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Abstract

Network data is prevalent in many contemporary big data applications in which a

common interest is to unveil important latent links between di↵erent pairs of nodes. Yet

a simple fundamental question of how to precisely quantify the statistical uncertainty

associated with the identification of latent links still remains largely unexplored. In this

paper, we propose the method of statistical inference on membership profiles in large

networks (SIMPLE) in the setting of degree-corrected mixed membership model, where

the null hypothesis assumes that the pair of nodes share the same profile of community

memberships. In the simpler case of no degree heterogeneity, the model reduces to the

mixed membership model for which an alternative more robust test is also proposed.

Both tests are of the Hotelling-type statistics based on the rows of empirical eigenvectors

or their ratios, whose asymptotic covariance matrices are very challenging to derive

and estimate. Nevertheless, their analytical expressions are unveiled and the unknown

covariance matrices are consistently estimated. Under some mild regularity conditions,

we establish the exact limiting distributions of the two forms of SIMPLE test statistics

under the null hypothesis and contiguous alternative hypothesis. They are the chi-square
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distributions and the noncentral chi-square distributions, respectively, with degrees of

freedom depending on whether the degrees are corrected or not. We also address the

important issue of estimating the unknown number of communities and establish the

asymptotic properties of the associated test statistics. The advantages and practical

utility of our new procedures in terms of both size and power are demonstrated through

several simulation examples and real network applications.

Running title: SIMPLE

Key words : Network p-values; Statistical inference; Large networks; Clustering; Big data;

Random matrix theory; Eigenvectors; Eigenvalues

1 Introduction

Large-scale network data that describes the pairwise relational information among objects is

commonly encountered in many applications such as the studies of citation networks, protein-

protein interaction networks, health networks, financial networks, trade networks, and social

networks. The popularity of such applications has motivated a spectrum of research with

network data. Popularly used methods include algorithmic ones and model-based ones,

where the former uses algorithms to optimize some carefully designed criteria (e.g., Newman

(2013a,b); Zhang and Moore (2014)), and the latter relies on specific structures of some

probabilistic models (see, e.g., Goldenberg et al. (2010) for a review). This paper belongs to

the latter group. In the literature, a number of probabilistic models have been proposed for

modeling network data. As arguably the simplest model with planted community identity,

the stochastic block model (SBM) (Holland et al., 1983; Wang and Wong, 1987; Abbe, 2017)

has received a tremendous amount of attention in the last decade. To overcome the limitation

and increase the flexibility in the basic stochastic block model, various variants have been

proposed. To name a few, the degree-corrected SBM (Karrer and Newman, 2011) introduces

a degree parameter for each node to make the expected degrees match the observed ones.

The overlapping SBM, such as the mixed membership model (Airoldi et al., 2008), allows

the communities to overlap by assigning each node a profile of community memberships. See

also Newman and Peixoto (2015) for a review of network models.

An important problem in network analysis is to unveil the true latent links between

di↵erent pairs of nodes, where nodes can be broadly defined such as individuals, economic

entities, documents, or medical disorders in social, economic, text, or health networks. There

is a growing literature on network analysis with various methods available for clustering the

nodes into di↵erent communities within which nodes are more densely connected, based

on the observed adjacency matrices or the similarity matrices constructed using the node

information. These methods focus mainly on the clustering aspect of the problem, outputting

subgroups with predicted membership identities. Yet the statistical inference aspect such

as quantifying the statistical uncertainty associated with the identification of latent links
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has been largely overlooked. This paper aims at filling this crucial gap by proposing new

statistical tests for testing whether any given pair of nodes share the same membership

profiles, and providing the associated p-values.

Knowing the statistical significance of membership profiles can bring more confidence

to practitioners in decision making. Taking the stock market for example, investors often

want to form diversified portfolios by including stocks with little or no correlation in their

returns. The correlation matrix of stock returns can then be used to construct an a�nity

matrix, and stocks with relatively highly correlated returns can be regarded as in the same

community. Obtaining the pairwise p-values of stocks can help investors form diversified

portfolios with statistical confidence. For instance, if one is interested in the Apple stock,

then the pairwise p-values of Apple and all other candidate stocks can be calculated, and

stocks with the smallest p-values can be included to form portfolios. Another important

application is in legislation. For example, illegal logging greatly conflicts with indigenous

and local populations, contributing to violence, human rights abuses, and corruption. The

DNA sequencing technology has been used to identify the region of logs. In such application,

an a�nity matrix can be calculated according to the similarity of DNA sequences. Then

applying our method, p-values can be calculated and used in court as statistical evidence in

convicting illegal logging.

To make the problem concrete, we consider the family of degree-corrected mixed member-

ship models, which includes the mixed membership model and the stochastic block model as

special cases. In the degree-corrected mixed membership model, node i is assumed to have a

membership profile characterized by a community membership probability vector ⇡i 2 RK ,

where K is the number of communities and the kth entry of ⇡i specifies the mixture pro-

portion of node i in community k (Airoldi et al., 2008; Zhao et al., 2012). For example, a

book can be 30% liberal and 70% conservative. In addition, each node is allowed to have its

own degree. For any given pair of nodes i and j, we investigate whether they have the same

membership profile or not by testing the hypothesis H0 : ⇡i = ⇡j vs. Ha : ⇡i 6= ⇡j . Two

forms of statistical inference on membership profiles in large networks (SIMPLE) test are

proposed. Under the mixed membership model where all nodes have the same degree, we

construct the first form of SIMPLE test by resorting to the ith and jth rows of the spiked

eigenvector matrix of the observed adjacency matrix. We establish the asymptotic null and

alternative distributions of the test statistic, where under the null hypothesis the asymptotic

distribution is chi-square with K degrees of freedom and under the alternative hypothesis,

the asymptotic distribution is noncentral chi square with a location parameter determined

by how distinct the membership profiles of nodes i and j are.

In the more general degree-corrected mixed membership model, where nodes are allowed

to have heterogeneous degrees, we build the second form of SIMPLE test based on the

ratio statistic proposed in Jin (2015). We show that the asymptotic null distribution is chi-
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square with K � 1 degrees of freedom, and under the alternative hypothesis and some mild

regularity conditions, the test statistic diverges to infinity with asymptotic probability one.

We prove that these asymptotic properties continue to hold even with estimated population

parameters (including the number of communities K) provided that these parameters can be

estimated reasonably well. We then suggest specific estimators of these unknown parameters

and show that they achieve the desired estimation precision. These new theoretical results

enable us to construct rejection regions that are pivotal to the unknown parameters for each

of these two forms of the SIMPLE test, and to calculate p-values explicitly. Our method is

more applicable than most existing ones in the community detection literature where K is

required to be known. Although the second form of SIMPLE test can be applied to both

cases with and without degree heterogeneity, we would like to point out that the first test is

empirically more stable since it does not involve any ratio calculations. To the best of our

knowledge, this paper is the first in the literature to provide quantified uncertainty levels in

community membership estimation and inference.

Our test is most useful when one cares about local information of the network. For

instance, if the interest is whether two (or several) nodes belong to the same community

with quantified significance level, then SIMPLE can be used. Indeed, our statistics do not

rely on any pre-determined membership information. Compared to community detection

methods, our work has at least three advantages: 1) we do not need to assign memberships

to nodes that are not of interests; 2) our method can provide the level of significance, which

can be very important in scientific discoveries; and 3) if partial membership information is

known in a network, then the nodes with missing membership information can be recovered

with statistical confidence by applying our tests.

Both forms of SIMPLE test are constructed using the spectral information of the observed

adjacency matrix. In this sense, our work is related to the class of spectral clustering methods,

which is one of the most scalable tools for community detection and has been popularly used

in the literature. See, e.g., von Luxburg (2007) for a tutorial of spectral clustering methods.

See also Rohe et al. (2011); Lei and Rinaldo (2015); Jin (2015) among many others for the

specifics on the implementation of spectral methods for community detection. In addition,

the optimality for the case of two communities has been established by Abbe et al. (2017).

Our work is related to but substantially di↵erent from the link prediction problem (Liben-

Nowell and Kleinberg, 2007; Wu et al., 2018), which can be thought of as predicting pairs of

nodes as linked or non-linked. The major di↵erence is that in link prediction, only part of

the adjacency matrix is observed and one tries to predict the latent links among the nodes

which are unobserved. Moreover, link prediction methods usually do not provide statistical

confidence levels.

Our work falls into the category of hypothesis testing with network data. In the litera-

ture, hypothesis testing has been used for di↵erent purposes. For example, Arias-Castro and
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Verzelen (2014) and Verzelen and Arias-Castro (2015) formalized the problem of community

detection in a given random graph as a hypothesis testing problem in dense and sparse ran-

dom networks, respectively. Under the stochastic block model assumption, Bickel and Sarkar

(2016) proposed a recursive bipartitioning algorithm to automatically estimate the number

of communities using hypothesis test constructed from the largest principal eigenvalue of the

suitably centered and scaled adjacency matrix. The null hypothesis of their test is that the

network has only K = 1 community. Lei (2016) generalized their idea and proposed a test

allowing for K � 1 communities in the stochastic block model under the null hypothesis.

The number of communities can then be estimated by sequential testing. Wang and Bickel

(2017) proposed a likelihood ratio test for selecting the correct K under the setting of SBM.

The rest of the paper is organized as follows. Section 2 introduces the model setting and

technical preparation. We present the SIMPLE method and its asymptotic theory as well

as the implementation details of SIMPLE in Section 3. Sections 4 and 5 provide several

simulation and real data examples illustrating the finite-sample performance and utility of

our newly suggested method. We discuss some implications and extensions of our work in

Section 6. All the proofs and technical details are provided in the Supplementary Material.

2 Statistical inference in large networks

2.1 Model setting

Consider an undirected graph N = (V,E) with n nodes, where V = {1, · · · , n} is the set of

nodes and E is the set of links. Throughout the paper, we use the notation [n] = {1, · · · , n}.
Let X = (xij) 2 Rn⇥n be the symmetric adjacency matrix representing the connectivity

structure of graph N , where xij = 1 if there is a link connecting nodes i and j, and xij = 0

otherwise. We consider the general case when graph N may or may not admit self loops,

where in the latter scenario xii = 0 for all i 2 [n]. Under a probabilistic model, we will

assume that xij is an independent realization from a Bernoulli random variable for all upper

triangular entries of random matrix X.

To model the connectivity pattern of graph N , consider a symmetric binary random

matrix X
⇤ with the following latent structure

X
⇤ = H+W

⇤
, (1)

where H = (hij) 2 Rn⇥n is the deterministic mean matrix (or probability matrix) of low

rank K � 1 (see (5) later for a specification) and W
⇤ = (w⇤

ij) 2 Rn⇥n is a symmetric random

matrix with mean zero and independent entries on and above the diagonal. Assume that

the observed adjacency matrix X is either X⇤ or X⇤ � diag(X⇤), corresponding to the cases
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with or without self loops, respectively. In either case, we have the following decomposition

X = H+W, (2)

where W = W
⇤ in the presence of self loops and W = W

⇤ � diag(X⇤) in the absence of self

loops. We can see that in either case, W in (2) is symmetric with independent entries on and

above the diagonal. Our study will cover both cases. Hereafter to simplify the presentation,

we will slightly abuse the notation by referring to H as the mean matrix and W as the noise

matrix.

Assume that there is an underlying latent community structure that the network N can

be decomposed into K latent disjoint communities

C1, · · · , CK ,

where each node i is associated with the community membership probability vector

⇡i = (⇡i(1), · · · ,⇡i(K))T 2 RK such that

P (node i belongs to community Ck) = ⇡i(k), k = 1, · · · ,K. (3)

Throughout the paper, we assume that the number of communities K is unknown but

bounded away from infinity.

For any given pair of nodes i, j 2 V with i 6= j, our goal is to infer whether they share

the same community identity or not with quantified uncertainty level from the observed

adjacency matrix X in the general model (2). In other words, for each pair of nodes i, j 2 V

with i 6= j, we are interested in testing the hypothesis

H0 : ⇡i = ⇡j versus Ha : ⇡i 6= ⇡j . (4)

Throughout the paper, we consider the preselected pair (i, j) and thus nodes i and j are

fixed.

To make the problem more explicit, we consider the degree-corrected mixed membership

(DCMM) model. Using the same formulation as in Jin et al. (2017), the probability of a link

between nodes i and j with i 6= j under the DCMM model can be written as

P (xij = 1) = ✓i✓j

KX

k=1

KX

l=1

⇡i(k)⇡j(l)pkl. (5)

Here, ✓i > 0, i 2 [n], measures the degree heterogeneity, and pkl can be interpreted as

the probability of a typical member (✓i = 1, say) in community Ck connects with a typical

member (✓j = 1, say) in community Cl, as in the stochastic block model. Writing (5) in the

matrix form, we have
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H = ⇥⇧P⇧
T
⇥, (6)

where⇥ = diag(✓1, · · · , ✓n) stands for the degree heterogeneity matrix,⇧ = (⇡1, · · · ,⇡n)T 2
Rn⇥K is the matrix of community membership probability vectors, and P = (pkl) 2 RK⇥K

is a nonsingular matrix with pkl 2 [0, 1], 1  k, l  K.

The family of DCMM models in (6) contains several popularly used network models for

community detection as special cases. For example, when ⇥ =
p
✓In and ⇡i 2 {e1, · · · , eK}

with ek a unit vector whose kth component is one and all other components are zero, the

model reduces to the stochastic block model with non-overlapping communities. When

⇥ =
p
✓In and ⇡i’s are general community membership probability vectors, the model be-

comes the mixed membership model. Each of these models has been studied extensively in

the literature. Yet almost all these existing works have focused on the community detec-

tion perspective, which is a statistical estimation problem. In this paper, however we will

concentrate on the statistical inference problem (4).

2.2 Technical preparation

When ⇥ =
p
✓In, we have H = ✓⇧P⇧

T . Thus the column space spanned by ⇧ is the

same as the eigenspace spanned by the top K eigenvectors of matrix H. In other words,

the membership profiles of the network are encoded in the eigen-structure of the mean

matrix H. Denote by H = VDV
T the eigen-decomposition of the mean matrix, where D =

diag(d1, · · · , dK) with |d1| � |d2| � · · · � |dK | > 0 is the matrix of all K nonzero eigenvalues

and V = (v1, · · · ,vK) 2 Rn⇥K is the corresponding orthonormal matrix of eigenvectors.

In practice, one replaces the matrices D and V by those of the observed adjacency matrix

X. Denote by bd1, · · · , bdn the eigenvalues of matrix X and bv1, · · · , bvn the corresponding

eigenvectors. Without loss of generality, assume that |bd1| � |bd2| � · · · � |bdn| and let bV =

(bv1, · · · , bvK) 2 Rn⇥K . Denote by W = (wij) and define ↵n = {max1jn
Pn

i=1 var(wij)}1/2,
which is simply the maximum standard deviation of the column sums (node degrees).

The asymptotic mean of the empirical eigenvalue bdk for k 2 [K] has been derived in Fan

et al. (2020), which is a population quantity tk and will be used frequently in our paper.

Its definition is somewhat complicated which we now describe as follows. Let ak and bk be

defined as

ak =

8
<

:

dk
1+c0/2

if dk > 0

(1 + c0/2)dk if dk < 0
, bk =

8
<

:
(1 + c0/2)dk if dk > 0

dk
1+c0/2

if dk < 0
,

where the eigen-ratio gap constant c0 > 0 is given in Condition 1 in Section 3.1. For

any deterministic real-valued matrices M1 and M2 of appropriate dimensions and complex
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number z 6= 0, define

R(M1,M2, z) = �1

z
M

T
1 M2 �

LX

l=2

1

zl+1
M

T
1 EWl

M2 (7)

with L the smallest positive integer such that uniformly over k 2 [K],

✓
↵n

|z|

◆L

 min

⇢
1

n4
,

1

|z|4

�
, z 2 [ak, bk], (8)

where |z| denotes the modulus of complex number z. We can see that as long as |dK |
↵n

� n
✏

with some positive constant ✏, which is guaranteed by Condition 1 and Condition 2 (or 4) in

Section 3.1 (or Section 3.2), the existence of the desired positive integer L can be ensured.

We are now ready to define the asymptotic mean tk of the sample eigenvalue bdk. For

each k 2 [K], define tk as the solution to equation

1 + dk

n
R(vk,vk, z)�R(vk,V�k, z)

⇥
D

�1
�k +R(V�k,V�k, z)

⇤�1R(V�k,vk, z)
o
= 0 (9)

when restricted to the interval z 2 [ak, bk], where V�k is the submatrix of V formed by

removing the kth column and D�k is formed by removing the kth diagonal entry of D.

Then as shown in Fan et al. (2020), for each k 2 [K], tk is the asymptotic mean of the

sample eigenvalue bdk and tk/dk ! 1 as n ! 1. See also Lemma 12 in Section C.6 of

Supplementary Material, where the existence, uniqueness, and asymptotic property of tk’s

are stated.

To facilitate the technical presentation, we further introduce some notation that will be

used throughout the paper. We use a ⌧ b to represent a/b ! 0. For a matrix A = (Aij),

denote by �j(A) the jth largest eigenvalue, and kAkF =
p
tr(AAT ), kAk2, and kAk1 =

maxi,j |Aij | the Frobenius norm, the spectral norm, and the entrywise maximum norm,

respectively. In addition, we useA(k) to denote the kth row of a matrixA, and a(k) to denote

the kth component of a vector a. For a unit vector x = (x1, · · · , xn)T , let dx = max1in |xi|.
Also define ✓max = max1in ✓i and ✓min = min1in ✓i as the maximum and minimum node

degrees, respectively. For each 1  k  K, denote by Nk = {i : 1  i  n, ⇡i(k) = 1} the

set of pure nodes in community k, where each pure node belongs to only a single community.

Some additional definitions and notation are given at the beginning of Section A.
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3 SIMPLE and its asymptotic theory

3.1 SIMPLE for mixed membership models

We first consider the hypothesis testing problem (4) in the mixed membership model without

degree heterogeneity whose mean matrix takes the form (6) with ⇥ =
p
✓In, that is,

EX = H = ✓⇧P⇧
T
. (10)

Here ✓ is allowed to converge to zero as n ! 1. This model is a simple version of the

mixed membership stochastic block (MMSB) model considered in Airoldi et al. (2008). As

mentioned before, this model includes the stochastic block model with non-overlapping com-

munities as a special case.

Under model (10), if ⇡i = ⇡j then nodes i and j are exchangeable and it holds that

V(i) = V(j) by a simple permutation argument (see the beginning of the proof of Theorem 1

in Section A.1). Motivated by this observation, we consider the following test statistic for

assessing the membership information of the ith and jth nodes

Tij =
h
bV(i)� bV(j)

iT
⌃

�1
1

h
bV(i)� bV(j)

i
, (11)

where ⌃1 is the asymptotic variance of bV(i)� bV(j) that is challenging to derive and estimate.

Nevertheless, we will show that ⌃1 = cov[(ei � ej)TWVD
�1] whose expression is given in

(28) later, and provide an estimator with required accuracy.

We need the following regularity conditions in establishing the asymptotic null and al-

ternative distributions of test statistic Tij .

Condition 1. There exists some positive constant c0 such that

min{ |di||dj |
: 1  i < j  K, di 6= �dj} � 1 + c0.

In addition, ↵n ! 1 as n ! 1.

Condition 2. There exist some constants 0 < c0 < 1, 0  c2 < 1/2, 0 < c1 < 1� 2c2 such

that �K(⇧T
⇧) � c0n, �K(P) � n

�c2, and ✓ � n
�c1.

Condition 3. As n ! 1, all the eigenvalues of ✓�1
D⌃1D are bounded away from 0 and

1.

The constant c0 in Condition 1 can be replaced with some o(1) term that vanishes as n

grows at the cost of significantly more tedious calculations in our technical analysis. This

condition is imposed to exclude the complicated case of multiplicity, which can lead to the

singularity of⌃1, making our test ill-defined. A potential remedy is to use the Moore–Penrose

generalized inverse of matrix ⌃1 in defining Tij , which we will leave to the future study due
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to the extra technical challenge. We acknowledge that in some special models, results on

community detection have been established allowing multiplicity (e.g., Gao et al. (2018)).

Conditions 2 is a standard regularity assumption imposed for the case of mixed membership

models. In particular, ✓ measures the degree density and is allowed to converge to zero at

the polynomial rate n�c1 with constant c1 arbitrarily close to one. Condition 3 is a technical

condition for establishing the asymptotic properties of Tij . We provide su�cient conditions

for ensuring Condition 3 in Section D of Supplementary file. As shown in the proof of

Theorem 1, under Conditions 1 and 2, we have var[(ei� ej)TWvk] ⇠ ✓ for all k = 1, · · · ,K,

which explains the normalization factor ✓
�1 in Condition 3. Our conditions accommodate

the case where the magnitudes of spiked eigenvalues |d1|, · · · , |dK | are of di↵erent orders.

Example 1. Consider SBM with K = 2 communities of equal sizes n1 = n2 = n/2 and

n
�c1  ✓ < 1. Further assume that P has diagonal entries equal to a and o↵-diagonal

entries equal to b, with a and b some positive constants satisfying a > b. Then we have

d1 = n(a + b)✓ and d2 = n(a � b)✓. Some direct calculations show that Conditions 1–3 all

hold.

The following theorem summarizes the asymptotic distribution of test statistic Tij under

the null and alternative hypotheses.

Theorem 1. Assume that Conditions 1–2 hold under the mixed membership model (10).

i) Under the null hypothesis H0 : ⇡i = ⇡j, if in addition Condition 3 holds, then we have

Tij
D�! �

2
K (12)

as n ! 1, where �
2
K is the chi-square distribution with K degrees of freedom.

ii) Under the contiguous alternative hypothesis Ha : ⇡i 6= ⇡j but n1/2�c2
p
✓k⇡i � ⇡jk !

1, then for arbitrarily large constant C > 0, we have

P (Tij > C) ! 1 (13)

as n ! 1. Moreover, if Condition 3 holds, c2 = 0, k⇡i � ⇡jk ⇠ 1p
n✓
, and [V(i) �

V(j)]T⌃�1
1 [V(i)�V(j)] ! µ with µ some constant, then it holds that

Tij
D�! �

2
K(µ) (14)

as n ! 1, where �
2
K(µ) is a noncentral chi-square distribution with mean µ and K

degrees of freedom.

Remark 1. Under the joint null hypotheses H0,ij : ⇡i = ⇡j for all 1  i 6= j  n, we have

10



in fact proved a uniform version of the result in (12):

lim
n!1

sup
1i 6=jn

|P (Tij  x)� P (X  x)| = 0 for all x 2 R, (15)

where X ⇠ �
2
K . See Section E of Supplementary Material for more details.

In the special case of stochastic block model with non-overlapping communities, we can

see that k⇡i � ⇡jk = 0 under the null hypothesis H0, and k⇡i � ⇡jk =
p
2 under the

alternative hypothesis Ha. Thus under the null hypothesis H0 and Conditions 1–3, the test

statistic Tij has asymptotic distribution (12). Under the alternative hypotheses Ha and

Conditions 1–2, we have n
1/2�c2

p
✓k⇡i � ⇡jk ! 1 and thus the limiting result (13) holds.

The test statistic Tij is, however, not directly applicable because of the unknown pop-

ulation parameters K and ⌃1. We next show that for consistent estimators satisfying the

following conditions

P ( bK = K) = 1� o(1), (16)

✓
�1kD(bS1 �⌃1)Dk2 = op(1), (17)

the asymptotic results in Theorem 1 continue to hold.

Theorem 2. Assume that estimators bK and bS1 satisfy (16) and (17), respectively. Let bTij

be the test statistic constructed by replacing K and ⌃1 in (11) with bK and bS1, respectively.

Then Theorem 1 holds with Tij replaced by bTij under the same conditions.

Theorem 2 suggests that at significance level ↵, to test the null hypothesis H0 in (4), we

can construct the following rejection region

{ bTij > �
2
bK,1�↵

}, (18)

where �
2
bK,1�↵

is the 100(1�↵)th percentile of the chi-square distribution with bK degrees of

freedom. The following corollary justifies the asymptotic size and power of our test.

Corollary 1. Assume that bK and bS1 satisfy (16) and (17), respectively. Under the same

conditions for ensuring (12), event (18) holds with asymptotic probability ↵. Under the same

conditions for ensuring (13), event (18) holds with asymptotic probability one.

3.2 SIMPLE for degree-corrected mixed membership models

In this section, we further consider the hypothesis testing problem (4) in the more general

DCMMmodel (6). Degree heterogeneity in network models has been explored in the statistics

literature. To name a few, Jin et al. (2017) considered the estimation of node membership

assuming the average degree of the nodes to be much larger than log n. Jin and Ke (2017)
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established a sharp lower bound for the estimated node membership allowing the average

node degree to diverge with the order log2 n or faster. Zhang et al. (2020) proposed a

spectral-based detection algorithm to recover the node membership assuming that ✓max/✓min

is bounded by some positive constant. Our assumption on the degree heterogeneity is similar

to that in Zhang et al. (2020) and will be presented in Condition 4 below.

The test statistic Tij defined in Section 3.1 is no longer applicable due to the degree

heterogeneity. A simple algebra shows that degree heterogeneity can be eliminated by the

ratios of eigenvectors (columnwise division). Thus, following Jin (2015), to correct the degree

heterogeneity we define the following componentwise ratio

Y (i, k) =
bvk(i)

bv1(i)
, 1  i  n, 2  k  K, (19)

where 0/0 is defined as 1 by convention. Note that the division here is to get rid of the

degree heterogeneity and the equality

vk(i)

v1(i)
=

vk(j)

v1(j)
, 2  k  K (20)

holds under the null hypothesis, which is due to the exchangeability of nodes i and j under

the mixed membership model; see (18) at the beginning of the proof of Theorem 3 in Section

A.4. Denote by Yi = (Y (i, 2), · · · , Y (i,K))T . Our new test statistic will be built upon Yi.

To test the null hypothesis H0 : ⇡i = ⇡j , using (19) and (20), we propose to use the

following test statistic

Gij = (Yi �Yj)
T
⌃

�1
2 (Yi �Yj) (21)

for assessing the null hypothesis H0 in (4), where ⌃2 is the asymptotic variance of Yi �Yj .

This is even much harder to derive and estimate. Nevertheless, we will show ⌃2 = cov(f)

with f = (f2, · · · , fK)T and

fk =
e
T
i Wvk

tkv1(i)
�

e
T
j Wvk

tkv1(j)
� vk(i)eTi Wv1

t1v
2
1(i)

+
vk(j)eTj Wv1

t1v
2
1(j)

. (22)

The entries of ⌃2 are given by (29) later that also involves the asymptotic mean of bdk.
The following conditions are needed for investigating the asymptotic properties of test

statistic Gij .

Condition 4. There exist some constants c2 2 [0, 1/2), c3 2 (0, 1 � 2c2), c5 2 (0, 1) and

c4 > 0 such that �K(P) � n
�c2, min1kK |Nk| � c5n, ✓max  c4✓min, and ✓

2
min � n

�c3.

Condition 5. Matrix P = (pkl) is positive definite, irreducible, and has unit diagonal entries.

Moreover nmin1kK, t=i,j var(eTt Wvk) ⇠ n✓
2
max ! 1.

Condition 6. It holds that all the eigenvalues of (n✓2max)
�1

Dcov(f)D are bounded away

from 0 and 1.

12



Condition 7. Let ⌘1 be the first right singular vector of P⇧
>
⇥

2
⇧. It holds that

min
1kK

⌘1(k) > 0, and
max1kK ⌘1(k)

min1kK ⌘1(k)
 C,

for some positive constant C, where ⌘1(k) is the k-th entry of ⌘1.

Conditions 4–7 are similar to those in Jin et al. (2017). In particular, Conditions 4, 5

and 7 are special cases of (2.13), (2.14) and (2.16) therein. Same as in the previous section,

the degree density is measured by ✓
2
min and is allowed to converge to zero at rate n

�c3 , and

our conditions accommodate the case where |d1|, · · · , |dK | are of di↵erent orders.

Theorem 3. Assume that Conditions 1 and 4–7 hold under the degree-corrected mixed mem-

bership model (6).

i) Under the null hypothesis H0 : ⇡i = ⇡j, we have as n ! 1,

Gij
D�! �

2
K�1. (23)

ii) Under the contiguous alternative hypothesis with �2(⇡i⇡T
i + ⇡j⇡T

j ) � 1
n1�2c2✓2min

, we

have for any arbitrarily large constant C > 0,

P (Gij > C) ! 1 as n ! 1. (24)

A uniform result similar to (15) has also been proved in Section E of Supplementary

Material under the DCMM. The test statistic Gij is not directly applicable in practice due

to the presence of the unknown population parameters K and ⌃2. Nevertheless, certain

consistent estimators can be constructed and the results in Theorem 3 remain valid. In

particular, for the estimator bK of K, we require condition (16) and for the estimator bS2 of

⌃2, we need the following property

(n✓2max)
�1kD(bS2 �⌃2)Dk2 = op(1). (25)

Theorem 4. Assume that the estimators bK and bS2 of parameters K and ⌃2 satisfy (16)

and (25), respectively. Let bGij be the test statistic constructed by replacing K and ⌃2 with

bK and bS2, respectively. Then Theorem 3 holds with Gij replaced by bGij under the same

conditions.

Theorem 4 suggests that with significance level ↵, the rejection region can be constructed

as

{ bGij > �
2
bK�1,1�↵

}. (26)

We have similar results to Corollary 1 regarding the type I and type II errors of the above

rejection region.
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Corollary 2. Assume that bK and bS2 satisfy (16) and (25), respectively. Under the same

conditions for ensuring (23), event (26) holds with asymptotic probability ↵. Under the same

conditions for ensuring (24), event (26) holds with asymptotic probability one.

It is worth mentioning that since the DCMM model (6) is more general than the mixed

membership model (10), the test statistic bGij can be applied even under model (10). However,

as will be shown in our simulation studies in Section 4, the finite-sample performance of bTij

can be better than that of bGij in such a model setting, which is not surprising since the

latter involves ratios (see (19)) in its definition and has two sources of variations from both

numerators and denominators. This is also reflected in losing one degree of freedom in (26)

3.3 Estimation of unknown parameters

We now discuss some consistent estimators of K, ⌃1, and ⌃2 that satisfy conditions (16),

(17), and (25), respectively. There are some existing works concerning the estimation of

parameter K. For example, Lei (2016); Chen and Lei (2018); Daudin et al. (2008); Latouche

et al. (2012); Saldana et al. (2017); Wang and Bickel (2017), among others. Most of these

works consider specific network models such as the stochastic block model or degree-corrected

stochastic block model.

In our paper, since we consider the general DCMM model (6) which allows for mixed

memberships, the existing methods are no longer applicable. To overcome the di�culty, we

suggest a simple thresholding estimator defined as

bK =
���
n
bdi : bd2i > 2.01(log n)ďn, i 2 [n]

o���, (27)

where | · | stands for the cardinality of a set, the constant 2.01 can be replaced with any other

constant that is slightly larger than 2, and ďn = max1ln
Pn

j=1Xlj is the maximum degree

of the network. That is, we count the number of eigenvalues of matrix X whose magnitudes

exceed a certain threshold. The following lemma justifies the consistency of bK defined in

(27) as an estimator of the true number of communities K.

Lemma 1. Assume that Condition 1 holds, |dK | �
p
log(n)↵n and ↵n � n

c5 for some

positive constant c5. Then bK defined in (27) is consistent, that is, it satisfies condition (16).

Observe in Theorems 1–4 that we need the condition of K � 1 for test statistic bTij and

the condition of K � 2 for test statistic bGij . Motivated by such an observation, we propose

to use max{ bK, 1} and max{ bK, 2} as the estimated number of communities in implementing

test statistics bTij and bGij , respectively.

We next discuss the estimation of ⌃1 and ⌃2. The following two lemmas provide the

expansions of these two matrices which serve as the foundation for our proposed estimators.
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Lemma 2. The (a, b)th entry of matrix ⌃1 is given by

1

dadb

8
<

:
X

t2{i,j}

nX

l=1

�
2
tlva(l)vb(l)� �

2
ij [va(j)vb(i) + va(i)vb(j)]

9
=

; , (28)

where �
2
ab = var(wab) for 1  a, b  n.

Lemma 3. The (a, b)th entry of matrix ⌃2 is given by

1

t
2
1

n nX

l=1, l 6=j

�
2
il


t1va+1(l)

ta+1v1(i)
� va+1(i)v1(l)

v1(i)2

� 
t1vb+1(l)

tb+1v1(i)
� vb+1(i)v1(l)

v1(i)2

�

+
nX

l=1, l 6=i

�
2
jl


t1va+1(l)

ta+1v1(j)
� va+1(j)v1(l)

v1(j)2

� 
t1vb+1(l)

tb+1v1(j)
� vb+1(j)v1(l)

v1(j)2

�

+ �
2
ij


t1va+1(j)

ta+1v1(i)
� va+1(i)v1(j)

v1(i)2
� t1va+1(i)

ta+1v1(j)
+

va+1(j)v1(i)

v1(j)2

�

⇥

t1vb+1(j)

tb+1v1(i)
� vb+1(i)v1(j)

v1(i)2
� t1vb+1(i)

tb+1v1(j)
+

vb+1(j)v1(i)

v1(j)2

�o
. (29)

The above expansions in Lemmas 2–3 suggest that the covariance matrices ⌃1 and ⌃2

can be estimated by plugging in the sample estimates to replace the unknown population

parameters. In particular, va and da can be estimated by bva and bda, respectively, and the

last result in Lemma 12 suggests that tk can be estimated by bdk very well. The estimation

of �2
ab is more complicated and we will discuss it in more details below.

Recall that �
2
ab = var(wab). With estimated bK, a naive estimator of �2

ab is bw2
0,ab with

cW0 = ( bw0,ab) = X�
P bK

k=1
bdkbvkbvT

k . The good news is that it appears in (28) and (29) in the

form of the average and hence the variance will be averaged out. However, this estimator is

not good enough to make (17) and (25) hold due to the well-known fact that d̂k is biased

up. Thus we propose the following one-step refinement procedure to estimate �
2
ab, which

is motivated from the higher-order asymptotic expansion of empirical eigenvalue bdk in our

theoretical analysis and shrinks bdk to make the bias at a more reasonable level.

1). Calculate the initial estimator cW0 = X�
P bK

k=1
bdkbvkbvT

k .

2). With the initial estimator cW0, update the estimator of eigenvalue dk as

edk =
h 1
bdk

+
bvT
k diag(

cW2
0)bvk

bd3k

i�1
.

3). Then update the estimator of W as cW ⌘ ( bwij) = X�
P bK

k=1
edkbvkbvT

k and estimate �
2
ab

as b�2
ab = bw2

ab.

To summarize, we propose to estimate matrix ⌃1 by replacing dk, vk, and �
2
ab with bdk,

bvk, and b�2
ab, respectively, in (28). The covariance matrix ⌃2 can be estimated in a similar
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way by replacing tk, vk, and �
2
ab with bdk, bvk, and b�2

ab, respectively, in (29). Denote by bS1

and bS2 the resulting estimators, respectively. The following lemma justifies the e↵ectiveness

of these two estimators.

Theorem 5. Under Conditions 1–3, estimator bS1 satisfies condition (17). Under Conditions

1 and 4–7, estimator bS2 satisfies condition (25).

We remark that through higher moments calculations, it can be proved that (17) and

(25) uniformly hold for all 1  i 6= j  n.

4 Simulation studies

We use simulation examples to examine the finite-sample performance of our new SIMPLE

test statistics bTij and bGij with true and estimated numbers of communities K, respectively.

In particular, we consider the following two model settings.

Model 1: the mixed membership model (10). We consider K = 3 communities, where

there are n0 pure nodes within each community. Thus for the kth community, the community

membership probability vector for each pure node is ⇡ = ek 2 RK . The remaining n� 3n0

nodes are divided equally into 4 groups, where within the lth group all nodes have mixed

memberships with community membership probability vector al, l = 1, · · · , 4. We set a1 =

(0.2, 0.6, 0.2)T , a2 = (0.6, 0.2, 0.2)T , a3 = (0.2, 0.2, 0.6)T , and a4 = (13 ,
1
3 ,

1
3)

T . Matrix P has

diagonal entries one and (i, j)th entry equal to ⇢
|i�j| for i 6= j. We experiment with two sets

of parameters (⇢, n, n0) = (0.2, 3000, 500) and (0.2, 1500, 300), and vary the value of ✓ from

0.2 to 0.9 with step size 0.1. It is clear that parameter ✓ has direct impact on the average

degree and hence measures the signal strength.

Model 2: the DCMM model (6). Both matrices ⇧ and P are the same as in Model 1. For

the degree heterogeneity matrix ⇥ = diag(✓1, · · · , ✓n), we simulate 1
✓i

as independent and

identically distributed (i.i.d.) random variables from the uniform distribution on [1r ,
2
r ] with

r 2 (0, 1]. We consider di↵erent choices of r with r
2 2 {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We

can see that as parameter r2 increases, the signal becomes stronger.

4.1 Hypothesis testing with K known

Recall that our test statistics are designed to test the membership information for each

preselected pair of nodes (i, j) with 1  i 6= j  n. To examine the empirical size of

our tests, we preselect (i, j) as two nodes with community membership probability vector

(0.2, 0.6, 0.2)T . To examine the empirical power of our tests, we preselect i as a node with

community membership probability vector (0.2, 0.6, 0.2)T and j as a node with community

membership probability vector (0, 1, 0)T . The nominal significance level is set to be 0.05

when calculating the critical points and the number of repetitions is chosen as 500.

16



We first generate simulated data from Model 1 introduced above and examine the em-

pirical size and power of test statistic bTij with estimated ⌃1, but with the true value of K.

Then we consider Model 2 and examine the empirical size and power of test statistic bGij

with estimated ⌃2 and the true value of K. The empirical size and power at di↵erent signal

levels are reported in Tables 1 and 2, corresponding to sample sizes n = 1500 and 3000,

respectively. As shown in Tables 1 and 2, the size and power of our tests converge quickly to

the nominal significance level 0.05 and the value of one, respectively, as the signal strength

✓ (related to e↵ective sample size) increases. As demonstrated in Figure 1, the empirical

null distributions are well described by our theoretical results. These results provide stark

empirical evidence supporting our theoretical findings, albeit complicated formulas (28) and

(29).

Table 1: The size and power of test statistics bTij and bGij when the true value of K is used.
The nominal level is 0.05 and sample size is n = 1500.

Model 1

✓ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.058 0.046 0.06 0.05 0.05 0.058 0.036 0.05

Power 0.734 0.936 0.986 0.998 1 1 1 1

Model 2

r
2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.076 0.062 0.072 0.062 0.074 0.046 0.044 0.056

Power 0.426 0.562 0.696 0.77 0.89 0.93 0.952 0.976

Table 2: The size and power of test statistics bTij and bGij when the true value of K is used.
The nominal level is 0.05 and sample size is n = 3000.

Model 1

✓ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r
2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.06 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.67 0.842 0.918 0.972 0.99 1 1 1

Figure 1 presents how the asymptotic null distributions change with sample size n when

✓ = 1/(2 log n) and r
2 = 1/(2 log n), respectively, for Model 1 and Model 2. It is seen that

the network become sparser as its size increases. The top panel shows the histogram plots

when n = 1500 and the bottom panel corresponds to n = 3000. One can observe that as

sample size increases, the �
2-distribution fits the empirical null distribution better, which is

consistent with our theoretical results.
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Figure 1: Left: the histogram of test statistic bTij under null hypothesis with known K when

✓ = 1
2 logn . Blue curve is the density function of �2

3. Right: the histogram of test statistic bGij

under null hypothesis with known K when r
2 = 1

2 logn . Blue curve is the density function

of �2
2. Top panel is for sample size n = 1500 and bottom panel is for sample size n = 3000.

Here n0 =
n
5 .

4.2 Hypothesis testing with estimated K

We now examine the finite-sample performance of our test statistics bTij and estimated bGij

with estimated K. The simulation settings are identical to those in Section 4.1 except that

we explore only the setting with sample size n = 3000.

In Table 3, we report the proportion of correctly estimated K using the thresholding rule

(27) in both simulation settings of Models 1 and 2. It is seen that as the signal becomes

stronger (i.e., as ✓ or r2 increases), the estimation accuracy becomes higher. We also observe

that for relatively weak signals, the thresholding rule in (27) tends to underestimate K,

resulting in low estimation accuracy. We can see from the same table that over all repetitions,
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K is either correctly estimated or underestimated. The critical values are constructed based

on these estimated values of K.

Table 3: Estimation accuracy of K using the thresholding rule (27)

✓ or r2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Model 1 P ( bK = K) 1 1 1 1 1 1 1 1

P ( bK  K) 1 1 1 1 1 1 1 1

Model 2 P ( bK = K) 0 0 0 1 1 1 1 1

P ( bK  K) 1 1 1 1 1 1 1 1

Table 4: The size and power of test statistics bTij and bGij when the estimated value of K is
used. The nominal level is 0.05 and sample size is n = 3000.

Model 1

✓ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.082 0.066 0.052 0.052 0.044 0.042 0.038 0.062

Power 0.936 0.994 1 1 1 1 1 1

Model 2

r
2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.054 0.058 0.062 0.058 0.062 0.066 0.064 0.06

Power 0.074 0.042 0.918 0.972 0.99 1 1 1

Same as in Section 4.1, we also examine the empirical size and power of our tests at

di↵erent levels of signal strength. The results are presented in Table 4. It is seen that the

performance of bTij is identical to that in Table 2, and the performance of bGij is the same as

in Table 2 for all r2 > 0.3. This is expected because of the nearly perfect estimation of K

as shown in Table 3 in these scenarios and/or the relatively strong signal strength. When

r
2  0.3, bGij has poor power because of the underestimated K (see Table 3). Nevertheless,

we observe the same trend as the signal strength increases, which provides support for our

theoretical results. We have also applied our tests to nodes with more distinct membership

probability vectors (0.2, 0.6, 0.2)T and (0, 0, 1)T , and the impact of estimated K is much

smaller. These additional simulation results are available upon request.

5 Real data applications

5.1 U.S. political data

The U.S. political data set consists of 105 political books sold by an online bookseller in the

year of 2004. Each book is represented by a node and links between nodes represent the

frequency of co-purchasing of books by the same buyers. The network was compiled by V.

Krebs (source: http://www.orgnet.com). The books have been assigned manually three

labels (conservative, liberal, and neutral) by M. E. J. Newman based on the reviews and
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descriptions of the books. Note that such labels may not be very accurate. In fact, as argued

in multiple papers (e.g., Koutsourelakis and Eliassi-Rad (2008)), the mixed membership

model may better suit this data set.

Since our SIMPLE tests bTij and bGij do not di↵erentiate network models with or without

mixed memberships, we will view the network as having K = 2 communities (conservative

and liberal) and treat the neutral nodes as having mixed memberships. To connect our

results with the literature, we consider the same 9 books reported in Jin et al. (2017).

Another reason of considering the same 9 books as in Jin et al. (2017) is that our test

statistic bGij is constructed using the SCORE statistic which is closely related to Jin et al.

(2017). The book names as well as labels (provided by Newman) are reported in Table 5.

The p-values based on test statistics bTij and bGij for testing the pairwise membership profiles

of these 9 nodes are summarized in Tables 6 and 7, respectively.

From Table 7, we see that our results based on test statistic bGij are mostly consistent with

the labels provided by Newman and also very consistent with those in Table 5 of Jin (2015).

For example, books 59 and 50 are both labeled as “conservative” by Newman and our tests

return large p-values between them. These two books generally have much smaller p-values

with books labeled as “neutral.” Book 78, which was labeled as “conservative” by Newman,

seems to be more similar to some neutral books. This phenomenon was also observed in Jin

et al. (2017), who interpreted this as a result of having a liberal author. Among the nodes

labeled by Newman as “neutral,” “All the Shah’s Men,” or book 29, has relatively larger

p-values with conservative books. However, this book has even larger p-values with some

other neutral books such as book 104, “The Future of Freedom,” which is consistent with the

results in Jin et al. (2017) who reported that these two books have very close membership

probability vectors. In summary, our SIMPLE method provides statistical significance for

the membership probability vectors estimated in Jin et al. (2017).

For a summary of our testing results, we also provide the multidimensional scaling map

of the nodes based on test statistics bGij on the left panel of Figure 2. The graph on the right

panel of Figure 2 is defined by the pairwise p-value matrix calculated from bGij . Specifically,

we first apply the hard-thresholding to the p-value matrix by setting all entries below 0.05

to 0. Denote by eP the resulting matrix. Then we plot the graph using the entries of eP
as edge weights so that zeros correspond to unconnected pairs of nodes and larger entries

mean more closely connected nodes with thicker edges. The nodes in both graphs are color

coded according to Newman’s labels, with red representing “conservative,” blue representing

“liberal,” and orange representing “neutral.” It is seen that both graphs are mostly consistent

with Newman’s labels, with a few exceptions as partially discussed before. We also would

like to mention that the hard-thresholding step in p-value graph is to make the graph less

dense and easier to view. In fact, a small perturbation of the threshold does not change

much of the overall layout of the graph.
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Table 5: Political books with labels

Title Label (by Newman) Node index

Empire Neutral 105

The Future of Freedom Neutral 104

Rise of the Vulcans Conservative 59

All the Shah’s Men Neutral 29

Bush at War Conservative 78

Plan of Attack Neutral 77

Power Plays Neutral 47

Meant To Be Neutral 19

The Bushes Conservative 50

Table 6: P-values based on test statistics bTij . The labels provided by Newman are in the
parentheses.

Node No. 105(N) 104(N) 59(C) 29(N) 78(C) 77(N) 47(N) 19(N) 50(C)

105(N) 1.0000 0.6766 0.0298 0.3112 0.0248 0.0000 0.0574 0.1013 0.0449

104(N) 0.6766 1.0000 0.0261 0.2487 0.0204 0.0000 0.0643 0.1184 0.0407

59(C) 0.0298 0.0261 1.0000 0.1546 0.2129 0.0013 0.0326 0.0513 0.9249

29(N) 0.3112 0.2487 0.1546 1.0000 0.3206 0.0034 0.0236 0.0497 0.2121

78(C) 0.0248 0.0204 0.2129 0.3206 1.0000 0.0991 0.0042 0.0084 0.2574

77(N) 0.0000 0.0000 0.0013 0.0034 0.0991 1.0000 0.0000 0.0000 0.0035

47(N) 0.0574 0.0643 0.0326 0.0236 0.0042 0.0000 1.0000 0.9004 0.0834

19(N) 0.1013 0.1184 0.0513 0.0497 0.0084 0.0000 0.9004 1.0000 0.1113

50(C) 0.0449 0.0407 0.9249 0.2121 0.2574 0.0035 0.0834 0.1113 1.0000

Table 7: P-values based on test statistics bGij . The labels provided by Newman are in the
parentheses.

Node No. 105(N) 104(N) 59(C) 29(N) 78(C) 77(N) 47(N) 19(N) 50(C)

105(N) 1.0000 0.4403 0.1730 0.4563 0.8307 0.5361 0.0000 0.0000 0.1920

104(N) 0.4403 1.0000 0.0773 0.9721 0.3665 0.6972 0.0000 0.0000 0.1144

59(C) 0.1730 0.0773 1.0000 0.0792 0.1337 0.0885 0.0000 0.0000 0.8141

29(N) 0.4563 0.9721 0.0792 1.0000 0.4256 0.7624 0.0000 0.0000 0.1153

78(C) 0.8307 0.3665 0.1337 0.4256 1.0000 0.5402 0.0000 0.0000 0.1591

77(N) 0.5361 0.6972 0.0885 0.7624 0.5402 1.0000 0.0000 0.0000 0.1294

47(N) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.9778 0.0000

19(N) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9778 1.0000 0.0000

50(C) 0.1920 0.1144 0.8141 0.1153 0.1591 0.1294 0.0000 0.0000 1.0000
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Figure 2: Left panel: the multidimensional scaling map of the nodes based on test statistics
bGij . Right panel: the connectivity graph generated from the thresholded p-valuate matrix

based on bGij . The nodes are color coded according to Newman’s labels, with red representing
“conservative,” blue representing “liberal,” and orange representing “neutral.”

5.2 Stock data

We consider a larger network of stocks in this section. Specifically, daily prices of stocks in

the S&P 500 from the period of January 2, 2009 to December 30, 2019 were collected and

converted into log returns. After some pre-processing (e.g., removing stocks with missing

values or very low node degrees), we ended up with 404 stocks. All data analyses in this

section were conducted using those 404 stocks. It is well known that much variation in stock

excess returns can be captured by factors such as the Fama–French three factors. We first

remove these common factors by fitting a factor model, and then the adjacency matrix of

stocks is constructed as the correlation matrix of idiosyncratic components from the factor

model.

Since stocks are commonly believed to have heterogeneous node degrees, we only apply

bGij to the constructed adjacency matrix. The estimated number of communities is bK = 3.

For each pair of stocks, we calculate its p-value using bGij and the asymptotic null distribution

�
2
2. This forms a p-value matrix, denoted as A. To better visualize the results, we provide

the multiscale plot of the distance matrix 1�A with 1 the matrix with all entries being 1,

and present the results in Figure 3. It is seen that the scatter plot roughly has three legs

and a central cluster. The three legs can be interpreted as the three communities with nodes

having relatively more pure membership profiles, and the central cluster can be understood

as for nodes with mixed membership profiles. For easier visualization, we provide zoomed

plots for the three legs and the central cluster in Figure 4. The first three subplots a)–c)

correspond to the three legs, and the last subplot d) corresponds to the central cluster.

We observe some interesting clustering e↵ects. Figure 4a) corresponds to the top leg in
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HD L AAPL INTC MCHP AEE NEE EVRG ADBE

TGT 0.29643 0.71361 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00033

HD 1.00000 0.14934 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00025

L 0.14934 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00031

AAPL 0.00000 0.00000 1.00000 0.00780 0.01933 0.00004 0.00003 0.00010 0.00395

INTC 0.00000 0.00000 0.00780 1.00000 0.00024 0.00000 0.00000 0.00000 0.00148

MCHP 0.00000 0.00000 0.01933 0.00024 1.00000 0.00000 0.00000 0.00000 0.00202

AEE 0.00000 0.00000 0.00004 0.00000 0.00000 1.00000 0.93719 0.46490 0.00467

NEE 0.00000 0.00000 0.00003 0.00000 0.00000 0.93719 1.00000 0.24407 0.00467

EVRG 0.00000 0.00000 0.00010 0.00000 0.00000 0.46490 0.24407 1.00000 0.00465

ADBE 0.00025 0.00031 0.00395 0.00148 0.00202 0.00467 0.00467 0.00465 1.00000

Table 8: The p-value matrix for selected stocks.

Figure 3. When it is far away from the central cluster (i.e., top left of this subplot), we

have stocks mostly related to the retail and restaurant industry (e.g., TGT, HD, LOW,

DRI), and when it moves closer to the central cluster (i.e, bottom right of this subplot),

the companies are mostly in the real estate (e.g., EXR, VTR, PSA, AVB, PLD). Figure

4b) mostly consists of tech companies such as AAPL, MCHP, MU, INTC, XLNX, QCOM,

ADI, among many others in similar category. Figure 4c) roughly has two subclusters. The

left cluster mostly consists of companies in or related to the health industry such as DGX,

VAR, GLW, MDT, CERN, TEL, UNH, PFE, BMY, and many other similar ones. The right

cluster has predominately companies in the energy industry such as AEE, NEE, EVRG,

PNW, DUK, LNT, LNT, ES. Figure 4d) is a zoomed plot that roughly shows the central

cluster. It contains a wide range of companies including, but not limited to, risk management

and investment companies (BEN, HIG, NDAQ), transportation industry (AAL, NSC, UAL),

and communication industry (CTL, VRSN, CTXS).

In Table 8 below, we also present the p-value matrix for selected stocks. The first three

stocks (TGT, HD, L) are all in the retail industry, the next three stocks (APPL, INTC,

MCHP) are all in the tech industry, stocks 7 to 9 (AEE, NEE, EVRG) are all in the energy

industry, and the remaining one (ADBE) is taken from the central cluster. It is seen that

the first three groups of stocks have high pairwise p-values within groups, but almost zero

p-values with stocks from other groups. In particular, Adobe (ADBE) seems to be connected

to most of these selected stocks, which is consistent with the common sense. We would also

like to point out that these results were obtained after removing the three common factors

from the stock returns, and the clustering structure discovered here should be interpreted as

complementary to the ones already captured by the factors.
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Figure 3: Multiscale plot based on the distance matrix 1 � A, where 1 is the matrix with
all entries being 1 and A is the p-value matrix based on bGij . It is seen that the scatter plot
roughly has three legs and a central cluster.

6 Discussions

In this paper, we have asked a simple yet practical question of how to determine whether any

given pair of nodes in a network share the same profile of latent community memberships for

large-scale social, economic, text, or health network data with precise statistical significance.

Our work represents a first attempt to partially address such an important question. The

suggested method of statistical inference on membership profiles in large networks (SIMPLE)

provides theoretically justified network p-values in our context for both settings of mixed

membership models and degree-corrected mixed membership models. We have formally

shown that the two forms of SIMPLE test statistics can enjoy simple limiting distributions

under the null hypothesis and appealing power under the contiguous alternative hypothesis.

In particular, the tuning-free feature of SIMPLE makes it easy to use by practitioners. Our

newly suggested method and established theory lay the foundation for practical policies or

recommendations rooted on statistical inference for network data with quantifiable impacts.

To illustrate the key ideas of SIMPLE and simplify the technical analysis, we have focused

our attention on the hypothesis testing problem for any preselected pair of nodes. It would be

interesting to study the problem when one of or each of the nodes is replaced by a selected set

of nodes. For example, in certain applications one may have some additional knowledge that
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Figure 4: Zoomed multiscale plots based on the distance matrix 1 � A, where A is the
p-value matrix based on bGij .

all the nodes within the selected set indeed share the same membership profile information.

It would also be interesting to quantify and control the statistical inference error rates when

one is interested in performing a set of hypothesis tests simultaneously for network data.

Moreover, it would be interesting to investigate the hypothesis testing problem for more

general network models as well as for statistical models beyond network data such as for

large collections of text documents.

In addition, it would be interesting to connect the growing literature on sparse covariance

matrices and sparse precision matrices with that on network models. Such connections can

be made via modeling the graph Laplacian through a precision matrix or covariance matrix

(Brownlees et al., 2019). A natural question is then how well the network profiles can be

inferred from a panel of time series data. The same question also arises if the panel of time

series data admits a factor structure (Fan et al., 2008, 2013). These problems and extensions

are beyond the scope of the current paper and will be interesting topics for future research.
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This Supplementary Material contains all the proofs and technical details.

A Proofs of main results

To facilitate the technical presentation, we list two definitions below, where n represents the

network size and dimensionality of eigenvectors.

Definition 1. Let ⇣ and ⇠ be a pair of random variables that may depend on n. We say that

they satijsfy ⇠ = O�(⇣) if for any pair of positive constants (a, b), there exists some positive

integer n0(a, b) depending only on a and b such that P(|⇠| > na|⇣|)  n�b for all n � n0(a, b).

Definition 2. We say that an event An holds with high probability if for any positive constant

a, there exists some positive integer n0(a) depending only on a such that P (An) � 1 � n�a

for all n � n0(a).

From Definitions 1 and 2 above, we can see that if ⇠ = O�(⇣), then it holds that ⇠ = O(na|⇣|)
with high probability for any positive constant a. The strong probabilistic bounds in the

statements of Definitions 1 and 2 are in fact consequences of analyzing large binary random

matrices given by networks.

Let us introduce some additional notation. Since the eigenvectors are always up to a

sign change, for simplicity we fix the orientation of the empirical eigenvector bvk such that

bvT
k vk � 0 for each 1  k  K, where vk is the kth population eigenvector of the low-rank

mean matrixH in our general network model (2). It is worth mentioning that all the variables

are real-valued throughout the paper except that variable z can be complex-valued. For any

nonzero complex number z, deterministic matrices M1 and M2 of appropriate dimensions,
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1  k  K, and n-dimensional unit vector u, we define

P(M1,M2, z) = zR(M1,M2, z), ePk,z =
⇥
z2(Avk,k,z/z)

0⇤�1
, (1)

bu,k,z = u�V�k

⇥
(D�k)

�1 +R(V�k,V�k, z)
⇤�1RT (u,V�k, z), (2)

where R(M1,M2, z) is defined in (7),

Au,k,z = P(u,vk, z)� P(u,V�k, z)
⇥
z(D�k)

�1 + P(V�k,V�k, z)
⇤�1 P(V�k,vk, z), (3)

(Avk,k,z/z)
0 denotes the derivative of Avk,k,z/z with respect to complex variable z, V�k

represents a submatrix of V = (v1, · · · ,vK) by removing the kth column, and D�k stands

for a principal submatrix of D = diag(d1, · · · , dK) by removing the kth diagonal entry.

A.1 Proof of Theorem 1

We first prove the conclusion in the first part of Theorem 1 under the null hypothesis

H0 : ⇡i = ⇡j , where (i, j) with 1  i < j  n represents a given pair of nodes in the

network. In particular, Lemma 6 in Section B.8 of Supplementary Material plays a key

role in the technical analysis. For the given pair (i, j), let us define a new random matrix

eX = (exlm)1l,mn based on the original random matrix X = (xlm)1l,mn by swapping the

roles of nodes i and j, namely by setting

exlm =

8
>>>>>>>>>><

>>>>>>>>>>:

xlm, l,m 2 {i, j}c

xim, l = j, m 2 {i, j}c

xjm, l = i, m 2 {i, j}c

xli, m = j, l 2 {i, j}c

xlj , m = i, l 2 {i, j}c

and exlm =

8
>>><

>>>:

xij , (l,m) = (i, j) or (j, i)

xii, l = m = j

xjj , l = m = i

, (4)

where {i, j}c stands for the complement of set {i, j} in the node set {1, · · · , n}. It is easy to

see that the new symmetric random matrix eX defined in (4) is simply the adjacency matrix

of a network given by the mixed membership model (10) by swapping the ith and jth rows,

⇡i and ⇡j , of the community membership probability matrix ⇧ = (⇡1, · · · ,⇡n)T .

By the above definition of eX, we can see that under the null hypothesis H0 : ⇡i = ⇡j , it

holds that

eX d
= X, (5)

where
d
= denotes being equal in distribution. The representation in (5) entails that for each

1  k  K, the ith and jth components of the kth population eigenvector vk are identical;

2



that is,

vk(i) = vk(j).

This identity along with the asymptotic expansion of the empirical eigenvector bvk in (B.25)

given in Lemma 6 results in

bvk(i)� bvk(j) =
(ei � ej)TWvk

tk
+O�(

↵2
np

n|dk|2
+

1p
n|dk|

). (6)

Note that although the expectation of eTi Wvk can be nonzero, the di↵erence of expec-

tations E(ei � ej)TWvk = 0 under the null hypothesis by (5). It follows from Lemma 4 in

Section B.6 and Lemma 12 in Section C.6 of Supplementary Material that

n1�c2✓ . dk ⇠ tk . n✓ and ↵n = O(
p
n✓),

where ⇠ denotes the same asymptotic order. Condition 3 ensures that there exists some

positive constant ✏ such that

SD
�
(ei � ej)

T
Wvk

�
⇠

p
✓ � n✏nc2�1/2 & n✏

✓
↵2
np

n|dk|
+

1p
n

◆
, (7)

which guarantees that O�(
↵2
np
nd2k

+ 1p
n|dk|

) in (6) is negligible compared to the first term

on the right hand side. Here SD represents the standard deviation of a random variable.

Moreover, by Lemma 3 in Section B.5 of Supplementary Material we have kVk1 = O( 1p
n
) ⌧

min1kK SD((ei � ej)TWvk) ⇠
p
✓, and hence ((ei � ej)TWvk)Kk=1 satisfies the conditions

of Lemma 1 in Section B.3 of Supplementary Material with hn = ✓. Then it holds that

⌃
�1/2
1 (bV(i)� bV(j))

= ⌃
�1/2
1 D

�1

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆T

+ op(1)
D�! N(0, I), (8)

which proves (12).

We next establish (13) under the condition of
p
n1�2c2✓k⇡i � ⇡jk ! 1. By (B.25) in

Lemma 6, we have

D(bV(i)� bV(j))

= D(V(i)�V(j)) +

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆T

+O�(
↵2
np

n|dK |
). (9)

In view of (7), it holds that

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆
= Op(

p
✓).
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Thus it su�ces to show that

kD(V(i)�V(j))k �
p
✓.

In fact, it follows from (B.17) that

D(V(i)�V(j)) = DB(⇡i � ⇡j).

This along with (B.18) and Condition 2 leads to

kD(V(i)�V(j))k = kD(⇡i � ⇡j)
T
Bk � |dK |

q
(⇡i � ⇡j)T (⇧

T
⇧)�1(⇡i � ⇡j)

& k⇡1 � ⇡2kn1/2�c2✓ �
p
✓,

which concludes the proof of (13).

Finally, we prove (14). The conclusion follows immediately from (9) and (V(i)�V(j))T⌃�1
1 (V(i)�

V(j)) ! µ as n ! 1. This completes the proof of Theorem 1.

A.2 Proof of Theorem 2

As guaranteed by Slutsky’s lemma, the asymptotic distributions of test statistics after replac-

ing ⌃1 with bS1 stay the same. Thus we need only to prove that the asymptotic distributions

are the same after replacing K with its estimate bK in the test statistics.

To ease the presentation, we write Tij = Tij(K) and bTij = Tij( bK) to emphasize their

dependency on K and bK, respectively. By (12) of Theorem 1, we have for any t > 0,

lim
n!1

P(Tij(K) < t) = P(�2
K < t). (10)

By the condition on bK, it holds that

P( bK = K) = 1� o(1). (11)

Then by the properties of conditional probability, we deduce

P(Tij( bK) < t) = P(Tij( bK) < t| bK = K)P( bK = K) + P(Tij( bK) < t| bK 6= K)P( bK 6= K)

= P(Tij(K) < t| bK = K)P( bK = K) + o(1)

= P(Tij(K) < t| bK = K)P( bK = K) + P(Tij(K) < t| bK 6= K)P( bK 6= K) + o(1)

= P(Tij(K) < t) + o(1). (12)

Observe that the o(1) term comes from (11) and thus it holds uniformly for any t. Combining

4



(12) with (10), we can show that

lim
n!1

P(Tij( bK) < t) = P(�2
K < t). (13)

Therefore, the same conclusion as in (12) of Theorem 1 is proved. Results in (13) and (14)

can be shown using similar arguments and are omitted here for simplicity. This concludes

the proof of Theorem 2.

A.3 Proof of Corollary 2

Recall that in the proof of Theorem 2, we denote by Tij = Tij(K) and bTij = Tij( bK) to

emphasize their dependency on K and bK. It su�ces to prove that the impact of the use of

bK in place of K is asymptotically negligible. In fact, we can deduce that

P(Tij( bK) > �2
bK,1�↵

) = P(Tij( bK) > �2
bK,1�↵

| bK = K)P( bK = K)

+ P(Tij( bK) > �2
K̂,1�↵

| bK 6= K)P( bK 6= K)

= P(Tij(K) > �2
K,1�↵| bK = K)P( bK = K) + o(1)

= P(Tij(K) > �2
K,1�↵| bK = K)P( bK = K)

+ P(Tij(K) > �2
K,1�↵| bK 6= K)P( bK 6= K) + o(1)

= P(Tij(K) > �2
K,1�↵) + o(1). (14)

By (14), under the null hypothesis we have

lim
n!1

P( bTij > �2
bK,1�↵

) = lim
n!1

P(Tij > �2
K,1�↵) = ↵ (15)

for any constant ↵ 2 (0, 1). Moreover, by (12), under the alternative hypothesis, for any

arbitrarily large constant C > 0 it holds that

lim
n!1

P( bTij > C) = lim
n!1

P(Tij > C) = 1. (16)

Therefore, combining (15) and (16) completes the proof of Corollary 2.

A.4 Proof of Theorem 3

We begin with listing some basic properties of vk and dk:

1). We can choose a direction such that all components of v1 are nonnegative. Moreover,

min1ln{v1(l)} ⇠ 1p
n
.

2). max1kK kvkk1  Cp
n
for some positive constant C.

3). ↵n 
p
n✓max.

5



4). |dK | � cn1�2c2✓2min and |d1|  c�1n✓2max for some positive constant c.

Here the second statement is ensured by Lemma 3. The third and fourth statements are

guaranteed by Lemma 4, and the remaining properties are entailed by Lemma B.2 of ?. One

should notice that the proof of Lemma B.2 of ? does not require {dk}Kk=1 have the same

order.

By Condition 5 and Statement 4 above, we have

1

n1/2�c2 |tk|
⌧

min1kK, t=i,j

p
var(eTt Wvk)

|tk|
.

By (B.19), there exists some K ⇥K matrix B such that

V = ⇥⇧B. (17)

Recall that ⇥ is a diagonal matrix. Then it follows from (17) that under the null hypothesis,

we have
vk(i)

v1(i)
=

vk(j)

v1(j)
, k = 1, · · · ,K. (18)

Here we use the exchangeability between rows i and j of matrix⇧B under the null hypothesis

as argued under the mixed membership model (see the beginning of the proof of Theorem 1).

In light of the asymptotic expansion in Lemma 6, we deduce

bvk(i) = vk(i) +
e
T
i Wvk

tk
+O�(

1

n1/2�c2 |tk|
). (19)

Moreover, it follows from Corollary 1 in Section C.2 of Supplementary Material, Condition

4, and the statements at the beginning of this proof that

e
T
s Wvk

tk
= O�(

✓max

|tk|
), s = i, j, k = 1, · · · ,K. (20)

Thus, by (18)–(20) and Statement 1 above we have under the null hypothesis that

Y(i, k)�Y(j, k) =
bvk(i)

bv1(i)
�
bvk(j)

bv1(j)

=
vk(i) +

e
T
i Wvk

tk
+O�(

1
n1/2�c2 |tk|

)

v1(i) +
e
T
i Wvk

t1
+O�(

1
n1/2�c2 |t1|

)
�

vk(j) +
e
T
j Wvk

tk
+O�(

1
n1/2�c2 |tk|

)

v1(j) +
e
T
j Wvk

t1
+O�(

1
n1/2�c2 |t1|

)

=
e
T
i Wvk

tkv1(i)
�

e
T
j Wvk

tkv1(j)
� vk(i)eTi Wv1

t1v2
1(i)

+
vk(j)eTj Wv1

t1v2
1(j)

+O�(
nc2

|tk|
)

=
e
T
i W[vk � tkvk(i)

t1v1(i)
v1]

tkv1(i)
�

e
T
j W[vk � tkvk(j)

t1v1(j)
v1]

tkv1(j)
+O�(

nc2

|tk|
). (21)
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Denote by yk =
vk�

tkvk(i)
t1v1(i)

v1

tkv1(i)
and zk =

vk�
tkvk(j)
t1v1(j)

v1

tkv1(j)
. Then we have fk = e

T
i Wyk�e

T
j Wzk

with fk defined in (22), and

Y(i, k)�Y(j, k) = fk +O�(
nc2

|tk|
). (22)

To establish the central limit theorem, we need to compare the ord4er of the variance of fk

with that of the residual term O�(
n2c2

t2k
). The variance of fk is

var(fk) =
nX

l=1

var(wil)y
2
k(l) +

nX

l=1

var(wjl)z
2
k(l)� var(wij) [yk(i)zk(j) + yk(j)zk(i)] . (23)

By Statements 1 and 2 at the beginning of this proof and (18), we can conclude that

max1ln{|yk(l)|, |zk(l)|} = O( 1
|tk|) and yk(l) ⇠ zk(l), l = 1, · · · , n. Consequently, we obtain

var(wij) [yk(i)zk(j) + yk(j)zk(i)] = O(
1

t2k
). (24)

By Condition 6, it holds that (n✓2max)
�1d2kvar(fk) = (n✓2max)

�1d2kvar(e
T
i Wyk�e

T
j Wzk) ⇠ 1.

Combining the previous two results and by Statement 4, the last term on the left hand side

of (23) is asymptotically negligible compared to the right hand side.

Note that under the null hypothesis ⇡i = ⇡j and model (6), we have Hil
✓i

=
Hjl

✓j
. Since

X = H+W with W a generalized Wigner matrix, it follows from the properties of Bernoulli

random variables that var(wil) ⇠ var(wjl). Thus the first two terms on the left hand side of

(23) are comparable and satisfy that

(n✓2max)
�1d2kvar

�
e
T
i Wyk

�
= (n✓2max)

�1d2k

nX

l=1

2var(wil)y
2
k(l)

⇠ (n✓2max)
�1d2k

nX

l=1

2var(wjl)z
2
k(l) = (n✓2max)

�1d2kvar
�
e
T
j Wzk

�

⇠ (n✓2max)
�1d2kvar(fk) ⇠ 1. (25)

Consequently, var(eTi Wyk) ⇠ var(eTi Wzk) ⇠ var(fk).

Now we are ready to check the conditions of Lemma 1. By maxl{|yk(l)|, |zk(l)|} = O( 1
|tk|)

(see (24) above) and noticing that the expectations of the o↵-diagonal entries of W are zero,

we have |E(fk)| = |E(eTi Wyk � e
T
j Wzk)| = |E(wiiyk(i) � wjjzk(j))|  |yk(i)| + |zk(j)| =

O( 1
|tk|), which means that the expectation of eTi Wyk � e

T
j Wzk is asymptotically negligible

compared to its standard deviation. Moreover, by (25) it holds that maxl{|yk(l)|, |zk(l)|} ⌧
min1kK min{SD(eTi Wyk), SD(eTj Wzk)} and hence they satisfy the conditions of Lemma
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1 with hn = n✓2max. Thus we arrive at

cov(eTi Wy2, e
T
j Wz2, · · · , eTj WzK)�1/2(eTi Wy2, e

T
j Wz2, · · · , eTj WzK)T

D�! N(0, I). (26)

Using the compact notation, (26) can be rewritten as

⌃
�1/2
2 (f2, · · · , fK)T

D�! N(0, I). (27)

Furthermore, there exists some positive constant ✏ such that SD(fk) ⇠
p
n✓max

|tk| � n✏ nc2

|tk| by

Condition 4. Hence O�(
nc2

|tk| ) involved in (22) is negligible compared to fk. Finally, we can

obtain from (22) and (27) that

⌃
�1/2
2 (Yi �Yj)

D�! N(0, I),

which completes the proof for part i) of Theorem 3.

It remains to prove part ii) of Theorem 3. Under the alternative hypothesis that ⇡i 6= ⇡j ,

we have the generalized asymptotic expansion

Y(i, k)�Y(j, k) =
vk(i)

v1(i)
� vk(j)

v1(j)
+ e

T
i Wyk � e

T
j Wzk +O�(

nc2

|tk|
). (28)

In view of (26), to complete the proof it su�ces to show that

����
V(i)

v1(i)
� V(j)

v1(j)

����� 1

n1/2�c2✓min
. (29)

Denote by B(i) the ith column of matrix B in (17). It follows from (17) that

V(i)

v1(i)
=

⇡T
i B

⇡T
i B(1)

and
V(j)

v1(j)
=

⇡T
j B

⇡T
j B(1)

.

Let ai = ⇡T
i B(1) and aj = ⇡T

j B(1). Note that by Statements 1 and 2 at the beginning of

this proof, we have v1(i) ⇠ v1(j) ⇠ 1p
n
. In light of (17), it holds that v1(i) = ✓iai and

v1(j) = ✓jaj . Combining these two results yields

ai ⇠ aj ⇠
1p

n✓min
.

Moreover, it holds that

⇡T
i B

⇡T
i B(1)

�
⇡T
j B

⇡T
j B(1)

= (a�1
i ,�a�1

j )(⇡i,⇡j)
T
B,
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which entails that

����
V(i)

v1(i)
� V(j)

v1(j)

����
2

� k(a�1
i ,�a�1

j )k2�min((⇡i,⇡j)
T (⇡i,⇡j))�min(BB

T ).

Here �min(·) stands for the smallest eigenvalue. By (17), similar to (B.18) we can show that

BB
T = (⇧T

⇥
2
⇧)�1.

Thus �min(BB
T ) ⇠ 1

n✓2min
. By the condition that �2(⇡i⇡T

i +⇡j⇡T
j ) � 1

n1�2c2✓2min
in Theorem

3, it holds that

�min((⇡i,⇡j)
T (⇡i,⇡j)) = �2(⇡i⇡

T
i + ⇡j⇡

T
j ) �

1

n1�2c2✓2min

.

Therefore, combining the above arguments results in

����
V(i)

v1(i)
� V(j)

v1(j)

����
2

� 1

n1�2c2✓2min

,

which concludes the proof of Theorem 3.

A.5 Proof of Theorem 4

The arguments for the proof of Theorem 4 are similar to those for the proof of Theorem 2

in Section A.2.

A.6 Proof of Theorem 5

By Lemma 1, (16) holds. Since bK is bounded with probability tending to 1, it su�ces to

show the entrywise convergence of b⌃1 = ✓�1
DbS1D and b⌃2 = (n✓max)�1

DbS2D. As will be

made clear later, the proof relies heavily on the asymptotic expansions of (b⌃1)11, (b⌃1)12,

(b⌃2)11, and (b⌃2)12. We will provide only the full details on the convergence of (b⌃1)11. For

the other cases, the asymptotic expansions will be provided and the technical details will be

mostly omitted since the arguments of the proof are similar. Throughout the proof, we will

use repeatedly the results in Lemma 6, and the node indices i and j are fixed.

We start with considering (b⌃1)11. First, by definitions of cW we have the following

expansions

(✓�1
D⌃1D)11 = ✓�1

X

t=i,j, 1ln

h
�2tlv

2
1(l)� 2�2ijv1(j)v1(i)

i
(30)

9



and

(b⌃1)11 = (✓�1
DbS1D)11 = ✓�1

X

t=i,j, 1ln

h
bw2
tlv

2
1(l)� 2 bw2

ijbv1(l)bv1(i)
i
. (31)

It follows from Lemma 7 in Section B.9 of Supplementary Material that bw2
ijbv1(j)bv1(i) =

O�(
1
n). In addition, by Lemmas 3 and 4 it holds that

var
h X

1ln

(w2
il � �2il)v

2
1(l)
i

X

1ln

v
4
1(l)Ew2

il = O(
1

n2
)(↵2

n + 1) = O(
✓

n
). (32)

The same inequality also holds for var[
P

1ln(w
2
jl � �2jl)v

2
1(l)]. Thus we have

X

t=i,j, 1ln

(w2
tl � �2tl)v

2
1(l) = Op(

p
✓p
n
), (33)

which implies that

X

t=i,j, 1ln

w2
tlv

2
1(l) =

X

t=i,j, 1ln

�2tlv
2
1(l) +Op(

p
✓p
n
). (34)

By Lemmas 4 and 6, we have

bvk(j) = vk(j) +
e
T
j Wvk

tk
+O�(

1

n3/2�2c2✓
).

It follows from Corollary 1 in Section C.2 and Lemma 10 in Section C.4 of Supplementary

Material that

X

t=i,j,1ln

w2
tl[v

2
1(l)� bv2

1(l)] = 2
X

t=i,j,1ln

w2
tlv1(j)[v1(l)� bv1(l)] +O�(n

2c2�1)

= � 2

t1

X

t=i,j,1ln

w2
tlv1(l)e

T
l Wv1 +O�(

1

n1�2c2
)

= O�(

p
✓

n1/2�c2
). (35)

Similarly, by Lemma 7 we have

nX

t=i,j,1ln

w2
tlbv2

1(l) =
nX

t=i,j,1ln

bw2
tlbv2

k(l) +O�(

p
✓

n1/2�c2
). (36)

Combining the equalities (30)–(36) yields

(b⌃1)11 = ✓�1(D⌃1D)11 +O�(
1

n1/2�c2
p
✓
) +Op(

1p
n✓

) = ✓�1(⌃1)11 + op(1), (37)
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where we have used O�(
1

n1/2�c2
p
✓
) = op(1) by Condition 2. This has proved the convergence

of (b⌃1)11 to (⌃1)11.

We next consider (b⌃1)12. By definitions, we have the following expansions

(✓�1
D⌃1D)12 = ✓�1

nX

t=i,j

�2tlv1(l)v2(l)� �2ij [v1(j)v2(i) + v1(i)v2(j)]
o

(38)

and

(b⌃1)12 = ✓�1
nX

t=i,j

bw2
tlbv1(l)bv2(l)� bw2

ij [bv1(j)bv2(i) + bv1(i)bv2(j)]
o
. (39)

Based on the above two expansions, using similar arguments to those for proving (37) we

can show that

(b⌃1)12 = ✓�1(D⌃1D)12 + op(1). (40)

Now let us consider b⌃2. Similar as above, we will provide only the asymptotic expansions

for (b⌃2)11 and (b⌃2)12, and the remaining arguments are similar. By definitions, we can

deduce that

((n✓2max)
�1

D⌃2D)11 = (n✓2max)
�1d22var(f2)

=
d22

t22n✓
2
max

nX

l 6=j

�2il

h
v2(l)

v1(i)
� t2v2(i)v1(l)

t1v1(i)2

i2
+
X

l 6=i

�2jl

h
v2(l)

v1(j)
� t2v2(j)v1(l)

t1v1(j)2

i2

+ �2ij

h
v2(j)

v1(i)
� t2v2(i)v1(j)

t1v1(i)2
� v2(i)

v1(j)
+

t2v2(j)v1(i)

t1v1(j)2

i2o

and

(b⌃2)11 =
d22

bd22n✓2max

nX

l 6=j

bw2
il

h bv2(l)

bv1(i)
�
bd2bv2(i)bv1(l)
bd1bv1(i)2

i2
+
X

l 6=i

bw2
jl

h bv2(l)

bv1(j)
�
bd2bv2(j)bv1(l)
bd1bv1(j)2

i2

+ bw2
ij

hbv2(j)

bv1(i)
�
bd2bv2(i)bv1(j)
bd1bv1(i)2

�
bv2(i)

bv1(j)
+
bd2bv2(j)bv1(i)
bd1bv1(j)2

i2o
.

Note that the expression of (n✓2maxD⌃2D)11 is essentially the same as (30) up to a normal-

ization factor involving v1(i) and v1(j). Thus applying the similar arguments to those for

proving (17), we can establish the desired result.

Finally, the consistency of (b⌃2)12 can also be shown similarly using the following expan-
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sions

((n✓2max)
�1

D⌃2D)12

=
d2d3

t2t3n✓2max

nX

l 6=j

�2il

h
v2(l)

v1(i)
� t2v2(i)v1(l)

t1v1(i)2

ih
v3(l)

v1(i)
� t3v3(i)v1(l)

t1v1(i)2

i

+
X

l 6=i

�2jl

h
v2(l)

v1(j)
� t2v2(j)v1(l)

t1v1(j)2

ih
v2(l)

v1(j)
� t3v3(j)v1(l)

t1v1(j)2

i

+ �2ij

h
v2(j)

v1(i)
� t2v2(i)v1(j)

t1v1(i)2
� v2(i)

v1(j)
+

t2v2(j)v1(i)

t1v1(j)2

i

⇥
h
v3(j)

v1(i)
� t3v3(i)v1(j)

t1v1(i)2
� v3(i)

v1(j)
+

t3v3(j)v1(i)

t1v1(j)2

io

and

(b⌃2)12 =
d2d3

bd2 bd3n✓2max

nX

l 6=j

bw2
il

h bv2(l)

bv1(i)
�
bd2bv2(i)bv1(l)
bd1bv1(i)2

ih bv3(l)

bv1(i)
�
bd3bv3(i)bv1(l)
bd1bv1(i)2

i

+
X

l 6=i

bw2
jl

h bv2(l)

bv1(j)
�
bd2bv2(j)bv1(l)
bd1bv1(j)2

ih bv3(l)

bv1(j)
�
bd3bv3(j)bv1(l)
bd1bv1(j)2

i

+ bw2
ij

hbv2(j)

bv1(i)
�
bd2bv2(i)bv1(j)
bd1bv1(i)2

�
bv2(i)

bv1(j)
+
bd2bv2(j)bv1(i)
bd1bv1(j)2

i

⇥
hbv3(j)

bv1(i)
�
bd3bv3(i)bv1(j)
bd1bv1(i)2

�
bv3(i)

bv1(j)
+
bd3bv3(j)bv1(i)
bd1bv1(j)2

io
.

This completes the proof of Theorem 5.

B Some key lemmas and their proofs

B.1 Proof of Lemma 1

For each pair (i, j) with i 6= j, let us define a matrix W(i, j) = wij(eieTj + eje
T
i ). For i = j,

we define a matrix W(i, j) = (wii � Ewii)eieTj . Then it is easy to see that

k
X

1ijn

W(i, j)�Wk = kdiag(W � EW)k  1. (B.1)

It is straightforward to show that

k
X

1ijn

EW(i, j)2k = ↵2
n.

12



By Theorem 6.2 of ?, for any constant c >
p
2 we have

P(k
X

1ijn

W(i, j)k � c
p
log n↵n � 1)  n exp

h �(c
p
log n↵n � 1)2

2↵2
n + 2(c

p
log n↵n � 1)

i
= o(1). (B.2)

This together with (B.1) entails that

P(kWk  c
p
log n↵n) � 1� o(1). (B.3)

Note that this result is weaker than Lemma 11 in Section C.5.

By (B.3) and |bdK � dK |  kWk, and using the assumption of |dK | �
p
log n↵n, it holds

that

|bdK | �
p
log n↵n (B.4)

with probability tending to one. Finally, by Weyl’s inequality we have

�n(W) = �n(W)� �K+1(H)  �K+1(X) = �K+1(H+W)  �1(W) + �K+1(H) = �1(W),

which leads to

|bdK+1| = |�K+1(X)|  kWk. (B.5)

Let us choose c =
p
2.01 and define

eK = #
n
|bdi| >

p
2.01 log n↵n, i = 1, · · · , n

o
. (B.6)

Then by (B.4)–(B.5), we can show that

P( eK = K) = 1� o(1). (B.7)

Recall that Xij follows the Bernoulli distribution. Thus it holds that

X

j=1

Ew2
ij 

X

j=1

EXij .

By Lemma 8 in Section C.1, choosing l = 1, x = ei, and y = 1p
n
1 yields

X

j=1

EXij =
X

j=1

Xij +O�(↵n),

where we have used Xij � EXij = wij . Thus it holds that

max
i

X

j=1

Xij � max
i

X

j=1

Ew2
ij +O�(↵n) = ↵2

n +O�(↵n).

13



This together with (B.6) and (B.7) results in

P( bK = K) = 1� o(1), (B.8)

which completes the proof of Lemma 1.

B.2 Proofs of Lemmas 2 and 3

The proofs of Lemmas 2 and 3 involve standard calculations and thus are omitted for brevity.

B.3 Lemma 1 and its proof

Lemma 1. Let m be a fixed positive integer, xi and yi be n-dimensional unit vectors for

1  i  m, and ⌃ = (⌃ij) the covariance matrix with ⌃ij = cov(xT
i Wyi,xT

j Wyj). As-

sume that there exists some positive sequence (hn) such that k⌃�1k ⇠ k⌃k ⇠ hn and

maxk{kxkk1kykk1} ⌧ k⌃1/2k. Then it holds that

⌃
�1/2

�
x
T
1 (W � EW)y1, · · · ,xT

m(W � EW)ym
�T D�! N(0, I). (B.9)

Proof. Note that it su�ces to show that for any unit vector c = (c1, · · · , cm)T , we have

c
T
⌃

�1/2
�
x
T
1 (W � EW)y1, · · · ,xT

m(W � EW)ym
�T D�! N(0, 1). (B.10)

Let xi = (x1i, · · · , xni)T and yi = (y1i, · · · , yni)T , i = 1, · · · ,m. Since W is a symmetric

random matrix of independent entries on and above the diagonal, we can deduce

x
T
i Wyi � x

T
i EWyi =

X

1s,tn, s<t

wst(xsiyti + xtiysi) +
X

1sn

(wss � Ewss)xsiysi (B.11)

and

s2n := var
h
c
T
⌃

�1/2(xT
1 (W � EW)y1, · · · ,xT

m(W � EW)ym)T
i

= c
T
⌃

�1/2cov
⇥
(xT

1 Wy1, · · · ,xT
mWym)T

⇤
⌃

�1/2
c = c

T
c = 1. (B.12)

Denote by ec = ⌃
�1/2

c = (ec1, · · · ,ecm)T . Then it holds that

c
T
⌃

�1/2
�
x
T
1 (W � EW)y1, · · · ,xT

m(W � EW)ym
�T

= tr
h
(W � EW)

mX

s=1

ecsysx
T
s

i
.

Let M = (Mij) =
Pm

s=1 ecsysx
T
s . By assumption, we have maxk kxky

T
k k1 ⌧ k⌃1/2k ⇠

k⌃�1/2k, which entails that

kMk1 ⌧ 1. (B.13)
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Then it follows from the assumption of max1i,jn |wij |  1 and (B.13) that

1

|sn|3
⇣ X

1i,jn, i<j

E|wij |3|Mij +Mji|3 +
X

1in

E|wii � Ewii|3|Mii|3
⌘

 2

|sn|3
⇣ X

1i,jn, i<j

E|wij |2|Mij +Mji|3 +
X

1in

E|wii � Ewii|2|Mii|3
⌘

⌧ 2

|sn|3
⇣ X

1i,jn, i<j

E|wij |2|Mij +Mji|2 +
X

1in

E|wii � Ewii|2|Mii|2
⌘

 2. (B.14)

Since wij with 1  i < j  n and wii � Ewii with 1  i  n are independent random

variables with zero mean, by the Lyapunov condition (see, for example, Theorem 27.3 of ?)

we can conclude that (B.10) holds. This concludes the proof of Lemma 1.

B.4 Lemma 2 and its proof

Lemma 2. Under either model (10) and Conditions 1–2, or model (6) and Conditions 1

and 4, it holds that

k(D�k)
�1 +R(V�k,V�k, z)k = O(|z|) for any z 2 [ak, bk], (B.15)

where ak and bk are defined in (8).

Proof. The conclusion of Lemma 2 has been proved in (A.16) of ?.

B.5 Lemma 3 and its proof

Lemma 3. Under model (10) and Conditions 1–2, we have

max
1kK

kvkk1 = O(
1p
n
). (B.16)

The same conclusion also holds under model (6) and Conditions 1 and 4.

Proof. We first consider model (10) and prove (B.16) under Conditions 1 and 2. In light of

✓⇧P⇧
T = VDV

T , we have ✓⇧(P⇧
T
VD

�1) = V. This shows that V belongs to the space

expanded by ⇧. Thus there exists some K ⇥K matrix B such that

V = ⇧B. (B.17)

Since V
T
V = I, it holds that B

T
⇧

T
⇧B = I, which entails that BB

T
⇧

T
⇧BB

T = BB
T

and

BB
T = (⇧T

⇧)�1. (B.18)
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By Condition 2, we can conclude that k(⇧T
⇧)�1k = O(n�1) and thus each entry of matrix

B is of order O( 1p
n
). Hence in view of (B.17), the desired result can be established.

Now let us consider model (6) under Conditions 1 and 4. For this model, we also have

⇥⇧P⇧
T
⇥ = VDV

T and thus

⇥⇧(P⇧
T
⇥VD

�1) = V. (B.19)

Since ⇥ is a diagonal matrix, we can see that V belongs to the space expanded by ⇧. Let

e⇧ = (e⇡1, · · · , e⇡n)T be the submatrix of ⇧ such that

e⇡i =

8
<

:
⇡i if there exists some 1  k  K such that ⇡i(k) = 1,

0 otherwise.

By Condition 4, it holds that c2nc2I  e⇧
T e⇧ =

Pn
i=1 e⇡ie⇡T

i 
Pn

i=1 ⇡i⇡T
i = ⇧

T
⇧, which

leads to k(⇧T
⇧)�1k = O(n�1). Therefore, an application of similar arguments to those for

(B.17)–(B.18) concludes the proof of Lemma 3.

B.6 Lemma 4 and its proof

Lemma 4. Under model (10) and Condition 2 , it holds that

↵2
n  n✓, dk & n1�c2✓, d1 = O(n✓), k = 1, · · · ,K. (B.20)

Under model (6) and Condition 4, similarly we have

↵2
n  n✓2max, dk & n1�c2✓2min, d1 = O(n✓2max), k = 1, · · · ,K. (B.21)

Proof. We show (B.20) first. It follows from
PK

k=1 ⇡i(k) = 1 that k⇧k2F =
Pn

i=1

PK
k=1 ⇡

2
i (k) 

n and �1(⇧
T
⇧) = O(n). By Condition 2, we have

dK = ✓�K(P⇧
T
⇧) � ✓�K(⇧T

⇧)�K(P) � c20✓n
1�c2

and

d1  ✓�1(⇧
T
⇧)�1(P) = O(✓n).

Thus the second result in (B.20) is proved. Next by model (10), the (i, j)th entry hij of

matrix H satisfies that

hij = ✓
KX

s,t=1

⇡i(s)⇡j(t)pst  ✓. (B.22)

Since the entries ofX follow the Bernoulli distributions, it follows from (B.22) that var(wij) 
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✓. Therefore, in view of the definition of ↵n, we have

↵2
n = max

j

nX

i=1

var(wij)  n✓.

The results in (B.21) can also be proved using similar arguments. This completes the

proof of Lemma 4.

B.7 Lemma 5

The following 3 Lemmas follow from Lemma 9 and exactly the same proof as ?

Lemma 5. Under either model (10) and Conditions 1–2, or model (6) and Conditions 1

and 4, for u = ei or vk we have the following asymptotic expansions

u
T bvkbvT

k vk =
h
ePk,tk � 2t�1

k
eP2
k,tkv

T
k Wvk +O�(

↵2
np
nt2k

)
ih
Au,k,tk � t�1

k b
T
u,k,tkWvk +O�(

↵2
np
nt2k

)
i

⇥
h
Avk,k,tk � t�1

k b
T
vk,k,tkWvk +O�(

↵2
np
nt2k

)
i
, (B.23)

bdk = tk + v
T
k Wvk +O�(

↵2
np

n|dk|
). (B.24)

B.8 Lemma 6

Lemma 6. Under model (10) and Conditions 1–2, we have

tk
⇥
e
T
i bvk � vk(i)

⇤
= e

T
i Wvk +O�(

↵2
np

n|tk|
+

1p
n
). (B.25)

The same conclusion also holds under model (6) and Conditions 1 and 4.

B.9 Lemma 7

Lemma 7. Assume that bK = K. Then under the mixed membership model (10) and Con-

ditions 1–2, it holds uniformly over all i, j that

bwij = wij +O�(

p
✓p
n
). (B.26)

Under the degree-corrected mixed membership model (6), if Conditions 1 and 4–5 are satisfied,

then it holds uniformly over all i, j that

bwij = wij +O�(
✓maxp

n
). (B.27)
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C Additional technical details

C.1 Lemma 8 and its proof

Lemma 8. For any n-dimensional unit vectors x, y and any positive integer r, we have

E
h
x
T (Wl � EWl)y

i2r
 Cr(min{↵l�1

n , dx↵
l
n, dy↵

l
n})2r, (C.1)

where l is any positive integer and Cr is some positive constant determined only by r.

Proof. The main idea of the proof is similar to that for Lemma 4 in ?, which is to count the

number of nonzero terms in the expansion of E[xT (Wl � EWl)y]2r. It will be made clear

that the nonzero terms in the expansion consist of terms such as ws
ij with s � 2. In counting

the nonzero terms, we will fix one index, say i, and vary the other index j which ranges from

1 to n. Note that for any i = 1, · · · , n and s � 2, we have
Pn

j=1 E|wij |s  ↵2
n since |wij |  1.

Thus roughly speaking, counting the maximal moment of ↵n is the crucial step in our proof.

Let x = (x1, · · · , xn)T , y = (y1, · · · , yn)T , and Cr be a positive constant depending only

on r and whose value may change from line to line. Recall that l, r � 1 are two integers. We

can expand E(xT
W

l
y � ExT

W
l
y)2r to obtain the following expression

E(xT
W

l
y � ExT

W
l
y)2r

=
X

1i1,··· ,il+1,il+2,··· ,i2l+2,··· ,
i(2r�1)(l+1)+1,··· ,i2r(l+1)n

E
h �

xi1wi1i2wi2i3 · · ·wilil+1yil+1 � Exi1wi1i2wi2i3 · · ·wilil+1yil+1

�
⇥ · · ·

⇥
�
xi(2r�1)(l+1)+1

wi(2r�1)(l+1)+1i(2r�1)(l+1)+2
wi(2r�1)(l+1)+2i(2r�1)(l+1)+3

· · ·wi2r(l+1)�1i2r(l+1)
yi2r(l+1)

� Exi(2r�1)(l+1)+1
wi(2r�1)(l+1)+1i(2r�1)(l+1)+2

wi(2r�1)(l+1)+2i(2r�1)(l+1)+3
· · ·wi2r(l+1)�1i2r(l+1)

yi2r(l+1)

�i
.

(C.2)

Let i(j) = (i(j�1)(l+1)+1, · · · , ij(l+1)), j = 1, · · · , 2r, be 2r vectors taking values in {1, · · · , n}l+1.

Then for each i
(j), we define a graph G(j) whose vertices represent distinct values of the com-

ponents of i(j). Each adjacent component of i(j) is connected by an undirected edge in G(j). It

can be seen that for each j, G(j) is a connected graph, which means that there exists some path

connecting any two nodes in G(j). For each fixed i1, · · · , il+1, · · · , i(2r�1)(l+1)+1, · · · , i2r(l+1),

consider the following term

E
h �

xi1wi1i2wi2i3 · · ·wilil+1yil+1 � Exi1wi1i2wi2i3 · · ·wilil+1yil+1

�
⇥ · · · (C.3)

⇥
�
xi(2r�1)(l+1)+1

wi(2r�1)(l+1)+1i(2r�1)(l+1)+2
wi(2r�1)(l+1)+2i(2r�1)(l+1)+3

· · ·wi2r(l+1)�1i2r(l+1)
yi2r(l+1)

� Exi(2r�1)(l+1)+1
wi(2r�1)(l+1)+1i(2r�1)(l+1)+2

wi(2r�1)(l+1)+2i(2r�1)(l+1)+3
· · ·wi2r(l+1)�1i2r(l+1)

yi2r(l+1)

�i
,

which corresponds to graph G(1)[· · ·[G(2r). If there exists one graph G(s) that is unconnected

to the remaining graphs G(j), j 6= s , then the corresponding expectation in (C.3) is equal to
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zero. This shows that for any graph G(s), there exists at least one connected G(s0) to ensure

the nonzero expectation in (C.3). To analyze each nonzero (C.3), we next calculate how

many distinct vertices are contained in the graph G(1) [ · · · [ G(2r).

Denote by S(2r) the set of partitions of the integers {1, 2, · · · , 2r} and S�2(2r) the

subset of S(2r) whose block sizes are at least two. To simplify the notation, define

hj = xi(j�1)(l+1)+1
wi(j�1)(l+1)+1i(j�1)(l+1)+2

wi(j�1)(l+1)+2i(j�1)(l+1)+3
· · ·wij(l+1)�1ij(l+1)

yij(l+1)
.

Let A 2 S�2(2r) be a partition of {1, 2, · · · , 2r} and |A| the number of groups in A. We

can further define Aj 2 A as the jth group in A and |Aj | as the number of integers in

Aj . For example, let us consider A = {{1, 2, 3}, {4, 5, · · · , 2r}}. Then we have |A| = 2, set

A1 = {1, 2, 3} 2 A, and |A1| = 3. It is easy to see that there is a one-to-one correspondence

between the partitions of {1, 2, · · · , 2r} and the graphs G(1), · · · ,G(2r) such that G(s) and

G(s0) are connected if and only if s and s0 belong to one group in the partition. For any Aj 2
A 2 S�2(2r), there are |Aj |l edges in the graph

S
w2Aj

G(j) since for each integer w 2 Aj ,

there is a chain containing l edges by hw. Since Ewss0 = 0 for s 6= s0, in order to obtain

a nonzero value of (C.3) each edge in
S

w2Aj
G(j) should have at least one additional copy.

Thus for each nonzero (C.3), we have [ |Aj |l
2 ] distinct edges without self loops in

S
w2Aj

G(j).

Since the graph
S

w2Aj
G(j) is connected, we can conclude that there are at most [ |Aj |l

2 ] + 1

distinct vertices in
S

w2Aj
G(j). Let S(A) be the collection of all choices of

S2r
s=1 i

(s) such

that

1).
S2r

s=1 G(s) has the same partition as A such that they are connected within the same

group and unconnected between groups;

2). Within each group Aj , there are at most [ |Aj |l
2 ] distinct edges without self loops and

[ |Aj |l
2 ] + 1 distinct vertices.

Similarly we can define S(Aj) since Aj can be regarded as a special partition of Aj with

only one group. Summarizing the arguments above, (C.2) can be rewritten as

(C.2) =
X

A2S�2(2r)

X

S2r
s=1 i

(s)2S(A)

|A|Y

j=1

h
E
Y

�2Aj

(h� � Eh�)
i
. (C.4)

Let us further simplify E
Q

�2Aj
(h� � Eh�). Let Bj be the set of partitions of Aj such that

each partition contains exactly two groups. Without loss of generality, let Bj = {bj1 , bj2},
where for any w 2 Aj , we have w 2 bj1 or w 2 bj2 . Then it holds that

|E
Y

�2Aj

(h� � Eh�)| 
X

�2Bj

E
���
Y

�2bj1

h�
���
Y

�2bj2

���Eh�
���. (C.5)

Observe that by definition, h� is the product of some independent random variables, and

h�1 and h�2 may share some dependency through factors wm1
ab and wm2

ab , respectively, for some
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wab and nonnegative integers m1 and m2. Thus in light of the inequality

E|wab|m1E|wab|m2  E|wab|m1+m2 ,

(C.5) can be bounded as

(C.5)  2|Aj |E
���
Y

�2Aj

h�
���. (C.6)

By (C.6), we can deduce

(C.4)  22r
X

A2S�2(2r)

X

S2r
s=1 i

(s)2S(A)

|A|Y

j=1

E
���
Y

�2Aj

h�
���

 22r
X

A2S�2(2r)

|A|Y

j=1

(
X

i(s)2S(Aj)

E
���
Y

�2Aj

h�
���). (C.7)

Thus it su�ces to show that

X

i(s)2S(Aj)

E
���
Y

�2Aj

h�
��� = C|Aj |(min{↵l�1

n , dx↵
l
n, dy↵

l
n})|Aj |,

using the fact that
P|A|

j=1 |Aj | = 2r. Without loss of generality, we prove the most di�cult

case of |A| = 1, that is, there is only one connected chain which is A = {1, 2, · · · , 2r}. It

has the most components in the chain
Q

�2A h� . Other cases with smaller |A| can be shown

in the same way. Using the same arguments as those for (C.4), we have the basic property

for this chain that there are at most [ |A|l
2 ] + 1 = rl+ 1 distinct vertices and rl distinct edges

without self loops.

To facilitate our technical presentation, let us introduce some additional notation. Denote

by  (r, l) the set of partitions of the edges {(is, is+1), 1  s  2rl, is 6= is+1} and  �2(r, l) the

subset of  (r, l) whose blocks have size at least two. Let ei =
S2r

s=1 i
(s) and P (ei) 2  �2(2l+2)

be the partition of {(is, is+1), 1  s  2rl, is 6= is+1} that is associated with the equivalence

relation (is1 , is1+1) ⇠ (is2 , is2+1), which is defined as if and only if (is1 , is1+1) = (is2 , is2+1) or

(is1 , is1+1) = (is2+1, is2). Denote by |P (ei)| = m the number of groups in the partition P (ei)
such that the edges are equivalent within each group. We further denote the distinct edges

in the partition P (ei) as (s1, s2), (s3, s4), · · · , (s2m�1, s2m) and the corresponding counts in

each group as r1, · · · , rm, and define es = (s1, s2, · · · , s2m). For the vertices, let �(2m) be the

set of partitions of {1, 2, · · · , 2m} and Q(es) 2 �(2m) the partition that is associated with the

equivalence relation a ⇠ b, which is defined as if and only if sa = sb. Note that s2j�1 6= s2j
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by the definition of the partition. By |waa|  1, we can deduce

X

i(s)2S(A)

E
���
Y

�2A
h�
��� =

X

i(s)2S(A)

E
���

2rY

�=1

h�
���


X

1|P (ei)|=mrl

P (ei)2 �2(2l+2)

X

ei with partition P (ei)
r1,··· ,rm�2

X

Q(es)2�(2m)

X

es with partition Q(es)
1s1,··· ,s2mn

2rY

j=1

(|xi(j�1)(l+1)+1
||yij(l+1)

|)

⇥
mY

j=1

E
��ws2j�1s2j |rj . (C.8)

Denote by Fes the graph constructed by the edges of es. Since the edges in es are the same

as those of the edges in
S2r

s=1 G(s) with the structure S(A), we can see that Fes is also a

connected graph. In view of (C.8), putting term |xi1yil+1xil+2yi2l+2 | aside we need to analyze

the summation
X

es with partition Q(es)
1s1,··· ,s2mn

mY

j=1

E
��ws2j�1s2j |rj .

If index s2k�1 satisfies that s2k�1 6= s for all s 2 {s1, · · · , s2m} \ {s2k�1}, that is, index s2k�1

appears only in one ws2j�1s2j , we call s2k�1 a single index (or single vertex). If there exists

some single index s2k�1, then it holds that

X

es with partition Q(es)
1s1,··· ,s2mn

mY

j=1

E
��ws2j�1s2j |rj


X

es\{s2k�1} with partition Q(es\{s2k�1})
1s1,··· ,s2k�2,s2k+2,s2mn

s2k=sj for some 1j2m

mY

j=1

E
��ws2j�1s2j |rj

nX

s2k�1=1

E
��ws2k�1s2k |

rk . (C.9)

Note that since graph Fes is connected and index s2k�1 is single, there exists some j such

that sj = s2k, which means that in the summation
Pn

s2k�1=1 E
��ws2k�1s2k |rk , index s2k is fixed.

Then it follows from the definition of ↵n, |wij |  1, and rk � 2 that

nX

s2k�1=1

E
��ws2k�1s2k |

rk  ↵2
n.

After taking the summation over index s2k�1, we can see that there is one less edge in

F(es). That is, by taking the summation above we will have one additional ↵2
n in the upper

bound while removing one edge from graph F(es). For the single index s2k, we also have

the same bound. If s2k1�1 is not a single index, without loss of generality we assume that

s2k1�1 = s2k�1. Then this vertex s2k�1 needs some delicate analysis. By the assumption of
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|wij |  1, we have

E|w2k�1,2k|rk |w2k1�1,2k1 |rk1 
E|w2k�1,2k|rk + E|w2k1�1,2k1 |rk1

2
.

Then it holds that

X

es with partition Q(es)
1s1,··· ,s2mn

mY

j=1

E
��ws2j�1s2j |rj

 1

2

X

es\(s2k�1,s2k1�1) with partition Q(es\(s2k�1,s2k1�1))

1s1,··· ,s2mn

mY

j=1, j 6=k

E
��ws2j�1s2j |rj

+
1

2

X

es\(s2k�1,s2k1�1) with partition Q(es\(s2k�1,s2k1�1))

1s1,··· ,s2mn

mY

j=1, j 6=k1

E
��ws2j�1s2j |rj . (C.10)

Note that since Fes is a connected graph, if we delete either edge (s2k�1, s2k) or edge

(s2k1�1, s2k1) from graph Fes, the resulting graph is also connected. Then the two sum-

mations on the right hand side of (C.10) can be reduced to the case in (C.9) for the graph

with edge (s2k�1, s2k) or (s2k1�1, s2k1) removed, since s2k�1 or s2k1�1 is a single index in the

subgraph. Similar to (C.9), after taking the summation over index s2k�1 or s2k1�1 there are

two less edges in graph Fes and thus we now obtain 2↵2
n in the upper bound.

For the general case when there are m1 vertices belonging to the same group, without

loss of generality we denote them as wab1 , · · · , wabm1
. If for any k graph Fes is still connected

after deleting edges (a, b1), · · · , (a, bk�1), (a, bk+1), · · · , (a, bm1), then we repeat the process

in (C.10) to obtain a new connected graph by deleting k � 1 edges in wab1 , · · · , wabm1
and

thus obtain k↵2
n in the upper bound. Motivated by the key observations above, we carry out

an iterative process in calculating the upper bound as follows.

(1) If there exists some single index in es, using (C.9) we can calculate the summation

over such an index and then delete the edge associated with this vertex in Fes. The

corresponding vertices associated with this edge are also deleted. For simplicity, we

also denote the new graph as Fes. In this step, we obtain ↵2
n in the upper bound.

(2) Repeat (1) until there is no single index in graph Fes.

(3) Suppose there exists some index associated with k edges such that graph Fes is still

connected after deleting any k�1 edges. Without loss of generality, let us consider the

case of k = 2. Then we can apply (C.9) to obtain ↵2
n in the upper bound. Moreover,

we delete k edges associated with this vertex in Fes.

(4) Repeat (3) until there is no such index.

(5) If there still exists some single index, go back to (1). Otherwise stop the iteration.
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Completing the graph modification process mentioned above, we can obtain a final graph

Q that enjoys the following properties:

i) Each edge does not contain any single index;

ii) Deleting any vertex makes the graph disconnected.

Let SQ be the spanning tree of graph Q, which is defined as the subgraph of Q with the

minimum possible number of edges. Since SQ is a subgraph of Q, it also satisfies property

ii) above. Assume that SQ contains p edges. Then the number of vertices in SQ is p + 1.

Denote by q1, · · · , qp+1 the vertices of SQ and deg(qi) the degree of vertex qi. Then by the

degree sum formula, we have
Pp+1

i=1 deg(qi) = 2p. As a result, the spanning tree has at least

two vertices with degree one and thus there exists a subgraph of SQ without either of the

vertices that is connected. This will result in a contradiction with property ii) above unless

the number of vertices in graph Q is exactly one. Since l is a bounded constant, the numbers

of partitions P (ei) and Q(es) are also bounded. It follows that

(C.8)  Crd
2r
x d2ry

X

es with partition Q(es)
1s1,··· ,s2mn

mY

j=1

E
��ws2j�1s2j |rj , (C.11)

where dx = kxk1, dy = kxk1, and Cr is some positive constant determined by l. Combining

these arguments above and noticing that there are at most l distinct edges in graph Fes, we

can obtain

(C.11)  Crd
2r
x d2ry ↵

2rl�2
n

X

1s2k0�1,s2k0n, (s2k0�1,s2k0 )=Q

E
��ws2k0�1s2k0

|rk0

 Crd
2r
x d2ry ↵

2rl
n n. (C.12)

Therefore, we have established a simple upper bound of Crd2rx d2ry ↵
2rl
n n.

In fact, we can improve the aforementioned upper bound to Cr↵
r(l�1)
n . Note that the

process mentioned above did not utilize the condition that both x and y are unit vectors,

that is, kxk = kyk = 1. Since term
Q2r

j=1(|xi(j�1)(l+1)+1
||yij(l+1)

|) is involved in (C.8), we

can analyze them together with random variables wij . First, we need to deal with some

distinct lower indices with low moments in
Q2r

j=1(|xi(j�1)(l+1)+1
||yij(l+1)

|). If there are two

distinct lower indices, without loss of generality denoted them as is and is0 and then the

corresponding entries are xis (or yis) and yis0 (or xis0 ). Moreover, there are only one xis and

yis0 involved in
Q2r

j=1(|xi(j�1)(l+1)+1
||yij(l+1)

|). Without loss of generality, let us assume that

23



s = 1 and s0 = l + 1. Then it holds that

2rY

j=1

(|xi(j�1)(l+1)+1
||yij(l+1)

|) = |xi1 ||yil+1 |
2rY

j=2

(|xi(j�1)(l+1)+1
||yij(l+1)

|)


x2i1
2

2rY

j=2

(|xi(j�1)(l+1)+1
||yij(l+1)

|) +
y2il+1

2

2rY

j=2

(|xi(j�1)(l+1)+1
||yij(l+1)

|). (C.13)

That is, if we have two lower indices and each index appears only once in the product above,

we can use (C.13) to increase the moment of xis( or yis0 ) and delete the other one. For

(C.13), it is equivalent for us to consider the case when the lower index i1 = il+1. Repeating

the procedure (C.13), finally we can obtain a product
Q2r

j=1(|xi(j�1)(l+1)+1
||yij(l+1)

|) with the

following properties:

1). Except for one vertex is0 , for each is with s 6= s0 there exists some is0 such that

is = is0 with s 6= s0.

2). Except for one vertex is0 , for each is with s 6= s0 the term xm1
is

ym2
is

involved in
Q2r

j=1(|xi(j�1)(l+1)+1
||yij(l+1)

|) satisfies the condition that m1+m2 � 2. Moreover, at least one

of m1 and m2 is larger than one.

By the properties above, let us denote by ⌥(2r) the set of partitions of the vertices

{i(j�1)(l+1)+1, ij(l+1), j = 1, · · · , 2r} such that except for one group, the remaining groups

in ⌥ with ⌥ 2 ⌥(2r) have blocks with size at least two. There are three di↵erent cases to

consider.

Case 1). All the groups in ⌥ have block size two. Then it follows that

|
2rY

j=1

(|xi(j�1)(l+1)+1
||yij(l+1)

|)| =
|⌥|Y

k=1

|x|m1k
is

|y|m2k
ik

, (C.14)

where m1k + m2k = 2. In fact, by the second property of ⌥ above, m1k = 0 or m2k = 0.

Without loss of generality, we assume that m2k = 0. Then we need only to consider the

equation

|
2rY

j=1

(|xi(j�1)(l+1)+1
||yij(l+1)

|)| =
|⌥|Y

k=1

|x|2ik .

Then by (C.8), it remains to bound

X

es with partition Q(es)
1s1,··· ,s2mn

|⌥|Y

k=1

|x|2ik
mY

j=1

E
��ws2j�1s2j |rj . (C.15)

To simplify the presentation, assume without loss of generality that ik = sk, k =
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1, · · · , |⌥|. Then the summation in (C.15) becomes

X

es with partition Q(es)
1s1,··· ,s2mn

|⌥|Y

j=1

|x|2sj
mY

j=1

E
��ws2j�1s2j |rj .

By repeating the iterative process (1)–(5) mentioned before, we can bound the summation

for fixed s2, · · · , s|⌥| and obtain an alternative upper bound

nX

s1=1

x2s1E
��ws2j�1s2j |rj 

nX

s1=1

x2s1 = 1

since x is a unit vector. Thus for this step of the iteration, we obtain term one instead of

↵2
n in the upper bound. Repeat this step until there is only x2s|⌥|

left. Since the graph is

always connected during the iteration process, there exists another vertex b such that ws|⌥|b

is involved in (C.15). For index s|⌥|, we do not delete the edges containing s|⌥| in the graph

during the iterative process (1)–(5). Then after the iteration stops, the final graph Q satisfies

properties i) and ii) defined earlier except for vertex s|⌥|. Since there are at least two vertices

with degree one in SQ, we will also reach a contradiction unless the number of vertices in

graph Q is exactly one. By (C.14), it holds that 2|⌥| = 4r. As a result, we can obtain the

upper bound

(C.8)  Cr↵
2rl�2|⌥|
n

X

1s|⌥|,bn, (s|⌥|,b)=Q

Ex2s|⌥|

��ws|⌥|b|
r  Cr↵

2rl�2r
n (C.16)

with Cr some positive constant. Therefore, the improved bound Cr↵
2r(l�1)
n is shown for this

case.

Case 2). All the groups in ⌥ have block size at least two and there is at least one block

with size larger than two. Then it follows that

|
2rY

j=1

(|xi(j�1)(l+1)+1
||yij(l+1)

|)| =
|⌥|Y

k=1

|x|m1k
is

|y|m2k
ik

.

Since m1k + m2k � 2 by the second property of ⌥ above, define the nonnegative integer

r1 =
P|⌥|

k=1(m1k +m2k � 2). There are at most [2rl+2�r1
2 ] distinct vertices in the graph Fes

and at most [2rl+2�r1
2 ]� 1 distinct edges. Similar to Case 1 with less distinct edges, we have

(C.8)  C↵
2[

2rl+2�r1
2 ]�2|⌥|�2

n

X

1s1,bn, (s1,b)=Q

Ex2s1
��ws1b|r  C↵

2[
2rl+2�r1

2 ]�2|⌥|
n . (C.17)
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By the definition of r1 and
P|⌥|

k=1(m1k +m2k) = 4r, it holds that

r1 + 2|⌥| = 4r.

Thus r1 is an even number and 2[2rl+2�r1
2 ] � 2|⌥| = 2rl � r1 � 2|⌥| + 2  2rl � 2r. The

improved bound Cr↵
2r(l�1)
n is also shown for this case.

Case 3). Except for one index ik0 , the other groups in ⌥ have block size at least two.

Let us define r01 =
P|⌥|

k=1,k 6=k0
(m1k +m2k � 2). There are at most [

2rl+2�r01
2 ] distinct vertices

and at most [
2rl+2�r01

2 ]� 1 distinct edges. For the parameter |xik0 | (or |yik0 |), we can bound

it by one since x and y are unit vectors. Then similar to Case 2, we can deduce

(C.8)  C↵
2[

2rl+2�r01
2 ]�2|⌥|

n

X

1s1,bn, (s1,b)=Q

Ex2s1
��ws1b|r  C↵

2[
2rl+2�r01

2 ]�2|⌥|+2
n . (C.18)

By the definition of r01 in this case, it holds that

r01 + 2|⌥| = 4r + 1.

Then r01 is an odd number and thus

2[
2rl + 2� r01

2
]� 2|⌥|+ 2 = 2rl � r1 � 2|⌥|+ 3  2rl � 2r.

Summarizing the arguments above, for this case we can also obtain the desired bound

Cr↵
2r(l�1)
n .

In addition, we can also improve the upper bound to Cr(min{d2rx ↵2rl
n , d2ry ↵

2rl
n }). The

technical arguments for this refinement are similar to those for the improvement to order

Cr↵
2r(l�1)
n above. As an example, we can bound the components of y by dy = kyk1, which

leads to |
Q2r

j=1(|xi(j�1)(l+1)+1
||yij(l+1)

|)|  d2ry |
Q2r

j=1 |xi(j�1)(l+1)+1
|. Then the analysis becomes

similar to the three cases above. The only di↵erence is that
P|⌥|

k=1m1k = 2r instead of
P|⌥|

k=1(m1k +m2k) = 4r. For this case, we have

(C.8)  Cd2ry ↵
2rl�2|⌥|
n

X

1s2,bn, (s2,b)=Q

Ex2s1
��ws1b|r  Crd

2r
y ↵

2rl
n . (C.19)

Thus we can obtain the claimed upper bound Cr(min{d2rx ↵2rl
n , d2ry ↵

2rl
n }). Therefore, combin-

ing the two aforementioned improved bounds yields the desired upper bound of

Cr(min{↵2r(l�1)
n , d2rx ↵

2rl
n , d2ry ↵

2rl
n }),

which completes the proof of Lemma 8.
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C.2 Corollary 1 and its proof

Lemma 8 ensures the following corollary immediately.

Corollary 1. Under the conditions of Lemma 8, it holds that for any positive constants a

and b, there exists some n0(a, b) > 0 such that

sup
kxk=kyk=1

P
⇣
x
T (Wl � EWl)y � namin{↵l�1

n , dx↵
l
n, dy↵

l
n}
⌘
 n�b (C.20)

for any n � n0(a, b) and l � 1. Moreover, we have

x
T (Wl � EWl)y = O�(min{↵l�1

n , dx↵
l
n, dy↵

l
n}). (C.21)

Proof. It su�ces to show (C.20) because then (C.21) follows from the definition. For any

positive constants a and b, there exists some integer r such that 2ar � b + 1. By the

Chebyshev inequality, it holds that

sup
kxk=kyk=1

P(|xT (Wl � EWl)y| � namin{↵l�1
n , dx↵

l
n, dy↵

l
n})

 sup
kxk=kyk=1

E(xT (Wl � EWl)y)2r

n2ar(min{↵l�1
n , dx↵l

n, dy↵
l
n})2r

 Cr

nb+1
,

which can be further bounded by n�b as long as n � Cr. It is seen that Cr is determined

completely by a and b. This concludes the proof of Corollary 1.

C.3 Lemma 9 and its proof

Lemma 9. For any n-dimensional unit vectors x and y, we have

ExT
W

l
y = O(↵l

n), (C.22)

where l � 2 is a positive integer. Furthermore, if the number of nonzero components of x is

bounded, then it holds that

ExT
W

l
y = O(↵l

ndy), (C.23)

where dy = kyk1.

Proof. The result in (C.22) follows directly from Lemma 5 of ?. Thus it remains to show

(C.23). The main idea of the proof is similar to that for the proof of Lemma 8. Denote by

C the set of positions of the nonzero components of x. Then we have

ExT
W

l
y =

X

i12C,1i2,··· ,il+1n

is 6=is+1

E
�
xi1wi1i2wi2i3 · · ·wilil+1yil+1

�
. (C.24)
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Note that the cardinality of set C is bounded. Thus it su�ces to show that for fixed i1, we

have

X

1i2,··· ,il+1n

is 6=is+1

E
�
xi1wi1i2wi2i3 · · ·wilil+1yil+1

�
= O(dy↵

l
n). (C.25)

By the definition of graph G(1) in the proof of Lemma 8, we can also get a similar expression

as (C.6) that

|(C.24)|

 dy
X

G(1) with at most [l/2] distinct edges without self loops and [l/2] + 1 distinct vertices, i1 is fixed

E
��wi1i2wi2i3

· · ·wilil+1

��. (C.26)

Using similar arguments for bounding the order of the summation through the iterative

process as those for (C.11)–(C.12) in the proof of Lemma 8, we can obtain a similar bound

ExT
W

l
y  Cdy↵

l�2
n

nX

ik0=1

E
��wi1ik0

|r0  Cdy↵
l
n (C.27)

with r0 � 2. Here we do not remove the lower index i1 during the iteration procedure. The

additional factor n on the right hand side of (C.12) can be eliminated since i1 is fixed. This

completes the proof of Lemma 9.

C.4 Lemma 10 and its proof

Lemma 10. Assume that ⇠1 = O�(⇣), · · · , ⇠m = O�(⇣) with m = bncc and c some positive

constant. If

P [|⇠i| > na|⇣|]  n�b (C.28)

uniformly for ⇠i, i = 1, · · · ,m, and any positive constants a,b with n � n0(a, b), then for any

positive random variables X1, · · · , Xm, we have

mX

i=1

Xi⇠i = O�
⇣ mX

i=1

Xi⇣
⌘
.

Proof. For any positive constants a and b, let b1 = c+ b. By (C.28), it holds that

P [|⇠i| > na|⇣|]  n�b1
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for all n � n0(a, b1), where n0(a, b1) is determined completely by a and b1. Then we have

P
"
|

mX

i=1

Xi⇠i| > na|⇣|
mX

i=1

Xi

#


mX

i=1

P [|⇠i| > na|⇣|]  n�b

for large enough n � n0(a, b1). Since b1 = c + b and c is fixed, the constant n0(a, b1) is

determined essentially by a and b. This concludes the proof of Lemma 10.

C.5 Lemma 11 and its proof

Lemma 11. For any positive constant L, it holds that

P(kWk � ↵n log n)  n�L

for all su�ciently large n.

Proof. The conclusion of Lemma 11 follows directly from Theorem 6.2 of ?. We can also

prove it by (B.1) and the inequality with c
p
log n↵n � 1 replaced by ↵n log n in (B.2).

C.6 Lemma 12

Lemma 12 (?). There exists a unique solution z = tk to equation (9) on the interval [ak, bk],

and thus tk’s are well defined. In addition, for each k = 1, · · · ,K, we have tk/dk ! 1 as

n ! 1.

D Su�cient conditions for Condition 3

D.1 Lemma 13 and its proof

Lemma 13. Under Conditions 1–2, if ✓ < 1 and min1i,jK Pij � c for some positive

constant c, then Condition 3 holds.

Proof. The key step of the proof is to calculate cov[(ei�ej)TWV]. Without loss of generality,

let us assume that (i, j) = (1, 2). Note that the main di↵erence between the null and

alternative hypotheses is that the mean value of (e1 � e2)TEW is 0 under the former and

is (Ew1,1,�Ew2,2, 0, · · · , 0)T , which may be nonzero, under the latter. However, since the

main idea of the proof applies to both cases, we will provide only the technical details under

the null hypothesis.

First, some direct calculations show that

✓�1
D⌃1D = ✓�1cov[(ei � ej)

T
WV]

= ✓�1
V

TE(W(ei � ej)(ei � ej)
T
W)V

= ✓�1
V

T
QV, (D.1)
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where Q = diag(E(wi1 � wj1)2, · · · ,E(win � wjn)2) + Ew2
ijeie

T
j + Ew2

ijeje
T
i . By the as-

sumptions that ✓ < 1 and min1i,jK Pij � c, we see that the entries of the mean matrix

H = (hij) are bounded from below by c✓ and from above by ✓. Since Ew2
ij ⇠ hij and wik

and wjk are independent for i 6= j, it holds that

✓I . diag(E(wi1 � wj1)
2, · · · ,E(win � wjn)

2) . ✓I. (D.2)

Then it follows from (D.2) that

I . ✓�1
V

Tdiag(E(wi1 � wj1)
2, · · · ,E(win � wjn)

2)V . I. (D.3)

Since ⌃1 2 RK⇥K with K a finite integer, we can deduce that

k✓�1
V

T (Ew2
ijeie

T
j + Ew2

ijeje
T
i )Vk . 1

n
. (D.4)

Therefore, combining (D.1)–(D.4), we can obtain the desired conclusion under the null hy-

pothesis. This completes the proof of Lemma 13.

E Uniform convergence

Theorem 1. Assume that the null hypotheses H0,ij : ⇡i = ⇡j hold for all 1  i 6= j  n.

Then

1) Under Conditions 1–3 and the mixed membership model (10), we have for any x 2 R,

lim
n!1

sup
1i 6=jn

|P(Tij  x)� P(�2
K  x)| = 0. (E.1)

2) Under Conditions 1 and 4–7 and DCMM (6), we have for any x 2 R,

lim
n!1

sup
1i 6=jn

|P(Gij  x)� P(�2
K�1  x)| = 0. (E.2)

Proof. We provide the detailed proof only for (E.1) since the proof of (E.2) is almost

identical. Recall that Tij = k⌃�1/2
1 (bV(i) � bV(j))k2. Let us investigate the asymptotic

behavior of random vector ⌃�1/2
1 (bV(i)� bV(j)). Checking the proof of Theorem 1 in Section

A.1 carefully, we can see that there exists some positive constant ✏ such that

⌃
�1/2
1 (bV(i)� bV(j))

= ⌃
�1/2
1 D

�1

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆T

+O�(n
�✏), (E.3)

where the op(1) term in (8) is replaced by O�(n�✏). By (E.3) and the continuity of the
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standard multivariate Gaussian distribution, it su�ces to show that for any convex set

S ⇢ RK , we have

lim
n!1

sup
i 6=j

�����P
 
⌃

�1/2
1 D

�1

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆T

2 S

!
� P (xK 2 S)

�����

= 0, (E.4)

where xK ⇠ N(0, IK).

For an application of Theorem 1.1 in ?, we need to rewrite

⌃
�1/2
1 D

�1

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆T

as the sum of independent random vectors. Indeed, some direct calculations yield

⌃
�1/2
1 D

�1

✓
(ei � ej)TWv1

t1/d1
, · · · , (ei � ej)TWvK

tK/dK

◆T

=
nX

l=1

⌃
�1/2
1 D

�1

✓
(wil � wjl)v1l

t1/d1
, · · · ,

(wil � wjl)vKl

tK/dK

◆T

=
X

l 6=i,j

⌃
�1/2
1 D

�1(wil � wjl)

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

+
X

l2{i,j}

⌃
�1/2
1 D

�1(wil � wjl)

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

, (E.5)

where the first term in the last step is the sum of independent random vectors. Then it

follows from Lemma 3 and Condition 3 that

X

l2{i,j}

⌃
�1/2
1 D

�1(wil � wjl)

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

= O(
1p
n✓

).

Combining this with (E.4) and (E.5), we see that it remains to show that

lim
n!1

sup
i 6=j

������
P

0

@
X

l 6=i,j

⌃
�1/2
1 D

�1(wil � wjl)

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

2 S

1

A� P(xK 2 S)

������

= 0. (E.6)

From Theorem 1.1 in ?, Condition 3, and Lemma 3, we can deduce that for any fixed
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i, j, there exists some positive constant C (independent of i, j) such that

������
P

0

@
X

l 6=i,j

⌃
�1/2
1 D

�1(wil � wjl)

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

2 S

1

A� P(xK 2 S)

������

 C
X

l 6=i,j

Ek⌃�1/2
1 D

�1(wil � wjl)

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

k32

= C
X

l 6=i,j

 
k⌃�1/2

1 D
�1

✓
v1l

t1/d1
, · · · , vKl

tK/dK

◆T

k32 ⇥ E|wil � wjl|3
!

 C2

p
n
max
l 6=i,j

E|wil � wjlp
✓

|3

= O(
1p
n✓

),

which entails (E.6). Therefore, the desired conclusions of the theorem follow immediately,

which concludes the proof of Theorem E.
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