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Abstract
Linear kinetic transport equations play a critical role in optical tomography, radiative trans-
fer and neutron transport. The fundamental difficulty hampering their efficient and accurate
numerical resolution lies in the high dimensionality of the physical and velocity/angular
variables and the fact that the problem is multiscale in nature. Leveraging the existence of a
hidden low-rank structure hinted by the diffusive limit, in this work, we design and test the
angular-space reduced order model for the linear radiative transfer equation, the first such
effort based on the celebrated reduced basis method (RBM). Our method is built upon a high-
fidelity solver employing the discrete ordinates method in the angular space, an asymptotic
preserving upwind discontinuous Galerkin method for the physical space, and an efficient
synthetic accelerated source iteration for the resulting linear system. Addressing the chal-
lenge of the parameter values (or angular directions) being coupled through an integration
operator, the first novel ingredient of our method is an iterative procedure where the macro-
scopic density is constructed from the RBM snapshots, treated explicitly and allowing a
transport sweep, and then updated afterwards. A greedy algorithm can then proceed to adap-
tively select the representative samples in the angular space and form a surrogate solution
space. The second novelty is a least squares density reconstruction strategy, at each of the
relevant physical locations, enabling the robust and accurate integration over an arbitrarily
unstructured set of angular samples toward the macroscopic density. Numerical experiments
indicate that our method is effective for computational cost reduction in a variety of regimes.
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1 Introduction

Linear kinetic transport equations model particles propagating through, and interacting with,
background media. They provide prototype models for optical tomography [5], radiative
transfer [35, 41] and neutron transport [31]. In this work, we consider the following steady-
state linear radiative transfer equation

� · ∇ f = σs〈 f 〉 − σt f + G, ∀ x ∈ X, � ∈ S
d−1, (1.1a)

whose solution f = f (x,�) delineates particle distribution at location x in a physical domain
X ⊂ R

d , and � ∈ S
d−1 denotes the angular variable. We enforce a Dirichlet boundary

condition on the inflow boundary

f (x,�) = finflow(x,�), x ∈ ∂X and � · n(x) < 0. (1.1b)

Here n(x) stands for the unit outward normal on ∂X. In addition, σs(x) ≥ 0 is the scattering
cross section, σt (x) = σs(x) + σa(x) is the total cross section, with σa(x) ≥ 0 being the
absorption cross section, and G(x) is the source. 〈·〉 encodes a normalized integration in the
angular space, namely,

〈 f 〉 = 1

|Sd−1|
∫
Sd−1

f d�. (1.2)

This gives the macroscopic density, ρ(x) = 〈 f 〉, defined on X. A fundamental difficulty in
numerically resolving (1.1) originates from the high dimension (2d − 1) of (x,�) space.

Given the non-dimensional mean free path length ε > 0, one can further define the
rescaled cross sections as σs = σ̂s

ε
, σa = εσ̂a , and G = εĜ. As proved in [6], when ε → 0,

f (x,�) → ρ(x), and ρ(x) solves the diffusion equation

∇ · (
σ̂−1
s D∇ρ

) = σ̂aρ + Ĝ. (1.3)

Here D = diag
(〈�2

1〉, . . . , 〈�2
d 〉

)
, with �i being the i-th component of � ∈ S

d−1. As a
result, when the problem is in its diffusive regime, the solution is close to a rank-1 manifold
in the angular space (i.e. the diffusion limit). Hence, in or near such regime, it is possible to
design a reduced order model (ROM) to capture the low-rank structure of the solution, and
this provides an opportunity to mitigate the curse of dimensionality. On the other hand, when
ε varies and possibly spans through several magnitude in the physical domain, the problem is
multiscale in its nature. This poses challenges not only for traditional numerical schemes but
also for any attempt to design an effective ROM. It is well known that a standard numerical
method may fail to capture the diffusion limit and lead to unphysical solutions when spatial
meshes are under-resolved with respect to ε, i.e. when the mesh size h satisfies h 
 ε [29,
36]. This issue should be addressed before designing any ROM. One solution is to apply
the asymptotic preserving (AP) schemes [27], which preserve the asymptotic limit on the
discrete level and work well for both the kinetic regime and the diffusive regime. In other
words, AP methods are able to capture the diffusion limit even on under-resolved meshes.
In this paper, we apply the discrete ordinates (SN ) method [40] in the angular space and the
upwind discontinuous Galerkin (DG) method in physical space. Upwind DG method was
investigated for (1.1) in [1, 28, 29], and it is proved to be AP [23] when the approximation
space contains continuous functions that are at least linear on each mesh element. To solve
the resulting linear system, we apply iterative solvers based on source iteration [31]. Standard
source iteration converges slowly when the problem is scattering dominant [2], we here apply
the synthetic accelerated source iteration (SASI) [2] to achieve good efficiency for various
regimes.
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As discussed above, the existence of a low-rank structure of the solution manifold in the
diffusive regime gives hope to the success of ROM techniques for kinetic transport equations
(1.1), the focus of our paper. This is by no means the first such attempt. In fact, ROM has
become an increasingly popular technique in kinetic simulations in the last few years. The
proper orthogonal decomposition (POD) type techniques were applied to (1.1) and its time
transient counterpart in [7, 9, 16]. Other related works include space-time POD [15], AP
random singular value decomposition (RSVD) [10], dynamic mode decomposition (DMD)
[34], proper generalized decomposition (PGD) [4, 18, 19, 42], and dynamical low rank
approximations (DLRA) [17, 20, 38]. These existing approaches either lack the hallmark
greedy algorithm or is not a method of snapshots. A POD method with the greedy algorithm
to adaptively select angular samples is proposed in [46], but [46] only considers problems
without the scattering effect. In this work, taking the scattering effect into account, we design
and test a model reduction technique for the linear radiative transfer equation (1.1) that
features both ingredients, namely a celebrated greedy algorithm adaptively selecting the
representative samples in the angular space and a resulting surrogate solution space spanned
by the corresponding snapshots. Indeed, it is under the framework of the reduced basis (RB)
method [24, 26, 43, 44] and to the best of our knowledge, the very first such attempt, which
takes the scattering effect into account.

RB method (RBM) has become the go-to option for efficiently simulating parametric
partial differential equation (PDE). Its hallmark feature is a greedy algorithm embedded
in an offline-online decomposition procedure. The offline (i.e. training) stage is devoted to
a judicious exploration of the parameter-induced solution manifold. It adaptively selects a
number of representative parameter values via a mathematically rigorous greedy algorithm
[8]. Solution snapshots for these parameter values are then obtained through a user-specified
(potentially expensive) full order (i.e. accurate) solver. The buildup of the surrogate solution
space spanned by these snapshots is done step-by-step. Each iteration of the greedy algorithm
adds the parameter value which is the maximizer of a mathematically rigorous a posteriori
error estimator or an effective error indicator were the current surrogate space used as a
reduced solver space via e.g. aGalerkin or Petrov-Galerkin projection. For parametric systems
bearing a small Kolmogorov N-width [39], the dimension of the surrogate space is orders of
magnitude smaller than the total degrees of freedom for the full model in order to reach a
high degree of accuracy. This difference in size leads to a dramatic decrease in computation
time for the online simulations when a reduced solution is sought in the terminal surrogate
space for each parameter value. Moreover, unlike other ROM techniques (e.g. POD-based
approaches), the number of full order inquiries RBM takes offline is minimum i.e. equal to
the dimension of the surrogate space.

Leveraging the low-rank structure induced by the angular space, it is natural to treat the
angular variable� as our parameter.What prevents a direct application of RBM is the integral
operator (1.2) which poses a two-fold extra challenge. First, unlike the standard setting when
RBM applies, the solutions for different parameter values { f (·,�) : � ∈ S

d−1} are all
coupled through (1.2). A milder version of this type of coupling is addressed in the stochastic
PDE setting [32]. Second, from a practical viewpoint, the robustness and the efficiency of
the SASI iterative linear solver is highly sensitive to the quality of the density approximation
ρ = 〈 f 〉. In particular, the unstructured nature of the selected RB parameter samples in the
angular variable prevents a robust and accurate numerical integration which usually requires
a structured set of quadrature points.

To address these challenges, we effectively decouple the solutions for different angular
samples by designing a greedy iterative procedure where an approximation of the macro-
scopic density ρ is constructed from the RB snapshots at the beginning of each iteration. It is
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frozen during the iteration and reconstructed before the next. To resolve the lack of structure
for a robust numerical integration, we develop a least squares density reconstruction strategy
capable of integrating over an arbitrary set of selected angular samples robustly. Our numeri-
cal experiments show that the proposedmethod is effective for the radiative transfer problems
in the scattering dominant and intermediate regimes, as well as for the multiscale problems
with large scattering dominant subregions. The proposed RB method (including both the
offline and online stages) can be seen as a surrogate model for the full order upwind DG
solver. The online stage of the proposed method can be further applied to predict solutions at
“unseen” angular samples. The proposed method can also be utilized as a building block to
construct ROMs for problems with essential physical parameters such as the magnitude of
the scattering cross section whose “multi-query” nature will lead to more pronounced saving
for our approach.

The rest of the paper is organized as follows.We introduce the full order numerical scheme
and the SASI iterative solver in Sect. 2. Section 3 is devoted to the least squares density
reconstruction and the RB algorithm. We demonstrate the performance of the proposed
method through a series of numerical experiments in Sect. 4. Finally, conclusions are made
in Sect. 5.

2 Full Order Numerical Method

In this section, we describe our full order numerical scheme for solving (1.1) focusing on the
1D slab geometry and the 2D case with � ∈ S

1. The equation (1.1) on the 1D slab geometry
is given as

v∂x f = σs

2

∫ 1

−1
f dv − σt f + G, v ∈ [−1, 1], x ∈ X, (2.1)

where we write � as v here following convention. The 2D equation with � ∈ S
1 can be

written as

cos(θ)∂x f + sin(θ)∂y f = σs〈 f 〉 − σt f + G, θ ∈ [0, 2π], x ∈ X. (2.2)

In the next three subsections, we detail the discrete ordinates method [40] for the angular
discretization, the upwind DG method for the spatial discretization, and finally the SASI
iterative solver.

2.1 Angular Discretization

In the angular space, we apply the discrete ordinatesmethod [40] by sampling f at quadrature
points {� j }N�

j=1. Letting {ω j }N�

j=1 be the corresponding normalized quadrature weights, we
can discretize the integral operator as

〈 f 〉 ≈ 〈 f 〉h =
N�∑
j=1

ω j f (·,� j ),

N�∑
j=1

ω j = 1,

and, as a consequence, Eq. (1.1) can be discretized as

� j · ∇ f j = σs

N�∑
i=1

ωi fi − σt f j + G, j = 1, . . . , N�, (2.3)
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where f j (x) ≈ f (x,� j ). This method is also referred to as the SN method, if one use
N� = N quadrature points for the 1D slab geometry or N� = 2N quadrature points for the
2D case. Particularly, we use the following quadrature rules.

1D: {� j }Nj=1 is the collection of N -point Gauss-Legendre quadrature points on [−1, 1].
2D: � j = (

cos(θ j ), sin(θ j )
)T

, with θ j = (2 j−1)π
2N , ω j = 1

2N , j = 1, . . . , N�.

2.2 Spatial Discretization

It is well known that the asymptotic preserving (AP) schemes [27, 36] can capture the correct
diffusion limit without a highly refined mesh resolving the small ε-scale. We adopt the
upwind DGmethod [23, 28, 29], which has been proven to be AP if the approximation space
contains continuous functions that are at least linear on each mesh element [1, 23]. Without
loss of generality, we assume X = [xL , xR] in 1D and X = [xL , xR] × [yL , yR] in 2D. Let
Xh = {Ti , i = 1, . . . , Nx } be a partition of X, with each Ti being an interval in 1D or a
rectangle in 2D. We introduce a discrete space

UK
h = {u(x) : u(x)|Ti ∈ QK (Ti ), i = 1, . . . , Nx }, K ≥ 1, (2.4)

where QK (Ti ) denotes the d-variate polynomial on Ti with degree up to K for each variable.
We are now ready to state the upwind DG spatial discretization: we seek

{
fh(x,� j ) ∈ UK

h :
j = 1, . . . , N�

}
, such that

−
∫
Ti

(
� j · ∇φh(x)

)
fh(x,� j )dx+

∫
∂Ti

Ĥ(� j , fh,ni )φh(x)ds+
∫
Ti

σt fh(x,� j )φh(x)dx

=
N�∑
k=1

ωk

∫
Ti

σs fh(x,�k)φh(x)dx +
∫
Ti
G(x)φh(x)dx, ∀φh ∈ UK

h . (2.5)

Here Ĥ(� j , fh,ni ) is the upwind numerical flux along ∂Ti , that is defined, for an element
Ti = T− with the neighboring element T+, as

Ĥ(� j , fh,ni ) = � j · ni
2

(
f +
h (x,� j ) + f −

h (x,� j )
)

+ |� j · ni |
2

(
f −
h (x,� j ) − f +

h (x,� j )
)
. (2.6)

We use f ±
h to denote the restriction of fh to T±, while ni is the unit outward normal on ∂Ti .

Based on fh , the density ρ is further approximated by

ρh(x) = 〈 fh〉h =
N�∑
j=1

ω j fh(x,� j ). (2.7)

Next we will rewrite the DG scheme (2.5) into its matrix-vector form. To this end, we
assume that {φk}Ndof

k=1 is a basis for UK
h , and fh(x,� j ), ρh(x) are then expanded as

fh(·,� j ) =
Ndof∑
k=1

α
f
k (� j )φk, ρh =

Ndof∑
k=1

α
ρ
k φk, with α

ρ
k =

N�∑
j=1

ω jα
f
k (� j ).

123



    5 Page 6 of 27 Journal of Scientific Computing             (2022) 91:5 

The last equality is due to the numerical quadrature (2.7). We further define

f� j =
(
α

f
1 (� j ), . . . , α

f
Ndof

(� j )
)T ∈ R

Ndof , F =
(
f�1 , . . . , f�N�

)
∈ R

Ndof×N� ,

ρ =
(
α

ρ
1 , . . . , α

ρ
Ndof

)T ∈ R
Ndof ,

and U� j , j = 1, . . . , N�, �t ,�s ∈ R
Ndof×Ndof and g ∈ R

Ndof as

(U� j )kl =
Nx∑
i=1

(
−

∫
Ti

(� j · ∇φk(x))φl(x)dx +
∫

∂Ti
Ĥ

(
� j , φl ,ni

)
φk(x)ds

)
,

(�t )kl =
Nx∑
i=1

(∫
Ti

σtφk(x)φl(x)dx
)

, (�s)kl =
Nx∑
i=1

(∫
Ti

σsφk(x)φl(x)dx
)

,

(g)k =
Nx∑
i=1

(∫
Ti
G(x)φk(x)dx

)
.

We here adopt the commonly used basis functions {φk}Ndof
k=1 , with each being nonzero only on

one mesh element as a scaled Legendre polynomial or its tensor version. With such a choice,
�t and �s are block-diagonal, symmetric and semi-positive definite. If mesh elements in
space are suitably reordered, eachU� j can be block lower triangular.With the notation above,
the DG scheme (2.5) can be rewritten into its matrix-vector form:

U� j f� j + �t f� j − �sρ = g, ∀ j = 1, . . . , N�. (2.8)

We end this subsection by noting that the AP upwind DG scheme (2.5) also exists for
unstructured meshes and general geometries.

2.3 Synthetic Accelerated Source Iteration

Due to the high (i.e. 2d − 1) dimensional nature of the problem, iterative methods must be
adopted when solving (2.8). However, when the problem is scattering dominant, iterative
solvers such as the standard source iterations may converge slowly [2]. To efficiently solve
(2.8), we apply the synthetic accelerated source iteration (SASI) scheme [2]. Each iteration
of a typical SASI scheme consists of two main steps. The first step is a transport sweep based
on the known ρk from the previous iteration. More specifically, using the given data ρk and g,
we invertU� j +�t in (2.8) and obtain f

k+1
� j

for each� j . After that, we numerically integrate

f k+1
� j

in the angular space to obtain an initial update of the density ρk,∗. The second step is

to compute a correction, ρk,c, for the density by a computationally less expensive procedure.
One can then update ρk+1 = ρk,∗ + ρk,c and proceed to the next iteration.

In this work, we mainly focus on the S2 synthetic acceleration (S2SA) method following
[2, 33]. To elaborate the detail of the second step, we assume f k+1 is the solution to

� · ∇ f k+1 + σt f
k+1 = σsρ

k + G, (2.9)

and define ρk,∗ = 〈 f k+1〉. Let δ f k = f − f k . By subtracting (2.9) from (1.1), we obtain
the equation for the correction δ f k+1, namely

� · ∇(δ f k+1) + σtδ f
k+1 − σs〈δ f k+1〉 = σs(ρ

k,∗ − ρk). (2.10)
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The correction of the density can then be calculated as ρk,c = 〈δ f k+1〉. The main idea of
the S2SA is to apply the S2 approximation in the angular space when solving the correction
equation (2.10). This means that we only work with Nd quadrature points in the angular
space, with Nd = 2 in 1D and Nd = 4 in 2D. As a result, the direct solver in the correction
step can be implemented very efficiently. With the DG spatial discretization, the discretized
linear system for the correction step is

Ud
� j

(δf� j ) + �t (δf� j ) − �s〈δρ〉h = �s(ρ
k,∗ − ρk), ∀ j = 1, . . . , Nd , (2.11)

where Ud
� j

is the “upwind” matrix corresponding to the angular samples of the S2 approxi-
mation. Details of the algorithm are presented in Algorithm 1.

Remark 2.1 An alternative synthetic acceleration strategy is the diffusion synthetic accelera-
tion (DSA) [2, 3, 47], which approximates the correction equation (2.10) through a diffusion
model. It is well known that a so-called “consistent” discretization must be applied to the
diffusion model, otherwise the source iteration with the DSA may converge slowly or even
diverge [2, 3, 47]. With the S2SA, one can reuse the kinetic solver with fewer angular sam-
ples, but it does have more degrees of freedom compared with the DSA. In our reduced order
algorithm, we observe that the S2SA is more robust for different regimes and slightly more
accurate than the DSA, though the full order solvers with the DSA and S2SA are comparable
with respect to the robustness and accuracy. More details of the DSA and the comparison
between the RB method with both acceleration strategies can be found in Appendix A.

Algorithm 1: Synthetic accelerated source iteration to solve (2.8)

Given initial guess: ρ0

Transport sweep: solve (U� j + �t )f1� j
= g + �sρ

0, j = 1, . . . , N�.

Reconstruct ρ0,∗ through numerical integration based on f1� j
, j = 1, . . . , N�.

Correction: obtain the correction ρ0,c. Let ρ1 = ρ0,∗ + ρ0,c. Set k = 1.
while ||ρk − ρk−1||∞ > errortol and k ≤ itertol do
Transport sweep: solve (U� j + �t )f

k+1
� j

= g + �sρ
k , j = 1, . . . , N�

Reconstruct ρk,∗ through numerical integration based on fk+1
� j

, j = 1, . . . , N�.

Correction: obtain the correction ρk,c by solving (2.11). Let ρk+1 = ρk,∗ + ρk,c.
Set k := k + 1.

end while

3 Reduced Basis Method in the Angular Space

In this section, we briefly review the basics of RBM and describe the main challenges for
designing a RBM for (1.1) in Sect. 3.1. We then present all elements of our algorithm in
Sect. 3.2.

3.1 Background

RBM is a popular approach for obtaining reduced order models for a parametric differential
equation

r(η;μ) = L(η;μ) − gμ = 0, μ ∈ XP , η(·;μ) ∈ �μ, (3.1)
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where μ ∈ XP stands for a parameter, L(·;μ) encodes a steady-state or time-dependent
parametric differential operator. η(·;μ) ∈ �μ denotes the solution corresponding to μ and
is often referred to as a snapshot. The method assumes a full order (potentially expensive)
solver of high accuracy for (3.1) which, for simplicity, we write in a strong form

rh(ηh;μ) = 0. (3.2)

Its hallmark feature is a greedy algorithm embedded in an offline-online decomposition
procedure. Given a (sufficiently fine) training set T ⊂ XP . The judicious exploration offline
aims to build a low-dimensional surrogate for the T -induced solution manifold {ηh(μ) :
μ ∈ T }. This surrogate space is iteratively constructed via a hierarchical series of reduced
basis {η j }rj=1 by a greedy algorithm. At each iteration the snapshot corresponding to the
most under-represented parameter value (were the current reduced space to be adopted), as
identified by an error indicator or a posteriori error estimator, is added to the current set of
bases. These snapshots are obtained through the full order solver (3.2). A defining feature
of RBM is that the number of full model solves is minimum, i.e. the same as the surrogate
space dimension. For parametric systems bearing a small Kolmogorov N-width [39], the
dimension of the surrogate space is orders of magnitude smaller than the total degrees of
freedom for the full model in order to reach a high degree of accuracy. This difference in size
leads to a dramatic decrease in computation time for the online simulations when a reduced
solution is sought in the terminal surrogate space for each parameter value as the Galerkin or
Petrov-Galerkin projection into the reduced space �r = span{η j , j = 1, . . . , r} constructed
offline.

Leveraging the low-rank structure induced by the angular space for our problem, it is
natural to treat the angular variable � as our parameter. What prevents a direct application of
RBM is the integral operator (1.2) which poses a two-fold extra challenge. First, unlike the
standard setting when RBM applies, the solutions for different parameter values { f (·,�) :
� ∈ S

d−1} are all coupled through (1.2) or its discrete counterpart 〈 f 〉 ≈ ∑N�

j=1 ω j f (·,� j ).
Second, the robustness and the efficiency of the SASI iterative solver relies on the high quality
of the density approximation ρ = 〈 f 〉. In particular, the unstructured nature of the selected
RB parameter samples in the angular variable prevents a robust and accurate numerical
integration which usually requires a structured set of quadrature points.

3.2 The Proposed Algorithm

We propose to effectively decouple the solutions for different angular samples by designing
an iterative procedure where an approximation of the macroscopic density ρ is constructed
from the RB snapshots and gradually refined as the RB space is built and RB solutions get
more accurate. This iterative procedure manifests the first novel ingredient of our method
in that a quantity that is indirectly dependent on the parameter (i.e. the macroscopic density
defined as an integral over the parameter domain) is fixed during one greedy iteration and
updated only at the end of such iteration. It allows the greedy algorithm to proceed efficiently
which in turn enriches the surrogate solution space rendering the RBM solutions and the
dependentmacroscopic quantitymore accurate.We emphasize that once the greedy algorithm
converges, we consider the macroscopic density well-resolved and will adopt its terminal
value online for any new parameter value. This is reasonable since the macroscopic density
is not directly dependent on a particular parameter value. To resolve the lack of structure
for a robust numerical integration, we develop a least squares density reconstruction strategy
capable of integrating over an arbitrary set of selected angular samples. In the remaining
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part of this subsection, we first describe our online solver with any given RB space which
is repeatedly called offline to construct the terminal RB space from scratch. Next, the least
squares reconstruction algorithm is presented and an L1-based residual-free error indicator
is reviewed. Finally, we finish by detailing our algorithm and making a few relevant remarks.

Online Stage

Assuming that the (discrete) reduced basis space corresponds to the column space ofURB and
the currently reconstructed density is ρRB , the online solver amounts to seeking a Galerkin
projection of f� into URB that satisfies the weak formulation for any given �. That is, we
assume

f� ≈ URBcRB(�), (3.3)

and compute cRB(�) by solving the reduced formulation of (2.8), namely

(U RB)TU�iU RBcRB(�) + (U RB)T�tU RBcRB(�) = (U RB)T�sρRB + (U RB)T g.
(3.4)

Remark 3.1 Note that the online solver (3.4) is repeatedly called during an iterative procedure
offline to build up URB . By assuming that the approximation for the macroscopic density
ρRB is given and performing a reduced transport sweep (i.e. obtaining cRB(�) for all �)
with a fixed known density, we effectively decouple the angular dependence of the system.
Without this technique, all f� are coupled and this leads to a larger system being inverted.
The resulting increase in online (and thus offline) time is not amenable. An implication of
this strategy is that we would need an initial guess for ρRB . We noticed that a poor initial
guess may lead to inaccurate reduced approximations. In this paper, we sample at a group of
fixed but small number of quadrature points P0 = {�̂k}N0

k=1 to perform a fully coupled full
order solve to obtain this initial guess.

Least Squares Density Reconstruction

The existence of a low rank structure for f� in its angular dependence, at least in the diffusive
regime, indicates that the density can be accurately captured by the reduced space constructed
offline. However, one main challenge in the offline stage is that the selected angular sam-
ples may not automatically give us a robust numerical quadrature formula in the angular
space. Nevertheless, careful design of a density reconstruction algorithm approximating 〈·〉
is essential for the robustness and efficiency of the SASI solver. In this paper, we propose
a reconstruction algorithm based on a least squares procedure. Indeed, we first fix a group

of robust high order quadrature points {(�̄ j , ω̄ j )}N̄�

j=1. Given an arbitrary group of angular
samples PRB and corresponding distribution functions { f�}, we construct a least squares
approximation of f , denoted by fls in the angular space. We then calculate the macroscopic
density ρ based on fls.

ρ = 〈 f 〉 ≈
N̄�∑
j=1

ω̄ j fls(�̄ j ). (3.5)

A natural set of space to consider in 1D are polynomial function space. In 2D, to suit the
periodic structure, we use trigonometric function space. The details of the fls reconstruc-
tion are as follows. Here we denote the vector of degrees of freedom in space for f� as(
f�(1), . . . , f�(Ndof )

)T .
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1D: With � = v, we find fls(v) = (p1(v), . . . , pNdof (v))T such that

pi (v) = arg min
p∈Ps ([−1,1])

∑
v∈PRB

(p(v) − fv(i))2, i = 1, . . . , Ndof , (3.6)

where Ps([−1, 1]) denotes the set of polynomials on [−1, 1] of degree at most s.
2D: With � = (cos(θ), sin(θ)), we find fls(�) = fls(θ) = (t1(θ), . . . , tNdof (θ))T such that,

ti (θ) = a0 +
s∑

k=1

ak cos(kθ) +
s−1∑
k=1

bk sin(kθ), and (a0, . . . , as, b1, . . . , bs−1) solves

argminã0,...,̃as ,̃b1,...,̃bs−1

∑
θ∈PRB

(
ã0 +

s∑
k=1

ãk cos(kθ) +
s−1∑
k=1

b̃k sin(kθ) − fθ (i)

)2

.

(3.7)

We use the trigonometric least squares approximation (3.7), as θ = 0 and θ = 2π
represent the same point on the unit circle. We note that the resulting fls is a 2π-periodic
function with respect to θ , preserving the property of the original distribution function.

The choice of s will be specified for our numerical experiments and discussed in Sect. 4.

L1 Residual-Free Error Indicator

Acritical piece for theRBgreedy algorithm is an a posteriori error estimatorwhich guides the
surrogate space construction and certifies the accuracy of the RB solution. It is often residual-
based and can be derived by mimicking the a posteriori error analysis of the underlying full
order scheme [26, 43], with the RB solution taking the place of finite element solution which
plays the role of the exact solution. A posteriori error analysis of the streamline upwind finite
element method for the kinetic Eq. (1.1) is considered in [21]. With the need of solving its
dual problem [25], its extension to the RB setting is not computationally appealing. As a
result, we turn to the highly efficient and provably reliable L1 residual-free error indicator
proposed in [14].

Indeed, using the notation from Sect. 3.1, we assume the r -dimensional RB space is given
by �r = span{η j , j = 1, . . . , r} where η j is the solution to (3.1) when the parameter takes
value μ j . For a new parameter value μ whose corresponding RB solution is identified as

η(μ) =
r∑
j=1

c j (μ)η j .

The greedy choice informed by the L1 error indicator then proceeds as follows1

μr+1:= argmax
μ

�r (μ), where �r (μ) =
r∑
j=1

∣∣c j (μ)
∣∣. (3.8)

As shown in [14], the {c j (μ)}rj=1 is the Lagrange interpolation basis in the parameter
space. Taking themaximizer of�r (μ) then amounts to controlling the growth of theLebesgue
constant. This lead to its effectiveness for selecting the RB snapshots [14] including for
nonlinear steady-state or time-dependent problems [11, 13]. Finally, it is imperative to note
that this indicator is straightforward to implement and essentially free to compute.

1 In actual computation, the basis {η j } will be processed e.g. subject to a Gram-Schmidt orthonormalization

for numerical stability. The subsequent L1 error indicator will have to incorporate the transformation matrix.
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Greedy Algorithm

We are now ready to describe the greedy algorithm for iteratively constructing the reduced
basis in the offline stage. It starts with a small set of quadrature pointsP0 = {�̂k}N0

k=1 with the
initial reduced space constructed as the span of the resulting snapshots and the initial density
ρ0 computed accordingly. In each iteration, we calculate the projection of solution for an
unselected parameter into the current reduced space and greedily expand the reduced space
according to (3.8). With matrix-vector formulation, details of this algorithm is presented in
Algorithm 2.

Algorithm 2: RBM greedy algorithm for radiative transfer equation.
1: Input: iteration number tolerance Mtol, spectral ratio tolerance rtol, training set P = {�1, . . . ,�N�

},
and an initial quadrature rule P0 = {�̂k }N0

k=1.

2: Solve (globally coupled) (2.8) with a direct solver for � ∈ P0 to obtain f0
�̂k

and ρ0.

3: Iteration:
4: Set m = 0, rm = 2rtol, F0RB = (f0

�̂1
, . . . , f0

�̂N0
) and PRB = {�̂k , k = 1, . . . , N0}.

5: while m ≤ Mtol and rm > rtol do
6: Perform an SVD FmRB = Um

RB�m
RB (Vm

RB )T .

7: Calculate the spectral ratio rm = λmmin
tr(�m

RB )
where λmmin is the minimal singular value.

8: for i = 1 : N� do
9: if �i /∈ PRB , then
10: Compute the RBM solution for �i , f

m
�i

= Um
RBc

m
RB (�i ) with cmRB (�i ) solving

(Um
RB )TU�iUm

RBc
m
RB (�i ) + (Um

RB )T �tUm
RBc

m
RB (�i ) = (Um

RB )T �sρ
m + (Um

RB )T g.

11: Calculate the L1 error indicator Em
�i

= ‖Vn
RB

(
�n

RB

)−1 cmRB (�i )‖�1 .
12: end if
13: end for
14: Set inew = argmaxi {Em�i

}, m := m + 1, and PRB = PRB
⋃{�inew , �̃inew }.

15: Execute the SASI method to solve (2.8) and update fm
� jk

for � jk ∈ PRB to assemble

FmRB =
(
fm� j1

, . . . , fm� jNm

)
, Nm = 2m + N0 and PRB = {� jk }Nm

k=1.

16: Reconstruct ρm based on fm
�

for � ∈ PRB via (3.5) and (3.6) (or (3.7)).
17: end while
18: Output: the reduced basis URB = Um

RB and ρRB = ρm .

Remark 3.2 We emphasize two features of the greedy algorithm. The first feature is the
symmetry-enhancing greedy addition. When we augment the RB space, in addition to the
maximizer of the error indicator �inew as determined by (3.8), we include its symmetric
counterpart �̃inew . Assuming that the training set is P = {� j }N�

j=1. For each �, in 1D,

we define �̃ = −�. In 2D, given � = (cos θ, sin θ) with θ ∈ (0, 2π), we define �̃ =
(cos(θ̃), sin(θ̃)) with θ̃ = mod(θ + π, 2π). By construction, if � ∈ P then �̃ ∈ P . In our
numerical simulations, we observe that this method is more robust than adding �inew into
PRB alone. Indeed, for the 2D examples in Sect. 4.2, if one angular sample is added per
iteration, the SASI iterative solver may fail to converge.
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The second feature is a spectral ratio stopping criteria. The purpose is to mitigate the
fact that our L1 residual-free error indicator, albeit highly effective in identifying the next
representative parameter value, is not an error estimator. Inspired by the POD method, we
monitor a spectral ratio as an additional stopping criteria. We define the spectral ratio for the
m-th iteration rm as

rm = λmmin

Tr(�m
RB)

, (3.9)

where λmmin is the smallest diagonal element of �m
RB , and Tr(·) is the trace operator.

4 Numerical Results

In this section, we present a series of one- and two-dimensional numerical examples to
showcase the performance of the proposed RB method. For the underlying DG spatial dis-
cretization, the discrete space in (2.4) with K = 1 is used. With the consideration for the
efficiency and robustness of the SASI method, we set the degree parameter s in the density
reconstruction as s = m + 1 for 1D slab geometry and s = min(5,m + 1) in 2D during
the m-th iteration of the greedy algorithm. Throughout the experiments, we measure the
following absolute and relative L2 errors.

E f = max
j

‖ fF(� j ) − fR(� j )‖, R f = max
j

‖ fF(� j ) − fR(� j )‖
‖ fF(� j )‖ ,

Eρ = ‖ρF − ρR‖, Rρ = ‖ρF − ρR‖
‖ρF‖ .

Here fF, ρF denote the full order numerical solutions. The RB solutions are fR, ρR and ‖·‖
is the standard L2 norm of L2(X).

In the current setting, there are no essential physical parameters (e.g. scattering cross
section, boundary conditions) whose “multi-query” nature will make the (one-time) offline
investment more worthwhile. However, we still compare the proposed RBmethod (including
both the offline and online stages) against (a single query of) the full order DG solver using
the training set for angular space discretization. We note that the online stage can be utilized
to predict solutions at angular samples outside of the training set, a feat out of reach by the
full order DG scheme. When the proposed method is utilized as a surrogate for the full order
solve with respect to the training set, we concern both the offline and online efficiency. When
its online stage is applied to predict solutions at “unseen” angular samples, we only take the
online efficiency into account. We call the error associated with the training set “training
error” and the error associated with the test set “testing error”. Here and below, the training
set refers to the set of parameter values of the angular variable used during the offline stage
to build the surrogate space, while the test set refers to that used during the online stage to
test the performance of the RB method.

4.1 One-Dimensional Examples

We perform the one-dimensional experiments on a slab geometry domain X = [xL , xR],
which is discretized by a uniformmesh with�x = 0.125. The initial guess for our algorithm
is obtained by 2Gauss-Legendre points, i.e. N0 = 2.We consider 5 examples and conduct two
tests for each of them. The training set consists of 24Gauss-Legendre points.We consider two
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different rtol as 10−4 and 10−6. The algorithm stops once rtol is reached leading to different
RB dimensions for different examples. The testing errors associated with a test set will be
reported. For the second test, we ask the algorithm to generate reduced bases with Mtol = 12
for all problems and record the training error between the RB solutions and the full order
solutions. In the end, we demonstrate the robustness of the algorithm by varying the strength
of the scattering cross section σs . These tests aim at showing the capability of our method
to predict solutions at angular samples outside of the training set and the effectiveness of the
L1 residual-free error indicator.

Example 1 (Scattering dominant)

X = [0, 10], G = 0.01, σt = 100, σs = 100, f (0, v) = 0

with v > 0, f (10, v) = 0 with v ≤ 0.

Example 2 (Spatially varying scattering coefficient)

X = [0, 10], G = 0.01, σt = 100(1 + x), σs = 100(1 + x),

f (0, v) = 0 with v > 0, f (10, v) = 0 with v ≤ 0.

Example 3 (Two-material problem 1)

X = [0, 20], G =
{
5, 0 < x < 10,

0, 10 < x < 20,
σt = 100, σs =

{
90, 0 < x < 10,

100, 10 < x < 20,

f (0, v) = 0 with v > 0, f (20, v) = 0 with v ≤ 0.

Example 4 (Two-material problem 2)

X = [0, 11], G = 0, σt =
{
100, 1 < x < 11,

2, 0 < x < 1,
σs =

{
100, 1 < x < 11,

0, 0 < x < 1,

f (0, v) = 5 with v > 0, f (11, v) = 0 with v ≤ 0.

Example 5 (Transport dominant)

X = [0, 10], G = 0.01, σt = 1.2, σs = 1, f (0, v) = 0 with v > 0, f (10, v) = 0

with v ≤ 0.

Online prediction accuracy We first present the prediction accuracy for a test set with 32
quadrature points in the angular variable, that are different from the angular samples in the
training set. With rtol = 10−4, the comparison between the density obtained by the RB
solutions and that by the full order solutions is presented in Fig. 1. For all five examples,
the RB solutions match the full order solutions well. We present the testing errors in f and
training errors in ρ for these examples in Tables 1 and 2. One can see that the RB method is
most effective for scattering dominant problems (i.e. Examples 1-3). It achieves very good
degree of accuracy (3 to 4 digits) for both f and ρ with just 4 to 6 reduced basis functions. The
solution of the two-material problem (Example 4), that involves a purely absorbing subregion
without scattering, has more complicated structure. Consequently, more basis functions are
needed, and the accuracy of f is worse than the other examples. Example 5 is transport
dominant leading to distribution functions being far from the macroscopic density. As a
result, it demands the most number of RB functions. It is worth noting that, for all five
examples, the method commits less than 1% relative L2 error for ρ. To reach this accuracy,
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(a) Example 1, 4 reduced basis (b)Example 2, 4 reduced basis (c) Example 3, 4 reduced basis

(d)Example 4, 8 reduced basis (e) Example 5, 10 reduced basis

Fig. 1 The true (i.e. full order) andRBdensities for the one-dimensional test examples 1-5 of 1D slab geometry.
The number of reduced basis is determined by rtol = 10−4

Table 1 Testing error for f and training error for ρ with rtol = 10−4, 1D slab geometry

RB dimension E f R f Eρ Rρ (%)

Example 1 4 8.04e-3 9.26e-3% 8.00e-3 9.21e-3

Example 2 4 8.51e-3 2.05e-3% 8.49e-3 2.04e-3

Example 3 4 9.35e-4 5.13e-2% 8.25e-4 4.53e-2

Example 4 8 9.99e-2 1.28e+1% 2.59e-3 2.54e-1

Example 5 10 7.50e-2 5.39e-1% 4.37e-3 3.21e-2

Table 2 Testing error for f and training error for ρ with rtol = 10−6, 1D slab geometry

RB dimension E f R f Eρ Rρ (%)

Example 1 6 3.34e-3 3.84e-3% 3.31e-3 3.80e-3

Example 2 4 8.51e-3 2.05e-3% 8.49e-3 2.05e-3

Example 3 6 4.31e-4 4.83e-2% 3.77e-4 2.07e-2

Example 4 10 4.73e-2 6.09e-0% 1.91e-3 1.87e-1

Example 5 14 2.78e-2 2.00e-1% 1.93e-3 1.42e-2

the full model needs 160 degrees of freedom for each angular sample, while our RBM uses
at most 14 global reduced basis functions.
Effectiveness of the error indicator In Fig. 2, we present the histories of the convergence of
the L2 error of f and the spectral ratio rm as the number of iteration grows. We observe that
the error decays as the dimension of the reduced space increases with a terminal error smaller
than 10−6 for the worst case. We also note that the spectral ratio rm decays exponentially,
albeit with different speed for different examples. The pattern, across different problems, of
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f(a)Error history of (b) History of spectral ratio

Fig. 2 Histories of convergence of the L2 error of f and the monitored spectral ratio during training for 1D
Examples 1–5

rtol = 10−8 (b)(a)Dimension of reduced space for Relative testing error of f

Fig. 3 RBM robustness test: Dimension of the reduced space and the relative testing error versus different
scattering cross section

the spectral ratio decay leads to the different terminal RB dimensions for different problems
as shown in Tables 1 and 2.
Robustness test with respect to σs : To showcase the robustness of our method, we consider
the following example by varying strength of the scattering cross section σs ,

X = [0, 10], G = 0.01, σt ≡ C + 0.5, σs ≡ C, f (0, v) = 0 with v > 0, f (10, v) = 0

with v ≤ 0,

where C = 1, 5, 10, 25, 50, 75, 100, 200, 500, 1000. We use 40 Gauss-Legendre points as
the training set, 32Gauss-Legendre points as the test set, and take rtol = 10−8. Thedimensions
of the resulting RB spaces and the corresponding relative testing errors are reported in Fig. 3.
We clearly observe that the more scattering dominant the problem is, the fewer reduced basis
functions are needed. The fact that the relative testing error is on the same level for different
σs , even though we only monitor the spectral ratio, attests to the robustness of our method
and the reliability of our error indicators.
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Fig. 4 Geometry of the
checkerboard (2D Example 1).
Black region: scattering
dominant; white region: transport
dominant

4.2 Two-Dimensional Examples

In this section, we consider the following four examples, all with the source term G(x, y) =
exp

(−100((x − 5)2 + (y − 5)2)
)
and the zero inflow boundary condition on the computa-

tional domain X = [0, 10]2.
Example 1 (Checkerboard) This is a multiscale problem, with part of the domain being scat-
tering dominant and the rest being transport dominant. The checkerboard geometry is shown
in Fig. 4. The white region is defined as

⋃2
i, j=1{max(|x − xi |, |y− y j |) < 1}, with x1 =

y1 = 3, x2 = y2 = 7, where we set σs(x, y) = 1 and σt (x, y) = σs(x, y) + 1. In the black
region, we have σs(x, y) = σt (x, y) = 100.

Example 2 (Scattering dominant) σs(x, y) = σt (x, y) = 100.

Example 3 (Intermediate regime) σs(x, y) = σt (x, y) = 10.

Example 4 (Transport dominant) σs(x, y) = σt (x, y) = 1.

In our experiments, a uniform rectangular mesh of 40 × 40 is used for the DG scheme.
To generate the initial guess, we start from {θ j }N0

j=1, with θ j = 2( j−1)π
N0

, and use N0 = 4 for
Examples 1-3 and N0 = 8 for Example 4.

We start with applying the proposed RB algorithm with a training set of N� = 32 quadra-
ture points in the angular variable, and obtain a surrogate model for the full order upwind
DG solver. To show the efficiency and accuracy of this surrogate solver, we first present
the relative computational time and the accuracy with respect to a full order solve based on
the same N� = 32 quadrature points, and then use the RB method to predict f at angular
samples that are not included in the training set.

Efficiency and the training accuracy as a surrogate solver In Fig. 5, the relative total com-
putational time (including both the online and offline time) with respect to the full order
solver based on N� = 32 quadrature points as well as the relative L2 error are presented as
a function of rtol. As expected, the error decays as rtol becomes smaller. Examples 1-3 are in
the diffusive regime, intermediate regime and as a multiscale problem with large scattering
dominant subregions, respectively. For these problems, with a suitable rtol, one can achieve
less than 1% error with less than 18% relative computational time. Example 4 is transport
dominant. To achieve less than 2% error for this example, we need to use rtol= 10−2 and the
offline computational time is longer than that of a full order solve. To understand the poor
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(a)Relative total computational time for Examples 1-3 (b)Relative total computational time for Example 4

(c) Relative errors for Examples 1-3 (d) Relative errors for Example 4

Fig. 5 Relative total computational time and relative L2 training errors of 2D examples with N� = 32 and
different rtol

efficiency observed for Example 4, one can recall that at the end of each greedy iteration
in the offline stage, a full order method will be applied based on the angular sample set
PRB selected so far. Though each problem is of small size, the transport-dominant nature
of the model can require relatively more greedy iterations hence more solves of such small
problems, due to the known slow decay of the Kolmogorov N -width for transport dominant
problems [22, 37]. To improve the offline efficiency for such problems, nonlinear reduced
order models may be needed.

InTable 3, the training errors and the dimensions of the reduced ordermodelwith N� = 32
are presented. For Examples 1-3 with rtol = 10−3, we achieve less than 0.1% relative L2

errors, and for Example 4 with rtol = 10−2, we achieve less than 2% relative L2 errors. The
scattering dominant problem, the multiscale checkerboard problem, and the intermediate
regime problem all need relatively smaller RB spaces. The transport dominant example
requires the most reduced basis functions, and has relatively lower accuracy. Nevertheless,
the full order solve takes 6400 degrees of freedom for each sample of the angular variable.
In comparison, our RB algorithm only needs fewer than 0.5% degrees of freedom online.

Online efficiency and the prediction accuracy With the reduced basis functions obtained
from a training set of N� = 32 quadrature points, we predict the solution f at other angular
samples. In Fig. 6a, we present the relative testing errors for a group of test sets. As the size
Ntest of test sets varies, the relative errors stay at almost the same level as that for the original
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Table 3 training errors for 2D Examples 1-3 with rtol = 10−3 and 2D Example 4 with rtol = 10−2 and
N� = 32

RB dimension E f R f Eρ Rρ (%)

Example 1 8 1.50e-3 1.21e-2% 7.69e-4 3.44e-2

Example 2 4 2.40e-3 6.23e-3% 2.40e-3 3.49e-2

Example 3 10 7.10e-4 1.83e-2% 2.77e-4 4.03e-2

Example 4 26 2.95e-4 9.97e-1% 9.72e-4 1.15e-0

(a) Relative testing errors (b) Relative online computational time

Fig. 6 Relative testing errors and relative online computational time for different test sets of size Ntest, with
rtol = 10−3 for 2D Examples 1–3 and rtol = 10−2 for 2D Example 4

training set. To illustrate the computational efficiency of online prediction, we further report
in Fig. 6b the relative online computational time with respect to that of the full order solve
(with the same angular quadrature points as the test set), and they are always below 14% as
the size of test sizes varies. This implies that the proposed RB algorithm can be used as a
building block to construct ROMs when the model has essential parameters (e.g. scattering
or absorption cross sections, boundary data etc), and substantial saving can be expected for
online computation.

The comparison between the densities obtained by the RBmethod (trainedwith N� = 32)
and the full order method (with 40 quadrature points) are presented in Fig. 7, with the
former computed as the terminal density when rtol = 10−3 is reached for Examples 1-
3 and rtol = 10−2 is reached for Example 4. We see that the RB solution and the full
order solution match each other well. Moreover, the second row of Fig. 7 demonstrates the
effectiveness of our method in mitigating the ray effect [30], which refers to the phenomenon
that the particles mainly propagate along the directions of sampled angular directions and the
numerical solution has noticeable unphysical oscillations. As shown in Fig. 7(d), the initial
guess for the problem in the transport regime suffers severely from the ray effect. Even with
an initial guess of poor quality, the ray effect in the reduced order solution is less pronounced
as the dimension of the reduced space grows (see Figss 7e and Fig. 7f).

Effectiveness of the error indicator In the last test, we ask the algorithm to generateMtol = 16
reduced bases for all problems and monitor the training errors. The histories of convergence
for the L2 errors of f and the spectral ratio rm are presented in Fig. 8. Similar to the one-
dimensional cases, we see that, as the dimension of the reduced space increases, the overall
trend of the error and spectral ratio is decreasing for all examples, albeit slower than the
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(a) Example 1, 8 reduced basis (b) Example 2, 4 reduced basis (c) Example 3, 10 reduced basis

(d) Example 4, initial guess (S4) (e) Example 4, 26 reduced basis (f) Example 4, 26 reduced basis

Fig. 7 Density for 2D examples. Top row: Examples 1-3, rtol = 10−3; Bottom row: Example 4, rtol = 10−2.
In each plot - left half: full order solution; right half: RB solution; Top half: full/RB solution; bottom half:
contour of the full/RB solution

f(a)Error history of (b) History of spectral ratio

Fig. 8 Histories of convergence of the L2 error of f and the monitored spectral ratio during training for 2D
Examples 1–4

one-dimensional cases. Moreover, the different speed of decay of the spectral ratio rm for
different problems leads to the different terminal RB dimensions as shown in Tab. 3. The
fact that these quantities decay slower for transport dominant problems is consistent with the
slow decay of the Kolmogorov N -width for transport problems, see e.g. [22, 37]. As a result,
the performance of our method and many other linear ROMs suffer.

Finally we want to mention that in Appendix B, we plot and comment about the lead-
ing reduced basis functions generated by the proposed algorithm for selected 1D and 2D
examples.
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5 Conclusion

In this paper, we design a RB method to construct an angular-space reduced order model
for the linear radiative transfer equation. Unlike the standard setting where RBM applies,
the solutions for different parameter values are coupled through an integration operator. This
coupling makes impossible the direct inquiry of the snapshot for any particular parameter
value. An additional challenge is that parameter ensemble identified by traditional RBM is
usually unstructured, and thusmaynot forma set of quadrature points for a robust and accurate
integration toward the macroscopic density which is however crucial for the efficiency and
robustness of the full order SASI solver.

Via a careful iterative procedure where the macroscopic density is treated explicitly allow-
ing a transport sweep and then updated afterwards, a least squares density reconstruction
at each of the relevant physical locations, a L1-based residual-free error indicator, and
a symmetry enhancing greedy addition, we successfully designed the first RBM for the
kinetic transport equation. Our numerical experiments indicate that the newmethod is highly
effective for the scattering dominant problems, the intermediate regime problems, and the
multiscale problems with scattering dominant subregions. Moreover, as the reduced space
grows, the ray effect can be mitigated. While less efficient for transport dominant problems,
it is capable of decreasing the problem size by more than one order of magnitude and achiev-
ing one digit of accuracy. Designing a RBM that works equally well for transport dominant
problems, likely by constructing nonlinear reduced manifolds, constitutes our future work.
Other future work include the application to the full 5D model and the extension to time
dependent problems and other kinetic models.
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Appendix

Appendix A RBMethod with the Diffusion Synthetic Acceleration

In this work, we apply the S2SA to speed up the convergence of the source iteration when
algebraically solving the upwind DG discretization. One main advantage of the S2SA is that
the same kind of kinetic solver as the full order one is applied. Another type widely used
synthetic acceleration is the diffusion synthetic acceleration (DSA) [2, 3, 47]. Instead of
using a low order SN model for a kinetic problem to approximate the correction Eq. (2.10)
for δ f k+1 first and then to compute ρk,c = 〈δ f k+1〉, the DSA method works with a discrete
diffusion approximation, that is “consistent” (see [2] for the definition of the consistency),
to approximate ρk,c directly. It is known that the source iteration with “inconsistent” DSA
may converge slowly or even diverge in some regimes [2]. Compared with a straightforward
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S2SA method, the DSA will involve fewer degrees of freedom. Next we will use the 1D
model on the slab geometry as an example to present a DSA method that is consistent to the
upwind DG discretization, and then demonstrate and compare the performance of the RB
method with both synthetic acceleration strategies.

A.1 A Consistent DSAMethod

For the 1D slab geometry with X = [0, 1], by using an ansatz δ f (x, v) = ρk,c(x) + 3vg(x)
and taking the zeroth, first moments of the correction equation (2.10) in the angular variable,
we obtain an approximated diffusion model

〈v2〉︸︷︷︸
= 1

3

∂x (σt
−1∂xρ

k,c) + σaρ
k,c = σs(ρ

k,∗ − ρk), on X (A.1a)

or, equivalently, in its first order form,

∂x g + σaρ
k,c = σs(ρ

k,∗ − ρk), 〈v2〉︸︷︷︸
= 1

3

∂xρ
k,c + σt g = 0. (A.2a)

They will be complemented by the boundary conditions,

〈v(ρk,c + 3vg)〉+ = 1

4
(ρk,c + 2g) = 1

4
(ρk,c − 2

3σt
∂xρ

k,c) = 0, at x = 0, (A.3a)

〈v(ρk,c + 3vg)〉− = −1

4
(ρk,c − 2g) = −1

4
(ρk,c + 2

3σt
∂xρ

k,c) = 0, at x = 1. (A.3b)

Here 〈η〉+ = 1
2

∫
v>0 η(v)dv, 〈η〉− = 1

2

∫
v<0 η(v)dv.

Let {Ti = [xi− 1
2
, xi+ 1

2
], i = 1 . . . , Nx } be a partion of the domain X = [0, 1], we

then discretize (A.2) with a DG method: we seek ρ
k,c
h , gh ∈ UK

h , such that ∀φh, ψh ∈ UK
h ,

∀i = 1, . . . , Nx ,

−
∫
Ii
gh∂xφhdx + (ĝhφ

−
h )i+ 1

2
− (ĝhφ

+
h )i− 1

2
+

∫
Ii

σaρ
k,c
h φhdx =

∫
Ii

σs(ρ
k,∗ − ρk)φhdx,

(A.4a)

1

3

(
−

∫
Ii

ρ
k,c
h ∂xψhdx + (

̂
ρ
k,c
h ψ−

h )i+ 1
2

− (
̂
ρ
k,c
h ψ+

h )i− 1
2

)
+

∫
Ii

σt ghψhdx = 0. (A.4b)

The key to make the method (A.4) consistent to the upwind DG method for the transport

sweep step lies in the numerical fluxes (ĝh)i+ 1
2
and (

̂
ρ
k,c
h )i+ 1

2
, that shall be based on the

upwind flux for δ f .2 With this in mind, we take

(ĝh)i+ 1
2

= 〈vδ̂ f
upwind〉i+ 1

2
= 〈v(ρ

k,c
h + 3vgh)〉+(x−

i+ 1
2
) + 〈v(ρ

k,c
h + 3vgh)〉−(x+

i+ 1
2
)

= {gh}i+ 1
2

− 1

4
[ρk,c

h ]i+ 1
2
, (A.5a)

1

3
(
̂
ρ
k,c
h )i+ 1

2
= 〈v2δ̂ f upwind〉i+ 1

2
= 〈v2(ρk,c

h + 3vgh)〉+(x−
i+ 1

2
) + 〈v2(ρk,c

h + 3vgh)〉−(x+
i+ 1

2
)

2 In our RB method, we use the exact values of 〈v2〉 in (A.4) and 〈vk 〉±, k = 1, 2, 3 in (A.5). In literature,
numerical integrations with certain property are often used.
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= 1

3

(
{ρk,c

h }i+ 1
2

− 9

8
[gh]i+ 1

2

)
. (A.5b)

Here u(x−
i+ 1

2
) = u−

i+ 1
2
(resp. u(x+

i+ 1
2
) = u+

i+ 1
2
) stands for the left (resp. right) limit of

u(x) at the cell interface xi+ 1
2
. And {u}i+ 1

2
= 1

2 (u
+
i+ 1

2
+ u−

i+ 1
2
), [u]i+ 1

2
= u+

i+ 1
2

− u−
i+ 1

2
.

At boundaries, the numerical fluxes are set as (A.5) with 〈vk(ρk,c
h + 3vgh)〉+(x−

1
2
) = 0,

〈vk(ρk,c
h + 3vgh)〉−(x+

Nx+ 1
2
) = 0, k = 1, 2. In actual simulation, we eliminate gh in (A.4)

at the algebraic level, leading to a smaller linear system for ρ
k,c
h only, that is given in its

matrix-vector form as follows,(
�a − 1

4
Djump − 1

3
Dc(�t − 3

8
Djump)

−1Dcρ
k,c

)
ρk,c = �S(ρ

k,∗ − ρk), (A.6)

with Dc = 1
2

(
D+ + D−)

, Djump = D+ − D−, where

(D+)kl = −
Nx∑
i=1

∫
Ti

∂xφk(x)φl(x)dx +
Nx−1∑
i=1

φl(x
+
i+ 1

2
)φk(x

−
i+ 1

2
) −

Nx∑
i=1

φl(x
+
i− 1

2
)φk(x

+
i− 1

2
),

(A.7a)

(D−)kl = −
Nx∑
i=1

∫
Ti

∂xφk(x)φl(x)dx +
Nx∑
j=1

φl(x
−
i+ 1

2
)φk(x

−
i+ 1

2
) −

Nx∑
i=2

φl(x
−
i− 1

2
)φk(x

+
i− 1

2
).

(A.7b)

One example of “partially consistent” DSAmethods is to use central fluxes as in [3]. Partially
consistent DSA methods may result in slower convergence.

A.2 Comparison of the RBMethod with the S2SA and the DSA

For the 1D examples, we replace the S2SAwith the DSA in the source iteration, and compare
the performance of the overall RB algorithm with the two different acceleration strategies.

Table 4 Errors of the RB Method with the DSA and S2SA for 1D examples

RB dimension E f -DSA E f -S2SA Eρ -DSA Eρ -S2SA

Example 1 4 6.26e-2 8.04e-3 6.25e-2 8.00e-3

Example 2 4 6.99e-2 8.51e-3 6.98e-2 8.49e-3

Example 3 4 3.28e-3 9.35e-4 2.88e-3 8.25e-4

Example 4 RB-DSA not convergent

Example 5 RB-DSA not convergent

Table 5 Relative computational time for 1D examples: (time with S2SA)/(time with DSA)

Example 1 Example 2 Example 3 Example 4 Example 5

RB: offline 4.68 4.67 3.37 RB-DSA not convergent

Full 1.57 1.05 1.34 1.12 0.96
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The stopping criteria is rtol ≤ 10−4. For all examples, the full order solvers with the S2SA
and the DSA in the source iteration always converge to the same result. The errors for the RB
method with the S2SA and the DSA are reported in Table 4, and the relative computational
time, defined as (time with S2SA)/(time with DSA), is summarized in Table 5. The full order
model with the DSA is slightly more efficient in the diffusive regime, and it is comparable
with the S2SAmethod in other regimes. For the diffusive and intermediate regimes (Examples
1-2), the RBmethodwith theDSA ismore efficient in both offline, but the errors are relatively
larger. The angular samples picked by the greedy algorithm in the RB method are the same
for both the DSA and S2SA, and hence the online computational costs of the RBmethod with
the DSA and the S2SA are close to each other. For Example 4 (two-material problem) and
Example 5 (transport regime), the RB method with the DSA fails to converge to the correct
solution. It is known that reduced order methods can be more sensitive to the choice of
preconditioners compared with full order solvers [12, 45, 48]. In summary, when combined
with our RB method, the S2SA is more robust with various regimes and slightly more
accurate. The RB method with the DSA is slightly more efficient if it converges, but it may
fail to converge for problems with transport-dominant (sub)regions.

Appendix B Plots of Selected RB Functions

We here present some selected RB functions generated by the proposed algorithm. In Fig. 9,
we plot the first four RB functions (after the SVD orthogonalization step) for 1D Examples 1,
4, 5 from Sect . 4.1. The most interesting example is the two-material problem in Example 4.
Particularly, the presence of a material interface is captured bymost RB functions. Moreover,
all four RB functions behave fairly differently in the left subregion where the problem is
transport dominant.

In Figs. 10, 11, we present the first four reduced basis functions of 2D Examples 1 and 2
from Sect. 4.2, again after the SVD orthogonalization step. The leading RB function captures
the overall configuration of the density as in Fig. 7, while the remaining RB functions encode
various multipole structures.
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Fig. 9 First four reduced basis functions for 1D Examples 1 (left), 4 (middle), 5 (right)

Fig. 10 First four reduced basis functions, ordered from left to right and from top to bottom, for 2D Example
1 (checkerboard problem)
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Fig. 11 First four reduced basis, ordered from left to right and from top to bottom, for 2DExample 2 (scattering
dominant)
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