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1 Introduction

Consider the following high-dimensional factor model:

xt = Bft + ut, t = 1, · · · , T, (1.1)

where xt = (x1t, · · · , xNT )0 is an N -dimensional outcome. In addition, the model contains

ft as r-dimensional latent factors, B = (b1, · · · ,bN)0 as N ⇥ r matrix of loadings, and

ut = (u1t, · · · , uNt)0 as idiosyncratic terms. Theoretical studies of the model have been

crucially depending on the assumption that the number of factors, r, should be consistently

estimated. This in turn, requires the factors be relatively strong, data have weak serial

dependence, and length of time series T is long. But in practical applications, one or several

of these conditions may fail to hold due to weak signal-noise ratios and nonstationary or

noisy data, making the first r eigenvalues of the sample covariance of X = (x1, · · · ,xT )

empirically be not so-well separated from the remaining ones.

A promising remedy is to over-estimate the number of factors. But this approach has

been quite challenging. Let R be the “working number of factors” that are empirically

estimated. When R > r, it is often di�cult to analyze the behavior of the (R � r) eigen-

values/eigenvectors. As shown in Johnstone and Lu (2009), these eigenvectors can be in-

consistent because their eigenvalues are not so “spiked”. This creates challenges to many

factor estimators, such as the popular principal components (PC)-estimator (Connor and

Korajczyk, 1986; Stock and Watson, 2002), and therefore brings obstacles to applications

when the number of factors is over-estimated. Another di�culty is to handle the serial de-

pendence. As shown by Bai (2003), the PC-estimator is inconsistent under finite-T in the

presence of serial correlations and heteroskedasticity, but many forecast applications using

estimated factors favor relatively short time series, due to the concern of nonstationarity.
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This paper proposes a new method to address issues of over-estimating the number of

factors, small T , and strong serial conditions. We propose a simple factor estimator that does

not rely on eigenvectors. Let W = (w1, · · · ,wR) be a given exogenous (or deterministic)

N ⇥ R matrix, where each of its R columns wk is an N ⇥ 1 vector of “diversified weights”,

in the sense that its strength should be approximately equally distributed on most of its

components. We propose to estimate ft by simply

bft =
1

N
W0xt,

or more precisely, the linear space spanned by {ft}Tt=1 is estimated by that spanned by {bft}Tt=1.

By substituting (1.1) into the definition, we have

bft = (
1

N
W0B)

| {z }
a�ne transform

ft +
1

N
W0ut. (1.2)

Thus bft (consistently) estimates ft up to an R⇥ r a�ne transform, with et :=
1
N
W0ut as the

estimation error. The assumption that W should be diversified ensures that as N ! 1, et

is “diversified away” (converging to zero in probability).

We call the new factor estimator as “diversified factors”, which reduces the dimension of

xt through diversified projections. Because of the clean expansion (1.2), the mathematics

for theoretical analysis is much simpler than most benchmark estimators. We show that bft

leads to valid inferences in several factor-augmented models so long as R � r. Therefore,

we formally justify that the use of factor models is robust to over-estimating the number of

factors. In particular, we admit r = 0 but R � 1 as a special case. That is, the inference is

still valid even if there are no common factors present, but we nevertheless take out estimated

factors (for insurance). Furthermore, the projection is conducted on cross-sections, so is not

sensitive to serial conditions. We study several applications in detail, including the post-
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selection inference, big data forecasts, high-dimensional covariance estimation, and factor

specification tests.

One of the key assumptions imposed is that while W diversifies away ut, we have

rank

✓
1

N
W0B

◆
= r,

and the r th smallest singular value of 1
N
W0B does not decay too fast. That is, W should

not diversify away the factor components in the time series. This condition does not hold if

W has more than R�r columns that are nearly orthogonal to B. This is another motivation

of using over-estimated factors: if random weights are used the probability that more than

R� r columns of W are nearly orthogonal to the space of B should be very small.

To satisfy the above conditions on the weights, we rely on external information on the

factor loadings, and recommend four choices for the weight matrix. The first choice is the

individual-specific characteristics. As documented in semi-parametric factor models, Connor

et al. (2012); Park et al. (2009); Fan et al. (2016), factor loadings are often driven by observed

characteristics. When these variables are available, they can be naturally used as diversified

weights. The second choice is based on rolling window estimations. Consider time series

forecasts. To pertain the stationarity assumption, we divide the sampling periods into (I)

t = 1, ..., T0 and (II) t = T0 + 1, ..., T0 + T , and only use the most recent T observations

from period (II) to learn the latent factors for forecasts. Or consider a time series where

a structural break occurs at time T0, so the most recent period (II) is of major interest.

Assume that the loadings are correlated between the two periods, then the PC-estimated

loadings from periods (I) would be a good choice of the diversified weights for period (II).

For the third recommendation, when the time series is independent of the initial observation,

we can use transformations of x0 as the weights. The fourth recommended choice is to use

columns of the Walsh-Hadamard matrix from the statistical experimental design to form the
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diversified weights.

The idea of approximating factors by weighted averages of observations has been applied

previously in the literature. In the asset pricing literature, factors are created by weighted

averages of a large number of asset returns. There, the weights are also pre-determined,

adapted to the filtration up to the last observation time. In the common correlated e↵ects

(CCE) literature (Pesaran, 2006; Chudik et al., 2011), factors are created using a set of

random weights to estimate the e↵ect of observables. There, R equals the dimensions of

additionally observed regressors and the outcome variable, and certain rank conditions about

the regressors are required. In the same setting, Westerlund and Urbain (2015) and Karabiyik

et al. (2019) compared the cross-sectional average and the PC estimators, and also showed

the validity of using R > r number of cross-sectional averages. Moreover, Barigozzi and Cho

(2018) proposed a di↵erent method to address the issue of over-estimating factors. One of

our recommended weights is inspired by their approach. Moon and Weidner (2015) studied

the problem in a panel data framework and showed that the inference about the parameter of

interest is robust to over-estimating the number of factors. Finally, there is a large literature

on estimating the number of factors. See Bai and Ng (2002); Hallin and Lǐska (2007); Ahn

and Horenstein (2013); Li et al. (2017).

The rest of the paper is organized as follows. Section 2 explains the key ideas and

intuitions in details. Section 3 presents several applications of the diversified factors. Section

4 recommends several choices of the weight matrix. Section 5 conducts extensive simulation

studies using various models. All technical proofs are presented in the appendix.

We use the following notation. For a matrix A, we use �min(A) and �max(A) to denote its

smallest and largest eigenvalues. We define the Frobenius norm kAkF =
p
tr(A0A) and the

operator norm kAk =
p

�max(A0A). In addition, define projection matrices MA = I � PA

and PA = A(A0A)�1A when A0A is invertible. Finally, for two (random) sequences aT and

bT , we write aT ⌧ bT (or bT � aT ) if aT = oP (bT ).
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2 Factor Estimation Using Diversified Projections

2.1 The estimator

Let R � r be a pre-determined bounded integer that does not grow with N , which we call

“the working number of factors”. As in practice we do not know the true number of factors

r, we often take a slightly large R so that R � r is likely to hold. Let W = (w1, · · · ,wR)

be a user-specified N ⇥ R matrix, either deterministic or random but independent of the

�-algebra generated by {ut : t = 1, 2, ...}. Each of its R columns wk = (wk,1, · · · , wk,N)0

(k  R) is an N ⇥ 1 vector satisfying the following:

Assumption 2.1 (Diversified weights). There are constants 0 < c < C, so that (almost

surely if W is random) as N ! 1,

(i) maxiN |wk,i| < C.

(ii) The R⇥R matrix 1
N
W0W satisfies �min(

1
N
W0W) > c.

(iii) W is independent of {ut : t  T}.

Construct a factor estimator as an R⇥ 1 vector at each time t:

bft :=
1

N
W0xt.

In financial economics applications where xt is a vector of asset returns, then each component

of bft is essentially a diversified portfolio return at time t due to its linear form. The behavior

of bft is strikingly simple and clean. Define an R⇥ r matrix

H :=
1

N
W0B.
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Then, it follows from the definition and (1.1) that

bft = Hft +
1

N
W0ut. (2.1)

Therefore, bft estimates an a�ne transformation of ft, whereH is the R⇥r transformation ma-

trix. The estimation error equals the diversified idiosyncratic noise 1
N
w0

k
ut =

1
N

P
N

i=1 wk,iuit

for each k  R. When (u1t, · · · , uNt) are cross-sectionally weakly dependent, Assumption

2.1 ensures that 1
N
w0

k
ut admits a cross-sectional central limit theorem. For instance, in the

special case of cross-sectional independence, it is straightforward to verify the Lindeberg’s

condition under Assumption 2.1, and therefore as N ! 1,

1p
N
W0ut

d�! N (0,V), (2.2)

where V = limN!1
1
N
W0 var(ut)W which is assumed to exist.

The convergence (2.2) shows that
p
N(bft�Hft) is asymptotically normal for each t  T .

Importantly, it holds regardless of whether T ! 1, R = r, or not. It requires only that

N ! 1 and that the weights should be chosen to satisfy Assumption 2.1. This fact is

particularly useful for analyzing short time series.

In addition, the factor components should not be diversified away. This gives rise to

the following condition on the transformation matrix. Let ⌫min(H) and ⌫max(H) respectively

denote the minimum and maximum nonzero singular values of H.

Assumption 2.2. Suppose R � r. Almost surely (i) rank(H) = r.

(ii) There is C > 0,

⌫2
min(H) � 1

N
, ⌫max(H)  C⌫min(H).

Assumption 2.2 requires that W have at least r columns that are not orthogonal to B

so that B is not diversified away. This is the key assumption, but is not stringent in the
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context of over-estimating factors. In the current setting the factor strength is measured by

⌫min(H), which is required not to decay very fast by condition (ii). This quantity determines

the rate of convergence in recovering the space spanned by the factors.

Given bft, it is straightforward to estimate the loading matrix by using the least squares:

bB = (bb1, · · · , bbN)
0 =

TX

t=1

xt
bf 0
t
(

TX

t=1

bftbf 0t)�1.

We show that the R⇥R matrix 1
T

P
T

t=1
bftbf 0t is nonsingular with probability approaching one

even when R > r. So bB is well defined. Finally, ut can be estimated by

but = (bu1t, · · · , buNt) = xt � bBbft. (2.3)

Just like the PC-estimator, the diversified projection can estimate dynamic factor models

by treating dynamic factors as static factors. In addition, it is straightforward to extend

the model to allowing time-varying factor loadings, by time-domain local smoothing before

applying the diversified projection. While these extensions are straightforward, here we focus

on static and time invariant models.

2.2 Over-estimating the number of factors

The consistent estimation for the number of factors r often requires strong conditions that

may be violated in finite sample. An advantage of the diversified factors is being robust to

over-estimating the number of factors in many inference problems.

We start with a heuristic discussion of the main issue in this subsection. Recall that

H = 1
N
W0B is the R ⇥ r matrix, which is no longer a square matrix when R > r. In this

case bB is essentially estimating BH+, with the r ⇥ R transformation matrix H+ being the

Moore-Penrose generalized inverse of H, defined as follows. Suppose H0 has the following
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singular value decomposition:

H0 = UH(DH , 0)E
0
H
, r ⇥R

where 0 in the above singular value matrix is present whenever R > r, and DH is an r ⇥ r

diagonal matrix of the nonzero singular values. Then H+ is an r ⇥R matrix:

H+ = UH(D
�1
H
, 0)E0

H
.

It is straightforward to verify that H+H = Ir holds and that for estimating the common

component Bft using over-estimated number of factors, we have

bBbft = BH+Hft + oP (1) = Bft + oP (1). (2.4)

where oP (1) in the above approximation can be made uniformly across elements.

However, a key challenge of formalizing the intuition behind (2.4) is to analyze the

invertibility of the gram matrix 1
T

P
T

t=1
bftbf 0t, which appears in the definition of bB. It is also

a key ingredient in most applications of factor-augmented models wherever the estimated

factors are used as regressors. Define

bSf =
1

T

TX

t=1

bftbf 0t, Sf = H
1

T

TX

t=1

ftf
0
t
H0,

where Sf is the population analogue of bSf . The following three bounds when R > r, proved

in Proposition A.1, play a fundamental role in the asymptotic analysis throughout the paper:

(i) With probability approaching one, bSf is invertible, but its eigenvalues may decay

quickly so that

kbS�1
f
k = OP (N). (2.5)
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On the other hand, Sf is degenerate when R > r, whose rank equals r. Also note that we

still have kbS�1
f
k = OP (1) when R = r holds.

(ii) Even if R > r, kH0bS�1
f
k is much smaller:

kH0bS�1
f
k = OP

 r
max{N, T}

T

!
.

(iii) When R > r, kbS�1
f

� S+
f
k 6= oP (1) but we have

kH0(bS�1
f

� S+
f
)Hk = OP

✓
1

T
+

1

N

◆
.

Therefore, bSf is invertible, and when weighted by the transformation matrix H0, its

inverse is well behaved and fast converges to the generalized inverse of Sf , even though Sf is

singular when R > r. It is su�cient to consider H0bS�1
f

in most factor-augmented inference

problems, because in regression models bS�1
f

often appears in the projection matrix PbF =

bF(bF0bF)�1bF0 through H0bS�1
f

asymptotically, where bF := (bf1, · · · ,bfT )0 and F := (f1, · · · , fT )0

denote the estimated and true factor matrices.

Remark 2.1. In the CCE literature, (e.g., Pesaran (2006); Chudik et al. (2011)), it has

also been claimed that estimating the factors using cross-sectional averages does not require

consistently estimating the number of factors. While the claim is true, its proof is not

straightforward as kbS�1
f

� S+
f
k 6= OP (1)kbSf � Sfk when R > r. Also see Karabiyik et al.

(2017, 2019) for more discussions on the related issue. Our method therefore also potentially

contributes to this literature as an alternative rigorous approach.

2.3 Estimating the factor space

Throughout the paper, the loading matrix B can be either deterministic or random. When

they are random, it is assumed that it is independent of ut, and all the expectations through-
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out the paper is taken conditionally on B.

We make the following conditions.

Assumption 2.3. (i) {(ft,ut) : t  T} is a stationary process, satisfying E(ut|ft) = 0.

(ii) There are constants c, C > 0, so that maxiN kbik < C, and almost surely

c < �min(
1

T

TX

t=1

ftf
0
t
)  �max(

1

T

TX

t=1

ftf
0
t
) < C.

Assumption 2.4 (Weak dependence). There is a constant C > 0,

(i) maxj,iN
1

NT

P
q,vN

P
t,sT

|Cov(uituqt, ujsuvs|F)| < C almost surely in F,

(ii) 1
T

P
T

s=1

P
T

t=1 E kftkkfskkE(utu0
s
|F)k < C and E kE(utu0

t
|F)k < C.

Theorem 2.1. Suppose Assumptions 2.1 - 2.4 hold. Also N ! 1 and T is either finite or

grows. Then for all bounded R � r,

kPbFPF �PFk = OP

✓
1p
N
⌫�1
min(H)

◆
, (2.6)

kPbFM
�PFk = OP

✓
1p
N
⌫�1
min(H)

◆
, (2.7)

where M = (HH0)+H is an R⇥ r matrix 1.

Equation (2.6) shows that when R � r, the linear space spanned by bF asymptotically

covers the linear space spanned by F. To understand the intuition, note that (2.6) implies

PbFPFY ⇡ PFY for an arbitrary random matrix Y. Meanwhile, if we heuristically regard

PF and PbF as conditional expectations given F and bF, then approximately,

E
✓
E(Y|F)

����bF
◆

⇡ E(Y|F). (2.8)

1We show in the proof that (M0bF0bFM) and bF0bF are both invertible with probability approaching one.
So PbFM and PbF are well defined asymptotically.
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Let span(A) denote the linear space spanned by the columns of A. The approximation (2.8)

is well known to be the “tower property”, which heuristically means span(F) ✓ span(bF).

Equation (2.7) shows that a particular subspace of span(bF) is consistent for span(F). In

the special case R = r, we have PbFM
= PbF since M in (2.7) is invertible. It then reduces to

the usual space consistency. Importantly, we allow T to be finite.

To gain more insights of these results, let us compare with the usual methods based

on estimating the number of factors, e.g., the eigenvalue-ratio method of Ahn and Horen-

stein (2013). There are two key quantities in this comparison: the strength of the spiked

eigenvalues of Sx := 1
T

P
T

t=1 xtx0
t
, and the largest eigenvalue of Su := 1

T

P
T

t=1 utu0
t
.

We consider a setting where we can easily quantify the signal-noise ratio, as given in the

following example.

Example 2.1. This example presents a pervasive factor model that satisfies Assumption

2.2. Suppose each individual loading satisfies bi = ⌫N�i for some sequence ⌫N ⇣ N�(1�↵)/2

and ↵ 2 (0, 1], where {�i : i  N} is a sequence of r ⇥ 1 vectors such that:

(i) 1
N

P
N

i=1 �i�
0
i
! C (or converges in probability if �i is random) for some positive

definite matrix C;

(ii) ⌫min(
1
N
W0⇤) is bounded away from zero, where ⇤ = (�1, ...,�N)0.

Then Assumption 2.2 holds for ⌫min(H) ⇣ ⌫N and any ↵ 2 (0, 1]. It is straightforward to

verify that the r th spiked eigenvalue satisfies:

�r (Sx) ⇣ N↵, ↵ 2 (0, 1].

Theorem 2.1 then shows that kPbFM
� PFk = oP (1) for any ↵ > 0. To verify condition

(ii) in this example, consider a “characteristic based” model described in Section 4, where

the baseline loading can be decomposed as �i = g(zi) + �
i
, with E(�

i
|zi) = 0; g(zi) is a

nonparametric function of some observable characteristic zi, and �
i
is the loading components
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that is orthogonal to the characteristic e↵ects. (See more detailed motivations of this model in

Section 4.1) Now takewi = �(zi) as an R-dimensional transformation using R predetermined

basis functions �. Then a su�cient condition for (ii) is that ⌫min (A) is bounded away from

zero, where A := 1
N

P
N

i=1 �(zi)g(zi)
0. In addition, Assumption 2.2(ii) holds as long as

⌫max (A) < C. 2

The key implication of Example 2.1 is that the strength of the spiked eigenvalues can grow

at an arbitrarily slow polynomial rate in N , and T is allowed to be finite. In applications

where T ! 1 is required, the growth requirement of T can be very mild. For instance, as

we shall show in the high-dimensional factor-augmented regression (Section 3.2), it is only

required that log2 N = o(T ) if the number of “important” control variables (corresponding to

nonzero coe�cients) is finite. The relative flexibility on the growth of T is achieved thanks to

the fact that the diversified projection does not demand strong eigenvalues of the population

covariance matrix.

Now let us revisit the conditions required by the eigenvalue-ratio method by Ahn and

Horenstein (2013). If ut is sub-Gaussian, under weak dependence conditions,

�max(Su) = OP

✓
max{T,N}

T

◆
.

The selection consistency requires �r (Sx) � �max(Su), which in this context, becomes T �

N1�↵. In the case that the spiked eigenvalues are not so strong (↵ < 0.5), it requires a

considerably longer time series to override the e↵ect of the idiosyncratic noise.

2Suppose {�i : i  N} are cross-sectionally conditionally weakly dependent given Z = (zi :
i  N). Then k 1

N

P
i �(zi)�ik2 = OP (X) 1

N

P
i k�(zi)k2 = oP (1) given the assumption that

X := maxi
1
N

P
j kE[�i�

0
j |Z]k = oP (1), which holds if �i are conditionally weakly correlated. Then

⌫min(
1
NW

0
⇤) � ⌫min (A) � k 1

N

P
i �(zi)�ik � c � oP (1). In addition, ⌫max(H) = ⌫max(

1
NW

0
⇤)⌫N 

[⌫max(A) + oP (1)]⌫N  C⌫N  Cc
�1

⌫min(A)⌫N  Cc
�1[⌫min(

1
NW

0
⇤) + oP (1)]⌫N  2Cc

�1
⌫min(H).
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2.4 Summary of advantages

Below we summarize key advantages of the use of diversified projection.

1. It is computationally and mathematically simple.

2. When the true number of factors is over estimated (R � r), inferences about trans-

formation invariant parameters are still asymptotically valid. This leads to important

implications on factor-augmented inferences and out-of sample forecasts.

3. It admits an interesting special case, where r = 0 and R � 1. That is, xt is in fact

weakly dependent, but we nevertheless estimate “factors”. The resulting inference

is still asymptotically valid in this case. We shall formally prove this in the high-

dimensional factor-augmented inference in the next section. This shows that extracting

estimated factors is a robust inference procedure.

4. As the diversified projections are applied cross-sectionally, some conditions that are

needed for the PC-estimator can be weakened. For instance, the space spanned by the

latent factors can be consistently estimated even if T is finite. It is also a good choice

under weak signal-noise ratios where the consistent selection of the number of factors

is hard to achieve.

5. After applying the diversified projection to xt to reduce to a lower dimensional space,

one can continue to employ the PCA on bft to estimate the factor space and the number

of factors. This becomes a low-dimensional PCA problem, and potentially much easier

than benchmark methods dealing with large dimensional datasets.
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3 Applications

We present several applications of the new diversified factors. Besides those imposed in

Section 2, additional assumptions are required in each of these examples. These assumptions

are application-specific and are required even if the oracle number of factors were available.

3.1 Forecasts using augmented factor regression

Consider forecasting time series using a large panel of augmented factor regression:

yt+h = ↵0ft + �0gt + "t+h, t = 1, · · · ., T

xt = Bft + ut

with observed data {(yt,xt) : t  T}. Here h � 0 is the lead time and gt is a vector of

observed predictors including lagged outcome variables. The goal is the mean forecast:

yT+h|T := ↵0fT + �0gT := �0zT ,

where zt = (f 0
t
H0,g0

t
)0 and �0 = (↵0H+,�0). The prediction also depends on unobservable

factors ft whose information is contained in a high-dimensional panel of data. This model

has been studied extensively in the literature, see e.g., Stock and Watson (2002); Bai and

Ng (2006); Ludvigson and Ng (2007), where fT is replaced by a consistent estimator. Once

estimated factors bft is obtained, the forecast of yT+h|T is straightforward:

byT+h|T = b�
0
bzT , b� = (

T�hX

t=1

bztbz0t)�1
T�hX

t=1

bztyt+h

where bzt = (bf 0
t
,g0

t
)0 denotes the estimated regressors. Note that (

P
T�h

t=1 bztbz0t)�1 is well defined

even if R > r with high probability. This follows from the invertibility of bF0MG
bF, a claim to
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be proved (the definition ofG is clear below, and the notationMG is defined in Introduction).

Our study is motivated by two important yet unsolved issues. First, the study of pre-

diction rates has been crucially relying on the assumption that the number of latent factors

is correctly estimated. Secondly, the time series that are being studied are often relatively

short, to preserve the stationarity. As we explained in Section 2, this leads to strong condi-

tions on the strength of factors of using the PC estimator.

We show below that by allowing R > r, the diversified projection does not require a

consistent estimator of the number of factors. In addition to the assumptions in Section 2,

we impose the following conditions on the forecast equation for yt+h. Let G be the matrix

of {gt : t  T � h}.

Assumption 3.1. (i) {"t, ft,gt,ut : t = 1, · · · , T +h} is stationary with E(ut|ft,gt) = 0 and

E("t|ft,gt,ut,W) = 0.

(ii) Weak dependence: there is C > 0, maxsT

P
tT

|E("t"s|F,G,W)| < C almost surely.

(iii) Moment bounds: there are c, C > 0, �min(
1
T
F0MGF) > c, �min(

1
T
G0MFH0G) > c,

and c < �min(
1
T
G0G)  �max(

1
T
G0G) < C.

Our theory does not follow from the standard theory of linear models of Bai and Ng

(2006). A new technical phenomenon arises when R > r due to the degeneracy of the gram

matrices. Define bZ = (bz01, ...,bz0T�h
)0, Z = (z01, ..., z

0
T�h

)0 and consider two gram matrices

bZ0bZ =

0

B@
bF0bF bF0G

G0bF G0G

1

CA , Z0Z =

0

B@
HF0FH0 HF0G

G0FH0 G0G

1

CA .

The linear regression theory crucially depends on the inverse of bZ0bZ, whose population version

Z0Z, in this context, becomes degenerate when R > r. The full rank matrix 1
T

bF0MG
bF
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converges to a degenerate matrix H 1
T
F0MGFH0, and therefore in general

����
⇣ 1
T
bZ0bZ
⌘�1

�
⇣ 1
T
Z0Z

⌘+���� 6= oP (1).

We develop a new theory that takes advantage of H, which allows to establish the three

claims in Section 2.2. They imply that the convergence holds when weighted by eH:

����eH
0
✓
(
1

T
bZ0bZ)�1 � (

1

T
Z0Z)+

◆
eH
���� = OP

✓
1

T
+

1

N

◆
, where eH =

0

B@
H

I

1

CA .

The weighted convergence is su�cient to derive the prediction rate of byT+h|T .

Theorem 3.1. Suppose Assumptions 2.1 - 2.4, 3.1 hold. As T,N ! 1, h is bounded, and

for all bounded R � r,

byT+h|T � yT+h|T = OP (
1p
T

+
1

⌫min

p
N
).

3.2 High-dimensional inference in factor augmented models

3.2.1 Factor-augmented post-selection inference

Consider a high-dimensional regression model

yt = �gt + ⌫ 0xt + ⌘t,

gt = ✓0xt + "g,t (3.1)

where gt is a treatment variable whose e↵ect � is the main interest. The model contains

high-dimensional control variables xt = (x1t, · · · , xNt) that determine both the outcome

and treatment variables. Having many control variables creates challenges for statistical
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inferences, as such, we assume that (⌫,✓) are sparse vectors. Belloni et al. (2014) proposed

to make inference using Robinson (1988)’s residual-regression, by first selecting among the

high-dimensional controls in both the yt and gt equations.

Often, the control variables are strongly correlated due to the presence of confounding

factors

xt = Bft + ut. (3.2)

This invalidates the conditions of using penalized regressions to directly select among xt.

Instead, if we substitute (3.2) to (3.1), we reach factor-augmented regression model:

yt = ↵0
y
ft + � 0ut + "y,t,

gt = ↵0
g
ft + ✓0ut + "g,t,

"y,t = �0"g,t + ⌘t (3.3)

where ↵0
g
= ✓0B, ↵0

y
= �↵0

g
+⌫ 0B, and � 0 = �✓0+⌫ 0. The model contains high-dimensional

latent controls ut. Here (↵y,↵g,�) are low -dimensional coe�cient vectors while (�,✓) are

high-dimensional sparse vectors. Fan et al. (2020) and Hansen and Liao (2018) showed that

the penalized regression can be successfully applied to (3.3) to select components in ut,

which are cross-sectionally weakly correlated. They require strong conditions so that we can

consistently estimate the number of factors r = dim(ft) first.

The main result of this section is to show that the factor-augmented post-selection in-

ference is valid for any R � r. Therefore, we have addressed an important question in

empirical applications, where the evidence of the number of factors is not so strong and

one may use a slightly larger number of “working factors”. The theoretical intuition,

again, is that the model depends on ft only through transformation invariant terms, so

that b↵0
y
bft = ↵0

y
H+Hft + oP (1) = ↵0

y
ft + oP (1). In addition, ut can also be well estimated
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with over-identified number of factors.

Importantly, we admit the special case r = 0, and R � 1, leading to ↵y and ↵g both

being zero in (3.3). That is, there are no factors, so xt = ut itself is cross-sectionally weakly

dependent, but nevertheless we estimate R � 1 number of factors to run post-selection

inference. This setting is empirically relevant as it allows to avoid pre-testing the presence

of common factors for inference. The simulation in Section 5 shows that with R � r, this

procedure works well even if r = 0; but when r (r � 1) factors are present, directly selecting

xt leads to severely biased estimations. Therefore as a practical guidance, we recommend

that one should always run factor-augmented post-selection inference, with R � 1, to guard

against confounding factors among the control variables.

Below we present the factor-augmented algorithm as in Hansen and Liao (2018) for

estimating (3.1). For notational simplicity, we focus on the univariate case dim(�) = 1.

Algorithm 3.1. Estimate � as follows.

Step 1 Fix the working number of factors R. Estimate {(ft,ut) : t  T} as in Section 2.

Step 2 (1) Estimate coe�cients: b↵y = (
P

T

t=1
bftbf 0t)�1

P
T

t=1
bftyt, and b↵g = (

P
T

t=1
bftbf 0t)�1

P
T

t=1
bftgt.

(2) Run penalized regression:

e� = argmin
�

1

T

TX

t=1

(yt � b↵0
y
bft � � 0but)

2 + P⌧ (�),

e✓ = argmin
✓

1

T

TX

t=1

(gt � b↵0
g
bft � ✓0but)

2 + P⌧ (✓).

(3) Run post-selection refitting: let bJ = {j  p : e�j 6= 0} [ {j  p : e✓j 6= 0}.

b� = argmin
�

1

T

TX

t=1

(yt � b↵0
y
bft � � 0but)

2, such that b�j = 0 if j /2 bJ.

b✓ = argmin
✓

1

T

TX

t=1

(gt � b↵0
g
bft � ✓0but)

2, such that b✓j = 0 if j /2 bJ.
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Step 3 Estimate residuals: b"y,t = yt � (b↵0
y
bft + b� 0but), and b"g,t = gt � (b↵0

g
bft + b✓

0
but).

Step 4 Estimate � by residual-regression:

b� = (
TX

t=1

b"2
g,t
)�1

TX

t=1

b"g,tb"y,t.

One can also simplify step 2 following Fan et al. (2020): finding (b↵y, b�) by minimizing

1
T

P
T

t=1(yt �↵0
y
bft � � 0but)2 +P⌧ (�) and defining (b↵g, b✓) similarly. Note that � :! P⌧ (�) is a

sparse-induced penalty function with a tuning parameter ⌧ . In the main theorem below, we

prove for the lasso P⌧ (�) = ⌧k�k1, where k�k1 =
P

N

j=1 |�j|. Following Bickel et al. (2009),

set

⌧ = C

r
�2 logN

T

for some constant C > 4, where �2 = var("y,t) for estimating �, and �2 = var("g,t) for

estimating ✓. We refer to Belloni et al. (2014) for feasible tunings so that �2 is estimated

iteratively.

3.2.2 The main result

We impose the following assumptions.

Assumption 3.2. (i) E("g,t|ut, ft,W) = 0 and E("y,t|ut, ft,W) = 0,

(ii) Coe�cients: there is C > 0, so that k↵yk, k↵gk, k�k are all bounded by C.

(iii) Weak dependence: There is C > 0, almost surely,

maxsT

P
tT

|E("y,t"y,s|F,U,W)|+maxsT

P
tT

|E("g,t"g,s|F,U,W)| < C.

(iv) Uniform bounds:

maxiN k 1
T

P
T

t=1 uitvtk = OP (
q

logN
T

) for all vt 2 {"g,t, "y,t, ft}. In addition,

maxiN | 1
T

P
T

t=1(uitujt � E uitujt)| = OP (
q

logN
T

), and

maxiN | 1
TN

P
T

t=1

P
N

j=1(uitujt � E uitujt)wk,j| = OP (
q

logN
TN

) for all k  R.
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Assumption 3.2 (iv) holds generally under weak time-series dependent conditions for

{(vt,ut) : t  N} with sub-Gaussian tails.

Suppose the high-dimensional coe�cients ✓ and � are strictly sparse. Let J denote the

nonzero index set:

J = {j  N : ✓j 6= 0} [ {j  N : �j 6= 0}.

The following sparse eigenvalue condition is standard for the post-selection inference.

Note that it is imposed on the covariance of ut rather than xt, because ut is weakly dependent.

Assumption 3.3 (Sparse eigenvalue condition). For any v 2 RN\{0}, define:

�min(m) = inf
v2RN :1kvk0m

R(v), and �max(m) = sup
v2RN :1kvk0m

R(v),

where R(v) := kvk�2v0 1
T

P
T

t=1 utu0
t
v. Then there is a sequence lT ! 1 and c1, c2 > 0 so

that with probability approaching one,

c1 < �min(lT |J |0)  �max(lT |J |0) < c2.

Assumption 3.4. (i) 1
T

P
T

t=1 "
2
g,t

P�! �2
g
for some �2

g
> 0.

(ii) 1p
T

P
T

t=1 ⌘t"g,t
d�! N (0, �2

⌘g
) for some �2

⌘g
> 0. In addition, there is a consistent variance

estimator b�2
⌘g

P�! �2
⌘g
.

(iii) The rates (N, T, |J |0) satisfy:

|J |40 log2 N = o(T ), and T |J |40 = o(N2 min{1, |J |40⌫4
min(H)}).

Condition 3.4 (iii) requires the “e↵ective dimension”N⌫2
min(H) be relatively large in order

to accurately estimate the latent factors.

Theorem 3.2. Suppose bft contains R � r � 0 number of diversified weighted averages of
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xt. If r � 1 (there are factors in xt), Assumptions 2.1 - 2.4, 3.2-3.4 hold. If r = 0 (there

are no factors in xt), Assumption 2.2 is relaxed, and all ft involved in the above assumptions

can be removed. Then as T,N ! 1, for all bounded R � r � 0,

��1
⌘,g
�2
g

p
T (b� � �)

d�! N (0, 1).

Fix a significant level ⌧ , let ⇣⌧ be the (1� ⌧/2) quantile of standard normal distribution.

In addition, let b�2
g
= 1

T

P
T

t=1 b"
2
g,t
. Immediately, we have the following uniform coverage.

Corollary 3.1. Suppose the assumptions of Theorem 3.2 hold. Let R̄ > 0 be a fixed upper

bound for R. Then uniformly for all 0  r  R  R̄,

P
✓
� 2 [b� ± 1p

T
b�⌘,gb��2

g
⇣⌧ ]

◆
! 1� ⌧.

The novelty of the above uniformity is that the coverage is valid uniformly for all bounded

r as the true number of factors, and all over-estimated R as the working number of factors.

In particular, it also admits the weak-dependence r = 0 while R � 1 as a special case.

Remark 3.1 (Case r = 0, R � 1). We now explain the intuition of the case xt = ut (no

presence of confounding factors), but we nevertheless extract R � 1 “factors”. In this case

↵y = ↵g = 0 in the system (3.3). Then bft = 1
N

P
N

i=1 wiuit := et degenerates to zero. Both

ut and ↵0
y
ft (which is zero) are still estimated well in the following sense:

max
iN

1

T

TX

t=1

(buit � uit)
2 = OP

✓
1

N
+

logN

T

◆

1

T

TX

t=1

(b↵0
y
bft)2 = OP

✓
|J |20
N

+
|J |20
T

◆
.

Remark 3.2 (Case R = 0). For completeness of the theorem, we define the estimator for the

case R = 0. In this case we do not extract any factor estimators, and simply set b↵y = b↵g = 0,
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and but = xt in Algorithm 3.1. This is then the same setting as in Belloni et al. (2014).

3.3 Estimating the idiosyncratic covariance

The estimation of the N ⇥ N idiosyncratic covariance matrix ⌃u := Eutu0
t
is of general

interest in many applications. Examples include the e�cient estimation of factor models

(Bai and Li, 2012), high-dimensional testing (Fan et al., 2015), and bootstrapping latent

factors (Goncalves and Perron, 2018), among many others. While this problem has been

studied by Fan et al. (2013), they require that the true number of factors r has to be either

known or consistently estimated, and the factors are estimated through PCA. Here we show

that using the diversified factors, their conclusion holds for all fixed R � r.

A key assumption is that ⌃u = (�u,ij) is sparse: As in Bickel and Levina (2008) the

sparsity of ⌃u is measured by the following quantity:

mN = max
iN

X

jN

|�u,ij|q, for some q 2 [0, 1].

Given the estimated residual buit that is obtained using a working number of factors R, we

estimate E uitujt by applying a generalized thresholding: define su,ij :=
1
T

P
T

t=1 buitbujt,

b�u,ij =

8
>><

>>:

su,ij, if i = j

h(su,ij, ⌧ij), if i 6= j

where h(s, ⌧) is a thresholding function with threshold value ⌧ . Then the sparse idiosyncratic

covariance estimator is defined as b⌃u = (b�u,ij)N⇥N . The threshold value ⌧ij is chosen as

⌧ij = C
p
su,iisu,jj!NT , !NT :=

r
logN

T
+

1p
N
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for some large constant C > 0, which applies a constant thresholding to correlations.

In general, the thresholding function should satisfy:

(i) h(s, ⌧) = 0 if |s| < ⌧ ,

(ii) |h(s, ⌧)� s|  ⌧ .

(iii) there are constants a > 0 and b > 1 such that |h(s, ⌧)� s|  a⌧ 2 if |s| > b⌧ .

Note that condition (iii) requires that the thresholding bias should be of higher order.

It is not necessary for consistent estimations, but we recommend using nearly unbiased

thresholding (Antoniadis and Fan, 2001) for inference applications. One such example is

known as SCAD. As noted in Fan et al. (2015), the unbiased thresholding is required to

avoid size distortions in a large class of high-dimensional testing problems involving a “plug-

in” estimator of ⌃u. In particular, this rules out the popular soft-thresholding function,

which does not satisfy (iii) due to its first-order shrinkage bias.

Theorem 3.3. Let but be constructed using R � r number of diversified weighted averages

of xt. Suppose that Assumptions 2.1 - 2.4 hold and that logN = o(T ). In addition, either

⌫2
min(H) � 1p

N
or ⌫2

min(H) � 1
N

q
T

logN . Then as N, T ! 1, for any R � r � 0,

(i)

max
iN

1

T

TX

t=1

(bb0
i
bft � b0

i
ft)

2 = OP (!NT ).

(ii) For a su�ciently large constant C > 0 in the threshold ⌧ij,

kb⌃u �⌃uk = OP (!
1�q

NT
mN).

(iii) If in addition, �min(⌃u) > c0 for some c0 > 0 and !1�q

NT
mN = o(1), then

kb⌃
�1

u
�⌃�1

u
k = OP (!

1�q

NT
mN).
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3.4 Testing Specification of Factors

In practical applications, many “observed factors” gt have been proposed to approximate

the true latent factors. For example, in asset pricing, popular choices of gt are proposed and

discussed in seminal works by Fama and French (1992); Carhart (1997), which are known as

the Fama-French factors and Carhart four factor models.

We test the (linear) specification of a given set of empirical factors gt. That is, we test:

H0 : there is a r ⇥ r invertible matrix ✓ so that gt = ✓ft, 8t  T.

Under the null hypothesis, gt and ft are linear functions of each other. We propose a simple

statistic:

kPG �PbFk
2
F

where G = (g1, · · · ,gT )0 and recall that P(·) denotes the projection matrix. Here we still

use the diversified factor estimator bF. The test statistic measures the distance between

(linear) spaces respectively spanned by gt and bft. To derive the asymptotic null distribution,

we naturally set the working number of factors R = dim(gt), which is known and equals

dim(ft) = r under the null. Then kPbF �PFkF = oP (1), followed from Theorem 2.1.

3.4.1 Asymptotic null distribution

With the diversified factor estimators, the null distribution of the statistic is very easy to

derive, and satisfies:

N
p
T (kPG �PbFk2F �MEAN)

�
d�! N (0, 1),
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where for A = 2H
0�1( 1

T
F0F)�1H�1,

MEAN =
1

N2
trAW0 E(utu

0
t
|F)W, �2 = Var(

1

N
trAW0utu

0
t
W|F,W) > 0.

Here we assume �2 > 0 to be bounded away from zero. To avoid nonparametrically esti-

mating high-dimensional covariances, we shall assume the conditional covariances in both

bias and variance are independent of F almost surely. Nevertheless, the bias depends on a

high-dimensional matrix ⌃u = E(utu0
t
). We employ the sparse covariance b⌃u as defined in

Section 3.3 and replace the bias by

\MEAN :=
1

N2
tr bAW0 b⌃uW with bA := 2(

1

T
bF0bF)�1.

Further suppose � can be consistently estimated by some b�, then together, we have the

feasible standardized statistic:

N
p
T (kPbF �PGk2F � \MEAN)

b� . (3.4)

The problem, however, is not as straightforward as it looks by far. The use of \MEAN

and b� both come with issues, as we now explain.

The issue of \MEAN.

When deriving the asymptotic null distribution, we need to address the e↵ect of b⌃u�⌃u,

which is to show

N
p
T ( \MEAN�MEAN)

�
⇡ N

p
T

�

1

N2
trAW0(b⌃u �⌃u)W

P�! 0. (3.5)

But simply applying the rate of convergence of kb⌃u � ⌃uk in Theorem 3.3 fails to show
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the above convergence, even though the rate is minimax optimal 3. Similar phenomena

also arise in Fan et al. (2015); Bai and Liao (2017), where a plug-in estimator for ⌃u is

used for inferences. Proving (3.5) requires a dedicated technical argument to address the

accumulation of high-dimensional estimation errors. It requires a strengthened condition on

the weak cross-sectional dependence, in Assumption 3.8 below.

The issue of b�.

It is di�cult to estimate � through residuals but since W0but = 0 almost surely. In fact,

estimated ut constructed based on any factor estimator would lead to inconsistent estimator

for �2. Therefore, we propose to estimate �2 by parametric bootstrap. Observe that 1p
N
W0ut

is asymptotically normal, whose variance is given by V = 1
N
W0⌃uW. Hence �2 should be

approximately equal to

f(A,V) := Var(
1

N
trAW0ZtZ

0
t
W), (3.6)

where Zt is distributed as N (0,V). Therefore we estimate �2 by

b�2 = f(bA, bV), with bV =
1

N
W0 b⌃uW,

which can be calculated by simulating from N (0, bV).

Above all, despite of the simple construction of bF, the technical problem is still challeng-

ing. Therefore, this subsection calls for relatively stronger conditions, as we now impose.

Assumption 3.5. (i) {ut : t  T} are stationary and conditionally serially independent,

given F and G.

(ii) There is C > 0, E[k 1p
N
W0utk4|W] < C.

(iii) ⌫min(H) > c for some c > 0.

The next assumption ensures that �2 can be estimated by simulating from the Gaussian

3A simple calculation would only yield N
p
T

�
1

N2 kAW0kkb⌃u�⌃ukkWk  OP (1) but not necessarily oP (1).

27



distribution.

Assumption 3.6. (i) There is c > 0 so that �2 > c.

(ii) As N ! 1, |�2 � f(A,V)| ! 0 almost surely in F, where f(A,V) is given in (3.6).

Next, we shall require ⌃u be strictly sparse, in the sense that the “small” o↵-diagonal

entries are exactly zero. In this case, we use the following measurement for the total sparsity:

DN :=
X

i,jN

1{E uitujt 6= 0}.

Recall that !NT :=
q

logN
T

+ 1p
N
. We assume:

Assumption 3.7 (Strict sparsity). (i) (
!
2
NT

p
T

N
)DN ! 0.

(ii) min{|E uitujt| : E uitujt 6= 0} � !NT .

For block-diagonal matrices with finite block sizes, DN = O(N); for banded matrices

with band size lN , DN = O(lNN). In general, suppose DN = lNN with some slowly growing

lN ! 1. Then condition (i) reduces to requiring l2
N
logN ⌧ lN

p
T ⌧ N. This requires

an upper bound for lN ; in addition, the lower bound for N arises from the requirement of

estimating factors. Condition (ii) requires that the nonzero entries are well-separated from

the statistical errors.

Assumption 3.8. Write �u,ij := E uitujt. There is C > 0 so that

1

N

X

(m,n):�u,mn 6=0,

X

(i,j):�u,ij 6=0

|Cov(uitujt, umtunt)| < C.

The above assumption is the key condition to argue for (3.5). It requires further condi-

tions on the weak cross-sectional dependence, in addition to the sparsity. Fan et al. (2015)
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proved that if uit is Gaussian, then a su�cient condition for Assumption 3.8 is as follows:

DN = O(N), and max
iN

X

jN

1{E uitujt 6= 0} = O(1),

which is the case for block diagonal matrices with finite members in each block and banded

matrices with lN = O(1).

Theorem 3.4. Suppose R = dim(gt), and Assumptions 2.1 - 2.4, 3.5- 3.8 hold. As N, T !

1, under H0,
N
p
T (kPbF �PGk2F � \MEAN)

b�
d�! N (0, 1).

3.5 Factor-adjusted false discovery control for multiple testing.

Controlling the false discovery rate (FDR) in large-scale hypothesis testing based on strongly

correlated testing series has been an important problem. Suppose the data are generated

from:

xt = ↵+Bft + ut,

where ↵ = (↵1, ...,↵N)0 is the mean vector. This model allows strong cross-sectional depen-

dences among xt. We are interested in testing N number of hypotheses:

H i

0 : ↵i = 0, i = 1, ..., N.

The FDR control aims to develop test statistics Zi and threshold values so that the overall

false discovery rate is controlled at certain value. A crucial requirement is that these test

statistics should be weakly dependent. However, for f̄ = 1
T

P
t
f̄t and ū = 1

T

P
t
ūt, we have

x̄ = 1
T

P
t
x̄t = ↵+Bf̄+ ū, so the presence of Bft makes the mean vector be cross-sectionally

strongly dependent, failing usual FDR procedures based on the simple sample average. This
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is the well known confounding factor problem. While several methods have been proposed

to remove the e↵ect of confounding factors (Wang et al., 2017; Fan et al., 2019), again, it

has been assumed that the number of factors should be consistently estimable.

The diversified projection can be applied directly as a simple implementation for the

FDR control, valid for all R � r. Let the diversified projection be bft = 1
N
W0xt, and let bbi be

the OLS estimator for the slope vector by regressing xit on bft with intercept. Then we can

define the factor-adjusted regularized multiple test (Fan et al., 2019) statistics Zi = b↵i/se(b↵i)

where

b↵i = x̄i � bb0
i
bf , bf = 1

T

TX

t=1

bft,

and se(b↵i) is the associated standard error. Our theories imply the following expansion,

uniformly for i = 1, ..., N and all R � r,

b↵i � ↵i =
1

T

TX

t=1

gtuit + oP (T
�1/2),

where gt = 1 � f̄ 0S�1
f
(ft � f̄), and Sf = 1

T

P
t
(ft � f̄)(ft � f̄)0. This gives rise to the desired

expansion so that Zi are weakly dependent. Therefore, we can apply standard procedures

to Zi for the false discovery control.

4 Choices of Diversified Weights

We discuss some specific examples to choose W = (w1, · · · ,wR) = (wk,i : k  R, i  N),

the weight matrix.
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4.1 Loading characteristics

Factor loadings are often driven by observed characteristics. For example, in genetic studies,

single-nucleotide polymorphism (SNP) data are often collected with the gene expression data

on the same group of subjects. The SNPs drive underlying structure in the gene expressions,

clinical and demographics data, through a↵ecting their loadings on the biological factors.

In asset pricing studies, it has been well documented that factor loadings are driven by

firm specific characteristics, which are independent of the model noise, but have strong

explanatory powers on the loadings.

Motivated by the presence of characteristics, “characteristic based” factor models have

been extensively studied in the literature, e.g., Gagliardini et al. (2016); Li et al. (2016);

Connor et al. (2012). The general form of this model assumes the loadings have the following

decomposition (Fan et al., 2016):

bi = g(zi) + �
i
, E(�

i
|zi) = 0, i  N, (4.1)

where zi is a vector of characteristics that are observed on each subject and g(·) is a non-

parametric mean function. It is assumed that {zi : i  N} is independent of ut and that

g(zi) is not degenerate so that zi has explanatory power. In addition, �
i
is the remaining

loading components, after conditioning on zi. The decomposition of bi in (4.1) is motivated

from the asset pricing literature, where factor “betas” are known to be partially explained

by individual-specific observables zi, which represent a set of time-invariant characteristics

such as individual stocks’ size, momentum, values. When zi is available, we can employ

them as a natural choice of the weights for the diversified factors. Fix an R-component of

sieve basis functions: (�1(·), ...,�R(·)) such as the Fourier basis or B splines. Then define

W := (wi,k)N⇥R, where wi,k = �k(zi).
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The diversified projection using the so-constructed W is related to the “projected PCA”

of Fan et al. (2016), but the latter is more complicated and requires stronger conditions than

the diversified projection, because it is still PCA based.

4.2 Moving window estimations

This method is useful when ut is serially independent, and related ideas have been used

recently by Barigozzi and Cho (2018). Consider out-of-sample forecasts using moving win-

dows. Suppose xt is observed for T + T0 periods in total, but to pertain the stationarity

assumption, we only use the most recent T observations to learn the latent factors, where T

may be potentially small. Divide the sample into two periods:

periods (I) of learning weights: xt = B1ft + ut, t = 1, ..., T0

periods (II) of interest: xt = Bft + ut, t = T0 + 1, ..., T0 + T.

While B1 and B can be di↵erent (e.g., presence of structural breaks), they are assumed to

be closely related between two sampling periods. As such, we can learn about the diversified

weights from periods (I) to estimate the latent factors for the periods of estimation interests

(II). Specifically, apply PCA on periods (I) to extract R number of factor loadings: bB1 =

(bbi,k)N⇥R. Now for a pre-determined constant ✏ > 0, define W = (wi,k)N⇥R where

wi,k =
bbi,k

max{1, ✏maxiN |bbi,k|}
, k  R, i  N.

Barigozzi and Cho (2018) suggested a specific choice for ✏ that work well in their simulation

studies. As discussed by these authors, the trimming constant ✏ ensures that with a large

probability most of the corresponding bbi,k are “preserved” by wi,k. On the other hand, if a few

elements of bbi,k are spuriously large in finite sample, the trimming shrinks the corresponding
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bbi,k downwards to 1/✏.

In addition, if ut is serially independent, then W is also independent of ut for t =

m+1, ...,m+T. As such, the conditions on the diversified weights are satisfied. It is straight-

forward to extending this idea to multi-periods rolling window forecasts, where weights are

sequentially updated for rolling windows.

The aforementioned method uses the idea that sample splitting creates serial indepen-

dences. In the presence of mixing-type serial dependences, Barigozzi and Cho (2018) pro-

posed to split the data into blocks and estimate factor loadings using subsamples omitting

the current block as well as its immediate neighbors. Their method can be also applied in

the current context to create the weighting matrix.

4.3 Initial Transformation

A related idea is to use transformations of the initial observation xt for t = 0. Suppose (f0,u0)

is independent of {ut : t � 1}, and let {�k : k = 1, ..., R} be a set of sieve transformations.

Then we can apply wi,k = �k(xi,0) . These weights are correlated with B through x0 =

Bf0 + u0 so that the rank condition is satisfied. The initial transformation method only

requires {ut} be independent of its initial value. The similar idea has been used recently by

Juodis and Sarafidis (2020).
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4.4 Hadamard projection

We can set deterministic weights as in the statistical experimental designs:

W =

0

BBBBBBBBBBBBBBBBB@

1 1 1 1 . . .

1 �1 1 1

1 1 �1 1

1 �1 �1 �1 . . .

1 1 1 �1

1 �1 1 �1

...
...

...
...

1

CCCCCCCCCCCCCCCCCA

.

So for each 2  k  R, the k th column of W equals (10
k�1,�10

k�1, 1
0
k�1,�10

k�1, . . .), where 1m

denotes the m-dimensional vector of ones. Closely related types of matrices are known as the

Walsh-Hadamard matrices, formed by rearranging the columns so that the number of sign

changes in a column is in an increasing order, and the columns are orthogonal. Therefore, we

can also set W as the N⇥R upper-left corner submatrix of a Hadamard matrix of dimension

2K with K = dlog2 Ne, where d.e denotes the ceiling function.

5 Monte Carlo Experiments

In this section we illustrate the finite sample properties of the forecasting and inference

methods based on diversified factors, and use four types of weight matrices:

(i) Hadamard weight: w1 = 1 and wk = (10
k�1,�10

k�1,1
0
k�1,�10

k�1, . . .) for 2  k  R,

where 1k�1 is a vector of one’s of length k � 1.

(ii) Loading characteristics: loadings depend on some characteristics zi, and we apply the

polynomial transformations so that the i th row of W is (g1(zi), g2(zi), ..., gR(zi)) for
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i  N . In our numerical work, we take one characteristic and set gj(zi) = zj
i
.

(iii) Rolling windows: when conducting simulations for out-of-sample forecasts, we use the

trimmed PCA as described in Section 4.2.

(iv) Initial transformations: we use the initial transformation so that the i th row of W is

(xi,0, x2
i,0, ..., x

R

i,0) for i  N.

We generate the data from the following model motivated from Section 4.1:

xt = Bft + ut, B = (bi,k) ⇤N�(1�↵)/2, with bi,k = (zk
i
+ 0.5�i,k).

We set zi = sin(hi) where both hi and �i,k are independent scalar standard normal variables.

Here we use the polynomial transformation zk
i
to represent the e↵ect of characteristics.

In addition, the �i,k-component captures the unobservable beta components that are not

explainable by the characteristics. With the identification condition E(�i,k|zi) = 0, both

components in bi,k can be consistently estimated. See more motivations of this model in Fan

et al. (2016) and Kim et al. (2018). The multiplier N�(1�↵)/2 measures the strength of the

factors, whereas the spiked eigenvalue of the sample covariance grows at rate N↵. Hence

larger ↵ indicates stronger factors.

The factors are multivariate standard normal. To generate the idioscyncratic term, we set

the N ⇥ T matrix U = ⌃1/2
N

Ū⌃1/2
T

; here Ū is an N ⇥ T matrix, whose entries independent

standard normal. The N ⇥ N matrix ⌃N and the T ⇥ T matrix ⌃T respectively govern

the cross-sectional and serial correlations of uit. We set ⌃T = (⇢|t�s|
T

)st , and use a sparse

cross-sectional covariance:

⌃N = diag{A, · · · ,A| {z }
n of them

, I}, A = (⇢|i�j|
N

) (5.1)
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where A is a small four-dimensional block matrix and I is (N � 4n) ⇥ (N � 4n) identity

matrix so that⌃N has a block-diagonal structure. We fix n = 3 and ⇢N = 0.7. The numerical

performances are studied in the following subsection with various choice of ⇢T to test about

the sensitivity against serial correlations.

5.1 Covariance estimation

We first study the performance of estimating ⌃u. To do so, we set r = 1 and respectively

calculate b⌃u using R = r, · · · , r + 3. As estimating ⌃u is particularly important in asset

pricing models, we use the loading characteristic weights wi,k = zk
i
, k = 1, ..., R, as the

characteristic zi is often directly observable along with the return data.

For comparison purposes, we also estimate ⌃u using two benchmark estimators:

(i) The PC-estimator for factors with R = r (the POET method by Fan et al. (2013)). So

the PC-estimator in this simulation assumes the true number of factors r = 1 to be known;

(ii) The known-factor method. We use the true factors, and estimate loadings and uit by

OLS, followed by SCAD-thresholding.

We set two serial dependence scenarios: ⇢T = 0.1 (weak serial dependence) and ⇢T = 0.7

(strong serial dependence), as well as two factor-strength scenarios: ↵ = 1 and ↵ = 0.5.

Figure 1 plots kb⌃u �⌃uk and kb⌃
�1

u
�⌃�1

u
k, averaged over 100 replications, as N = T

grows. While all estimators perform similarly, the POET-estimator is not always better

than the diversifying projection (DP). For estimating ⌃u, both the DP with R = r and

the known factor method are overall better than the POET estimator, followed by DP with

other choices of R. This comparison is reasonable, reflecting the robustness of DP to the

serial conditions and strength of factors. Perhaps what is surprising is the comparison for

estimating the inverse covariance. In all four scenarios of the factor strength and serial

correlations, the DP with R = r performs the worst among the six estimators, and DP with
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over estimated R is in general better than both the known factor method and the POET.

Our interpretation of this is that we set relatively strong cross-sectional correlations in the

data generating process, making ⌃�1
u

more unstable. The use of more diversified weights

provides extra information to help stabilizing the inverse covariance estimator.

5.2 Out-of-sample forecast

We assess the performance of the proposed factor estimators on out-of-sample forecasts.

Consider the following forecast model

yt+1 = �0 + �yt +↵0ft + "t+1

where we set r = dim(ft) = 2, (�0, �) = (1.5, 0.5), and ↵ = (1, 1)0. In addition, "t are

independent standard normal. The data generating process for xt = Bft + ut is the same

as before, in the presence of both serial and cross-sectional correlations. We conduct one-

step-ahead out-of-sample forecast m times using a moving window of size T . Here T is

also the sample size for estimations. We simulate m + T observations in total. For each

t = 0, · · · ,m� 1, we use the data {(xt+1, yt+1), · · · , (xt+T , yt+T )} to conduct one-step-ahead

forecast of yt+T+1. Specifically, we estimate the factors using {xt+1, · · · ,xt+T}, and obtain

{bft+1, · · · ,bft+T}. The coe�cients in the forecasting regression is then estimated by the OLS,

denoted by (b�0,t+T , b�t+T , b↵t+T ). We then forecast yt+T+1 by

byt+T+1|t+T = b�0,t+T + b�t+Tyt+T + b↵0
t+T
bft+T .

Such a procedure continues for t = 0, · · · ,m� 1.

We compute the diversified factor estimators using the two types of weights, with R =

r, r + 1, r + 3 as the working number of factors. As for the moving windows weight, we
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Figure 1: The estimation errors in operator-norm kb⌃u � ⌃uk (left) and kb⌃
�1

u � ⌃
�1
u k (right) as the

dimension increases, averaged over 100 replications. We set N = T . Here R = r, · · · , r + 3 correspond to
the diversified factor estimators using R number of working factors. Characteristic weights are used. Here
↵ measures the factor strength and ⇢T is the serial correlation.
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Table 1: Out-of-Sample MSE(M)/MSE(PC) for three types of estimators.

Characteristic weights Rolling window weights GDF KF
R

⇢T N T r r + 1 r + 3 r r + 1 r + 3 3 4 r

↵ = 1
0 100 50 1.141 1.090 1.109 0.968 1.001 1.010 0.991 1.016 1.007

100 0.998 0.980 1.035 0.979 1.039 1.046 1.008 1.009 1.002

0.5 50 0.996 1.008 0.965 0.993 1.018 1.055 1.000 0.996 0.986
100 0.885 0.886 0.917 0.937 0.922 0.939 0.995 0.997 1.005

0.9 50 0.602 0.621 0.637 0.608 0.620 0.680 0.763 0.772 1.023
100 0.434 0.458 0.482 0.422 0.419 0.450 0.863 0.578 0.985

↵ = 0.2
0 50 0.876 0.913 0.987 1.072 1.059 1.071 0.991 0.985 1.003

100 0.931 0.906 0.966 1.065 1.114 1.156 0.996 1.012 0.992

0.5 50 0.891 0.897 1.044 1.059 1.082 1.149 1.002 0.981 0.958
100 0.972 0.963 0.970 0.868 0.793 0.817 0.968 0.981 1.007

0.9 50 0.478 0.513 0.647 0.713 0.731 0.688 0.953 0.745 0.966
100 0.762 0.765 0.767 0.788 0.806 0.849 0.927 0.851 0.951

Reported are the out-of-sample relative MSEs. The benckmark PC-estimator uses the true number of

factors. The dimension N = 100 is fixed. The diversified projection uses R estimated factors with two

types of weights: characteristic weights and rolling window weights. In addition, the columns of GDF

estimates factors from the generalized dynamic factor model of Forni et al. (2005), with R number of

dynamic factors. The Matlab codes for implementing Forni et al. (2005) and Hallin and Lǐska (2007) are

downloaded from Matteo Barigozzi’s website www.barigozzi.eu/codes.html. The column of KF refers to

the Kalman filtering developed by Doz et al. (2011), which uses the true r number of factors. Both GDF

and KF specifically estimate dynamic factors.

assume there is a historical time series xt = B1ft +ut, for t = �T, ..., 0, and the loadings B1

is correlated with B in the sense that B1 = 0.8B + 0.5Z, where Z is multivariate standard

normal. We then apply the moving window method to create W as outlined in Section 4.2.

Though the theory for the moving window weights requires serial correlation ⇢T = 0, we

nevertheless set ⇢T = 0, 0.5 and 0.9 to examine the performance under serially correlated
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series.

The benchmark method is the PC-estimator, which uses the true number of factors. In

addition, we also consider two well known methods that specifically estimate factor dynamics:

(i) GDF: the generalized dynamic factor model of Forni et al. (2005). The selection

criterion of Hallin and Lǐska (2007) recommended using, on average, three dynamic factors,

so we use R = 3, 4 numbers of dynamic factors.

(ii) KF: the two-step Kalman filtering of Doz et al. (2011). In the first step factors are

preliminarily estimated and fit a VAR model; in the second step, Kalman smoother is applied

to calculate the projection onto the observations. For this approach, we use R = 2, the true

number of factors.

For each method M, we calculate the mean squared out-of-sample forecasting error:

MSE(M) =
1

m

m�1X

t=0

(yt+T+1 � byt+T+1|t+T )
2,

and report the relative MSE to the PC method: MSE(M)/MSE(PC). It is worthwhile to

emphasize that this study does not aim to beat the PC-method. In fact, the PC-estimator

yields the optimal rank r-estimation of the low-rank structure, in the sense that the estimated

low-rank component BF0 satisfies: bBpc
bF0
pc
= argminrank(A)=r kX�Ak2

F
. So when the number

of factors r is correctly specified and the time series dependence is not strong, the PC-

estimator enjoys some optimal property. Nevertheless we use PC as the benchmark as it is

the most commonly used in this literature. We aim to see how well the proposed DP method

performs relative to the benchmark.

The results are reported in Table 1 for m = 50, and is computed based on one set of

simulation replications. We see that the DP with various R and Generalized DF are in

most scenarios similar to the PC-estimator, and DP outperforms under the strong serial

correlations. In all cases, Kalman filtering is comparable with PC, including the case of
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strong serial correlations.

5.3 Post-selection inference

We now study the inference for the e↵ect of gt in the following factor-augmented model

yt = �gt + ⌫ 0xt + ⌘t,

gt = ✓0xt + "g,t

xt = Bft + ut,

where both ⌫ and ✓ are set to high-dimensional sparse vectors. The goal is to make inference

about �, using the factor-augmented post-selection inference. We generate ut ⇠ N (0,⌃u),

(⌘t, "g,t) ⇠ N (0, I). We set (ut, "g,t, ⌘t) be serially independent, but still allow the same cross-

sectional dependence among ut. This allows us to focus on the e↵ect of over-estimating

factors. The r-dimensional ft are independent standard normal. We set the true � = 1,

✓ = ⌫ = (1,�1.5, 0.5, 0, ..., 0) and T = N = 200.

We employ the diversified factor estimator described in Section 3.2 with various working

number of factors R, and compare with the benchmark “double-selection” method of Belloni

et al. (2014). In particular, we consider two settings:

(i) r = 0: there are no factors so xt itself is weakly dependent.

(ii) r = 2: there are two factors driving xt. Set ↵ = 1 so both factors are strong.

We calculate the standardized estimates: z := b��1
⌘,g
b�2
g

p
T (b�� �), where the standard error is

the estimated feasible one. Our theory shows that the sampling distribution of z should be

approximately standard normal.

Figures 5.2 and 5.3 plot the histograms of the standardized estimates over 200 repli-

cations, superimposed with the standard normal density. The histogram is scaled to be a

density function. We present the results when the initial transformation are used as weights
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for the diversified factors. The results from characteristics and Hadamard weights are very

similar. When r = 0, while it is expected that the double selection performs very well, as is

shown in Figure 5.3, using R � 1 factors also produces z-statistics whose distribution is also

close to the standard normality. This shows that the factor-augmented method is robust

to the absence of factor structures. On the other hand, when r = 2, the factor-augmented

method continues to perform well. In contrast, the double selection is severely biased, and

the distribution of its z-statistic is far o↵ from the standard normality.

Figure 2: true r = 0 Figure 3: true r = 2

The first three panels employ the diversified factor estimator with R number of working factors. The

last panel uses the double selection, which directly selects among xt. The weights used are the initial

transformations (t = 0) so that the i th row of W is (xi,0, x
2
i,0, ..., x

R
i,0) for i  N .

5.4 Testing the specification of empirical factors

In the last simulation study, we study the size and power of the test statistic for H0 : gt = ✓ft

for some r ⇥ r invertible matrix ✓. Here gt is a vector of known “empirical factors” that

applied researchers propose to approximate the true factors. We generate

gt = ✓ft + �ht, t  T,
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where ✓ is an r-dimensional identity matrix, and (ft,ht) ⇠ N (0, I). Here � governs the

strength of the alternatives. We assume that ut is serially independent normal generated

from N (0,⌃N), with ⌃N as in (5.1), pertaining the same cross-sectional dependence. We

set R = r = 2 and fix N = 200. In each of the simulations, we calculate the test statistic as

defined in Section 3.4, and set the significance level to 0.05. We use the SCAD-thresholding

to estimate ⌃u for both \MEAN and b�.

Table 2 presents the rejection probability over 1000 replications, with � = 0 representing

the size of the test. Above all, the results look satisfactory with controlled size and reasonable

powers, while weights using initial transformations have some size distortions.

Table 2: Probability of rejection at level 0.05. � represents the strength of alternatives.

� T Characteristic weights Hadamard weights Initial transformation

0 100 0.054 0.046 0.065
200 0.052 0.047 0.074

0.2 100 1.000 0.998 1.000
200 0.975 1.000 1.000

6 Conclusion

We propose simple estimators of the latent factors using cross-sectional projections of the

panel data, by weighted averages. These weights are chosen to diversify away the idiosyn-

cratic components, resulting in “diversified factors”. Because the projections are conducted

cross-sectionally, they are robust to serial conditions, easy to analyze due to data-independent

weights, and work even for finite length of time series. We formally prove that this procedure

is robust to over-estimating the number of factors, and illustrate it in several applications.

We also recommend several choices for the diversified weights.
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A Technical Proofs

Throughout the proofs, we use C to denote a generic positive constant. Recall that ⌫min(H)

and ⌫max(H) respectively denote the minimum and maximum nonzero singular values of

H. In addition, PA = A(A0
A)�1

A
0 and MA = I � PA denote the projection matrices of a

matrix A. If A0
A is singular, (A0

A)�1 is replaced with its Moore-Penrose generalized inverse

(A0
A)+. Let U be the N ⇥ T matrix of uit. Recall that R = dim(bft) and r = dim(ft).

We use kAk and kAkF to respectively denote the operator norm and Frobinus norm.

Finally, we define kAk1 as follows: if A is an N ⇥ K matrix with K = R or r, then

kAk1 = maxiN kAik where Ai denotes the i th row of A; if A is a K ⇥ N matrix with

K = R or r, then kAk1 = maxiN kAik where Ai denotes the i th column of A; if A is an

N ⇥N matrix, then kAk1 = maxi,jN |Aij| where Aij denotes the (i, j) th element of A.

Throughout the proof, all E(.), E(.|.) and Var(.) are calculated conditionally on W.

A.1 A key Proposition for asymptotic analysis when R � r

Proposition A.1. Suppose R � r and T,N ! 1. Also suppose G is a T ⇥ d matrix so

that E(U|G) = 0, 1
T
kGk2 = OP (1), for some fixed dimension d, and Assumption 2.1 - 2.4

hold. In addition, for each K 2 {IT ,MG}, suppose �min(
1
T
F

0
KF) > c > 0. Then

(i) �min(
1
T

bF0
KbF) � cN

�1 with probability approaching one for some c > 0,

(ii) kH0( 1
T

bF0
KbF)�1k = OP (⌫

�1
min +

q
N

T
), and kH0( 1

T

bF0
KbF)�1

Hk = OP (1).

(iii) kH0( 1
T

bF0
KbF)�1

H�H
0(H 1

T
F

0
KFH

0)+Hk = OP (
1

N⌫
2
min

+ 1
T
), and 1

T
G

0(PbF �PFH0)G =

OP (
1

N⌫
2
min

+ 1
T
).

Proof. The proof applies for both K = IT and K = MG. In addition, the proof depends on

results in the later Lemma A.1; the latter is proved independently which does not depend

on this proposition. Write ⌫min := ⌫min(H), and ⌫max := ⌫max(H).

First, it is easy to see
bF = FH

0 + E.

where E = (e1, · · · , eT )0 = 1
N
U

0
W, which is T ⇥R. Write

� :=
1

T
EE

0
E+

1

T
HF

0
KE+

1

T
E

0
KFH

0 +
1

T
(E0

E� EE
0
E) +�1

where �1 = 0 if K = IT and �1 = � 1
T
E

0
PGE if K = MG.
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(i) We have
1

T

bF0
KbF =

1

T
HF

0
KFH

0 +�.

By assumption �min(
1
T
EUU

0) � c0, so �min(
1
T
EE

0
E) � �min(

1
T
EUU

0)�min(
1
N2W

0
W) �

c0N
�1 for some c0 > 0. In addition, Lemma A.1 shows 1

T
(E0

E � EE
0
E) +�1 = OP (

1
N
p
T
).

Hence k 1
T
(E0

E � EE
0
E) +�1k  1

2�min(
1
T
EE

0
E) with large probability. We now continue

the argument conditioning on this event.

Now let v be the unit vector so that v0 1
T

bF0
KbFv = �min(

1
T

bF0
KbF) and let

⌘
2
v
:=

1

T
v
0
HF

0
KFH

0
v.

Because v
0 1
T

bF0
KbFv = ⌘

2
v
+ v

0
�v, we have

�min(
1

T

bF0
KbF) � ⌘

2
v
+ 2v0 1

T
HF

0
KEv +

c0

2N
.

If v0
H = 0 then �min(

1
T

bF0
KbF) � c0

2N . If v0
H 6= 0 then ⌘

2
v
6= 0 with large probability because

1
T
F

0
KF is positive definite. Now let

X := (
⌘
2
v

TN
)�1/22v0 1

T
HF

0
KEv, 2v0 1

T
HF

0
KEv = X

r
⌘2
v

TN
.

Then

�min(
1

T

bF0
KbF) � ⌘

2
v
+X

r
⌘2
v

TN
+

c0

2N
.

Suppose for now X = OP (1), a claim to be proved later. Then consider two cases.

In case 1, ⌘2
v
 4|X|

q
⌘2v
TN

. Then |⌘v|  4|X| 1p
TN

and

�min(
1

T

bF0
KbF) � c0

2N
� |X||⌘v|

1p
TN

� c0

2N
� 4|X|2 1

TN
� c0

4N

where the last inequality holds for X = OP (1) and as T ! 1, with probability approaching

one.

In case 2, ⌘2
v
> 4|X|

q
⌘2v
TN

, then

�min(
1

T

bF0
KbF) � ⌘

2
v
� |X|

r
⌘2
v

TN
+

c0

2N
� 3

4
⌘
2
v
+

c0

2N
� c0

2N
.
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In both cases, �min(
1
T

bF0
KbF) > c0/N for some c0 > 0 with overwhelming probability.

It remains to argue X = OP (1). By the assumption �min(
1
T
F

0
KF) > c > 0, we have

⌘
2
v
� �min(

1

T
F

0
KF)v0

HH
0
v > ckv0

Hk2.

In addition, Lemma A.1 shows k 1
T
F

0
Ek2 = OP (

1
TN

) and k 1
T
G

0
Ek2 = OP (

1
TN

). With the

condition 1
T
kGk2 = OP (1), we reach k 1

T
F

0
MGEk2  OP (

1
TN

) + kF0
G(G0

G)�1k2k 1
T
G

0
Ek2 =

OP (
1

TN
). Therefore k 1

T
F

0
KEk2 = OP (

1
TN

) and consequently,

|X|2  4TN⌘
�2
v
kv0

Hk2k 1
T
F

0
KEk2  OP (1)⌘

�2
v
kv0

Hk2  OP (1)c
�1kv0

Hk�2kv0
Hk2 = OP (1).

(ii) Write H̄ := H( 1
T
F

0
KF)1/2 and S := N

T
EE

0
E = 1

N
W

0
⌃uW. Then

1

T

bF0
KbF = H̄H̄

0 +
1

N
S+

1

T
HF

0
KE+

1

T
E

0
KFH

0 +�2 (A.1)

where we proved in (i) that k�2k = k 1
T
(E0

E�EE
0
E)+�1k = OP (

1
N
p
T
). Also all eigenvalues

of S are bounded away from both zero and infinity. In addition, H̄ is a R ⇥ r matrix with

R � r, whose Moore-Penrose generalized inverse is H̄
+ = ( 1

T
F

0
KF)�1/2

H
+. Also, H̄ is of

rank r. Let

H̄
0 = UH̄(DH̄ , 0)E

0
H̄

be the singular value decomposition (SVD) of H̄0, where 0 is present when R > r. Since

�min(
1
T
F

0
KF) > c > 0, we have �min(DH̄) � c⌫min where ⌫min := ⌫min(H).

The proof is divided into several steps.

Step 1. Show kH̄0(H̄H̄
0 + a

N
I)�j

H̄k = OP (⌫
�(2j�2)
min ) for any fixed a > 0 and j = 1, 2.

Because �min(DH̄) � c⌫min, for j = 1, 2,

kH̄0(H̄H̄
0 +

a

N
I)�j

H̄k = kUH̄(D
2
H̄
(D2

H̄
+

a

N
I)�j

, 0)U0
H̄
k = kD2

H̄
(D2

H̄
+

a

N
I)�jk  kD�2j+2

H̄
k.

Step 2. Show kH̄0(H̄H̄
0 + 1

N
S)�1

H̄k = OP (1).

Let 0 < a < �min(S) be a constant. Then (H̄H̄
0 + a

N
I)�1 � (H̄H̄

0 + 1
N
S)�1 is positive

definite. (This is because, if bothA1 andA2�A1 are positive definite, then so isA�1
1 �A

�1
2 .)

Let v be a unit vector so that v0
H̄

0(H̄H̄
0 + 1

N
S)�1

H̄v = kH̄0(H̄H̄
0 + 1

N
S)�1

H̄k. Then

kH̄0(H̄H̄
0 +

1

N
S)�1

H̄k  v
0
H̄

0(H̄H̄
0 +

a

N
I)�1

H̄v  kH̄0(H̄H̄
0 +

a

N
I)�1

H̄k.
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The right hand side is OP (1) due to step 1.

Step 3. Show kH̄0(H̄H̄
0 + 1

N
S)�1k = OP (⌫

�1
min).

Fix any a > 0. Let M = H̄
0(H̄H̄

0 + a

N
I)�1

. By step 1, kMk = kH̄0(H̄H̄
0 + a

N
I)�2

H̄k1/2 =
OP (⌫

�1
min). So

kH̄0(H̄H̄
0 +

1

N
S)�1k  kMk+ kH̄0(H̄H̄

0 +
1

N
S)�1 �Mk

=(1) kMk+ kH̄0(H̄H̄
0 +

a

N
I)�1(

1

N
S� a

N
I)(H̄H̄

0 +
1

N
S)�1k

 kMk+ C

N
kMkk(H̄H̄

0 +
1

N
S)�1k

(2) kMk(1 +OP (1)) = OP (⌫
�1
min).

(1) used A
�1
1 � A

�1
2 = A

�1
1 (A2 � A1)A

�1
2 ; (2) is from: k(H̄H̄

0 + 1
N
S)�1k  �

�1
min(

1
N
S) =

OP (N).

Step 4. Show kH0( 1
T

bF0
KbF)�1k = OP (⌫

�1
min +

q
N

T
).

Let A := H̄H̄
0 + 1

N
S. By steps 2,3 kH̄A

�1k = OP (⌫
�1
min) and kH̄A

�1
H̄k = OP (1). Now

kH̄0(
1

T

bF0
KbF)�1 � H̄

0
A

�1k = kH̄0
A

�1(
1

T

bF0
KbF�A)(

1

T

bF0
KbF)�1k

(3)
OP (

⌫max(H)

⌫min(H)
p
TN

)k( 1
T

bF0
KbF)�1k =(4)

OP (
Np
NT

) = OP (

r
N

T
).

In (3) we used 1
T

bF0
KbF �A = OP (

1
N
p
T
+ k 1

T
HF

0
KEk) = OP (

1
N
p
T
+ ⌫maxp

TN
) = OP (

⌫maxp
TN

); in

(4) we used ( 1
T

bF0
KbF)�1 = OP (N) by part (i) and ⌫max  C⌫min. Hence

kH̄0(
1

T

bF0
KbF)�1k  OP (

r
N

T
) + kH̄A

�1k = OP (⌫
�1
min +

r
N

T
).

Thus kH0( 1
T

bF0
KbF)�1k  k( 1

T
F

0
KF)�1/2kkH̄0( 1

T

bF0
KbF)�1k, which leads to the result for

kH0( 1
T

bF0
KbF)�1k = OP (⌫

�1
min +

q
N

T
).

Step 5. show H
0( 1

T

bF0
KbF)�1

H = H
0( 1

T
HF

0
KFH

0 + 1
N
S)�1

H+OP (
1

⌫min

p
NT

+ 1
T
).

Because kH̄A
�1k = OP (⌫

�1
min) and kH̄A

�1
H̄k = OP (1) by step 3, (A.1) implies

kH̄0(
1

T

bF0
KbF)�1

H̄� H̄
0
A

�1
H̄k = kH̄0(

1

T

bF0
KbF)�1(

1

T

bF0
KbF�A)A�1

H̄k

 kH̄0
A

�1
H̄(

1

T
F

0
KF)�1/2 1

T
F

0
KE(

1

T

bF0
KbF)�1

H̄k+ kH̄0
A

�1 1

T
E

0
KF(

1

T
F

0
KF)�1/2

H̄
0(
1

T

bF0
KbF)�1

H̄k

+kH̄0
A

�1
�1(

1

T

bF0
KbF)�1

H̄k
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 OP (⌫
�1
min

1

N
p
T

+
1p
NT

)k( 1
T

bF0
KbF)�1

H̄k =(5)
OP (

1p
NT

)OP (⌫
�1
min +

r
N

T
) = OP (

1

⌫min

p
NT

+
1

T
).

(5) follows from step 4 and ⌫min � N
�1/2. Then due to k( 1

T
F

0
KF)�1/2k = OP (1),

H
0(
1

T

bF0
KbF)�1

H = H
0(
1

T
HF

0
KFH

0 +
1

N
S)�1

H+OP (
1

⌫min

p
NT

+
1

T
).

In addition, step 3 implies kH0( 1
T
HF

0
KFH

0 + 1
N
S)�1

Hk  OP (⌫
�1
min⌫max) = OP (1), so

kH0(
1

T

bF0
KbF)�1

Hk = OP (1 +
1

⌫min

p
NT

+
1

T
) = OP (1).

(iii) The proof still consists of several steps.

Step 1. H0( 1
T

bF0
KbF)�1

H = H
0( 1

T
HF

0
KFH

0 + 1
N
S)�1

H+OP (
1

⌫min

p
NT

+ 1
T
).

It follows from step 5 of part (ii).

Step 2. show H̄
0(H̄H̄

0+ 1
N
S)�1

H̄ = H̄
0(H̄H̄

0)+H̄+OP (
1

N⌫
2
min

) where H̄ = H( 1
T
F

0
KF)1/2.

Write T = H̄
0(H̄H̄

0 + 1
N
S)�1

H̄ � H̄
0(H̄H̄

0)+H̄. The goal is to show kTk = OP (
1

N⌫
2
min

). Let

v be the unit vector so that |v0
Tv| = kTk. Define a function, for d > 0,

g(d) := v
0
H̄

0(H̄H̄
0 +

d

N
I)�1

H̄v.

Note that there are constants c, C > 0 so that c

N
< �min(

1
N
S)  �max(

1
N
S) < C

N
. Then we

have g(C) < v
0
H̄

0(H̄H̄
0 + 1

N
S)�1

H̄v < g(c). Hence

|v0
Tv|  |g(c)� v

0
H̄

0(H̄H̄
0)+H̄v|+ |g(C)� v

0
H̄

0(H̄H̄
0)+H̄v|.

Recall H̄0 = UH̄(DH̄ , 0)E
0
H̄

is the SVD of H̄0 and N
�1
�
�1
min(D

2
H̄
) = oP (1). Then for any

d 2 {c, C}, as N ! 1, g(d) = v
0
UH̄D

2
H̄
(D2

H̄
+ d

N
I)�1

U
0
H̄
v

P�! v
0
v = v

0
H̄

0(H̄H̄
0)+H̄v,

where we used H̄
0(H̄H̄

0)+H̄ = I, easy to see from its SVD. The rate of convergence is

kD2
H̄
(D2

H̄
+

d

N
I)�1 � Ik  kD2

H̄
(D2

H̄
+

d

N
I)�1 d

N
D

�2
H̄
k = OP (

1

N⌫2
min

).

Hence |v0
Tv| = OP (

1
N⌫

2
min

).

Step 3. show kH0( 1
T

bF0
KbF)�1

H�H
0(H 1

T
F

0
KFH

0)+Hk = OP (
1

N⌫
2
min

+ 1
T
). By steps 1 and

6



2,

H
0(
1

T

bF0
KbF)�1

H = H
0(H̄H̄

0 +
1

N
S)�1

H+OP (
1

⌫min

p
NT

+
1

T
)

= (
1

T
F

0
KF)�1/2

H̄
0(H̄H̄

0 +
1

N
S)�1

H̄(
1

T
F

0
KF)�1/2 +OP (

1

⌫min

p
NT

+
1

T
)

=(6) (
1

T
F

0
KF)�1/2

H̄
0(H̄H̄

0)+H̄(
1

T
F

0
KF)�1/2 +OP (

1

N⌫2
min

+
1

⌫min

p
NT

+
1

T
)

= H
0(H̄H̄

0)+H+OP (
1

N⌫2
min

+
1

T
).

where (6) is due to �min(
1
T
F

0
KF) > c and step 2.

Step 4. show 1
T
G

0
PbFG = 1

T
G

0
PFH0G+OP (

1
N⌫

2
min

+ 1
T
).

By part (ii) kH0( 1
T

bF0
KbF)�1k = OP (⌫

�1
min +

q
N

T
), and that 1

T
G

0
E = OP (

1p
NT

),

1

T
G

0
PbFG =

1

T
G

0
FH

0(bF0bF)�1
HF

0
G+

1

T
G

0
E(bF0bF)�1

E
0
G+

1

T
G

0
E(bF0bF)�1

HF
0
G

+
1

T
G

0
FH

0(bF0bF)�1
E

0
G

=
1

T
G

0
FH

0(bF0bF)�1
HF

0
G+OP (

1

T
+

1

⌫min

p
NT

)

=
1

T
G

0
FH

0(HF
0
FH

0)+HF
0
G+OP (

1

N⌫2
min

+
1

T
),

where the last equality follows from step 3.

The proof of Lemma A.1 below does not rely on Proposition A.1, as it does not involve

H or bF. Also, let E = (e1, · · · , eT )0 = 1
N
U

0
W. In addition, we shall use the following

inequality tr(W0
⌃W)  RkWk2k⌃k for any semipositive definite matrix ⌃, whose simple

proof is as follows: let vi be the i th eigenvector of W0
⌃W. Then

tr(W0
⌃W) =

RX

i=1

v
0
i
W

0
⌃Wvi  k⌃k

RX

i=1

kWvik2  k⌃kkWk2R.

Lemma A.1. For any R � 1, (R can be either smaller, equal to or larger than r),

(i) k 1
T
EE

0
Ek  C

N
and kEk = OP (

q
T

N
).

(ii) E k 1
T
F

0
Ek2  O( 1

TN
), E k 1

T
G

0
Ek2  O( 1

TN
), here G is defined as in Section 3.1

(iii) k 1
T
(E0

E� EE
0
E)k  OP (

1
N
p
T
), k 1

T
E

0
PGEk = OP (

1
NT

).

(iv) k 1
N
U

0
Wk  OP (

q
T

N
).
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Proof. (i) By the assumption k 1
T
EUU

0k = kEutu
0
t
k  E kE(utu

0
t
|F)k < C. Thus

k 1
T
EE

0
Ek =

1

N2
kW0 1

T
EUU

0
Wk  1

N2
kWk2  C

N
.

Also, E kEk2  trEE
0
E  RkEE

0
Ek  CT

N
.

(ii) Let fk,t be the k th entry of ft. By the assumption 1
T

P
T

s=1

P
T

t=1 E kftkkfskkE(utu
0
s
|F)k <

C,

E k 1
T
F

0
Ek2 =

1

T 2N2
E k

TX

t=1

W
0
utf

0
t
k2 

rX

k=1

1

T 2N2

TX

s=1

TX

t=1

E fk,tfk,s E(u0
s
WW

0
ut|F)


rX

k=1

1

T 2N2

TX

s=1

TX

t=1

E fk,tfk,s trW
0 E(utu

0
s
|F)W


rX

k=1

1

T 2N2

TX

s=1

TX

t=1

E |fk,tfk,s|kWk2
F
kE(utu

0
s
|F)k

 C

T 2N

TX

s=1

TX

t=1

E kftkkfskkE(utu
0
s
|F)k

 C

TN
.

Similarly, E k 1
T
G

0
Ek2  O( 1

TN
).

(iii) By the assumption that 1
TN2

P
t,sT

P
i,j,m,nN

|Cov(uitujt, umsuns)| < C,

E k 1
T
(E0

E� EE
0
E)k2 

X

k,qR

E( 1

TN2

TX

t=1

X

i,jN

wk,iwq,j(uitujt � E uitujt))
2

 C

TN2

1

TN2

X

t,sT

X

i,j,m,nN

|Cov(uitujt, umsuns)| 
C

TN2
.

Next, by part (ii)

k 1
T
E

0
PGEk  k 1

T
E

0
Gk2k( 1

T
G

0
G)�1k  OP (

1

TN
).

(iv) E k 1
N
U

0
Wk2  1

N2 trEW
0
UU

0
W  CT

N2 kWk2
F
 CT

N
, where we used the assumption

that kEutu
0
t
k < C.
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A.2 Proof of Theorem 2.1

Proof. We shall first show the convergence of PbFM
� PF, and then the convergence of

PbFPF �PF.

First, from the SVD H
0 = UH(DH , 0)E0

H
, it is straightforward to verify that M

0 =

UH(D
�1
H
, 0)E0

H
. Then from Proposition A.1, �min(

1
T
M

0bF0bFM) � c0N
�1
�min(D

�2
H
) with

large probability. Hence PbFM
is well defined.

Next, it is easy to see H
0(HH

0)+H = I when R � r. Then bF = FH
0 + E implies

bFM� F = E(HH
0)+H with M = (HH

0)+H. Since k(HH
0)+Hk = OP (⌫

�1
min), we have

1p
T
kbFM� Fk = OP (

1p
N
⌫
�1
min),

1

T
kF0(bFM� F)k = OP (

1p
NT

⌫
�1
min)

where the second statement uses Lemma A.1. Then k 1
T
M

0bF0bFM� 1
T
F

0
Fk = OP (

1p
NT

⌫
�1
min+

1
N
⌫
�2
min). Thus (

1
T
M

0bF0bFM)�1 = OP (1) and

k( 1
T
M

0bF0bFM)�1 � (
1

T
F

0
F)�1k = OP (

1p
NT

⌫
�1
min +

1

N
⌫
�2
min). (A.2)

The triangular inequality then implies kPbFM
�PFk  OP (

1p
N
⌫
�1
min).

Finally, PbFPbFM
= PbFM

gives

kPbFPF �PFk  kPbF(PF �PbFM
)k+ kPbFM

�PFk  OP (
1p
N
⌫
�1
min).

A.3 Proof of Theorem 3.1

Proof. Here we assume R � r. We let zt = (f 0
t
H

0
,g

0
t
)0 and � = (↵0

H
+
,�0)0. Then �0

zt =

yt+h|t. First, we have the following expansion

b�
0
bzT � �0

zT = (b� � �)0bzT +↵0
H

+(bfT �HfT ).
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Now b� = (bZ0bZ)�1bZ0
Y, where Y is the (T�h)⇥1 vector of yt+h, and bZ is the (T�h)⇥dim(�)

matrix of bzt, t = 1, · · · , T � h. Also recall that et = bft �Hft =
1
N
W

0
ut. Then

bz0
T
(b� � �) = bz0

T
(
1

T

bZ0bZ)�1
4X

d=1

ad, where

a1 = (
1

T

X

t

"te
0
t
, 0)0, a2 =

1

T

X

t

zt"t

a3 = (�↵0
H

+ 1

T

X

t

ete
0
t
, 0)0, a4 = � 1

T

X

t

zte
0
t
H

+0
↵.

On the other hand, let G be the (T � h)⇥ dim(gt) matrix of {gt : g  T � h}. We have, by

the matrix block inverse formula, for the operator MA := I�PA,

(
1

T

bZ0bZ)�1 =

 
A1 A2

A
0
2 A3

!
, where

0

B@
A1

A2

A3

1

CA =

0

B@
( 1
T

bF0
MG

bF)�1

�A1
bF0
G(G0

G)�1

( 1
T
G

0
MbFG)�1

1

CA .

Then bz0
T
( 1
T

bZ0bZ)�1 = (bf 0
T
A1 + g

0
T
A

0
2,
bf 0
T
A2 + g

0
T
A3). This implies

bz0
T
(b� � �) = (bf 0

T
A1 + g

0
T
A

0
2)
1

T

X

t

[et"t � ete
0
t
H

+0
↵]

+(bf 0
T
A1H+ g

0
T
A

0
2H)

1

T

X

t

[ft"t � fte
0
t
H

+0
↵]

+(bf 0
T
A2 + g

0
T
A3)

1

T

X

t

[gt"t � gte
0
t
H

+0
↵].

It is easy to show k 1
T

P
t
ft"tk + k 1

T

P
t
gt"tk = OP (

1p
T
) and k 1

T

P
t
et"tk = OP (

1p
TN

).

Also Lemma A.1 gives 1
T

P
t
ete

0
t
= 1

T
E

0
E = OP (

1
N
), 1

T

P
t
ftet =

1
T
F

0
E = OP (

1p
TN

), and
1
T

P
t
gtet =

1
T
F

0
E = OP (

1p
TN

). Together with Lemma A.2,

bz0
T
(b� � �) = kbf 0

T
A1 + g

0
T
A2kOP (

1p
TN

+
1

N⌫min
)

+kbf 0
T
A1H+ g

0
T
A

0
2HkOP (

1p
T
) + kbf 0

T
A2 + g

0
T
A3kOP (

1p
T
)

= OP (
1p
T

+
1p

N⌫min

).

Finally, as kH+k = OP (⌫
�1
min), ↵

0
H

+(bfT �HfT ) = OP (⌫
�1
min)keTk = OP (⌫

�1
minN

�1/2).
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Lemma A.2. For all R � r, (i) kA1
bfTk+ kA2k = OP (

p
N), and

kH0
A1
bfTk+ kH0

A2k+ kA0
2
bfTk+ kA3k = OP (1).

Proof. First, by Proposition A.1, kA1k = OP (N) and kA1Hk = OP (⌫
�1
min +

q
N

T
), and

1
T
E

0
G = OP (

1p
NT

)

A1
bfT = (

1

T

bF0
MG

bF)�1
eT + (

1

T

bF0
MG

bF)�1
HfT = OP (

p
N)

H
0
A1
bfT = H

0(
1

T

bF0
MG

bF)�1
eT +H

0(
1

T

bF0
MG

bF)�1
HfT = OP (1)

�A2 = A1
bF0
G(G0

G)�1 = A1E
0
G(G0

G)�1 +A1HF
0
G(G0

G)�1 = OP (

r
N

T
+ ⌫

�1
min)

�H
0
A2 = H

0
A1E

0
G(G0

G)�1 +H
0
A1HF

0
G(G0

G)�1 = OP (1)

A
0
2
bfT = A

0
2HfT +A

0
2eT = OP (1).

Finally, it follows from Proposition A.1 that 1
T
G

0(PbF � PFH0)G = OP (
1
T
+ 1

N⌫
2
min

). Hence

kA3k = OP (1) since �min(
1
T
G

0
MFH0G) > c.

A.4 Proof of Theorem 3.2

Let b"g, b"y,"g, "y, Y, G and ⌘ be T ⇥ 1 vectors of b"g,t, b"y,t, "g,t, "y,t, yt, gt and ⌘t. Let bJ
denote the index set of components in but that are selected by either b� or b✓. Let bU bJ denote

the N ⇥ |J |0 matrix of rows of bU selected by J . Then

b"y = MbU bJ
MbFY, b"g = MbU bJ

MbFG.

A.4.1 The case r � 1.

Proof. From Lemma A.7

p
T (b� � �) =

p
T [(b"0

g
b"g)�1b"0

g
(b"y � "y) + (b"0

g
b"g)�1b"0

g
⌘ + (b"0

g
b"g)�1b"0

g
("g � b"g)�]

= OP (1)
1p
T
b"0
g
(b"y � "y) +OP (1)

1p
T
b"0
g
("g � b"g) +OP (1)

1p
T
⌘0(b"g � "g)

+(
1

T
"0
g
"g)

�1 1p
T
"0
g
⌘

= �
�2
g

1p
T
"0
g
⌘ + oP (1)

d�! N (0, ��4
g
�
2
⌘g
). (A.3)
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In the above, we used the condition that |J |40+|J |20 log2 N = o(T ) , T |J |40 = o(N2 min{1, ⌫4
min|J |40})

and
p
logN |J |20 = o(N⌫

2
min), whose su�cient conditions are T |J |40 = o(N2 min{1, ⌫4

min|J |40})
and |J |40 log2 N = o(T ).

In addition, b��1
⌘,g
b�2
g

p
T (b� � �)

d�! N (0, 1), follows from b�2
g
:= 1

T
b"0
g
b"g

P�! �
2
g
.

Proposition A.2. Suppose T = O(⌫4
minN

2 logN), |J |20T = O(⌫2
minN

2 logN), |J |20 = O(N⌫
2
min logN)

and |J |20 logN = O(T ), |J |20 = o(N) For all R � r,

(i) 1
T
kbU0✓ � bU0e✓k2 = OP (|J |0 logNT ) and ke✓ � ✓k1 = OP (|J |0

q
logN
T

).

(ii) | bJ |0 = OP (|J |0).

Proof. (i) Let L(✓) := 1
T

P
T

t=1(gt � b↵0
g
bft � ✓0but)2 + ⌧k✓k1,

dt = ↵0
g
ft � b↵0

g
bft + (ut � but)

0✓, � = ✓ � e✓.

Then gt = ↵0
g
ft + ✓0

ut + "g,t, and L(e✓)  L(✓) imply

1

T

TX

t=1

[(bu0
t
�)2 + 2("g,t + dt)bu0

t
�] + ⌧ke✓k1  ⌧k✓k1.

It follows from Lemma A.5 that k 1
T

bU"gk1  OP (
q

logN
T

). Also Lemma A.4 implies that

k 1
T

TX

t=1

dtbutk1  k 1
T

bUEH
+0
↵k1 + k 1

T

bUE(H+0
↵g � b↵g)k1 + k 1

T

bUFH
0(H+0

↵g � b↵g)k1

+k 1
T
✓0(bU�U)bU0k1

 OP (|J |0

r
logN

TN
+ |J |0

logN

T
+

1

N⌫2
min

+ ⌫
�1
min

r
logN

TN
+

|J |0
N⌫min

+
|J |0

⌫min

p
NT

).

Thus the “score” satisfies k 1
T

P
T

t=1 2("g,t + dt)bu0
t
k1  ⌧/2 for su�ciently large C > 0 in

⌧ = C�

q
logN
T

with probability arbitrarily close to one, given T = O(⌫4
minN

2 logN), |J |20T =

O(⌫2
minN

2 logN), |J |20 = O(N⌫
2
min logN) and |J |20 logN = O(T ). Then by the standard

argument in the lasso literature,

1

T

TX

t=1

(bu0
t
�)2 +

⌧

2
k�Jck1 

3⌧

2
k�Jk1.
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Meanwhile, by the restricted eigenvalue condition and Lemma A.4,

1

T

TX

t=1

(bu0
t
�)2 � 1

T

TX

t=1

(u0
t
�)2 � k�k21k

1

T

bUbU0 �UU
0k1 � k�k22(�min � oP (1))

where the last inequality follows from |J |0OP (⌫
�2
min

1
N
+ logN

T
) = oP (1) (Lemma A.3). From

here, the desired convergence results follow from the standard argument in the lasso litera-

ture, we omit details for brevity, and refer to, e.g., Hansen and Liao (2018).

(ii) The proof of | bJ |0 = OP (|J |0) also follows from the standard argument in the lasso

literature, we omit details but refer to the proof of Proposition D.1 of Hansen and Liao

(2018) and Belloni et al. (2014).

Lemma A.3. (i) k 1
T
E

0
U

0k1 = OP (
q

logN
TN

+ 1
N
)

(ii) k 1
T
E

0
PbFEk = OP (

1
N
), k 1

T
E

0
PbFU

0k1 = OP (
q

logN
TN

+ 1
N
) ,

(iii) k 1
T
(bU�U)(bU�U)0k1 + 2k 1

T
(bU�U)U0k1 = OP (⌫

�2
min

1
N
+ logN

T
).

(iv) k 1
T

bUbU0 � 1
T
UU

0k1 = OP (⌫
�2
min

1
N
+ logN

T
).

Proof. Let bF = (bf1, · · · ,bfT )0. In addition, bB �BH
+ = �BH

+
E

0bF(bF0bF)�1 +UE(bF0bF)�1 +

UFH
0(bF0bF)�1

. Therefore,

U� bU = bBbF0 �BF
0 = (bB�BH

+)bF0 +BH
+
E

0

= �BH
+
E

0bF(bF0bF)�1bF0 +UE(bF0bF)�1bF0 +UFH
0(bF0bF)�1bF0 +BH

+
E

0
.(A.4)

(i) We have

k 1
T
UEk1 

X

kr

max
iN

| 1

TN

X

t

X

j

(uitujt � E uitujt)wk,j|+O(
1

N
) = OP (

r
logN

TN
+

1

N
)

(ii) By Proposition A.1 , Lemma A.1 , ⌫min � N
�1/2, and k 1

T
F

0
U

0k1 = OP (
q

logN
T

)

k 1
T
E

0
PbFEk  k 1

T
E

0
E(bF0bF)�1

E
0
Ek+ k 2

T
E

0
E(bF0bF)�1

HF
0
Ek+ k 1

T
E

0
FH

0(bF0bF)�1
HF

0
Ek

 OP (
1

N
)

k 1
T
E

0
PbFU

0k1  k 1
T
E

0
E(bF0bF)�1

E
0
U

0k1 + k 1
T
E

0
E(bF0bF)�1

HF
0
U

0k1

+k 1
T
E

0
FH

0(bF0bF)�1
E

0
U

0k1 + k 1
T
E

0
FH

0(bF0bF)�1
HF

0
U

0k1
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 OP (

r
logN

TN
+

1

N
).

(iii) We have kH+k = O(⌫�1
min). Also, kbF(bF0bF)�1bF0k  1. In addition, by Lemma A.1,

k(bF0bF)�1bF0k2 = k(bF0bF)�1k  OP (
N

T
) and that kH0(bF0bF)�1bF0k2 = kH0(bF0bF)�1

Hk = OP (
1
T
).

Next, by Lemma A.1, kEk = OP (
q

T

N
), and maxi kbik < C. Substitute the expansion (A.4),

and by Proposition A.1,

k 1
T
(bU�U)(bU�U)0k1 + 2k 1

T
(bU�U)U0k1

 k 2
T
BH

+
E

0
U

0k1 + k 1
T
BH

+
E

0
EH

+0
B

0k1 + k 3
T
UE(bF0bF)�1

E
0
U

0k1

+k 4
T
BH

+
E

0
E(bF0bF)�1

E
0
U

0k1 + k 4
T
BH

+
E

0
E(bF0bF)�1

HF
0
U

0k1

+k( 6
T
UE+

3

T
UFH

0)(bF0bF)�1
HF

0
U

0k1 + k 4
T
BH

+
E

0
FH

0(bF0bF)�1(HF
0
U

0 + E
0
U

0)k1

+k 2
T
BH

+
E

0
PbFU

0k1 + k 3
T
BH

+
E

0
PbFEH

+0
B

0k1

 kC
T
E

0
U

0k1OP (⌫
�1
min) + kC

T
E

0
EkOP (⌫

�2
min) +NkC

T
UEk21 +NkC

T
E

0
Ekk 1

T
E

0
U

0k1OP (⌫
�1
min)

+OP (⌫
�1
min)k

C

T
E

0
Ekk(bF0bF)�1

HkkF0
U

0k1 + k 6
T
UEk1k(bF0bF)�1

HkkF0
U

0k1

+k 3
T
UFk1kH0(bF0bF)�1

HkkF0
U

0k1 +OP (⌫
�1
min)k

4

T
E

0
FkkH0(bF0bF)�1

HkkF0
U

0k1

+OP (⌫
�1
min)k

4

T
E

0
FkkH0(bF0bF)�1kkE0

U
0k1 +OP (⌫

�1
min)k

C

T
E

0
PbFU

0k1 +OP (⌫
�2
min)k

C

T
E

0
PbFEk

= OP (⌫
�2
min

1

N
+

logN

T
).

Also, k 1
T

bUbU0 � 1
T
UU

0k1  k 1
T
(bU�U)(bU�U)0k1 + 2k 1

T
(bU�U)U0k1  OP (⌫

�2
min

1
N
+

logN
T

).

Lemma A.4. For all R � r,

(i) k 1
T
✓0(bU�U)bU0k1  OP (

logN
T

+ 1
N⌫

2
min

)|J |0.

(ii) k 1
T
E

0
PbFFk = OP (

1
N⌫min

+ 1p
NT

), k 1
T
UPbFFk1 = OP (

q
logN
T

+ 1
N⌫min

).

(iii) k 1
T
E

0 bU0k1  OP (
q

logN
TN

+ 1
N⌫min

), k 1
T
F

0 bU0k1  OP (
q

logN
T

+ 1
N⌫

2
min

),

(iv) k 1
T
✓0
UEk = |J |0OP (

1
N
+ 1p

NT
), k 1

T
✓0
UFk = OP (

q
|J |0
T
),

(v) b↵g �H
+0
↵g = |J |0OP (1 +

q
N

T
) + OP (⌫

�1
min), H

0(b↵g �H
+0
↵g) = OP (⌫

�1
min

|J |0
N

+
q

|J |0
T

+

⌫
�2
min

1
N
).

14



Proof. (i) By Lemma A.3 k 1
T
✓0(bU�U)bU0k1  k✓k1k 1

T
(bU�U)bU0k1  OP (

logN
T

+ 1
N⌫

2
min

)|J |0.

(ii) Note H0
H

+0
= I, Lemma A.3 shows k 1

T
E

0
PbFEk = OP (

1
N
), k 1

T
E

0
PbFU

0k1 = OP (
q

logN
TN

+
1
N
) ,

k 1
T
E

0
PbFFk  k 1

T
E

0
PbFEH

+0k+ k 1
T
E

0
EH

+0k+ k 1
T
E

0
Fk = OP (

1

N⌫min
+

1p
NT

)

k 1
T
UPbFFk1  k 1

T
UPbFEH

+0k1 + k 1
T
UEH

+0k1 + k 1
T
UFk1

 OP (

r
logN

T
+

1

N⌫min
).

(iii) By Lemma A.3 k 1
T
E

0
U

0k1 = OP (
q

logN
TN

+ 1
N
) and (ii)

k 1
T

bUEk1  k 1
T
UEk1 + k 1

T
(bU�U)Ek1

 k 1
T
UEk1 + k 1

T
BH

+
E

0
PbFEk1 + k 1

T
UPbFEk1 + k 1

T
BH

+
E

0
Ek1

 OP (

r
logN

TN
+

1

N⌫min
)

k 1
T

bUFk1  k 1
T
UFk1 + k 1

T
(bU�U)Fk1

 k 1
T
UFk1 + k 1

T
BH

+
E

0
PbFFk1 + k 1

T
UPbFFk1 + k 1

T
BH

+
E

0
Fk1

 OP (

r
logN

T
+

1

N⌫2
min

).

(iv) 1
T
✓0
UE = 1

NT
✓0(UU

0 � EUU
0)W + 1

NT
✓0 EUU

0
W. So

E k 1

NT
✓0(UU

0 � EUU
0)Wk2 =

RX

k=1

1

N2T 2
Var(

TX

t=1

✓0
utu

0
t
wk)

 C

N2T 2
k✓k21 max

j,iN

X

q,vN

X

t,sT

|Cov(uituqt, ujsuvs)| 
C|J |20
NT

.

Also, k 1
NT

✓0 EUU
0
Wk  maxjN

P
k
|wk,j|k✓k1k 1

TN
EUU

0k1  O( |J |0
N

). Also,

E k 1
T
✓0
UFk2 = 1

T 2
trEF

0 E(U0✓✓0
U|F)F  C

T
kE(U0✓✓0

U|F)k1

 C

T
max

t

TX

s=1

|E(✓0
utu

0
s
✓|F)|  C

T
max

t

TX

s=1

kE(utu
0
s
|F)k1k✓k1k✓k1  C|J |0

T
.
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(v) Since b↵g = (bF0bF)�1bF0
G, simple calculations using Proposition A.1 yield

b↵g �H
+0
↵g = (bF0bF)�1bF0

G�H
+0
↵g

= (bF0bF)�1
E

0"g � (bF0bF)�1
E

0
EH

+0
↵g + (bF0bF)�1

E
0
U

0✓ +OP (

r
|J |0
T

)

= |J |0OP (1 +

r
N

T
) +OP (⌫

�1
min)

H
0(b↵g �H

+0
↵g) = H

0(bF0bF)�1
E

0"g �H
0(bF0bF)�1

E
0
EH

+0
↵g +H

0(bF0bF)�1
E

0
U

0✓ +OP (

r
|J |0
T

)

= OP (⌫
�1
min

|J |0
N

+

r
|J |0
T

+ ⌫
�2
min

1

N
).

Lemma A.5. Suppose |J |0 = o(N⌫
2
min). For any R � r

(i) 1
T
kPbFU

0✓k2 = OP (
|J |20
N

+ |J |20
T

+ |J |3/20

⌫minN
p
T
), 1

T
kPbF"gk2 = OP (

1
T
),

(ii) k 1
T
(bU�U)"gk1 = OP (

⌫
�1
minp
NT

+
p
logN
T

), and k 1
T

bU"gk1 = OP (
q

logN
T

) = k 1
T

bU"yk1
(iii) �min(

1
T

bU bJ
bU0

bJ) > c0 with probability approaching one. 1
T
kPbU bJ

"gk2 = OP (
|J |0 logN

T
) =

1
T
kPbU bJ

"yk2.

(iv) 1
T
k(bU�U)0✓k2 = OP (

|J |20+⌫
�2
min

N
+ |J |20

T
+

⌫
�1
min|J |

3/2
0

N
p
T

), 1
T
E

0
PbF"y = OP (

1p
NT

) ,

1
T
✓0
UPbF"y = OP (

|J |0
T

+ |J |0p
NT

+
⌫
�1/2
min |J |3/40p

NT 3/4 ).

Proof. (i) By Lemma A.4 (vi) and Proposition A.1,

1

T
kPbFU

0✓k2 =
1

T
✓0
UE(bF0bF)�1

E
0
U

0✓ +
2

T
✓0
UE(bF0bF)�1

HF
0
U

0✓

+
1

T
✓0
UFH

0(bF0bF)�1
HF

0
U

0✓

 OP (
|J |20
N

+
|J |20
T

+
|J |3/20

⌫minN
p
T
),

1

T
kPbF"gk

2 =
1

T
"0
g
E(bF0bF)�1

E
0"g +

2

T
"0
g
E(bF0bF)�1

HF
0"g +

1

T
"0
g
FH(bF0bF)�1

HF
0"g

 OP (
N

NT
) +OP (

1p
NT

)
⌫
�1
minp
T

+OP (
1

T
) = OP (

1

T
).

(ii) By (A.4)

1

T
(U� bU)"g = � 1

T
BH

+
E

0
E(bF0bF)�1

E
0"g �

1

T
BH

+
E

0
FH

0(bF0bF)�1
E

0"g +
1

T
UE(bF0bF)�1

E
0"g

� 1

T
BH

+
E

0
E(bF0bF)�1

HF
0"g �

1

T
BH

+
E

0
FH

0(bF0bF)�1
HF

0"g +
1

T
UE(bF0bF)�1

HF
0"g
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+
1

T
UFH

0(bF0bF)�1
E

0"g +
1

T
UFH

0(bF0bF)�1
HF

0"g +
1

T
BH

+
E

0"g.

So by Lemmas A.1 and k 1
T
UEk1 = OP (

q
logN
TN

+ 1
N
), k 1

T
(bU�U)"gk1 = OP (

⌫
�1
minp
NT

+
p
logN
T

).

Also, with k 1
T
U"gk1 = OP (

q
logN
T

) we have k 1
T

bU"gk1 = OP (
q

logN
T

). The proof for

k 1
T

bU"yk1 is the same.

(iii) First, it follows from Lemma A.4 that k 1
T

bUbU0 � 1
T
UU

0k1  OP (
logN
T

+
⌫
�2
min
N

).

Also by Proposition A.2, | bJ |0 = OP (|J |0). Then with probability approaching one,

�min(
1

T

bU bJ
bU0

bJ) � �min(
1

T
U bJU

0
bJ)� k 1

T

bUbU0 � 1

T
UU

0k1| bJ |0

� �min �OP (
logN

T
+

⌫
�2
min

N
)|J |0 � c

1

T
kPbU bJ

"gk2 =
1

T
"0
g
bU0

bJ(
bU bJ
bU0

bJ)
�1 bU bJ"g  k 1

T
"0
g
bU0

bJk
2
�
�1
min(

1

T

bU bJ
bU0

bJ)

 ck 1
T
"0
g
bU0k21| bJ |0  OP (

|J |0 logN
T

).

1
T
kPbU bJ

"yk2 follows from the same proof.

(iv) Recall that k↵0
g
k = k✓0

Bk < C. By part (i) and Lemma A.4,

1

T
k✓0(bU�U)k2  1

T
k✓0

BH
+
E

0
PbFk

2 +
1

T
k✓0

UPbFk
2 +

1

T
k✓0

BH
+
E

0k2

 OP (
|J |20 + ⌫

�2
min

N
+

|J |20
T

+
⌫
�1
min|J |

3/2
0

N
p
T

).

k 1
T
E

0
PbF"yk  k 1

T
E

0
PbFkkPbF"yk = OP (

1p
NT

)

1

T
✓0
UPbF"y  1

T
k✓0

UPbFkPbF"yk = OP (
|J |0
T

+
|J |0p
NT

+
⌫
�1/2
min |J |3/40p
NT 3/4

).

Lemma A.6. For any R � r

(i) 1
T
kMbU bJ

bU0✓k2 = OP (|J |0 logNT ), 1
T
kMbU bJ

U
0✓k2 = OP (

|J |0 logN
T

+
|J |20+⌫

�2
min

N
+ |J |20

T
).

(ii) 1
T
"0
y
PbU bJ

(bU�U)0✓ = |J |20
q

logN
T

OP (
logN
T

+ 1
N⌫

2
min

),

1
T
"0
y
MbU bJ

U
0✓  OP (

|J |0 logN
T

+
|J |0+⌫

�1
minp

NT
+

⌫
�1/2
min |J |3/40p

NT 3/4 +
q

logN
T

|J |20
N⌫

2
min

),

(iii) kPbU bJ
Ek = OP (

q
|J |0 logN

N
+

p
T |J |0

N⌫min
), 1

T
"0
y
PbU bJ

E = OP (
|J |0 logN
T
p
N

+ |J |0
p
logN

N⌫min

p
T
).
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Proof. (i) First note that PbU bJ
bU0✓ = bU0 bm, where

bm = (bm1, · · · , bmN)
0 = argmin

m

kbU0(✓ �m)k : mj = 0, for j /2 bJ.

Thus by the definition of bm, Proposition A.2 and Lemma A.5,

1

T
kMbU bJ

bU0✓k2 =
1

T
kbU0✓ � bU0 bmk2  1

T
kbU0✓ � bU0e✓k2  OP (|J |0

logN

T
)

1

T
kMbU bJ

U
0✓k2  OP (

|J |0 logN
T

) +
1

T
k(bU�U)0✓k2 = OP (

|J |0 logN + |J |20
T

+
|J |20 + ⌫

�2
min

N
)

where we used
⌫
�1
min|J |

3/2
0

N
p
T

= OP (
|J |0 logN

T
) by our assumption.

(ii) Let � = ✓ � bm. Then dim(�) = OP (|J |0). Also, by Lemma A.4,

�
0 1

T
(bUbU0 �UU

0)�  k�k21k
1

T
(bUbU0 �UU

0)k1  OP (
logN

T
+

1

N⌫2
min

)k�k2|J |0.

Also, k�k2  C

T
kU0

�k2 due to the spare eigenvalue condition on 1
T
UU

0. Then e✓j = 0 for

j /2 bJ implies kbU0
�k  kbU0(✓ � e✓)k and Proposition A.2 implies

k✓ � bmk21  |J |0k�k2  |J |0
1

T
kU0

�k2  |J |0
1

T
kbU0

�k2 +OP (
logN

T
+

1

N⌫2
min

)k�k2|J |0

 |J |0
1

T
kbU0✓ � bU0e✓k2 +OP (

logN

T
+

1

N⌫2
min

)k�k2|J |0

 |J |20 logN
T

+OP (
|J |0 logN

T
+

|J |0
N⌫2

min

)k�k2.

The above implies k✓ � bmk21  OP (|J |20 logNT ). Hence by Lemma A.5,

1

T
"0
y
PbU bJ

(bU�U)0✓  k 1p
T
"0
y
PbU bJ

kkbU(bU�U)0✓k1
p

|J |0
T

�
�1/2
min (

1

T

bU bJ
bU0

bJ)

 |J |20

r
logN

T
OP (

logN

T
+

1

N⌫2
min

).

1

T
"0
y
MbU bJ

bU0✓ =
1

T
"0
y
bU0(✓ � bm)  k 1

T
"0
y
bU0k1k✓ � bmk1  OP (

|J |0 logN
T

).

1

T
"0
y
MbU bJ

U
0✓  1

T
"0
y
MbU bJ

bU0✓ +
1

T
"0
y
(bU�U)0✓ � 1

T
"0
y
PbU bJ

(bU�U)0✓

 OP (
|J |0 logN

T
) +

1

T
✓0
BH

+
E

0
PbF"y +

1

T
✓0
UPbF"y +

1

T
✓0
BH

+
E

0"y

� 1

T
"0
y
PbU bJ

(bU�U)0✓
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 OP (
|J |0 logN

T
+

|J |0 + ⌫
�1
minp

NT
+

⌫
�1/2
min |J |3/40p
NT 3/4

+

r
logN

T

|J |20
N⌫2

min

).

(iii) By Lemma A.4,

kPbU bJ
Ek  kbU0

bJ(
1

T

bU bJ
bU0

bJ)
�1k 1

T
kbUEk1

p
|J |0  OP (

r
|J |0 logN

N
+

p
T |J |0

N⌫min
)

k 1
T
"0
y
PbU bJ

Ek  k 1
T
"0
y
PbU bJ

kkPbU bJ
Ek = OP (

|J |0 logN
T
p
N

+
|J |0

p
logN

N⌫min

p
T

)

Lemma A.7. For any R � r,

(i) 1
T
kb"g � "gk2 = OP (

|J |20+|J |0 logN
T

+
|J |20+⌫

�2
min

N
+ |J |3/20

⌫minN
p
T
) = 1

T
kb"y � "yk2.

(ii) 1
T
"0
y
(b"g � "g) = OP (

|J |0 logN
T

+
|J |0+⌫

�1
minp

NT
+

⌫
�1/2
min |J |3/40p

NT 3/4 +
q

logN
T

|J |20
N⌫

2
min

). The same rate applies

to 1
T
"0
g
(b"g � "g) ,

1
T
⌘0(b"g � "g),

1
T
"0
g
(b"y � "y) and

1
T
"0
y
(b"y � "y).

(iii) 1
T
b"0
g
b"g = 1

T
"0
g
"g + oP (1).

Proof. Note that b"g = MbU bJ
MbFG and G = F↵g +U

0✓ + "g. Also, bU = XMbF implies

PbU bJ
PbF = 0, and MbU bJ

MbF = MbF �PbU bJ
.

Recall that H+
H = I and bF = FH

0 + E, hence straightforward calculations yield

b"g � "g = MbU bJ
U

0✓ �PbFU
0✓ +MbU bJ

MbFF↵g �PbU bJ
"g �PbF"g

= MbU bJ
U

0✓ �PbFU
0✓ �PbU bJ

"g �PbF"g � (I�PbF �PbU bJ
)EH+0

↵g. (A.5)

It follows from Lemmas A.5, A.6 that 1
T
kb"g � "gk2 = OP (

|J |20+|J |0 logN
T

+
|J |20+⌫

�2
min

N
+ |J |3/20

⌫minN
p
T
).

The proof for 1
T
kb"g � "gk2 follows similarly.

(ii) It follows from (A.5) and Lemmas A.5 A.6 that

1

T
"0
y
(b"g � "g) =

1

T
"0
y
MbU bJ

U
0✓ � 1

T
"0
y
PbFU

0✓ � 1

T
"0
y
PbU bJ

"g �
1

T
"0
y
PbF"g

� 1

T
"0
y
EH

+0
↵g �

1

T
"0
y
PbFEH

+0
↵g �

1

T
"0
y
PbU bJ

EH
+0
↵g

 OP (
|J |0 logN

T
+

|J |0 + ⌫
�1
minp

NT
+

⌫
�1/2
min |J |3/40p
NT 3/4

+

r
logN

T

|J |20
N⌫2

min

).

The same proof applies to other terms as well.

19



(iii) It follows from parts (i) that all these terms are oP (1), given that |J |20 = o(min{T,N}),
|J |0 logN = o(T ).

A.4.2 The case r = 0: there are no factors.

Proof. In this case xt = ut. And we have

bF =
1

N
X

0
W =

1

N
U

0
W := E.

Then �min(
1
T

bF0bF) = �min(
1
T
E

0
E) � c

N
with probability approaching one, still by Lemma A.1.

Hence 1
T

bF0bF is still invertible. In addition, bU = XMbF implies U� bU = UPE. Also,

yt = � 0
ut + "y,t

gt = ✓0
ut + "g,t

"y,t = �0"g,t + ⌘t

Hence↵g = ↵y = 0. Then 1
T

bF0bF = 1
T
E

0
E = 1

N2W
0 Cov(ut)W+OP (

1
N
p
T
). Hence with proba-

bility approaching one �min(
1
T

bF0bF) � cN
�1. In addition, b↵y = (E0

E)�1
E

0
U

0�+(E0
E)�1

E
0"y

implies 1
T

P
T

t=1(b↵
0
y
bft)2 = OP (

|J |20
N

+ |J |20
T
).

As for the “score” maxi | 1T
P

t
("g,t + dt)buit| in the proof of Proposition A.2, note that

max
i,jN

| 1
T

X

t

(buitbujt � uitujt)|  3

T
kUPEU

0k1 = OP (
1

N
+

logN

T
)

max
iN

| 1
T

X

t

b↵0
y
bftbuit| = OP (

|J |0
N

+
|J |0 logN

T
)

max
iN

| 1
T

X

t

buit(ut � but)
0✓| =

1

T
kUPEU

0k1OP (|J |0) = OP (
|J |0
N

+
|J |0 logN

T
)

max
iN

| 1
T

X

t

buit"g,t| = OP (

p
logN

T
+

1p
TN

). (A.6)

As for the residual, note that b"g = MbU bJ
MEG and G = U

0✓ + "g. Then

b"g � "g = MbU bJ
U

0✓ �PEU
0✓ �PbU bJ

"g �PE"g.

All the proofs in Section A.4.1 carry over. In fact, all terms involving ↵g,H and H
+ can be

set to zero.
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In addition, in the case R = r = 0, the setting/estimators are the same as in Belloni

et al. (2014).

A.4.3 Proof of Corollary 3.1.

Proof. The corollary immediately follows from Theorem 3.2. If there exist a pair (r, R) that

violate the conclusion of the corollary, then it also violates the conclusion of Theorem 3.2.

This finishes the proof.

A.5 Proof of Theorem 3.3

Proof. In the proof of Theorem 3.3 we assume R � r.

(i) When r > 0, by Lemma A.3,

max
i,jN

| 1
T

X

t

(buitbujt � uitujt)|  k 1
T

bUbU0 � 1

T
UU

0k1  OP (
logN

T
+

1

N⌫2
min

).

When r = 0 and R > 0, by (A.6), maxi,jN | 1
T

P
t
(buitbujt � uitujt)|  OP (

logN
T

+ 1
N⌫

2
min

).

In both cases, part (i) implies, for ⌫2
min � 1p

N
or ⌫2

min � 1
N

q
T

logN ,

max
i,jN

|su,ij � E uitujt|  max
i,jN

| 1
T

X

t

buitbujt � uitujt|+ max
i,jN

| 1
T

X

t

uitujt � E uitujt|

 OP (

r
logN

T
+

1

N⌫2
min

) = OP (

r
logN

T
+

1p
N
).

where maxi,jN | 1
T

P
t
uitujt � E uitujt| = OP (

q
logN
T

).

Given this convergence, the convergence of b⌃u and b⌃
�1

u
in (ii)(iii) then follows from the

same proof of Theorem A.1 of Fan et al. (2013). We thus omit it for brevity. Finally, the

case r = R = 0 is the usual case of sparse thresholding as in Bickel and Levina (2008).

A.6 Proof of Theorem 3.4

Proof. First note that when R = r, by (A.2)

k( 1
T

bF0bF)�1 � (
1

T
HF

0
FH

0)�1k  OP (
1

N
+

⌫max(H)p
TN

)
1

⌫4
min(H)

.
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Also by the proof of Theorem 2.1 for k( 1
T

bF0bF)�1k + k( 1
T
HF

0
FH

0)�1k  c

⌫
2
min(H)

. Because

PbF �PG = E(bF0bF)�1
HF

0 + FH
0[(bF0bF)�1 � (HF

0
FH

0)�1]HF
0 + bF(bF0bF)�1

E
0, we have

kPbF �PGk2F = tr(bF0bF)�1
HF

0
FH

0(bF0bF)�1
E

0
E+ tr(bF0bF)�1

E
0
E

+2 tr(bF0bF)�1
HF

0
FH

0[(bF0bF)�1 � (HF
0
FH

0)�1]HF
0
E

+tr[(bF0bF)�1 � (HF
0
FH

0)�1]HF
0
FH

0[(bF0bF)�1 � (HF
0
FH

0)�1]HF
0
FH

0

+2 trFH0[(bF0bF)�1 � (HF
0
FH

0)�1]HF
0
E(bF0bF)�1bF0

+2 tr(bF0bF)�1
HF

0
E(bF0bF)�1

E
0
E

+2 tr(bF0bF)�1
HF

0
E(bF0bF)�1

HF
0
E

= 2 trH
0�1(F0

F)�1
H

�1
E

0
E+OP (

1

TN⌫2
min

+
1

N2⌫4
min

+
1

N
p
NT⌫3

min

).

Write X := 2 trH
0�1(F0

F)�1
H

�1
E

0
E = tr(A 1

T
E

0
E) and A := 2H

0�1( 1
T
F

0
F)�1

H
�1. Now

MEAN = E(X|F,W) = trA
1

N2
W

0(Eutu
0
t
|F)W = trA

1

N2
W

0
⌃uW.

We note that Var(X|F) = 1
TN2�

2 and that N
p
T

(X�MEAN)
�

d�! N (0, 1) due to the serial

indepence of utu
0
t
conditionally on F and that E k 1p

N
W

0
utk4 < C. In addition, Lemma A.8

below shows that with \MEAN = tr bA 1
N2W

0 b⌃uW, and bA = 2( 1
T

bF0bF)�1, we have

( \MEAN�MEAN)N
p
T = oP (1).

Also, the same lemma shows b�2 P�! �
2
. As a result

kPbF �PGk2F � \MEAN
1

N
p
T
b�

=
X �MEAN

1
N
p
T
�

+ oP (1)
d�! N (0, 1).

given that � > 0,
p
T = o(N).

Lemma A.8. Suppose R = r. Let gNT := ⌫
�2
min

1
N
+ logN

T
.

(i) \MEAN�MEAN = OP (
g
2
NT

N2⌫2min
)
P

�u,ij 6=0 1 +OP (
1

N2⌫4min
+ 1

N
p
NT⌫

3
min

).

(ii) b�2 P�! �
2.

Proof. By lemma A.3,

max
ij

| 1
T

X

t

uit(bujt � ujt)|  OP (gNT ).
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(i) Recall A := 2H
0�1( 1

T
F

0
F)�1

H
�1
. Note that kAk = OP (

1
⌫
2
min(H)

). We now bound
1
N
W

0(b⌃u � ⌃u)W. For simplicity we focus on the case r = R = 1 and hard-thresholding

estimator. The proof of SCAD thresholding follows from the same argument. We have

1

N
W

0(b⌃u �⌃u)W =
1

N

X

�u,ij=0

wiwjb�u,ij +
1

N

X

�u,ij 6=0

wiwj(b�u,ij � �u,ij) := a1 + a2.

Term a1 satisfies: for any ✏ > 0, when C in the threshold is large enough,

P(a1 > (NT )�2)  P( max
�u,ij=0

|b�u,ij| 6= 0)  P(|su,ij| > ⌧ij, for some �u,ij = 0) < ✏.

Thus a1 = OP ((NT )�2). The main task is to bound a2 =
1
N

P
�u,ij 6=0 wiwj(b�u,ij � �u,ij).

a2 = a21 + a22,

a21 =
1

N

X

�u,ij 6=0

wiwj

1

T

X

t

(buitbujt � uitujt)

a22 =
1

N

X

�u,ij 6=0

wiwj

1

T

X

t

(uitujt � E uitujt).

Now for !NT :=
q

logN
T

+ 1p
N
, by part (i),

a21 =
1

N

X

�u,ij 6=0

wiwj

1

T

X

t

(buit � uit)(bujt � ujt) +
2

N

X

�u,ij 6=0

wiwj

1

T

X

t

uit(bujt � ujt)

 [max
i

1

T

X

t

(buit � uit)
2 +max

ij

| 1
T

X

t

uit(bujt � ujt)|]
1

N

X

�u,ij 6=0

1

 OP (g
2
NT

)
1

N

X

�u,ij 6=0

1.

As for a22, due to 1
N

P
�u,mn 6=0

P
�u,ij 6=0 |Cov(uitujt, umtunt)| < C and serial independence,

Var(a22)  1

N2T 2

X

s,tT

X

�u,mn 6=0

X

�u,ij 6=0

|Cov(uitujt, umsuns)|

 1

N2T

X

�u,mn 6=0

X

�u,ij 6=0

|Cov(uitujt, umtunt)|  O(
1

NT
).
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Together a2 = OP (g2NT
) 1
N

P
�u,ij 6=0 1 +OP (

1p
NT

). Therefore

1

N
W

0(b⌃u �⌃u)W = OP (g
2
NT

)
1

N

X

�u,ij 6=0

1 +OP (
1p
NT

).

This implies

| \MEAN�MEAN|  C

N
kAkk 1

N
W

0(⌃u � b⌃u)Wk+OP (
1

N
)kA� 2(

1

T

bF0bF)�1k

 OP (
g
2
NT

N2⌫2
min

)
X

�u,ij 6=0

1 +OP (
1

N2⌫4
min

+
1

N
p
NT⌫3

min

).

(ii) First, note that |�2 � f(A,V)| ! 0 by the assumption. In addition, it is easy to

show that kbA � Ak = oP (1) and kbV � Vk  1
N
kWk2kb⌃u � ⌃uk = oP (1). Since f(A,V)

is continuous in (A,V) due to the property of the normality of Zt, we have |f(A,V) �
f(bA, bV)| = oP (1). Hence |f(bA, bV)��

2| = oP (1). This finishes the proof since b�2 := f(bA, bV).
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