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A B S T R A C T   

Carbon dioxide (CO2) has been shown to contribute to human health consequences indoors, such as shortness of 
breath, nasal and optic irritation, dizziness, and nausea. In this work, we explore the potential of metal–organic 
frameworks (MOFs) as highly-porous, crystalline sorbents for sensitive colorimetric CO2 detection. In particular, 
the zeolitic imidazolate framework (ZIF-8) is chosen as the sorptive material due to its chemical stability and 
tunable CO2 affinity. The colorimetric gas sensor is developed in methanol with three components: (i) MOF ZIF-8 
as a high surface area adsorbent; (ii) ethylenediamine (ED) as the CO2-affinitive basic function; and (iii) phe-
nolsulfonpthalein (PSP) as the pH indicator. Colorimetric assays and ratiometric analysis confirm a colorimetric 
response to variable CO2 concentrations of relevance to indoor air quality. The color response is attributed to a 
zwitterion mechanism whereby ED reacts with CO2 to form a zwitterionic intermediate. This intermediate is then 
deprotonated by the pH indicator, shifting the pH and inducing a color change. Given its simple fabrication, rapid 
and obvious response, and stability in ambient environment, the ZIF-8-based colorimetric sensor provides a 
promising route for an improved indoor air quality monitoring.   

1. Introduction 

In recent decades, the design of airtight, energy-efficient buildings 
has resulted in homes and offices with lower rates of ventilation [1,2]. 
However, decreased ventilation rates in conventional buildings can 
result in elevated levels of indoor pollutants, which introduces health 
risks to building occupants [2]. Carbon dioxide (CO2) is an odorless, 
colorless gas whose accumulation indoors imposes detrimental conse-
quences on human health. The primary source of CO2 indoors is 
attributed to building occupant metabolism [1], with minimum CO2 
concentrations of 400 ppm typically observed in offices [3]. However, 
with increased building occupancy and exacerbated ventilation condi-
tions, indoor CO2 levels can easily exceed 1000 ppm [3]. Thorough 
studies in the literature associate indoor climate variables (humidity, 
temperature, CO2 concentration, and volatile organic compound con-
centration) with sick building syndrome (SBS), which entails adverse 
health symptoms experienced indoors such as shortness of breath, optic 
and nasal irritation, tightness of the chest, dizziness, and fatigue [1,4,5]. 

Inside automobiles, previous research has reported the dangerous na-
ture of elevated CO2 levels as high as 3500 ppm, which are associated 
with compromised decision-making and drowsiness at the wheel [6]. 
Relatedly, the CO2 permissible exposure limit (stipulated by the U.S. 
Occupational Health and Safety Administration) is set at 5000 ppm [7], 
which has been correlated with an increased diastolic blood pressure 
and mental effort to complete tasks, as well as an overall diminished 
personal wellbeing [1,8]. Higher CO2 concentrations (above 10,000 
ppm) can induce respiratory acidosis, rapid breathing, metabolic stress, 
and increased brain blood flow [1]. 

Given these precarious conditions for human health, various efforts 
have emerged toward development of CO2 monitors for indoor 
deployment. The chief problem in gas sensing is the design of a sensor 
that is highly-sensitive to targeted species, energy-efficient, inexpensive 
to fabricate, stable, and convenient for users. Nondispersive infrared 
(NDIR) CO2 sensors are popular commercial instruments that relate 
absorbed IR radiation to analyte concentration according to the Beer- 
Lambert law [9]. For CO2 sensing, optical bandpass filters absorb IR 
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wavelengths except the characteristic CO2 absorption wavelength (4.26 
μm) to minimize signal interference [9]. Advantages of the NDIR device 
include low limits of detection (< 100 ppm), high accuracy, and 
longevity (> 10 years) [9]. However, the CO2 NDIR sensor has tradi-
tionally been challenged by power consumption and cost, as well as 
scalability limitations from necessary pathlengths (~cm) to enable 
ppm-level detection [9]. 

In contrast to the NDIR sensing technology, colorimetric sensing 
boasts several advantages, including easy preparation, user conve-
nience, and obvious responses detectable by the human eye [10]. For 
example, the common colorimetric CO2 sensor is developed based on a 
pH indicator and a lipophilic organic base in aqueous solutions [11,12]. 
When CO2 is absorbed and reacts with the base, the indicator responds 
to the change in pH of the aqueous environment, thus triggering an 
immediate color change [11,12]. However, the solution-based colori-
metric approach is limited by the handling and storage of the liquid 
phase and slow recovery kinetics [11]. For versatile colorimetric CO2 
sensing, porous, inexpensive, robust, and simply-synthesized solids are 
desired as the ideal sorbents and supports toward a reliable visual 
readout [11]. Some solid colorimetric devices, such as tertiary amino 
alcohols and dyes immobilized on porous γ-aluminum oxide supports 
[11], have been shown to exhibit a reversible colorimetric CO2 response 
(at 500 ppm and up). In clinical settings, commercialized colorimetric 
CO2 sensors loaded with Metacresol purple have been deployed for pa-
tient endotracheal tube placement, sensitive to CO2 partial pressures of 
5000 ppm (and up) [13,14]. Sol-gel matrices [15] and polymer-based 
sensing arrays [16] have been constructed to colorimetrically detect 
toxic gases in the atmosphere beyond CO2, such as volatile organic 
compounds and SO2. 

Toward the realization of a prototypical gas sensor, we have inves-
tigated the potential of metal–organic frameworks (MOFs) as sorbents 
for indoor colorimetric CO2 detection. MOFs are highly-porous, crys-
talline extended structures composed of metal clusters (or cations) co-
ordinated to organic ligands [17–19]. Due to their structural and 
compositional tunability [20–23], MOFs offer a diverse array of func-
tions, including gas separations and storage [24–27], chemical sensors 
[28–30], and heterogenous catalysis [31,32]. For this work, the zeolitic 
imidazolate framework (ZIF) is selected from MOF candidates. ZIFs are 
tetrahedrally-coordinated transition metal ions coordinated by imida-
zolate linkers; the metal-imidazolate-metal angle is similar to the 145◦

Si-O-Si angle in zeolites, which give these materials “zeolite-like” to-
pologies [33]. Specifically, we identify ZIF-8, a well-studied MOF con-
structed from the linkage of zinc (Zn2+) ions and imidazolate (mIm− ) 
ligands [34]. ZIF-8 contains 3.4 Å six-member pore apertures and 11.6 Å 
pore cavities accessible for CO2 adsorption [35]. Furthermore, several 
theoretical and computational studies [36–38] have shown preferential 
CO2 adsorption sites associated with the organic linker. ZIF-8 also ex-
hibits notable structural flexibility [39–42], as well as a high thermal 
and chemical stability [43–45]. In recent studies, MOF-based sensors 
have been reported to detect CO2 levels relevant to indoor quality using 
chemiresistive techniques [29] and electrochemical impedance spec-
troscopy [46], both requiring external power for their operations. On the 
other hand, the sensor presented here, based on colorimetry, exhibits an 
obvious color change to the human eye, and hence is passive. 

Colorimetry is employed here as the transduction mechanism to 
develop a MOF-based device whose CO2 affinity is of interest to indoor 
environment. In our study, the MOF-based colorimetric CO2 sensor, 
referred to as PSP-ED/ZIF-8, is developed from three components: (a) 
the adsorbent, ZIF-8; (b) the basic primary amine, ethylenediamine; and 
(c) the pH indicator, phenolsulfonpthalein. Given the wide range of CO2 
levels that humans can experience within homes, offices, and vehicles 
[1,6,7], the prototype is exposed to 700 – 7500 ppm CO2 in variable 
humidity. Across this span of CO2 concentrations, highly-reproducible 
red-green-blue (RGB) intensities developed from smartphone video are 
used to quantify the colorimetric response. Furthermore, the interplay of 
ZIF-8, ethylenediamine, and phenolsulfonpthalein toward colorimetric 

CO2 detection is discussed, as well as future endeavors toward 
comprehension of water suppression of sensing behavior. 

2. Materials and methods 

2.1. Synthesis of the PSP-ED/ZIF-8 

PSP-ED/ZIF-8 synthesis follows a modified procedure adapted from 
Cravillon et al. [47]. 1.04 g of zinc nitrate hexahydrate [Zn(NO3)2⋅6H2O; 
Fischer Scientific] and 1.04 g of 2-methylimidazole (Hmim, 99 %, 
Sigma-Aldrich) are dissolved in 60 mL of methanol (Fischer Chemical), 
separately, and then mixed and allowed to react at room temperature 
overnight (with no stirring). Pristine ZIF-8 crystals are then partially 
activated, washing three times with methanol using a Beckman Coulter, 
Inc. Microfuge®18 Centrifuge at 12,000 rpm for 5-min. For character-
izing the pristine ZIF-8, the washed ZIF-8 crystals are dried at 60 ◦C on a 
hot plate overnight. Then, the ZIF-8 crystals are recovered, placed in an 
oven, and heated at 110 ◦C (in air) for 24 h. 

For the synthesis of PSP-ED/ZIF-8 material, a 2 % ethylenediamine 
(99 %, Sigma-Aldrich) solution (% v/v) in methanol is produced by 
adding 400 μl of ethylenediamine to 19.6 mL of methanol. 10 mg of 
phenolsulfonpthalein (Acros Organics) are then dissolved into this so-
lution. Aliquots of this solution are then mixed with the partially- 
activated ZIF-8 (80 mg ZIF-8/mL colorimetric solvent) with prolonged 
sonication to achieve the PSP-ED/ZIF-8 solution. Optical images of the 
material at various stages of synthesis are depicted in Fig. S1. 

2.2. Material characterization methods 

Powder X-ray diffraction (PXRD) patterns are collected with a Bruker 
diffractometer (Cu K-α radiation, λ = 1.54 Å, 40 kV, 40 mA). Nitrogen 
adsorption isotherms are measured at 77 K using Tristar II 3020 volu-
metric adsorption analyzers manufactured by Micromeritics (Norcross, 
GA). Before adsorption measurements, the samples are out-gassed under 
vacuum for 24 h at 150 ◦C. The specific surface area of the samples is 
calculated using the Brunauer–Emmett–Teller (BET) method within the 
relative pressure range of 0.01 to 0.95 (p/p0). Sample particle size is 
acquired using scanning electron microscopy (SEM, Hitachi S-5000). A 
thin Au/Pd layer is sputter deposited on the samples to afford some 
electrical conductivity to the material prior to SEM imaging. 

2.3. Gas sensing characterization 

Quantitative assessment of colorimetric CO2 sensing is accomplished 
through ex-situ ultraviolet-visible diffuse reflectance spectroscopy with 
a Cary 5000 (Instrument No. 5.2) spectrophotometer at a scan rate of 
600 nm/min. The Kubelka-Munk transform, F(R), shown as Eq. 1, is a 
two-flux model that relates the material’s diffuse reflectance (R) to an 
absorption coefficient (K) and scattering coefficient (S), which depends 
on several parameters such as particle size and loading [48–53]. 

F(R) =
(1 − R)2

2R
=

K
S

(1) 

Colorimetric sensing experiments using UV–vis spectroscopy are 
conducted as follows. Cellulose filter paper (VWR North American) is 
first cut into a 0.7cm × 0.7cm square, affixed to a piece of double-sided 
black tape of same size, placed inside the UV–vis sample enclosure, and 
used as a blank in the UV–vis spectrophotometer. Then, another cellu-
lose filter paper of the same size is cut and 15 μl of PSP-ED/ZIF-8 so-
lution is drop-cast on it. After 120 s sitting in ambient environment, most 
of the methanol evaporates. This coated paper is similarly placed in the 
spectrophotometer and a “Pre-CO2 exposure” plot of reflectance (% R) vs 
wavelength (nm) is recorded. 

After this run, the sample enclosure is partially opened and placed 
inside a specifically designed plexiglass enclosure (9cm × 7.4cm × 3.6 
cm). Colorimetric CO2 uptake in variable humidity is achieved by 
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connecting the enclosure to a gas manifold (Fig. S2), which allows 
computer-controlled delivery of CO2 and relative humidity via mass 
flow controllers (Bronkhorst) set by LabView software. A cylinder of 
22,000 ppm CO2 balanced in nitrogen is used (Praxair). Purge and 
balance streams are provided by passing house air through pressure 
swing adsorption dryers to remove humidity and an activated carbon 
scrubber to eliminate contaminants. Different humidity levels are 
created via a bubbler and controlled by the same feedback calibration 
system set by the LabView program. A wireless GasLab Plus CM-501 
NDIR sensor is integrated in the apparatus to calibrate the achieved 
CO2 and humidity levels set in LabView (as shown in Fig. S3). For the 
measurements reported here, the total gas flow rate is kept constant at 
300 standard cubic centimeters per minute (sccm) and the flow stream 
temperatures are measured at room temperature (22.0 ± 0.5 ◦C). 

For a given trial, the system is first purged with dry air until < 500 
ppm CO2 and the desired humidity are achieved. Then, the sample is 
exposed to the desired CO2 concentration while the NDIR sensor logs the 
data until steady state is reached. The sample enclosure is then placed 
back in the spectrometer and UV–vis spectra are collected. For each trial, 
the % R data are converted to F(R) values (using Eq. 1) and plotted. In 
typical absorbance spectra, phenolsulfonpthalein exhibits a color 
change from purple (λmax = 570 nm) in basic environment to yellow 
(λmax = 443 nm) in acidic environments [54]. For each CO2 exposure 
(dry or humid), the ratios of the F(R) values at 443 and 570 nm are 
computed and plotted against CO2 concentration (ppm). For each CO2 
exposure, at least two trials are averaged, and the standard deviation is 
depicted as error bars. 

Optical images of the samples under various environments are also 
obtained using the direct exposure technique (all exposures at 300 
sccm). For direct exposure measurements, colorimetric ZIF-8 sensors are 
drop-cast on cellulose filter paper and allowed to dry for 120 s in 
ambient environment. Then, a video (using a Google Pixel smartphone) 
is recorded with applied CO2 and relative humidity (for 10 s). After 10 s, 
the CO2 atmosphere is removed, and the sensor recovers over 15 s in-
tervals before subsequent exposure. Background CO2 and relative hu-
midity are logged with the GasLab Plus CM-501 CO2 NDIR sensor. 

RGB values are extracted from optical images (captured via Google 
Pixel smartphone) using MATLAB software. Each image is read into the 
MATLAB script as a 1.3” × 1.3” square and outputted as a 125 × 125- 
pixel RGB distribution. RGB values range from 0 to 255, where 0 cor-
responds to minimal intensity and 255 maximum intensity of visible 
light. Absolute yellow, for example, would have a RGB value of (255, 
255, 0), whereas absolute purple would be (255, 0, 255). Because the 
center of the drop-cast PSP-ED/ZIF-8 is exposed using the direct expo-
sure method, RGB values are obtained with the Y-axis held constant at 
62 pixels, with the X-axis ranging from 60 to 80 pixels. Mean RGB values 
(and standard deviations) for variable CO2 concentration and relative 
humidity are computed using OriginPro software and tabulated. 

3. Results and discussion 

3.1. Material characterization 

Fig. 1 displays the XRD patterns obtained on the as-synthesized 
pristine ZIF-8, the PSP-ED/ZIF-8, as well as the simulated ZIF-8 
(refcode: VELVOY) [55]. The major characteristic diffraction peaks at 
2θ = 7.3, 10.4, 12.6, 14.6, 16.4, 17.9, 22.0, 24.4, and 26.6◦ associated 
with the (011), (002), (112), (022), (013), (222), (114), (233), and (134) 
planes are observed [56]. These results are consistent with prior reports 
of the pristine MOF developed in methanol at room temperature, indi-
cating formation of the expected sodalite structure [56]. The 
PSP-ED/ZIF-8 sensor stability is assessed using XRD (Fig. S4). Over a 
4-week timespan (at room temperature), the bulk PSP-ED/ZIF-8 mate-
rial retains its crystallinity in ambient environment, demonstrating no 
loss of the structural integrity of ZIF-8 when mixed with phe-
nolsulfonpthalein and ethylenediamine in methanol. MOF structural 

resistance to environmental factors, such as moisture and basicity, is 
imperative toward feasible use under various conditions [57]. In 
accordance with the Pearson acid-base concept, the strength of the soft 
ligand (imidazole) and soft metal (Zn2+) interaction offers ZIF-8 a high 
chemical stability [58]. 

Representative SEM images of pristine ZIF-8 (washed) and PSP-ED/ 
ZIF-8 are shown in Fig. 2. With the MOF precursor molar ratio used 
(metal: linker: solvent – 1:3.62:847) at room temperature in methanol, 
ZIF-8 nanocrystals (consistent in size with reported values in the liter-
ature) are obtained [59]. For the activated pristine ZIF-8, the BET sur-
face area (calculated from the nitrogen isotherm in Fig. S5) is measured 
to be 1485 m2/g, which is likewise in agreement with previously re-
ported values [60,61]. 

3.2. Colorimetric analyses in dry environment 

Representative colorimetric images of fresh PSP-ED/ZIF-8 exposed to 
CO2 (dry) using the direct-exposure technique are shown in Fig. 3. With 
increased CO2 exposure, the drop-cast PSP-ED/ZIF-8 (initially purple) 
demonstrates an obvious color shift to higher intensities of yellow. This 
colorimetric shift is rendered possible through collaboration of phe-
nolsulfonpthalein, ethylenediamine, and ZIF-8. To highlight the critical 
role of all three components, the colorimetric responses to just phe-
nolsulfonpthalein, phenolsulfonpthalein/ethylenediamine, and 
phenolsulfonpthalein/ZIF-8 materials are compared to PSP-ED/ZIF-8. 
As can be seen in Fig. 3A, all three components — ZIF-8, ethylenedi-
amine, and phenolsulfonpthalein — are necessary to achieve a visible 
response. Without any of these components, the sensors exhibit no 
visible response to even high levels of CO2. 

Average RGB values for PSP-ED/ZIF-8 exposed to dry CO2 are shown 
in Table S1, respectively. As observed in Fig. 3B, the degree of yellow 
achieved intensifies as the CO2 concentration exposed increases from 
700 to 7500 ppm. In accordance with these colorimetric results, the 
mean G-value increases with increasing dry CO2 concentration, whereas 
the mean B-value decreases. While the R-values corresponding to dry 
CO2 exposure do not exhibit a particular trend, the more drastic and 
consistent rise in green intensities and decrease in blue intensities 
indicate a stronger yellow color with increasing dry CO2 concentration. 

In addition to CO2, volatile organic compound (VOC) and carbon 
monoxide (CO) exposure is linked to the development of specific human 
health symptoms indoors [2]. VOCs (such as acetone)—which are 
commonly released from aerosols, cleansers, and related household 
products—are associated with nasal, throat, and eye irritation [62,63]. 

Fig. 1. Powder X-ray diffraction patterns (Cu K-α radiation, λ = 1.54 Å).  
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Similarly, fatigue is frequently observed with exposure to CO indoors 
[64]. Fig. 4 compares the response of PSP-ED/ZIF-8 to CO2 (in dry house 
air), dry house air, acetone (in dry house air), and CO (in dry house air), 
all flowing at 300 sccm. Whereas an obvious yellow color change occurs 

in the presence of CO2, the sensitivity of PSP-ED/ZIF-8 to both 200 ppm 
acetone and CO is significantly lower. However, compared to the freshly 
drop-cast PSP-ED/ZIF-8, a slight color change is observed in the dry 
acetone and CO exposures, which is attributed to the trace CO2 present 

Fig. 2. SEM images for (A) washed pristine ZIF-8 and (B) PSP-ED/ZIF-8 (2% ED). Size bar =200 nm.  

Fig. 3. (A) Effects of various components in 
colorimetric response to 7500 ppm CO2. First 
column: 15 μL of a methanolic 0.5 mg/mL 
phenolsulfonpthalein solution drop-cast on cel-
lulose filter paper. Second column: 15 μL of a 
methanolic 0.5 mg/mL phenolsulfonpthalein 
/ethylenediamine solution (2% ED, %v/v) 
drop-cast on cellulose filter paper. Third col-
umn: 15 μL of an 80 mg/mL ZIF-8 solution 
(prepared from a methanolic 0.5 mg/mL phe-
nolsulfonpthalein solution) drop-cast on cellu-
lose filter paper. Fourth column: 15 μL of PSP- 
ED/ZIF-8 drop-cast on cellulose filter paper. 
(B) Colorimetric response of PSP-ED/ZIF-8 
before CO2 is applied, when 700 ppm CO2 is 
applied, and when 7500 ppm CO2 is applied. All 
under dry conditions.   

Fig. 4. PSP-ED/ZIF-8 profiles before target gas exposure; exposed to 2000 ppm carbon dioxide (dry); dry house air; 200 ppm acetone (in dry air); and 200 ppm 
carbon monoxide (in dry air). 
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in the balance house air (373 ± 2 ppm). Given the poor response to 
acetone and CO even at elevated levels (whereas their usual concen-
trations in indoor air are < 10 ppb [63] and < 30 ppm [64], respec-
tively), the PSP-ED/ZIF-8 sensor exhibits a strong affinity for CO2 
compared to these indoor pollutants in dry atmosphere. 

For the low partial pressures of CO2 involved in this study, the visible 
change in colorimetric response to variable CO2 concentrations can be 
difficult to qualitatively distinguish by human eye. In a similar manner 
to published work involving phenolsulfonpthalein absorbance spectra in 
cell culture media [65], plots of the 443/570 nm F(R) ratios from the 
UV–vis data are developed for each sensor at a specific humidity to draw 
quantifiable differences. First, F(R) vs. wavelength (nm) plots are 
collected (shown in Fig. 5). With increasing the concentration of CO2, 
the exposed sensor becomes more yellow and the F(R) value at 570 nm 
decreases. 

Ratiometric profiles from ex-situ diffuse reflectance UV–vis mea-
surements are shown in Fig. 6 for the PSP-ED/ZIF-8 sensor. For this 
sensor, a broad range of target concentrations (700 – 7500 ppm CO2) is 
tested. With increasing CO2 concentration, the colorimetric ratios (red 
symbols) noticeably rise from 0.283 to 0.701 ratiometric units, and the 
corresponding colorimetric CO2 response visibly intensifies from 700 to 
7500 ppm CO2 exposures under 0% relative humidity. 

The observed colorimetric behavior is consistent with proposed re-
actions between ethylenediamine, CO2, and other bases. In previous 
work, ethylenediamine has been grafted onto ZIF-8 via post-synthetic 
modification to provide basic sites toward an enhanced, solid-state 
CO2 adsorption [66]. For the reported colorimetric analyte studies, the 
observed CO2 response (in methanol) is proposed to occur via a two-step 
zwitterion mechanism [67–72], whereby (in this instance) CO2 is 
adsorbed on ZIF-8 to react with the other colorimetric sensor compo-
nents. In aqueous and nonaqueous solvents, ethylenediamine and CO2 
react (Eq. 2) to form a 1◦,3◦-zwitterion intermediate, RH2N+—COO− : 

CO2 + RNH2 ↔ RN+H2CO−
2 (2) 

The 1◦,3◦-zwitterion is then deprotonated (Eq. 3) by a base, B, which 
could be unreacted ethylenediamine, H2O, solvent molecules, or other 
species in the system [67–72]. When phenolsulfonpthalein (pKa: 7.9) 
participates as the base, the deprotonation step shifts the pH from above 
8.2 to below 6.8 and induces a colorimetric response from fuchsia to 
yellow [73]. 

RN+H2CO−
2 + B ↔ RNHCO−

2 + BH+ (3) 

Repeat exposures at 700, 3,000, and 7500 ppm CO2 (dry) are 

depicted in Fig. S6. The colorimetric CO2 response occurs within seconds 
as the CO2 concentrations are repeatedly introduced and removed. 
However, partial recovery is obtained with each sensor, as the final color 
after a third dry CO2 exposure is modestly more yellow than that of the 
fresh sensor prior to dosage. While some solid-state MOF sensors 
demonstrate reversible CO2 detection [74], amine-based liquid gas 
sensors can suffer from sluggish kinetics [11]. As shown in Eq. 3, the 
carbamates formed upon zwitterionic deprotonation in protic solvent 
are thermodynamically stable, requiring thermal regeneration processes 
to reuse the sensor [11]. Thus, the sensor presented here is envisioned as 
a single-use sensor for colorimetric CO2 sensing, which is commensurate 
with modern acid-base commercialized colorimetric sensors imple-
mented in hospital care [13]. 

As shown in Fig. 3, the combined interaction of phenolsulfonptha-
lein, ethylenediamine, and ZIF-8 with CO2 facilitates colorimetric gas 
detection. Based on the BET measurements with the pristine MOF, ZIF-8 
is expected to provide a high surface area for CO2 adsorption, as well as 
accommodate both phenolsulfonpthalein and ethylenediamine for the 
two-step zwitterion reaction. Amine scrubbers (loaded with aqueous 
alkanolamines) are typically employed in CO2 capture, whereby CO2 
absorption can be represented via film theory: CO2 first diffuses from the 
bulk gas phase to the gas-liquid interface, then diffuses into the bulk 
liquid phase, and finally reacts with the amine via the zwitterion 
mechanism [75,76]. However, in the absence of ZIF-8, the cellulose 
filter paper absorbs methanol, phenolsulfonpthalein, and ethylenedi-
amine, preventing a finite layer with enough thickness to perform the 
physical and chemical CO2 absorption steps associated with amine 
chemistry. Finally, the absence of ethylenediamine (with either phe-
nolsulfonpthalein dissolved in methanol or phenolsulfonpthalein and 
ZIF-8 mixed in methanol) precludes the formation of the zwitterion, 
which is necessary for deprotonation by the dye. Thus, it is apparent that 
the interactive chemistry of ZIF-8, phenolsulfonpthalein, and ethyl-
enediamine generate a color change upon CO2 adsorption. 

Despite its decades of implementation, however, the validity of the 
zwitterion mechanism remains contested in the literature [77]. Ben Said 
et al. [78] performed density functional theory calculations that asso-
ciated the development of the 1◦,3◦-zwitterion with high activation 
energy barriers and concluded this mechanism improbable. In addition, 
da Silva and Svendsen [79] used Hartree-Fock computational methods 
to study the mechanisms for reaction between CO2 and aqueous alka-
nolamines. Their ab initio results suggested that a 1◦,3◦-zwitterion with a 
significant lifetime was unlikely [79]. Several authors have instead 
raised the single-step termolecular mechanism [77,79–81] as an 

Fig. 5. F(R) vs wavelength (nm) profiles with PSP-ED/ZIF-8 in variable dry 
CO2 environment. 

Fig. 6. UV–vis ratiometric profiles (700-7500 ppm CO2) of PSP-ED/ZIF-8 in 
variable humidity. 
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alternative reactive pathway, whereby an amine species reacts with one 
molecule of CO2 and one molecule of base, B, according to Eq. 4. The 
termolecular reaction mechanism has been shown consistent with the 
reaction kinetics of CO2 and several amines, such as monoethanolamine 
(MEA), aminoethylethanolamine, and diethylenetriamine [81]. 

CO2 + RNH2⋅⋅⋅B ↔ RNHCO−
2 + BH+ (4) 

Formation of the 1◦,3◦-zwitterion, however, has been supported in 
some other reports. Xie et al. [82] simulated an aqueous CO2-MEA 
system using a conductor-like polarizable continuum model and ab initio 
quantum mechanics/molecular mechanics. In contrast with prior au-
thors, they posit that a two-step mechanism with a 1◦,3◦-zwitterion in-
termediate is a favorable reaction path [82]. Given the ongoing debate 
in the literature, it is difficult to precisely ascertain the reactive chem-
istry between adsorbed CO2 and ED. However, due to its widespread use 
in aqueous and nonaqueous CO2-amine systems, the zwitterion mecha-
nism is situated in this work. 

3.3. Colorimetric analyses in humid environment 

The effect of ambient humidity on the colorimetric response of PSP- 
ED/ZIF-8 is also investigated. Representative colorimetric images for 
PSP-ED/ZIF-8 exposed 1500 ppm CO2 at various humidity are provided 
in Fig. 7. While under dry conditions, the sensor responds quickly and 
obviously, the colorimetric sensor exhibits a suppressed response to CO2 
with incremented humidity. 

The RGB mean values (shown in Table S2) demonstrate a reduced 
colorimetric CO2 response in humid environment. With increased hu-
midity, the R- and B-values increase, whereas the G-values generally 
decrease, leading to a diminished color change. 

With increasing the concentration of CO2, the suppressive effect of 
humidity remains apparent. RGB and ratiometric UV–vis profiles for 
700, 3,000, and 7500 ppm CO2 doses also reflect weaker colorimetric 
CO2 responses upon 80 % RH exposure. As shown in Table S3, once 80 % 
RH is introduced, the green intensities decrease, and the blue intensities 
increase for all humid CO2 concentrations compared to their dry values. 
The R-values for humid CO2 exposure are higher than those upon dry 
CO2 exposure. This combined decrease in G-values (and increase in R- 
and B-values) correspond to a less yellow color, indicating a suppressed 
CO2 response. Similarly, as depicted in Fig. 6 and Table S4, the 443/570 
nm F(R) ratios for humid CO2 exposure are lower than those of dry 
exposure. 

The exact mechanism of water interference in the colorimetric CO2 
sensing dynamics remains unclear. Differences in chemisorptive 
behavior in dry and humid environment have been observed in MOF 
studies. Flaig et al. [83] used solid-state 13C cross-polarization magic 
angle spinning nuclear magnetic resonance spectroscopy to characterize 
CO2 chemisorption in a diamine-functionalized IR-MOF-74-III. In dry 
environment, carbamic acid formation is observed from one amine 
reacting with CO2 [83]. However, humidified (95 % RH) conditions 
converted CO2 into ammonium carbamates upon reaction with two 
amines [83]. 

Under humid conditions, as seen with diamine-functionalized-IR- 
MOF-III, it is possible that the reaction stoichiometry of the colori-

metric CO2 sensing mechanism has altered toward a reduced CO2 ca-
pacity. Assuming a pseudo steady-state hypothesis on the zwitterion 
intermediate concentration, the rate of reaction between CO2 and pri-
mary amines (such as ethylenediamine) in aqueous (or nonaqueous) 
solvents can be approximated by Eq. 5 [84] 

RCO2 =
− k2{CO2][RNH2]

k− 1∑
kB [B]

+ 1
(5) 

where k2 is the forward rate of reaction of CO2 and ethylenediamine 
(Eq. 2), k-1 is reverse rate of reaction of CO2 and ED (Eq. 2), and ΣkB[B] is 
the summation of bases present in the system eligible to deprotonate the 
zwitterion (Eq. 3) [84]. 

Under the first asymptotic limit, k− 1∑
kB [B]

<< 1 and deprotonation 

occurs much more rapidly compared to the reverse reaction in Eq. 2 [84, 
85]. The simplified rate law is first order with respect to CO2 and pri-
mary amine, which has been found experimentally for aqueous 
CO2-MEA systems at 303 K [84–87] and CO2-ED systems in methanol at 
303 K [69]. At the other asymptotic limit, k− 1∑

kB [B]
>> 1 [84,85]. When a 

primary amine (such as ethylenediamine) contributes most to zwitterion 
deprotonation, Eq. 5 becomes second-order with respect to the amine 
[84,85]. The second asymptotic limit recovers the termolecular kinetics 
associated with Eq. 4, which Aboudheir et al. [88] showed for high 
CO2-loaded (0.1− 0.49 mol/mol), concentrated (3–9 M) aqueous MEA 
systems between 293 and 333 K. 

Between these asymptotic limits, fractional reaction orders can be 
observed, as shown experimentally with CO2-ED systems in pure and 
aqueous ethylene glycol solutions [69]. However, while such stoichio-
metric changes have been observed in amine-CO2 systems, it is uncertain 
how the presence of ZIF-8 and phenolsulfonpthalein alters the reaction 
kinetics. Toward elucidation of the mechanistic colorimetric sensing 
mechanism between CO2, ZIF-8, phenolsulfonpthalein, ethylenedi-
amine, and potential interferants (such as H2O), kinetic studies are 
required in methanolic solvent, which future studies will aim to provide. 

Despite the characteristic water resistance of ZIF-8 from the methyl 
groups associated with its ligands and coordinatively saturated Zn2+

sites [43,89], ZIFs can show favorable H2O adsorption isotherms 
through incorporation of hydrophilic moieties. Notably, ZIF-90 and 
SIM-1 display significant H2O adsorption at 298 K compared to ZIF-8 
due to the hydrophilic functional groups associated with their linkers, 
imidazole-2-carboxaldehyde and 4-methylimidazole-5-carbaldehyde 
[90]. In other work, amine-functionalized solid-state ZIF-8 (from 
toluene reflux) was shown to exhibit a 1–2 % suppression of CO2 
adsorption under the presence of preadsorbed water (10 % RH) [91]. In 
this context, we suspect that hydrophilic interactions between ethyl-
enediamine and H2O molecules could promote H2O adsorption [92] 
and, under humid environment, disrupt the colorimetric CO2 adsorption 
achieved in dry environment. 

Alongside hydrogen bonding interactions between ethylenediamine 
and H2O, the participation of H2O in the zwitterion mechanism is 
another possible source of interference in the colorimetric CO2 sensing. 
When hydrophilic ethylenediamine molecules are exposed to humid 
CO2, the attracted H2O molecules could engage in the second step of the 

Fig. 7. Fresh exposure of PSP-ED/ZIF-8 to 1500 ppm CO2 in dry environment, 40 % RH, and 80 % RH.  
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zwitterion mechanism and deprotonate the intermediate species [92]. 
The presence of hydrophilic ethylenediamine groups, then, could pro-
mote water adsorption, which subsequently introduces competition 
with phenolsulfonpthalein for deprotonation of the zwitterion and af-
fects the apparent color [92]. 

Humid interference remains a challenge in colorimetric analyte 
detection using various materials [93,94]. Because humidity can disrupt 
colorimetric sensing through physical adsorption or chemical in-
teractions, corrective measures can be difficult to precisely accomplish 
[94]. Toward addressing the effects of humidity on sensing perfor-
mance, desiccants have been employed, as well as water-insoluble dyes 
compatible with hydrophobic substrates (such as polyvinylidene 
difluoride) [94]. The chemical tunability of MOFs can also be manipu-
lated to enhance hydrophobic character. Using a post-synthetic shell--
ligand exchange reaction (SLER), Liu et al. [95] substituted the 
outermost shell of ZIF-8 particles with 5,6-dimethylbenzimidazole and 
achieved an improved water-resistance and water stability. Thus, we 
remain optimistic in achieving a MOF colorimetric sensor with 
water-repelling attributes suitable for accurate detection of indoor 
chemical species. 

4. Conclusions 

In this work, we have designed and characterized a simple, 
chemically-stable, methanolic MOF-based colorimetric sensor toward 
detection of low CO2 partial pressures of interest in indoor air quality 
monitoring. Colorimetric images, RGB values, and UV–vis spectroscopic 
studies show that PSP-ED/ZIF-8 is sensitive to CO2 concentrations 
typical of indoor air in dry environment, with a lower limit of detection 
below 1000 ppm CO2. 

Despite an excellent response to CO2 in dry environment, PSP-ED/ 
ZIF-8 suffers in the presence of humidity. Both qualitative colorimetric 
images and quantitative UV–vis ratiometric profiles indicate colori-
metric reduction upon exposure to humid CO2. Here, the hydrophilic 
nature of ethylenediamine is expected to facilitate H2O adsorption onto 
ZIF-8 and thus interfere with the visible CO2 colorimetric detection 
otherwise achieved in dry environment. Competition between phe-
nolsulfonpthalein and H2O for zwitterion deprotonation is also consid-
ered as a possible source of suppression of the colorimetric CO2 
response. However, the nature of water interference remains unknown 
and necessitates the pursuit of kinetic studies to clarify the colorimetric 
CO2 sensing mechanism. 

The ZIF-8 colorimetric sensor offers a simple detection of CO2 via 
incorporation of reactions between ethylenediamine, phenolsulfonp-
thalein, and CO2. Through integration of water-resistant functionalities, 
the MOF gas sensor will be enhanced to develop a competitive colori-
metric device robust to the variable humidity characteristic of indoor air 
environment. 
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