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Abstract
In this work, we extend the energy stable discontinuous Galerkin (DG) schemes proposed in
Bokil et al. (J Comput Phys 350:420–452, 2017), for the time domain Maxwell’s equations
augmented with a class of nonlinear constitutive polarization laws, to higher dimensions.
The nontrivial discrete temporal treatment of the nonlinearity in the ordinary differential
equations that encode the Kerr and Raman effects (Bokil et al. 2017), is first generalized
to higher spatial dimensions. To further improve the computational efficiency in dealing
with the nonlinearity, we apply nodal DG methods in space. Energy stability is proved for
the semi-discrete in time and in space schemes as well as for the fully-discrete schemes.
Under some assumptions on the strength of nonlinearity, error estimates are established for
the semi-discrete in space methods, and, in particular, optimal accuracy is achieved for the
methods on Cartesian meshes with Qk-type elements and alternating fluxes. Attention is
paid to the role of the nodal form of the DG discretizations in the analysis. We numerically
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validate the accuracy, energy stability, and computational efficiency of the proposed schemes
using manufactured solutions. We further illustrate the performance of the methods through
physically relevant experiments involving spatial soliton propagation and airhole scattering
in realistic glasses.

Keywords Maxwell’s equations · Kerr and Raman nonlinear effects · Linear Lorentz ·
Nodal discontinuous Galerkin methods · Energy stable · High dimensions

1 Introduction

When light propagates in an optical medium, it interacts with the medium. The response of
the medium to the incident light can be linear or nonlinear, and can have varying timescales.
The nonlinear responses play a significant role especially when the intensity of incident wave
is strong, and they contribute to many extraordinary optical phenomena, such as high order
harmonic generation and four wave mixing [6]. It is well known that the governing equations
for these optical phenomena are the classicalMaxwell’s partial differential equations (PDEs),
either in microscopic version or in macroscopic form [18,21]. The microscopic Maxwell’s
equations focus on the dynamics of individual charged particles under the influence of elec-
tromagetic fields. On the other hand, macroscopic Maxwell’s equations characterize the
medium’s response through constitutive relations modeling the dynamical evolution of the
macroscopic polarization, defined as the average dipole moment per unit volume, forced by
the electromagnetic field intensity. In magnetic materials, the model needs to account for the
evolution of the macroscopic magnetization.

In this paper, we consider the following macroscopic Maxwell’s equations on �×[0, T ],

μ0∂tH + ∇×E = 0, (1a)

∂t D − ∇×H = 0, (1b)

D = ε0

(
ε∞E + P + a(1 − θ)|E|2E + aθQE

)
, (1c)

∂t P = J, (1d)

∂t J + γ J + ω2
0 P = ω2

pE, (1e)

∂t Q = σ, (1f)

∂tσ + γvσ + ω2
vQ = ω2

v|E|2, (1g)

with the initial conditions and suitable boundary conditions. Here � = [xa, xb] × [ya, yb] ×
[za, zb] ⊂ R

d (d = 2, 3) is the spatial domain, and [0, T ] is the time period in consideration.
In this model, apart from the instantaneous linear response ε0ε∞E, a retarded or delayed
response, ε0P , modeled as a linear dispersive Lorentz effect governed by the ordinary differ-
ential equations (ODEs) (1d)–(1e) is included. In addition, this model also takes into account
the third order instantaneous nonlinear Kerr effect ε0a(1 − θ)|E|2E and the nonlinear dis-
persive Raman effect ε0aθQE. The constants a and θ parameterize the strength and relative
strength of these two nonlinearities. The dynamics of Q is described by the nonlinear ODEs
(1f)–(1g). We refer the readers to [3,13] for more detailed description of this model.
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For the system above, if we define the energy E = E(t) as

E =
∫

�

μ0

2
|H|2 + ε0ε∞

2
|E|2 + ε0

2ω2
p
|J |2

+ ε0ω
2
0

2ω2
p

|P|2 + ε0aθ

4ω2
v

σ 2 + ε0aθ

2
Q|E|2

+ 3ε0a(1 − θ)

4
|E|4 + ε0aθ

4
Q2d�, (2)

then, under periodic boundary conditions in space, the energy satisfies the identity [3]

d

dt
E = −ε0γ

ω2
p

∫

�

|J |2d� − ε0aθγv

2ω2
v

∫

�

σ 2d� ≤ 0. (3)

We further assume θ ∈ [0, 3
4 ], then

ε0aθ

2
Q|E|2 + 3ε0a(1 − θ)

4
|E|4 + ε0aθ

4
Q2 = ε0aθ

4

(|E|2 + Q
)2 + ε0a(3 − 4θ)

4
|E|4 ≥ 0,

and therefore E(t) ≥ 0. This suggests that, on the continuous level, the system (1) is energy
stable.

The goal of this work is to design energy stable numerical schemes that can preserve the
stability relation (3) at the discrete level. For wave propagation problems, energy preserving
schemes are always favorable since they are able to maintain the shape and phase of the
waves accurately after long time simulations [23]. In [3] and [4], energy stable discontinuous
Galerkin (DG) schemes, and finite difference time domain (FDTD) schemes, respectively,
were developed for the model (1) in one dimension (1D), which are of second order temporal
accuracy and have arbitrary order spatial accuracy. To the best of our knowledge, there are
no numerical methods with provable energy stability available for the Maxwell’s equations
(1) involving both nonlinear Kerr and Raman effects along with the linear Lorentz dispersion
in higher dimensions.

In [19], a FDTD method was developed for the transverse magnetic (TM) mode of
Maxwell’s equations in nonlinear Kerr type media only (θ = 0). For this 2D model, there
is no essential new difficulty to handle the nonlinearity beyond what was discussed in [3],
and the same 1D treatment as in [3] was adopted directly. Recently, in [1], an energy stable
time domain finite element method was developed for the 3D Maxwell’s equations with the
nonlinear Kerr effect only (θ = 0), and without the linear Lorentz and nonlinear Raman
dispersive effects. Moreover, theoretical investigation of the developed scheme is lacking.

In this paper, we extend the schemes proposed in [3] for the 1D version of model (1)
to higher spatial dimensions. The main challenge in the design of provable energy stable
schemes for the nonlinear Maxwell’s equations lies in the time discretizations. In [3], based
on a novel strategy in dealing with nonlinear terms, the authors proposed semi-explicit leap-
frog and fully-implicit trapezoidal type DG schemes for the 1D model. In this work, we
extend the results to higher dimensions by introducing an auxiliary vector to discretize the
temporal difference of the nonlinear cubic term for the Kerr effect in the constitutive relation.
To achieve provable energy stable time discretizations in high dimensions, one needs to
take into account the vector nature of the electric field, whose components are now coupled
through a nonlinear relationship.

As for spatial discretizations, there are many numerical approaches available for the
Maxwell’s equations.Among them, FDTDand generalizedmimetic finite differencemethods
[5], finite element methods and DG methods have drawn a lot of attention in the scientific
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community in recent decades, especially for linear constitutive laws in Maxwell’s equa-
tions. For Maxwell’s equations with nonlinear constitutive laws, to name a few, in [14,15], a
GVADE FDTDmethod was proposed and investigated for simulations in 2D realistic glasses
characterized by linear Lorentz, nonlinear Kerr and Raman effects. In [2], high order energy
stable FDTD methods of summation-by-parts type were designed for 2D Maxwell-Duffing
models. Mixed finite element methods were developed for the nonlinear Kerr model in [1]
and for the relaxed Kerr-Debye model in [12]. By regarding the system as nonlinear hyper-
bolic conservation laws, DG methods were examined for the nonlinear Kerr model in [11].
Asymptotic-preserving and positivity-preserving DG methods were proposed and analyzed
for the 1D relaxed Kerr-Debye model in [17] and for this relaxed model with an additional
linear Lorentz dispersion effect in [22].

In this work, we rely on DG methods as our spatial discretizations for the nonlinear
Maxwell model under consideration. For DG schemes, the choice of numerical fluxes is the
key to the stability, accuracy and computational efficiency of themethod. In [3], energy stable
DG schemes with central, alternating and upwind numerical fluxes were designed for the 1D
model. The authors recommend the leap-frog DG schemes with alternating fluxes, due to
their optimal accuracy and the local nature of nonlinear algebraic solvers. The extensions
of the schemes to higher dimensions require more careful consideration. For d > 1, it has
been reported that the DGmethods with alternating numerical fluxes suffer from sub-optimal
accuracy when Pk-type elements are used [20]. In this paper, we employ Qk-type elements
on Cartesian meshes to attain optimal order of accuracy. Note that the Qk-type DG space is
larger than the Pk-type one. This makes the methods relatively more expensive. To boost the
efficiency, we adopt nodal DG formulations [16], which, with some numerical integration
built-in to the definition of the methods, provide a natural and efficient way to handle the
nonlinearity [10,22]. Compared with the modal formulation of the DG methods (previously
adopted in [3] for 1D), the nodal form allows the element-wise nonlinear algebraic systems
to be further decoupled into several smaller ones (see Remark 3, and numerical comparison
in Sect. 3.1). To better convey how the temporal discretizations and the nodal-form of the
spatial discretizations contribute to the energy stability of the numericalmethods,we establish
the energy stability for the semi-discrete in time and the semi-discrete in space schemes
separately, before presenting a similar result for fully-discrete schemes. For the semi-discrete
in space nodal DG schemes, we also carry out error estimates under some assumptions on
the strength of the nonlinearity that is considered in this paper. In particular, we confirm
the optimal accuracy of the schemes with Qk elements and alternating numerical fluxes.
Although the presentation and the analysis related to the spatial discretization are given for
the 2D transverse electric (TE) mode of Maxwell’s equations in this paper, the extension
to the 3D model is straightforward. We want to point out that there is some difference in
analysis for the nodal form of the DG spatial discretizations here compared with that for the
modal form in [3].

The remainder of the paper is organized as follows. In Sect. 2, we formulate the proposed
numerical schemes. Particularly, in Sect. 2.1, by a similar strategy introduced in [3] to han-
dle the nonlinearity, we extend the leap-frog type time discretization to the 3D nonlinear
Maxwell’s equations with provable energy stability. In Sect. 2.2, the nodal DG schemes are
formulated for the 2D nonlinear Maxwell’s equations in the TE mode. Energy stability and
error estimates are presented for the semi-discrete in space schemes with the Qk-type ele-
ments. In Sect. 2.3, we present the fully discrete schemes and their energy stability property.
In Sect. 3, we numerically demonstrate the accuracy, energy stability, as well as the com-
putational efficiency of the proposed schemes by several 2D experiments. Our schemes are
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further applied to simulate the spatial soliton propagation and airhole scattering in realistic
glasses. Finally, conclusions are made in Sect. 4.

2 Numerical Schemes

In this section, we will introduce a family of numerical schemes for the Maxwell’s equations
(1) in nonlinear media. We will start with the semi-discrete in time method in Sect. 2.1, then
present a class of semi-discrete in space methods in Sect. 2.2, followed by the fully-discrete
schemes in Sect. 2.3. For both semi-discrete and fully-discrete methods, energy stability will
be established. Error estimates will also be proved for the semi-discrete in space schemes.
Periodic boundary conditions are assumed in space throughout this section, while other
boundary conditions are considered for numerical experiments in Sect. 3.

2.1 Semi-discrete in TimeMethod

In [3], based on a novel strategy for dealing with nonlinear terms, the authors proposed
semi-explicit leap-frog and fully implicit trapezoidal type DG schemes for the 1D version
of model (1). Both types of schemes enjoy provable discrete energy stable property. More-
over, a fully discrete energy stability analysis suggests that the trapezoidal DG schemes are
unconditionally stable, while the leap-frog DG schemes are optimally stable in the sense
that the same CFL condition for the numerical schemes applied to Maxwell’s equations in
the simple linear media with D = ε0ε∞E in (1c) is valid for the schemes for Maxwell’s
equations in the nonlinear media considered in this paper. For the trapezoidal DG schemes,
since both the PDE part and the ODE part use implicit discretizations, at each time step,
one has to solve a global nonlinear system. Therefore, in this work, we only consider the
leap-frog scheme for discretization of the PDE part of the model, and this only involves a
local nonlinear solver. The extension to fully implicit trapezoidal schemes can be constructed
in an analogous manner and is omitted for the reason of efficiency. In particular, we propose
the following semi-discrete in time scheme that uses the leap-frog method for the PDE part
and the trapezoidal method for the ODE part of the equations (1), combined with special
treatments for nonlinear terms.

Given Hn , En , Dn , Jn , Pn , σ n and Qn at time t = tn , we find Hn+1, En+1, Dn+1,
Jn+1, Pn+1, σ n+1 and Qn+1 at time tn+1 = tn + 	t , satisfying

μ0
Hn+1/2 − Hn

	t/2
= −∇×En, (4a)

Dn+1 − Dn

	t
= ∇×Hn+1/2, (4b)

Dn+1 = ε0

(
ε∞En+1 + a(1 − θ)Yn+1 + Pn+1 + aθQn+1En+1

)
,

Yn+1 − Yn =
(
|En+1|2 + |En |2 − En+1 · En

)
(En+1 − En) (4c)

+1

2

(
(En+1 + En) · (En+1 − En)

)
(En+1 + En), (4d)

Pn+1 − Pn

	t
= Jn+1 + Jn

2
, (4e)
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Jn+1 − Jn

	t
+ γ

Jn+1 + Jn

2
+ ω2

0
Pn+1 + Pn

2
= ω2

p
En+1 + En

2
, (4f)

Qn+1 − Qn

	t
= σ n+1 + σ n

2
, (4g)

σ n+1 − σ n

	t
+ γv

σ n+1 + σ n

2
+ ω2

v

Qn+1 + Qn

2
= ω2

vE
n+1 · En, (4h)

μ0
Hn+1 − Hn+1/2

	t/2
= −∇×En+1. (4i)

Leap-frog and trapezoidal methods are chosen for their symplectic nature. Nonlinear Kerr
and Raman terms are further discretized in such a way that an energy relation similar to that
at the continuous level will hold. More specifically, to discretize the Kerr term, we introduce
an auxiliary vector Y = |E|2E as in [3] for the one dimensional model, and consider its
temporal dynamics written in the following way

∂t Y = ∂t
(|E|2E) = (3|E|2 − 2|E|2) ∂t E + 2 (E · ∂t E) E. (5)

We then apply a second order discretization to (5),

Yn+1 − Yn =
(
3
|En+1|2 + |En |2

2
− 2

∣∣∣∣
En+1 + En

2

∣∣∣∣
2)

(En+1 − En)

+ 2
( En+1 + En

2
· (En+1 − En)

) En+1 + En

2
, (6)

which yields (4d). For Raman term |E|2, a second order discretization En+1 ·En is employed.
With all these ingredients, the proposedmethod has the energy stability property as presented
in Theorem 1 below. Similar strategies for energy stable semi-discrete in time schemes have
been employed in [3] for models in one dimension and [1] for models in three dimensions
with the Kerr effect.

Theorem 1 (Semi-discrete in time energy stability) Under the assumption of periodic bound-
ary conditions, the semi-discrete in time scheme (4) satisfies

En+1 − En = − ε0γ	t

4ω2
p

∫

�

∣∣∣Jn+1 + Jn
∣∣∣2 d� − ε0aθγv	t

8ω2
v

∫

�

(
σ n+1 + σ n

)2
d� ≤ 0

(7)

with the discrete energy defined as

En =
∫

�

μ0

2
Hn+1/2 · Hn−1/2 + ε0ε∞

2

∣∣En
∣∣2 + ε0

2ω2
p

∣∣Jn∣∣2 + ε0ω
2
0

2ω2
p

∣∣Pn
∣∣2

+ ε0aθ

4ω2
v

(σ n)2 + ε0aθ

2
Qn
∣∣En

∣∣2 + 3ε0a(1 − θ)

4

∣∣En
∣∣4 + ε0aθ

4
(Qn)2d�. (8)

Proof Apply two time steps to (4a) and (4i), we have

μ0
Hn+3/2 − Hn−1/2

	t
= −∇×(En+1 + En). (9)

Multiply En+1 + En to (4b), multiply Hn+1/2 to (9), integrate over � and sum them up, and
use periodic boundary conditions, we obtain
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μ0

∫

�

Hn+3/2 · Hn+1/2 − Hn+1/2 · Hn−1/2d� +
∫

�

(Dn+1 − Dn) · (En+1 + En)d� = 0.

(10)

From (4c), one has

(Dn+1 − Dn) · (En+1 + En)

= ε0ε∞
(
|En+1|2 − |En |2

)
+ ε0a(1 − θ)(Yn+1 − Yn) · (En+1 + En)

+ ε0(Pn+1 − Pn) · (En+1 + En) + ε0aθ(Qn+1En+1 − QnEn) · (En+1 + En).

(11)

For the nonlinear Kerr term in (11), with the proposed treatment in (4d), we get

(Yn+1 − Yn) · (En+1 + En) (12)

=
(
|En+1|2 + |En |2 − En+1 · En + 1

2
|En+1 + En |2

)(
|En+1|2 − |En |2

)

= 3

2

∣∣En+1
∣∣4 − 3

2

∣∣En
∣∣4 . (13)

For the Lorentz term in (11), using (4e) and (4f), we have

(Pn+1 − Pn) · (En+1 + En)

= 2

ω2
p
(Pn+1 − Pn) ·

( Jn+1 − Jn

	t
+ γ

2
(Jn+1 + Jn) + ω2

0

2
(Pn+1 + Pn)

)

= 1

ω2
p

∣∣Jn+1
∣∣2 − 1

ω2
p
|Jn |2 + γ	t

2ω2
p

∣∣Jn+1 + Jn
∣∣2 + ω2

0

ω2
p

∣∣Pn+1
∣∣2 − ω2

0

ω2
p

∣∣Pn
∣∣2 . (14)

Finally for the nonlinear Raman term in (11), we have

(Qn+1En+1 − QnEn) · (En+1 + En)

= Qn+1|En+1|2 − Qn |En |2 + (Qn+1 − Qn)(En+1 · En), (15)

where by using (4g) and (4h),

(Qn+1 − Qn)(En+1 · En)

= 1

ω2
v

(Qn+1 − Qn)
(σ n+1 − σ n

	t
+ γv

2
(σ n+1 + σ n) + ω2

v

2
(Qn+1 + Qn)

)

= 1

2ω2
v

(σ n+1)2 − 1

2ω2
v

(σ n)2 + γv	t

4ω2
v

(
σ n+1 + σ n

)2 + 1

2
(Qn+1)2 − 1

2
(Qn)2. (16)

Combining (10)–(16), we reach the semi-discrete in time energy stability (7). �	

2.2 Semi-discretization in Space: Nodal Discontinuous Galerkin Methods

In this section, we will formulate a class of nodal discontinuous Galerkin (DG) methods in
space for the Maxwell’s equations (1). The nodal version of DG discretizations is chosen in
this work for its computational efficiency in dealing with nonlinear terms, while preserving
the energy relation. For simplicity, we present the method only for the 2D transverse electric
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(TE) mode. Extension to the full 3D model is straightforward. Thus, we consider the 2D
system of equations

μ0∂t Hz + ∂x Ey − ∂y Ex = 0, (17a)

∂t Dx − ∂y Hz = 0, (17b)

∂t Dy + ∂x Hz = 0, (17c)

D = ε0

(
ε∞E + P + a(1 − θ)|E|2E + aθQE

)
, (17d)

∂t P = J, (17e)

∂t J + γ J + ω2
0 P = ω2

pE, (17f)

∂t Q = σ, (17g)

∂tσ + γvσ + ω2
vQ = ω2

v|E|2. (17h)

Here, all vector fields have two components polarized in the x − y plane, D = (Dx , Dy),
E = (Ex , Ey), P = (Px , Py), and J = (Jx , Jy).
Mesh, discrete space, and interpolation operator. Assume the computational domain is
� = [xa, xb] × [ya, yb]. Let Txh : xa = x 1

2
< x 3

2
< · · · < xNx+ 1

2
= xb be a partition of

[xa, xb], and Tyh : ya = y 1
2

< y 3
2

< · · · < yNy+ 1
2

= yb be a partition of [ya, yb], then

Th = Txh × Tyh =
{
Ki j = Ii × J j , Ii = [xi− 1

2
, xi+ 1

2
], J j = [y j− 1

2
, y j+ 1

2
], ∀i, j

}

forms a partition or a mesh of�. For a typical cell Ki j , we denote the cell center as (xi , y j ) =(
1
2 (xi+ 1

2
+ xx− 1

2
), 1

2 (y j+ 1
2

+ y j− 1
2
)
)
, and the grid size as 	xi = xi+ 1

2
− xi− 1

2
, 	y j =

y j+ 1
2

− y j− 1
2
in the x and y directions, respectively. Let h = max

i, j
(	xi ,	y j ). We further

assume themesh is quasi-uniform, namely, there exists a constant δ such that h
min
i, j

(	xi ,	y j )
< δ

as the mesh is refined.
Associated with the mesh, we introduce a discrete space of Qk-type,

V k
h =

{
v ∈ L2(�) : v|Ki j ∈ Qk(Ki j ), ∀i, j

}
, (18)

where Qk(Ki j ) consists of polynomials with degree up to k in each variable on Ki j . Without
confusion, V k

h is also used to represent its vector version in this work. For any function
v ∈ V k

h , we write

v(x±
i+ 1

2
, y) = lim

ε→0± v(xi+ 1
2

+ ε, y), v(x, y±
j+ 1

2
) = lim

ε→0± v(x, y j+ 1
2

+ ε).

We further write the average and jump of v(x, y) at cell interface x = xi+ 1
2
as

{v}x
i+ 1

2
= 1

2

(
v(x+

i+ 1
2
, y) + v(x−

i+ 1
2
, y)
)
, [v]x

i+ 1
2

= v(x+
i+ 1

2
, y) − v(x−

i+ 1
2
, y),

respectively. Similarly, the average and jump of v(x, y j+ 1
2
) at cell interface y = y j+ 1

2
are

defined as

{v}y
j+ 1

2
= 1

2

(
v(x, y+

j+ 1
2
) + v(x, y−

j+ 1
2
)
)
, [v]y

j+ 1
2

= v(x, y+
j+ 1

2
) − v(x, y−

j+ 1
2
).

For nodalDG formulation,we introduce theGauss-Legendre quadrature points as {ξm}km=0

on [−1, 1] with positive weights {ŵm}km=0, satisfying
∑k

m=0 ŵm = 2. We let {ln(ξ)}kn=0 be
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the Lagrange basis of Pk([−1, 1]), the space of polynomials of degree up to k on [−1, 1],
satisfying ln(ξm) = δnm . Here δnm is the Kronecker delta. Define

φ
i j
mn(x, y) = lm(

x − xi
	xi/2

)ln(
y − y j
	y j/2

),

then
{
φ
i j
mn(x, y)

}k
m,n=0

forms an orthogonal basis for V k
h (Ki j ) = Qk(Ki j ). We also write

xim = xi + 	xi
2 ξm and y jn = y j + 	y j

2 ξn .

On any given element Ki j , we define a local interpolation operator Ii j
h : C(Ki j ) �→

Qk(Ki j ) that satisfies
(
Ii j
h f
)

(xim, y jn) = f (xim, y jn), ∀m, n = 0, · · · , k. It can be

expressed analytically as

(
Ii j
h f
)

(x, y) =
k∑

m,n=0

f (xim, y jn)φ
i j
mn(x, y). (19)

Subsequently,we candefine aglobal interpolationoperatorIh : Wh(�) �→ V k
h ,withIh |Ki j =

Ii j
h . HereWh(�) = { f ∈ L2(�), f |Ki j ∈ C(Ki j ), ∀i, j} .The interpolation operatorIh has

the following properties.

Lemma 1 For any f , g ∈ Wh(�), there hold
∫

�

Ih( f g)d� =
∫

�

Ih( f )Ih(g)d�, (20)

∫

�

Ih( f )ψd� =
∫

�

Ih( f ψ)d�, ∀ψ ∈ V k
h . (21)

As a special case, we have
∫

�

Ih(φψ)d� =
∫

�

φψd�, ∀ψ, φ ∈ V k
h . (22)

Proof With similarity in technique, we will only show (21). It is sufficient to establish the
results locally on each element. By the definition of Ii j

h , and the key feature of the (k + 1)-
point Gaussian-Legendre quadrature rule that it is accurate for polynomials of degree up to
2k + 1, we have ∀ψ ∈ V k

h ,

∫

Ki j

Ii j
h ( f )ψdxdy =	xi

2

	y j
2

k∑
m,n=0

ŵmŵn

(
Ii j
h ( f )ψ

)
(xim, y jn)

=	xi
2

	y j
2

k∑
m,n=0

ŵmŵn f (xim, y jn)ψ(xim, y jn)

=	xi
2

	y j
2

k∑
m,n=0

ŵmŵnIi j
h ( f ψ)(xim, y jn) =

∫

Ki j

Ii j
h ( f ψ)dxdy.

�	
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Lemma 2 Let f ∈ Wh(�), then
∣∣∣∣
∫

�

Ih( f )d�

∣∣∣∣ ≤
∫

�

Ih(| f |)d�. (23)

If f is nonnegative, we also have
∫

�

Ih( f )d� ≥ 0. (24)

Proof The property can be showed by a direct calculation. For f ∈ Wh(�), we can see that

±
∫

�

Ih( f )d� = ±
Nx∑
i=1

Ny∑
j=1

	xi
2

	y j
2

k∑
m,n=0

ŵmŵn(Ii j
h f )(xim, y jn)

= ±
Nx∑
i=1

Ny∑
j=1

	xi
2

	y j
2

k∑
m,n=0

ŵmŵn f (xim, y jn)

≤
Nx∑
i=1

Ny∑
j=1

	xi
2

	y j
2

k∑
m,n=0

ŵmŵn | f |(xim, y jn) =
∫

�

Ih(| f |)d�.

Here we have used the fact that the quadrature weights {ŵm}km=0 are positive. This implies
(23). When f is nonnegative, (24) follows immediately from the above proof. �	

Semi-discrete in space methods. Now we are ready to present the semi-discrete in space
schemes for the 2D model (17) based on nodal DG discretizations: find Hzh , Eh , Dh , Jh ,
Ph , σh and Qh ∈ V k

h , such that,

μ0(∂t Hzh, φ) + BE
h (Exh, Eyh, φ) = 0, ∀φ ∈ V k

h , (25a)

(∂t Dxh, φ) + BH
xh(Hzh, φ) = 0, ∀φ ∈ V k

h , (25b)

(∂t Dyh, φ) + BH
yh(Hzh, φ) = 0, ∀φ ∈ V k

h , (25c)

Dh = ε0

(
ε∞Eh + Ph + a(1 − θ)Ih

(
|Eh |2Eh

)
+ aθIh(QhEh)

)
, (25d)

∂t Ph = Jh, (25e)

∂t Jh + γ Jh + ω2
0 Ph = ω2

pEh, (25f)

∂t Qh = σh, (25g)

∂tσh + γvσh + ω2
vQh = ω2

vIh(|Eh |2). (25h)

Here (·, ·) is the standard L2 inner product for L2(�). The multilinear form BE
h (·, ·, ·) and

bilinear forms BH
xh(·, ·) and BH

yh(·, ·) are

BE
h (Exh, Eyh, φ) = −

Nx∑
i=1

∫ yb

ya
Êyh(xi+ 1

2
, y)[φ]x

i+ 1
2
dy

+
Ny∑
j=1

∫ xb

xa

̂
Êxh(x, y j+ 1

2
)[φ]y

j+ 1
2
dx − (Eyh, ∂xφ) + (Exh, ∂yφ),

(26a)
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BH
xh(Hzh, φ) =

Ny∑
j=1

∫ xb

xa

˜
H̃zh(x, y j+ 1

2
)[φ]y

j+ 1
2
dx + (Hzh, ∂yφ), (26b)

BH
yh(Hzh, φ) = −

Nx∑
i=1

∫ yb

ya
H̃zh(xi+ 1

2
, y)[φ]x

i+ 1
2
dy − (Hzh, ∂xφ). (26c)

The numerical fluxes can be either central flux

Êyh(xi+ 1
2
, y) = {Eyh}x

i+ 1
2
,

̂
Êxh(x, y j+ 1

2
) = {Exh}y

j+ 1
2
, (27a)

H̃zh(xi+ 1
2
, y) = {Hzh}x

i+ 1
2
,

˜
H̃zh(x, y j+ 1

2
) = {Hzh}y

j+ 1
2
, (27b)

or alternating fluxes,

Êyh(xi+ 1
2
, y) = Eyh(x

†
i+ 1

2
, y),

̂
Êxh(x, y j+ 1

2
) = Exh(x, y

�

j+ 1
2
), (28a)

H̃zh(xi+ 1
2
, y) = Hzh(x

‡
i+ 1

2
, y),

˜
H̃zh(x, y j+ 1

2
) = Hzh(x, y

�

j+ 1
2
). (28b)

The following are required for the superscripts †, ‡, �, � in the alternating fluxes.

†, ‡, �, � ∈ {+,−}, † differs from ‡, � differs from �. (29)

This in total will give us four possible choices of alternating fluxes. We particularly refer to
the one with † = +, ‡ = −, � = +, � = − as Alternating I, and the one with † = +, ‡ =
−, � = −, � = + as Alternating II.

The next lemma is a direct result of the choices of numerical fluxes, and it can be easily
verified.

Lemma 3 With either central fluxes (27) or any set of alternating fluxes in (28)–(29), we
have

Êyh[Hzh] + H̃zh[Eyh] = [EyhHzh] at x = xi+ 1
2
,

̂
Êxh[Hzh] +˜

H̃zh[Exh] = [ExhHzh] at y = y j+ 1
2
.

Moreover, under the assumption of periodic boundary conditions, we have

BE
h (ψ,�, φ) + BH

xh(φ, ψ) + BH
yh(φ,�) = 0, ∀ψ,�, φ ∈ V k

h . (30)

Energy stability and error estimates. For the semi-discrete in space methods in (25) with
the numerical fluxes either in (27) or in (28)–(29), one can establish an energy relation similar
as for the continuous model. Additionally, error estimates can be proved and they are optimal
with respect to the approximation property of the discrete space V k

h when the numerical
fluxes are alternating.

Theorem 2 (Semi-discrete in space energy stability) Under the assumption of periodic
boundary conditions, the semi-discrete in space methods (25), with either (27) or (28)–(29),
satisfy

dEh(t)
dt

= −ε0γ

ω2
p

∫

�

|Jh |2d� − ε0aθγv

2ω2
v

∫

�

σ 2
h d� ≤ 0, (31)
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with the discrete energy defined as

Eh =
∫

�

(μ0

2
H2
zh + ε0ε∞

2
|Eh |2 + ε0

2ω2
p
|Jh |2 + ε0ω

2
0

2ω2
p

|Ph |2 + ε0aθ

4ω2
v

σ 2
h

+ ε0aθ

2
Ih
(
Qh |Eh |2

)+ 3ε0a(1 − θ)

4
Ih
(|Eh |4

)+ ε0aθ

4
Q2

h

)
d�. (32)

Moreover, when θ ∈ [0, 3
4 ], Eh ≥ 0.

Proof Take φ = Hzh in (25a), φ = Exh in (25b) and φ = Eyh in (25c), using relation (30),
we have

(∂t Dh, Eh) + μ0(∂t Hzh, Hzh) = 0. (33)

Differentiate (25d) with respect to time t , one gets

(∂t Dh, Eh) =ε0ε∞(∂t Eh, Eh) + ε0(∂t Ph, Eh)

+ ε0a(1 − θ)(∂tIh(|Eh |2Eh), Eh) + ε0aθ(∂tIh(QhEh), Eh). (34)

Note that the operator ∂t commuteswithIh andwith
∫
�
.With this andLemma1, the nonlinear

Kerr term becomes
(
∂tIh(|Eh |2Eh), Eh

)
=
∫

�

Ih∂t (|Eh |2Eh) · Ehd�

=
∫

�

Ih
(
∂t (|Eh |2Eh) · Eh

)
d� = 3

4

d

dt

∫

�

Ih(|Eh |4)d�. (35)

Similarly, for the nonlinear Raman term, one has

(
∂tIh(QhEh), Eh

)
=
∫

�

Ih
(
∂t (QhEh) · Eh

)
d�

=1

2

∫

�

Ih
(
∂t (Qh |Eh |2) + ∂t Qh |Eh |2

)
d�

=1

2

d

dt

∫

�

Ih(Qh |Eh |2)d� + 1

2

∫

�

∂t Qh Ih(|Eh |2)d�. (36)

The second term in (36) can be reformulated by further using (25g)–(25h),
∫

�

∂t QhIh
(|Eh |2

)
d� = 1

ω2
v

∫

�

∂t Qh
(
∂tσh + γvσh + ω2

vQh
)
d�

= 1

2ω2
v

d

dt

∫

�

σ 2
h d� + γv

ω2
v

∫

�

σ 2
h d� + 1

2

d

dt

∫

�

Q2
hd�. (37)

For the Lorentz term, using (25e)–(25f), we reach

(∂t Ph, Eh) = 1

ω2
p

∫

�

∂t Ph ·
(
∂t Jh + γ Jh + ω2

0 Ph

)
d�

= 1

2ω2
p

d

dt

∫

�

|Jh |2d� + γ

ω2
p

∫

�

|Jh |2d� + ω2
0

2ω2
p

d

dt

∫

�

|Ph |2d�. (38)

We now can combine (33)–(38) and conclude the energy relation (31) with Eh defined in
(32).
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Finally, using (22) from Lemma 1 and (24) from Lemma 2, we can see that, under the
condition θ ∈ [0, 3

4 ], the discrete energy (32) is non-negative, i.e.,

Eh =
∫

�

(μ0

2
H2
zh + ε0ε∞

2
|Eh |2 + ε0

2ω2
p
|Jh |2 + ε0ω

2
0

2ω2
p

|Ph |2 + ε0aθ

4ω2
v

σ 2
h

+ ε0aθ

4
Ih
(
(|Eh |2 + Qh)

2)+ ε0a(3 − 4θ)

4
Ih
(|Eh |4

) )
d� ≥ 0.

�	
Based on the energy stability in Theorem 2 and the approximation property of V k

h (see
“Appendix A”), we can further establish error estimates for the semi-discrete in space DG
methods. The proof will be given in “Appendix A”, and it follows similar steps as that in [3]
for the 1D version of the models considered here, with special attention paid to the nodal
form of DG spatial discretizations dealing with nonlinearity and to the use of interpolation
operators.

Theorem 3 (Semi-discrete in space error estimates) Let T > 0 be given. Let κerr ∈ (0, 1),
ρerr ∈ (0, 1) be arbitrary constants, then under periodic boundary conditions and

• Condition 1:

θ ∈
[
0,

1

1 + 3(1 − ρerr )−2

]
, (39)

• Condition 2:

aθCk‖Q‖∞ ≤ ε∞(1 − κerr ), (40)

• Condition 3:

a

(
12(1 − θ)C2

k ‖E‖∞‖∂t E‖∞+(12− 11θ)
C2
k

ρerr
‖∂t E‖2∞+2θCk‖∂t Q‖∞

)
≤ε∞κerr ,

(41)

as well as the exact solution being sufficiently smooth, the numerical solution uh given by (25)
with suitable initialization (i.e. specified in the proof) admits the following error estimate,

‖u − uh‖(T ) ≤ CC(κerr , ρerr )h
r , u = Hz, E, P, J, σ, Q,

with

r =
{
k, for central numerical fluxes,
k + 1, for alternating numerical fluxes.

Throughout this paper, ‖·‖ and ‖·‖∞ will be used to denote the standard L2 norm and L∞
norm. C is a generic constant independent of h, but may depend on k, the mesh parameter δ,
the model parameters, and some Sobolev norm of the exact solutions up to time T . We also
denote by C� a generic constant which may depend on k and the mesh parameter δ and by
Ck a usually computable constant depending only on k. These constants may take different
values at their different appearances.

Remark 1 For the semi-discrete in space DG methods on Cartesian meshes with any alter-
nating fluxes, it is necessary to use Qk-type elements to obtain optimal error estimates, as
previously analyzed in [20]. The proof of our optimality relies on a super-convergence result
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from [20]. If the Pk-type discrete space is employed (that is, the space with approximating
functions being polynomials of total degree up to k on each element), only sub-optimal error
estimates can be obtained. Indeed, even for the 2D TE model of the Maxwell’s equations in
the simple linear media with (17d) replaced by D = ε0ε∞E, both Ex and Ey are numeri-
cally observed to be k-th order accurate when DGmethods are used with the Pk-type discrete
space and alternating numerical fluxes.

Remark 2 There are three conditions in Theorem 3. Condition 1 essentially requires θ ∈
[0, 1

4 ], and this is more stringent than the required range, θ ∈ [0, 3
4 ], in Theorem 2 for energy

stability. Conditions 2-3 require the smallness of the strength of the nonlinearity, and depend
on some constantCk . These sufficient conditions may not be necessary for the error estimates
to hold.

2.3 Fully-Discrete Methods

Combining the strategies of temporal and spatial discretizations as well as the nonlinear
treatments in Sects. 2.1–2.2, we arrive at the fully-discrete leap-frog nodal DG schemes:
given Hn

zh , E
n
h , D

n
h , J

n
h , P

n
h , σ

n
h and Qn

h ∈ V k
h at time t = tn , we find Hn+1

zh , En+1
h , Dn+1

h ,

Jn+1
h , Pn+1

h , σ n+1
h and Qn+1

h ∈ V k
h at time tn+1 = tn + 	t , satisfying

μ0

(
Hn+1/2
zh − Hn

zh

	t/2
, φ

)
+ BE

h (En
xh, E

n
yh, φ) = 0, ∀φ ∈ V k

h , (42a)

(
Dn+1
xh − Dn

xh

	t
, φ

)
+ BH

xh(H
n+1/2
zh , φ) = 0, ∀φ ∈ V k

h , (42b)

(
Dn+1

yh − Dn
yh

	t
, φ

)
+ BH

yh(H
n+1/2
zh , φ) = 0, ∀φ ∈ V k

h , (42c)

Dn+1
h = ε0

(
ε∞En+1

h + Pn+1
h + a(1 − θ)Yn+1

h + aθIh
(
Qn+1

h En+1
h

))
,

Yn+1
h = Yn

h + Ih
((

|En+1
h |2 + |En

h |2 − En+1
h · En

h

) (
En+1
h − En

h

))
(42d)

+1

2
Ih
(
(En+1

h + En
h) · (En+1

h − En
h)(E

n+1
h + En

h)
)

, (42e)

Pn+1
h − Pn

h

	t
= Jn+1

h + Jnh
2

, (42f)

Jn+1
h − Jnh

	t
+ γ

Jn+1
h + Jnh

2
+ ω2

0
Pn+1
h + Pn

h

2
= ω2

p
En+1
h + En

h

2
, (42g)

Qn+1
h − Qn

h

	t
= σ n+1

h + σ n
h

2
, (42h)

σ n+1
h − σ n

h

	t
+ γv

σ n+1
h + σ n

h

2
+ ω2

v

Qn+1
h + Qn

h

2
= ω2

vIh(E
n+1
h · En

h), (42i)

μ0

(
Hn+1
zh − Hn+1/2

zh

	t/2
, φ

)
+ BE

h (En+1
xh , En+1

yh , φ) = 0, ∀φ ∈ V k
h . (42j)

The terms of BE
h , B

H
xh , and BH

yh are defined in (26), with either the central fluxes (27) or
alternating fluxes in (28)–(29).
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Just as for the semi-discrete methods in Sects. 2.1–2.2, we will see next in Theorem 4 that
the fully-discrete methods satisfy a provable energy relation. By further requiring the discrete
energy to be non-negative, the CFL condition on the allowable time step size is identified
for energy stability. The condition turns out to be the same when the proposed methods are
adapted to the linear Maxwell’s equations with the constitutive law D = ε0ε∞E. The main
factors that contribute to the energy relation in Theorem 4 are outlined in the proofs of energy
results for semi-discrete methods, and the new aspect is to obtain the time step condition.

Theorem 4 (Fully-discrete energy stability) Under the assumption of periodic boundary
conditions, the fully-discrete leap-frog nodal DG schemes (42) satisfy

En+1
h − En

h = −ε0γ	t

4ω2
p

∫

�

|Jn+1
h + Jnh |2d� − ε0aθγv	t

8ω2
v

∫

�

(σ n+1
h + σ n

h )2d� ≤ 0,

(43)

with the discrete energy En
h defined as

En
h =

∫

�

(μ0

2
Hn+1/2
zh Hn−1/2

zh + ε0ε∞
2

∣∣En
h

∣∣2 + ε0

2ω2
p

∣∣Jnh
∣∣2 + ε0ω

2
0

2ω2
p

∣∣Pn
h

∣∣2 + ε0aθ

4ω2
v

(
σ n
h

)2

+ ε0aθ

2
Ih
(
Qn

h |En
h |2
)+ 3ε0a(1 − θ)

4
Ih
(∣∣En

h

∣∣4)+ ε0aθ

4

(
Qn

h

)2 )
d�. (44)

Moreover, En
h ≥ 0 if θ ∈ [0, 3

4 ] and under the following time step condition

	t

h
≤ min

(
μ0

C�

,
ε0ε∞
C�

)
.

Proof See “Appendix B”. �	
Remark 3 Thanks to the explicit treatment of the PDE part in our schemes, at each time
step, one can solve the nonlinear ODEs for En+1, Pn+1, Jn+1, Qn+1 and σ n+1 locally in
each element. If DG spatial discretizations are in modal form, this will result in a nonlinear
algebraic system of (3d +2)× (k +1)2 equations and unknowns for each element Ki j . Here
again d is the spatial dimension. The nodal form adopted in this work however will decouple
this large system into (k + 1)2 smaller nonlinear algebraic systems, with each involving
(3d + 2) equations and unknowns related to each interpolation point (xim, y jn) in Ki j . This
will be computationally much more efficient. For each of such nonlinear systems, one can
further eliminate Pn+1, Jn+1, Qn+1 and σ n+1 analytically, and this will lead to an even
smaller cubic nonlinear system that only involves the d unknown components of En+1. One
can refer to Sect. 3.1 for numerical illustration and comparison.

3 Numerical Examples

In this section, we carry out a set of numerical experiments to validate the performance of
our proposed schemes. These tests are performed on the model (1) in its nondimensionlized
form,

∂tH + ∇×E = 0, (45a)

∂t D − ∇×H = 0, (45b)

D = ε∞E + P + a(1 − θ)|E|2E + aθQE, (45c)
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∂t P = J, (45d)

∂t J + γ J + ω2
0 P = ω2

pE, (45e)

∂t Q = σ, (45f)

∂tσ + γvσ + ω2
vQ = ω2

v |E|2. (45g)

The initialization at t = 0 is via the interpolation, namely, uh(·, ·, 0) = Ihu(·, ·, 0), with
u being any of the unknown quantity. A nonlinear algebraic system F(us) = 0 needs to
be solved at each interpolation point, see Remark 3. For each of them, we use Newton’s
iteration method, with the stopping criterion ‖F(us)‖∞ < Errtol , where Errtol is a chosen
error tolerance.Due to the small size of each nonlinear system, in our simulations theGaussian
elimination method is applied to solve the linearized system during each Newton’s iteration.

3.1 Accuracy, Computational Efficiency, Energy Stability

In this subsection, we present an example with manufactured solutions to demonstrate the
accuracy and computational efficiency of the proposed schemes. We also numerically exam-
ine the energy stability (more accurately, the energy conservation in a conservative medium).
Let � = [0, 2π

αw
] × [0, 2π

βw
], where α = cos(0.3π), β = sin(0.3π), w = 1.0. The model

parameters are set as: ε∞ = 1.0, ω0 = ωp = 1.0, γ = 0.05, a = 1/3, θ = 0.5, ωv = 1.0,
γv = 0.05. We use the following functions as the manufactured solutions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hz = ecos(w(t+αx+β y)),

Ex = βecos(w(t+αx+β y)),

Ey = −αecos(w(t+αx+β y)),

Px = Ex , Jx = ∂t Px ,
Py = Ey, Jy = ∂t Py,
Dx = Ex ,

Dy = Ey,

Q = Hz, σ = ∂t Q,

(46)

which satisfy the PDE part of the system (45) exactly. For equation balance, suitable source
functions are added to the rest of the system (i.e. the constitutive law, the ODE part), and they
are evaluated at (tn + tn+1)/2 when the solutions are numerically updated from tn to tn+1.
Periodic boundary conditions are applied in space, and the final time is T = 1. The nonlinear
stopping criteria in Newton’s iterations is Errtol = 10−12. To match the high order accuracy
in space and avoid the influence on the accuracy caused by time step changes, we first set

dt = �h
k+1
2 , h = 1

2
(

1
	x + 1

	y

) ,

with constant � chosen as

� =
⎧⎨
⎩
0.3, k = 1,
1.0, k = 2,
2.0, k = 3,

and then adjust the time step as 	t = T
�T /dt�+1 to ensure uniform time stepping.

In Tables 1-3, we report the L2 and L∞ errors and order of convergence rates for our
schemes when Qk elements are used, k = 1, 2, 3. Since the results are similar with all four
alternating numerical fluxes, we only include the results for the Alternating I & II numerical
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Fig. 1 The time history of energy deviation Enh − E1h . Left: k = 1, Middle: k = 2, Right: k = 3. Mesh:
80 × 80.

fluxes. From Tables 1-2, one can observe the optimal accuracy of the schemes with both
alternating numerical fluxes and Qk elements. Results in Table 3 are for central flux, and one
can observe the optimal accuracy for k = 2 and sub-optimal accuracy for k = 1, 3. All these
results confirm or complement our theoretical error analysis.

Wenextwant to demonstrate the computational efficiencyof the nodal formofDGschemes
by comparing them with the modal form of the DG schemes. As commented in Remark 3,
with the modal form of the DG schemes, one needs to solve one nonlinear algebraic system
of (3d+2)×(k+1)2 equations and unknowns per mesh element, while the nodal form of the
DGmethods decouples the system into (k+1)2 smaller individual nonlinear equations, with
each of size (3d + 2). The computational times of the corresponding algorithms in 2D with
d = 2 are reported in Table 4, under the column “time (s)", together with the L2 errors of Hz .
One can see that the nodal and modal DG schemes give almost identical numerical errors,
with the former nearly 15 times, 80 times, 500 times faster for k = 1, 2, 3, respectively.
Recall that during one Newton’s iteration, with Gaussian elimination as the linear solver, the
computational complexity for the modal DG method is about (k + 1)4 (i.e. 16, 81, 256 for
k = 1, 2, 3, respectively) times of that for the nodal DG method. As suggested in Remark
3, within the nodal framework, one can further eliminate all other unknowns and solve a
nonlinear system only for the d unknown components of E. This will lead to additional 2-3
times of reduction in the computational cost, which is reported under the column “time* (s)”
in Table 4.

At last, we will examine the energy stable property of the schemes. To this end, we set
γ = γv = 0, so the model is indeed energy conserving as in (3). The initial conditions
are taken to be the same as those used in the accuracy test, yet the external source terms
are switched off in the simulation for energy conservation. Again boundary conditions are
periodic in space. We run the simulations up to the final time T = 100 on a 80 × 80 mesh.

By Theorem 4, the fully-discrete schemeswill be energy conserving, namely, En+1
h −En

h =
0, with

En
h =

∫

�

(1
2
Hn+1/2
zh Hn−1/2

zh + ε∞
2

∣∣En
h

∣∣2 + 1

2ω2
p

∣∣Jnh
∣∣2 + ω2

0

2ω2
p

∣∣Pn
h

∣∣2 + aθ

4ω2
v

(
σ n
h

)2

+ aθ

2
Ih
(
Qn

h |En
h |2
)+ 3a(1 − θ)

4
Ih
(∣∣En

h

∣∣4)+ aθ

4

(
Qn

h

)2 )
d�.

This property is validated by the time evolution history of En
h −E1

h in Fig. 1 for both alternating
and central fluxes and with Qk elements, k = 1, 2, 3. Recall that the error tolerance in
Newton’s iterations is 10−12 in this experiment, while the simulation is carried out in double
precision.
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Table 4 Errors of Hz and the elapsed CPU time for simulation: Alternating I flux

Mesh Modal DG Nodal DG

L2 Time (s) L2 Time (s) Time* (s)

Q1

20 × 20 1.32E-02 0.33 1.32E-02 0.02 0.01

40 × 40 3.61E-03 2.45 3.61E-03 0.16 0.05

80 × 80 7.86E-04 17.19 7.86E-04 1.23 0.43

Q2

20 × 20 7.01E-04 5.00 7.06E-04 0.04 0.02

40 × 40 8.51E-05 48.29 8.51E-05 0.44 0.17

80 × 80 9.26E-06 449.94 9.25E-06 5.10 1.98

Q3

20 × 20 8.24E-05 65.63 8.24E-05 0.10 0.04

40 × 40 5.15E-06 872.03 5.15E-06 1.74 0.67

3.2 Physically Relevant Simulations

In this subsection, we apply the proposed schemes to simulate physically relevant problems.
For the ease of illustration, the setup of the example and numerical results are presented in
the dimensional form, though the actual simulation is conducted based on the nondimension-
alized form. The results reported here are obtained by Q2 approximations on a uniformmesh
with h = 	x = 	y = 20 nm and the time stepsize 	t = 0.05

√
ε0ε∞μ0h. The stopping

criteria in the Newton’s iteration is set as Errtol = 10−8.

3.2.1 Spatial Optical Soliton Propagation

We first consider the spatial optical soliton propagation in realistic glasses. These glasses are
characterized by a three-pole Sellmeier linear dispersion, an instantaneous Kerr nonlinearity
and a dispersive Raman nonlinearity [15], modeled by

μ0∂t Hz + ∂x Ey − ∂y Ex = 0, (47a)

∂t Dx − ∂y Hz = 0, (47b)

∂t Dy + ∂x Hz = 0, (47c)

D = ε0

(
ε∞E + b

3∑
s=1

P s + a(1 − θ)|E|2E + aθQE

)
, (47d)

∂t t P s + γs∂t P s + ω2
0s P s = ω2

psE, s = 1, 2, 3, (47e)

∂t t Q + γv∂t Q + ω2
vQ = ω2

v |E|2. (47f)

where

ω01 = 2.7537 × 1016 rad/s, ω02 = 1.6205 × 1016 rad/s, ω03 = 1.9034 × 1014 rad/s,

β1 = 0.69617, β2 = 0.40794, β3 = 0.89748, ωps = √βsω0s, γs = 0, s = 1, 2, 3,

ε∞ = 1.0, b = 1.0, a = 1.89 × 10−22m2/V 2, θ = 0.3,
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Fig. 2 Fundamental soliton |u1(ζ, ξ)| as predicted by NLSE

γv = 2

τ2
, ωv =

√
τ 21 + τ 22

τ 21 τ 22
, τ1 = 12.2 f s, τ2 = 32.0 f s.

The physical domain is �0 = [0, 38μm] × [−3μm, 3μm]. On the left boundary x = 0, a
hard source is injected, namely, by assigning the following time-dependent function to the
magnetic field Hz ,

Hz(x = 0, y, t) = H0 sin(ωct) sech(y/w), (48)

where, ωc = 4.35 × 1015 rad/s is the carrier frequency. And w, H0 are the width and the
magnitude of the incident wave, respectively, which will be specified later.

In order to facilitate the understanding of this set of numerical tests, let us first recall
that in uniform glasses, the Maxwell’s equations (47) with the nonlinear constitutive laws
reduce to the nonlinear Schrödinger equation (NLSE) under paraxial assumption [14]. For
the pulse given in (48), its propagation can be predicted by the solution of NLSE. In fact, the
normalized NLSE{

i ∂u(ζ,ξ)
∂ζ

= 1
2

∂2u(ζ,ξ)

∂ξ2
+ |u(ζ, ξ)|2 u(ζ, ξ), ζ ∈ (0,+∞), ξ ∈ (−∞,+∞),

u(0, ξ) = g(ξ), ξ ∈ (−∞,+∞)
(49)

admits bright soliton solutions [7]. For example, if the boundary data is specified as g1(ξ) =
η sech

(
η(ξ − ξ0)

)
e−i�ξ−iφ , the classical solution of (49) is given by

u1(ζ, ξ) = η sech
(
η(ξ − ξ0 − �ζ)

)
e−i�ξ−iφ+i(�2−η2)ζ/2, (50)

where η, ξ0,�, φ are the four basic soliton parameters. This special solution is called the
fundamental soliton. In Fig. 2, we plot the profile of |u1(ζ, ξ)| with η = 1, ξ0 = 0, � = 0,
φ = 0. As one can see, the fundamental soliton propagates in the dispersive and weakly
nonlinear medium without changing its amplitude, width or shape.

If the boundary data is prescribed as g2(ξ) = 2 sech(ξ), with two identical pulses injected
at ζ = 0, then the following second-order soliton is generated

u2(ζ, ξ) = 4e−iζ/2 cosh(3ξ) + 3e−i4ζ cosh(ξ)

cosh(4ξ) + 4 cosh(2ξ) + 3 cos(4ζ )
. (51)

This second-order soliton is the direct result of the interactions between the two fundamental
solitons. As the phase difference between the two fundamental solitons varies from location
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Fig. 3 Second-order soliton |u2(ζ, ξ)| as predicted by NLSE

to location, their interference will lead to periodic variations in amplitude as depicted in Fig.
3.

In the following, we want to simulate these solitons using the Maxwell’s equations (47)
up to time T = 300 f s. Initially, all the fields are set to be zero. In our simulations, we only
consider the DG schemes with Alternating I and Alternating II numerical fluxes, as both
can naturally implement the boundary condition in (48) for Hz on the left boundary without
the knowledge of the electric field E(x = 0, y, t). We refer the interested readers to [3] for
numerical boundary treatments suitable for other alternating fluxes. With similarity, we will
only present the simulation results by the Alternating I numerical flux.

To reduce the numerical artifacts from the remaining part of the domain boundary, we
set the computational domain to be larger, i.e. � = [xa, xb] × [ya, yb] = [0, 60μm] ×
[−4μm, 4μm], and apply the following absorbing boundary conditions on the top, bottom
and right boundaries, based on the characteristic decomposition of the linearized system as in
[3] by neglecting the nonlinear effects and the delayed response in the constitutive relation.

• At x = xb :
(√

μ0

ε0ε∞
Hzh + Eyh

)+

x=xb

=
(√

μ0

ε0ε∞
Hzh + Eyh

)−

x=xb

,

(√
μ0

ε0ε∞
Hzh − Eyh

)+

x=xb

= 0; (52)

• At y = ya :
(√

μ0

ε0ε∞
Hzh + Exh

)−

y=ya

=
(√

μ0

ε0ε∞
Hzh + Exh

)+

y=ya

,

(√
μ0

ε0ε∞
Hzh − Exh

)−

y=ya

= 0; (53)

• At y = yb :
(√

μ0

ε0ε∞
Hzh − Exh

)+

y=yb

=
(√

μ0

ε0ε∞
Hzh − Exh

)−

y=yb

,
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Fig. 4 Fundamental soliton propagation, snapshot of |Hz | at t = T by Alternating I numerical flux. w =
667.0 nm, H0 = 4.77 × 107 A/m

Fig. 5 Semi-log plot of the spectrum for fundamental soliton propagation

(√
μ0

ε0ε∞
Hzh + Exh

)+

y=yb

= 0. (54)

We start with the fundamental soliton by setting w = 667.0 nm, H0 = 4.77 × 107 A/m
in (48). In Fig. 4, we present a snapshot of the computed |Hz | at t = T , and it shows that
our simulated soliton maintains its width and amplitude quite well. We would also like to
examine the high order harmonic generation in the soliton propagation. For this setup, since
the third harmonic wave propagates along the polarization direction, we can integrate the Ey

component to extract this information. In Fig. 5, we present the discrete Fourier transform

êy(ω) of ey(t) =
∫ yb
ya

Eyh(xr ,y,t)dy

yb−ya
, the average of Ey along y direction at xr = 50 nm. One

can observe that besides the signal with fundamental frequency ωc, a third order harmonic
signal is also detected.

Next we consider the propagation of second-order soliton by settingw = 667.0 nm, H0 =
2 × 4.77 × 107 A/m in (48). With this incident pulse, as predicted by the NLSE, two fun-
damental solitons will be launched to produce a second-order soliton, exhibiting periodic
focusing and defocusing effect. This phenomenon is well reproduced by our schemes shown
in Fig. 6. The corresponding spectrum for ey(t) in Fig. 7 shows that the third-order harmonic
wave is also generated in this case.
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Fig. 6 Second-order soliton propagation, snapshot of |Hz | at t = T by Alternating I numerical flux. w =
667.0 nm, H0 = 2 × 4.77 × 107 A/m

Fig. 7 Semi-log plot of the spectrum for second-order soliton propagation

Fig. 8 Soliton propagation, snapshot of |Hz | at t = T by Alternating I numerical flux. w = r × 667.0 nm,
H0 = 2/r × 4.77 × 107 A/m, r = 5.99/3.99

Ifwe further tune the parameters H0 andw, both thewidth and amplitude of the solitonwill
change accordingly.Moreover, the period of the spatial focusing and defocusing in amplitude
will diminish as the beam-widthw decreases, see Figs. 8 and 9. The corresponding frequency
domain information for ey is shown in Fig. 10. These results are quite close to those reported
in [14].
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Fig. 9 Soliton propagation, snapshot of |Hz | at t = T by Alternating I numerical flux. w = r × 667.0 nm,
H0 = 2/r × 4.77 × 107 A/m, r = 3.26/3.99

Fig. 10 Semi-log plot of the spectrum for soliton propagations. Left: r = 5.99/3.99, right: r = 3.26/3.99

3.2.2 Airhole Scattering

Next, we would like to simulate the scattering of a soliton by material discontinuities, in the
form of an airhole sitting in a nonlinear glass. For this example, since the glasses are not
uniform and the wave propagation is not paraxial, the full model of nonlinear Maxwell’s
equations is required to simulate the light-dielectric interactions [14]. The physical domain
is �0 = [0, 29μm] × [−5μm, 5μm]. Again, to reduce artificial boundary effects, the simu-
lations are conducted in a larger computational domain � = [0, 32μm]× [−12μm, 12μm],
with approximated absorbing boundary conditions (52)–(54) applied on the top, bottom and
right boundaries. On the left boundary, an incident wave (48) with ωc = 4.35 × 1015 rad/s,
w = 667.0 nm, H0 = 2 × 4.77 × 107 A/m is introduced. In the bulk of the optical media,
there is a 250 nm× 250 nm airhole with its center sitting at (5μm, 0). Modeling this airhole
is realized by simply setting b = a = 0 in (47) in this region. All other model parameters
are the same as in the previous example. We run the simulations to T = 160 f s. Again with
visual similarity, only results by Alternating I numerical flux are presented.

In Fig. 11, we plot the magnetic field |Hz | at time t = T . As is shown, the scattered wave
does not totally escape but coalesces into a relatively weaker soliton after interacting with
the airhole. This reformed soliton exhibits periodic focusing and defocusing effects again as
in the previous example.

If the electromagnetic wave hits on a larger airhole of size 350 nm×350 nm, the amount of
scattering increases, see Fig. 12. Moreover, the refocusing effects gets weaker and happens at
a longer distance away from the airhole. The numerical spectrum analysis in Fig. 13 reveals
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Fig. 11 Airhole scattering, snapshot of |Hz | at t = T by Alternating I numerical flux. w = 667.0 nm,
H0 = 2 × 4.77 × 107× A/m. Size: 250 nm × 250 nm

Fig. 12 Airhole scattering, snapshot of |Hz | at t = T by Alternating I numerical flux. w = 667.0 nm,
H0 = 2 × 4.77 × 107× A/m. Size: 350 nm × 350 nm

that the third order harmonic wave is also generated in this airhole scattering. These results
are in good agreement with the results in [14] by FDTD methods.

4 Conclusions

In this work, we extend the 1D energy stable DG schemes in [3] for nonlinear Maxwell’s
equations to multi-dimensions. Using a similar nonlinear treatment as in [3], we develop the
leap-frog time scheme with provable energy stability for the model. The nodal DG methods
are employed in space for the purpose of efficiency. Energy stability results are proved for
semi- and fully-discrete schemes, and error estimates are established for the semi-discrete in
space nodal DGmethods. Several numerical examples in 2D are provided to demonstrate the
performance of the proposed schemes. Robust and accurate numerical boundary treatments
need to be investigated to further improve the efficiency in simulating nonlinear optical
phenomena, along with their impact to numerical energy estimates (see [3] for such analysis).
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Fig. 13 Semi-log plots of the spectrum for airhole scattering. Left: 250 nm×250 nm, Right: 350 nm×350 nm

Computational efficiency can also be explored by utilizing the flexibility of DG methods in
h, p-adaptive simulations.
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Appendix A: Proof of Theorem 3

This section will be devoted to the proof of Theorem 3. We will start with some prepara-
tory results on projection operators and their approximation properties, as well as inverse
inequalities.

A.1 Preliminaries

We first consider the commonly used L2 projection πxh and Gauss-Radau projections π±
xh

ontoUk
xh = {u ∈ L2([xa, xb]) : u|Ii ∈ Pk(Ii ), ∀i} in the x direction on [xa, xb]. Here Pk(I )

consists of polynomials of degree up to k on an interval I .

1. L2 projection πxh : L2([xa, xb]) → Uk
xh , satisfying, ∀i ,∫ x

i+ 1
2

x
i− 1

2

(πxhw)(x)v(x)dx =
∫ x

i+ 1
2

x
i− 1

2

w(x)v(x)dx, ∀v ∈ Pk(Ii );
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2. Gauss-Radau projection π+
xh : H

1([xa, xb]) → Uk
xh , satisfying, ∀i ,∫ x

i+ 1
2

x
i− 1

2

(π+
xhw)(x)v(x)dx =

∫ x
i+ 1

2

x
i− 1

2

w(x)v(x)dx, ∀v ∈ Pk−1(Ii ),

and (
π+
xhw

)
(x+

i− 1
2
) = w(x+

i− 1
2
);

3. Gauss-Radau projection π−
xh : H

1([xa, xb]) → Uk
xh , satisfying, ∀i ,∫ x

i+ 1
2

x
i− 1

2

(π−
xhw)(x)v(x)dx =

∫ x
i+ 1

2

x
i− 1

2

w(x)v(x)dx, ∀v ∈ Pk−1(Ii ),

and (
π−
xhw

)
(x−

i+ 1
2
) = w(x−

i+ 1
2
).

The one-dimensional L2 projection πyh and Gauss-Radau projections π±
yh can be defined

similarly in the y direction onto Uk
yh = {

u ∈ L2([ya, yb]) : u|J j ∈ Pk(J j ), ∀ j
}
. One can

further define two-dimensional projection operators as tensor products of one-dimensional
ones as follows [9,20].

1. �
±,0
h = π±

xh ⊗ πyh : H2(�) → V k
h , satisfying, ∀v ∈ Qk(Ki j ) and ∀i, j ,

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

(
�

±,0
h w

)
(x, y)

∂v(x, y)

∂x
dxdy =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

w(x, y)
∂v(x, y)

∂x
dxdy

and ∫ y
j+ 1

2

y
j− 1

2

(
�

±,0
h w

)
(x±

i∓ 1
2
, y)v(x±

i∓ 1
2
, y)dy =

∫ y
j+ 1

2

y
j− 1

2

w(x±
i∓ 1

2
, y)v(x±

i∓ 1
2
, y)dy;

2. �
0,±
h = πxh ⊗ π±

yh : H
2(�) → V k

h , satisfying, ∀v ∈ Qk(Ki j ) and ∀i, j ,
∫ x

i+ 1
2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

(
�

0,±
h w

)
(x, y)

∂v(x, y)

∂ y
dxdy =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

w(x, y)
∂v(x, y)

∂ y
dxdy

and∫ x
i+ 1

2

x
i− 1

2

(
�

0,±
h w

)
(x, y±

j∓ 1
2
)v(x, y±

j∓ 1
2
)dx =

∫ x
i+ 1

2

x
i− 1

2

w(x, y±
j∓ 1

2
)v(x, y±

j∓ 1
2
)dx;

3. �
±,±
h = π±

xh ⊗ π±
yh : H

2(�) → V k
h , satisfying, ∀v ∈ Qk−1(Ki j ) and ∀i, j ,

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

(
�

±,±
h w

)
(x, y)v(x, y)dxdy =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

w(x, y)v(x, y)dxdy,

∫ x
i+ 1

2

x
i− 1

2

(
�

±,±
h w

)
(x, y±

j∓ 1
2
)v(x, y±

j∓ 1
2
)dx =

∫ x
i+ 1

2

x
i− 1

2

w(x, y±
j∓ 1

2
)v(x, y±

j∓ 1
2
)dx,

∫ y
j+ 1

2

y
j− 1

2

(
�

±,±
h w

)
(x±

i∓ 1
2
, y)v(x±

i∓ 1
2
, y)dy =

∫ y
j+ 1

2

y
j− 1

2

w(x±
i∓ 1

2
, y)v(x±

i∓ 1
2
, y)dy
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and (
�

±,±
h w

)
(x±

i∓ 1
2
, y±

j∓ 1
2
) = w(x±

i∓ 1
2
, y±

j∓ 1
2
);

4.) �
0,0
h = πxh ⊗ πyh : L2(�) → V k

h , satisfying, ∀v ∈ Qk(Ki j ) and ∀i, j ,
∫ x

i+ 1
2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

(
�

0,0
h w

)
(x, y)v(x, y)dxdy =

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

w(x, y)v(x, y)dxdy.

The following approximation results are standard for the analysis of DG methods, and
can be established following classical arguments [8].

Lemma A1 (Approximation properties) Let Ph be either the interpolation operator Ih, or
any of the projection operators �

±,0
h ,�

0,±
h ,�

±,±
h ,�

0,0
h . There exist constants C� and Ck,

such that ∀w ∈ Hk+1(�), there hold

‖w − Phw‖2L2(K )
+ h‖w − Phw‖2L2(∂K )

≤ C�h
2k+2‖w‖2Hk+1(K )

, ∀K ∈ Th (A1)

and

‖Phw‖∞ ≤ Ck‖w‖∞. (A2)

As a direct consequence of (A2), there holds

‖w − Phw‖∞ ≤ Ck‖w‖∞. (A3)

Associated with terms in our methods involving the interpolation operator to deal with
nonlinearity more efficiently, it is convenient to work with a discrete norm ‖ · ‖h on V k

h ,
which is equivalent to the standard L2 norm.

Lemma A2 (Norm equivalence [10]) Define

‖v‖h =
⎛
⎝

Nx∑
i=1

Ny∑
j=1

k∑
m,n=0

∣∣v(xim, y jn)
∣∣2 	xi	y j

⎞
⎠

1/2

,

then ‖ · ‖h is a norm on V k
h . In addition, there exist constants C�, C̃� > 0, such that

C̃�‖v‖h ≤ ‖v‖ ≤ C�‖v‖h, ∀v ∈ V k
h .

Below are some immediate results of Lemma A2.

Lemma A3 There exists a constant C�, such that∣∣∣∣
∫

�

Ih( f g)d�

∣∣∣∣ ≤ C�‖ f ‖‖g‖, ∀ f , g ∈ Wh(�). (A4)

Proof By the definition of Ih , and the exactness of (k+1)-point Gaussian-Legendre quadra-
ture rule, the boundedness of {ω̂m}km=0, Cauchy-Schwartz inequality, and norm equivalence
in Lemma A2, we have

∣∣∣∣
∫

�

Ih( f g)d�

∣∣∣∣ =
∣∣∣∣∣∣
Nx∑
i=1

Ny∑
j=1

	xi
2

	y j
2

k∑
m,n=0

ω̂mω̂n f (xim, y jn)g(xim, y jn)

∣∣∣∣∣∣
≤ Ck‖ f ‖h‖g‖h ≤ C�‖ f ‖‖g‖.

�	
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Finally, our analysis will need some inverse inequality [8].

Lemma A4 (Inverse inequality) There exists a constant C�, such that

h2‖∇v‖2L2(K )
+ h‖v‖2L2(∂K )

≤ C�‖v‖2L2(K )
, ∀v ∈ V k

h , ∀K ∈ Th . (A5)

A.2 Proof of Theorem 3

Proof The proof will proceed similarly as that in [3]. The DGmethods in [3] are of the modal
form and for the 1D version of model (1). One difference in our analysis here comes from
the use of the interpolation operator Ih in the nodal DG setting to deal with nonlinear terms.
Being two-dimensional also adds complexity to the use of projection operators in the proof.

For any component u of the solution (such as Hz, Ex , Ey etc), we first decompose its error
as u − uh = (u − Pu

h u) − (uh − Pu
h u) = ηu − ξu , where the projection Pu

h is taken to be

�
0,0
h except for PEx

h , PEy
h , PHz

h when the numerical fluxes are alternating. When alternating
fluxes are used, without loss of generality, we only consider one of the four possible cases,
particularly, we consider Alternating I, given by (28) with † = +, ‡ = −, � = +, � = −,
and take

PEx
h = �

0,+
h , PEy

h = �
+,0
h , PHz

h = �
−,−
h .

We initialize the method by setting ξu = uh −Pu
h u = 0 at t = 0 for all solution components.

Step 1: With the consistency of numerical fluxes, from (25), we can obtain the error
equations:

μ0(∂tηHz , φ) + BE
h (ηEx , ηEy , φ) = μ0(∂tξHz , φ) + BE

h (ξEx , ξEy , φ), ∀φ ∈ V k
h , (A6a)(

∂t (Dx − Dxh), φ
)

+ BH
xh(ηHz , φ) = BH

xh(ξHz , φ), ∀φ ∈ V k
h , (A6b)

(
∂t (Dy − Dyh), φ

)
+ BH

yh(ηHz , φ) = BH
yh(ξHz , φ), ∀φ ∈ V k

h , (A6c)

∂tηP − ηJ = ∂tξ P − ξ J , (A6d)

∂tηJ + γ ηJ + ω2
0ηP − ω2

pηE = ∂tξ J + γ ξ J + ω2
0ξ P − ω2

pξ E , (A6e)

∂tηQ − ησ = ∂tξQ − ξσ ,

∂tησ + γvησ + ω2
vηQ − ∂tξσ − γvξσ − ω2

vξQ = ω2
v

(|E|2 − Ih
(|Eh |2

))
(A6f)

= ω2
v

(|E|2 − Ih
(|E|2))+ ω2

vIh
(|E|2 − |Eh |2

)
, (A6g)

along with

D − Dh = ε0ε∞(ηE − ξE) + ε0(ηP − ξP ) + ε0a(1 − θ)
(|E|2E − Ih

(|Eh |2Eh
))

+ ε0aθ(QE − Ih(QhEh)). (A7)

Note that P P
h = P J

h = �
0,0
h , then the equation (1d) implies

∂tηP − ηJ = 0. (A8)

Therefore (A6d) further gives

∂tξ P − ξ J = 0. (A9)

Similarly, (A6f) gives

∂tξQ − ξσ = 0. (A10)
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Recall that the choice of PE
h depends on the numerical fluxes, then the equation (1e) implies

∂tηJ + γ ηJ + ω2
0ηP − ω2

p(E − �
0,0
h E) = 0, this together with (A6e) leads to

∂tξ J + γ ξ J + ω2
0ξ P − ω2

pξ E = ω2
p�E, (A11)

where

�E = (E − �
0,0
h E) − ηE =

{
0 central flux for E
�E

h E − �
0,0
h E alternating flux for E

. (A12)

Step 2: Take φ = ξHz in (A6a), φ = ξEx in (A6b), and φ = ξEy in (A6c), sum them up
and use (30), we have,

μ0

2

d

dt
‖ξHz‖2 − μ0(∂tηHz , ξHz ) − BE

h (ηEx , ηEy , ξHz ) − BH
xh(ηHz , ξEx ) − BH

yh(ηHz , ξEy )

=
(
∂t (D − Dh), ξE

)
. (A13)

Differentiate (A7) with respect to time t , and use that ∂t and Ih commute, we have
(
∂t (D − Dh), ξE

)
= ε0ε∞

(
∂t (ηE − ξE), ξE

)
+ ε0

(
∂t (ηP − ξP ), ξE

)

+ ε0a(1 − θ)
(
∂t (|E|2E) − Ih

(
∂t (|E|2E)

)
, ξE

)

+ ε0a(1 − θ)
(
Ih∂t

(
|E|2E − |Eh |2Eh

)
, ξE

)

+ ε0aθ
(
∂t (QE) − Ih (∂t (QE)) , ξE

)
+ ε0aθ

(
Ih∂t

(
QE − QhEh

)
, ξE

)
.

(A14)

In next few steps, we will work with the terms on the right side of (A14) based on the error
equations.

Step 2.1: the fourth term in (A14). Using Eh = E−ηE + ξE and some direct manip-
ulation, one can get

∂t

(
|E|2E − |Eh |2Eh

)
· ξE

= ∂t

(
|E|2E

)
· ξE − 2(Eh · ∂t Eh)(Eh · ξE) − |Eh |2∂t Eh · ξE

= −3

4
∂t

(
|ξE |4

)
− 2∂t

(
|ξE |2(E − ηE) · ξE

)

− ∂t

(
((E − ηE) · ξE)2

)
− 1

2
∂t

(
|E − ηE |2|ξE|2

)

− 1

2
∂t

(
|E − ηE)|2

)
|ξE |2 − 2

(
(E − ηE) · ξE

)(
∂t (E − ηE) · ξE

)

− |ξE |2
(
∂t (E − ηE) · ξE

)

− |E − ηE |2
(
∂t (E − ηE) · ξE

)
− ∂t

(
|E − ηE |2

)(
(E − ηE) · ξE

)

+ ∂t

(
|E|2E

)
· ξE . (A15)
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And the last three terms in (A15) can be further written as

− ∂t

(
|E − ηE |2(E − ηE) − |E|2E

)
· ξE

= ∂t

(
|ηE |2ηE − |ηE |2E − 2(E · ηE)ηE + 2(E · ηE)E + |E|2ηE

)
· ξE . (A16)

With (A16) and (A15), and Lemma 1, we now have
(
Ih∂t (|E|2E − |Eh |2Eh), ξE

)
=
∫

�

Ih
(
∂t (|E|2E − |Eh |2Eh) · ξE

)
d�

= −3

4

d

dt

∫

�

Ih
(|ξE |4) d� − 2

d

dt

∫

�

Ih
(|ξE |2(E − ηE) · ξE

)
d�

− d

dt

∫

�

Ih((E − ηE) · ξE)2d�

− 1

2

d

dt

∫

�

Ih
(|E − ηE |2|ξE |2) d� − 1

2

∫

�

Ih
(
∂t (|E − ηE)|2)|ξE |2) d�

− 2
∫

�

Ih (((E − ηE) · ξE)(∂t (E − ηE) · ξE)) d�

−
∫

�

Ih
(|ξE |2(∂t (E − ηE) · ξE)

)
d�

+
∫

�

Ih
(
∂t (|ηE |2ηE − |ηE |2E − 2(E · ηE)ηE

+ 2(E · ηE)E + |E|2ηE) · ξE
)
d�. (A17)

Step 2.2: the sixth term in (A14). We consider

∂t (QE − QhEh) · ξE = ∂t

(
QE − (Q − ηQ + ξQ)(E − ηE + ξE)

)
· ξE

= ∂t

(
QηE + ηQ(E − ηE)

)
· ξE − 1

2
∂t (Q − ηQ)|ξE |2

− 1

2
∂t

(
(Q − ηQ)|ξE |2

)
− ∂tξQ(E − ηE) · ξE

− ξQ∂t (E − ηE) · ξE − 1

2
∂tξQ |ξE |2 − 1

2
∂t

(
ξQ |ξE |2

)
. (A18)

Observe that(
|E|2 − |Eh |2

)
ξσ =

(
|E|2 − |E − ηE + ξE |2

)
ξσ

=
(
|E|2 − |E − ηE |2 − 2(E − ηE) · ξE − |ξE |2

)
ξσ

=
(
2E · ηE − |ηE |2 − 2(E − ηE) · ξE

)
ξσ − ∂tξQ |ξE |2, (A19)

where we have used (A10) in the last equality. With (A19), (A10) and (A6g), and Lemma 1,
we have ∫

�

Ih
(
∂tξQ |ξE |2) d�

= −
∫

�

Ih
(|E|2 − |Eh |2

)
ξσ d�

+
∫

�

Ih
(
(2E · ηE − |ηE |2 − 2(E − ηE) · ξE)ξσ

)
d�
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=
∫

�

(|E|2 − Ih
(|E|2)) ξσ d�

+
∫

�

Ih
(
(2E · ηE − |ηE |2 − 2(E − ηE) · ξE)ξσ

)
d�

− 1

ω2
v

∫

�

(
∂tησ + γvησ + ω2

vηQ
)
ξσ d�

+ 1

2ω2
v

d

dt

∫

�

ξ2σ d� + γv

ω2
v

∫

�

ξ2σ d� + 1

2

d

dt

∫

�

ξ2Qd�. (A20)

Combine (A18) and (A20), and use Lemma 1, we have

(
Ih∂t

(
QE − QhEh

)
, ξE

)
=
∫

�

Ih
(
∂t (QE − QhEh) · ξE

)
d�

= − d

dt

∫

�

(
1

2
Ih
(
(Q − ηQ)|ξE |2)+ 1

2
Ih
(
ξQ |ξE |2)+ 1

4ω2
v

ξ2σ + 1

4
ξ2Q

)
d�

− γv

2ω2
v

∫

�

ξ2σ d�

+
∫

�

Ih
(
∂t (QηE + ηQ(E − ηE)) · ξE

)
d� − 1

2

∫

�

Ih
(
∂t (Q − ηQ)|ξE |2) d�

−
∫

�

Ih
(
ξQ∂t (E − ηE) · ξE

)
d� − 1

2

∫

�

Ih
(
(2E · ηE − |ηE |2)ξσ

)
d�

+ 1

2ω2
v

∫

�

(∂tησ + γvησ + ω2
vηQ)ξσ d� − 1

2

∫

�

(|E|2 − Ih
(|E|2)) ξσ d�. (A21)

Here we have dropped the term
∫
�
Ih
(
(∂tξQ − ξσ )(E − ηE) · ξE

)
d� due to (A10).

Step 2.3: the first and second terms in (A14). Use (A11), (A9), and (A8), we have

(∂t (ηP − ξP ), ξE)

= (∂tηP , ξE) − 1

ω2
p
(∂tξP , ∂tξJ + γ ξJ + ω2

0ξP − ω2
p�E)

= (ηJ , ξE) + (�E, ξJ ) − 1

2ω2
p

d

dt

∫

�

|ξJ |2d�

− γ

ω2
p

∫

�

|ξJ |2d� − ω2
0

2ω2
p

d

dt

∫

�

|ξP |2d�. (A22)

In addition

(∂t (ηE − ξE), ξE) = (∂tηE, ξE) − 1

2

d

dt

∫

�

|ξE |2d�. (A23)

Nowwe can gather (A17), (A21)–(A23) for (A13)–(A14), and come upwith the following
identity,

d

dt
Êh + ε0γ

ω2
p

∫

�

|ξJ |2d� + ε0aθγv

2ω2
v

∫

�

ξ2σ d� =
4∑

i=0

�i , (A24)
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where

Êh =
∫

�

(μ0

2
ξ2Hz

+ ε0ε∞
2

|ξE |2 + ε0

2ω2
p
|ξJ |2 + ε0ω

2
0

2ω2
p

|ξP |2 + ε0aθ

4ω2
v

ξ2σ

)
d�

+
∫

�
Ih
(

ε0aθ

2
ξQ |ξE |2 + 3ε0a(1 − θ)

4
|ξE |4 + ε0aθ

4
ξ2Q

)
d�

+ ε0aθ

2

∫

�
Ih
(
(Q − ηQ)|ξE |2

)
d�

+ ε0a(1 − θ)

∫

�
Ih
(
2|ξE |2(E − ηE) · ξE + ((E − ηE) · ξE)2 + 1

2
|E − ηE |2|ξE |2

)
d�,

�0 = ε0a(1 − θ)
(
∂t (|E|2E) − Ih

(
∂t (|E|2E)

)
, ξE

)
+ ε0aθ

(
∂t (QE) − Ih (∂t (QE)) , ξE

)

− ε0aθ

2

(
|E|2 − Ih(|E|2), ξσ

)
, �1 = μ0(∂tηHz , ξHz ),

�2 = BE
h (ηEx , ηEy , ξHz ) + BH

xh(ηHz , ξEx ) + BH
yh(ηHz , ξEy ),

�3 = ε0aθ

2ω2
v

(∂tησ + γvησ + ω2
vηQ , ξσ ) − ε0aθ

2
(Ih(2E · ηE − |ηE |2), ξσ )

�4 = ε0ε∞(∂tηE , ξE) + ε0(ηJ , ξE) + ε0(�E, ξJ ) − ε0aθ

∫

�
Ih
(
ξQ∂t (E − ηE) · ξE

)
d�

− 2ε0a(1 − θ)

∫

�
Ih
(
((E − ηE) · ξE)(∂t (E − ηE) · ξE)

)
d�

− ε0a(1 − θ)

2

∫

�
Ih
(
∂t

(
|E − ηE |2

)
|ξE |2

)
d�

− ε0a(1 − θ)

∫

�
Ih
(
|ξE |2∂t (E − ηE) · ξE

)
d�

+ ε0aθ

∫

�
Ih
(
∂t (QηE + ηQ(E − ηE)) · ξE

)
d�

− ε0aθ

2

∫

�
Ih
(
∂t (Q − ηQ)|ξE |2

)
d�

+ ε0a(1 − θ)

∫

�
Ih
(
∂t (|ηE |2ηE − |ηE |2E − 2(E · ηE)ηE

+2(E · ηE)E + |E|2ηE) · ξE

)
d�.

Step 3: Next we will estimate terms on both sides of (A24).
Step 3.1: to estimate the left hand side of (A24). Let ρerr , κerr ∈ (0, 1) be two arbi-

trary constants, then by Cauchy-Schwartz inequality, Lemmas 1-2, we have

Êh ≥
∫

�

(
μ0

2
ξ2Hz

+ ε0ε∞κerr

2
|ξE |2 + ε0

2ω2
p
|ξJ |2 + ε0ω

2
0

2ω2
p

|ξP |2 + ε0aθ

4ω2
v

ξ2σ

)
d�

+
∫

�

(
ε0a(1 − θ)ρerr

12
Ih
(|ξE |4)+ ε0aθρerr

4
ξ2Q

)
d�

+
∫

�

Ih
(

ε0aθ

2
ξQ |ξE |2 + ε0a(1 − θ)(1 − ρerr )

12
|ξE |4 + ε0aθ(1 − ρerr )

4
ξ2Q

)
d�
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+ ε0

2

∫

�

Ih
( (

ε∞(1 − κerr ) + aθ(Q − ηQ)
) |ξE |2

)
d�

+ 3ε0a(1 − θ)

2

∫

�

Ih

((
(E − ηE) · ξE + 2

3
|ξE |

)2
)
d� ≥ E(mod)

h , (A25)

where

E(mod)
h =

∫

�

(
μ0

2
ξ2Hz

+ ε0ε∞κerr

2
|ξE |2 + ε0

2ω2
p
|ξJ |2 + ε0ω

2
0

2ω2
p

|ξP |2
)
d�

+
∫

�

(
ε0aθ

4ω2
v

ξ2σ + ε0a(1 − θ)ρerr

12
Ih
(|ξE |4)+ ε0aθρerr

4
ξ2Q

)
d�.

Here (24) in Lemma 2, as well as Conditions 1-2 in (39)–(40) have been used. In fact, by
Condition 1, we have

ε0aθ

2
ξQ |ξE |2 + ε0a(1 − θ)(1 − ρerr )

12
|ξE |4 + ε0aθ(1 − ρerr )

4
ξ2Q ≥ 0,

while with Condition 2, there holds

ε∞(1 − κerr ) + aθ(Q − ηQ) ≥ ε∞(1 − κerr ) − aθ‖�0,0
h Q‖∞

≥ ε∞(1 − κerr ) − aθCk‖Q‖∞ ≥ 0.

Step 3.2: to estimate �0 and �1 in (A24). For �0, we apply Cauchy-Schwartz
inequality and the approximation properties in Lemma A1, and obtain

|�0| ≤ CC(κerr )h
2k+2 + ε0ε∞κerr

12
‖ξE‖2 + ε0aθ

8ω2
v

‖ξσ ‖2. (A26)

For �1, with that ∂t and PHz
h commute, and Lemma A1, we have

|�1| ≤ μ0‖∂t Hz − PHz
h ∂t Hz‖2 + μ0

4
‖ξHz‖2 ≤ Ch2k+2 + μ0

4
‖ξHz‖2. (A27)

Step 3.3: to estimate �2 in (A24). For �2, when the central fluxes (27) are used, we
have

|�2| =
∣∣∣∣∣
Nx∑
i=1

∫ yb

ya

(
η̂Ey (y)[ξHz ] + η̃Hz (y)[ξEy ]

)
x
i+ 1

2

dy

−
Ny∑
j=1

∫ xb

xa

(̂̂ηEx (x)[ξHz ] + ˜̃ηHz (x)[ξEx ]
)
y
j+ 1

2

dx

∣∣∣∣∣∣
≤ CC(κerr )h

2k + μ0

4
‖ξHz‖2 + ε0ε∞κerr

12
‖ξE‖2. (A28)

The inverse inequality in (A5) is applied. When the alternating fluxes (28) are used with
† = +, ‡ = −, � = +, � = −, there holds
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|�2| =
∣∣∣∣∣(ηHz , ∂xξEy ) +

Nx∑
i=1

∫ yb

ya
η̃Hz (y)[ξEy ]xi+ 1

2
dy − (ηHz , ∂yξEx )

−
Ny∑
j=1

∫ xb

xa

˜̃ηHz (x)[ξEx ]y j+ 1
2
dx

∣∣∣∣∣∣
≤ CC(κerr )h

2k+2 + ε0ε∞κerr

12
‖ξE‖2. (A29)

Here for the case of the alternating fluxes, we have used the super-convergence result estab-
lished in [20] (see its Lemma 3.4) to gain the extra h2 factor, and this is important for us to
obtain the optimal error estimates.

Step 3.4: to estimate �3 in (A24). For �3, we first bound the second term based on
Lemma 1 and Lemma A3,
∣∣∣(Ih

(
2E · ηE − |ηE |2) , ξσ

)∣∣∣ =
∣∣∣
∫

�

Ih
( (

2E · ηE − |ηE |2) ξσ

)
d�

∣∣∣

≤ C�

∥∥2E · ηE − |ηE |2∥∥ ‖ξσ ‖ ≤ C�ω
2
v

∥∥2E · ηE − |ηE |2∥∥2 + 1

8ω2
v

‖ξσ ‖2. (A30)

Using the regularity assumption on E and Lemma A1, we get

‖E · ηE‖ ≤ ‖E‖∞‖ηE‖, ‖|ηE |2‖ ≤ ‖ηE‖∞‖ηE‖ ≤ Ck‖E‖∞‖ηE‖, (A31)

and therefore
∣∣∣(Ih

(
2E · ηE − |ηE |2) , ξσ

)∣∣∣ ≤ C‖ηE‖2 + 1

8ω2
v

‖ξσ ‖2. (A32)

Apply Young’s inequality and the approximation properties in Lemma A1, we now bound
�3 as

|�3| ≤ε0aθγv

2ω2
v

(
1

4
‖ησ ‖2 + ‖ξσ ‖2

)
+ ε0aθ

2ω2
v

(
2‖∂tησ + ω2

vηQ‖2 + C‖ηE‖2 + 1

4
‖ξσ ‖2

)

≤Ch2k+2 + ε0aθγv

2ω2
v

‖ξσ ‖2 + ε0aθ

8ω2
v

‖ξσ ‖2. (A33)

Step 3.5: to estimate �4 in (A24).
For �4, using Cauchy Schwartz inequality, Young’s inequality, Lemma 1, and Lemma

A3, we have

|�4| ≤ ε0ε∞
(

1

4α1
‖∂tηE‖2 + α1‖ξE‖2

)
+ ε0

(
1

4α2
‖ηJ‖2 + α2‖ξE‖2

)

+ ε0ω
2
p

2
‖�E‖2 + ε0

2ω2
p
‖ξJ‖2

+ 3ε0a(1 − θ)‖E − ηE‖∞‖∂t (E − ηE)‖∞‖ξE‖2 + ε0a(1 − θ)
( 1

α3

∫

�

Ih(|ξE |4)d� + α3

4
‖∂t (E − ηE)‖2∞‖ξE‖2

)

+ ε0aθC�

( 1

4α4

∥∥∥∂t
(
QηE + ηQ(E − ηE)

)∥∥∥
2 + α4‖ξE‖2

)

+ ε0aθ

2
‖∂t (Q − ηQ)‖∞‖ξE‖2
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+ ε0a(1 − θ)C�

(
1

4α5

∥∥∥∂t
(
|ηE |2ηE − |ηE |2E

−2(E · ηE)ηE + 2(E · ηE)E + |E|2ηE

)∥∥∥
2 + α5‖ξE‖2

)

+ ε0aθ

2

( 1

4α6
‖∂t (E − ηE)‖2∞‖ξE‖2 + α6‖ξQ‖2

)
, ∀αi > 0, i = 1, · · · , 6.

We only choose two terms from �4 to illustrate how the estimation above is obtained,
∣∣∣∣
∫

�

Ih
(
∂t (Q − ηQ)|ξE |2) d�

∣∣∣∣

≤
∣∣∣∣∣∣
Nx∑
i=1

Ny∑
j=1

	xi
2

	y j
2

k∑
m,n=0

ω̂mω̂n

(
∂t (Q − ηQ)|ξE |2

)
(xim, y jn)

∣∣∣∣∣∣

≤ ‖∂t (Q − ηQ)‖∞

∣∣∣∣∣∣
Nx∑
i=1

Ny∑
j=1

	xi
2

	y j
2

k∑
m,n=0

ω̂mω̂n |ξE |2(xim, y jn)

∣∣∣∣∣∣
= ‖∂t (Q − ηQ)‖∞‖ξE‖2,

and
∣∣∣∣
∫

�

Ih
(|ξE |2∂t (E − ηE) · ξE

)
d�

∣∣∣∣ (by Lemmas 1-2)

≤
∫

�

Ih
(|ξE |2|∂t (E − ηE)||ξE |) d� =

∫

�

Ih
(|ξE |2) Ih (|∂t (E − ηE)| |ξE |) d�

≤ ‖Ih
(|ξE |2) ‖‖Ih (|∂t (E − ηE)| |ξE |) ‖

≤
(∫

�

Ih(|ξE |4)d�

)1/2

‖∂t (E − ηE)‖∞‖ξE‖

≤ 1

α3

∫

�

Ih(|ξE |4)d� + α3

4
‖∂t (E − ηE)‖2∞‖ξE‖2.

We now specify αi , i = 1, · · · , 6 as follows,

ε0ε∞α1 = ε0α2 = ε0aθC�α4 = ε0a(1 − θ)C�α5 = 1

4

ε0ε∞κerr

12
, α3 = 12

ρerr
, α6 = ρerr

2
.

Moreover we restrict the strength of nonlinearity such that

3ε0a(1 − θ)‖E − ηE‖∞‖∂t (E − ηE)‖∞ +
(

ε0a(1 − θ)
α3

4
+ ε0aθ

8α6

)
‖∂t (E − ηE)‖2∞

+ε0aθ

2
‖∂t (Q − ηQ)‖∞ ≤ ε0ε∞κerr

4
.

This can be guaranteed if

3a(1 − θ)C2
k ‖E‖∞‖∂t E‖∞ + (12 − 11θ)

aC2
k

4ρerr
‖∂t E‖2∞ + aθ

2
Ck‖∂t Q‖∞ ≤ ε∞κerr

4
,

holds,which is alsoCondition 3 in (41). Based onwhatwe have by far, with the approximation
properties from Lemma A1, we arrive at
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|�4| ≤ CC(κerr , ρerr )h
2k+2 + ε0ε∞κerr

3
‖ξE‖2 + ε0a(1 − θ)ρerr

12

∫

�

Ih(|ξE |4)d�

+ε0aθρerr

4
‖ξQ‖2 + ε0

2ω2
p
‖ξJ‖2. (A34)

The combination of (A24)–(A34) gives

dÊh
dt

≤ Êh + CC(κerr , ρerr )h
2r ,

where

r =
{
k, for central numerical fluxes,
k + 1, for alternating numerical fluxes.

Finally, using Gronwall inequality and Êh(0) = 0, we get E(mod)
h ≤ Êh ≤ CC(κerr , ρerr )hr .

We further apply a triangle inequality and the approximation results in Lemma A1, and
conclude

‖u − uh‖ ≤ ‖ξu‖ + ‖ηu‖ ≤ CC(κerr , ρerr )h
r , u = Hz, E, P, J, σ, Q.

�	

Appendix B: Proof of Theorem 4

Proof Apply two time steps to (42a) and (42j), sum them up after taking φ = Hn+1/2
zh , one

gets

μ0

(
Hn+3/2
zh − Hn+1/2

zh , Hn−1/2
zh

)
+ 	tBE

h (En+1
xh + En

xh, E
n+1
yh + En

yh, H
n+1/2
zh ) = 0.

(B1)

Take φ = En+1
xh + En

xh in (42b), φ = En+1
yh + En

yh in (42c), sum them up, we have
(
Dn+1
h −Dn

h , En+1
h + En

h

)
+ 	tBH

xh(Hn+1/2
zh , En+1

xh + En
xh) + 	tBH

yh(Hn+1/2
zh , En+1

yh + En
yh) = 0.

(B2)

Add (B2) to (B1) and using the identity (30), we obtain

μ0

∫

�

Hn+3/2
zh Hn+1/2

zh d� − μ0

∫

�

Hn+1/2
zh Hn−1/2

zh d�

+
∫

�

(
Dn+1
h − Dn

h

)
·
(
En+1
h + En

h

)
d� = 0. (B3)

By (42d), we have
∫

�

(
Dn+1
h − Dn

h

)
·
(
En+1
h + En

h

)
d�

= ε0ε∞
∫

�

|En+1
h |2d� − ε0ε∞

∫

�

|En
h |2d� + ε0

∫

�

(
Pn+1
h − Pn

h

)
·
(
En+1
h + En

h

)
d�
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+ ε0a(1 − θ)

∫

�

(
Yn+1
h − Yn

h

)
·
(
En+1
h + En

h

)
d�

+ ε0aθ

∫

�

(
Ih
(
Qn+1

h En+1
h

)
− Ih

(
Qn

hE
n
h

)) ·
(
En+1
h + En

h

)
d�. (B4)

For the nonlinear Kerr term, by (42e) and Lemma 1, we get
∫

�

(
Yn+1
h − Yn

h

)
·
(
En+1
h + En

h

)
d�

=
∫

�

Ih
((

|En+1|2 + |En |2 − En+1 · En
) (

En+1 − En
))

·
(
En+1
h + En

h

)
d�

+ 1

2

∫

�

Ih
(
(En+1 + En) · (En+1 − En)(En+1 + En)

)
·
(
En+1
h + En

h

)
d�

= 1

2

∫

�

Ih
( (

2|En+1|2 + 2|En |2 − 2En+1 · En + |En+1
h + En

h |2
) (

|En+1|2 − |En |2
) )

d�

= 3

2

∫

�

Ih
(
|En+1|4

)
d� − 3

2

∫

�

Ih
(
|En |4

)
d�. (B5)

For the Lorentz term, using (42f) and (42g), we have
∫

�

(
Pn+1
h − Pn

h

)
·
(
En+1
h + En

h

)
d�

= 2

ω2
p

∫

�

(
Pn+1
h − Pn

h

)
·
(
Jn+1
h − Jnh

	t
+ γ

Jn+1
h + Jnh

2
+ ω2

0
Pn+1
h + Pn

h

2

)
d�

= 1

ω2
p

∫

�

|Jn+1
h |2d� − 1

ω2
p

∫

�

|Jnh |2d� + γ	t

2ω2
p

∫

�

|Jn+1
h + Jnh |2d�

+ ω2
0

ω2
p

∫

�

|Pn+1
h |2d� − ω2

0

ω2
p

∫

�

|Pn
h |2d�. (B6)

For the nonlinear Raman term, we have∫

�

(
Ih
(
Qn+1

h En+1
h

)
− Ih

(
Qn

hE
n
h

)) ·
(
En+1
h + En

h

)
d�

=
∫

�

Ih
(
Qn+1

h |En+1
h |2

)
d� −

∫

�

Ih
(
Qn

h |En
h |2
)
d�

+
∫

�

(Qn+1
h − Qn

h)Ih
(
En+1
h · En

h

)
d�, (B7)

where the last term can be further proceeded based on (42h) and (42i),
∫

�

(Qn+1
h − Qn

h)Ih
(
En+1
h · En

h

)
d�

= 1

ω2
v

∫

�

(Qn+1
h − Qn

h)

(
σ n+1
h − σ n

h

	t
+ γv

σ n+1
h + σ n

h

2
+ ω2

v

Qn+1
h + Qn

h

2

)
d�

= 1

2ω2
v

∫

�

(σ n+1
h )2d� − 1

2ω2
v

∫

�

(σ n
h )2d�

+ γv	t

4ω2
v

∫

�

(σ n+1
h + σ n

h )2d� + 1

2

∫

�

(Qn+1
h )2d� − 1

2

∫

�

(Qn
h)

2d�. (B8)

Combine (B3)–(B8), we reach the energy relation (43) with the discrete energy En
h defined

in (44).
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The next step is to derive the time step condition under which the discrete energy En
h is

nonnegative. Based on (42a) and (42j), we have

μ0

(
Hn+1/2
zh − Hn−1/2

zh , φ
)

− 	t
Nx∑
i=1

∫ yb

ya
Ên
yh[φ]x

i+ 1
2
dy + 	t

Ny∑
j=1

∫ xb

xa

̂
Ên
xh[φ]y

j+ 1
2
dx

− 	t(En
yh, ∂xφ) + 	t(En

xh, ∂yφ) = 0. (B9)

Take φ = Hn+1/2
zh , using the inverse inequality (A5), we obtain

μ0

∫

�

(
Hn+1/2
zh

)2
d� − μ0

∫

�

Hn+1/2
zh Hn−1/2

zh d�

= 	t
Nx∑
i=1

∫ yb

ya
Ên
yh

[
Hn+1/2
zh

]
x
i+ 1

2

dy − 	t

Ny∑
j=1

∫ xb

xa

̂
Ên
xh

[
Hn+1/2
zh

]
y
j+ 1

2

dx

+ 	t(En
yh, ∂x H

n+1/2
zh ) − 	t(En

xh, ∂y H
n+1/2
zh )

≤ 	tC�

h

(∫

�

∣∣En
h

∣∣2 d� +
∫

�

(
Hn+1/2
zh

)2
d�

)
, (B10)

hence,

μ0

2

∫

�

Hn+1/2
zh Hn−1/2

zh d� ≥
(

μ0

2
− 	tC�

2h

)∫

�

(
Hn+1/2
zh

)2
d� − 	tC�

2h

∫

�

∣∣En
h

∣∣2 d�.

This implies, if we restrict the time step 	t such that,

μ0

2
− 	tC�

2h
≥ 0,

ε0ε∞
2

− 	tC�

2h
≥ 0,

then by Lemma 1 and with the condition θ ∈ [0, 3
4 ], we have

En
h ≥

∫

�

ε0aθ

4
Ih
((

|En
h |2 + (Qn

h

)2)2)+ ε0a(3 − 4θ)

4
Ih
(|En

h |4
)
d� ≥ 0.

�	
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