S).

Proof of Lemma B3(a). Under the null hypothesis,

E(or 84010 = Por o p4) < o 8 €7(1— FF"/n — Ugue Ul o )e/n — 1] > Mlen) .
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Projection matrices ﬁé‘lug*ﬁz/ué* < ﬁg“ug*ﬁguug* for nested models ¢ C ¢’ and thus the term
sTﬁgug* ﬁzug*e achieves its maximum value at some & with [£] = Mps and £\ £ = () and its minimum
value at € = (). Thus

E(orar,p)P1n < > P(ov.0,87) (sT(I ~FF"/n~ Uge Ul e )e/n < 1~ Mle”)
& |€|=Mos, E\Ex=0
+Bor o g (ET(I ~FF'/n—UaUl)e/n>1+ Mlen)

- S
- <€\408>P (X?z—k—(HMo)s/” <1- Mlen) +P (X2 j_s/n > 1+ M) .

Applying Lemma B6(a) yields
E(o* o ﬁ*)¢1n < (pMos + 1) « ef(Mf/Sfo)nei < ef(Mf/SfMofo)ne,%‘
Under the alternative hypothesis, write ¢1, = maxer. |ene+|<nps (bg/n with

o5, = 1{|Y" 1= FF"/n - Oee UL .| Y/00™2 = 1] 2 Mien }

£U£*]
then, by Lemma B5,

~ -~ 5/
sup E 1—¢1n) < max sup 1—¢5 ).
ok Foapl =0m) S M8 rts o, n{g=¢} Hoam(l = i)

On each partition Oy, N {& = &'} of Oy,,, due to the restriction ;—*22 & [111\]\222, Eﬁiﬂ of O1,,

IE(U,Ocﬂ)( ¢ ) = aa,ﬁ) ( e’ [I —FF"/n - ﬁfug*ﬁzue} e/n x (62)0*?) — 1‘ < Mlﬁn)
(0,c,8) (eT [I — f‘f‘T/n — ﬁ&uﬁ*Ugug*} e/n ¢ [l — M€y, 1+ M16n]>
(0,0,8) (Xi—k—|§u§*|/n Z[1— Mien, 1+ Mlén])

(Xn k(14 Mo)s/ M < 1 — M1€n> +P (X2 _p_s/n > 1+ Mie,)

This bound holds for any £ such that |¢' \ £*| < Mys and any (0, a, 3) € O1, N{ = &'} Applying
Lemma B6(a) yields

IN
=)

Il
'ﬁ =)

2

sup E(a,a,ﬁ)(l — p1p) S e”ME/8omne

9171
]
Proof of Lemma BB(b). Under the null hypothesis,
B+ o 8620 = Pov g (IE7e/nl| = Macn/2) = P (i} = Minel /4) < e~ (ME/5=oine,
where the last step uses Lemma B6(b). Under the alternative hypothesis,
IE(a,oz,,@)(l - ¢2n) = @(U,a,ﬂ) (Ha —aF + U]:‘/;TE/nH < M2U*€n/2> .
Using the restrictions |a — a*[| > Mao™e, and % CACES h%i" of O©9, and Lemma B6(b),
~ =~ 1-— M1€
E(a,a,,@ (1—¢2,) < aa,,fo’ <||FTs/nH > \/ m X M2€n/2>
1 — Mie 2 e 2
_p <Xz - A Mgneg/4> < e~ (M3/3omdt.
]
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Proof of Lemma B3(c). Under the null hypothesis, write

E * o* [3* — ]/P\) * o* . (3* ﬁT * > M 2

D Tt Ty 2 2 2

Using the fact that Ul*,. Ul

2
cugr CPeugr = (”’*30) UéU&*Ugug*v

i P U Ut 2, 2
E(a*,a*,ﬂ*)¢3n S P(O’*,a*,ﬁ*) <£ ‘5{?3;(]\/[08 ETUgué*Ugug*e Z M3 nEn/4> .

Projection matrices ﬁ&’ué*ﬁgug* < US”Uﬁ*Ug”ug* for nested models ¢ C ¢”, and thus the term

sTﬁgugﬁzug*e achieves its maximum value at some £ with |£| = Mys and € \ " = (). Thus

E(J*7a*7ﬁ*)¢3n < Z I@(J*,a*ﬂ*) (sTﬁgué*ﬁzug*s > Mgnei/4>
& |€|=Mos, E\&*=0
- @4—0 )P (ctiaags 2 Minet/4)
Applying Lemma B6(b) yields
E(U*,a*,ﬂ*)¢3n < pMose—(M§/8—0)n6% — o~ (M3 /8—Mo—o)ne;,
Under the alternative hypothesis, write ¢3n, = maxer. [0 ¢x|<Mps gbg; with

65 =1 {Hﬁgwy — Bl > Mga*en/zﬁo} ,
then, by Lemma B5,

sup E 1—¢3,) < max sup E 1-— ¢£/ .

ob Boaml = 0m) = o N e 6 =gy P (1= 50)

On each partition O3, N {§ = &'} of O3y, due to the constraints ||Beugs — Bie- | = 118 — B[ >
Mjzo*e, /Ko and Z o SN 1;]\]\2:: of O3,

E(a,a,ﬁ)(l - ¢§n) IP)(cr a,3) HB{UE* Bgug* + O-Ugug*EH < MSU 6n/2"‘€0)

~ M1€
< Ppap) <| £u§*5\|> HTn M3€n/2HO>

— Mye, 2 2 2
= P(O’,aﬁ fo* £U§*€ > + Milen X M3€7Z/4K'0

Using the fact that Ugug*Ugug* < (nli%) Uéu&*Ugug* again,

~ / ~ ~ ~ 1 — Me
E(oa8) (1 — 65,) < Ploa,p) <€TU5U§*U§ug*€ > Tw: x Mie,/ 4%3)
— Mien 2, 2
= P(aa,ﬂ) <X|§U§*| > 1+ Mie, Mgnen/él
— Mie
2 1€n 2,2
S P <X(1+M0)S > m X M3nen/4> .
This bound holds for any £ such that |¢ \ £*| < Mps and any (o, a, 3) € O3, N {{ = &'}, Applying
Lemma B6(b) yields

IE(O.* o* ﬁ*)¢3n 5 67(M32/870)n627‘.
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Proof of Lemma B3(d). Under the null hypothesis,

E(o*,a*,ﬁ*)¢4n = P(a*,a*,ﬁ*) ( max [f‘/F\‘T/TL + Ufo*ﬁzué*} EH > M4\/ﬁ€n/2)

& |§\E*|<Mos

_D T 2 2
= Flovaren) (5: e < Mos [FF /n+ Uﬁuf*Uw&*] €= M4n6”/4>

Projection matrices ﬁg'ug*ﬁzrug* < ﬁé”uﬁ*ﬁz”ug* for nested models & C £”, and thus the term
ETIAJ&JE* ﬁzug*e achieves its maximum value at some ¢ with |£| = Mys and € \ € = (). Thus

E(U*,Q*,B*)¢4n S Z @(U*,a*,ﬁ*) (ET |:]/_";:/F\T/'I’L + ﬁgus*ﬁzué*} & 2 MZTLG%/ZL)
& [€|=Mos, E\&*=0
p—s 2 2, 2
- (MOS>P (cEscrsasge 2 Minei/4)
Applying Lemma B6(b) yields

~ o
E(a*,a*,ﬂ*)¢4n SPMOS —(M2/8—0)ne2 _ —e —(M7 /8—Mo O)Slogp.

Under the alternative hypothesis, write ¢4, = maxer. |enex|<iys gbi/n with

5= 1 {[[FE i+ O O] ¥ — (Bar 4 00) | 2 i e 2]
then, by Lemma B5,
sup E(g a,8)(1 — ¢4n) < sup E(s,a,8) (1 — ¢in),

Oun & 2¢*: |§’\§*|<M03 O4nN{E=¢'}

On each partition O, N {& = &'} of Oup, due to the restrictions ||(Fa + UB) — (Fa* + UBY)|| >

* 0‘*2 I—Mlﬁ
Myo*/ne,, and Zz > rar s of Oup,

Eap) (1 = ¢5,) = Poap) (I(Fa+ UB) - (Fa™ + TBY) + o(FE" /n + e Ul e Jel < Mao* Ve /2)

~ AN -~ P M16
Ploap (u<FFT/n + e Ol el 2 \ [Ty x Mivi en/2>

— Mie, 2 2
(0,0,8) (Xk+|§U§*| = 17 Mie, x Mine, /4

M
SIP’( 71% aneiﬂl) .

IN

=)

Xk+(1+Mo)s = 1+ Me,

This bound holds for any £ such that |¢' \ £*] < Mys and any (o, a, 3) € Oy, N { = &'}, Applying
Lemma B6(b) yields

sup By (1 — dan) S e Mi/5-0Ime

4n

U

Proof of Lemma B3(e). Claim that
min Ugue Ul *—ﬁfﬂ)ﬁ*** > Mso™\/nep,. 16
£2¢6": 1€\6*1<Mos (Teve: Ol — UeO}) Ui | 2 Mso* Ve (16)
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Indeed, for any £ 2 & with [\ &] < Mpys,

2 2 2
_ 6.5 g | — 5o . g
= [[(1-e0L) Tz || = || (1-0e0L) Teereze

_ 4T & et 6
= B Ul (1= TeU]) Ugn\efBene

| (Tewer UL, — 0O} Ue- -

Note that UE*\& (I — ﬁgﬁf) ﬁg*\g is the Schur complement of the principal submatrix ﬁg*\gﬁg*\é in
the matrix Ugug*UwE* By Lemma B7,

Amin (62*\5 (I - ﬁgﬁé) ﬁg*\g) > Amin (I/jgug*ﬁgug*) > n/@g.

Putting the last two displays together proves (16). Under the null hypothesis, using (16), the fact
that ﬁgug*U UgU < Ug*UE* and Lemma B6(b),

guEr
™ _ ™ . T T\ (17 * * *
E(o+ a8 P50 = P(or.ar %) (525*: min ”(Uguf*Ugug* UcUy)(UesBex + 07e)|| < Mso \/ﬁen/2>
<P

&8t _e.ot
(770t (@e*: I i (Ve Ueiee = UeUglell = Msv/nen/ 2)

< Plorar ) (10 Tlaell = Msv/nen/2) =P (32 = Minel /4) S e” M /5—omel,
Under the alternative hypothesis, write ¢5, = maxe zes. [en\ex|<Mys qsgln with
65, = 1{||(Teve: Ul — UL ) Y| < Mso* Vinen /2
then, by Lemma B5,

su Ega 1-— su IEUQ 1—¢f).
o A=) = e B vt eg,nm{? o 7 {1 =4

On each partition ©g, N {§ &'} of Oy, using the restriction <5 P> LoMien of Os,, and the fact that

1+Mien
UL Ul e — U UL < U UL, again,

Bl (1= 65) = Poag) (H(UgugUéug* U 0)oe| > M5J*\/ﬁen/2>

o~ o PN, 1— Mie,
(0,,8) <H (Ugug*Uéug* — UfUS) EH > \/J X M5\/ﬁen/2)

IN
)

~ ~ o~ /1 M16
< ]P)(cr,a,,@) (HUE*UE*€‘ > 1 —|—M1 Z X M5f€n/2>
— Miep 22
=P ——— X M, 4] .
( 1+M en 5”677,/

This bound holds for any ¢ 2 £* such that €'\ & < Mys and any (0,,8) € O, N {& = &'}
Applying Lemma B6(b) yields

SUp By ) (1 = $5n) S e~ Me/8700e:

5n
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Proof of Lemma B3(f). Since ¢g, < P3p,
]:E(o-*7a*7ﬁ*)d)6n < E(a*,a*,ﬁ*)%n < e~ (M3 /8—Mo—o)slogp
Under the alternative hypothesis, write ¢g, = maxegses. (en\ex|<Mps gbgln with
o6, = 1{I1OLY — Byl > Myo"e, /200

then, by Lemma B5,

A~ ~ é—/
sup E 1= gen) < max sup E 1— ¢z ).
Oon (0'7(1»6)( ’VL) &Dex: |€\E*|<Mos Osnn{e=¢} (U7a7ﬁ)( 671,)

On each partition Og, N {{ = &'} of Og,, note that gbgn = gbgln and reuse results in the proof of part
(b).

~ / ~ ’ 1-— M1€
B0 (1 = #60) = Bioa (1 = 65,) <P <X%1+Mo)8 > T g X Minen/ 4> :

This bound holds for any ¢ D &* such that |¢' \ £ < Mps and any (0,,3) € Og, N {E = ¢'}.
Applying Lemma B6(b) yields

=~ _ 2 /q_ 2
Sup E(5.0,8) (1 = dn) S ¢ (Mg /8=one;,
6m

O
Proof of Lemma Bj. Define
o?/o*? € 1,1+ n1€2],
A= Aymm) = { ap): © 5
laj —aj] < o*neen/Vk,j=1,...,k
|6] - /8;| < Tj0*7726n/5aj € g*a
Evidently,
Y|Fa + UB, 021 Y|Fa + UB, o021
/ M ,‘\ a+A B,0°1) dm > w(A})inf M ,|\ a+A'B’U ) :
N(Y|Fa* + UB*, 0*21) AL N(Y|Far + UB*, 0*21)
Suppose at this moment we have shown that
SO Y|Fa + UB, 01 ;
e"(FF' + U Ul )e < 3Cinel = inf NX|Fa+UB oD  —cysiosp, (17)
AL N(Y|Far + UB*, 0+21)
with C} = (1 + x3/k3)n3/2 + \/3C}(1 + k1/ko)n2 + M1, and that for any constant o > 0
W(A:(L) z e—(2+o)slogp' (18)

Then, if Cy — CJ > 2 and n is sufficiently large
N U 2
T S e—C4slogp _— lnf N(YJFQ +P/870- I)
A N(Y|Far + UB*, o*21)
— "(FF' + ﬁg*ﬁg*)s > 3C)slogp

< 6_04/1/5 logp

/ N(Y|Fa + UgB, 21
N(Y|Fa* + UB*, o*21)
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The last event happens with probability IP’(X%JFS > 3C)slogp) < e~C1s18P  due to Lemma B6. For
given constants Cy > 2, Cj > 0, choosing sufficiently small 71, 72 such that Cjy < Cy — 2 would
complete the proof.

Turn to prove claims (17) and (18). For claim (17), write

N(Y|Fa + U, o21)
N(Y|Far + UB*, o*21)

—log = |Y = Fa —UB|?/20% — ||[Y — Fa* — UB*|?/20*? + nlog(c?/0*?)

= o*e + F(a* — ) + Ue: (Bt — Be-)[*/20° — ||e]|*/2 + nlog(0? /™)
< |[F(e* — a)[*/20% + || U (Bex — B+ )IIP/20
+ 0 "F(a* — a)/o? + a*eTfIg* (B — Be+) /) + mne..

Note that 7']-71 = ||IAJJH/\/71 > ko for j € &, and ||ﬁ§*|\ < ||ﬁ§*HF < k1v/s. Each term is the last

display can be bounded as follows.
IF(a* = @)I/202 < Amax (F'F ) l|o* — a|?/20% < n3nel /2
[0 (82 — Ber)lIP/20% < Amax (UFTgr ) 1182 — B |2/20% < minel /263
e "F(a* — a)/o® = e"FFF(a* — a)/o* x 67 /o?
< F1FTe] x [F(a — a)/o"] x 1
< 1/3Ci\V/ney, x mav/ne, = 3C’fl772nei
O'*E?Tﬁg* (BE — Be+)/o* = ETﬁE*ﬁz*ﬁg* (B* — B)/o* x (672 /5?)
< UL Ugeell x [T (B2 — Be) /"] < 1
< 1/3Ch/nen x nakivnen/ko = \/3C mak1ne? /ko.
Putting these bounds together proves claim (17).

For claim (18), note that o*, ||a*||, ||8*], and Tj_l = H[AJ]H/\/H < k1 for j € £ are assumed to be
of constant order. For all (o, ¢, 3) € A7 (m1,m2), find constants c¢;, co such that

| < |ad| +meoten/VE <1, j=1,....k

185/ 7j| < |B7/7jl + mec*en)s < ca,  jEE

Then

k

s ro*2(14n1€2) ok +n20*en/Vk
* 50 2\ 7 2 !
(A} (1,12 :< > / g(o“)do ><||/ h(aj)dao
(Al ) p o*2 @) j=1 aX—mao*en/Vk ( ]) !

,B;/Tj—i—nga*en/s
« 1 /ﬁ BB 73)d(85/75)

jegr I B /mimmaten/s

k * S
S0 *2 2 *2 2na0*e, . > (2?720’ €n . >
> —=] Xo eqg(o 2 X inf hi(z X [ ———= inf ho(z
[t <p > m ng( )/ ( \/E zi<er 1( ) s e 2( )

— cgef x s (@+h+8)/2 o —(24h+s)/2

2+k+s)/2—s o ( (240)s

log p) Xp f2p

with ¢z = 28 bR g(0*?) [inf . <, 7 (2)]F, ca = 250120 infz|<c, ha(2). m
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C Gibbs Sampler

For the prior (8), we set g as the inverse-gamma density function with shape ag = 1 and scale by = 1,
hi(z) = N(2]0,0%) and ha(z) = N(2]0,03). A Gibbs sampler is implemented to learn the pseudo-
posterior distribution %(a,a,,@|f,ﬁ,Y) given by (9). This Gibbs sampler converges towards the
pseudo-posterior joint distribution of (02, a, 3) by iterating the following steps: (1) draw & given a
and o2, (2) draw 3 given &, a and o2, (3) draw « given &, 3 and o2, (4) draw o? given &, 3 and a.

For simplicity, implementation details with 7; =1 for j = 1,...,p are presented.

(1) For the conditional distribution of &, write

B0 : Y — Fal?
%(f = @’0’27a,F,U7Y) = <1 _ SO) % (2770.2)771/2 exp (_HC)£||>7
p

202

and, for & # 0,
- > & so \" IY — Fa — U 2\ lel/2 I8¢ 112
7(&, Belo*, o, F,UY) ]7—750 exp | — 552 (2mo7) exp _W )
It follows that

7(Elo®, o, F,UY)  [7(5 Belo® o, F, U, Y)dB;

%(®|02,a,f‘,ﬁ,Y) ﬁ(@|02,a,f,ﬁ,Y) 19)

€] T T
_ S0 13 _Iﬂd t(S 1/2 Y UwaUwY
(p— 80) oSlo M det(Se) ™ exp —r |

where S¢ = (ﬁgﬁg + J2Uf 2I)_l. However, it is computationally prohibitive to directly sample
from this conditional distribution, as & takes 2P possible values. As a remedy, we flip Z; = 1{j €

¢} in random scans with probability

#(Z; = 1{Zy h<jiti<p 0’ . F, U, Y) =

~ =~ -1
|, AlE=ulo® & F0Y) ] |

#(¢=wU{j}o? a,FU,Y)

where w = {j' # j : Z; = 1}. For w # (), the Bayes factor between models w and w U {j} is given
by

o det(SwU{j} 202 202

p—sy o1 [ det(S,,) ] 1/2 (YTIAJwafIUTJY YTUwu{j}Swu{j}Uiu{j}Y>
X — X qt(So ) exp - ,
S0 g

where
det(S,, det(ﬁf} Ui + o207%1) PPN PPN PN
et(Sw) _ L (010, + o%0r ) - UFULSL UL,
det(S,ugsy) det(ULU,, + o207 21)

due to the property of the Schur complement. For w = (), the Bayes factor between models ()
and {7} is given by

_ A 1/2 :
P50 9L (U}Uj +0201_2) X exp (— 552 E);

EN) o

Y'U;8(;,Up Y)

In experiments, we find that just one random scan suffices for the proposed method to perform

well.
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(2) For the conditional distribution of 3,
%(Bg‘GQ,Q,f,ﬁ,ﬁ,Y) NN(SgﬁEY,O’ZSg) 5 ch =0.

(3) For the conditional distribution of a,

PR f\TY 2
ﬁ(alff?,ﬂ,&,F,U,Y)NN( d )

n+o%/c3’ n+0?/03
(4) For the conditional distribution of o2,

702, B, &, F,U,Y) x g(c2|ao, bo) N (Y|f‘a + Uefe, 021)

Y — Fa — U
ch<02 |Y ~Fa sﬁsH)_

2
The overall time complexity of the factor-adjusted Bayesian method is O(np?) + O(Tps?), where

n
a0+§,bo+

T is the number of iterations of the posterior computation algorithm. As suggested by Yang et al.
(2016), T = O(s?log p) may suffice for the posterior sampler to converge. Below are details of the time
complexity analysis. The truncated singular value decomposition algorithms can compute f‘, U with
time complexity O(npk) (Allen-Zhu and Li, 2016). Computing F*Y, UTY and UTU takes O(np?)
flops. Given f‘TY, UTY and ﬁTfJ, each iteration of the posterior computation algorithm takes
O(ps?) flops (per random scan) to sample from the conditional distribution of &, because computing
the conditional probability ratio between models £ = w and £ = w U {j} for each flip update takes
O(Jw|?) = O(s?) flops, and each random scan consists of p flip updates. Each iteration also takes

O(s?), O(1), O(ns) flops to sample from the conditional distributions of 3, c, 02, respectively.

D Response

We would like to thank two reviewers for their comments. We have revised and improved the

manuscript to address their concerns.

To Reviewer 1:
On Interpretation of Model Setup

Reviewer 1: My first major concern is about the interpretation of the model setup. Instead of focusing

on the conventional regression model
Y = X3+ oe, (1) in the updated manuscript
the paper considers the factor-adjusted regression model
Y =Fa+UB+o0e, (4) in the updated manuscript.
...I believe model (4) is equivalent to the factor-augmented high-dimensional linear regression model

Y =Fd' +XB+o0e,, (6) in the updated manuscript.
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I wonder if the paper can provide some discussions along this line, so that we may better understand
the implications of the model. I also feel model (6) might be a more intuitive representation than model
(4) in the sense that (6) clearly separates the roles played by X and F.

We provide more discussions on the differences between models (1),(4) and (6) in the introduction
section. We agree with you that model (6) is equivalent to model (4) up to reparametrization o’ =
a —B"3. Model (6) has been studied by (Kneip and Sarda, 2011). However, for models (1) and (6),
the sparse regression methods need to impose the weak correlation condition on X. Bayesian sparse
regression methods need the sparse eigenvalue (SE) condition, a specific type of weak correlation
condition. The sparse eigenvalue of X could be much smaller than the sparse eigenvalue of U. Section 2

in the updated manuscript makes this intuition precise as

SEX) _ p IG5
SE(U) ~ j=1 [[X,]?

x R(U), with R(U) = 1.

Note that the total variation of X; mainly consists of two parts ||X;[|* =~ ||[Fb;||? + [|U;||>. When the
strong correlation part Fb; accounts for a large portion of the total variation, the sparse eigenvalue
of X is small, causing incorrect estimation and slow convergence speed of the Bayesian method.
Experimental results also verify this intuition (see Figs. 2 and 4 in the updated manuscript).

We feel that model (4) is a more better representation than model (6). Each covariate X; has two
parts Fb; and U;. In model (4), the strong correlation parts Fb;’s of all covariates contribute to the
response Y aggregately, while idiosyncratic components {Uj : j € £*} of a small number of covariates
have specific effects on Y. In model (6), the effects of common factors F and strong correlation parts

Fb;’s of X;’s are not clearly separated.

Adjusted Sparseness Assumption as Motivation

Reviewer 1: "My second major concern is about the motivation part. If the authors agree that models
(1) and (4) are equivalent, then using sparsity of model (1) as a motivation seems not appropriate,
given that a sparse B in model (4) is the same as a sparse 3 in model (1).

We change the motivation part of the proposed method in the introduction section. The adjustment
of the sparseness assumption is a consequence of the adjustment of the weak correlation condition. We
agree with you that a sparse 3 in model (4) is the same as a sparse 8 in model (1). But, the meaning
of the sparseness of 8 has been changed. In (1), a nonzero 3; means an overall effect of X; (sum of
the effects of Fb; and Uj;). In (1), a nonzero 5; means the specific effect of X; (or Uj;), excluding

On Constraint o = B™3

Reviewer 1: If the authors do not agree with the equivalence between models (1) and (4), I would like

to know the following.

(a) The paper argues that model (4) covers model (1) as a special case by restricting the side con-
straint that oo = BTB. I wonder how to interpret B and o in (4) when the constraint does not

hold.

(b) The paper assumes that B is sparse. How is this assumption different from the sparsity assump-
tion for model (1)?
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(¢) In general, how to evaluate a particular covariate’s impact on Y in model (4) when o # BTB7

(d) Is it possible to test o # BT3B within the Bayesian framework? I think using the representation
(6), a test for o # BT B is equivalent to a test for o' = 0 in (1), which looks more straight-

forward.”
Model (1) is equivalent to
Y =Fa+UB+o0e, a=B"E, (3)in the updated manuscript.

We think model (4) is more general than model (1) or equivalently (3), as the former drops the

constraint a« = BT3.

(a) When the constraint is removed, covariates X;’s do not directly contribute to Y. They are
outcomes of some underlying factor model. The common factors and idiosyncratic components

contribute to Y, with coefficients a and 3.

(b) As we have discussed, a sparse 3 in model (4) is the same as a sparse 3 in model (1). But, the
meaning of the sparseness of 8 has been changed. In (1), a nonzero 3; means an overall effect
of X; (sum of the effects of Fb; and Uj). In (1), a nonzero 3; means the specific effect of X;
(or Uj), excluding Fb;.

(c) In model (4) with o # B" 3, each covariate X; does not directly contribute to Y.

(d) This is an interesting question we had not thought about before. We can test a = B"3 in the
Bayesian framework by looking into the posterior distribution of a¢ — ]§T,8, since we have sample
of (a,3) from the pseudo posterior distribution and the estimate B ~ B from PCA. We will

leave it to future research.

On Estimated Latent Variables and Rate-optimality of Sparse Regression

Review 1: “The paper shows in Section 3 that the pseudo posterior distribution (9) achieves the best
rate Bayesian methods can achieve with observed [F,U]. Can the authors provide more discussion
why conditioning on [f, [AJ} does not affect the convergence rate? In general, what are the implications
for inference if the posterior is conditional on [F, U] instead of on [F,U]?

We add a paradigm Fig. 1 to illustrate the idea to prove Theorem 2. Conditioning on [f‘, ﬁ], the
properties of Bayesian sparse regression are established in the probability space of the pseudo data
generating process Y = Fo + ﬁﬁ + oe. Then the properties are translated back to the probability
space of the pseudo data generating process Y = Fa+UB+oce. In the probability space of the pseudo
data generating process, the error arising from the Bayesian sparse regression method is determined
by the strength of the sparse eigenvalue condition, measured by a constant My. The deviation between

two probability spaces is controlled in terms of the ¢y distance between their conditional means
|(FHa* + UB*) — (Fa* + UB*)|| < Lyo*vney.

When My — 2 > L2, the error due to the estimation [f‘, ﬁ] ~ [F, U] in the factor model is relatively
small compared to that arising from the Bayesian sparse regression, and therefore the estimation of
the factor model does not change the order of the error rate of the Bayesian method, but do change
the constant factor of the error rate. If an inaccurate estimation of latent variables leads to a large
L5, a stronger sparse eigenvalue condition with larger My is needed by the Bayesian sparse regression
method.
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On Assumption 1 regarding []?‘,ﬁ]

Review 1: “Can the authors provide more discussions on Assumption 1 regarding [f‘,ﬁ] ? Are there
any examples of DGP so that Assumption 1 holds? When will Assumption 1 be violated?

We add two concrete examples Examples 1 and 2 in which Assumption 1 holds. Roughly speaking,
when [F, U] contain subgaussian entries, Assumption 1 holds. It might be violated when entries of
[F, U] have heavy tails. In that case, we need to use some robust covariance matrix estimator in place

of the sample covariance matrix X"X /n in the PCA procedure.

On Theorem 1

Review 1: “Can the authors provide more discussions about Theorem 1, in particular, how do As-
sumptions 1 to 3 imply Assumption 5?2 What is the relationship between the assumptions in this paper
and those in (Bai and Ng, 2002; Bai, 2003).

We add Section 4.3 to discuss the similarity and difference of Theorem 1 to (Bai and Ng, 2002).
Theorem 1 can be viewed as a non-asymptotic version of (Bai and Ng, 2002). In general, the non-
asymptotic analysis is more quantitative than the asymptotic analysis and more suitable for high-

dimensional statistics.

On Table 2 in Simulation Experiment Section

Review 1: “In simulation experiment section’s Table 2, I do not think a direct comparison with the
generic Bayes or generic lasso is fair as models (1) and (4) are not the same models when oo = BT 3.
A more appropriate comparison should be with the Bayesian analysis of model (6), or maybe other
similar models.”

We redesign the experiments by setting a* = BT 3 for a fair comparison between factor-adjusted

methods and routine methods.

To Reviewer 2:
On Iteration Number of Gibbs Sampler

Reviewer 2: “Based on my personal experience, when the model is complex, the Bayesian Gibbs sam-
pling algorithm is very difficult to converge. Hence, how to show the convergence of MCMC drawings
is still an important concern for the applied Bayesian readers. However, in page 13, you said that "we
iterate a Gibbs sampler T = 20 times and drop the first T/2 = 10 iterations as the burn-in period.’
I am very confusing about this sentence. Is it enough for convergence? Could you check this claim?
Howewver, from your proof from your appendiz, the number of drawing requires an order with O(tpns?)
in page 48. May I suggest that in the real data analysis in section 6, could you give some graphical
tools or test statistics to show that the burn-in length is enough to achieve the convergence?”

We add Fig. 4 to show the fast convergence of the proposed Bayesian method in the setup of
n = 200,p = 500 (larger than n = 120, p = 131 in the real dataset of U.S. bond risk premia). 7' = 20
iterations are indeed enough.

We revise the time complexity analysis in the appendix. The overall time complexity of the factor-
adjusted Bayesian method is O(np?) + O(Tps?), where O(np?) is for multiplication of large matrices
and T is the number of iterations of the posterior computation algorithm. Details are given. As

suggested by Yang et al. (2016), T = O(s?logp) may suffice for the posterior sampler to converge
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in case that the covariates are weakly correlated. Fortunately, the proposed method has remove
the strong correlation parts from covariates. The routine Bayesian method with strongly correlated

covariates does encounter the slow convergence issue.

On Information-based Model Selection Criteria

Reviewer 2: “In Bayesian literature, as to model selection, Bayes factor or DIC, which are Bayesian
version of BIC or AIC respectively, are very popular criterion for model selection. Hence, could you
give a remark or discussion why these popular criteria cannot be used? After all, many Bayesian
readers are familiar with the use of Bayes factor or DIC. I think that this kind of discussion can
strengthen your motivation of your paper about why we need develop a new approach.”

AIC, BIC and DIC are popular criteria for classical model selection problems. However, in the high-
dimensional regression models considered in this paper, there are 2P possible models and n < p < e™.
It is computationally prohibitive to perform these criteria. A short and good notes on this topic is
Section 2.4 in Philippe Rigollet and Jan-Christian Hiitter’s lecture notes on high-dimensional statistics
http://www-math.mit.edu/~rigollet/PDFs/RigNotesl17.pdf. To extend these criteria to the high-
dimensional regime, a remedy to restrict the focus on models of size at most Cs (Kim et al., 2012,
JMLR, consistent model selection criteria on high dimensions). Still these criteria need to consider
p©® possible models. In contrast, the Bayesian sparse regression method needs O(s?logp) iterations,
and each iteration visits p possible models (Yang et al., 2016).

The presented paper is mainly motivated from the field of the high-dimensional linear regression,

which has grew apart from information-based criteria in the last decade.
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