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Abstract

In this work, we extend the energy stable discontinuous Galerkin (DG) schemes proposed in
Bokil et al. (J Comput Phys 350:420-452, 2017), for the time domain Maxwell’s equations
augmented with a class of nonlinear constitutive polarization laws, to higher dimensions.
The nontrivial discrete temporal treatment of the nonlinearity in the ordinary differential
equations that encode the Kerr and Raman effects (Bokil et al. 2017), is first generalized
to higher spatial dimensions. To further improve the computational efficiency in dealing
with the nonlinearity, we apply nodal DG methods in space. Energy stability is proved for
the semi-discrete in time and in space schemes as well as for the fully-discrete schemes.
Under some assumptions on the strength of nonlinearity, error estimates are established for
the semi-discrete in space methods, and, in particular, optimal accuracy is achieved for the
methods on Cartesian meshes with Q¥-type elements and alternating fluxes. Attention is
paid to the role of the nodal form of the DG discretizations in the analysis. We numerically
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validate the accuracy, energy stability, and computational efficiency of the proposed schemes
using manufactured solutions. We further illustrate the performance of the methods through
physically relevant experiments involving spatial soliton propagation and airhole scattering
in realistic glasses.

Keywords Maxwell’s equations - Kerr and Raman nonlinear effects - Linear Lorentz -
Nodal discontinuous Galerkin methods - Energy stable - High dimensions

1 Introduction

When light propagates in an optical medium, it interacts with the medium. The response of
the medium to the incident light can be linear or nonlinear, and can have varying timescales.
The nonlinear responses play a significant role especially when the intensity of incident wave
is strong, and they contribute to many extraordinary optical phenomena, such as high order
harmonic generation and four wave mixing [6]. It is well known that the governing equations
for these optical phenomena are the classical Maxwell’s partial differential equations (PDEs),
either in microscopic version or in macroscopic form [18,21]. The microscopic Maxwell’s
equations focus on the dynamics of individual charged particles under the influence of elec-
tromagetic fields. On the other hand, macroscopic Maxwell’s equations characterize the
medium’s response through constitutive relations modeling the dynamical evolution of the
macroscopic polarization, defined as the average dipole moment per unit volume, forced by
the electromagnetic field intensity. In magnetic materials, the model needs to account for the
evolution of the macroscopic magnetization.

In this paper, we consider the following macroscopic Maxwell’s equations on 2 x [0, T'],

noorH + VXE =0, (1a)
%D — VxH =0, (1b)
D:eo<éooE+P+a(1—0)|E|2E+a0QE), (1c)
oP=1J, (1d)
uJ+yJ+wyP =w)E, (le)
30 =o, (1f)
%o + o +w,Q = wy|EP, (1g)

with the initial conditions and suitable boundary conditions. Here Q2 = [x4, xp] X [ya, y»] X
(za, z5] C R (d = 2,3)isthe spatial domain, and [0, 7] is the time period in consideration.
In this model, apart from the instantaneous linear response €peqo E, a retarded or delayed
response, €9 P, modeled as a linear dispersive Lorentz effect governed by the ordinary differ-
ential equations (ODEs) (1d)—(1e) is included. In addition, this model also takes into account
the third order instantaneous nonlinear Kerr effect ega(1 — 0)|E |2E and the nonlinear dis-
persive Raman effect ega® Q E. The constants a and 0 parameterize the strength and relative
strength of these two nonlinearities. The dynamics of Q is described by the nonlinear ODEs
(1f)—(1g). We refer the readers to [3,13] for more detailed description of this model.
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For the system above, if we define the energy £ = £(t) as
1o eoe
e = [ Boimp+ OLipp 4 2 2z P
Q

oaG o2 eoaQ

620‘2% 2+ 0?2 OlEP
n 3eoa(i )IEI , €0af eoaé QZdQ, @)
then, under periodic boundary conditions in space, the energy satisfies the identity [3]
“ / |TPds - Goaeyu / 0%dQ < 0. 3)
We further assume 0 € [0, Z]’ then
0 i 4 200D e 4 00 g2 0 gy ) 4 VO e

and therefore £(r) > 0. This suggests that, on the continuous level, the system (1) is energy
stable.

The goal of this work is to design energy stable numerical schemes that can preserve the
stability relation (3) at the discrete level. For wave propagation problems, energy preserving
schemes are always favorable since they are able to maintain the shape and phase of the
waves accurately after long time simulations [23]. In [3] and [4], energy stable discontinuous
Galerkin (DG) schemes, and finite difference time domain (FDTD) schemes, respectively,
were developed for the model (1) in one dimension (1D), which are of second order temporal
accuracy and have arbitrary order spatial accuracy. To the best of our knowledge, there are
no numerical methods with provable energy stability available for the Maxwell’s equations
(1) involving both nonlinear Kerr and Raman effects along with the linear Lorentz dispersion
in higher dimensions.

In [19], a FDTD method was developed for the transverse magnetic (TM) mode of
Maxwell’s equations in nonlinear Kerr type media only (¢ = 0). For this 2D model, there
is no essential new difficulty to handle the nonlinearity beyond what was discussed in [3],
and the same 1D treatment as in [3] was adopted directly. Recently, in [1], an energy stable
time domain finite element method was developed for the 3D Maxwell’s equations with the
nonlinear Kerr effect only (& = 0), and without the linear Lorentz and nonlinear Raman
dispersive effects. Moreover, theoretical investigation of the developed scheme is lacking.

In this paper, we extend the schemes proposed in [3] for the 1D version of model (1)
to higher spatial dimensions. The main challenge in the design of provable energy stable
schemes for the nonlinear Maxwell’s equations lies in the time discretizations. In [3], based
on a novel strategy in dealing with nonlinear terms, the authors proposed semi-explicit leap-
frog and fully-implicit trapezoidal type DG schemes for the 1D model. In this work, we
extend the results to higher dimensions by introducing an auxiliary vector to discretize the
temporal difference of the nonlinear cubic term for the Kerr effect in the constitutive relation.
To achieve provable energy stable time discretizations in high dimensions, one needs to
take into account the vector nature of the electric field, whose components are now coupled
through a nonlinear relationship.

As for spatial discretizations, there are many numerical approaches available for the
Maxwell’s equations. Among them, FDTD and generalized mimetic finite difference methods
[5], finite element methods and DG methods have drawn a lot of attention in the scientific
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community in recent decades, especially for linear constitutive laws in Maxwell’s equa-
tions. For Maxwell’s equations with nonlinear constitutive laws, to name a few, in [14,15], a
GVADE FDTD method was proposed and investigated for simulations in 2D realistic glasses
characterized by linear Lorentz, nonlinear Kerr and Raman effects. In [2], high order energy
stable FDTD methods of summation-by-parts type were designed for 2D Maxwell-Duffing
models. Mixed finite element methods were developed for the nonlinear Kerr model in [1]
and for the relaxed Kerr-Debye model in [12]. By regarding the system as nonlinear hyper-
bolic conservation laws, DG methods were examined for the nonlinear Kerr model in [11].
Asymptotic-preserving and positivity-preserving DG methods were proposed and analyzed
for the 1D relaxed Kerr-Debye model in [17] and for this relaxed model with an additional
linear Lorentz dispersion effect in [22].

In this work, we rely on DG methods as our spatial discretizations for the nonlinear
Maxwell model under consideration. For DG schemes, the choice of numerical fluxes is the
key to the stability, accuracy and computational efficiency of the method. In [3], energy stable
DG schemes with central, alternating and upwind numerical fluxes were designed for the 1D
model. The authors recommend the leap-frog DG schemes with alternating fluxes, due to
their optimal accuracy and the local nature of nonlinear algebraic solvers. The extensions
of the schemes to higher dimensions require more careful consideration. For d > 1, it has
been reported that the DG methods with alternating numerical fluxes suffer from sub-optimal
accuracy when P*-type elements are used [20]. In this paper, we employ Q*-type elements
on Cartesian meshes to attain optimal order of accuracy. Note that the Q*-type DG space is
larger than the P*-type one. This makes the methods relatively more expensive. To boost the
efficiency, we adopt nodal DG formulations [16], which, with some numerical integration
built-in to the definition of the methods, provide a natural and efficient way to handle the
nonlinearity [10,22]. Compared with the modal formulation of the DG methods (previously
adopted in [3] for 1D), the nodal form allows the element-wise nonlinear algebraic systems
to be further decoupled into several smaller ones (see Remark 3, and numerical comparison
in Sect. 3.1). To better convey how the temporal discretizations and the nodal-form of the
spatial discretizations contribute to the energy stability of the numerical methods, we establish
the energy stability for the semi-discrete in time and the semi-discrete in space schemes
separately, before presenting a similar result for fully-discrete schemes. For the semi-discrete
in space nodal DG schemes, we also carry out error estimates under some assumptions on
the strength of the nonlinearity that is considered in this paper. In particular, we confirm
the optimal accuracy of the schemes with QF elements and alternating numerical fluxes.
Although the presentation and the analysis related to the spatial discretization are given for
the 2D transverse electric (TE) mode of Maxwell’s equations in this paper, the extension
to the 3D model is straightforward. We want to point out that there is some difference in
analysis for the nodal form of the DG spatial discretizations here compared with that for the
modal form in [3].

The remainder of the paper is organized as follows. In Sect. 2, we formulate the proposed
numerical schemes. Particularly, in Sect. 2.1, by a similar strategy introduced in [3] to han-
dle the nonlinearity, we extend the leap-frog type time discretization to the 3D nonlinear
Maxwell’s equations with provable energy stability. In Sect. 2.2, the nodal DG schemes are
formulated for the 2D nonlinear Maxwell’s equations in the TE mode. Energy stability and
error estimates are presented for the semi-discrete in space schemes with the QF-type ele-
ments. In Sect. 2.3, we present the fully discrete schemes and their energy stability property.
In Sect. 3, we numerically demonstrate the accuracy, energy stability, as well as the com-
putational efficiency of the proposed schemes by several 2D experiments. Our schemes are
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further applied to simulate the spatial soliton propagation and airhole scattering in realistic
glasses. Finally, conclusions are made in Sect. 4.

2 Numerical Schemes

In this section, we will introduce a family of numerical schemes for the Maxwell’s equations
(1) in nonlinear media. We will start with the semi-discrete in time method in Sect. 2.1, then
present a class of semi-discrete in space methods in Sect. 2.2, followed by the fully-discrete
schemes in Sect. 2.3. For both semi-discrete and fully-discrete methods, energy stability will
be established. Error estimates will also be proved for the semi-discrete in space schemes.
Periodic boundary conditions are assumed in space throughout this section, while other
boundary conditions are considered for numerical experiments in Sect. 3.

2.1 Semi-discrete in Time Method

In [3], based on a novel strategy for dealing with nonlinear terms, the authors proposed
semi-explicit leap-frog and fully implicit trapezoidal type DG schemes for the 1D version
of model (1). Both types of schemes enjoy provable discrete energy stable property. More-
over, a fully discrete energy stability analysis suggests that the trapezoidal DG schemes are
unconditionally stable, while the leap-frog DG schemes are optimally stable in the sense
that the same CFL condition for the numerical schemes applied to Maxwell’s equations in
the simple linear media with D = €pex E in (1c) is valid for the schemes for Maxwell’s
equations in the nonlinear media considered in this paper. For the trapezoidal DG schemes,
since both the PDE part and the ODE part use implicit discretizations, at each time step,
one has to solve a global nonlinear system. Therefore, in this work, we only consider the
leap-frog scheme for discretization of the PDE part of the model, and this only involves a
local nonlinear solver. The extension to fully implicit trapezoidal schemes can be constructed
in an analogous manner and is omitted for the reason of efficiency. In particular, we propose
the following semi-discrete in time scheme that uses the leap-frog method for the PDE part
and the trapezoidal method for the ODE part of the equations (1), combined with special
treatments for nonlinear terms.

Given H", E", D", J", P", 6" and Q" at time t = ¢, we find H"t!, E"t! prtl,
JL Pl gntland 0" at time 17! = 17 4+ A, satisfying

Hn+1/2 — H"

_ =V En’ 4
Ho A2 X (4a)
Dn+1 — D"

— = VxH"1/2, (4b)

Dl = eo<eooE”+1 fa(l —o)y"™ 4 prtl 4 a@Q"“E"“),
Yn+l _ Y}‘L — (|En+l|2 + |En|2 _ En+1 . En)(En+l _ En) (4C)
1
+§((En+l + En) . (En+l _ E")>(En+l + En), (4d)

Pn+l — pn B JVl+l + Jn
At B 2

, (4e)
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Jn-H —J" Jn+1 + J" N 2Pn+1 + p" ) En+1 + E"

= 4f
A VT “T Y “40)

Qn+1 _ Qn O.nJrl +O”

= N 4
AL 5 (42
n+l _ _n n+1 n n+1 n
T T w2 = a2 (4h)
Hn+1 _ Hn+1/2

MOT = —VxE"!, (4i)

Leap-frog and trapezoidal methods are chosen for their symplectic nature. Nonlinear Kerr
and Raman terms are further discretized in such a way that an energy relation similar to that
at the continuous level will hold. More specifically, to discretize the Kerr term, we introduce
an auxiliary vector Y = |E|?E as in [3] for the one dimensional model, and consider its
temporal dynamics written in the following way

Y = (|E"E) = (3|E|* —2|E|*) 4 E +2(E - 3, E) E. Q)

We then apply a second order discretization to (5),

Yn+1 oy <3|En+1|2 + |En|2 ) ‘ En+1 4+ E"

2 2

En+1 + E"
2

2
) (En-‘rl _ En)

E"tl 4 En
+ 2( S (E" - E")) 7; ; (6)
which yields (4d). For Raman term | E |?, a second order discretization E ntl Enis employed.
With all these ingredients, the proposed method has the energy stability property as presented
in Theorem 1 below. Similar strategies for energy stable semi-discrete in time schemes have
been employed in [3] for models in one dimension and [1] for models in three dimensions

with the Kerr effect.

Theorem 1 (Semi-discrete in time energy stability) Under the assumption of periodic bound-
ary conditions, the semi-discrete in time scheme (4) satisfies

gntl _gn - ¥4t / 2 gq - 0afrAt / (07! +a")2dQ <0
Q Q

JH g
40)%, 8w?

)
with the discrete energy defined as

600)(2)

en =/ @Hn+l/2 CH2 + €0€00 ’En‘z + €0 ‘Jn‘z + |Pn’2

Q 2 2 2w§, Zw%

€pad €pabd 3epa(l — 6 €oabd
1+ 00 g2y D90 g | 4 202D gy 090 on2gq )

4w3 2 4 4
Proof Apply two time steps to (4a) and (4i), we have
Hn+3/2 _ anl/Z

po——————— = —Vx(E"" + E"). )

At

Multiply E"*! + E” to (4b), multiply H"+'/2 to (9), integrate over  and sum them up, and
use periodic boundary conditions, we obtain
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Mo/ 3 L g2 _ e Hn—1/2d9+/(Dn+l _ D). (B + EMdQ = 0.
Q Q )
From (4c¢), one has
(D" — DMy (EMH 4 BT
_ Goeoo(IE"HIz _ |En|2> +epa(l — )Y — ") . (B! + EM

_|__ EO(PI’I+1 _ Pn) . (El’l+1 + En) _|__ ane(Qn+lEn+l _ Q}’LEI’I) . (En+1 _|__ El’l).
an

For the nonlinear Kerr term in (11), with the proposed treatment in (4d), we get
(Yn+1 _ Yn) . (EVH-I + En) (12)
— (lEthl |2 + |En|2 _ En+l . En + 1|En+l + En|2)(|El‘l+l|2 _ |En|2>
2

_3

5 ‘E’l+l‘4_% ’Enr‘. (13)

For the Lorentz term in (11), using (4e) and (4f), we have

(PnJrl _ Pn) . (En+l + Eﬂ)

2 n+l _ gn 2
— wT(Pn+l o Pn) . <J = J + Z(JlH»l + Jn) + &(PIHJ + Pn))
P
1 1 2
=72|Jn+1|2_72|Jn|2 y |JVl+1+JVl| +a)0 |Pn+1| a)g |Pn|2. (14)
@p @p 2w p @p

Finally for the nonlinear Raman term in (11), we have
(Q"H E" — Q"E™) . (E" + E")
= Q" E 2 — 0" E" 4 (0" — 0"Y(E" - B, (15)
where by using (4g) and (4h),

(Qn+1 _ Qn)(Ei’H-l . En)

_ 1 n+1 n 0n+1 —o”" Y n+tl n w% n+1 n )

= @ =T T e+ e 4 0

_ 1 n+152 n VUAI n+l1 n 2 1 n+1\2 1 ny\2

= 27" - 22( >+42( +0") 4 5@ - 2@ e
Combining (10)—(16), we reach the semi-discrete in time energy stability (7). ]

2.2 Semi-discretization in Space: Nodal Discontinuous Galerkin Methods

In this section, we will formulate a class of nodal discontinuous Galerkin (DG) methods in
space for the Maxwell’s equations (1). The nodal version of DG discretizations is chosen in
this work for its computational efficiency in dealing with nonlinear terms, while preserving
the energy relation. For simplicity, we present the method only for the 2D transverse electric
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(TE) mode. Extension to the full 3D model is straightforward. Thus, we consider the 2D
system of equations

1100 H, 4 8, Ey — 9,E, =0, (17a)
3Dy — dyH, =0, (17b)
9Dy + 3, H, =0, (17¢)
D =eo<eooE+P+a(1 —9)|E|2E+a9QE), (17d)
P =1, (17¢)
o +yJ+wyP =w,E, (17f)
9,0 =o, (17g)
30 + yyo + w2 Q = W2 |EJ*. (17h)

Here, all vector fields have two components polarized in the x — y plane, D = (Dy, D),
E = (Eyx, Ey), P = (Py, Py),and J = (Jy, Jy).
Mesh, discrete space, and interpolation operator. Assume the computational domain is
Q = [x4, xp] X [ya, yp). Let Typ : x4 = Xp < X3 < <Xy L= X be a partition of
[xa, xp), and Ty 2y, = y% < y% << yNﬁ% =y, be a partition of [y,, yp], then

Ty = Ten X Typ = !Kij =lixJp li =x_ 1,01 Jp =1y 101, Vi,j}
forms a partition or a mesh of €2. For a typical cell K;;, we denote the cell center as (x;, y;) =
(%(xH% +xx_%), %(yH% + yj_%)>, and the grid size as Ax; = Xipl =X Ay; =
Yigl = ¥ji1 in the x and y directions, respectively. Let 7 = max(Ax;, Ay;). We further

ij

assume the mesh is quasi-uniform, namely, there exists a constant § such that <34

___h
min(Ax;,Ay;)
]
as the mesh is refined.

Associated with the mesh, we introduce a discrete space of Q*-type,

V}{‘ = [v € LZ(Q) : U|Kij € Qk(Kij)’ vi, J] ’ {19

where OF (K; ;) consists of polynomials with degree up to k in each variable on K;;. Without
confusion, V,f is also used to represent its vector version in this work. For any function
v E V,{‘, we write

+ 1 + T
v(xl.+%, y)= lim v(x; 1 +€y), vl yH%) = lim v(x,y;,1 +e)

We further write the average and jump of v(x, y) at cell interface x = x; 1as

1
i + - — (st (e
he ) = 2(U(xi+%’ A CANE y)), [Vl =00 09 = v 10y,

respectively. Similarly, the average and jump of v(x, y i) ) at cell interface y = Yy are
defined as

1
i + - _ + oy -
Wl =5 (v vl Doy ) Wy g =G y) ) =iy ).

For nodal DG formulation, we introduce the Gauss-Legendre quadrature points as {£,, }fnzo
on [—1, 1] with positive weights {ﬁm}];l:(), satisfying an:O Wy = 2. We let {1, (5)}§:0 be
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the Lagrange basis of P*([—1, 1]), the space of polynomials of degree up to k on [—1, 1],
satistying /,, (&,,) = 8nm. Here 6, is the Kronecker delta. Define

ij Y-
Gun(x, y) = ( 1/2)( Ay;/2

),

B k
then {¢,’an (x, y)} » forms an orthogonal basis for V¥ (K;;) = Q*(K;;). We also write

Xim = Xi + Ax’ Em and Yin =Yj + %gn

On any gwen element K;;, we define a local interpolation operator I;lj 1 C(Kjj) =
Qk(K,-j) that satisfies (I,ijf> Kim» Yjn) = f&im, Yjn), Ym,n = 0,--- k. It can be
expressed analytically as

k
(T F) @) = 3 FCime i) itn . 9). 19)
m,n=0

Subsequently, we can define a global interpolation operator Zj, : Wy (€2) — V}{‘ ,WithZy|g,; =

I;lj.Here Wh(R2) = {f € L2(Q), flK,../. € C(Kij), Vi, j} . The interpolation operator Zj, has
the following properties.

Lemma 1 Forany f, g € Wy(S2), there hold

/Q Ty(f9)dQ = /Q To( )T ()d<2, (20)

/Q Ty()vdQ = fQ Tu(fP)dQ. Vi € V. @1)

As a special case, we have
/ Ih(fmﬁ)dQ:/ pYdQ, VY. ¢ € Vy. (22)
Q Q

Proof With similarity in technique, we will only show (21). It is sufficient to establish the
results locally on each element. By the definition of Z, i and the key feature of the (k + 1)-
point Gaussian-Legendre quadrature rule that it is accurate for polynomials of degree up to
2k + 1, we have Vi € VF,

k
ij Axi Ay; ~ o~ (]
[z pwxay =S50S @ (5 (00) i i)

Kij m,n=0

_Ax,' ij

k
= ) ) Z wmwnf(xim7 yjn)W(ximayjn)

m,n=0

_Ax[ ij
T2 02

k
> B2y (P9 ime i) = [T (Fdndy.

m,n=0 Kij

[m}
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Lemma2 Let f € Wj(K2), then

’ fg Ti(f)d

If f is nonnegative, we also have

< /QIh(|f|)dQ~ (23)

f T (f)dS2 > 0. (24)
Q

Proof The property can be showed by a direct calculation. For f € Wj(2), we can see that

Ny Ny k
; Axi Ay T
+ /Q L2 ==Y 3 S S D@ )i vin)

i=1 j=1 2 m,n=0
Ny Ny k
Ax; Ay; —
= iZZ 21 T] Z wmwnf(xim»)’jn)
i=1 j=1 m,n=0
Ny Ny k
- Ax; Ay; PN
DI Zowmwm(xim,y,,n)=/th(|f|>dsz.
i=l j= m,n=

Here we have used the fact that the quadrature weights {w;, }§1=0 are positive. This implies
(23). When f is nonnegative, (24) follows immediately from the above proof. O

Semi-discrete in space methods. Now we are ready to present the semi-discrete in space
schemes for the 2D model (17) based on nodal DG discretizations: find H, Ej;, Dy, Jh,
Pj,o0,and Q, € vk such that,

110(3; Hop, @) + BE (Exn, Eyn. ¢) =0, V¢ € Vi, (25a)
(3 Dxn. ¢) + BY, (Hop, ) =0, Vo € Vi, (25b)
(0 Dyn, §) + Bl (Hep, ¢) =0, Vo €V, (25¢)
Dy = eo(eoth + Py +a(l — G)Ih(|Eh|2Eh) + aGIh(QhE;,)>, (25d)
0Py = Jy, (25e)
Jn+yJn+ojPy =) Ey, (25f)
0, Qn = oy, (25¢g)
0w + yvon + @y Op = 3Ty | Epl). (25h)

Here (-, -) is the standard L2 inner product for L?*($2). The multilinear form B,‘? (-, -, -) and
bilinear forms th(~, -) and Byh;l(-, -) are

N.
il Yo__—_
BE (Exp. Eyn. ) ==Y / Eyn(xip s Bl ydy
i=1"Ya

B pe==
+ Z/. Exn(x, yj+%)[¢]y/.+%dx - (Eyh7 0x®) + (Exn, ayd’)y
j=1""%a '
(26a)
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Bl (Hop, ¢) = Z/ Hop(x, Yie POy édx + (Hzp, 0y9), (26b)
Nx ooy
B;‘Z(ths ) =— Z/ HZh(xi+%ﬂ Y)[¢]xi+%dy — (Hzp, 0x¢). (26¢)
i=1"7Ya

The numerical fluxes can be either central flux

—

Eyh(xl'_;,_%v y) = {Eyh}xiJrl ’ Exh(xa yj+%) = {Exh}yj+1 ’ (273)
Hyp(xip 1, y) = {th}x , Hop(x, Ve ) = Haly, 1o (27b)
2
or alternating fluxes,
Eyh(x,-+%,)’) :Eyh(xH_%s ), Exn(x, }{H%) = Eup(x, yj_,’_%)» (28a)
— _ 3 o _ #
th(xi+%»)’)—th(xi+%ay)v th(x,yj+%)—th(x,yj+%)- (28b)

The following are required for the superscripts 1, £, i,  in the alternating fluxes.

T,%5, 0,8 e {+,—}, fdiffers from i, g differs from £. (29)
This in total will give us four possible choices of alternating fluxes. We particularly refer to
the one with ¥ = +,% = —, 1 = 4, f = — as Alternating I, and the one with ¥ = +, § =
—, 1= —, § = + as Alternating IL

The next lemma is a direct result of the choices of numerical fluxes, and it can be easily
verified.

Lemma 3 With either central fluxes (27) or any set of alternating fluxes in (28)—(29), we
have

Eyh[th] + th[Eyh] = [Ethzh] atx = xi+%7

Exn[Hen] + HopExn] = [ExnHzpl at 'y = yj+%~
Moreover, under the assumption of periodic boundary conditions, we have
BE (Y, @, ¢) + Bl,(. ) + Bl (¢, ©) =0, Vi, @, ¢ € V. (30)

Energy stability and error estimates. For the semi-discrete in space methods in (25) with
the numerical fluxes either in (27) or in (28)—(29), one can establish an energy relation similar
as for the continuous model. Additionally, error estimates can be proved and they are optimal
with respect to the approximation property of the discrete space V}f‘ when the numerical
fluxes are alternating.

Theorem 2 (Semi-discrete in space energy stability) Under the assumption of periodic
boundary conditions, the semi-discrete in space methods (25), with either (27) or (28)—(29),

satisfy

dép(t 0
n® _ 60)’/ " |2d9_600 y”fa,fdﬂso, 31)
dt 2a)v Q
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with the discrete energy defined as

2
//LO 00y €ad ,
& = 7E —
g /Q(2 %+ SEE P + 2|Jh|+w§|h|+4wvh
0af 3ega(l —6) €pal
+ BT (O ELP) + ST (El) + - 0})de. ()

Moreover, when 0 € [0, %], &> 0.

Proof Take ¢ = H, in (25a), ¢ = Eyj, in (25b) and ¢ = Ey, in (25¢), using relation (30),
we have

(0: Dy, Ep) + po(0rHepy Hzp) = 0. (33)
Differentiate (25d) with respect to time ¢, one gets

(0 Dy, Ep) =€0€c0 (0 Ep, Ep) + €0(0; Py, Ep)
+ eoa(l — 0) (B Zn(|En|*En), Ep) + €0ab (3, Zy(QnEp), E).  (34)

Note that the operator d; commutes with 7 and with f o- With this and Lemma I, the nonlinear
Kerr term becomes

(WTIELED. B1) = [ T0.(EWPED - Erag
Q

_ 2 _ 3d 4
—/QIh(az(lEhl Eh)-Eh)dQ— ZE/QIh(IEhI )ds2. (35)

Similarly, for the nonlinear Raman term, one has
(T4 (QnEn). En) =/ 7 (9 (QuEn) - En)dS2
Q

1
=5 [ 70 0uELP) + .04 )
Q

1d

1
T2di Ih(Q”E”'z)dQ“L*/ % On Th(IExHdQ.  (36)
t Q 2 Q

The second term in (36) can be reformulated by further using (25g)—(25h),

1
/ 3 OnZn (IEp|?) dS2 :E/ 3 O (30 + yoou + 02 0y) dQ2
Q v Ja

1 d

2 Vv o2
= — dQ2 + — A+ - — ds2. 37
202 dt /g;% + w? Ja + ./ Qh (37)

For the Lorentz term, using (25¢)—(25f), we reach

1
0 Pp, Ep) :E/ 0Py - (31Jh +vJn +w(2)Ph)dQ
P

2 2 2
dQ dQ2 P,|7d2. 38
a)zdt/u' + /|Jh| +22d/|| (38)

We now can combine (33)—(38) and conclude the energy relation (31) with &, defined in
(32).
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Finally, using (22) from Lemma 1 and (24) from Lemma 2, we can see that, under the
condition 6 € [0, %], the discrete energy (32) is non-negative, i.e.,

€0a9 2
2 %h
4ows

2
Ho .2 €0€00 2 €0 2 . 0w 2
En = (—H E — —|P

p
epa(3 —40)

0
+ V0T (BnP + 0n?) + L 0T, (1B Jag 2o

[}

Based on the energy stability in Theorem 2 and the approximation property of V,f (see
“Appendix A”), we can further establish error estimates for the semi-discrete in space DG
methods. The proof will be given in “Appendix A”, and it follows similar steps as that in [3]
for the 1D version of the models considered here, with special attention paid to the nodal
form of DG spatial discretizations dealing with nonlinearity and to the use of interpolation
operators.

Theorem 3 (Semi-discrete in space error estimates) Let T > 0 be given. Let korr € (0, 1),
Perr € (0, 1) be arbitrary constants, then under periodic boundary conditions and

e Condition 1:

1
oelo,— — |, (39)
|: 1+3(1 _perr)_z]
e Condition 2:
alCr||Olloo < €01 — Kerr), (40)
e Condition 3:
C2
a (12(1 —O)CHIE | oolld E oo+ (12— 116)~ k|16, B2, +26C ||a,Q||oo> <é€ookerrs
err

(41)

as well as the exact solution being sufficiently smooth, the numerical solution uj, given by (25)
with suitable initialization (i.e. specified in the proof) admits the following error estimate,

”M - Mh”(T) f CC(Kerra perr)hra u = HZ? E, P7 J,O', Q7

with
P k, for central numerical fluxes,
| k + 1, for alternating numerical fluxes.
Throughout this paper, | - || and || - || .o Will be used to denote the standard L? norm and L

norm. C is a generic constant independent of /, but may depend on &, the mesh parameter §,
the model parameters, and some Sobolev norm of the exact solutions up to time 7. We also
denote by C, a generic constant which may depend on k and the mesh parameter § and by
Cy a usually computable constant depending only on k. These constants may take different
values at their different appearances.

Remark 1 For the semi-discrete in space DG methods on Cartesian meshes with any alter-
nating fluxes, it is necessary to use Q¥-type elements to obtain optimal error estimates, as
previously analyzed in [20]. The proof of our optimality relies on a super-convergence result
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from [20]. If the P*-type discrete space is employed (that is, the space with approximating
functions being polynomials of total degree up to k on each element), only sub-optimal error
estimates can be obtained. Indeed, even for the 2D TE model of the Maxwell’s equations in
the simple linear media with (17d) replaced by D = €pex E, both E, and E, are numeri-
cally observed to be k-th order accurate when DG methods are used with the P¥-type discrete
space and alternating numerical fluxes.

Remark 2 There are three conditions in Theorem 3. Condition 1 essentially requires 0 €
[0, %], and this is more stringent than the required range, 6 € [0, %], in Theorem 2 for energy
stability. Conditions 2-3 require the smallness of the strength of the nonlinearity, and depend
on some constant Ci. These sufficient conditions may not be necessary for the error estimates
to hold.

2.3 Fully-Discrete Methods

Combining the strategies of temporal and spatial discretizations as well as the nonlinear
treatments in Sects. 2.1-2.2, we arrive at the fully-discrete leap-frog nodal DG schemes:

: | P +1 +1 +1
given H}, E}, D}, J}, P}, o) and Q) € V) attime ¢t = ", we find Hz"h ,E;T, DR
JZ+1, PZ‘H, O';IH_I and QZ'H € V,{‘ at time 1" T! = ¢ 4+ At, satisfying

Hn+1/2 _gn
h h E k
Mo (Zm/zz, ¢> + B, (E;h, E;lh, $)=0, VeV, (42a)
Dt — D! 12
(thxh,cb) + B @E ) =0, VeV, (42b)
Dn;:l _ nh
( A »¢>) + BT ) =0, Vo e Vi (420)
Dy = (e B + Py a1 -0 + a0, (057 E)).
Yl =y 47, ((|Eg“|2 +ER - Ep. EZ) (EZ“ - Eh)) (42d)
1
+57 (B3 + ED - (B — EDET + ED), (42¢)
PVl+1 — pP" Jn+1 +Jn
h " h — h 5 h’ (42f)
S dn TN T G BTPy B B
“h Tt h g 27h T 42
A VT e “rT (“42e)
Qn+l — o ohtl + ol
h " h — h 5 h , (421’1)
O,n+l — UnJrl + ol Qn+l + Q"

h h h h 2 =h h 2 1 .
IVERRL 5 oy ——— = 0, TH(E}T - E)), (42i)
Hn+1 _ Hn+1/2

1t (qu) +BEESTEST ) =0, Vg e V. (42))

The terms of Bf s th, and B{,‘Ih are defined in (26), with either the central fluxes (27) or
alternating fluxes in (28)—(29).
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Just as for the semi-discrete methods in Sects. 2.1-2.2, we will see next in Theorem 4 that
the fully-discrete methods satisfy a provable energy relation. By further requiring the discrete
energy to be non-negative, the CFL condition on the allowable time step size is identified
for energy stability. The condition turns out to be the same when the proposed methods are
adapted to the linear Maxwell’s equations with the constitutive law D = €p€x E. The main
factors that contribute to the energy relation in Theorem 4 are outlined in the proofs of energy
results for semi-discrete methods, and the new aspect is to obtain the time step condition.

Theorem 4 (Fully-discrete energy stability) Under the assumption of periodic boundary
conditions, the fully-discrete leap-frog nodal DG schemes (42) satisfy

gl _gn :_GOVAZ/ I L P — 60“97/1)”/‘( | am24Q <0,

(43)
with the discrete energy &) defined as
2
_ KO o n+1/2 yyn—1/2 60600 owo 60619 2
& = [ (Bhan P 95 |y + g WAL+ 502 AP+ 5 o)
€pal 3eoa(1 eoa9
+ 22T (Q4IELP) + fzh (|Ez| )+ (05) )ae. (44)
Moreover, £ > 0if6 € [0, %] and under the following time step condition
At . [ M0 €0€co
— <min | —, .
h G G,
Proof See “Appendix B”. O

Remark 3 Thanks to the explicit treatment of the PDE part in our schemes, at each time
step, one can solve the nonlinear ODEs for E"T! P+l jn+1 gn+l and o+ Jocally in
each element. If DG spatial discretizations are in modal form, this will result in a nonlinear
algebraic system of (3d +2) x (k + 1)2 equations and unknowns for each element K; - Here
again d is the spatial dimension. The nodal form adopted in this work however will decouple
this large system into (k + 1)? smaller nonlinear algebraic systems, with each involving
(3d + 2) equations and unknowns related to each interpolation point (x;, yjn) in K;;. This
will be computationally much more efficient. For each of such nonlinear systems, one can
further eliminate P"*!, J7+! 0"*! and ¢! analytically, and this will lead to an even
smaller cubic nonlinear system that only involves the d unknown components of E"*!. One
can refer to Sect. 3.1 for numerical illustration and comparison.

3 Numerical Examples

In this section, we carry out a set of numerical experiments to validate the performance of
our proposed schemes. These tests are performed on the model (1) in its nondimensionlized
form,

& H + VXE =0, (452)
D — VxH =0, (45b)
D =¢cxE+P+a(l —0)|EPE +ab QE, (45¢)
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WP =], (45d)
3;J+)/J+w§P=wf,E, (45¢)
30 =o, (45f)
30 + yyo + 0?0 = ?|E%. (45g)

The initialization at ¢+ = 0 is via the interpolation, namely, uy (-, -,0) = Zyu(:, -, 0), with
u being any of the unknown quantity. A nonlinear algebraic system F(u#*) = 0 needs to
be solved at each interpolation point, see Remark 3. For each of them, we use Newton’s
iteration method, with the stopping criterion || F (u*)||cc < Errior, where Erry,; is a chosen
error tolerance. Due to the small size of each nonlinear system, in our simulations the Gaussian
elimination method is applied to solve the linearized system during each Newton’s iteration.

3.1 Accuracy, Computational Efficiency, Energy Stability

In this subsection, we present an example with manufactured solutions to demonstrate the
accuracy and computational efficiency of the proposed schemes. We also numerically exam-
ine the energy stability (more accurately, the energy conservation in a conservative medium).
Let Q = [0, O%] x [0, é—Z}], where o = c0s(0.37), B = sin(0.37), w = 1.0. The model
parameters are set as: € = 1.0, wp = w), = 1.0,y =0.05,a =1/3,0 = 0.5, 0, = 1.0,
y» = 0.05. We use the following functions as the manufactured solutions:
H. = eCOS(w(t+otx+ﬂy))7

E, = ﬁecos(w(t+ax+ﬂy))’

E, = _aecos(w(t+ax+ﬁy))’

Po = Eq, Jy =0 Py,

46
Py =E,, Jy = &Py, (40
Dx = Exa
D, = Ey,

y
Q=H,0=090,

which satisfy the PDE part of the system (45) exactly. For equation balance, suitable source
functions are added to the rest of the system (i.e. the constitutive law, the ODE part), and they
are evaluated at (¢ + 1) /2 when the solutions are numerically updated from ¢” to "1,
Periodic boundary conditions are applied in space, and the final time is 7 = 1. The nonlinear
stopping criteria in Newton’s iterations is Err,o; = 10~'2. To match the high order accuracy
in space and avoid the influence on the accuracy caused by time step changes, we first set

ktl 1
dt=0h 2, h= 1 By
2(d+ 45)
with constant ® chosen as

03, k=1,

®=110 k=2,

2.0, k=3,
and then adjust the time step as At = W to ensure uniform time stepping.

In Tables 1-3, we report the L? and L errors and order of convergence rates for our
schemes when Qk elements are used, k = 1, 2, 3. Since the results are similar with all four
alternating numerical fluxes, we only include the results for the Alternating I & II numerical
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x107M

—— Central ——Central —— Central
—— Alternating [ —— Alternating I —— Alternating [
- Alternating T ——— Alternating 11 0

—— Alternating IT

Fig. 1 The time history of energy deviation 8,’17 - 5}} . Left: k = 1, Middle: k = 2, Right: k = 3. Mesh:
80 x 80.

fluxes. From Tables 1-2, one can observe the optimal accuracy of the schemes with both
alternating numerical fluxes and Qk elements. Results in Table 3 are for central flux, and one
can observe the optimal accuracy for k = 2 and sub-optimal accuracy for k = 1, 3. All these
results confirm or complement our theoretical error analysis.

‘We next want to demonstrate the computational efficiency of the nodal form of DG schemes
by comparing them with the modal form of the DG schemes. As commented in Remark 3,
with the modal form of the DG schemes, one needs to solve one nonlinear algebraic system
of 3d +2) x (k+1)? equations and unknowns per mesh element, while the nodal form of the
DG methods decouples the system into (k 4 1)% smaller individual nonlinear equations, with
each of size (3d + 2). The computational times of the corresponding algorithms in 2D with
d = 2 are reported in Table 4, under the column “time (s)", together with the L? errors of H,.
One can see that the nodal and modal DG schemes give almost identical numerical errors,
with the former nearly 15 times, 80 times, 500 times faster for k = 1, 2, 3, respectively.
Recall that during one Newton’s iteration, with Gaussian elimination as the linear solver, the
computational complexity for the modal DG method is about (k 4+ 1)* (i.e. 16, 81, 256 for
k = 1,2, 3, respectively) times of that for the nodal DG method. As suggested in Remark
3, within the nodal framework, one can further eliminate all other unknowns and solve a
nonlinear system only for the d unknown components of E. This will lead to additional 2-3
times of reduction in the computational cost, which is reported under the column “time* (s)”
in Table 4.

At last, we will examine the energy stable property of the schemes. To this end, we set
y = y = 0, so the model is indeed energy conserving as in (3). The initial conditions
are taken to be the same as those used in the accuracy test, yet the external source terms
are switched off in the simulation for energy conservation. Again boundary conditions are
periodic in space. We run the simulations up to the final time 7 = 100 on a 80 x 80 mesh.

By Theorem 4, the fully-discrete schemes will be energy conserving, namely, SZH —& =
0, with

1 _
o = [ (S S B oL 2 i 2 o)

'z, (IEZI )+ (e’ )dQ

This property is validated by the time evolution history of £} —& ,ll in Fig. 1 for both alternating
and central fluxes and with Qk elements, k = 1,2, 3. Recall that the error tolerance in
Newton’s iterations is 102 in this experiment, while the simulation is carried out in double
precision.

a6 3a(l —
+ 5 Tn (QHIELP) + f
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Table 4 Errors of H; and the elapsed CPU time for simulation: Alternating I flux

Mesh Modal DG Nodal DG
L2 Time (s) L2 Time (s) Time* (s)
Ql
20 x 20 1.32E-02 0.33 1.32E-02 0.02 0.01
40 x 40 3.61E-03 2.45 3.61E-03 0.16 0.05
80 x 80 7.86E-04 17.19 7.86E-04 1.23 0.43
Q2
20 x 20 7.01E-04 5.00 7.06E-04 0.04 0.02
40 x 40 8.51E-05 48.29 8.51E-05 0.44 0.17
80 x 80 9.26E-06 449.94 9.25E-06 5.10 1.98
Q3
20 x 20 8.24E-05 65.63 8.24E-05 0.10 0.04
40 x 40 5.15E-06 872.03 5.15E-06 1.74 0.67

3.2 Physically Relevant Simulations

In this subsection, we apply the proposed schemes to simulate physically relevant problems.
For the ease of illustration, the setup of the example and numerical results are presented in
the dimensional form, though the actual simulation is conducted based on the nondimension-
alized form. The results reported here are obtained by Q2 approximations on a uniform mesh
with h = Ax = Ay = 20 nm and the time stepsize At = 0.05,/€p€xoftoh. The stopping
criteria in the Newton’s iteration is set as Err;o; = 1078.

3.2.1 Spatial Optical Soliton Propagation

We first consider the spatial optical soliton propagation in realistic glasses. These glasses are
characterized by a three-pole Sellmeier linear dispersion, an instantaneous Kerr nonlinearity
and a dispersive Raman nonlinearity [15], modeled by

where

1109 Hy + 0, Ey — 9, E, =0,

9Dy — 0, H, =0,
3Dy + 0, H, =0,

D:Eo(

3

€cE+bY Ps+a(l—0)|EPE+afQF

s=1

0P+ 50, Ps + g Py =i E, s=12,3,
30+ 1t 0 +wiQ=wllE

)

(47a)
(47b)
47c¢)

(47d)

(47e)
(47f)

wo1 = 2.7537 x 100 rad/s, wgr = 1.6205 x 100 rad/s, wp3 = 1.9034 x 10 rad/s,
Bi = 0.69617, By = 0.40794, B3 = 0.89748, wp, =

€0 =10, b=1.0, a =1.89 x 1072m?/V? 6 =0.3,

Bswos, vs =0,5s =1,2,3,
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Fig.2 Fundamental soliton |u (¢, £)| as predicted by NLSE

2 24172
Yv = —, Wy = %, T = 12.2fs, 7 =32.0fs.
n 1%

The physical domain is Q¢ = [0, 38um] x [—3um, 3pum]. On the left boundary x = 0, a
hard source is injected, namely, by assigning the following time-dependent function to the
magnetic field H;,

H,(x =0, y,t) = Hysin(w.t) sech(y/w), (48)

where, w, = 4.35 x 10" rad/s is the carrier frequency. And w, Hp are the width and the
magnitude of the incident wave, respectively, which will be specified later.

In order to facilitate the understanding of this set of numerical tests, let us first recall
that in uniform glasses, the Maxwell’s equations (47) with the nonlinear constitutive laws
reduce to the nonlinear Schrodinger equation (NLSE) under paraxial assumption [14]. For
the pulse given in (48), its propagation can be predicted by the solution of NLSE. In fact, the
normalized NLSE

{“’“‘35)—”""§E>+|u<c HPu.§). ¢ e0.400). & e (~00,+00),

u(0,8) =g(@), § € (—o0,+00)
admits bright soliton solutions [7]. For example, if the boundary data is specified as g1 (§) =
n sech (n(é — §O)>e_i A§—i9 the classical solution of (49) is given by

(49)

u1(¢,€) = nsech (n(E — g0 — Ag) e MTIHATTEL2, (50)

where 1, &y, A, ¢ are the four basic soliton parameters. This special solution is called the
Jfundamental soliton. In Fig. 2, we plot the profile of |u;(¢,&)| withn = 1,4, =0, A =0,
¢ = 0. As one can see, the fundamental soliton propagates in the dispersive and weakly
nonlinear medium without changing its amplitude, width or shape.

If the boundary data is prescribed as g»(§) = 2 sech(&), with two identical pulses injected
at ¢ = 0, then the following second-order soliton is generated

. h(3 3¢~ cosh
U (g, &) = it/ oG 3¢ LT cosh(E) s1)
cosh(4&) + 4 cosh(2€) + 3 cos(4¢)
This second-order soliton is the direct result of the interactions between the two fundamental

solitons. As the phase difference between the two fundamental solitons varies from location
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Fig.3 Second-order soliton |u3 (¢, &)| as predicted by NLSE

to location, their interference will lead to periodic variations in amplitude as depicted in Fig.
3.

In the following, we want to simulate these solitons using the Maxwell’s equations (47)
up to time 7 = 300 f's. Initially, all the fields are set to be zero. In our simulations, we only
consider the DG schemes with Alternating I and Alternating II numerical fluxes, as both
can naturally implement the boundary condition in (48) for H; on the left boundary without
the knowledge of the electric field E(x = 0, y, t). We refer the interested readers to [3] for
numerical boundary treatments suitable for other alternating fluxes. With similarity, we will
only present the simulation results by the Alternating I numerical flux.

To reduce the numerical artifacts from the remaining part of the domain boundary, we
set the computational domain to be larger, i.e. 2 = [x4, xp] X [V4, Yo] = [0, 60um] x
[—4um, 4pum], and apply the following absorbing boundary conditions on the top, bottom
and right boundaries, based on the characteristic decomposition of the linearized system as in
[3] by neglecting the nonlinear effects and the delayed response in the constitutive relation.

o Atx =xp :
+ -
0] 0
( Hp + Eyh) = < —Hy + Eyh) >
€0€00 X=xp €0€o0 X=Xp
+
o
( Hyp — Eyh) =0; (52)
€0€o00 X=Xp
e Aty =y, :
- +
o Mo
(,/ —H, + Exh) = <,/—th + Exh) )
€0€o0 Y=Ya €0€c0 Y=Ya
Ho -
( Hy — Exh) =0; (53)
€0€o0 Y=Ya
e Aty =yp:

+ —
( Ko Hp — Exh) = ( ol Hyp — Exh) ,
€0€c0 Y=y €0€c0 Y=y
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Fig. 4 Fundamental soliton propagation, snapshot of |H;| at t = T by Alternating I numerical flux. w =
667.0 nm, Hy = 4.77 x 107 A/m
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Fig.5 Semi-log plot of the spectrum for fundamental soliton propagation

+
( il th+Exh> — 0. (54)

€0€00 Y=Y

We start with the fundamental soliton by setting w = 667.0 nm, Hy = 4.77 x 107 A/m
in (48). In Fig. 4, we present a snapshot of the computed |H,| at t = T, and it shows that
our simulated soliton maintains its width and amplitude quite well. We would also like to
examine the high order harmonic generation in the soliton propagation. For this setup, since
the third harmonic wave propagates along the polarization direction, we can integrate the E

component to extract this information. In Fig. 5, we present the discrete Fourier transform

).bEw . )dy
ey(w) of ey () = f‘“‘;(fx,\)\ the average of Ey along y direction at x, = 50 nm. One

can observe that besides the signal with fundamental frequency w,, a third order harmonic
signal is also detected.

Next we consider the propagation of second-order soliton by setting w = 667.0 nm, Hy =
2 x 4.77 x 107 A/m in (48). With this incident pulse, as predicted by the NLSE, two fun-
damental solitons will be launched to produce a second-order soliton, exhibiting periodic
focusing and defocusing effect. This phenomenon is well reproduced by our schemes shown
in Fig. 6. The corresponding spectrum for ey (¢) in Fig. 7 shows that the third-order harmonic
wave is also generated in this case.
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Fig. 6 Second-order soliton propagation, snapshot of |H;| at t = T by Alternating I numerical flux. w =
667.0 nm, Hy =2 x 4.77 x 10’ A/m
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Fig.7 Semi-log plot of the spectrum for second-order soliton propagation
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Fig. 8 Soliton propagation, snapshot of |H;| at t = T by Alternating I numerical flux. w = r x 667.0 nm,
Ho =2/r x 477 x 107 A/m, r = 5.99/3.99

If we further tune the parameters Hy and w, both the width and amplitude of the soliton will
change accordingly. Moreover, the period of the spatial focusing and defocusing in amplitude
will diminish as the beam-width w decreases, see Figs. 8 and 9. The corresponding frequency

domain information for ey, is shown in Fig. 10. These results are quite close to those reported
in [14].
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Fig. 9 Soliton propagation, snapshot of |H;| at t = T by Alternating I numerical flux. w = r x 667.0 nm,
Hy =2/r x 477 x 107 A/m, r = 3.26/3.99
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Fig. 10 Semi-log plot of the spectrum for soliton propagations. Left: r = 5.99/3.99, right: r = 3.26/3.99

3.2.2 Airhole Scattering

Next, we would like to simulate the scattering of a soliton by material discontinuities, in the
form of an airhole sitting in a nonlinear glass. For this example, since the glasses are not
uniform and the wave propagation is not paraxial, the full model of nonlinear Maxwell’s
equations is required to simulate the light-dielectric interactions [14]. The physical domain
is Qo = [0, 29um] x [—5um, Sum]. Again, to reduce artificial boundary effects, the simu-
lations are conducted in a larger computational domain 2 = [0, 32um] x [—12um, 12um],
with approximated absorbing boundary conditions (52)—(54) applied on the top, bottom and
right boundaries. On the left boundary, an incident wave (48) with w, = 4.35 x 10" rad/s,
w = 667.0 nm, Hy = 2 x 4.77 x 107 A/m is introduced. In the bulk of the optical media,
there is a 250 nm x 250 nm airhole with its center sitting at (Sum, 0). Modeling this airhole
is realized by simply setting b = a = 0 in (47) in this region. All other model parameters
are the same as in the previous example. We run the simulations to 7 = 160 f's. Again with
visual similarity, only results by Alternating I numerical flux are presented.

In Fig. 11, we plot the magnetic field | H, | at time t = T'. As is shown, the scattered wave
does not totally escape but coalesces into a relatively weaker soliton after interacting with
the airhole. This reformed soliton exhibits periodic focusing and defocusing effects again as
in the previous example.

If the electromagnetic wave hits on a larger airhole of size 350 nm x 350 nm, the amount of
scattering increases, see Fig. 12. Moreover, the refocusing effects gets weaker and happens at
a longer distance away from the airhole. The numerical spectrum analysis in Fig. 13 reveals
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Fig. 11 Airhole scattering, snapshot of |H;| at ¢t = T by Alternating I numerical flux. w = 667.0 nm,
Hy =2 x4.77 x 107 x A/m. Size: 250 nm x 250 nm
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Fig. 12 Airhole scattering, snapshot of |H;| at + = T by Alternating I numerical flux. w = 667.0 nm,
Hy =2 x4.77 x 107 x A/m. Size: 350 nm x 350 nm

that the third order harmonic wave is also generated in this airhole scattering. These results
are in good agreement with the results in [14] by FDTD methods.

4 Conclusions

In this work, we extend the 1D energy stable DG schemes in [3] for nonlinear Maxwell’s
equations to multi-dimensions. Using a similar nonlinear treatment as in [3], we develop the
leap-frog time scheme with provable energy stability for the model. The nodal DG methods
are employed in space for the purpose of efficiency. Energy stability results are proved for
semi- and fully-discrete schemes, and error estimates are established for the semi-discrete in
space nodal DG methods. Several numerical examples in 2D are provided to demonstrate the
performance of the proposed schemes. Robust and accurate numerical boundary treatments
need to be investigated to further improve the efficiency in simulating nonlinear optical
phenomena, along with their impact to numerical energy estimates (see [3] for such analysis).
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Fig.13 Semi-log plots of the spectrum for airhole scattering. Left: 250 nm x 250 nm, Right: 350 nm x 350 nm

Computational efficiency can also be explored by utilizing the flexibility of DG methods in
h, p-adaptive simulations.
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Appendix A: Proof of Theorem 3

This section will be devoted to the proof of Theorem 3. We will start with some prepara-
tory results on projection operators and their approximation properties, as well as inverse
inequalities.

A.1 Preliminaries

We first consider the commonly used L? projection 7, and Gauss-Radau projections y'rxih
onto U¥, = {u € L% ([xa, xp1) : ul;, € P¥(I;), Vi}inthe x directionon [xg, x5]. Here P* (1)
consists of polynomials of degree up to k on an interval /.

1. L2 projection myp: L2([xa, xpl) —> Ufh, satisfying, Vi,

/Xi+%(ﬂxhw)(x)v(x)dx = /XH% wEv()dx, Ve PE(I);

i— i—

=
Nl—=
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2. Gauss-Radau projection n;;l: H([xq, xp]) — U)’;h, satisfying, Vi,

/Xi+%(n§,w)(x)v(x)dx = /XH% wE)vx)dx, Yve P,

i_f i—

and

(r[xhw>(x )= w(xl_l)

3. Gauss-Radau projection 7 : H'([xa, xp]) — Ufh, satisfying, Vi,

/Xi+%(ﬂ,§1w)(x)v(x)dx = /XH% w)vdx, Yve PN,
X X, 1

i— i—

[N
[}

and
(”xh )(x )—w(x 1)

The one-dimensional L? projection my, and Gauss-Radau projections nvih can be defined

similarly in the y direction onto U;‘h = {u € L*(lya. yo)) : uls, € PX(J}), Vj}. One can
further define two-dimensional projection operators as tensor products of one-dimensional
ones as follows [9,20].

L 070 = 72t @ my: HA(Q) — Vf, satisfying, Vo € QF(K;;) and Vi, j,

xi+% /‘ijr% Hi’ow av ()C y) /1+7/ 8 (x, y)
(x, y)———dxdy
/X» Yl ( " ) ox

i— Jj= 5 5

Bl—
[ ]
m
N

and

Vipl
() I >v(x;%,y>dy=f Twel e vy

j*% Yi-

D=

2. MY =7y ® o HA(Q) — V£, satisfying, Vo € Q¥(K;j) and Vi, j,

h
/ fj+2 l'[ ( )8v(x y)d dy / / 8 (axyy)

N
I\-)
m
N

and

. X. 1

’*7( 0,+ ) + + ity + + .
I, ~w)(x, y- v(x, y- dx = w(x, vy, v(x, y, dx;

/x,l h ( yﬂ%) ( y]:F%) /x,l ( yJ:F%) ( yj;%)

[S]
[S]

3. MF* =7t © nvih: H2(Q) — VF, satisfying, Vv € Q*~'(K;;) and Vi, j,

/ [ " (M) (e v, drdy = / f 2 w(x, y)u(x, y)dxdy,
.

N\
N\
N

X1

+,+ + i+3 + +
M *w) vE Ddx = E v yE ) dx,
| () ey ds / ey ety dx
2 i3

y )"J-Jré
/ (M), e 1,y>dy=/ WE ) NGE
y Y. 1

j—

/+2

D=

Jj—

[S]
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and

+,+
(M) ety vE = wet % )

JF32 I+7 " JF2

4) Y0 = 7y, @ myp: LA(Q) — V[, satisfying, Y € Q¥(K;;) and Vi, j,
/ / (M 0w) (e v, y)dxdy—/ / "2, i, y)dxdy.

The followmg approximation results are standard for the ana1y31s of DG methods, and
can be established following classical arguments [8].

Lemma A1 (Approximation properties) Let Py, be either the interpolation operator Iy, or
any of the projection operators Hhi’o, Hg’i, Hf’i, 1'12’0. There exist constants C, and Cy,
such thatVw € H*1(Q), there hold

lw = Prwlja ) + hllw = Pawllts i) < Ch* P lwliin ) VK € T (AD)
and
IPrwlloo < Crllwlloo- (A2)
As a direct consequence of (A2), there holds
lw—=Prwloe = Crllwlloo- (A3)

Associated with terms in our methods involving the interpolation operator to deal with
nonlinearity more efficiently, it is convenient to work with a discrete norm || - ||, on V}f,
which is equivalent to the standard L? norm.

Lemma A2 (Norm equivalence [10]) Define

N Ny 1/2
ol ={>_>" Z oG yin)|* Axiay; |
i=1 j=1m,n=0
then || - || is a norm on V,{‘. In addition, there exist constants C,, 6: > 0, such that
Cellvlln < vl < Cullvlln, Vv € V.
Below are some immediate results of Lemma A2.
Lemma A3 There exists a constant C,, such that
‘/th(fg)dﬂ‘ =CGdlfllgl V., g € Wi(). (A4)

Proof By the definition of Zj,, and the exactness of (k + 1)-point Gaussian-Legendre quadra-
ture rule, the boundedness of {6,”}];1:0, Cauchy-Schwartz inequality, and norm equivalence
in Lemma A2, we have

N B ax Ay &
ZZ ZZTJ Z amanf(-xim, yjn)g(-xim;yjn)

i=1 j=1 m,n=0
= Gellfllrligln = CullfINEI-

’ / Ih(fg)dsz‘
Q

A
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Finally, our analysis will need some inverse inequality [8].
Lemma A4 (Inverse inequality) There exists a constant C,, such that

R IVVlI72 ) + 110072k < Callvll o) Yo € Vi, YK € Ty (AS)

A.2 Proof of Theorem 3

Proof The proof will proceed similarly as that in [3]. The DG methods in [3] are of the modal
form and for the 1D version of model (1). One difference in our analysis here comes from
the use of the interpolation operator Zj, in the nodal DG setting to deal with nonlinear terms.
Being two-dimensional also adds complexity to the use of projection operators in the proof.

For any component u of the solution (such as H;, Ey, Ey etc), we first decompose its error
asu —up = (u —Ppu) — (up — Pju) = n, — &, where the projection P}/ is taken to be
1'[2’0 except for PhE A PE" s P,f{ ¢ when the numerical fluxes are alternating. When alternating
fluxes are used, without loss of generality, we only consider one of the four possible cases,
particularly, we consider Alternating I, given by (28) with ¥ = +,f = — 1 =+, = —,
and take

v _ 0+ pEy g +0 pH, ,
Pyt =17 Py =107, Py =11,

We initialize the method by setting &, = u, —Pj/u = 0 att = 0 for all solution components.
Step 1: With the consistency of numerical fluxes, from (25), we can obtain the error
equations:

1o @, §) + BE (e, nE,, §) = 10(dkn.. ¢) + BE (¢, . E6,. ¢). Vo € VF, (A6a)

(0 (Dx = Dan), 9) + By (111, #) = Bl 6. 6. Vo € Vi, (A6b)
(0:(Dy = Dy 8) + Bl (1. &) = Bl En. 9). ¥ € Vi, (A6e)
Imp—ny =Ep — &y, (A6d)
Iy +yny +oonp —wpng =0,k +vE; +wpkp —wrkp, (Abe)
ang —ne = %9 — &,
dutlo + Vollo + @ing = dio — Vibs — wiEg = (IEI = T (IExI)) (AGF)
= o, (IEI’ =, (IEP)) + oy (IE)? = | Enl?), (A6g)
along with
D — Dy = cocco(n — &) +co(np — &p) + €0a(l = 6) (IEPE — Iy (| En|*Ep))
+ €0ab(QE — Ty(Q1En). (A7)

Note that P}; = PhJ = 1'[2’0, then the equation (1d) implies

amp —ny =0. (A8)
Therefore (A6d) further gives

0Ep—&;,=0. (A9)
Similarly, (A6f) gives

950 — & =0. (A10)
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Recall that the choice of PhE depends on the numerical fluxes, then the equation (1e) implies
iy +yny +inp — o2 (E — ) E) = 0, this together with (A6e) leads to

%ky+vEs+wykp — iy = 0, UE, (A1)
where

0 central flux for E

=(E-1)°E) — g = :
Or = n B)=me { HEE — Hg’OE alternating flux for E

(A12)

Step 2: Take ¢ = &p. in (Aba), ¢ = &g, in (A6Db), and ¢ = &g, in (A6c), sum them up
and use (30), we have,

%%nsﬂz I = @i, . €n.) — B (e, nE,- §m) — B, (u.. €6,) — Bly (i, §E,)
— (a,(D — Dy, gE). (A13)
Differentiate (A7) with respect to time ¢, and use that d; and Z; commute, we have
(31(1) — Dy), EE) = €0€co (31(775 —&p), ‘s’E) + 60(3z(11P —ép), «SE)
+e0a1 =) (4 (EPE) ~ T, (4 (EPE)) . €k )
+€0a(1 = 0) (Tyor (IE2E — |Ex*En). k)

+€0ad (9 (QE) — T, (4(QE)) . & ) + coat (Zj 1 (QE — Q4 En). &k )-
(A14)
In next few steps, we will work with the terms on the right side of (A14) based on the error
equations.

Step 2.1: the fourth term in (A14). Using E;, = E — ng + &g and some direct manip-
ulation, one can get

o (IEPE — |E\En) - &

=0,(1EPE) - & — 2(Ey - 4 Ei)(Ey - ) — |Ex "0 B, - &

= 2o (161*) — 20, (1861 CE — np) - )
(= ne &) — 30 (1B~ nePiger)
— S (1E = npP)lepP —2((E — np) - 82) (4CE —n) - &)
—1gxl (2 (E — ) - &£ )
—1E = ngl(0(E —ng) - &) — o (1E —ng ) ((E = np) - &5)
n at(|E|2E) CEp. (A15)
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And the last three terms in (A15) can be further written as
— 0, (1E —ng*(E —n5) — |EPE) - &
= 0,(InsPPne — e PE — 2(E - ng)ng +2(E <) E + |EPng) -85, (AL6)
With (A16) and (A15), and Lemma 1, we now have

(7t (EPE — |E4PEn). 68 ) = /th(a,uEFE ~ |EsPEy) - §x)dS2

__34d Nao_r4 2E —ne) -
=22 [ 5 (8ot an 2dtfgzh(|sm (E — ng) - &) dS2
d 2
—E/th«E—nE)-sE) 49
1d 1
—52 | T (IE —ng|&6l?) d2 — ff i (8, E — np)*)|ée|?) dQ
tJo 2 Q

- 2/9@ (((E = 1) - €)W (E — np) - £8)) 2
—fQIh (&£ (E — np) - £1)) 2

+/ Zn (8 (Ine*ng — g’ E — 2(E - np)nE
Q

+2(E -np)E + |E\*yg) - £p) d2. (A17)
Step 2.2: the sixth term in (A14). We consider

0(QF ~ Q4En) - €& = 3, (QE — (Q —ng +£0)(E — ng + ) - k&
1
= 0,(QnE +n10(E —ne)) - 58 — 50(Q — o) §e
1
—50((Q = n0)l8E ) — 060 (E —n) - &

~&oi(E ~np) - & — Sokoléel — 3o (s0lgel). (AI8)
Observe that
(1B = 1B )es =(1EP — |E = ng + 66 )&
(1B —1E = nel —2(E —np) - 8 — 1661 )&
(2E - ne — el — 2B = 1) - €6 )6, — ditolésl’,  (A19)

where we have used (A10) in the last equality. With (A19), (A10) and (A6g), and Lemma 1,
we have

fQ T, (060l ) dS2
= _/th (IEP* — |Ey)) £,d2

+ [ 2(E e = e = 28 — i) - 016 ) a2
Q
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— [ (B -7, (BR) tod
+ [ T(@E - ne — inel ~ 28 - np) - €16 )2
Q
1
- 2/ (0 + e + @yn0) §,dQ2

2 2
+ o Lede+ Ly [ a3 L [ gan (A20)

Combine (A18) and (A20), and use Lemma 1, we have

(nian(QE — 0uEr).86) = [ 7u(0QE ~ 0uEw) - )

d 1 1 1 1
=~ ) (51;, (@ = no)leel’) + 3T (solerl’) + 17585 + Zsé) d<

24

1
+ [ 7, 0@+ no(E = ne)) - 66) d2 = 5 [ 7, (100 = noieF) a2
1
- [ 21 (o0 — i) - gx)a— 5 [ 7(CE - ne ~ lni Pt )as
Q Q

1 2 1 2 2
+ 55 | @unlo + 1m0 + 0n0)60d2 — > | (1P ~ Ty (|EF)) §5dQ.  (A2D)
oy Jo 2 Ja
Here we have dropped the term fQ Ih ((atsQ — &) (E —nE) - EE)dQ due to (A10).
Step 2.3: the first and second terms in (A14). Use (Al11), (A9), and (A8), we have

O (np —&p). &E)

1
= Onp,&6) — — (ikp, 0:8; + vE) + wjkp — @, 0k)
P

— 2
=my. &)+ (Op.§1) — 5 2dt/ 1&71°dS2

4 2 2
- = dQ — — — dQ2. A22
o ] e 2zd/"5' (A22)

In addition

(s &), &0) = e &) — 5 / £x 2d2 (A23)

Now we can gather (A17), (A21)—-(A23) for (A13)—(A14), and come up with the following
identity,

—g +—/ &2 + 60“9”” / £2dQ = ZA,, (A24)
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where

€patl o
o sg>dsz

v

3 6
+/Ih (—sgle 2+ Lm 4 sé)m

eOaQ/‘ 2
+ 7 - d2
| (@ noierP)

2
2 I‘s‘PI

o~ €€
5=/ BOch + U= iegl + |1,=J\2 =

2
1
+epa(l — 0)/ Zn (2|£E|2(E —nE) &g + (E —np) - €p)* + SIE - nE|2|sE|2) dQ,

Ao = coal —0)(4(EPE) T, (4 (1EE)) . £ ) + coat (3 (QE) — Ty 3(QE)) . &)

€0a9

= (1B ~Th(EP). & ). A1 = mo@imn,.&n).

Ay =Bf (nEX nE, §n.) + B, (1a., sEX)+B§2<nH £E,),
€pab

202 @no + yono + @10, ko) — 7(Ih(2E e — el &)

A3 =

Ay = €pecc(OmE, §E) +eco(ny, EE) + €0(OE. §y) — 6009f91h (E00i(E —nE) - £g)dQ
~2000(1 =) [ (8 = ng) - )00 (E 1) - £ ) a2
-0 [ 23 (o (18 - neP) ) a2
~coat1 =) [ 7, (s PouE — 1) - £5) d

+eoae/91h (3(QnE +no(E —1p) - £5) 2

€pab
2

+e0a(1 =0) [ Ty (ng Pug = gl =208 - npyne

[ 7 (4@ = noige ) de

+2(E -np)E + |Eng) - &) dS.

Step 3: Next we will estimate terms on both sides of (A24).
Step 3.1: to estimate the left hand side of (A24). Let p¢;r, kerr € (0, 1) be two arbi-
trary constants, then by Cauchy-Schwartz inequality, Lemmas 1-2, we have

p v

€oa(l — 0)perr €0a0perr
+/§2<7° ST (8e 1) + sg)dsz

€pal eoa(l—Q)(l—p ) epab (1 — perr)
+/th (Tsmsm% Sl + —— 8 ) ag

~ o eoe K €oad 5
&12/ (2521: D g 4 g P S |sp| +3 fsa) 9
Q p w3

@ Springer



45  Page 36 of 42 Journal of Scientific Computing (2021) 89:45

+ 9 [ (et = ko) + a0(Q ~ 10) 85 ) a2
Q

3 1—6 2 2 mo.
+ %)/;zzh (<(E—WIE)°§E+ §|§E|> )dQ Zé’}(l 2, (A25)

where

2

€pald ega(l —0) €pab
+ [ (et + OSPR ety + Ve ) a

Here (24) in Lemma 2, as well as Conditions 1-2 in (39)—(40) have been used. In fact, by
Condition 1, we have

2
(mod) MHo .2 €0€coKerr 2 €0 s €0y 2
& = — + — + — + — d
i /Q ( 5 S, 133 2a%l’f;'Jl 27 &p| ) Q

eoae epa(1 —0)(1 — perr) €0ab (1 — perr)
Solépl® + ot R

£5>0
while with Condition 2, there holds

€oo(l = Kery) +a0(Q = 1g) > €oo(1 = kery) — ab TV Q0o
> 6c>o(1 - Kerr) - aeck”Q”oo >0.

Step 3.2: to estimate Ap and A; in (A24). For Ao, we apply Cauchy-Schwartz
inequality and the approximation properties in Lemma A1, and obtain

€0€cokerr

|Ao| < CClicerr)h* 2 + >

&1 + IIEU I (A26)

For A1, with that 9, and 73: * commute, and Lemma A1, we have
0
IAL] < polldy He — PHeo, H ) + EC ||sH I < Ch* 2 4 Tusﬂznz. (A27)

Step 3.3: to estimate A> in (A24). For A, when the central fluxes (27) are used, we
have

b
|As| = (78, DEm ) + T, WIER, ), dy

—Z / (7&, (O] + 11z, (O[EE, 1), | dx
€0€ ooKerr

< cc<xm)h2" + Tusﬂznz + 2 Eg )2 (A28)

The inverse inequality in (AS) is applied. When the alternating fluxes (28) are used with
T=+,%=—,0=++, 1= —, there holds
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|Az| =

Nx Vb _
(111, 9566, + ) / T, EE 1) v = O, Dy€8)
i=1"°Y

Ny
-2 / N (OlEE, 1y | dx
=1 Xa Ity

6OEOOKerr

< CClicerr )™ 2 4 22 g |12 (A29)

Here for the case of the alternating fluxes, we have used the super-convergence result estab-
lished in [20] (see its Lemma 3.4) to gain the extra h? factor, and this is important for us to
obtain the optimal error estimates.

Step 3.4: to estimate A3z in (A24). For A3, we first bound the second term based on
Lemma 1 and Lemma A3,

(@ (B -1 — neP) . &)

=| [ 5(CE e~ neP) s )ag)
Q
1
< C|2E - ng — e &1l < Coo |2E - ne — e ?|” + e &I’ (a30)
v

Using the regularity assumption on E and Lemma A1, we get

IE - nell < IElslnell, Nnelll < Inellclnel < CrllEllcolnel,  (A31)

and therefore

’(Ih (E -ng — nel?) . &)

1
< Clngl*+ @nsauz. (A32)
v

Apply Young’s inequality and the approximation properties in Lemma A1, we now bound
A3 as

€paby, (1
A3l == 5+ <f||ng||2+||sa||2) 207 <2||8rno+w noll* + Clingll* + ,”g(,”z)
w3 2w
€paby, €pad
<Ch¥*2 4 == 2”||sa|| * %02 1€ 11%. (A33)

Step 3.5: to estimate A4 in (A24).
For A4, using Cauchy Schwartz inequality, Young’s inequality, Lemma 1, and Lemma
A3, we have

1 1
|A4] < €0€oc | —N10mEl* +a1llEEl? ) + €0 | —Ilns I + 2lléE]l?
4oy dar
2
—2Ug|? + 5. ||§J||

+3cal ~ OLE — ngloel B — ni)lolEsl + o — )
1

(5 [ Ttgeias + FioE — no)ee )
a3 JQ

1
6C, (
+ €pa ds

19:(Q = no)llocl€EII

i (ne + noE )|+ aulée )

an@
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1
+ ega(l — 0)C, <—
das

o (InePng — e PE

2 2 2
—2(E - ng)ng +2E 1) E +EPng) |+ aslel )

€gab
2

1 .
+ 55 (g 1B = np) e + acliéol”), Vi > 0.i=1,--.6.

We only choose two terms from A4 to illustrate how the estimation above is obtained,

ngh (3:(0 — nQ>|sE|2)d9‘

Ne My Ax; Ay; k
= XS5 Y @edn(30(0 — n0)lge ) i o)

i=1 j=I 2 m,n=0
Ny Ny k
Ax; Ay; -
<10(Q = nlloe D3 =55 D Omnlérl® Cim, yjn)
i=1 j=1 m,n=0

= 113,(Q — no)lll&E |,

and
‘/ Tn (1661*9(E — nE) - §E) dQ' (by Lemmas 1-2)
Q
< / T, (1661218,(E — np)l[€) 42 = / T, (16612) T (10, (E — )| 1£2]) dS2
Q Q
< IZn (|§E|2) Zn (10:(E —nE)| 1EED |
12
< (/Q Ih(|§E|4)dQ) 10, (E —nE) o lléE
1 4 a3 2 2
< — | Th(lEp|HdQ2+ —= |13, (E — nE) 5 IEE 7.
a3 Jo 4
We now specify «;,i =1, ---, 6 as follows,
1 12
€0€c0] = €gap = €9abCyoqy = €ga(l — 0)Chas = ,M, o = . ag = Perr '
4 12 Perr 2

Moreover we restrict the strength of nonlinearity such that

€pald
8ag

o
3epa(l = O)IE —nElloolld(E — nE) oo + <éoa(1 - G)I3 + ) 19:(E — n£) 1%

€oad €0€coKerr

0 — <
t— 10:(Q —no)lloo = 2

This can be guaranteed if

2
aCj

3a(1 = O)CH E ol Elloc + (12 = 116) < Soolerr

a6
18 E 1% + = Cell Qlloo < =,

err

holds, whichis also Condition 3 in (41). Based on what we have by far, with the approximation
properties from Lemma A1, we arrive at
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606 K epa(l1 —0)p
|Aal < CClkerp, perp)h® 2 + === 8E I + =

i€ MHdQ
Q

eoaep €0
+—— ol + 5 1€y ||2. (A34)
2wy,

The combination of (A24)—(A34) gives

d&,
— =8+ CClkerr, Perr)h*",

where

P k, for central numerical fluxes,
| k + 1, for alternating numerical fluxes.

Finally, using Gronwall inequality and &,(0) = 0, we get £ < &, < CC(kerr, perr)h”
We further apply a triangle inequality and the approximation results in Lemma Al, and
conclude

lu —upll < &+ Inull < CCKerr, perr)h”, u = H,E,P,J o Q.

Appendix B: Proof of Theorem 4

Proof Apply two time steps to (42a) and (42j), sum them up after taking ¢ = H;hH/ 2, one

gets
1o (Hznh+3/2 Hznlj]/z’ Hn 1/2) + AtBE (E;l;rl + E;'h’ E;l;rl + Eyh’ n+1/2) —0.
BD

Take ¢ = Ejf' + E%, in (42b), ¢ = Ejf' + E? in (42c), sum them up, we have

(Dt =D B+ E) + Al P B 4 B acBH, R BT B =0,

x h

(B2)
Add (B2) to (B1) and using the identity (30), we obtain
MO/ 1,_Iznh+3/2Hznh+1/2dQ _ Mof Hznh+1/2Hznh_1/2dQ
Q Q
+/ (D3 = pp) - (Ep+ + Ef ) a2 =o0. (B3)
Q

By (42d), we have

/Q (ot = pp) - (B + ;) a2

- eoeoofg |E;;+1|2dsz—eoeoo/Q|Eg|2dsz+60/Q (P;“ - P;;) . (EZ“ +E;> dQ
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+eoa(l — 9)/Q (vit = vy) - (B + By ) dg
+eoa9/Q(Ih (Q;;“E;“) ) (Q;;E;)) . (EZ“ + EZ) Q. (B4)
For the nonlinear Kerr term, by (42¢) and Lemma 1, we get
/Q (vit' = i)« (B3 + B}) a2
_ n+1,2 n2 _ gpnt+l  gn n+l _ pn . n+l1 n
_/th((w P4|E"? - E E)(E E)) (Eh +Eh)d§2
1
+ 5 /th ((En+1 +En) . (En+1 _ E")(E”Jrl + En)) . (EZ-H +Ez> 4o

1
ZE/I[“(<2|EH+1|2+2|E”‘ 2En+l En+|E11+l+E | )(|En+1|2—|En‘2>>dQ
Q

= %/th (lE”“l“) dQ—%/ﬂIh (lE”|4) Q. (B5)

For the Lorentz term, using (42f) and (42g), we have

/Q (Pr+t = pp) - (Ep + By de

+1 +1 +1
2 /(P11+1 Plh1>.<Jn JZ+ Jn +JZ+C()2PZ +P2)d9
Q

w2 At 2 0 2
1
= /u"“ de——z/ T stz+2 z / [T+ T Pde
a)p Q
2
,
+w—3/ |PZ+]|2dQ—w—g/ |P12dS2. (B6)
Y p /2
For the nonlinear Raman term, we have
/ ( (Qn+lEn+l) _Ih (QZEZ)) . (EZJrl + EZ) 4o
Q
=/Ih (Q"+1|EZ+1|2) dQ—/QIh(QmE;HZ)dQ
/ ' - o (B - E})dg, (B7)
where the last term can be further proceeded based on (42h) and (421i),

/(Qll+l QZ)II’! (EZ+1 . E;,l) aQ
n+1 _ N n+1 n+1 n
/(Q”+l Qh)< I 4y, 2 ;0}’ +w 2Q ; Qh)dQ
/(a,;‘“ )?dQ — —/(a )2dQ

/ (o +of)2d + - f Qe - - / (0} (BS)

4 2

Combine (B3)—(B8), we reach the energy relation (43) with the discrete energy &, defined
in (44).
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The next step is to derive the time step condition under which the discrete energy &)/ is
nonnegative. Based on (42a) and (42j), we have

wo (HI 2 = 1l 2, 9) AtZ/ ENI9l . dy+ArZ/ ELI8)y,
— AH(E},, 0:¢) + AL(EY,, 0y,¢) = 0. (B9)

Take ¢ = H;hH/ 2, using the inverse inequality (AS5), we obtain

Mo/ (Hznhﬂ/z J6 — M/ n+1/2 71/2dQ
Q

N. Ny —
Yb ‘ Xb
—=T ,yn+1/2 =T yn+1/2
= AtZ/ Eifh [th ]x, 1 dy — AIZ/ EY, [th ]y 1 dx

i=1"Ya i+3 j=17"%a itz

—l—At(Evh, n+l/2

AtC, n+1/2
== (/ 7| dQ—i—/(th ) dQ), (B10)

) — AHE",. 3, Hn+l/2)

hence,

AtC, 2 AtCy
f n+1/2 n— 1/2dQ o /(HnlJrl/Z) |EZ|2d§2.
2 on ) g\ 2h Jq

This implies, if we restrict the time step At such that,

o AtC, = 0. €0€c0 AtC, > 0.
2 2h 2 2h

then by Lemma 1 and with the condition 6 < [0, %], we have

0 2 348
& = fQ T <(|EZ|2 +(01)°) ) + %Ih (1B %) dS2 > 0.
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