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Abstract

Estimations and applications of factor models often rely on the crucial condition
that the number of latent factors is consistently estimated, which in turn also requires
that factors be relatively strong, data are stationary and weak serial dependence, and
the sample size be fairly large, although in practical applications, one or several of
these conditions may fail. In these cases it is difficult to analyze the eigenvectors of
the data matrix. To address this issue, we propose simple estimators of the latent
factors using cross-sectional projections of the panel data, by weighted averages with
pre-determined weights. These weights are chosen to diversify away the idiosyncratic
components, resulting in “diversified factors”. Because the projections are conducted
cross-sectionally, they are robust to serial conditions, easy to analyze and work even
for finite length of time series. We formally prove that this procedure is robust to
over-estimating the number of factors, and illustrate it in several applications, includ-
ing post-selection inference, big data forecasts, large covariance estimation and factor
specification tests. We also recommend several choices for the diversified weights.
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1 Introduction

Consider the following high-dimensional factor model:

Xt:Bft+ut, tzl, ,T, (11)
where x; = (214, -+ ,xnr) is an N-dimensional outcome. In addition, the model contains
f; as r-dimensional latent factors, B = (by,---,by)" as N x r matrix of loadings, and
w, = (uy, - ,une) as idiosyncratic terms. Theoretical studies of the model have been

crucially depending on the assumption that the number of factors, r, should be consistently
estimated. This in turn, requires the factors be relatively strong, data have weak serial
dependence, and length of time series 7" is long. But in practical applications, one or several
of these conditions may fail to hold due to weak signal-noise ratios and nonstationary or
noisy data, making the first r eigenvalues of the sample covariance of X = (xy,---,x7)
empirically be not so-well separated from the remaining ones.

A promising remedy is to over-estimate the number of factors. But this approach has
been quite challenging. Let R be the “working number of factors” that are empirically
estimated. When R > r, it is often difficult to analyze the behavior of the (R — r) eigen-
values/eigenvectors. As shown in Johnstone and Lu (2009), these eigenvectors can be in-
consistent because their eigenvalues are not so “spiked”. This creates challenges to many
factor estimators, such as the popular principal components (PC)-estimator (Connor and
Korajczyk, 1986; Stock and Watson, 2002), and therefore brings obstacles to applications
when the number of factors is over-estimated. Another difficulty is to handle the serial de-
pendence. As shown by Bai (2003), the PC-estimator is inconsistent under finite-7" in the
presence of serial correlations and heteroskedasticity, but many forecast applications using

estimated factors favor relatively short time series, due to the concern of nonstationarity.



This paper proposes a new method to address issues of over-estimating the number of
factors, small T', and strong serial conditions. We propose a simple factor estimator that does
not rely on eigenvectors. Let W = (wy,--- ,wg) be a given exogenous (or deterministic)
N x R matrix, where each of its R columns wy, is an N x 1 vector of “diversified weights”,
in the sense that its strength should be approximately equally distributed on most of its

components. We propose to estimate f; by simply

-~ 1
ft = NW/Xt 3

or more precisely, the linear space spanned by {f;}._, is estimated by that spanned by {E}thl
By substituting (1.1) into the definition, we have

- 1 1
ft = (NW/B) ft + NW’ut. (12)

affine transform

Thus /f\t (consistently) estimates f; up to an R x r affine transform, with e, := %W’ u, as the
estimation error. The assumption that W should be diversified ensures that as N — oo, e,
is “diversified away” (converging to zero in probability).

We call the new factor estimator as “diversified factors”, which reduces the dimension of
x; through diversified projections. Because of the clean expansion (1.2), the mathematics
for theoretical analysis is much simpler than most benchmark estimators. We show that /f\t
leads to valid inferences in several factor-augmented models so long as R > r. Therefore,
we formally justify that the use of factor models is robust to over-estimating the number of
factors. In particular, we admit » = 0 but R > 1 as a special case. That is, the inference is
still valid even if there are no common factors present, but we nevertheless take out estimated
factors (for insurance). Furthermore, the projection is conducted on cross-sections, so is not

sensitive to serial conditions. We study several applications in detail, including the post-



selection inference, big data forecasts, high-dimensional covariance estimation, and factor
specification tests.

One of the key assumptions imposed is that while W diversifies away u,;, we have

rank <iW’B> =,
N
and the r th smallest singular value of %W’ B does not decay too fast. That is, W should
not diversify away the factor components in the time series. This condition does not hold if
W has more than R—1r columns that are nearly orthogonal to B. This is another motivation
of using over-estimated factors: if random weights are used the probability that more than
R — r columns of W are nearly orthogonal to the space of B should be very small.

To satisfy the above conditions on the weights, we rely on external information on the
factor loadings, and recommend four choices for the weight matrix. The first choice is the
individual-specific characteristics. As documented in semi-parametric factor models, Connor
et al. (2012); Park et al. (2009); Fan et al. (2016), factor loadings are often driven by observed
characteristics. When these variables are available, they can be naturally used as diversified
weights. The second choice is based on rolling window estimations. Consider time series
forecasts. To pertain the stationarity assumption, we divide the sampling periods into (I)
t=1,...,7Ty and (II) t = To + 1,...,To + T, and only use the most recent 7" observations
from period (II) to learn the latent factors for forecasts. Or consider a time series where
a structural break occurs at time Tj, so the most recent period (II) is of major interest.
Assume that the loadings are correlated between the two periods, then the PC-estimated
loadings from periods (I) would be a good choice of the diversified weights for period (II).
For the third recommendation, when the time series is independent of the initial observation,
we can use transformations of xy as the weights. The fourth recommended choice is to use

columns of the Walsh-Hadamard matrix from the statistical experimental design to form the



diversified weights.

The idea of approximating factors by weighted averages of observations has been applied
previously in the literature. In the asset pricing literature, factors are created by weighted
averages of a large number of asset returns. There, the weights are also pre-determined,
adapted to the filtration up to the last observation time. In the common correlated effects
(CCE) literature (Pesaran, 2006; Chudik et al., 2011), factors are created using a set of
random weights to estimate the effect of observables. There, R equals the dimensions of
additionally observed regressors and the outcome variable, and certain rank conditions about
the regressors are required. In the same setting, Westerlund and Urbain (2015) and Karabiyik
et al. (2019) compared the cross-sectional average and the PC estimators, and also showed
the validity of using R > r number of cross-sectional averages. Moreover, Barigozzi and Cho
(2018) proposed a different method to address the issue of over-estimating factors. One of
our recommended weights is inspired by their approach. Moon and Weidner (2015) studied
the problem in a panel data framework and showed that the inference about the parameter of
interest is robust to over-estimating the number of factors. Finally, there is a large literature
on estimating the number of factors. See Bai and Ng (2002); Hallin and Liska (2007); Ahn
and Horenstein (2013); Li et al. (2017).

The rest of the paper is organized as follows. Section 2 explains the key ideas and
intuitions in details. Section 3 presents several applications of the diversified factors. Section
4 recommends several choices of the weight matrix. Section 5 conducts extensive simulation
studies using various models. All technical proofs are presented in the appendix.

We use the following notation. For a matrix A, we use Ayin(A) and Apax(A) to denote its
smallest and largest eigenvalues. We define the Frobenius norm ||A||r = y/tr(A’A) and the
operator norm ||A| = \/Amax(A’A). In addition, define projection matrices Ma = I — Py
and P, = A(A’A)'A when A’A is invertible. Finally, for two (random) sequences ar and

br, we write ar < by (or by > ar) if ar = op(br).



2 Factor Estimation Using Diversified Projections

2.1 The estimator

Let R > r be a pre-determined bounded integer that does not grow with N, which we call
“the working number of factors”. As in practice we do not know the true number of factors
r, we often take a slightly large R so that R > r is likely to hold. Let W = (wy, -+ ,wg)
be a user-specified N x R matrix, either deterministic or random but independent of the
o-algebra generated by {u; : ¢t = 1,2,...}. Each of its R columns wy, = (wg1,- -, wrn)’

(k < R)isan N x 1 vector satisfying the following:

Assumption 2.1 (Diversified weights). There are constants 0 < ¢ < C, so that (almost
surely if W is random) as N — oo,

(1) max;<y |wg ;| < C.

(i) The R x R matriz + W'W satisfies Amin(+ W' W) > c.

(11i) W is independent of {u, : t < T}.

Counstruct a factor estimator as an R X 1 vector at each time ¢:

- 1
ft = NW/Xt.

In financial economics applications where x; is a vector of asset returns, then each component
of E is essentially a diversified portfolio return at time ¢ due to its linear form. The behavior

of /f\t is strikingly simple and clean. Define an R X r matrix

1
H:= —-W'B.
N



Then, it follows from the definition and (1.1) that
~ 1 ,

Therefore, /f\t estimates an affine transformation of f;, where H is the R xr transformation ma-
trix. The estimation error equals the diversified idiosyncratic noise %Wgut = % Zfil Wi i Wit
for each & < R. When (uy¢,- -+ ,un;) are cross-sectionally weakly dependent, Assumption
2.1 ensures that %W}cut admits a cross-sectional central limit theorem. For instance, in the
special case of cross-sectional independence, it is straightforward to verify the Lindeberg’s
condition under Assumption 2.1, and therefore as N — oo,

L

WW’ut %5 N(0,V), (2.2)

where V = limy_,o %W’ var(u; )W which is assumed to exist.

The convergence (2.2) shows that v/ N (/f\t — Hf}) is asymptotically normal for each t < T
Importantly, it holds regardless of whether T" — oo, R = r, or not. It requires only that
N — oo and that the weights should be chosen to satisfy Assumption 2.1. This fact is
particularly useful for analyzing short time series.

In addition, the factor components should not be diversified away. This gives rise to
the following condition on the transformation matrix. Let vy, (H) and vy., (H) respectively

denote the minimum and maximum nonzero singular values of H.

Assumption 2.2. Suppose R > r. Almost surely (i) rank(H) = r.
(ii) There is C > 0,

1
Vr2nin(H) > N? Vmax(H) S Oymin<H>.

Assumption 2.2 requires that W have at least r columns that are not orthogonal to B

so that B is not diversified away. This is the key assumption, but is not stringent in the
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context of over-estimating factors. In the current setting the factor strength is measured by
Vmin(H), which is required not to decay very fast by condition (ii). This quantity determines
the rate of convergence in recovering the space spanned by the factors.

Given /f\t, it is straightforward to estimate the loading matrix by using the least squares:
T T
B=(b, - ,by)=> xf0 )"
t=1 t=1

We show that the R x R matrix % 2th1 E/f\t’ is nonsingular with probability approaching one

even when R > r. So B is well defined. Finally, u; can be estimated by
ty = (@, dve) =%, — B, (2.3)

Just like the PC-estimator, the diversified projection can estimate dynamic factor models
by treating dynamic factors as static factors. In addition, it is straightforward to extend
the model to allowing time-varying factor loadings, by time-domain local smoothing before
applying the diversified projection. While these extensions are straightforward, here we focus

on static and time invariant models.

2.2  Over-estimating the number of factors

The consistent estimation for the number of factors r often requires strong conditions that
may be violated in finite sample. An advantage of the diversified factors is being robust to
over-estimating the number of factors in many inference problems.

We start with a heuristic discussion of the main issue in this subsection. Recall that
H = %W’B is the R X r matrix, which is no longer a square matrix when R > r. In this
case B is essentially estimating BH™, with the r x R transformation matrix H* being the

Moore-Penrose generalized inverse of H, defined as follows. Suppose H’ has the following



singular value decomposition:
H/IUH(DH,()) }-17 rx R

where 0 in the above singular value matrix is present whenever R > r, and Dy is an r X r

diagonal matrix of the nonzero singular values. Then H' is an r x R matrix:
H = UH(DI_Jl,O)E’H.

It is straightforward to verify that HYH = I, holds and that for estimating the common

component Bf; using over-estimated number of factors, we have
Bf, = BHHI, + op(1) = Bf, + op(1). (2.4)

where op(1) in the above approximation can be made uniformly across elements.

However, a key challenge of formalizing the intuition behind (2.4) is to analyze the
invertibility of the gram matrix %ZtT:lE/f?t’, which appears in the definition of B. It is also
a key ingredient in most applications of factor-augmented models wherever the estimated

factors are used as regressors. Define
1 <& 1 &
S, = — N5, s, =H-N ffH
f T ; tits f T ; tit )

where Sy is the population analogue of S 7. The following three bounds when R > r, proved
in Proposition A.1, play a fundamental role in the asymptotic analysis throughout the paper:
(i) With probability approaching one, §f is invertible, but its eigenvalues may decay

quickly so that
ISl = Op(N). (2.5)



On the other hand, Sy is degenerate when R > r, whose rank equals r. Also note that we
still have ||§J?1|| = Op(1) when R = r holds.

(ii) Even if R > r, HH’/S\JTIH is much smaller:

~ N, T
[HS; ) = 0r (w%) .

iii) When R > r, ||S7" — S*|| # 0p(1) but we have
f f

|H'(S;! - SHH|| = Op (% T %) |

Therefore, §f is invertible, and when weighted by the transformation matrix H’, its
inverse is well behaved and fast converges to the generalized inverse of Sy, even though Sy is
singular when R > r. It is sufficient to consider H’ /S\JTI in most factor-augmented inference
problems, because in regression models §]71 often appears in the projection matrix Pg =
f‘(f"f‘)*lf" through H’/S\JT1 asymptotically, where F := (/f\l, e ,/f\T)’ and F := (fy,--- ,fp)
denote the estimated and true factor matrices.
Remark 2.1. In the CCE literature, (e.g., Pesaran (2006); Chudik et al. (2011)), it has
also been claimed that estimating the factors using cross-sectional averages does not require
consistently estimating the number of factors. While the claim is true, its proof is not
straightforward as ||§J71 - S}“H =+ OP(1)||§f — S¢|| when R > r. Also see Karabiyik et al.
(2017, 2019) for more discussions on the related issue. Our method therefore also potentially

contributes to this literature as an alternative rigorous approach.

2.3 Estimating the factor space

Throughout the paper, the loading matrix B can be either deterministic or random. When

they are random, it is assumed that it is independent of u;, and all the expectations through-

10



out the paper is taken conditionally on B.

We make the following conditions.

Assumption 2.3. (i) {(f,, ;) : t < T} is a stationary process, satisfying E(w|f;) = 0.

(ii) There are constants c,C > 0, so that max;<y ||b;|| < C, and almost surely

T T
c < )\min(f ;ftft) S )\max(f ;ftft) < C

Assumption 2.4 (Weak dependence). There is a constant C' > 0,
(1) max;;<n ﬁ ZWSN Znng | Cov(uitige, wjstys|F)| < C almost surely in F,

(ii) 23T ST R[] E(uul|F)|| < C and E || E(uu)|F)|| < C.

Theorem 2.1. Suppose Assumptions 2.1 - 2.4 hold. Also N — oo and T is either finite or

grows. Then for all bounded R > r,

|PsPs Py = Op (%Nu;;(m), (2.6

P~ Pell = Or (ormb(iD). (2.7)

where M = (HH')*H is an R x r matriz .

Equation (2.6) shows that when R > r, the linear space spanned by F asymptotically
covers the linear space spanned by F. To understand the intuition, note that (2.6) implies
P;PrY =~ PrY for an arbitrary random matrix Y. Meanwhile, if we heuristically regard

Py and Pg as conditional expectations given F and f‘, then approximately,

E (E(Y|F)‘f‘> ~ E(Y|F). (2.8)

'We show in the proof that (M’ﬁ’ f‘M) and F'F are both invertible with probability approaching one.
So Pg,, and Pg are well defined asymptotically.

11



Let span(A) denote the linear space spanned by the columns of A. The approximation (2.8)
is well known to be the “tower property”, which heuristically means span(F) C span(]?‘).

Equation (2.7) shows that a particular subspace of span(F) is consistent for span(F). In
the special case R = r, we have Pg,; = P since M in (2.7) is invertible. It then reduces to
the usual space consistency. Importantly, we allow T to be finite.

To gain more insights of these results, let us compare with the usual methods based
on estimating the number of factors, e.g., the eigenvalue-ratio method of Ahn and Horen-
stein (2013). There are two key quantities in this comparison: the strength of the spiked
eigenvalues of S, := %ZL x;X;, and the largest eigenvalue of S, := %Ethl uu;.

We consider a setting where we can easily quantify the signal-noise ratio, as given in the

following example.

Example 2.1. This example presents a pervasive factor model that satisfies Assumption
2.2. Suppose each individual loading satisfies b; = vy A; for some sequence vy < N —(1-a)/2
and « € (0,1], where {A; : i < N} is a sequence of r x 1 vectors such that:

(i) ~ SV UM, = C (or converges in probability if A; is random) for some positive
definite matrix C;

(i1) Vmin(5 W'A) is bounded away from zero, where A = (Aq, ..., Ay)’".
Then Assumption 2.2 holds for vy, (H) < vy and any «a € (0,1]. It is straightforward to

verify that the r th spiked eigenvalue satisfies:
A (Sz) < N*  a € (0,1].

Theorem 2.1 then shows that ||Pgy; — Pr|| = op(1) for any o > 0. To verify condition
(ii) in this example, consider a “characteristic based” model described in Section 4, where
the baseline loading can be decomposed as A\; = g(z;) + 7,, with E(v,|z;) = 0; g(z;) is a

nonparametric function of some observable characteristic z;, and =y, is the loading components
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that is orthogonal to the characteristic effects. (See more detailed motivations of this model in
Section 4.1) Now take w; = ¢(z;) as an R-dimensional transformation using R predetermined
basis functions ¢. Then a sufficient condition for (ii) is that vy, (A) is bounded away from
zero, where A = %Zfil ¢(z;)g(z;)’. In addition, Assumption 2.2(ii) holds as long as
Viax (A) < C. 2

The key implication of Example 2.1 is that the strength of the spiked eigenvalues can grow
at an arbitrarily slow polynomial rate in N, and T is allowed to be finite. In applications
where T — o0 is required, the growth requirement of 7' can be very mild. For instance, as
we shall show in the high-dimensional factor-augmented regression (Section 3.2), it is only
required that log> N = o(T') if the number of “important” control variables (corresponding to
nonzero coefficients) is finite. The relative flexibility on the growth of T" is achieved thanks to
the fact that the diversified projection does not demand strong eigenvalues of the population
covariance matrix.

Now let us revisit the conditions required by the eigenvalue-ratio method by Ahn and

Horenstein (2013). If u; is sub-Gaussian, under weak dependence conditions,

Amax(S4) = Op (M) |

The selection consistency requires A, (S;) > Amax(Sy), which in this context, becomes T' >
N'=2  In the case that the spiked eigenvalues are not so strong (o < 0.5), it requires a

considerably longer time series to override the effect of the idiosyncratic noise.

ZSuppose {v; : @ < N} are cross-sectionally conditionally weakly dependent given Z = (z;
i < N). Then [|&3;¢z)vl> = Op(X)% >, llé(z)|> = op(l) given the assumption that
X = max; %ZJ IE[v;7;|Z]Il = op(1), which holds if v, are conditionally weakly correlated. Then
Vmin(%W/A) > Vmin (A) — ||% > 0(zi)vll = ¢ —op(l). In addition, vmax(H) = l/max(%W/A)VN <
[Vmax(A) + OP(I)]VN < C(VN < CC?lVInin(A)VN < Ccil[l/min(%W/A) + OP(I)]VN < 20671Vmin(H)-
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2.4 Summary of advantages

Below we summarize key advantages of the use of diversified projection.

1. It is computationally and mathematically simple.

2. When the true number of factors is over estimated (R > r), inferences about trans-
formation invariant parameters are still asymptotically valid. This leads to important

implications on factor-augmented inferences and out-of sample forecasts.

3. It admits an interesting special case, where r = 0 and R > 1. That is, x; is in fact
weakly dependent, but we nevertheless estimate “factors”. The resulting inference
is still asymptotically valid in this case. We shall formally prove this in the high-
dimensional factor-augmented inference in the next section. This shows that extracting

estimated factors is a robust inference procedure.

4. As the diversified projections are applied cross-sectionally, some conditions that are
needed for the PC-estimator can be weakened. For instance, the space spanned by the
latent factors can be consistently estimated even if T is finite. It is also a good choice
under weak signal-noise ratios where the consistent selection of the number of factors

is hard to achieve.

5. After applying the diversified projection to x; to reduce to a lower dimensional space,
one can continue to employ the PCA on E to estimate the factor space and the number
of factors. This becomes a low-dimensional PCA problem, and potentially much easier

than benchmark methods dealing with large dimensional datasets.
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3 Applications

We present several applications of the new diversified factors. Besides those imposed in
Section 2, additional assumptions are required in each of these examples. These assumptions

are application-specific and are required even if the oracle number of factors were available.

3.1 Forecasts using augmented factor regression

Consider forecasting time series using a large panel of augmented factor regression:

Yon = &fi+B8'g+ey, t=1,---.T

Xy = Bft + uy

with observed data {(y;,x;) : t < T}. Here h > 0 is the lead time and g; is a vector of

observed predictors including lagged outcome variables. The goal is the mean forecast:

Yrinr = o&'fr + B'gr == 8'zr,

where z, = (f/H',g})’ and §' = (o’/H",3'). The prediction also depends on unobservable
factors f; whose information is contained in a high-dimensional panel of data. This model
has been studied extensively in the literature, see e.g., Stock and Watson (2002); Bai and
Ng (2006); Ludvigson and Ng (2007), where fr is replaced by a consistent estimator. Once
estimated factors E is obtained, the forecast of yr 1 is straightforward:

-~

~
Yrinr =0z, 6=

Zy Z E Ztyt+h

||P1ﬂ

where Z, = (f/, g})’ denotes the estimated regressors. Note that (" Z2;) " is well defined

even if R > r with high probability. This follows from the invertibility of F MGf‘, a claim to
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be proved (the definition of G is clear below, and the notation Mg is defined in Introduction).

Our study is motivated by two important yet unsolved issues. First, the study of pre-
diction rates has been crucially relying on the assumption that the number of latent factors
is correctly estimated. Secondly, the time series that are being studied are often relatively
short, to preserve the stationarity. As we explained in Section 2, this leads to strong condi-
tions on the strength of factors of using the PC estimator.

We show below that by allowing R > r, the diversified projection does not require a
consistent estimator of the number of factors. In addition to the assumptions in Section 2,
we impose the following conditions on the forecast equation for y;,,. Let G be the matrix

Assumption 3.1. (i) {e;, £, g, up st =1,--- , T+ h} is stationary with E(u|f;, g;) = 0 and
E(e|f, g, 1, W) = 0.

(ii) Weak dependence: there is C > 0, maxs<r ) op | E(ei65|F, G, W)| < C almost surely.
(iii) Moment bounds: there are c,C' > 0, )\min(%F/MgF) > ¢, )\min(%G’MFH/G) > ¢,

and ¢ < )\mm(%G’G) < )\max(%G’G) < C.

Our theory does not follow from the standard theory of linear models of Bai and Ng
(2006). A new technical phenomenon arises when R > r due to the degeneracy of the gram
matrices. Define Z = (Zy, ...,z ), Z = (7, ...,2},_,) and consider two gram matrices

FF FG HFFH' HF'G

7'7 = R . 77 =
GT GG GFH GG

The linear regression theory crucially depends on the inverse of 7/ 2, whose population version

Z'Z, in this context, becomes degenerate when R > r. The full rank matrix %IAT" MGIA?‘
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converges to a degenerate matrix H%F’ MgFH', and therefore in general
( = 2'2>_1 ( ! z'z)+ £ 0p(1)
= — = ) .
T T r

We develop a new theory that takes advantage of H, which allows to establish the three

claims in Section 2.2. They imply that the convergence holds when weighted by H:

1 1 H

HHI ((TZ/Z)l — (TZ/Z)JF) HH - OP (T + N) ) Where H =

The weighted convergence is sufficient to derive the prediction rate of ¥z

Theorem 3.1. Suppose Assumptions 2.1 - 2.4, 3.1 hold. AsT, N — oo, h is bounded, and
for all bounded R > r,

~ 1 1
YT +hT — YT+h|T = OP(\/T + " \/N)'

3.2 High-dimensional inference in factor augmented models
3.2.1 Factor-augmented post-selection inference

Consider a high-dimensional regression model

ye = Bg+vx+,
g = 0x +ey, (3.1)

where g; is a treatment variable whose effect 3 is the main interest. The model contains
high-dimensional control variables x; = (zy, -+ ,Zn¢) that determine both the outcome

and treatment variables. Having many control variables creates challenges for statistical
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inferences, as such, we assume that (v, 0) are sparse vectors. Belloni et al. (2014) proposed
to make inference using Robinson (1988)’s residual-regression, by first selecting among the
high-dimensional controls in both the y;, and g; equations.

Often, the control variables are strongly correlated due to the presence of confounding
factors

Xy = Bft -+ u;. (32)

This invalidates the conditions of using penalized regressions to directly select among x;.

Instead, if we substitute (3.2) to (3.1), we reach factor-augmented regression model:

Yy = Oé;ft +y'uy 4 gy,
g = O{;ft + 9/ut + 897“

eyt = Begitm (3.3)

where o, = 0'B, o, = Bag, +V'B, and v = (36" +v'. The model contains high-dimensional
latent controls u,. Here (o, oy, B) are low -dimensional coefficient vectors while (v, 8) are
high-dimensional sparse vectors. Fan et al. (2020) and Hansen and Liao (2018) showed that
the penalized regression can be successfully applied to (3.3) to select components in u,
which are cross-sectionally weakly correlated. They require strong conditions so that we can
consistently estimate the number of factors r = dim(f;) first.

The main result of this section is to show that the factor-augmented post-selection in-
ference is valid for any R > r. Therefore, we have addressed an important question in
empirical applications, where the evidence of the number of factors is not so strong and
one may use a slightly larger number of “working factors”. The theoretical intuition,
again, is that the model depends on f; only through transformation invariant terms, so

that &;ﬁt = a;HJ“Hft +op(1) = agf; + op(1). In addition, u; can also be well estimated
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with over-identified number of factors.

Importantly, we admit the special case r = 0, and R > 1, leading to o, and o, both
being zero in (3.3). That is, there are no factors, so x; = u, itself is cross-sectionally weakly
dependent, but nevertheless we estimate R > 1 number of factors to run post-selection
inference. This setting is empirically relevant as it allows to avoid pre-testing the presence
of common factors for inference. The simulation in Section 5 shows that with R > r, this
procedure works well even if 7 = 0; but when r (r > 1) factors are present, directly selecting
x; leads to severely biased estimations. Therefore as a practical guidance, we recommend
that one should always run factor-augmented post-selection inference, with R > 1, to guard
against confounding factors among the control variables.

Below we present the factor-augmented algorithm as in Hansen and Liao (2018) for

estimating (3.1). For notational simplicity, we focus on the univariate case dim(3) = 1.
Algorithm 3.1. Estimate 3 as follows.
Step 1 Fix the working number of factors R. Estimate {(f;,u;) : ¢ < T} as in Section 2.

Step 2 (1) Estimate coefficients: &, = (30, ££) 2L Gy, and oy = (3L £) ' S°F T,

(2) Run penalized regression:

T
~ 1 .
v = argmin ?1 (4 — ey —y'w)" + Pr (),
~ T ~
0 = arg mein T 521 (g — a,f, — 0'6,)* + P.(0).

(3) Run post-selection refitting: let J = {j < p: v #0tU{ji<p: 5] # 0}.

T
~ 1 o ~ ~ e
¥ = argmin — Z(yt — o f, — ~'4;)?,  such that 3, =0if j ¢ J.
v T —
T
0 = arg minl Z(gt —a'f, — 0'1,)*>, such that 0, =0 if j & J.
0 T g /

19



~ ~ = [~ ~ ~ = A//\
Step 3 Estimate residuals: €,; = y; — (a;ft +7'10;), and &,; = g; — (a’gft +0u,).
Step 4 Estimate 3 by residual-regression:
T T
~ o R
B = (Z €y1) ' Z Egt€yt-
t=1 t=1

One can also simplify step 2 following Fan et al. (2020): finding (e,,7) by minimizing
T S (v — a'y/f\t —4't;)? + P-(v) and defining (&, 0) similarly. Note that v :— P, () is a
sparse-induced penalty function with a tuning parameter 7. In the main theorem below, we

prove for the lasso P,(v) = 7||7v|]1, where ||v|; = Zjvzl |7;|. Following Bickel et al. (2009),

o2log N
— oy 2281
! T

= var(e,;) for estimating v, and o2 = var(e,,) for

set

for some constant C' > 4, where o2

2

estimating 6. We refer to Belloni et al. (2014) for feasible tunings so that ¢* is estimated

iteratively.

3.2.2 The main result

We impose the following assumptions.

Assumption 3.2. (i) E(g,¢|u, £, W) = 0 and E(e,;|uy, f;, W) = 0,

(ii) Coefficients: there is C > 0, so that ||oy||, |layll, ||B]] are all bounded by C'.
(1ii) Weak dependence: There is C > 0, almost surely,

maxs<r ) ,op | E(ey i€y s|F, U, W)| + maxecr >, | E(ggi8,,|F, U, W)| < C.
(iv) Uniform bounds:

max;<y || ST uve|| = Op(\/@) for all vy € {eg1,ey, £}, In addition,
max;<y | & 3o, (wirwze — Euguy)| = Op(1/'%N), and

max;< |ﬁ Zle Zé\f:l(uituﬁ — Ewyuj)wy | = Op( 1c3§]év) for all k < R.
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Assumption 3.2 (iv) holds generally under weak time-series dependent conditions for
{(vt,uy) : t < N} with sub-Gaussian tails.
Suppose the high-dimensional coefficients 8 and = are strictly sparse. Let J denote the

nonzero index set:

J={j<N:0; #0}U{j < N:v; #0}.

The following sparse eigenvalue condition is standard for the post-selection inference.

Note that it is imposed on the covariance of u; rather than x;, because u, is weakly dependent.

Assumption 3.3 (Sparse eigenvalue condition). For any v € RN\{0}, define:

Gmin(m) = inf R(v), and ¢max(m) = sup R(v),
VERN:1<]v]lo<m VERN:1<||v|o<m
where R(v) = |[v||72v'F SL wulv. Then there is a sequence lp — oo and ¢,¢y > 0 so

that with probability approaching one,

c1 < Gmin(lr|I]0) < Pmax(lr] o) < c2.

: 1N 2 P9 2
Assumption 3.4. (i) 7>, €., — o, for some o, > 0.
.. T d " . . .
(1) \/LT > i1 Ege — N(0,02,) for some a2, > 0. In addition, there is a consistent variance
estimator oy, — 0.

(i1i) The rates (N, T,|J|o) satisfy:
3102 N = o(T),  and T1JI3 = o(N? min{1, ||, (ED)}).

Condition 3.4 (iii) requires the “effective dimension” N2

min

(H) be relatively large in order

to accurately estimate the latent factors.

Theorem 3.2. Suppose f, contains R > r > 0 number of diversified weighted averages of
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xi. If r > 1 (there are factors in x;), Assumptions 2.1 - 2.4, 3.2-3.4 hold. If r = 0 (there
are no factors in x;), Assumption 2.2 is relaxed, and all f, involved in the above assumptions

can be removed. Then as T, N — oo, for all bounded R > r > 0,
_ -~ d
o, s 2VT(B - B) —— N(0,1).

Fix a significant level 7, let ¢, be the (1 — 7/2) quantile of standard normal distribution.

In addition, let 77 = z ZtT=1 /é;t. Immediately, we have the following uniform coverage.

Corollary 3.1. Suppose the assumptions of Theorem 3.2 hold. Let R > 0 be a fized upper
bound for R. Then uniformly for all0 <r < R < R,

P (5 cB+ %an,ga;?g]) 1o

The novelty of the above uniformity is that the coverage is valid uniformly for all bounded
r as the true number of factors, and all over-estimated R as the working number of factors.

In particular, it also admits the weak-dependence » = 0 while R > 1 as a special case.

Remark 3.1 (Case r = 0, R > 1). We now explain the intuition of the case x;, = u; (no
presence of confounding factors), but we nevertheless extract R > 1 “factors”. In this case
a, = o, = 0 in the system (3.3). Then /f\t = % Efil w;u;; = €; degenerates to zero. Both

u; and a f; (which is zero) are still estimated well in the following sense:

T
1 - 1 logN
I

=1

T
LS A7 18 118
fz(a;ft) = Op <T+T :

Remark 3.2 (Case R = 0). For completeness of the theorem, we define the estimator for the

case R = 0. In this case we do not extract any factor estimators, and simply set &, = o, = 0,
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and U; = x; in Algorithm 3.1. This is then the same setting as in Belloni et al. (2014).

3.3 Estimating the idiosyncratic covariance

The estimation of the N x N idiosyncratic covariance matrix 3, := Eu,u; is of general
interest in many applications. Examples include the efficient estimation of factor models
(Bai and Li, 2012), high-dimensional testing (Fan et al., 2015), and bootstrapping latent
factors (Goncalves and Perron, 2018), among many others. While this problem has been
studied by Fan et al. (2013), they require that the true number of factors r has to be either
known or consistently estimated, and the factors are estimated through PCA. Here we show
that using the diversified factors, their conclusion holds for all fixed R > r.

A key assumption is that 3, = (o0,,;) is sparse: As in Bickel and Levina (2008) the

sparsity of 3, is measured by the following quantity:
— |2
my = %%{;V |owii|%,  for some ¢ € [0, 1].
<

Given the estimated residual u; that is obtained using a working number of factors R, we

estimate Eu;uj, by applying a generalized thresholding: define s, ;; := %Zthl Uiy,

N Su,ig ifi=j
Ouyij =

h(Suij, i), i1 #

where h(s, 7) is a thresholding function with threshold value 7. Then the sparse idiosyncratic

covariance estimator is defined as 3, = (7,,;) nxn. The threshold value 7;; is chosen as

log N
Tij = C\/SuiiSujjWNT, WNT = T +

-
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for some large constant C' > 0, which applies a constant thresholding to correlations.

In general, the thresholding function should satisfy:
(i) h(s,7) =01if |s| < T,
(ii) |A(s,T) —s| < T.
(iii) there are constants a > 0 and b > 1 such that |h(s,7) — s| < ar? if |s| > bT.

Note that condition (iii) requires that the thresholding bias should be of higher order.
It is not necessary for consistent estimations, but we recommend using nearly unbiased
thresholding (Antoniadis and Fan, 2001) for inference applications. One such example is
known as SCAD. As noted in Fan et al. (2015), the unbiased thresholding is required to
avoid size distortions in a large class of high-dimensional testing problems involving a “plug-
in” estimator of ¥,. In particular, this rules out the popular soft-thresholding function,

which does not satisfy (iii) due to its first-order shrinkage bias.

Theorem 3.3. Let u; be constructed using R > r number of diversified weighted averages
of x;. Suppose that Assumptions 2.1 - 2.4 hold and that log N = o(T). In addition, either
vi. (H) > \/I—N or v2, (H) > %\/% Then as N, T — oo, for any R > r >0,

()
'£)% = Op(wnr).

(ii) For a sufficiently large constant C' > 0 in the threshold ;;,
|Z0 = Zull = Op(wigmy).
1) If in addition, Apin(2.) > ¢o for some ¢g > 0 and widmy = o(1 , then
NT

~—1 _
12, = 2.1 = Op(wymy).

24



3.4 Testing Specification of Factors

In practical applications, many “observed factors” g; have been proposed to approximate
the true latent factors. For example, in asset pricing, popular choices of g; are proposed and
discussed in seminal works by Fama and French (1992); Carhart (1997), which are known as
the Fama-French factors and Carhart four factor models.

We test the (linear) specification of a given set of empirical factors g;. That is, we test:
Hy : there is a r x r invertible matrix @ so that g, = 0f,, Vt <T.

Under the null hypothesis, g; and f; are linear functions of each other. We propose a simple

statistic:

IPc - Pgll:

where G = (g1, - ,gr)" and recall that P denotes the projection matrix. Here we still
use the diversified factor estimator F. The test statistic measures the distance between
(linear) spaces respectively spanned by g; and /f\t To derive the asymptotic null distribution,
we naturally set the working number of factors R = dim(g;), which is known and equals

dim(f;) = r under the null. Then ||Ps — Pg||r = 0p(1), followed from Theorem 2.1.

3.4.1 Asymptotic null distribution

With the diversified factor estimators, the null distribution of the statistic is very easy to

derive, and satisfies:

NVT(|Pg — Psl|2 — MEAN

g
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where for A = 2H ~"'(+F'F)"'H™!,
1 1
MEAN = Nz b AW’ E(u;u)|F)W, o Var(N tr AW u,u;W|F, W) > 0.

Here we assume o2 > 0 to be bounded away from zero. To avoid nonparametrically esti-
mating high-dimensional covariances, we shall assume the conditional covariances in both
bias and variance are independent of F almost surely. Nevertheless, the bias depends on a
high-dimensional matrix 3, = E(u,u}). We employ the sparse covariance 33, as defined in

Section 3.3 and replace the bias by

1~ ~

— 1 —~ ~ ~
MEAN = — tr AW'S, W with A = 2(-FF) .

~

Further suppose o can be consistently estimated by some &, then together, we have the
feasible standardized statistic:

NVT(|[Pg — Pgl|% — MEAN)

g

(3.4)

The problem, however, is not as straightforward as it looks by far. The use of MEAN
and ¢ both come with issues, as we now explain.

The issue of MEAN.

When deriving the asymptotic null distribution, we need to address the effect of flu -3,

which is to show

NVT(MEAN — MEAN)  NVT 1 .
VI ) VT L AW (S, - =)W 0. (3.5)

o o N2

But simply applying the rate of convergence of ||, — %,|| in Theorem 3.3 fails to show
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the above convergence, even though the rate is minimax optimal 3. Similar phenomena
also arise in Fan et al. (2015); Bai and Liao (2017), where a plug-in estimator for X, is
used for inferences. Proving (3.5) requires a dedicated technical argument to address the
accumulation of high-dimensional estimation errors. It requires a strengthened condition on
the weak cross-sectional dependence, in Assumption 3.8 below.

The issue of 7.

It is difficult to estimate o through residuals u; since W'u; = 0 almost surely. In fact,
estimated u; constructed based on any factor estimator would lead to inconsistent estimator
for 02. Therefore, we propose to estimate o2 by parametric bootstrap. Observe that ﬁW’ uy
is asymptotically normal, whose variance is given by V = %W’ ¥, W. Hence o2 should be

approximately equal to

1
f(AV) = Var(N tr AW'Z,Z; W), (3.6)

where Z; is distributed as A(0, V). Therefore we estimate o2 by
N 1
5% = (A V), with V= ZWS,W,

which can be calculated by simulating from A(0, \A/')
Above all, despite of the simple construction of f‘, the technical problem is still challeng-

ing. Therefore, this subsection calls for relatively stronger conditions, as we now impose.

Assumption 3.5. (i) {u;, : t < T} are stationary and conditionally serially independent,
gwen F and G.

(ii) There is C >0, E Wi |W] < C.

/%
(73) Vimin(H) > ¢ for some ¢ > 0.

The next assumption ensures that o can be estimated by simulating from the Gaussian

3 A simple calculation would only yield Nfﬁﬁ [|AW| ||§]u =X [IIW]|| < Op(1) but not necessarily op(1).
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distribution.

Assumption 3.6. (i) There is ¢ > 0 so that 6% > c.

(i) As N — oo, |0* — f(A, V)| = 0 almost surely in F, where f(A,V) is given in (3.6).

Next, we shall require 3, be strictly sparse, in the sense that the “small” off-diagonal

entries are exactly zero. In this case, we use the following measurement for the total sparsity:

DN = Z 1{Euitu]~t 7é 0}

1,j<N

Recall that wyr = 4/ lopr + \/—% We assume:

Assumption 3.7 (Strict sparsity). (i) (#)DN — 0.

(ZZ) mm{\ Euitujt\ . Euituﬁ 7é 0} > WNT-

For block-diagonal matrices with finite block sizes, Dy = O(N); for banded matrices
with band size Iy, Dy = O(IyN). In general, suppose Dy = [y N with some slowly growing
Iy — oo0. Then condition (i) reduces to requiring 13 log N < Iyv/T < N. This requires
an upper bound for /y; in addition, the lower bound for N arises from the requirement of
estimating factors. Condition (ii) requires that the nonzero entries are well-separated from

the statistical errors.

Assumption 3.8. Write 0, ;; := Euiuj. There is C > 0 so that

1
N ) Y | Cov(uipuse, tmpun)| < C.

(m,n):0u,mn#0, (4,5):0u,i; 70

The above assumption is the key condition to argue for (3.5). It requires further condi-

tions on the weak cross-sectional dependence, in addition to the sparsity. Fan et al. (2015)
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proved that if u; is Gaussian, then a sufficient condition for Assumption 3.8 is as follows:

Dy = O(N), and max H{E uuj # 0} = O(1),
=7 <N

which is the case for block diagonal matrices with finite members in each block and banded

matrices with [y = O(1).

Theorem 3.4. Suppose R = dim(g;), and Assumptions 2.1 - 2.4, 3.5- 3.8 hold. As N,T —

oo, under Hy,

NVT(||Ps — Pg||% — MEAN

g

3.5 Factor-adjusted false discovery control for multiple testing.

Controlling the false discovery rate (FDR) in large-scale hypothesis testing based on strongly
correlated testing series has been an important problem. Suppose the data are generated
from:

x; = a+ Bf, +u,,

where o = (v, ..., an) is the mean vector. This model allows strong cross-sectional depen-

dences among x;. We are interested in testing N number of hypotheses:
H.:a;=0, i=1,..,N.

The FDR control aims to develop test statistics Z; and threshold values so that the overall
false discovery rate is controlled at certain value. A crucial requirement is that these test
statistics should be weakly dependent. However, for f = %Zt f, and 0 = %Zt 1, we have
X = % Yo X = a+Bf 41, so the presence of Bf, makes the mean vector be cross-sectionally

strongly dependent, failing usual FDR procedures based on the simple sample average. This
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is the well known confounding factor problem. While several methods have been proposed
to remove the effect of confounding factors (Wang et al., 2017; Fan et al., 2019), again, it
has been assumed that the number of factors should be consistently estimable.

The diversified projection can be applied directly as a simple implementation for the
FDR control, valid for all R > r. Let the diversified projection be E = %W’ X;, and let BZ be
the OLS estimator for the slope vector by regressing x;; on ft with intercept. Then we can
define the factor-adjusted regularized multiple test (Fan et al., 2019) statistics Z; = a;/se(a;)

where

"'3>

T
a; =1; —blf, f= Z
and se(q;) is the associated standard error. Our theories imply the following expansion,

uniformly for ¢ = 1,..., N and all R > r,

T
ap— o = Z giuy + op(T 1/2)7
—1

where g, = 1 — t_“’Sj?l(ft —f), and Sy = L3, (f, — £)(f, — £)". This gives rise to the desired
expansion so that Z; are weakly dependent. Therefore, we can apply standard procedures

to Z; for the false discovery control.

4 Choices of Diversified Weights

We discuss some specific examples to choose W = (wy, -+ ,wg) = (wi; - kK < R,i < N),

the weight matrix.
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4.1 Loading characteristics

Factor loadings are often driven by observed characteristics. For example, in genetic studies,
single-nucleotide polymorphism (SNP) data are often collected with the gene expression data
on the same group of subjects. The SNPs drive underlying structure in the gene expressions,
clinical and demographics data, through affecting their loadings on the biological factors.
In asset pricing studies, it has been well documented that factor loadings are driven by
firm specific characteristics, which are independent of the model noise, but have strong
explanatory powers on the loadings.

Motivated by the presence of characteristics, “characteristic based” factor models have
been extensively studied in the literature, e.g., Gagliardini et al. (2016); Li et al. (2016);
Connor et al. (2012). The general form of this model assumes the loadings have the following

decomposition (Fan et al., 2016):

b; = g(Zi> + Y E(%‘|Zi) =0, <N, (4-1)

where z; is a vector of characteristics that are observed on each subject and g(+) is a non-
parametric mean function. It is assumed that {z; : i« < N} is independent of u; and that
g(z;) is not degenerate so that z; has explanatory power. In addition, 4, is the remaining
loading components, after conditioning on z;. The decomposition of b, in (4.1) is motivated
from the asset pricing literature, where factor “betas” are known to be partially explained
by individual-specific observables z;, which represent a set of time-invariant characteristics
such as individual stocks’ size, momentum, values. When z; is available, we can employ
them as a natural choice of the weights for the diversified factors. Fix an R-component of

sieve basis functions: (¢1(+), ..., ¢r(+)) such as the Fourier basis or B splines. Then define

W = (wix)nxr, where w;r = ¢p(z;).
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The diversified projection using the so-constructed W is related to the “projected PCA”
of Fan et al. (2016), but the latter is more complicated and requires stronger conditions than

the diversified projection, because it is still PCA based.

4.2 Moving window estimations

This method is useful when u; is serially independent, and related ideas have been used
recently by Barigozzi and Cho (2018). Consider out-of-sample forecasts using moving win-
dows. Suppose x; is observed for T' 4 Ty periods in total, but to pertain the stationarity
assumption, we only use the most recent T" observations to learn the latent factors, where T’

may be potentially small. Divide the sample into two periods:

periods (I) of learning weights: x; = Bif, +uw,, t=1,..., Ty

periods (II) of interest: x;, =Bfi+w, t=To+1,...,Ty+T.

While B; and B can be different (e.g., presence of structural breaks), they are assumed to
be closely related between two sampling periods. As such, we can learn about the diversified
weights from periods (I) to estimate the latent factors for the periods of estimation interests

(IT). Specifically, apply PCA on periods (I) to extract R number of factor loadings: B, =

o~

(bix)Nxr. Now for a pre-determined constant ¢ > 0, define W = (w; ) nxr Where

o~

bi e

~——, k<R, i<N.
max{1l, e max;<y |b; x|}

= 9 =

Wik =

Barigozzi and Cho (2018) suggested a specific choice for € that work well in their simulation
studies. As discussed by these authors, the trimming constant € ensures that with a large
probability most of the corresponding /b\i,k are “preserved” by w; ;. On the other hand, if a few

elements of /I;lk are spuriously large in finite sample, the trimming shrinks the corresponding
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Ziyk downwards to 1/e.

In addition, if u; is serially independent, then W is also independent of u; for t =
m—+1,...,m—+T. As such, the conditions on the diversified weights are satisfied. It is straight-
forward to extending this idea to multi-periods rolling window forecasts, where weights are
sequentially updated for rolling windows.

The aforementioned method uses the idea that sample splitting creates serial indepen-
dences. In the presence of mixing-type serial dependences, Barigozzi and Cho (2018) pro-
posed to split the data into blocks and estimate factor loadings using subsamples omitting
the current block as well as its immediate neighbors. Their method can be also applied in

the current context to create the weighting matrix.

4.3 Initial Transformation

A related idea is to use transformations of the initial observation x; for ¢ = 0. Suppose (fy, ug)
is independent of {u; : t > 1}, and let {¢y : k = 1,..., R} be a set of sieve transformations.
Then we can apply w;r = ¢r(zi0) . These weights are correlated with B through x, =
Bfy + up so that the rank condition is satisfied. The initial transformation method only
requires {u;} be independent of its initial value. The similar idea has been used recently by

Juodis and Sarafidis (2020).
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4.4 Hadamard projection

We can set deterministic weights as in the statistical experimental designs:

11 1 1
1 -1 1 1
11 -1 1

So for each 2 < k < R, the k th column of W equals (1;_,,—1, 4,15 1, —1;_4,...), where 1,,
denotes the m-dimensional vector of ones. Closely related types of matrices are known as the
Walsh-Hadamard matrices, formed by rearranging the columns so that the number of sign
changes in a column is in an increasing order, and the columns are orthogonal. Therefore, we
can also set W as the N x R upper-left corner submatrix of a Hadamard matrix of dimension

2K with K = [log, N, where [.] denotes the ceiling function.

5 Monte Carlo Experiments

In this section we illustrate the finite sample properties of the forecasting and inference

methods based on diversified factors, and use four types of weight matrices:

(i) Hadamard weight: wy = 1 and wy, = (1,4, —1,_;,1;_,—1,_4,...) for 2 < k < R,

where 1;_; is a vector of one’s of length k£ — 1.

(ii) Loading characteristics: loadings depend on some characteristics z;, and we apply the

polynomial transformations so that the ¢ th row of W is (g1(2;), 92(2i), ..., gr(2;)) for
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i < N. In our numerical work, we take one characteristic and set g;(z;) = z].

(iii) Rolling windows: when conducting simulations for out-of-sample forecasts, we use the

trimmed PCA as described in Section 4.2.

(iv) Initial transformations: we use the initial transformation so that the ¢ th row of W is

2 R :
(mi,o,xivo, ...,ZL‘M]) for ¢ < N.

We generate the data from the following model motivated from Section 4.1:
x; =Bfi+w, B=(by)* N-U=9/2 " with bix = (ziC + 0.57ik)-

We set z; = sin(h;) where both h; and ; ;, are independent scalar standard normal variables.
Here we use the polynomial transformation zF to represent the effect of characteristics.
In addition, the ~; ;-component captures the unobservable beta components that are not
explainable by the characteristics. With the identification condition E(v;x|z;) = 0, both
components in b; ; can be consistently estimated. See more motivations of this model in Fan
et al. (2016) and Kim et al. (2018). The multiplier N~(1=%)/2 measures the strength of the
factors, whereas the spiked eigenvalue of the sample covariance grows at rate N®. Hence
larger « indicates stronger factors.

The factors are multivariate standard normal. To generate the idioscyncratic term, we set
the N x T matrix U = E}V/QGEIT/ 2; here U is an N x T matrix, whose entries independent
standard normal. The N x N matrix 3y and the 7" x T matrix Y respectively govern
the cross-sectional and serial correlations of u;;. We set Xp = (plfw_s‘)st , and use a sparse

cross-sectional covariance:

Yy = diag{A, - A, I}, A= (pl7 5.1
N = diag{ } (pn ) (5.1)

n of them
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where A is a small four-dimensional block matrix and I is (N — 4n) x (N — 4n) identity
matrix so that 3 has a block-diagonal structure. We fix n = 3 and py = 0.7. The numerical
performances are studied in the following subsection with various choice of pr to test about

the sensitivity against serial correlations.

5.1 Covariance estimation

We first study the performance of estimating 3,. To do so, we set » = 1 and respectively
calculate i\]u using R = r,--- ,r + 3. As estimating X, is particularly important in asset
pricing models, we use the loading characteristic weights w;; = z¥, k = 1,..., R, as the
characteristic z; is often directly observable along with the return data.

For comparison purposes, we also estimate 3, using two benchmark estimators:

(i) The PC-estimator for factors with R = r (the POET method by Fan et al. (2013)). So
the PC-estimator in this simulation assumes the true number of factors » = 1 to be known;

(ii) The known-factor method. We use the true factors, and estimate loadings and u; by
OLS, followed by SCAD-thresholding.

We set two serial dependence scenarios: pr = 0.1 (weak serial dependence) and pr = 0.7
(strong serial dependence), as well as two factor-strength scenarios: o = 1 and a = 0.5.

Figure 1 plots Hiu — ¥,/ and Hf];l — 31|, averaged over 100 replications, as N = T
grows. While all estimators perform similarly, the POET-estimator is not always better
than the diversifying projection (DP). For estimating 3,, both the DP with R = r and
the known factor method are overall better than the POET estimator, followed by DP with
other choices of R. This comparison is reasonable, reflecting the robustness of DP to the
serial conditions and strength of factors. Perhaps what is surprising is the comparison for
estimating the inverse covariance. In all four scenarios of the factor strength and serial

correlations, the DP with R = r performs the worst among the six estimators, and DP with

36



over estimated R is in general better than both the known factor method and the POET.
Our interpretation of this is that we set relatively strong cross-sectional correlations in the
data generating process, making X, more unstable. The use of more diversified weights

provides extra information to help stabilizing the inverse covariance estimator.

5.2 Out-of-sample forecast

We assess the performance of the proposed factor estimators on out-of-sample forecasts.

Consider the following forecast model

Yer1 = Po + By + o'fy + e1q

where we set r = dim(f;) = 2, (5o, 5) = (1.5,0.5), and o = (1,1)". In addition, &; are
independent standard normal. The data generating process for x; = Bf; 4+ u; is the same
as before, in the presence of both serial and cross-sectional correlations. We conduct one-
step-ahead out-of-sample forecast m times using a moving window of size T. Here T is

also the sample size for estimations. We simulate m + T' observations in total. For each

t=0,---,m—1, we use the data {(x;11,Yr+1), - » (Xex1, Yrr7)} to conduct one-step-ahead
forecast of y, 7.1. Specifically, we estimate the factors using {x;,1, - , X7}, and obtain
{E+17 e ,?HT}. The coefficients in the forecasting regression is then estimated by the OLS,

denoted by (EOHT, B\HT, ;7). We then forecast y; 741 by

N ~ ~ -
Yerrr1je+7 = Bogrr + Bearysrr + o rleir.

Such a procedure continues for t =0,--- ;m — 1.
We compute the diversified factor estimators using the two types of weights, with R =

r,r 4+ 1,7 + 3 as the working number of factors. As for the moving windows weight, we
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Figure 1: The estimation errors in operator-norm || X, — X,| (left) and |X, -

dimension increases, averaged over 100 replications. We set N =T. Here R =r,---

>-Y| (right) as the
,7 + 3 correspond to

the diversified factor estimators using R number of working factors. Characteristic weights are used. Here
« measures the factor strength and pr is the serial correlation.
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Table 1: Out-of-Sample MSE(M)/MSE(PC) for three types of estimators.

Characteristic weights Rolling window weights GDF KF
R
pr N T r r+1 r+4+3 r r+1 r+3 3 4 r
a=1

0 100 50 | 1.141 1.090 1.109 0.968 1.001 1.010 0991 1.016 1.007
100 | 0.998 0.980 1.035 0979 1.039 1.046 1.008 1.009 1.002

0.5 50 [ 0.996 1.008 0.965 0.993 1.018 1.055 1.000 0.996 0.986
100 | 0.885 0.886 0.917 0.937 0.922  0.939  0.995 0.997 1.005

0.9 50 | 0.602 0.621 0.637 0.608 0.620 0.680 0.763 0.772 1.023
100 | 0.434 0.458 0.482 0.422 0.419 0.450  0.863 0.578 0.985

a=0.2
0 50 | 0.876 0.913 0.987 1.072 1.059 1.071 0.991 0.985 1.003
100 | 0.931 0.906 0966 1.065 1.114 1.156 0.996 1.012 0.992

0.5 50 | 0.891 0.897 1.044 1.059 1.082 1.149 1.002 0.981 0.958
100 | 0.972 0.963 0970 0.868 0.793 0817 0968 0.981 1.007

0.9 50 | 0.478 0.513 0.647 0.713 0.731 0.688  0.953 0.745 0.966
100 | 0.762 0.v65 0.767 0.788 0.806  0.849  0.927 0.851 0.951

Reported are the out-of-sample relative MSEs. The benckmark PC-estimator uses the true number of
factors. The dimension N = 100 is fixed. The diversified projection uses R estimated factors with two
types of weights: characteristic weights and rolling window weights. In addition, the columns of GDF
estimates factors from the generalized dynamic factor model of Forni et al. (2005), with R number of
dynamic factors. The Matlab codes for implementing Forni et al. (2005) and Hallin and Liska (2007) are
downloaded from Matteo Barigozzi’s website www.barigozzi.eu/codes.html. The column of KF refers to
the Kalman filtering developed by Doz et al. (2011), which uses the true r number of factors. Both GDF
and KF specifically estimate dynamic factors.

assume there is a historical time series x; = B1f; +uy, for t = =T, ..., 0, and the loadings B,
is correlated with B in the sense that B; = 0.8B + 0.5Z, where Z is multivariate standard
normal. We then apply the moving window method to create W as outlined in Section 4.2.
Though the theory for the moving window weights requires serial correlation pr = 0, we

nevertheless set pr = 0,0.5 and 0.9 to examine the performance under serially correlated
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series.

The benchmark method is the PC-estimator, which uses the true number of factors. In
addition, we also consider two well known methods that specifically estimate factor dynamics:

(i) GDF: the generalized dynamic factor model of Forni et al. (2005). The selection
criterion of Hallin and Liska (2007) recommended using, on average, three dynamic factors,
so we use R = 3,4 numbers of dynamic factors.

(ii) KF: the two-step Kalman filtering of Doz et al. (2011). In the first step factors are
preliminarily estimated and fit a VAR model; in the second step, Kalman smoother is applied
to calculate the projection onto the observations. For this approach, we use R = 2, the true
number of factors.

For each method M, we calculate the mean squared out-of-sample forecasting error:

m—1
1 -~
MSE(M) = m Z(?Jt+T+1 - yt+T+1|t+T)2,
t=0

and report the relative MSE to the PC method: MSE(M)/MSE(PC). It is worthwhile to
emphasize that this study does not aim to beat the PC-method. In fact, the PC-estimator
yields the optimal rank r-estimation of the low-rank structure, in the sense that the estimated
low-rank component BF’ satisfies: ﬁpcf;,c = arg Minynka)=r | X—A||%. So when the number
of factors r is correctly specified and the time series dependence is not strong, the PC-
estimator enjoys some optimal property. Nevertheless we use PC as the benchmark as it is
the most commonly used in this literature. We aim to see how well the proposed DP method
performs relative to the benchmark.

The results are reported in Table 1 for m = 50, and is computed based on one set of
simulation replications. We see that the DP with various R and Generalized DF are in
most scenarios similar to the PC-estimator, and DP outperforms under the strong serial

correlations. In all cases, Kalman filtering is comparable with PC, including the case of
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strong serial correlations.

5.3 Post-selection inference

We now study the inference for the effect of g; in the following factor-augmented model

u = Bg+vx +mn,
g = 0'x+ Egt
Xy = Bft —+ Uy,

where both v and @ are set to high-dimensional sparse vectors. The goal is to make inference
about 3, using the factor-augmented post-selection inference. We generate u; ~ N (0, X,),
(N, €g.0) ~ N(0,I). We set (ug, €44, 1) be serially independent, but still allow the same cross-
sectional dependence among u;. This allows us to focus on the effect of over-estimating
factors. The r-dimensional f; are independent standard normal. We set the true 8 = 1,
0=v=(1,-15,05,0,..,0) and T = N = 200.

We employ the diversified factor estimator described in Section 3.2 with various working
number of factors R, and compare with the benchmark “double-selection” method of Belloni
et al. (2014). In particular, we consider two settings:

(i) 7 = 0: there are no factors so x; itself is weakly dependent.

(ii) r = 2: there are two factors driving x;. Set a = 1 so both factors are strong.

We calculate the standardized estimates: 2 := @ ;33\/7 (B\ — B), where the standard error is
the estimated feasible one. Our theory shows that the sampling distribution of z should be
approximately standard normal.

Figures 5.2 and 5.3 plot the histograms of the standardized estimates over 200 repli-
cations, superimposed with the standard normal density. The histogram is scaled to be a

density function. We present the results when the initial transformation are used as weights
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for the diversified factors. The results from characteristics and Hadamard weights are very
similar. When r = 0, while it is expected that the double selection performs very well, as is
shown in Figure 5.3, using R > 1 factors also produces z-statistics whose distribution is also
close to the standard normality. This shows that the factor-augmented method is robust
to the absence of factor structures. On the other hand, when r = 2, the factor-augmented
method continues to perform well. In contrast, the double selection is severely biased, and

the distribution of its z-statistic is far off from the standard normality.

Figure 2: true r =0 Figure 3: true r =2

The first three panels employ the diversified factor estimator with R number of working factors. The
last panel uses the double selection, which directly selects among x;. The weights used are the initial

transformations (£ = 0) so that the i th row of W is (w;,0,27 ¢, ..., z/%) for i < N.

5.4 Testing the specification of empirical factors

In the last simulation study, we study the size and power of the test statistic for Hy : g, = 0f;
for some r x r invertible matrix 6. Here g; is a vector of known “empirical factors” that

applied researchers propose to approximate the true factors. We generate

gt = 0ft —|— ’}/ht, t S T,
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where 0 is an r-dimensional identity matrix, and (f;,h;) ~ N(0,I). Here v governs the
strength of the alternatives. We assume that u; is serially independent normal generated
from N (0, Xy), with Xy as in (5.1), pertaining the same cross-sectional dependence. We
set R =r =2 and fix N = 200. In each of the simulations, we calculate the test statistic as
defined in Section 3.4, and set the significance level to 0.05. We use the SCAD-thresholding
to estimate X, for both MEAN and 3.

Table 2 presents the rejection probability over 1000 replications, with v = 0 representing
the size of the test. Above all, the results look satisfactory with controlled size and reasonable

powers, while weights using initial transformations have some size distortions.

Table 2: Probability of rejection at level 0.05. v represents the strength of alternatives.

0% T | Characteristic weights Hadamard weights Initial transformation
0 100 0.054 0.046 0.065

200 0.052 0.047 0.074
0.2 100 1.000 0.998 1.000

200 0.975 1.000 1.000

6 Conclusion

We propose simple estimators of the latent factors using cross-sectional projections of the
panel data, by weighted averages. These weights are chosen to diversify away the idiosyn-
cratic components, resulting in “diversified factors”. Because the projections are conducted
cross-sectionally, they are robust to serial conditions, easy to analyze due to data-independent
weights, and work even for finite length of time series. We formally prove that this procedure
is robust to over-estimating the number of factors, and illustrate it in several applications.

We also recommend several choices for the diversified weights.
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A Technical Proofs

Throughout the proofs, we use C' to denote a generic positive constant. Recall that vy, (H)
and Vpmax(H) respectively denote the minimum and maximum nonzero singular values of
H. In addition, Pp = A(A’A)"'A’ and M = I — P, denote the projection matrices of a

matrix A. If A’A is singular, (A’A)~! is replaced with its Moore-Penrose generalized inverse

A~

(A’A)*. Let U be the N x T matrix of u;. Recall that R = dim(f;) and r = dim(f;).

We use ||A|| and ||A||r to respectively denote the operator norm and Frobinus norm.
Finally, we define |A|/» as follows: if A is an N x K matrix with K = R or r, then
|A |l = max;<y ||A;]] where A; denotes the i th row of A; if A is a K x N matrix with
K = R or r, then ||A||cc = max;<x ||A;|| where A; denotes the i th column of A; if A is an
N x N matrix, then ||A|| = max; j<n |A4;;| where A;; denotes the (4, j) th element of A.

Throughout the proof, all E(.), E(.|.) and Var(.) are calculated conditionally on W.

A.1 A key Proposition for asymptotic analysis when R > r

Proposition A.1. Suppose R > r and T, N — oco. Also suppose G is a T x d matrix so
that E(U|G) = 0, #[|G||* = Op(1), for some fized dimension d, and Assumption 2.1 - 2.4
hold. In addition, for each K € {Ir, Mg}, suppose Apin(zF'KF) > ¢ > 0. Then

(i) )\min(%f"Kﬁ) > ¢N~1 with probability approaching one for some ¢ > 0,

(i1) B/ (AFKR) | = Op(vhy + /), and [H(AFKF)H = 0p(1).

(iii) |H'(AF'KF)'H — H'(HLF'KFH') " H| = Op(sz—+ 7). and G/(Pg — Pr)G =
Op(fr— + 1)-

Proof. The proof applies for both K = I and K = Mg. In addition, the proof depends on
results in the later Lemma A.1; the latter is proved independently which does not depend
on this proposition. Write vy, := vmin(H), and vpax 1= Vimax(H).
First, it is easy to see
F=FH +E.

where E = (e, -+ ,er) = %U’W, which is T x R. Write

1 1 1 1
A= —EEE+ —HFKE + —EKFH + —(EE-EEE) + A
T + T + T + T( )+ A

where A; =0 if K =1y and Ay = —%E’PGE it K=Meg.



(i) We have
1., 1
—F'KF = —_HFKFH' + A.
T T *

By assumption )\mm(lEUU’) > ¢p, SO /\min(lEE’E) > )\min(lEUU’))\min(%W’W) >
coN~1 for some ¢y > 0. In addition, Lemma A.1 shows = (E’E EEE) + A, = OP(WT)'
Hence | +(E'E — EE'E) + A;|| < t\uu(7 EEE) with large probability. We now continue
the argument conditioning on this event.

Now let v be the unit vector so that v/ %f" KFv = Amin ( F Kf‘) and let

1
T

1
0 = TV’HF/KFHIV.

Because VA F'KFv = n?2 + v/Av. we have
T v 9

1
)\min(_

F'KF) > n? + 2v—HFKEv + —
T )_m+vT +

2N

If vVH = 0 then )\min(%f‘/K]/F\‘) > o If v'H # 0 then 72 # 0 with large probability because
%F’ KF is positive definite. Now let

2

2
. Ty —-1/2 /1 / /1 / My
X = (1200 _HF'KEv., 2v—HFKEv = X .
A Vi SV v TN

Then
o, o
TN + 2N’

Suppose for now X = Op(1), a claim to be proved later. Then consider two cases.

In case 1, n? < 4]X]| 77“ . Then |n,| < 4|X|F and

1~  ~
/\min(?F’KF) >ni+ X

1~ Co 1 &
—_FKF >—— My 2 > 0
) Xl |\/__2N 44X |TN_4N

)\min
(T
where the last inequality holds for X = Op(1) and as T" — oo, with probability approaching

one.
In case 2, n; > 4| X[/ 7%, then
1~  ~ 3 Co
Amin(=F'KF) > n? — | X — >
(7 )2 m =X N+2N_477”+2N_2N



In both cases, )\min(%f" KF) > ¢o/N for some ¢y > 0 with overwhelming probability.
It remains to argue X = Op(1). By the assumption Ay (+F'KF) > ¢ > 0, we have

1
n? > Amin(TF’KF)v’HH’v > c|v'H|?.

In addition, Lemma A.1 shows [|+F'E||? = Op(7x) and || G'E|* = Op(5). With the
condition 7| G||* = Op(1), we reach || F'MgE|]* < Op(7x) + |[F'G(G'G) || : G'E|]* =
Op(7~)- Therefore || F'KE||? = Op(5~) and consequently,

1
(X < AT Ny, *|[VHIP|ZFKE|* < Op(1)n, " [VHI® < Op(L)e|[VH|| 7 [IVH|* = Op(1).
(i) Write H := H(AF'KF)"/? and S :== JEE'E = +W'S,W. Then

1. o4 == 1 1 1
—FKF=HH + -S+ —HFKE + —E'KFH + A Al
T + NSt + 7 + A, (A1)
where we proved in (i) that | As|| = || z(EE-EE'E)+ A, | = Op(5% 7). Also all eigenvalues
of S are bounded away from both zero and infinity. In addition, H is a R X r matrix with
R > r, whose Moore-Penrose generalized inverse is H = (AF'KF) " '/?2H". Also, H is of
rank r. Let

H =U;(Dy,0)E}

be the singular value decomposition (SVD) of H’, where 0 is present when R > r. Since
Amin(FF'KF) > ¢ > 0, we have Apin(Dg) > Winin where vpin := o (H).

The proof is divided into several steps.

Step 1. Show |H'(HH' + £I)H| = Op(l/_-(Qj_2)) for any fixed @ > 0 and j =1, 2.

min

Because Apin(Dg) > cVmin, for j = 1,2

a . a . _9;
| B (R + D 7H| = [Ug(DL(DF + D7, 0)U% || = [DF(DF + =1~ < [Dg 7).
Step 2. Show |H'(HH' + +S)"'H| = Op(1).
Let 0 < a < Amin(S) be a constant. Then (HH' + £I)~! — (HH' + +S)~! is positive
definite. (This is because, if both A; and Ay — A, are positive definite, then sois A;'—A; ')
Let v be a unit vector so that vVH'(HH' + +S)"'Hv = |[H'(HH' + +S) 'H||. Then

o 1 _ L _ o _
| E(HE + —-8)'H| < vE'(HE + %I)*le < ||H(HH + %I)*lHH.



The right hand side is Op(1) due to step 1.

Step 3. Show ||[H'(HH' + £S)~!|| = Op(vy1).

Fix any a > 0. Let M = H'(HH' + £I)~'. By step 1, |M|| = |H'(HH' + £1)2H||'/? =
Op( So

mm)

[ +8) < M+ R+ 48) ' - M)
N N
1 a _ 1
—S - —1 HH/ _S -1
! (S~ D + 59
< M+ M (R )

<@ [M]|(1+0p(1)) = Op(

=0 | M| + | B (HE + 1)

mln)

(1) used A" — Ay = AT (Ay — A)ASY (2) is from: |[(HH + £S)7Y < ALi(+S) =
Op(N).

Step 4. Show [H'($FKF) ™| = Op(vh, +/5).

Let A := HH' + LS. By steps 2,3 [HA™!|| = Op(v,;,) and [HA™'H|| = Op(1). Now

mln

Hﬂ’(%ﬁ'Kf) —~HA Y| = |HA" (TFKF A)(TFKF) Y

N N

<® Op( Vinax(H)

< W)H( FKF) | =% Op(

In (3) we used %f"K]/F\‘ — A= Op(Nf + |[HF'KE|) = (N\f + o) = Op(48%); in

(4) we used (%f"Kf‘)_l = Op(N) by part (i) and Vpax < CVpin. Hence

3

T/ 1/\/ Y\ — N
B EKE) ™| < Op () 20) + [HA™| = Op(vgh +

Thus ||H/(1FKF) H < ||(1FKF) 1/2||||H’(% KF)~!||, which leads to the result for
[F(AFKF) | = Op(h, + /%),
Step 5. show H'(LF'KF)"'H = H'(AHF'KFH' + 18)"'H + Op(
Because ||[HA™!|| = Op(

1 1
Vmin\/ﬁ + T)
v1)and [[HA'H| = Op(1) by step 3, (A.1) implies
T 1 1 il sremc L sien —117
|H (= FKF) H-HA 'H| = |H (=FKF) '(=FKF - A)A 'H||
T ) ) T T
< HFI/A*FI(fF’KF)*1/2

_ 1~ o~
HIE AT A (FKE) ' H|

14 . o1 1 S PSS
_F'KE(=FKF)'H|| + |HA"' =E'KF(=FKF) ?H (=FKF) 'H|
T T T T T



1 X 1 N 1
b+ IR ] = On( 405058+ 4/ X = 0L 4 1)

(5) follows from step 4 and v, > N~/2. Then due to ||(+F'KF)~'/?|| = Op(1),

Op(vy,

1 1
—+_
Vmin\/NT T

In addition, step 3 implies |[H'(:HF'KFH' + +S)""H|| < Op (v}, /max) = Op(1), so

1~ 1 1
H’(TF’KF)‘lH = H’(?HF’KFH’ + NS)‘lH + Op( ).

1 1

ijnm + T) = OP(l)

1~
B FKR)H] = 0p(1 +
(iii) The proof still consists of several steps.
Step 1. H'(LF'KF)"'H = H'(LHF'KFH' + 1S)""H + Op(

It follows from step 5 of part (ii).
Step 2. show H'(HH' + +S)'H = H'(HH')"H + Op(5>—) where H = H(7F'KF)"/2.

Write T = H/(HH' + £S)~'H — H'(HH')*H. The goal is to show | T|| = Op(5—). Let

min

1
mmva +7)-

v be the unit vector so that |v'Tv| = ||T||. Define a function, for d > 0,
'Y (LTI’ d —113
g(d) :=v'H'(HH' + NI) Hv.

Note that there are constants ¢,C > 0 so that & < Amin (
have g(C) < vVH'(HH' + +S)'Hv < g(c). Hence

S) < Amax(+S) < 5. Then we

1 L
N N

V'Tv| < |g(c) — vH'(HH)THv| + |¢(C) — v'H'(HH') "Hyv/|.

Recall H' = Ugz(Dg,0)E; is the SVD of H' and N~'A_} (D%) = op(1). Then for any
d € {¢,C}, as N = o0, g(d) = v'UzD%(D% + L4I)"'U/,v Ly viv = v'H'(HH')*Hyv,

where we used H'(HH')*H = I, easy to see from its SVD. The rate of convergence is

d d
~1 ND;H = Op(

1
Nz)'

mm

d
|D5(Df + D™ — 1l < [ Dy (D +

Hence [v'Tv| = Op(5,2—)-

In in

Step 3. show HH'(;F Kf‘)—lH ~H/(H7FKFH')'H|| = Op (57—

+ 7). By steps 1 and



1~ ~ o 1 1 1
H(-FKF)"'H = HHH +—-S) "'H+0p(——— + —
= (=FKF)"'?H(HH + —S) 'H(=F'KF) 2 + Op —
=) (TF’KF)-1/2H’(HH’)+H(TF’KF)—V2 + Or(5 +- INT +7)
e 1 1 mln mln
= H/(HH)™H =),

where (6) is due to Apin(F7F'KF) > ¢ and step 2.
Step 4. show %G’PAG 1GPFH/G+OP( +%)

Hl in
A~

By part (ii) | H'(zF'KF)~![| = Op (v,

mln

\/7) and that 1G'E = OP(\/——)
1 / 1 / 1y —1 / 1 e — 1 1 e —1 /
~G'P;G = —GFH(FF)'HF G+ _GEFF)'EG+ _GEFF) 'HFG
1 o
+-G'FH/(F'F) 'E'G
1 ~,~ 1 1
= —G'FH(FF)'HFG+O0p(=+ ——
T (F'F) r(g . ENT)
1

1 1
= GFH(HFFH)'HF'G + Op(55— +

N2, T>’

mln

where the last equality follows from step 3. n

The proof of Lemma A.1 below does not rely on Proposition A.1, as it does not involve
H or F. Also, let E = (eq,--- ,ep) = %U’W. In addition, we shall use the following
inequality tr(W'EXW) < R||[W|?||Z|| for any semipositive definite matrix X, whose simple
proof is as follows: let v; be the ¢ th eigenvector of W XW. Then

R R
H(WEW) = > viIWEWy; < |2 D |[Wv,|? < | S]]|W]R.

i=1 i=1

Lemma A.1. For any R > 1, (R can be either smaller, equal to or larger than ),
() IFERE| < § and [B] = Op(,/).

(i) E||zF'E|? < O(75), E H%G’EH2 < O(7), here G is defined as in Section 3.1
(iii) || 7(B'E — EE'E)|| < Or(547). | 7EPcEl = Or(Fr).

(in) | FUW < Op(y/ 7).



Proof. (i) By the assumption |7 EUU'|| = || Euu;| < E || E(uu}|F)|| < C. Thus

C

1
—EEE| = W' EUUW| < —[[W]?* <
|7 EBE] = < IWIP < 5

Also, E||E|? <t EE'E < R|EE'E| < <.
(ii) Let fy, be the k th entry of f;,. By the assumption ST USSR E(uul | F)|| <

C,
1, )
El-FE[" = TQNQEHZW’utf’H <ZT2N2;;Efmfks (W, WW'y,|F)
< ZT2N2 ;;Efktfkstrw E(uau,|F)W
< ZTzNz ZZE|fktfksH|WHFH]E(utu )|l
s 1 t=1
S ) S IS
s=1 t=1
C
<
= TN

Similarly, E[|7G'E||? < O(75)-
(iii) By the assumption that # Znng ZMm’nSN | Cov(wittje, Umstins )| < C,

3
M

1 1
E|—(EE - EEE)|> < > E( = D wiwg (i — Eugugy))?

k,g<R t=1 4,j<N

c 1 C
< TN2TN2 Z Z ’COV(uitujbumsuns)’ < TN2

t,s<T i,jmn<N

Next, by part (ii)

1

BGIPI(:G'G) " < Op(my)

1
—E'PgE| <
IFEPGE| < |
(iv) E[|[ £ UW|?> < L tr EW'UU'W < £8||W||2 < &, where we used the assumption
that || Euu}]] < C.

]



A.2 Proof of Theorem 2.1

Proof. We shall first show the convergence of Pgy, — P, and then the convergence of
PPy — Py.

First, from the SVD H' = Ug(Dy,0)E),, it is straightforward to verify that M' =
Uy (D', 0)E). Then from Proposition A.1, )\min(%M’f"f‘M) > coN " Apin(Dy?) with
large probability. Hence Pg,, is well defined.

Next, it is easy to see H(HH')™H = I when R > r. Then F = FH + E implies

FM — F = E(HH')"H with M = (HH')*H. Since ||(HH')"H| = Op(v-1), we have
T EM | = Op(—vih). P EM — B[ = Op(— sl
\/T \/_ mln ) T \/_ mln
where the second statement uses Lemma A.1. Then H%M’f"f‘l\/[ 7FF|| = Op( Wis vl 4
Ly-2). Thus (AM/F'FM)~! = Op(1) and
[(-MEEM) " — (EF) | = Op( iy + v (A2
T T P \/_ mln N mln °
The triangular inequality then implies [|Psy; — Pr| < Op(\/—lﬁu;ﬁln).
Finally, PsPgsy\; = Payg gives
I
IPsPr — Pr| < [[Pa(Pr — Pay)l| + [Pey — Prll < OP(\/—Nmen)-
]

A.3 Proof of Theorem 3.1

Proof. Here we assume R > r. We let z, = (f/H',g})’ and § = (¢’H",3')". Then 8'z, =

Yignje- First, we have the following expansion

;5\I/Z\T — (SIZT = (3 — 6)//Z\T + CY/H+ (/f\T — HfT)



Now 8 = (Z'Z)"'Z'Y, where Y is the (T —h) x 1 vector of y,4s, and Z is the (T — h) x dim()
matrix of z;, t = 1,--- ,T — h. Also recall that e, = ft — Hf, = NW +. Then

4

P PURSN RSP
zr(6—90) = z'T(TZ’Z)_1 Z ag, where
a; = (fgstei,o)', a2 = : ZEy

1 1 /
as = (_a,H+T Xt: eteiy 0)/, ayq = _T zt: Zte;H—’— .

On the other hand, let G be the (T'— h) x dim(g;) matrix of {g, : ¢ < T — h}. We have, by
the matrix block inverse formula, for the operator My :=1— Py,

A A A (LF'MgF)™
(fz’zM:( ! 2), where | Ay | = | —A|F'G(G'G)!

A, A
2 A, (+G'MzG) !

—_

Then ZH(LZ'Z)" = (€A, + g A, £rA, + gf-As). This implies
s 5 1 :
zr(0—6) = (frA:+ g&“A,Q)T Z[etgt —eeH qf

t

~ 1 /
+(f,AH + g’TA’QH)T Zt:[ftgt — f,ejH" a]

o 1 l
+(f7 A2 + gérA:%)T Z[gtgt —ge;H .

t

It is easy to show H%Zt fiel]| + H%Zt gied|| = Op(\/if) and H%zt es|| = (%)
Also Lemma A.1 gives %Zt e, = 7E'E = Op(%), 7>, fie, = 7F'E = OP(\F> and

% D8l = —F E= Op( ) Together with Lemma A.2,

1 1
+
\/TN 1NVmin) 1
I[EAH + g ALH||Op(—=) + [[FrAy + g/ As||Op(——
HTll g:/i o H| P(\/T) 17 A5 + grAs|| P(\/T)
= OP(

N

7206 —8) = |[frA; + grAs]|On(

Finally, as |[H*|| = Op(vi,), o' HY (r — Hr) = Op(vpi,)ler]| = Op(vgh, N71/2).

10



Lemma A.2. For all R >r, (i) |Afr| + |As] = Op(VN), and
[HAsfr|| + [|H Ao|| + [|Asfr || + [|Asl| = Op(1).

Proof. First, by Proposition A.1, [|A4]] = Op(N) and ||[AH| = Op(v;, + /%), and

7E'G = Op( =)
- 1~ ~ 1~ ~

Afp = (?F’MGF)*leT + (TF’MGF)*HfT = Op(V'N)

HAf, = H’(%f"MGf‘)leT + H’(%f"MGf‘)leT = 0p(1)
- /N

—A;, = AFG(G'G)!'=AEGGG)! +AHFG(GG)™! =0p( =+ vil)
~-H'A, = HAEG(G'G)'+HAHFG(GG) ! =0p(1)

ALty = ALHEr + Aber = Op(1).

Finally, it follows from Proposition A.1 that +G'(Ps — Pra)G = Op(7 + 5-2—). Hence
|As]| = Op(1) since Apin( G Mpu'G) > c.
0

A.4 Proof of Theorem 3.2

Let €y, €,,€4, €y, Y, G and m be T' x 1 vectors of €y, €y, €g4y €y, Yi, 8 and n,. Let J
denote the index set of components in u; that are selected by either 4 or 6. Let U 7 denote
the N x |.J|o matrix of rows of U selected by J. Then

€y = MﬁjMfY, g, = MﬁjMfG.
A.4.1 The case r > 1.

Proof. From Lemma A.7

VIB=B) = VIIEE)EE —e) + E&) En+ EE) (e, ~2)8)

g g

s 1 ~/ ~ 1 1/~
= OPU)ﬁeg(Ey —&y) + OP(l)ﬁsg(eg —€y) +0p(1) \/T"? (8g — &)
1 / —1 1 /
+(fegsg) —ﬁsgn
1
= 0, —=em +op(1) <5 N(0,0,"07,). (A.3)

VT

11



In the above, we used the condition that | J|34|.J|2log® N = o(T) , T|J |4 = o(N?min{1, 2, |J]|4})
and /log N|J|2 = o(Nv?,,), whose sufficient conditions are T'|J|§ = o( N? min{1, 2. |J|3})
and |J|$log®> N = o(T).
In addition, 3,;;83\/7(3 - 0) N N(0,1), follows from 52 := 7&,&, L, ;.
[

Proposition A.2. Suppose T = O(vi. N?log N), |J|2T = O(v/?
and |J|3log N = O(T), |J|3 = o(N) For all R >r,

(i) 10’0 — U0|> = Op(|J|o"%Y) and |0 — 0], = Op(|J|o\/%N).
(11) |J|o = Op(|J]o)-

N*log N), |J[5 = O(Nvjy, log N)

m1n

Proof. (i) Let L(8) := 7 3°1_ (g — @yf — 0'6) + 7|6,
d=oalf —af,+ (0, —1,)0, A=60-0.

Then g; = o, f; + 0'u; + ¢4, and L(é) < L(0) imply

T
1 . . ~
T D @A) +2(cg0 + )W A] +7(10]1 < 7161

t=1

It follows from Lemma A.5 that H%ﬁsgﬂoo < Op(y/"&X). Also Lemma A.4 implies that

T
1 - 1~ / 1~ / - 1~ / ~

1 ~ N
00 - U) UL
logN

logN 1 _1 logN+ ||o | o
‘TN

" N 12nm " Vimin TN Nymin Vmin'V NT

IN

Op(|J]o + | J]o

).

Thus the “score” satisfies ||%Z£1 2(eyt + di)U]|oc < 7/2 for sufficiently large C' > 0 in

7 = Co /8~ with probability arbitrarily close to one, given T = O(v, N%log N), |J[2T =
O3, N? log N), |J]2 = O(Nv2;,, logN) and |J|2log N = O(T). Then by the standard

argument in the lasso literature,

T

1 ~ T

T > (@A) + S Aell =
=1

mm

37
— A ]4.
5 1A

12



Meanwhile, by the restricted eigenvalue condition and Lemma A.4,

T T
R 1 1 ~~
Y @A) = Y (WA — AT - UU e 2 A3 (G — 0p(1)

t=1 t=1

1
T

+ IOgN) = op(1) (Lemma A.3). From

here, the desired convergence results follow from the standard argument in the lasso litera-

where the last inequality follows from |J|oOp (v i+
ture, we omit details for brevity, and refer to, e.g., Hansen and Liao (2018).

(i) The proof of |J]y = Op(|J]o) also follows from the standard argument in the lasso
literature, we omit details but refer to the proof of Proposition D.1 of Hansen and Liao
(2018) and Belloni et al. (2014).

O

Lemma A.3. (i) H%E’U’HOO = Op( 1‘;%\][\[ + %)

(i) |+ EPRE| = Op(%), |+EPsU o = Op(/ 55 + %)

() 130~ U)(O ~ U u + 2040 — U)o = Oplrd -+ 55,
(iv) | 10T — LUV = Oplwl,  + o2%)

Imn N

A~

Proof. Let F = (f;,--- ,f7). In addition, B — BH* = —-BH'E'F(F'F)~! + UE(FF)~! +
UFH/(F'F)~!. Therefore,

A~

HNOF + BH'E

U-U = BF -BF = )
+ UE(F'F) 'F + UFH'(F'F) 'F + BH'E'. (A.4)

(B—B
— —BH'EFFF)'F
(i) We have

1 logN 1
”fUEHOO < kzrg%(’ ZZ UigUje — Eultujt>wkj| +O( ) ( TN +N)

ii) By Proposition A.1 , Lemma A.1 , vy, > N2 and || £F'U'||, = Op log N
T

1
| ZE'PEE]

IN

1 = 2 ~= 1 =

H?ETKWFywaH+HfETmFFy?HFEH+HfETHKFTy?HFEH
1

< Op(=

1 SO !

|ZEPs Ul < [|ZEEFF) 'EV | + | -EEFF) HF U

1 o 1 .
+|ZEFH (FF)'EU | + | ;EFH (F'F) ' HF U

13



logN 1

(iii) We have ||H+|| = O(v_ ). Also, ||F(F' )~ 1iﬁ\"|| < 1. In addition, by Lemma A.1,
[(F'E)='F'||* = ||(F'F)~"|| < Op(§) and that |[H'(F'F)~'F|2 = |[H'(F'F)~"H|| = Op(4).
Next, by Lemma A.1, ||E| = Op(\/;), and max; ||b;|| < C. Substitute the expansion (A.4),
and by Proposition A.1,

1 . 1~
(U= U)(U ~ U)o + 2| 5(0 - U)U"||
I ) Vlloo + 2[5 |

IN

2 1 ’ 3 =N
||?BH+E’U’HOO + ||TBH+E’EH+ B||s + ||TUE(F’F)‘1E’U’||OO
4 = 4 =
+||— H'E'E(FF) 'E'U | + ||— H+E’E(1«“’F)—1HF’U’||oo
3
+||( UE + TUFH’)(F F) "HF'U'|| + ||—BH+E FH'(F'F) {(HFU + E'U)|»

+\|— H+EPP:U’HOO+H— BH'E'P;EH" B’ Hoo
L
! C

+Op( mm)H—E’EHH(F F) 'H||||F’ U’Hoo+H—UEHooH(F F)"'H|||F'U'||

IN

E'U'|oOp( mm)+H—E'EH0P( mm)+NH UEH2 +NH—E’EHH EU'HOOOP(

H—E'FH I (F'F) " HI||F'U'||o

mln)

3
+H:7UFHooHH'(F F)~"H|[|F'U’|l + Op(

C
+Op( mm>||—E'FH B (EE) HE' oo + O () | mEPEU |l + Op (v mm>u—E PLE|
1 logN
= Op(v2— ,
P(meN + T )
Also, 20U’ - LUU||o < [|A(U — U)(U — U)o + 2| 4(U - U)U||o < Op(vi2+ +
M)
£N).
]

Lemma A.4. For all R > r,

(i) || 6'(0 — U)U'||o, < Op(* ¥
(ii) | LEPLF| = Op(5— + ),
(iii) | B0 |l < Op(y/ '8N + o), APl < Op(y/1%
(iv) | L0'UE| = |7160p(% + —42). | £6'UF| = M?)
(0) @y — H = |Ts0p(1+ 1/ 5) + Op(vd), H(@ — HY ay) = Op(uh e + /12 +

v 2Ly,

min N

min ) | Jlo
I7UPEF o = o

Nlen

14
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Proof. (i) By Lemma A.3 |16/ (U—~U)U'||o < [|8]1[|2(U~U)U|| < Op(2N 4 7)1 o-

(ii) Note H'H*' = I, Lemma A.3 shows | A E'PgE| = Op(%), |AEPzU || = Op(y/ ' BY +

Y

z|-

1 1
+
NVmin V NT

1 1 / 1 / 1
IZEPeF| < [|ZEPEH" || + [ ZE'EH || + | ZEF| = Op( )

1 1 / 1 / 1
—UPsF < ||=UPsEH™" —UEH" —UF
| 7UPEFle < | ZUPEEH" | + | ZUBHY | + | -UF

log N 1
T * NVmin>‘

IN

Op(

(i) By Lemma A.3 || 1E'U'||o = Op(1/2Y¥ + L) and (ii)

1~ 1 1~
||TUE||oo < ||_UE||00+||_(U_U)E“00
< ||—UE||c>o+||—BH+EP E||oo+|| L up, E||o<>+||—BH+EE||oo
log N 1
<
' = 011’ ( TN +1Nymin)
H;UFHOO < H—UFHOO+H—(U—U)FHOO
< H—UFHOOHI—BH*EP FHoo+H Lup, FHOOHI—BH*EFHOO
log N 1
< O
S T +Nz/mm)

(iv) L0'UE = £-6/(UU' —EUU")W + -0 EUU'W. So

R
E H—O’(UU’ EUU)W|? = Z N2T2 Var( Ze uu,wy,)
k=
ol
< N2T2||0H1miix Z Z | Cov(uittigr, Ujstys)| < ]\|f7|’0

q,v<N t,s<T

Also, || 18 EUU'W|| < maxjeny 3 [wi;[|0]1 |2 EUT||, < O('ZR). Also,

1 , 1 C
#O'UF|* = — wEF'E(U'66'U[F)F < —||E(U'00'UJF)|,

C T C T
< fmgx;IE(H’utu;mF)! < fmtaX; | E(uau,[F)[1]|0]]1]16]]0 <

El

ClJ0o
T

15



(v) Since a, =

o~ +/
a, —H" a4

H'(a, - H o)

Lemma A.5. Suppose |J|o = o(N
(i) L[PRUBIE = Op

(f" f‘)_lf"G, simple calculations using Proposition A.1 yield
= (FF)'FG-H"q,

-
= [JoOp(1 + \/g) +Op(Vpnin)

A~

M)

— H'(FF) 'Ee, - H(FF) 'EEH" o, + H(F'F) '"E'U'0 + Op(1/ =2)

_ o, S o 1
- OP(me N + T +VminN)'

mm) For any R>r

JIZ JIZ J
(R + 4+ ), FIPee, | = On()

~ o~ / =~ t]
F) 'E'e, — (FF) 'EEH" o, + (FF)'E'U0 + Op( @)

T

(i1) 13(0 = eyl = Op (S5 + YEX), and | £0e, oo = Op(/55) = 11Uty .

(1i1) )\min(%UjU'j) > ¢ with probabzlzty approaching one. %||Pﬁj€g||2 _
. S J|? +umm J vt || B
fiv) L0 — U0 = Op(Uhtsia W IR app o 01

%GIUPf‘Ey = OP(% —+ ‘J|0 + Vmin

1/2\J\3/4

VNT T TVNTO/

Proof. (i) By Lemma A.4 (vi) and Proposition A.1,

1
ZIPsUB|

1
~lIPge, |

|
a
|
=)
&
I

1 o~ o 2 BN

= TG’UE(F’F)‘IE’U’O + Te’UE(F’F)*HF’U’e
1 ~~

+T0’UFH’(F’F)‘1HF’U’0
J2 )2 JIo
B LI, 1l

P(\J\O;Dgl\f) _

| o
T

g

F'F)'HFs,

< 0 + :
P( N T Vmin2N\/T)
1 NN e N ]_ ~,.
= L€ E(FF)Ee, + e, E(FF) ' HF, + ngFH(F’F) 'HFe,
N 1 v 1
< O min O O
< Or(5p) +Or( f) ot r(7) = P(T)
- BH'E'E(FF) 'E¢, - -BH'EFH(FF) 'Ec, + _UEFF) 'Ee
1 ~ 1 o 1
_fBH+E/E<FIF)7lHF/€g o TBH+E/FHI(FIF>71HFIEQ + fUE(

16



1 e 1 SN 1
+5UFH'(F'F)'Ee, + UFH/(F'F) 'HF'e, + TBH*E'eg.

So by Lemmas A.1 and H%UEHOO = Op( 1‘;%\1[\7 —|—%), HT(U Ugylloo = OP( min, |- Vlog ).
Also, with [|[4Ug,|lc = Op(1/™8X) we have H%ﬁngoo = Op(y/'&X). The proof for

|- Ue,|| is the same.
(iii) First, it follows from Lfmma A 4 that ||%[Ajfj/ _ %UU/HOO < OP(@ n %ﬁ;)
Also by Proposition A.2, |J]o = Op(|J|o). Then with probability approaching one,

1~ ~ 1 J ENPN 1 ~
)\mm(TUj ) > )‘min(foU/f)_HTUU,—fUU,HoJﬂO
logN v 2
> - Zmin >
1 Ry e SLUEL
PG 7 = ;U’ (05010 5e, < 17 TP (7 0,07)

< = €U'H [7]o < O

|<]|010gN
T )

7|[Pg &y follows from the same proof.
J
(iv) Recall that |la || = [|6'B| < C. By part (i) and Lemma A.4,

1, e 1
FOU-U)" < Z[|6'BHEPs|* + —||¢9UP I* + ||‘9’BH+E’||2

T2 + v |J|o L
< O mm mm .
< ( N + T + NVT )
1 1
|- EPge, || < ||?E’Pfuquey||=op< 7

» L o 1l v I
TQUPﬁgy < ?HOUPﬁ”Pﬁgy“—OP( T m+ VNT3/4

).

Lemma A.6. For any R>r
' U o lo JR24v2 |2
(i) %HMﬁjU'a\P = Op(]J]o"%Y), %y\MﬁjUfeuz = Op(lZlosN 4 | 13 1 1218,

N
(ii) 1€,Pg (U~ UY8 = |13\ / 5 Op (5™ + i),

T NV
LM TologN | Wlotvgh | vl [lgn 1R
T%MU}U/O <0 (O—+W Vs T % N2 );
- _ Jlolog N V/T170o |JlologN | |JlovIog N
(ii) [P, Ell = Op(y/HpeX + ST Ly B = Op(Moba 4 Uovieedy,
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Proof. (i) First note that Pg U0 = Ui, where
J

m = (M, - ,my) =argmin ||U'(8 —m)| : m; =0, for j ¢ J.

Thus by the definition of m, Proposition A.2 and Lemma A.5,

1 ~ - log N

LMo, TofF ~ LjGe-Um ||2sf||U’ OB < 0,715

1 10112 |J|010gN 1 012 |J|010gN+ |J|(2) |J|0 Vinin
M-~ < Ll = Wl —

—143/2
vl J|o log N :
where we used % = Op( H(’%) by our assumption.

(ii) Let A =60 —m. Then dim(A) = Op(|J|o). Also, by Lemma A .4,

1 ~n 1 ~~ log N 1
A/_ - IA< A2_ - / <
L0~ UU)A < A7 400 - UU) | < 0p( 20 +

mln

A ]o.

Also, ||A[]> < £|[U’A||? due to the spare eigenvalue condition on ~UU’. Then 5]- = 0 for
j ¢ J implies |[U'A|| < |U’(6 — 8)|| and Proposition A.2 implies

log N 1

1o —m|f < [JllA]* < U!o—HU/AH2 < o7 |07 A2+ Op( — TN glm)HAHQU\o
< o060 = OB+ 0n(5% + A
VBB o, 1olog® Vb o
The above implies ||@ — @[3 < Op(|J|3°%8Y). Hence by Lemma A.5,
1P, (0-1)0 < | elPg 100 - 0ol 0N 0,0
< |J|g\/mop<1°gTN + Njgﬁn)'
reiMo, 08 = 7,010 ) < 17,0l -l < orETED)
—e,Mg U8 < —e)Mg U0+ —e(U — U)o — —ePg (T - U)6
< Opl(u‘”%"]j) + %9’BH+E’P§sy + %O’UPﬁsy + %0’BH+E’sy
— =P (- U)8

18



[lolog N | Tlo+ Vs | Ve 3" | [log N |3

< 0
s Or(—7 VNT VNT3/4 T N2

)-

(iii) By Lemma A 4,

1~ [Tlolog N, \/T|J|0
[Po Bl < N300 I 0Bl VIl < 0p(y/ BN 4 Y-

[Jlolog N |J|0\/10gN)
T\/N NVmin\/T

H—E Pg E| < H—E Pg_[lIPg El = Or(

Lemma A.7. For any R > r,

T |J3+|Jlolog N | |3+ B ~
(i) %Hsg —ggl|? = Op(F7=5= + =0 me + mesz) = %Hsy — &%

B = oe N Tlo+ =172 713/4 7 .
(it) 7€,(Eg—&g) = OP(U'OTog +! |Oﬁy'““‘ D |3‘/4 + logNN‘ £0 ). The same rate applies
NT fT min

to %slg(é\g &), 71 (Eg — &), %Elg(gy —€,) and %5;;(/5\1/ —&y).
(iii) T€,€, = wehey + 0p(1).

Proof. Note that €, = Mg MzG and G = Fa, + U0 + ¢,. Also, U= XMz implies
J
PﬁjPﬁ =0, and MﬁjMf =Mz — Pﬁj'
Recall that HYH =1 and F = FH' + E, hence straightforward calculations yield

é\g — eg = MﬁjU’H — Pi;:UIH + MﬁjMfFOtg — Pﬁj&?g — Pfsg /
MﬁjU’O — PfU,O — Pﬁjé‘g — Pﬁsg — (I — Pf — Pﬁj)EH+ ag. (A5)

3/2

It follows from Lemmas A.5, A.6 that +[[€, —e/||? = Oln:(|‘]|‘2)+uT|0 g N 4 |J|°+Vm““ + - lJlN\F)'

The proof for 7|, — &4||* follows similarly.
(ii) It follows from (A.5) and Lemmas A.5 A.6 that

1 N 1 1 1 1
Ts’y(eg —g,) = ijM U'e - TleyP FU'0 — ?eyPl p T.r-:yPFeg
€, EH" o, — —¢,PiEH" a, — —¢| Py EH"a,
Jlolog N |J —1/2) yp3/4 log N |J[2
S OP(| |0 0og | |0+Vm1n Vhin | | og | |O )

T JNT JNTHL N T N

The same proof applies to other terms as well.
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(iii) It follows from parts (i) that all these terms are op(1), given that |J|2 = o(min{T, N}),
|Jlolog N = o(T).
[

A.4.2 The case r = 0: there are no factors.

Proof. In this case x; = u;. And we have

~ 1 1

F=_XW=_UW:=E.
N N

Then /\mm( 1g f‘) = Amin(7 LE'E) > > + with probability approaching one, still by Lemma A.1.

Hence —F F is still invertible. In addltlon U= XMj; implies U — U= UPg. Also,

o= Yw+ Eyt

g = 9'ut + €yt

Eyt = ﬁleg,t + M
FF=LlEE=

A~

=W’ Cov(ut)W—l—Op( ) Hence with proba-

NQ
> ¢N~'. In addition, &, = (E'E)~ 1E’U”)H—(E’E) 'Ee,

oy,

€4t + di)Uy| in the proof of Proposition A.2, note that

Hence oy = o, = 0. Then %

bility approaching one )\mm( %IAT‘
implies = thl(A;ft) = (
As for the “score” max; |+ >,

ow
/—\—1—\—/

1 log N

PN 3 1
f??%|—2t:(uitujt—uitujt)| < :7||UPEU/||oo:OP(N T )
~ . |<]|() |J|010gN
Izrg\f;d—z ftuit| = OP( N + T )

J Jlglog N
Tl , 17llog

S 1
max|—2un D6l = ZIUPBU[<Op( k) = Op(° + B2

i<N
Viog N 1

rlli%q_zultgg“ = OP( T +\/ﬁ) (A6)

As for the residual, note that €, = Mg MgG and G = U'0 +¢,. Then
J
E,— €y = MﬁjU/H —PgU0 — Pﬁjé‘g — Pge,.

All the proofs in Section A.4.1 carry over. In fact, all terms involving oy, H and H* can be

set to zero.
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In addition, in the case R = r = 0, the setting/estimators are the same as in Belloni
et al. (2014). O
A.4.3 Proof of Corollary 3.1.

Proof. The corollary immediately follows from Theorem 3.2. If there exist a pair (r, R) that
violate the conclusion of the corollary, then it also violates the conclusion of Theorem 3.2.
This finishes the proof. O

A.5 Proof of Theorem 3.3

Proof. In the proof of Theorem 3.3 we assume R > 7.
(i) When r > 0, by Lemma A.3,

1 log N 1

J ENPN 1
_ Uil — Unl )] < 1= r_ / < )
21}712])\(] ’T ;(ultu]t uztujt)’ — ||TUU TUU ||OO — OP( T + Nygﬁﬂ)
When r=20 and R > 0, by (AG), maXi,jSN |% Zt(ﬂitﬂjt — uz‘tth)l S OP(IO%qN + ﬁ?mr)
In both cases, part (i) implies, for v2, > \/LN or V2, > + ﬁ,

1 R 1
max |5u,ij — Eugug] < max If : Uitlje — Ulje| + max |T ; wipthje — Ewipuyl
log N 1 log N 1
< O =0 —).
= oI ) O T R

where max; j<n |4 3, witje — Ewguje| = Op(1/ 88,

Given this convergence, the convergence of 3, and 3, "in (ii)(iii) then follows from the
same proof of Theorem A.1 of Fan et al. (2013). We thus omit it for brevity. Finally, the
case 1 = R = 0 is the usual case of sparse thresholding as in Bickel and Levina (2008). O

A.6 Proof of Theorem 3.4

Proof. First note that when R = r, by (A.2)

| PP 1 B I Upax(H) 1
—FF)!'— (=HFFH) || < Op(— + =X .
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Also by the proof of Theorem 2.1 for H(% F'F)~!| + H(% H) | < =45 - Because
'H

P; — Pg = E(F'F)'HF + FH[(F'F)"! — (HF'FH')" ﬁ(ﬁ F)~'E/, we have

IPs — Pgl? = t(FF) 1HF’FH’(f"f‘)‘1E’E +tr(F'F)'E'E

+2tr(F'F)” 1HF FH'[(F'F)"' — (HF'FH')"'|HF'E

+tr[(F'F)"!' — (HF'FH)"'|HF'FH'[(F'F)"! — (HF FH')"'|HF' FH'
+2tr FH'[(F'F) ! (HF’FH’)*]HF’E(?’?)*?’
+2tr(F'F)'HF'E(F'F)'EE

+2tr(F'F)"'HF'E(F'F) 'HF'E

, 1 1 1
= 2tr H Y(F'F)"'"H 'E'E + Op(

TNV2. N Vi N\/NTugm)'

Write X :=2tr H~'(F'F)"'H'E'E = tr(A+E'E) and A :=2H'(:F'F)"'H"'. Now

1
MEAN = E(X|F, W) = tr A QW(]EutuHF) W=trA_WS,W.

N N

We note that Var(X|F) = 102 and that Nﬁw LN N(0,1) due to the serial
indepence of u;u; conditionally on F and that E ||\/LNW'utH4 < C. In addition, Lemma A.8
below shows that with MEAN = tr KﬁW’ﬁuW, and A = 2(%]?"]?‘)*1, we have

(MEAN — MEAN)NVT = op(1).
Also, the same lemma shows &2 Py 62 As a result

P.—P MEAN _ X — MEAN
” G”F . +op(1) =% N(0, 1).
WT Tl

given that o > 0, T = o(N).

Lemma A.8. Suppose R = 7“ Let gy7 = yﬁn% + I%TN'
(i) MEAN — MEAN = Op(<3

N2 n) 220 L+ 0P (N"’iﬁ,in + N\/NflTV%m)'
(ii) o° 02

Proof. By lemma A.3,

max |— Zuzt (Uje — uje)| < Op(gnr)-

(]
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(i) Recall A := 2H ~'(LF'F)"'"H'. Note that |[A| = Op(; oy (H)) We now bound

< W/ (2, — %,)W. For simplicity we focus on the case r = R = 1 and hard-thresholding
estimator. The proof of SCAD thresholding follows from the same argument. We have

1 -~ 1 ~ 1 ~
NW,(EU — ZU)W = N Z WiW ;0,45 + N Z w,-wj(auyij - Ou,ij) = a; + as.

Ou,ij=0 Ou,ij 70

Term a, satisfies: for any € > 0, when C' in the threshold is large enough,

P(a; > (NT)™ %) < P( max, |Gu,ij| # 0) < P(|sy,i;| > 75, for some 0,,;; =0) <.

Ou,ij=

Thus a; = Op((NT)~?). The main task is to bound ay = % Zgu 0 Wil; (Cusij — Ouij)-

ay = a21+a227

ag = — E wszTE (Wintje — uuje)
O'ulj7£0

agy = E wzw]Tg (wirwje — Ewgpugy).
O'uzj7é0

Now for wyr := 4/ 1°§“N + \/—IN, by part (i),

a1 = N E wzij E uzt uzt u]t ujt E wzij E Uy u]t u]t

Oy 1]750 o'u 7.]7&0
1
< [mlax T Z(u” —uy)? + max |— Zu” Ujr — wjt)| N Z 1
t Ou,ij 70
<

< gNT Z L.

O'u 1]7$0

As for ag, due to + Dm0 Do 170 | Cov(uitji, Umetne)| < C and serial independence,

1
Val"(CLQQ) < WZ Z Z ‘COV(Uitthaumsuns”

$t<T 0u,mn7#0 0y ij 70
! 1
< N2T Z Z ‘COV<Uitth,umtunt)| < O<ﬁ)

Uu,mn;‘éo Uu,ij;éo
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Together as = Op(g%7)+ D onito LT Op(\/%). Therefore

| RPN 1
NW (3 = Z)W = Op(g3r)+ Z 1+ Op(

This implies

MEAN — MEAN| < —|A||||l=-=W'(Z, - XZ,)W Op(=)||A — 2(=F'F)!
| S UMW SWI + Or(IA 27 FF)
INT 1 1
< O 1+0 )
- P(NQV%in)U;éO * P(N2Vfﬁin - N\/NTVI?;M)

(i) First, note that |02 — f(A, V)| — 0 by the assumption. In addition, it is easy to
show that [|A — A|| = op(1) and |V = V|| < L[W|?||Z, — =, = op(1). Since f(A,V)
is continuous in (A, V) due to the property of the normality of Z;, we have |f(A, V) —
F(A, V)| = op(1). Hence |f(A, V)—02| = op(1). This finishes the proof since 52 := f(A, V).

[
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