The Interplay of Demographic Variables and Social
Distancing Scores in Deep Prediction of U.S. COVID-19
Cases

Abstract

With the severity of the COVID-19 outbreak, we characterize the nature of the growth
trajectories of counties in the United States using a novel combination of spectral clustering
and the correlation matrix. As the U.S. and the rest of the world are experiencing a severe
second wave of infections, the importance of assigning growth membership to counties and
understanding the determinants of the growth is increasingly evident. Subsequently, we
select the demographic features that are most statistically significant in distinguishing the
communities. Lastly, we effectively predict the future growth of a given county with a long
short-term memory (LSTM) recurrent neural network using three social distancing scores.
This comprehensive study captures the nature of counties’ growth in cases at a very micro-
level using growth communities, demographic factors, and social distancing performance to
help government agencies utilize known information to make appropriate decisions regarding
which potential counties to target resources and funding to.
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1 INTRODUCTION

The recent infectious disease (COVID-19) caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has overtaken the world as the largest pandemic we have seen in
decades. The World Health Organization (WHO) labeled it a pandemic on 03/11,/2020, with
a total of more than 110 million confirmed cases and more than 2.44 million deaths worldwide
as of 02/20/2021.

Forecasting the growth of confirmed cases and the locations of future outbreaks has been
a persistent challenge in the public health and statistical fields. With the gravity and ur-
gency of the global health crisis, many recent works including Kucharski et al.| (2020) and
Peng et al.| (2020) have attempted to model the growth in cases in various countries. Most
of the literature on statistical modeling of the data focuses on the reproduction number.
However, this value is constantly evolving and is not always a valuable measurement to build
prediction models with. Hong and Li (2020) proposed a Poisson model with time-dependent
transmission and removal rates to estimate a time-dependent disease reproduction number.
Betensky and Feng (2020) studied the impact of incomplete testing on the estimation of
dynamic doubling time. Ultimately, we need to examine the underlying features contained in
the time series data in order to extract valuable insights into the unique nature of the spread
of COVID-19. As the number of deaths is at least a two-week lagging indicator compared to
the number of confirmed cases, we only look at the latter. More importantly, the matrix of
the number of deaths per county would be very sparse at the initial stage, making any anal-
ysis more difficult. Our goal is to first characterize and categorize the disease progression of
various counties given the limitations of public data. Then after distinct growth communities
are found, the demographic variables and social distancing scores are incorporated to project
the future behavior of the growth curve. In this way, a holistic outlook can be gleaned of the
pandemic on a granular level, while maintaining accuracy and robustness.

Stochastic block models (SBMs), first developed by Holland et al. (1983), has long been



studied as a powerful statistical tool in community detection, where the nodes or members are
partitioned into latent groups. SBMs have been employed to study social networks (Wasser-
man and Anderson, [1987), brain connectivity (Rajapakse et al., |2017), protein signaling
networks (Chen and Yuan, 2006), and many others. Under an SBM, the nodes within the
same group usually have a higher probability of being connected versus those from different
groups. The difficult task is to recover these connectivities and the communities based on
one observation, which in our case, is a snapshot of the changes in the number of cases up
to the most recent time point. In more recent years, spectral clustering (Balakrishnan et al.,
2011; Rohe et al.l 2011; Jin, 2015; Lei and Rinaldo, 2015) has arisen as one of the most
popular and widely studied approaches to recover these communities. Conventional spectral
clustering algorithms mostly involve two steps: eigen-decompose the adjacency or Laplacian
matrix of the data and then apply a clustering algorithm, such as k-means, to the eigenvec-
tors that correspond to the largest or smallest eigenvalues. There is extensive literature on
such procedures, for instance, von Luxburg (2007), Ng et al. (2001), Abbe (2017), and |Chen
et al.| (2020).

In this study, we introduce the unique procedure of conducting spectral clustering on the
sample Pearson correlation coefficient matrix directly and compare its clusters to the stan-
dard Laplacian embedding. This complements Brownlees et al. (2020-+)’s approach based
on a latent covariance model on financial return data. (Gilbert et al.| (2020) used agglomera-
tive clustering, an unsupervised learning method, on preparedness and vulnerability data in
African countries using self-reported reports of capacity and indicators. While a comprehen-
sive study, it only considers the possible exposures to travelers from China. Using a different
dataset, [Hu et al. (2020) clustered the data from China by implementing a simple k-means
clustering directly on various features of the provinces/cities and not on the eigenvectors of
the correlation matrix. It also doesn’t take into account possible explanatory features that

aren’t directly related to the number of cases and fails to predict provinces that have yet to



have cases. The data processing of some existing approaches also does not standardize and
shift the data in a way that aligns with the nature of COVID-19.

Once the communities are found, the subsequent part uncovers the statistically signifi-
cant demographic features, pre-existing in the counties, that could largely explain a county’s
community membership. Most of the existing research on salient demographic information
focuses on age-related features and the presence of co-morbidities or underlying health con-
ditions e.g. Dowd et al. (2020) and |Lippi et al. (2020). In reality, what influences how the
disease progresses in a county is most likely a confluence of variables, and not one or two
prevailing ones. Some studies also examine how various demographic determinants affect how
well a county carries out social distancing (Im et al., 2020), but offers little or no connection
to the nature of the growth curve.

There have been several early studies that predict, estimate, or model the growth curve
of the disease, including [Fanelli and Piazza (2020) on the cases in Italy, France, and China,
where the authors claim from pandemic data of the first two months that the mortality rate
in Ttaly is around 3-7% and 1-3% in China. Another example is [Roda et al. (2020) who
uses the cases in Wuhan to conclude that a SIR model, a simpler epidemic compartmental
model, is superior to an SEIR model, a more complex compartmental model. In addition,
Liu et al. (2020) presents a system of ordinary differential equations to model the cases in
China, assuming a constant transmission rate. In addition, deep learning has been applied
to COVID-19 research, such as [Wang and Wong (2020) that detect positive cases through
chest scans. Other studies such as [Zheng et al.| (2020) investigate when patients are most
infectious by using a deep learning hybrid model and [Yang et al.| (2020) similarly combines the
epidemiological SIR model with an LSTM network. However, there are very few studies that
compare different time periods of the pandemic under a statistical lens and integrate other
important pieces of the puzzle. Hence, the extracted variables from the feature analysis part

are then used in conjunction with time series of social distancing scores from [Unacast (2020)



to fit a recurrent neural network and to ultimately predict the progression of confirmed cases
in a given county. It is important to note that for this prediction section, we use the period
from the start of the pandemic until 07/20/2020 as this traces the first large spike in cases in
the U.S. and a subsequent plateau. This gives a long enough time series sample and to include
much more recent data would include the second large wave of the pandemic, which is counter
to the objective of capturing the growth trajectory of a county’s peak and fall. Unacast has
created a scoreboard of social distancing measures with mobile device tracking data, where a
device is assigned to a specific county based on the location the device spent the most amount
of time in. The neural network prediction takes these static, inherent county variables,
community membership (the clustering results), and social distancing data to predict the
future growth of confirmed cases. Taken together, our paper creates a throughline of the
pandemic: historical growth curve of confirmed cases, characterization of this growth via
clustering, the significant explanatory demographic features, and finally, social distancing
measures that give insight into the nature of the future growth trajectory, as displayed in
Figure 1} Table [1| also contains the specific time period, the number of counties n, and the
data source used for each part of the paper (Part I: community detection, Part II: extraction

of significant features, Part III: prediction) as outlined in Figure

Time Period(s) No. of counties n Source
Part 1 1/22/20 - 4/17/20 and 5/10/20 - 7/10/20 950 Johns Hopkins CSSE
Part I 1/22/20 - 4/17/20 and 5/10/20 - 7/10/20 633 ACS (c/o Data Planet)
Part IIT 2/25/20 - 7/10/20 627 Unacast

Table 1: Time period, number of counties, and data source used for each part of the paper.

2 COMMUNITY DETECTION

The first part of this paper finds potential communities among U.S. counties, in which clusters

share similar growth patterns, using daily county-level data of the aggregate number of
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Figure 1: Pipeline of this study’s three-part analysis of COVID-19. COVID-19 time series data is first
used to perform community detection, clustering counties into several communities. Then, demographic
features are incorporated to extract the most significant features that distinguish the growth communities.
Finally, social distancing metric time series are added to the results to the previous two parts to carry out
the prediction of COVID-19 cases for new counties.

cases. To accomplish this, two fundamental concepts are necessary: the stochastic block
model and spectral clustering. The former is a generative model through which community
memberships were formed and the latter is a methodology often utilized to recover these

memberships. Compared to traditional clustering methods, spectral clustering has shown

to be effective in both statistical and computational efficiency (Abbe, [2017; |Abbe et al.,

2020; [Chen et al., 2020). Our approach applies spectral clustering to the correlation matrix,

instead of the commonly used adjacency matrix or Laplacian matrix. The goal is to recover
the county membership matrix embedded in the correlations of each county’s logarithmic

daily cumulative number of cases.

2.1 Data

We use the COVID-19 (2019-nCoV) Data Repository by the Johns Hopkins Center for Sys-

tems Science and Engineering (CSSE) that contains data on the number of confirmed cases



and deaths in the United States and around the world, broken down by counties in the U.S.
The public database is updated daily and the virtual dashboard is also used widely around
the world. Data sources of the database include the World Health Organization (WHO),
US Center for Disease Control (CDC), BNO News, WorldoMeters, and 1point3acres. We
take all counties that have 12 or more cumulative cases in the time frame of 01/22/2020
to 04/17/2020. We treat the day a county reaches 12 or more confirmed cases as day one
and then discard all counties that have a time series of fewer than 14 days after process-
ing. This way we shift each county to a similar starting point in terms number of cases and
a long enough period to do a meaningful analysis with. We also remove unassigned cases
and U.S. territories, which ultimately results in a total of n = 950 counties. Here, we use
w; s = log(x; ) to represent the logarithmic cumulative cases for county i on day t.

We also repeat the community detection process with more recent data from 05/10,/2020,
when many states started to reopen, to 07/10/2020. The bulk of this part of the study
concentrates on the beginning phase of the pandemic given that health and government
intervention to minimize the number of future cases should be executed as early as possible.
However, we compare the resulting communities with more recent data that captures the
second phase of the pandemic in the U.S. States experienced a significant drop in cases when
the lockdown was enforced and businesses were closed but as they began to reopen, the
number of cases saw an uptick once again. Since this second phase comes months after the

initial outbreak, there may be meaningful differences worthy of analysis.

2.2 Correlation matrix vs. adjacency matrix

For each county, consider a daily time-series of the cumulative number of confirmed cases,
where we use curve registration (the time origin is set as the day on which the number of
cases exceeds 12 for a particular county). This curve registration is important as it takes

into account the fact that counties may have different COVID-19 outbreak starting times.



We denote w;; = log(z;,) as the logarithmic cumulative number of cases of county ¢ on the
t-th day since the county hit 12 or more cases. Then, we use the Pearson correlation as a

similarity measure, defined as
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= min(7;,T;), with 7; and 7; being the number of days county i and county j

where T;;
has 12 or more cases, respectively. The sample correlation R € R™" would then contain
the pairwise correlations among all n counties. The logarithmic cumulative case counts are
used to align with the exponential growth pattern implied by popular epidemic models. For
example, we could distinguish between a faster exponential growth function such as exp(2t)
and a slower growth function exp(¢/2).

Another commonly used network representation is the adjacency matrix A, which shows
whether two counties are connected and is often constructed based on a similarity measure
like Pearson correlation or a mutual information score. If the graph is undirected, where each
edge that connects two nodes is bidirectional, A is symmetric. The two most common types
of similarity graphs are the e-neighborhood graph and the k—nearest neighbor graph. As

we're using sample correlation as the similarity measure, an e-neighborhood adjacency A; is

defined as follows:

1, if R” Z 1— €,
(A1) = (2)
0, otherwise.

A k—nearest neighbor adjacency A, is defined as follows:

(

1, if county ¢ is among j’s k nearest neighbors
(A2)ij = or if county j is among ¢’s k nearest neighbors, (3)

0, otherwise,

\



where the nearest neighbors are found with respect to R;;.

Depending on the parameters € and k£ one chooses for A; and As, respectively, a significant
amount of information could be lost in the process because of the thresholding operation.
However, this operation also filters out many spurious correlations. Unlike the sparse A; and
A,, R retains all of the pairwise similarities between counties, which would shed more light

on the within-group and between-group relationships.

2.3 Stochastic Block Model (SBM)

The matrices R, A;, and A, are critical because they can help us recover ©, an n x K
membership matrix that reflects which community each county belongs to, where K is the
number of communities. Letting Z; € {1, ..., K} be the community that county 7 belongs to,
the i row of © has exactly one 1 in column Z; (the community that county i belongs to) and
0 elsewhere. We estimate ® under an SBM, where the probability two counties are connected
only depends on the membership of these two counties. An SBM denoted by G(n, B,®) asn
nodes, K communities, and is parameterized by ® and B, the K x K symmetric connectivity
matrix. Essentially, B contains the inter- and intra-community connection probabilities: the
probability of an edge between counties ¢ and j is Bz, z;.

The objective is to obtain an accurate estimation © of © from an observed adjacency
matrix A that is modeled as G(n, B, ®). This yields an recovery of the partitions Gy, := {i €
[1,n]: Zi=k}by Gy ={i€[l,n]: Z; = k},k =1,..., K, with an ambiguity of permutation
of clusters, where Z indicates the location of 1 in the i row of @. The population matrix
P c R™", where P;; is the probability that counties i and j are connected, is naturally

expressed as P = @ BO”.



2.4 Spectral Clustering

Spectral clustering has been a popular choice for community detection (Rohe et al., 2011; Jin,
2015; [Lei and Rinaldo, 2015). The central idea is to relate the eigenvectors of the observable
adjacency matrix A to those of P = ®@BOT, which is not observed. This is accomplished
by expressing A as a perturbation of its expected value: A = E[A] + (A — E[A]). If we
treat E[A] as the signal part and A — E[A] as the noise, we connect the eigenvectors of A
and P using E[A] = P — diag(P). Noting rank(P) = K, letting U, «x = [u1,...,ug| be
the eigenspace spanned by the K nonzero eigenvalues of E[A], then columns of U span the
same linear space as those spanned by the columns of P (ignoring diag(P)). Additionally, P
has the same column space as . Now, letting U be the eigenspace corresponding to the K
largest absolute eigenvalues of A, then U is a consistent estimate of U or the column space
of ®, under some mild conditions. To resolve the ambiguity created by rotation, the k-mean
algorithm is applied to the normalized row of U to identify membership of communities
(Rohe et al., 2011; Lei and Rinaldo, 2015).

Instead of examining the eigenvalues of A, spectral graph theory has long studied graph
Laplacian matrices as a tool of spectral clustering. The symmetric Laplacian matrix is
defined as follows: letting D = diag(dy,...,d,) be the diagonal degree matrix where d; =
Z?Zl A;j, then a popular definition of a normalized, symmetric Laplacian matrix is L =
I- D 'Y?2AD™ 2. When clustering with L, one takes the eigenvectors corresponding to the
smallest eigenvalues in absolute value.

In our context, A can be taken as either A; or A, as outlined in Section As there are
no exact rules in choosing the parameters € and k of A; and As, respectively, clustering with
L, which depends on the adjacency matrix, may be less than ideal. It is also an added, often
computationally cumbersome step. Instead, we cluster directly on the similarity matrix R,
the sample correlation matrix. Algorithm (1| delineates the detailed steps of this approach.

The classic spectral clustering procedure with L used as a benchmark is outlined in the

10



Supplementary Material.

Algorithm 1 Spectral clustering on correlation matrix
Input Sample correlation matrix R € R™™ and the number of clusters K.

1: Compute the top K eigenvectors uy, ..., ur of R associated with top K largest absolute
eigenvalues and let U € R™¥ be the matrix with the eigenvectors as columns.

2: Normalize rows of U to have unit norm to get Unorm

3: Cluster the rows of Um,rm with k-means.

return Partition @1, - @K of the nodes.

There are several methods for choosing the number of spiked eigenvalues in the context
of factor models: scree-plot, eigen-gap, eigen-ratio, adjusted correlation thresholding. As our
method involves correlations, we apply the adjusted correlation method in |[Fan et al. (2020).
This method leads to K = 2, which roughly divides the counties into faster or slower growth

communities. It also agrees with the choice where we maximize the eigen-gap.

2.5 Clustering procedure
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Group 1 Group 2

Model No. of Counties Growth Rate SE No. of Counties Growth Rate SE

R 467 0.1589 0.0020 483 0.1704 0.0019
Ay 462 0.1583 0.0020 488 0.1677 0.0019
Ay 470 0.1605 0.0020 470 0.1664 0.0020
R, second phase 487 0.0207 0.0005 463 0.0233 0.0005

Table 2: Average growth rates and the number of counties in each cluster for K = 2. Model R corresponds
to Algorithm [I] where we use the sample correlation matrix. Model A; corresponds to Algorithm [4] where
we use the k-nearest neighbors graph (kK = 7). Model Ay corresponds to Algorithm |4 where we use the
e-neighborhood graph (e = 0.007). Groups 1 and 2 are the obtained partitions @1 and @2, respectively.
Growth Rate is the approximated exponential growth rate, calculated as in Section Presented are the
averages of these growth rates and their associated SEs for the counties in two groups, clustered by different
methods. R, second phase is for the clusters obtained for the period 05/10/2020 - 07/10/2020.

Group 1 2 Group 1 2
1 96.1% 94.0% 1 95.0% 88.4%
2 94.0% 96.8% 2 88.4% 93.8%

Table 3: The table on the left is the R average block correlations K = 2 for the first phase 1/22/20 -
4/17/20 and the table on the right is the R average block correlations K = 2 for the entire period of study
1/22/20 - 7/10/20.

the work by Abbe et al. (2020) with strong theoretical support. From now on, all clustering

analysis will be based on the unit-norm normalization of the eigenvectors.

2.6 Fastest and Slowest Growth Clusters

For future analysis (Section [2.7)), it is useful to define the clusters that contain the counties
with the fastest and slowest growth. After the clusters are produced with Algorithm
for every community k, we calculate the average exponential growth rates of the counties
in that community. This is done by fitting the total number of cases of each county ¢ on
day t, x4, t0 iy = x;0(1 4+ 7;)" + & through nonlinear least squares and obtaining the
approximated growth rate r; for county 7. Then, we compare the average fitted growth rate
e = 1/|Gyl >_icq, " and standard error for clusters k = 1,..., K. The fastest growth cluster

is defined as argmax, 7} and the slowest growth cluster is defined as argmin, 7.
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2.7 Results and Discussion

Table [B] contains information on

the average intra- and inter-group 09
- : & &
correlations, a sample reflection of £ £ 096
B. Evidently, the intra-community ! 083
correlations are higher than the o0
2 2
. . . 3 3
inter-community correlations. For & & .
.
the first phase, Group 1’s intra- Group 1 Group 2 Group 1 Group 2

. 2
correlation of 96.1% and Group 2’s Figure 3: The left panel is the R Heatmap of block correlations

K = 2 for the first phase 1/22/20 - 4/17/20, corresponding to
the left panel of Table The right panel is the R Heatmap of
block correlations K = 2 for the entire period of study 1/22/20
- 7/10/20, corresponding to the right panel of Table [3| Model R
corresponds to Algorithm [If where we use the sample correlation
matrix. Groups 1 and 2 are the obtained partitions G; and Gs,
respectively.

96.8% are greater than 94.0%, the
inter-group correlation between the
two groups. As we only took coun-
ties with significant outbreaks as of
04/17/2020 and counties have not been fully differentiated yet at an early stage in terms of
cases, it is logical to observe high correlations across the board. However, we see that for
the entire period of study, the distinction between inter- and intra-community correlations
is much more obvious, where the former has decreased significantly. These results are also
mirrored in Figure 3| heatmaps of the block correlations.

We can see from Table [2 that for the clusters obtained by Algorithm [1| (R), the difference
between the growth rates of Group 1 and Group 2 is the largest. This differentiation is further
bolstered by the growth curves in Figures 4 and [l The standard error bands in Figure
underscores that the two groups become more distinct in their growth trajectory as time goes
on: the overlap between the bands of the two groups decreases over time. For A; and A,
the growth rates are much closer together between the two communities. Furthermore, the
right panel of Figure 6 is a plot of the average cases for the period after community detection

was performed: 04/17/2020 - 09/03/2020. Evidently, the separation between the two groups
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Figure 4: The left panel represents the average cumulative number of cases of the initial phase 01/22/2020
- 04/17/2020 with one standard error bands for the clusters of R, K = 2. The right panel is the average
log cumulative number of cases of R, K = 2. The x-axis is in calendar time, which does not account for

heterogeneous starting times of the outbreak in each county.
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Figure 5: The left panel represents average cumulative number of cases of the initial phase 01/22/2020 -
04/17/2020, starting from the first day of at least 12 days for the clusters of R, K = 2. The right panel
is the average cumulative number of cases of the period 04/18/2020 - 09/03/2020, the time frame after the
initial phase used in community detection. The x-axis here accounts for the heterogeneity of the outbreak of
COVID-19 in each county.
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Figure 6: Clusters for model R of the initial phase 01/22/2020 - 04/17/2020. Model R corresponds to
Algorithm |1 I where we use the sample correlation matrix. Groups 1 and 2 are the obtained partitions G1 and
G2, respectively.
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Figure 7: Growth curves of clusters obtained from community detection on data from 05/10/2020 -
07/10/2020 (recent phase). Plots are the same as those of Figure |§}

becomes much more distinct as time goes on (with a much larger number of cases). As for
community detection of the subsequent phase of the pandemic in the U.S. (from 05/10/2020
- 07/10/2020), the last row of Table [2| again shows a larger average growth rate for Group
2, albeit much smaller in magnitude since cases increased at a slower rate once the country
learned how to deal with the pandemic.

Some notable counties that are partitioned to Group 2, the fast growth community, include
Los Angeles, CA; San Francisco, CA; District of Columbia; DeKalb, GA; Fulton, GA; Miami-
Dade, FL; Cook, IL; Jefferson, LA; Suffolk, MA; Bergen, NJ; New York, NY; Westchester,
NY; and King, WA, all large epicenters. Figure [6] is a geographical visualization of the
communities.

In addition, Figure [7] shows the same plots as those in Figure [5| but for a later phase.
The curves are clearly much flatter in both groups, which is likely due to the increase in
the number of cases plateauing in many counties. Furthermore, the distinction between the
curves of Group 1 and 2 is also considerably bigger than those of the earlier data. This can
be explained by the confluence of additional factors that separate each county’s experience
with the virus, including the nature of local government intervention, degree, and timing of

re-openings, travel restrictions, etc.
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3 EXTRACTING SIGNIFICANT DEMOGRAPHIC

FEATURES

An important and subsequent question that arises once the communities are obtained is
what underlying factors play a role in which growth cluster a county belongs to. Since the
growth of COVID-19 cases is also related to static, inherent factors that aren’t a consequence
of the disease, we examine a variety of county demographic variables and how they differ
among communities. In order to select the variables that are most statistically significant,
or are most relevant to the community assignment of a county, we perform independent two-
sample t-tests on the fastest and slowest growth groups (Section with respect to various
demographic variables. The null and alternative hypotheses for this t-test for the d-th feature

are as follows:

Hy : pay = pa2, vs. Hy @ pla1 7 pa2, (4)

where 14, is the mean value of the d-th feature of cluster 1 and j45 is the mean value of
the d-th feature of cluster 2. We then compute the two-sample test statistic with pooled
estimate of the variance. After finding the p-values, we rank the features from lowest p-value
to highest.

Furthermore, we repeat Algorithm (1| for K = 3,4,5, select the 'fastest’ and ’slowest’
growth clusters in each case, and carry out the independent two-sample t-tests as described
above for the same demographic features. This sensitivity analysis tests whether the demo-
graphic variables that are significantly different between the two groups are consistent when

we have a larger number of communities. Ultimately, we present the statistically significant
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Figure 8: The left panel is a geographical representation of counties according to median household income.
Blue dots are counties with less than $50,000 median annual household income and purple dots are counties
with more than $50,000 median annual household income. The right panel is a geographical representation
of counties according to population density. Blue dots are counties with less than 150 persons per sq mile
and purple dots counties with more than 150 persons per sq mile.

demographic features.

3.1 Data

For this section, we use data from Data Planet, a social science research database that
compiles 12.6 billion U.S. and international datasets from over 80 sources. For our purposes,
we look at the 2017 American Community Survey (ACS), the largest household survey in
the U.S., conducted by the U.S. Census Bureau. We select 17 relevant features on a county-
level, which are displayed and summarized in Table 4l Note that not all 950 counties from
Johns Hopkins CCSE data that were used in Section [2.1]is available on Data Planet, thus the
analysis is done on 633 counties for this section. Now, we are left with 301 counties in Group

1 and 332 counties in Group 2, which is still a close split like that of R seen in Table

3.2 Results and Discussion

It is evident from Table [4] that community detection with R results in Group 2 (fast growth)
containing counties with the highest mean and median population density by far. The mean

and median household incomes are also higher for counties in Group 2. The mean number
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Group 1 Group 2

Feature Mean Median Std Dev  Mean Median  Std Dev
Population Density 275.775 159.260 394.059 913.182 289.610 3659.76
Median Household Income 54431.6 52651.0 13386.3 58814.6 56074.0 16737.2
% Poverty 14.0656 13.3000 5.71511 13.4712 12.5000 5.83384
% 1-person households 27.1330 27.7185 4.21220 27.0233 27.1978 4.54690
% 5 or more person households 8.91332 8.41406 2.96792 9.38467 8.71688 3.27316
% households w 60 y/o and older 39.3294 39.1802 6.85032 38.7538 38.6947 6.03233
% w low access to stores 21.8723 21.3800 9.66507 20.8704 21.2500 9.81211

% low income w low access to stores 7.48273 6.85500 4.48466 6.60216 5.69000 4.52299
% households w low access to stores 2.69416 2.32000 1.63712 2.24196 1.92000 1.50078
25 y/o and older w Bachelor’s /1,000 110.885 106.164 40.6371 122.654 118.332 43.6276

% White 80.8599 85.6959 15.0719 75.7593 79.6171 16.7522
% Black 11.3861 5.03010 14.6140 13.4737 7.90300 15.3919
% Asian 1.96190 1.22070 1.89220 3.67570 1.87900 5.28820
No of bars 29.3313 16.0000 39.0755 55.2143 23.5000 96.9646
No of grocery stores 42.5564 23.0000 67.0810 117.321 39.0000 16.5490
No of restaurants 13.1345 8.00000 13.1383 14.9219 9.00000 16.5490
% take public transportation 0.41130 0.19870 0.76870 1.24690 0.32130 6.14170

Table 4: R clusters’ mean and median values for selected features for each community K = 2. Model R
corresponds to Algorithm [I] where we use the sample correlation matrix. Group 1 and 2 are the obtained
partitions G; and Gs, respectively. Population Density is the number of people per sq mile; median household
income is in US dollars; % Poverty is the poverty rate: % 1-person households is the percentage of one-person
households; % 5 or more person households is the percentage of five or more person households; % households
w 60 y/o and older is the percentage of households that have one or more members who are 60 years old
or older; low access to stores is defined as living more than one mile (urban areas) or 10 miles (rural areas)
from the nearest supermarket, supercenter, or large grocery store; /1,000 is per 1,000 persons; % take public
transportation is the percentage of all persons who work in a county and take public transportation to work
every day. All feature information is as of 2017.

of persons 25 years old or older with Bachelor’s is noticeably greater for Group 2, which
can often coincide with more urban areas that are more densely populated. However, it
can also be related to the number of universities in a particular area, as a higher number
would exacerbate the spread of COVID-19. The numbers of bars and grocery stores are also
starkly different among the two groups. Moreover, the percentage of people who take public
transportation to work is around three times greater for Group 2 than Group 1. On the other
hand, unlike what one would expect in terms of the relationship between the number of one-

person households and the spread of COVID-19, there is not much differentiation between

the number of people in a household.
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Feature P-Value Feature P-Value

% Asian 1.26E-11 No of grocery stores 2.85E-08
No of grocery stores 5.83E-11 % low income w low access to store 6.38E-07
No of bars 2.95E-06 Median Household Income 8.41E-06
% White 3.04E-06 % Poverty 2.01E-04
Median Household Income 1.44E-05 % White 0.01967
% households w low access to stores 1.60E-05 Population Density 0.04027
25 y/o and older w Bachelor’s /1,000 2.80E-05 % 1-person households 0.07537
Population Density 2.39E-04 % households w low access to stores 0.10640
% low income w low access to store 0.00303 % 5 or more persons households 0.10711
% take public transportation 0.00436 % Black 0.12222
% 5 or more persons households 0.02324 % take public transportation 0.13245
% Black 0.04672 % of households w 60 y/o and older 0.35344
% Poverty 0.10603 % Asian 0.47698
No of restaurants 0.11432 25 y/o and older w Bachelor’s /1,000 0.52498
% w low access to stores 0.13698 % w low access to stores 0.62138
% households w 60 y/o and older 0.18014  No of restaurants 0.89977
% 1-person households 0.63999 No of bars 0.90224

Table 5: Left table is R clusters’ p-values for independent two-sample t-tests for selected features between
Group 1 and Group 2 sorted from smallest to largest p-value. Right table is recent data (05/10/2020 -
07/10/2020) R clusters’ p-values. The features in bold are the ones that are selected as significant features
for further analysis in Section

Table |5| contain the p-values for all of the 17 features. The numbers of grocery stores
and the number of bars have much lower p-values (and are below the p-value threshold)
than that of the number of restaurants. Also, as expected, the median household income
is among the features with lower p-values, along with population density. After conducting
the same two-sided t-tests for K = 3,4,5 on the two extreme groups (the groups that
have the smallest and largest average growth rates further verified by plotting Figures
and p| for K = 3,4,5 communities), the seven statistically significant features found are
as follows: population density, median income, number of persons who are 25 years and
older with Bachelor’s per 1,000 persons, percentage of the White population, percentage of
the Asian population, number of bars, and number of grocery stores. These seven features
are consistently significant for each K = 2,3,4,5 based on p-values. These values form

the demographic vector d; for each county ¢. The variables for bars and grocery stores

underscore the ease of transmission in locations with greater numbers of public gathering
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spots, a characteristic evident in cities like New York City where most people choose to
convene at bars without much social distancing (before stricter lockdowns took place).
After finding the growth communities and conducting t-tests to ascertain the significant
features for the latter phase of the pandemic in the U.S. (05/10/2020 - 07/10/2020), the
features with the lowest p-values diverge from those of earlier data, as presented in the right
panel of Table 5| Population density and median income are still among the most meaningful
but the percentage of people with low access to stores and the percentage living in poverty
have become significant. This suggests that at later stages of the pandemic, poverty and
other income-related measures become more indicative and responsible for the differences in
case growth among counties. Thus, the seven features for d; for this latter phase are the
top seven variables in Table |[5f number of grocery stores, % low income with low access to

stores, median household income, % poverty, % white, population density, and % I1-person

households.

4 PREDICTION WITH SOCIAL DISTANCING DATA

The final section of our COVID-19 methodology is to predict a county’s growth trajectory a
few days into the future. We propose a prediction methodology with the objective that given
a new county, the new county’s key demographic features, and social distancing measures,
we implement an algorithm that projects the new county’s future growth.

Before going in-depth on the prediction models, it’s necessary to first define some impor-
tant variables. Let [ be the number of the days forward to be projected for a new county.
To build such a predictive model, let y; 4 = log(z; 1) — log(x;:) be county ¢’s I-day for-
ward log-growth rate, which is close to the growth rate %ﬁ” by Taylor’s expansion and
numerical verification, for ¢t = 1, ...,7T;. Here, T; + [ is the total number of days where county

i has 12 or more cases. Recall the obtained partitions from Algorithm (1| (set of indices of
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counties that belong to group k): Gy = {i € [1,n]|Z; = k}, where Z € R" is the recovered
community label vector. For a community k, and a county i € @k, let d; € R? be county ¢’s
significant feature vectors obtained from Section 2.7, S; = [s}, 85, ..., s%.]" € R"*3 be county
i’s three social distancing time series matrix (see Section for details about this data) and
Vi = [Wi1ss, Y]’ € RT be its [—day forward log case difference. Note that each row
of S;, s € R? has three different social distancing metrics at time .

In summary, we have data {S;,y; :i € @k} for training an [-day ahead predictive model
for the k™ community. Also, to recover the predicted log cases log(Z; ;) for county i on day

t + [, one can simply use 1og(Z; ¢+1) = Vi1 + log(xiy).

4.1 Data

Social distancing data is courtesy of Unacast and its COVID-19 Social Distancing Scoreboard.
The scoreboard tracks mobile device movement and has three metrics that quantify the level
of social distancing people in a particular county are practicing. The first metric is the
percentage change in total distance traveled, averaged across all devices, compared to a pre-
Corona baseline. The second is the percentage change in the number of visitations to non-
essential places compared to a pre-Corona baseline. For these two metrics, the pre-Corona
baseline of a county on a particular day is defined as the average of the four corresponding
pre-weekdays (at least four weeks before the day). For example, for Monday 3/30, the pre-
Corona baseline of the first metric is the average of the first metric for the four Mondays:
2/10, 2/17, 2/24, and 3/2. The final metric is the rate of human encounters as a fraction
of the pre-Corona national baseline. The pre-Corona national baseline for this metric is the
average of the metric taken over four weeks that immediately precede the COVID-19 outbreak
(02/10/2020 - 03/08/2020) as defined by Unacast. Since this data starts at 02/25/2020 which
is after the start of the Coronavirus cases data (01/22/2020), we perform prediction on the
period 02/25/2020 - 7/10/2020, which is the start of the “initial phase” until the end of the

“recent phase”. Also note that not all counties from Johns Hopkins CCSE data and Data
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Planet are available at Unacast’s database so out of the 633 counties from Section [3.1] this

section is performed on 627 counties.

4.2 Long Short-Term Memory Network

To enhance the effectiveness of the model, we take advantage of a special type of recurrent
neural network (RNN): long short-term memory (LSTM) networks, which are designed for
time-series forecasting. Unlike feedforward neural networks (FNNs), RNNs produce an out-
put that depends on a “hidden” state vector that contains information based on prior inputs
and outputs. LSTMs builds on a simple, vanilla RNN to include a forget gate, input gate,
and output gate for each module. Hence, it is able to “remember” information for longer time

periods (lags). The output for an LSTM module at time ¢ is as follows:

exp(x) B exp(—x) (5)

hy = oy tanh(C}), tanh(z) = exp(x) + exp(—z)

The components of h; are broken down as follows: f; = o(Wylhi_1, 2] +by), is the forget gate
output and Wy and by are its weights and biases, respectively. i, = o(W;[hi_1, x¢] + b;), is its
input gate output and W, and b; are its weights and biases, respectively. The cell state vector
then gets updated by forgetting the previous memory through the forget gate and adding
new memory through the input gate: C; = f,C;_, +4,C;, where C, = tanh(Welhi—1, x¢] +bc).
Subsequently, the output gate o, = o(W,[hs_1,x¢] + b,) and W, and b, are its weights and
biases, respectively. Here, o(z) = (1 + exp(—=z))~"! is the sigmoid activation function.

We also compare the LSTM’s performance with that of an FNN, namely an MLP (multi-
layer perceptron). MLPs are a type of fully connected FNN first introduced and popularized

by Rumelhart et al. (1986), consisting of an input layer, output layer, and hidden layers in

s+1

%

between, where the training process is done through backpropagation. The total input x
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of a neuron i of layer s 4+ 1 takes the form of

1o

ot = hpas 4+ ot (6)
J

where 1j; is the weight for neuron j of the previous layer s to neuron 7 of layer s+ 1 and bit!
is the threshold of layer s + 1. 23, = o(zf) is the output from neuron j from the previous
layer s, where a nonlinear activation function o(-) is applied to the input. Most common

activation functions include sigmoid, tanh, or ReLU (rectified linear unit), where the ReL.U

often learns faster in deeper networks.

4.3 Prediction Models

The first prediction model, Algorithm [2| (which we will refer to as SD-LSTM, with SD stand-
ing for social distancing), is a prediction procedure that solely uses a nonlinear model (a
neural network) to fit the data. The idea is to first train an LSTM for each of the K commu-
nities, and then given a new county, we select the corresponding fitted model for prediction
from our repertoire with respect to its nearest neighbor county (in demographic variables, not
geographical distance). That is, we apply the nearest neighborhood in demographic variables
to classify the new county’s community, and use the model for that community to forecast
the county’s cases. Specifically, for each community k € {1, ..., K}, we train an LSTM with
the data {(s!,yii1)12, Vi € G} and this depends on the numbers of steps forward, I, we
are trying to forecast. For simplicity of notation, for community £, we denote all such data
items for all counties i € Gy, by {(s¢, yet), t € é,@} and the fitted function by ﬁ() Now the
second part, the prediction, is that given a new county i'’s demographic data d; and social
distancing information Sy = [s{, s}, ..., s%_,] € RT3 we first find its nearest neighbor county
j = argmin; ||dy — d;||* and its associated community 2]- and use its associated prediction

model to predict iy = f,i,(sf),t =1,..,Ty with ¥/ = Ej. Algorithm |2| summarizes this
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method of prediction.

To predict a future event, the above procedure gives a number of prediction methods.
For example, to predict tomorrow’s outcome, we can use today’s social distancing data with
[ = 1, or yesterday’s social distancing data with [ = 2, or the day before yesterday’s social
distancing data with [ = 3, and so on. As verified later in Figure it turns out that [ =4

is the best choice of lead, which aligns with the incubation period of the disease.

Algorithm 2 SD-LSTM: LSTM Prediction
Part I: Training
Input: The lead [
1. for k€ {1,..., K} do
2 Train LSTM ﬁ() using the data {(s, yi),t € GL}.
3: end for
4: return fitted LSTMs ﬂ(), k=1,.. K.
Part II: Prediction
Input: A new county 7, dy € RY, Sy = [s}, s}, ..., 8%,] € RT3, Z and fZ(), k=1,.. K
from Part I. '

1: Find county 7"’s nearest neighbor j = argmin; [|dy — d;]*.
2: Select ﬁk,(-), where k' = Zj.

3: fort € {1,...,T/} do

4: Yl = ﬁg,(Si’)-

5: end for

6: return Yy = [Ui 141, Y 241 - Y1) € RV

Algorithm [3takes SD-LSTM a step further to include a linear component, namely, fitting
the linear model for each county first with residuals from each community then further
modeled by an LSTM. This idea is related to boosting or nonparametric estimation using a
parametric start (Fan et al.l [2009), resulting in a semi-parametric fit. Again, the objective of
the training part is to obtain K fitted models, one for each community, using semi-parametric
regression techniques. More specifically, for county ¢ with lead [, we first fit the following

linear regression models

Yiri =+ ()8 v e, t=1,..,T,. (7)
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After fitting the linear regression models for every county ¢ € Q\,lc, we obtain the residuals
{€+11,t € @} and save all the coefficients o!, 8 for i € @,w k=1,..,K. We then extract
the information further from {(s;, €.4),t € Q\,i} by fitting an LSTM to obtain the fitted g.(-).
Then, for the prediction of the new county ¢/, we follow the same steps as those in SD-LSTM
but the final prediction is instead adding the linear fit of the nearest neighbor county and

the LSTM fit of the community corresponding to the nearest neighbor county:
Jrarr = o+ (87)"85 + G (s7),

where k' = Zj. We will refer to this model as SD-SP. The idea is summarized in Algorithm

Algorithm 3 SD-SP: Semi-parametric Prediction
Part I: Training
Input: The lead [

1: for ke {l,..,K} do
2 Fit the regression models (7)) for i € G. and obtain the residuals {¢,4;,¢ € @k}
3: Train LSTM using {(s;,é1).t € G.}
4
)

: end for
. return fitted LSTMs gL(-) and all o} and B! fori € GL k=1,..., K.
Part II: Prediction R
Input A new county i, dy € R?, Sy = [s!, s},...,8%,] € RT*3 Z and gi(-), ol and B!
for i € Q\,lc, k=1,...,K from Part 1.

1: Find county 7"’s nearest neighbor j = argmin; [|dy — d;]]*.
2: Select o} and [32 for county j.

3: Select gt,(+), where k' = Z\j.

4: for t € {1,....,Ty} do

5 i1 = ab + (Sil)Tﬂg + G (s)-

6: end for

7. return g, = [Yir 110 Yo ovis o Yo ) € RTV.

We also include three other algorithms for comparison purposes. The first replaces the
LSTM fit ﬂ() of community & in SD-LSTM with a linear model. This corresponds to fitting
without further boosting by an LSTM. For simplicity, we shall refer to this approach as

the SD-LM (social distancing linear model). The second one is to use both demographic and
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social distancing data to fit an LSTM. This approach is identical to SD-LSTM, but includes
the ¢ = 7 significant demographic variables in Table[5]in addition to the three social distancing
variables. Similarly, we shall refer to this approach as the DSD-LSTM (demographic and
social distancing LSTM). DSD-LSTM is expected to improve the performance of Algorithm
due to the additional information from the demographic variables. The final model is similar
to SD-LSTM but instead of an LSTM, we use an MLP with two hidden layers (we will refer
to this model as SD-MLP).

4.4 Implementation

For the LSTM, the optimization algorithm used is Adam with a learning rate of 0.01. For
regularization purposes, we also use a dropout layer (dropout rate of 0.5) for each of the
LSTMs. This also helps take care of any potential multi-collinearity between the demographic
features that are used in Model 4. We also test the performance of various lags to see which

yields the highest out-of-sample R?, defined as follows for a given new county i’ and lead I:

. 221 (Yir 411 — @\z",t+l)2

1 T _ 2
Yo Yir b1 — Yir 441)

: (8)

where ;s 14, is the observed value, ¥y 14; is the predicted value, and gy 4 = 1/T5 2121 Yir 415
serving as the baseline predictor. The average, median, and standard deviation of the R?
values are then taken across all counties in the testing sample. Additionally, for any model
involving an LSTM, up to the minimum length 7 = z:HfmnTZ is taken for each county since
the LSTM needs each sample to have uniform time steps. Therefore, T, = T for each county
¢ in the case of SD-LSTM, SD-SP and the DSD-LSTM model. For information regarding the
hidden layers used and input shapes in the neural network models, see Table [6]

Due to the nature of neural networks and considering the relatively small sample size, we

conduct five-fold cross-validation to evaluate the learning models. We divide all the counties
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No. of hidden layers Type and no of nodes/dropout rate Input shape

SD-LSTM 1 LSTM 10, Dropout (0.5) nx Tx3
SD-SP 1 LSTM 10, Dropout (0.5) nx Tx3
DSD-LSTM 1 LSTM 10, Dropout (0.5) nx T x10
SD-MLP 2 Dense 10, Dropout (0.5), Dense 10, Dropout (0.5) > T; x 3

Table 6: Number of hidden layers, the type and number of nodes of each hidden layer, and input shape of
each model that contains an NN.

into 5 train-test splits, where the correlation matrix is re-calculated on only the training set.
Then, for each K = 1,...,5, Algorithm [1]is executed on the training set for that particular
split. Hence, we have 25 sets of results for each model (five for each of the five train-test

splits).
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Figure 9: Out-of-sample R? boxplots for all counties using Model 1 (SD-LSTM), Model 2 (SD-SP), Model
3 (SD-LM) and Model 4 (DSD-LSTM) for K = 1,2,3,4,5. The results are based on [ = 4 and the period
02,/25/2020 - 7/10/2020.
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In-Sample Out-of-Sample
Model Mean Median Std Dev Mean Median Std Dev

Model 1, K =1 0.3447 0.6376 0.8642 0.3281 0.6192  0.7978
Model 1, K =2 04733 0.6372 0.5632 0.2170 0.5437 1.0514
Model 1, K =3 0.5003 0.6527 0.5186  0.2792  0.5600  0.8986
Model 1, K =4 0.5211  0.6580 0.4738  0.2485 0.5245  0.9007
Model 1, K =5 0.5113  0.6593 0.5094 0.2024 0.5461  1.0277
Model 2, K =1 -2.0229 -1.8148 0.9800 -2.9663 -1.9824 7.8948
Model 2, K =2 -1.8886 -1.7337 0.8901 -2.9613 -1.8356 8.1548
Model 2, K =3 -1.8819 -1.6990 0.8471 -2.9393 -1.7641 8.0641
Model 2, K =4 -1.8647 -1.7513 0.8371 -2.9220 -1.7512 8.1715
Model 2, K =5 -1.8673 -1.7500 0.8016 -2.9281 -1.7872 8.0991
Model 3, K =1 -0.1227 -0.0271  0.3236 -0.1458 -0.0311 0.4000
Model 3, K =2 -0.1148 -0.0260 0.2941 -0.1586 -0.0296 0.5145
Model 3, K =3 -0.1138 -0.0252 0.2936 -0.1563 -0.0276 0.5054
Model 3, K =4 -0.1095 -0.0239 0.2771 -0.1659 -0.0302 0.6044
Model 3, K =5 -0.0991 -0.0246  0.2559 -0.1542 -0.0317 0.5320
Model 4, K =1 0.4855 0.6429 0.5114  0.4513 0.6251  0.5384
Model 4, K =2 0.5486 0.6645 0.3786  0.3567 0.5556  0.7031
Model 4, K =3 0.5473  0.6554 0.3952 0.3611 0.5672  0.6536
Model 4, K =4 0.5489  0.6522 0.3930 0.2947 0.4912 0.7717
Model 4, K =5 0.5467  0.6550 0.3812  0.2516  0.5223  0.8706
Model 5, K =1 -0.1894 -0.0394 0.4866 -0.2098 -0.0430 0.4551
Model 5, K =2 -0.1507 -0.0365 0.3679 -0.1886 -0.0411 0.4241
Model 5, K =3 -0.1432 -0.0383  0.3538 -0.1729 -0.0415 0.3932
Model 5, K =4 -0.1318 -0.0415 0.3072 -0.1362 -0.0413 0.3277
Model 5, K =5 -0.1206 -0.0374 0.2633 -0.1560 -0.0462 0.3741

Table 7: 02/25/2020 - 7/10/2020 in-sample and out-of-sample R? for Model 1 (SD-LSTM),
Model 2 (SD-SP), Model 3 (SD-LM), Model 4 (DSD-LSTM), and Model 5 (SD-MLP) for
K = 1,2,3,4,5. The average values for mean, median and standard deviation are taken
for each of the 5 folds. For K = 1, we assume that all counties belong to one group so we
take all counties in the training data to train the neural network. The results are based on
[ = 4 and a five-fold cross-validation. 501 of the total 627 counties are used as training data
(in-sample) and 126 counties are used as testing data (out-of-sample).

4.5 Results and Discussion

Among the four prediction models we implemented using the county-level social distancing

measures (see Section [4.1)), for K = 1,2, 3, Model 4 (DSD-LSTM) slightly outperforms Model
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In-Sample Out-of-Sample
Feature Mean Median Std Dev  Mean Median Std Dev

Trial 1 0.2349 0.4842 0.9238  0.4523 0.4956  0.3505
Trial 2 0.2764 0.5569 0.9678  0.3304 0.4995  0.7916
Trial 3 0.2921 0.5628 0.9442  0.1163  0.4980  1.4862
Trial 4 0.2900 0.5594 0.9677  0.3410 0.5454  0.7049
Trial 5 0.3404 0.5430 0.8943  -0.0455 0.4367  1.3895
Median ~ 0.2900 0.5569 0.9442  0.3304 0.4980  0.7916

Table 8: 02/25/2020 - 7/10/2020 random assignment in-sample and out-of-sample R? for
Model 1 (SD-LSTM), K = 2. Each trial is completed via randomly assigning each test
county of one of the train-test splits to either community 1 or community 2.

1 due to the use of the seven additional demographic variables. Model 1 (SD-LSTM) proves
to result in the highest average and median out-of-sample R? for K = 4,5. Models 2 (SD-SP)
and 3 (SD-LM) have much poorer performance across the board, which implies that these
two models are worse than a horizontal line fit. It is also worth mentioning that the neural
network correction part of Model 2 is incredibly hard to tune to be able to outperform the
linear model Model 3 on its own. In this case, not only was it not able to enhance Model
3’s results, Model 2’s correction actually worsened the model’s predictive ability. Other
nonparametric methods other than a neural network were also used (such as support vector
regression) but all had a similar lackluster effect, implying that boosting or enhancing the
linear estimator with a nonlinear estimator is not beneficial in this case. Model 1’s and Model
4’s superiority suggests a nonlinear effect that the LSTM was able to extract, but the linear,
semi-parametric, and MLP were unable to do so.

For Models 1 and 4, stratifying the communities through our method does make a dif-
ference in-sample since increasing K improves the models’ mean and median in-sample R2.
However, this is not the case for out-of-sample as K = 1 produces the best results (no het-
erogeneity) and the out-of-sample R? continues to drop from K = 2 to 5. It is reasonable to
conclude that the decrease in sample size for each community training (e.g. K = 1 uses all

501 counties to train while & = 5 uses on average 1/5th of that number to train each commu-
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nity) is hurting the model’s ability to take advantage of the heterogeneity embedded in the
communities. Thus, since neural networks have an advantage in large sample size settings,
the effect of the reduction in sample size for larger K's outweighs the community difference
captured by community detection (Algorithm [I)). We also include Model 5 (an FNN with
two hidden layers, each with 50% dropout) to contrast the LSTM with. The performance is
similar to Model 3 in that it is no better than a constant fit. The advantage of the LSTM
is highlighted here since the output is dependent on previous computations, unlike the FNN
that assumes the inputs (as well as outputs) are independent of each other. As COVID-19
cases are sequential information, the LSTM is clearly preferable to predict with. See Table
for the detailed breakdown by model and by the number of clusters K. Figure [J] contains

the out-of-sample R? box plots for the four models with K = 1,2, 3,4, 5.

: 066
070 —== Model1,K=1 e === Model 1,K=1

Model 4, K =1 |0 Model 4, K = 1
065 s — — =
02
080 5
s 062
o~ o
& & —=7
050 i
-
/ bt ~—~a / =
045 \“\ >
A el L
/ 058 =
/
35 56
1 2 3 4 5 6 7 Féatures 1 & 2 Features 2 & 3 Features 1 & 3 All features
Lead Social Distancing Features Used

Figure 10: The left panel is the average out-of-sample R? for Model 1, K = 1 and Model 4, K = 1 for
1=1,2,3,4,5,6,7 for one train-test split. The right panel is average out-of-sample R? for the same models,
where one social distancing feature is left out each time. Both panels are of the phase 02/25/2020 - 7/10/2020
and based on five-fold cross-validation.

To ascertain whether using information from community detection still plays a role despite
K =1 being the best setting for out-of-sample prediction, we randomly assign (): How about
oppositely assign? How about two-fold cross-validation with similar sample size? How about
not SD data? each testing county to an existing community instead of using the nearest
neighbor method. As shown in Table |8 after repeating this five times for Model 1, K = 2,

the median in-sample R? values are much lower compared to that of the same model in Table

(median of 0.5569 vs 0.6372, respectively). Albeit a smaller difference, the out-of-sample
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median 0.4980 is also smaller than the 0.5437 in Table[7] This demonstrates that community
detection can still categorize the nature of different counties’ growth trajectories but this
effect is likely outweighed by the diminishing sample size as K increases.

Also note that before obtaining the prediction results for each algorithm, the hyperpa-
rameter of the appropriate lead was chosen by comparing the average R? values for each
lead. The left panel of Figure [10] presents the median out-of-sample R? vs [ = 1, ..., 7 for the
two best models Model 1, K = 1, and Model 4, K = 1 as examples. Since out-of-sample
R? is plateaus after a four-day lead, we fixed | = 4 as a larger lead would decrease precision
and it is important to be consistent with studies that show the median incubation period of
COVID-19 is 4-5 days (Guan et al., 2020; Lauer et al., 2020). Furthermore, anything longer
than a week or so is rarely used in epidemiological and sociological studies. In addition, we
quantify the social distancing feature importance by averaging the out-of-sample R? when
we leave each feature out one at a time. Evidently, the right panel of Figure suggests
that although there is no distinct drop in performance, leaving out feature 1 (percent change
in total distance traveled) results in the largest decline in R? whereas leaving out feature 2
(percent change in the number of visitations to non-essential places) results in the smallest

decline.

5 CONCLUSION

By utilizing spectral clustering to recover communities, we develop a framework to detect
COVID-19 communities and discover meaningful interpretations of the clusters. We use the
correlation matrix instead of the canonical Laplacian as it offers more meaningful insight and
more distinct clusters. The resulting communities are distinct in the nature of their respective
growth trajectories and there are several demographic variables that further distinguish these
growth communities. Singling out the significant demographic features that have explanatory

power of a county’s growth community membership, we discover that not all of these variables
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are intuitive when it comes to their role in impacting COVID-19 cases.

After modeling and interpreting historical disease progression, we turn to study future
growth trajectories by incorporating social distancing information. We are able to reliably
predict the logarithmic trends in case growth through the use of LSTMs and also verify that
the counties are far from homogeneous - the obtained communities contain crucial information
necessary for prediction in-sample. As for the LSTM’s out-of-sample predictive power, the
effect of the decline in sample size when increasing the stratification of counties into more
communities dominates the heterogeneity between counties’ growth curves that community
detection uncovers. However, after comparing results to randomly assigning counties to
different communities, the method we propose still demonstrates that using the community
detection results boosts the models’ predictive performance.

We do, therefore, acknowledge that there could be other latent features that we did not
capture in this study and that the three social distancing metrics used here may not paint
the complete picture. Furthermore, we do not address the effect of government intervention
at given time points that may have altered the disease progression. These could all be
points that can be further investigated. Despite these potential shortcomings, the analysis
conducted on the first phase of the disease here can also be compared to the second phase,
which we are currently experiencing. As the U.S. and many other countries are witnessing an
even more extraordinary uptick in cases again, we foresee several possible future applications
of our study, including to other contagious disease outbreaks. Another interesting future
work is to utilize the confidence distribution framework (Xie et al., 2011) to combine studies

from independent data sources from different countries.
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Supplementary Material:

trices

Algorithm [4] outlines the spectral clustering procedure with adjacency matrices A; and A,
and Tables [9 and [L0] present Groups 1 and 2’s mean, median, and standard deviation of the

17 features.

Clustering with adjacency ma-

Algorithm 4 Normalized Laplacian spectral clustering

Input Similarity matrix S € R™*" and K clusters to obtain.

1:
2:
3:

4:
5:

Obtain the adjacency matrix A.

Compute the normalized, symmetric Laplacian matrix L =1 — D '2AD™/2,

Compute the smallest K eigenvectors in absolute value uy,...,ux of L and construct

U € R™K be the matrix with the eigenvectors as columns.
Normalize rows of U to have unit norm 1 to get Unorm
Clusters the rows of Um,,m with k-means.

return Partition @1, - @K of the nodes.

Table 9: A; clusters’ mean and median values for selected features for each community K = 2.

Group 1 Group 2
Feature Mean Median Std Dev  Mean Median Std Dev
Population Density 501.873 191.700 1038.69 693.482 210.820 3575.14
Median Household Income 56442.4 53812.0 14879.8 56872.8 54539.0 15776.4
% Poverty 13.8581 13.3000 5.63048 13.6742 12.6500 5.92796
% 1-person households 26.9710 27.2453 4.37449 27.1832 27.5257 4.39231
% 5 or more person households 9.25104 8.59139 3.24107 9.05622 8.56888 3.02516
% households w 60 y/o and older 38.7766 38.8296 6.56590 39.2932 39.0888 6.33139
% w low access to stores 20.6451 20.5700 9.36471 22.0766 22.1900 10.0694
% low income w low access to stores  6.77756  6.14000 4.23293  7.29463 6.42000 4.78238
% households w low access to stores 242279 2.03000 1.53641 2.50819 2.22000 1.63217
25 y/o and older w Bachelor’s /1,000 116.308 112.763 43.5637 117.340 112.172 41.5866
% White 78.6730 82.7486 15.2783 77.9016 81.8775 16.9468
% Black 11.8118 6.07323 14.0567 13.0591 6.64656 15.9400
% Asian 2.78995 1.41062 3.98255 2.76574 1.49532 4.19016
No of bars 47.7015 20.0000 90.2649 38.6136 18.0000 60.4562
No of grocery stores 89.3181 30.0000 211.193 73.2670 29.0000 130.915
No of restaurants 14.9178 9.00000 15.9277 13.2853 8.00000 14.1468
% take public transportation 0.70840 0.24056 1.68443 0.96613 0.24533 6.04509

Model Aq corresponds to Algorithm E where we use the k-nearest neighbors graph (k =7) as A.

Clustering results

Many of the observations made about the clustering results and significant feature analysis
on R in Section 4.5 do not hold for A; and A,. In fact, the differences in mean and medians



Group 1 Group 2

Feature Mean Median Std Dev  Mean Median  Std Dev
Population Density 712.520 211.600 3570.04 483.554 189.310 1076.73
Median Household Income 57683.7 54873.0 15640.9 55628.1 53739.0 14959.5
% Poverty 13.3879 12.2500 5.92222 14.1455 13.4000 5.61381
% 1-person households 27.0335 27.2366 4.36119 27.1226 27.5300 4.40790
% 5 or more person households 9.06375 8.58968 2.95150 9.24261 8.57241 3.30828
% of households w 60 y/o and older =~ 38.7801 38.3954 6.74182 39.2953 39.3441 6.13981
% w low access to stores 21.7977 21.9050 9.85552 20.9322 20.5100 9.62812

% low income w low access to stores  7.09803 6.40000 4.67050 6.97775 6.13000 4.37390
% households w low access to stores 2.40026 2.20000 1.51320 2.53181 2.11000 1.65335
25 y/o and older w Bachelor’s /1,000 119.289 113.846 44.2816 114.350 109.250 40.6497

% White 78.9164 82.9167 15.8005 77.6482 81.4956 16.4603
% Black 12.1216 6.12919 14.6064 12.7612 6.38394 15.4733
% Asian 2.73678 1.51268 3.88658 2.81899 1.41062 4.28174
No of bars 41.2933 17.0000 79.4118 44.9514 21.0000 73.3541
No of grocery stores 79.5744 29.0000 170.279 82.6123 30.0000 179.320
No of restaurants 14.2222  8.00000 15.6239 13.9210 &.00000 14.4344
% take public transportation 0.95377 0.23521 5.91278 0.71807 0.24792 2.01788

Table 10: A, clusters’ mean and median values for selected features for each community K = 2. Model
A corresponds to Algorithm [4] where we use the e-neighborhood graph (e = 0.007). Group 1 and 2 are the
obtained partitions G; and G5, respectively.

between the two groups are significantly smaller for almost all features. For instance, the
differences between population density means for the two groups of A; and A, are 191.609
and 228.966 people per sq mile, respectively - much smaller differences than that of R’s
clusters: 637.407. Furthermore, there isn’t consistency in these trends for most features; for
example, Group 2 of A; has the higher population density and median income averages but
also has the lower average number of bars, grocery stores, and restaurants.

Figure[11]displays the individual bar plots of average values for six features for R, A;, and
A,. It is evident that the orange bars of R’s clusters are plainly contrasted between Group 1
and 2, unlike those of A; and Ay’s clusters. It is very likely that too much information was
lost in A; and A, during the truncation process. Tables|11|contain the p-values for all of the
17 features for Ay, and A,. Evidently, the clusters formed with A; and A5 do not contain
as significant differences in terms of demographic variables as they have very few significant
features (p-value< 0.05).
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Figure 11: Comparisons on the averages of a few features of the 2-clustered counties. The orange bars are
model R, the gray bars are model A;, and the blue bars are model As.

Feature P-Value Feature P-Value
% w low access to stores 0.02683 % White 0.09115
% low income w low access to store 0.08490 % Poverty 0.09423
No of bars 0.12402 % households w low access to stores 0.12762
No of restaurants 0.13868 Median Household Income 0.16226
No of grocery stores 0.18422  Population Density 0.17828
% Black 0.21146 25 y/o and older w Bachelor’s /1,000 0.32282
% of households w 60 y/o and older ~ 0.22823 % low income w low access to stores  0.36051
Population Density 0.27201  No of restaurants 0.39537
% 5 or more persons households 0.34981 % take public transportation 0.50781
% take public transportation 0.38932 % Asian 0.51744
% 1-person households 0.52795 % 1-person households 0.41733
% households w low access to stores  0.46620 % Black 0.56017
% Poverty 0.63207 % households w 60 y/o and older 0.57800
% White 0.47153  No of grocery stores 0.72219
Median Household Income 0.67262 % w low access to stores 0.78404
25 y/o and older w Bachelor’s /1,000 0.71546 % 5 or more persons households 0.91679
% Asian 0.92895 No of bars 0.93340

Table 11: Left panel is A; clusters’ p-values for independent two-sample t-tests for selected features between
Group 1 and Group 2 sorted from smallest to largest p-value. The right panel is A5 clusters’ p-values for
two-sample t-tests for selected features between Group 1 and Group 2 sorted from smallest to largest p-value.
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