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Abstract

We study factor models augmented by observed covariates that have explanatory
powers on the unknown factors. In financial factor models, the unknown factors can
be reasonably well explained by a few observable proxies, such as the Fama-French
factors. In di↵usion index forecasts, identified factors are strongly related to several
directly measurable economic variables such as consumption-wealth variable, finan-
cial ratios, and term spread. With those covariates, both the factors and loadings are
identifiable up to a rotation matrix even only with a finite dimension. To incorporate
the explanatory power of these covariates, we propose a smoothed or projected prin-
cipal component analysis (PCA): (i) regress the data onto the observed covariates,
and (ii) take the principal components of the fitted data to estimate the loadings
and factors. This allows us to more accurately estimate the percentage of both ex-
plained and unexplained components in factors and thus to assess the explanatory
power of covariates. We show that both the estimated factors and loadings can be
estimated with improved rates of convergence compared to the benchmark method.
The degree of improvement depends on the strength of the signals, representing the
explanatory power of the covariates on the factors. The proposed estimator is robust
to possibly heavy-tailed distributions. We apply the model to forecast US bond risk
premia, and find that the observed macroeconomic characteristics contain strong ex-
planatory powers of the factors. The gain of forecast is more substantial when the
characteristics are incorporated to estimate the common factors than directly used
for forecasts.
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1 Introduction

In this paper, we study the identification and estimations of factor models augmented by

a set of additional covariates that are common to all individuals. Consider the following

factor model:

yt = ⇤ft + ut, t = 1, · · · , T. (1.1)

Here yt = (y1t, ..., yNt)0 is the multivariate outcome for the tth observation in the sample;

ft is the K-dimensional vector of latent factors; ⇤ = (�1, ....,�N)0 is an N ⇥K matrix of

nonrandom factor loadings; ut = (u1t, ..., uNt)0 denotes the vector of idiosyncratic errors. In

addition to {yt}Tt=1
, we also observe variables, denoted by xt, that have some explanatory

power on the unknown factors and hence impact on observed vector yt. We model ft by

using the model

ft = g(xt) + �t, (1.2)

for some (nonparametric) function g = E(ft|xt). Here g(xt) is interpreted as the component

of the factors that can be explained by the covariates, and �t is the components that cannot

be explained by the covariates. We aim to provide an improved estimation procedure when

the factors can be partially explained by several observed variables xt. In addition, by

accurately estimating �t, we can estimate the percentage of both explained and unexplained

components in the factors, which describes the proxy/explanatory power of covariates.

Note that model (1.1) implies:

cov(yt) = ⇤ cov(ft)⇤
0 + cov(ut), (1.3)

where cov(yt) and cov(ut) respectively denote the N ⇥N variance-covariance matrices of

yt and ut; cov(ft) denotes the K ⇥K variance-covariance matrix of ft. Under usual factor

models without covariates, 1p
N
⇤ is identified asymptotically as the first K eigenvectors of

cov(yt) as N ! 1 and can be estimated using the first K eigenvectors of the sample

covariance matrix of yt (e.g,, Stock and Watson (2002); Bai (2003)).

With additional covariates, on the other hand, exact identification can be achieved

through covariance of the “smoothed data”. By (1.1), assuming exogeneity of xt, we have

E(yt|xt) = ⇤E(ft|xt) so that it becomes a “noiseless” factor model with smoothed data

E(yt|xt) as the input and E(ft|xt) as latent factors. The factor loadings and latent factors
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can be extracted from

⌃y|x = E{E(yt|xt)E(yt|xt)
0}. (1.4)

It is easy to see from the model that

⌃y|x = ⇤⌃f |x⇤
0, (1.5)

where ⌃f |x = E{E(ft|xt)E(ft|xt)0} is a K ⇥ K low-dimensional positive definite matrix.

This decomposition is to be compared with (1.3), but the noise covariance cov(ut) is re-

moved. Therefore, as long as ⌃f |x is of full rank, ⇤ falls in the eigenspace generated by

⌃y|x. In other words, ⇤ is exactly identifiable up to an orthogonal transformation. Be-

cause of such exact identification, we allow N to be finite as a special case. The number of

factors is assumed to be known throughout the paper. In practice, K can be consistently

estimated by many methods such as AIC, BIC-based criteria, or eigenvalue-ratio methods

studied in Lam and Yao (2012); Ahn and Horenstein (2013).

The above discussion prompts us the following new method to estimate the factor

loadings ⇤ that incorporates the explanatory power of xt: (See Section 3 for details of

estimators)

(i) (robustly) regress {yt} on {xt} and obtain fitted value {byt};

(ii) conduct the principal components analysis (PCA) on the fitted data (by1, ..., byT ) to

estimate the factor loadings.

We employ a regression based on Huber (1964)’s robust M-estimation in step (i). The pro-

cedure involves a diverging truncation parameter, called adaptive Huber loss, to reduce the

bias when the error distribution is asymmetric (Fan et al., 2017). This allows our procedure

to be applicable to data with heavy tails.1 There are two important quantities that deter-

mine the rates of convergence for the estimators: the “signal” ⌃f |x = E{E(ft|xt)E(ft|xt)0}

and the “noise” cov(�t). The rates of convergence are presented using these two quantities.

Under model (1.2), we can test �t = 0 almost surely in the entire sampling period,

under which the observed xt fully explains the true factors. This is the same as testing

H0 : cov(�t) = 0.

1In this paper, by “heavy-tail” we mean tail distributions of (ut,yt) that are heavier than the usual

requirements on the high-dimensional factor model (which are either exponentially-tailed or have eighth

or higher moments). But we do not allow large outliers on the covariates.
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While it is well known that the commonly used Fama-French factors have explanatory

power for most of the variations of stock returns, it is questionable whether they fully ex-

plain the true (yet unknown) factors. These observed proxies are nevertheless used as the

factors empirically, and the remaining components (�t and ut) have all been mistakenly

regarded as the idiosyncratic components. The proposed test provides a diagnostic tool

for the specification of common factors in empirical studies, and is di↵erent from the “e�-

ciency test” in the financial econometric literature (e.g., Gibbons et al. (1989); Pesaran and

Yamagata (2012); Gungor and Luger (2013); Fan et al. (2015)). While the e�ciency test

aims to test the asset pricing model through whether the alphas are zero for the specified

factors, a rejection could be due to either mispecified factors or the existence of outper-

forming (underperforming) assets. In contrast, here we directly test whether the factor

proxies are correctly specified. We test the specification of Fama French factors for the

returns of S&P 500 constituents using rolling windows. We find that the null hypothesis

is more often to be rejected using the daily data compared to the monthly data, due to a

larger volatility of the unexplained factor components. The estimated overall volatility of

factors varies over time and drops significantly during the acceptance period.

1.1 Further Literature

In empirical applications, researchers frequently encounter additional observable covariates

that help explain the latent factors. In genomic studies, in the study of breast cancer data

such as the Cancer Genome Atlas (TCGA) project (Network, 2012), there are additional

information of cancer subtype for each sample. These cancer subtypes can be regarded as

a partial driver of the factors for gene expression data. In financial time series forecasts,

researchers often collect additional variables that characterize financial markets. The Fama-

French factors are well-known to be related to the factors that drive financial returns (Fama

and French, 1992).

Most existing works simply treat xt as a set of additional regressors in (1.1), or additional

outcomes combined with yt. This approach does not take advantage of the di↵erence of

observed variables (e.g. aggregated versus disaggregated macroeconomic variables; gene

expressions versus clinical information) and the explanatory power of the covariates on
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the common factors, and hence does not lead to improved rates of convergence even if

the signal is strong. The most related work is Li et al. (2016), who specified ft as a linear

function of xt. Also, Huang and Lee (2010) proposed to use the estimated g(xt) to forecast.

Moreover, our expansion for⌃y|x is also connected to the literature on asymptotic Bahadur-

type representations for robust M-estimators, see, for example, Portnoy (1985), Mammen

(1989), among others.

The “asymptotic identification” was described perhaps first by Chamberlain and Roth-

schild (1983). In addition, there has been a large literature on both the static and dynamic

factor models, and we refer to Lawley and Maxwell (1971); Forni et al. (2005); Stock and

Watson (2002); Bai and Ng (2002); Bai (2003); Doz et al. (2012); Onatski (2012a); Fan

et al. (2013), among many others.

The rest of the paper is organized as follows. Section 2 establishes the new identifi-

cation of factor models. Section 3 formally defines our estimators and discusses possible

alternatives. Section 4 presents the rates of convergence. Section 5 discusses the problem

of testing the explanatory power. Section 6 applies the model to forecasting the excess

return of US government bonds. We present the extensive simulation studies in Section 7

Finally Section 8 concludes. The main body of the proofs are given in the appendix, while

the technical lemmas are referred to the supplementary material.

Throughout the paper, we use �min(A) and �max(A) to denote the minimum and max-

imum eigenvalues of a matrix A. We define kAkF = tr1/2(A0A), kAk = �1/2
max(A0A),

kAk1 = maxj
P

i |aij| and kAkmax = maxi,j |aij|. For two sequences, we write aT � bT or

bT ⌧ aT if bT = o(aT ) and aT ⇣ bT if aT = O(bT ) and bT = O(aT ).

2 Identification of the covariate-based factor models

2.1 Identification

Suppose that there is a fixed d-dimensional observable vector xt that satisfies E(ft|xt) 6= 0

(associated with the latent factors) and E(ut|xt) = 0 (idiosyncratic term impredicable by

xt). Taking the conditional expectation on both sides of (1.1), we have

E(yt|xt) = ⇤E(ft|xt), (2.1)
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This implies

⌃y|x = ⇤⌃f |x⇤
0, (2.2)

where

⌃y|x := E{E(yt|xt)E(yt|xt)
0}, ⌃f |x := E{E(ft|xt)E(ft|xt)

0}.

Note that E(yt|xt) is identified by the data generating process with observables {(yt,xt)}tT .

Since N > K, (2.2) implies that ⌃y|x is a low-rank matrix, whose rank is at most K. Fur-

thermore, we assume ⌃f |x is also full rank, so ⌃y|x has exactly K nonzero eigenvalues.

To see how the equality (2.2) helps achieve the identification of ⇤ and g(xt), for the

moment, suppose the following normalization holds:

1

N
⇤0⇤ = IK , ⌃f |x is a diagonal matrix. (2.3)

Then right multiplying (2.2) by ⇤/N , by the normalization condition,

1

N
⌃y|x⇤ = ⇤⌃f |x.

We see that the (K) columns of 1p
N
⇤ are the eigenvectors of ⌃y|x, corresponding to its

K nonzero eigenvalues, which also equal to the diagonal entries of ⌃f |x. Furthermore,

left multiplying ⇤0/N on both sides of (2.1), one can see that even if ft is not observable,

E(ft|xt) is also identified as:

g(xt) := E(ft|xt) =
1

N
⇤0E(yt|xt).

The normalization (2.3) above is useful but is not required in this paper. Without them

we show that ⇤ and g(xt) can be identified up to a rotation matrix transformation.

Let

⌃⇤,N := ⇤0⇤/N, �N := �min(E{E(ft|xt)E(ft|xt)
0}).

Assumption 2.1. Suppose {ft,xt,ut}tT are identically distributed. Assume:

(i) Rank condition: �N > 0.

(ii) There are positive constants c
⇤
, c̄⇤ > 0, so that all the eigenvalues of the K ⇥ K

matrix ⌃⇤,N are confined in [c
⇤
, c̄⇤], regardless of whether N ! 1 or not.
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Condition (i) is the key condition on the explanatory power of xt on factors, where

�N represents the “signal strength” of the model. We postpone the discussion of this

condition after Theorem 2.1. Condition (ii) in Assumption 2.1 can be weakened to allow

the eigenvalues of ⌃⇤,N to slowly decay to zero. While doing so allows some of the factors

to be weak, it does not provide any new statistical insights, but would bring unnecessary

complications to our results and conditions. Therefore, we maintain the strong version as

condition (ii).

Generally, we have the following theorem for identifying (⇤,g(xt)) (up to a rotation

transformation).

Theorem 2.1. Suppose E(ut|xt) = 0, Assumption 2.1 holds and N > K. Then there is

an invertible K ⇥K matrix H so that:

(i) The columns of ⇤H are the eigenvectors of ⌃y|x corresponding to the nonzero distinct

eigenvalues.

(ii) Given ⇤H, g(xt) := E(ft|xt) satisfies:

H�1g(xt) = [(⇤H)0⇤H]�1⇤H0E(yt|xt).

(iii) Let �K(⌃y|x) denote the Kth largest eigenvalue of ⌃y|x, we have

�K(⌃y|x) � N�Nc⇤.

where �N and c
⇤
are defined in Assumption 2.1. In addition, under the normalization

conditions that E{E(ft|xt)E(ft|xt)0} is a diagonal matrix and that ⌃⇤,N = IK, we have

H = IK .

2.2 Discussions of Condition (i) of Assumption 2.1

In the model

ft = g(xt) + �t, g(xt) = E(ft|xt),

�N = �min(⌃f |x) represents the “signal” of the covariate model. We require �N > 0 so

that the rank of ⌃y|x is K. Only if this condition holds are we able to identify all the

K factor loadings using the eigenvectors corresponding to the nonzero eigenvalues. From

the estimation point of view, we are using the PCAs of the estimated ⌃y|x, and can only
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consistently estimate its rank(⌃y|x)-number of leading eigenvectors. So this condition is

also essential to achieve the consistent estimation of the factor loadings.

Note that requiring ⌃f |x be of full rank might be restrictive in some cases. For instance,

consider the linear case: E(ft|xt) = �xt for a K⇥d coe�cient matrix �, also suppose Extx0
t

is of full rank. Then ⌃f |x = �Extx0
t�

0, and is full-rank only if d � K. Thus we implicitly

require, for linear models, the number of covariates should be at least as many as the

number of latent factors. Note that if E(ft|xt) is nonlinear, it is still possible to satisfy the

full rank condition even if d < K, and we illustrate this in the simulation section. 2

3 Definition of the estimators

The above identification strategy motivates us to estimate ⇤ and g(xt) respectively by b⇤

and bg(xt) as follows. Let b⌃ and bE(yt|xt) be some estimator of ⌃y|x and E(yt|xt), whose

definitions will be clear below. Then the columns of 1p
N
b⇤ are defined as the eigenvectors

corresponding to the first K eigenvalues of b⌃, and

bg(xt) :=
1

N
b⇤

0 bE(yt|xt).

Recall that ft = g(xt) + �t. We estimate ft using least squares:

bft := (b⇤
0b⇤)�1b⇤

0
yt =

1

N
b⇤

0
yt.

Finally, we estimate �t by: b�t = bft � bg(xt) =
1

N
b⇤

0
(yt � bE(yt|xt)). Estimating g(xt) and

�t separately allows us to estimate and distinguish the percentage of explained and unex-

plained components in factors, as well as to quantify the explanatory power of covariates.

Below we introduce the estimators b⌃ and bE(yt|xt) to be used in this paper.

3.1 Robust estimation for b⌃

Recall that ⌃y|x = E{E(yt|xt)E(yt|xt)0}, and let us first construct an estimator for

E(yt|xt) as follows. While many standard nonparametric regressions would work, here

2Suppose E(ft|xt) is nonlinear and can be well approximated by a series of orthogonal basis functions

�(xt) = (�1(xt), ...,�J(xt))0, where E�i(xt)�j(xt) = 1{i = j}, then for some K ⇥ J coe�cient ↵, we have

E(ft|xt) ⇡ ↵0�(xt) so E{E(ft|xt)E(ft|xt)0} ⇡ ↵↵0. For nonlinear functions, it is not stringent to require

↵↵0 be full rank since K < J as J ! 1.
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we choose an estimator that is robust to the tail-distributions of yt � E(yt|xt).

Let �(xt) = (�1(xt), ...,�J(xt))0 be a J ⇥ 1 dimensional vector of sieve basis. Suppose

E(yt|xt) can be approximated by a sieve representation: E(yt|xt) ⇡ B�(xt), where B =

(b1, ...,bN)0 is an N ⇥ J matrix of sieve coe�cients. To adapt to di↵erent heaviness of

the tails of idiosyncratic components, we use the Huber loss function (Huber (1964)) to

estimate the sieve coe�cients. Define

⇢(z) =

8
><

>:

z2, |z| < 1

2|z|� 1, |z| � 1.

For some deterministic sequence ↵T ! 1 (adaptive Huber loss), we estimate the sieve

coe�cients B by the following convex optimization:

bbi = arg min
b2RJ

1

T

TX

t=1

⇢

✓
yit � �(xt)0b

↵T

◆
, bB = (bb1, ..., bbN)

0.

We then estimate ⌃y|x by

b⌃ =
1

T

TX

t=1

bE(yt|xt) bE(yt|xt)
0, where bE(yt|xt) = bB�(xt).

An alternative method to the robust estimation of ⌃y|x is based on the sieve-least

squares, corresponding to the case where ↵T = 1. Let Y = (y1, ...,yT ), which is (N ⇥ T ),

and

P = �0(��0)�1�, (T ⇥ T ), � = (�(x1), ...,�(xT )), (J ⇥ T ).

Then, the sieve least-squares estimator for ⌃y|x is e⌃ = 1

TYPY0. While this estimator is

attractive due to its closed form, it is not as good as b⌃ when the distribution of ut has

heavier tails. As expected, our numerical studies in Section 7 demonstrate that it performs

well in light-tailed scenarios, but is less robust to heavy-tailed distributions. Our theories

are presented for b⌃, but most of the theoretical findings should carry over to e⌃.

3.2 Choosing ↵T and J

The selection of the sieve dimension J has been widely studied in the literature, e.g., Li

(1987); Andrews (1991); Hurvich et al. (1998), among others. Another tunning parameter
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is ↵T , which diverges in order to reduce the biases of estimating the conditional mean when

the distribution of yt � E(yt|xt) is asymmetric. Throughout the paper, we shall set

↵T = C↵

s
T

log(NJ)
(3.1)

for some constant C↵ > 0, and choose (J, C↵) simultaneously using the multi-fold cross-

validation3. The specified rate in (3.1) is due to a theoretical consideration, which leads

to the “least biased robust estimation”, as we now explain. The Huber-estimator is biased

for estimating the mean coe�cient in E(yit|xt), whose population counterpart is

bi,↵ := arg min
b2RJ

E⇢

✓
yit � �(xt)0b

↵T

◆
,

As ↵T increases, it approaches the limit bi := argminb2RJ E[yit �b0�(xt)]2 with the speed

max
iN

kbi,↵ � bik = O(↵�c0
T )

for some constant c0 > 0 that depends on the thickness of the tail distribution of yit �

E(yit|xt). Hence the bias decreases as ↵T grows. On the other hand, our theory requires

the uniform convergence (in i = 1, ..., N) of (for eit = yit � E(yit|xt))

max
iN

k 1
T

TX

t=1

⇢̇(↵�1

T eit)�(xt)k, (3.2)

where ⇢̇(·) denotes the derivative of ⇢(·). It turns out that ↵T cannot grow faster than

O(
q

T
log(NJ)) in order to guard for robustness and to have a sharp uniform convergence for

(3.2). Hence the choice (3.1) leads to the asymptotically least-biased robust estimation.

3.3 Alternative estimators

Plugging ft = g(xt) + �t into (1.1), we obtain

yt = h(xt) +⇤�t + ut, where h(xt) = ⇤g(xt). (3.3)

3One can also allow ↵T to depend on var(yit|xt) to allow for di↵erent scales across individuals. We

describe this choice in the simulation section. In addition, the cross-validation can be based on either

in-sample fit for E(yit|xt) or out-of-sample forecast, depending on the specific applications. In time series

forecasts, one may also consider the time series cross validation (e.g. Hart, 1994) where the training and

testing sets are defined through a moving window forecast.
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A related model is:

yt = h(xt) +⇤ft + ut, (3.4)

for a nonparametric function h(·), or simply a linear form h(xt) = �xt. Models (3.3) and

(3.4) were studied in the literature (Ahn et al., 2001; Bai, 2009; Moon and Weidner, 2015),

where parameters are often estimated using least squares. For instance, we can estimate

model (3.3) by

min
h,⇤,�t

1

T

TX

t=1

kyt � h(xt)�⇤�tk2. (3.5)

But this approach is not appropriate in the current context when xt almost fully explains

ft for all t = 1, ..., T . In this case, �t ⇡ 0, and least squares (3.5) would be inconsistent.

4 In addition, ⇤ in (3.4) would be very close to zero because the e↵ects of ft would be

fully explained by h(xt). As a result, the factors in (3.4) cannot be consistently estimated

(Onatski, 2012b) either. We conduct numerical comparisons with this method in the sim-

ulation section. In all simulated scenarios, the interactive e↵ect approach gives the worst

estimation performance.

Another simpler alternative is to combine (xt,yt), and apply the classical methods on

this enlarged dataset. One potential drawback is that the rates of convergence would not

be improved, even if xt has strong explanatory power on the factors. Another drawback,

as mentioned before, is that it does not distinguish the disaggregated variables xt and

aggregated variables yt, which can provide very di↵erent information (e.g. Fama-French

factors versus returns of individual stocks).

4 Rates of Convergence

4.1 Assumptions

Let eit := yit � E(yit|xt). Suppose the conditional distribution of eit given xt = x is

absolutely continuous for almost all x, with a conditional density ge,i(·|x).

4The inconsistency is due to the fact that a⇤�t ⇡ ⇤�t for any scalar a in the case �t ⇡ 0. Thus ⇤ is

not identifiable in the least squares problem.
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Assumption 4.1 (Tail distributions). (i) There are ⇣1, ⇣2 > 2, C > 0 and M > 0, so that

for all x > M ,

sup
x

max
iN

ge,i(x|x)  Cx�⇣1 , sup
x

max
iN

E(e2it1{|eit| > x}|xt = x)  Cx�⇣2 . (4.1)

(ii) �(xt) is a sub-Gaussian vector, that is, there is L > 0, for any ⌫ 2 RJ
so that k⌫k = 1,

P (|⌫ 0�(xt)| > x)  exp(1� x2/L), 8x � 0.

Assumption 4.2 (Sieve approximations). (i) For k = 1, ..., K, let vk = argminv E(fkt �

v0�(xt))2. Then there is ⌘ � 2, as J ! 1,

max
kK

sup
x

|E(ftk|xt = x)� v0
k�(x)| = O(J�⌘).

(ii) There are c1, c2 > 0 so that

c1  �min(E�(xt)�(xt)
0)  �max(E�(xt)�(xt)

0)  c2.

Recall �t = ft � E(ft|xt). Let �kt be its k th component.

Assumption 4.3. (i) (serial independence) {ft,ut,xt}tT is independent and identically

distributed;

(ii) (weak cross-sectional dependence) For some C > 0,

sup
x,f

max
iN

NX

j=1

|E(uitujt|xt = x, ft = f)| < C.

(iii) E(ut|ft,xt) = 0, maxiN k�ik < C, and cov(�t|xt) = cov(�t) almost surely, where

cov(�t|xt) denotes the conditional covariance matrix of �t given xt, assumed to exist.

Recall that

⌃f |x := E{E(ft|xt)E(ft|xt)
0}, �N := �min(⌃f |x).

Assumption 4.4 (Signal-noise). (i) There is C > 0,

�max(⌃f |x)

�min(⌃f |x)
< C,

�max(E{�(xt)E(ft|xt)0E(ft|xt)�(xt)0})
�min(⌃f |x)

< C.

(ii) There is v > 1, so that maxkK E[E(�4

kt|xt)]v < 1.

(iii) We have J3 log2 N = O(T ) and

J2/T + J�⌘ +
p

(logN)/T ⌧ �N .
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Assumption 4.1 allows distributions with relatively heavy tails on yit � E(yit|xt). We

still require sub-Gaussian tails for the sieve basis functions. Assumption 4.2 is regarding the

accuracy of sieve approximations for nonparametric functions. Assumption 4.4 strengthens

Assumption 2.1. We respectively regard �min(⌃f |x) and cov(�t) as the “signal” and “noise”

when using xt to explain common factors. The explanatory power is measured by these

two quantities.

Assumption 4.3 (i) requires serial independence, and we admit that it can be restrictive

in applications. Allowing for serial dependence is technically di�cult due to the non-

smooth Huber’s loss. To obtain the Bahadur representation of the estimated eigenvectors,

we rely on the symmetrization and contraction theorems (e.g., van der Vaart and Wellner

(1996)), which requires the data be independently distributed. Nevertheless, the idea of

using covariates would still be applicable for serial dependent data. For instance, it is not

di�cult to allow for weak serial correlations when the data are not heavy-tailed, by using

the sieve least squares estimator e⌃ (introduced in Section 3.1) in place of the Huber’s

estimator b⌃. We conduct numerical studies when the data are serially correlated in the

simulations, and find that the proposed methods continue to perform well in the presence

of serial correlations.

4.2 Rates of convergence

We present the rates of convergence in the following theorems, and discuss the statistical

insights in the next subsection. Recall b⇤ = (b�i : i  N).

Theorem 4.1 (Loadings). Under Assumptions 2.1–4.4, there is an invertible matrix H,

as T, J ! 1, and N either grows or stays constant,

1

N

NX

i=1

kb�i �H0�ik2 = OP

✓
J

T
+

1

J2⌘�1

◆
��1

N , (4.2)

max
iN

kb�i �H0�ik = OP

 r
J logN

T
+

1

J⌘�1/2

!
��1/2
N .

(4.3)

The optimal rate for J in (4.2) is J ⇣ T 1/(2⌘), which results in

1

N

NX

i=1

kb�i �H0�ik2 = OP (T
�(1� 1

2⌘ )��1

N ). (4.4)
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Here ⌘ represents the smoothness of E(ft|xt = ·), as defined in Assumption 4.2.

Define

J⇤ = min

⇢
(TN)1/(2⌘), (

T

logN
)1/(1+⌘)

�
.

Theorem 4.2 (Factors). Let J ⇣ J⇤
. Suppose (J⇤)3 log2 N = O(T ), and Assumptions

2.1–4.4 hold. For H in Theorem 4.1, as T ! 1, and N either grows or stays constant,

we have

1

T

TX

t=1

kbg(xt)�H�1g(xt)k2 = OP

✓
r⇤T,N + (

logN

T
)2�

3
1+⌘

◆
,

where r⇤T,N = J⇤2

T 2 �
�1

N + J⇤k cov(�t)k
T + ( 1

TN )1�
1
2⌘ and

1

T

TX

t=1

kb�t �H�1�tk2 = OP

✓
r⇤T,N + (

logN

T
)2�

4
1+⌘

◆
��1

N

+OP

✓
1

N

◆
. (4.5)

These two convergences imply the rate of convergence of the estimated factors due to

bft = bg(xt) + b�t.

Remark 4.1. For a general J , the rates of convergence of the two factor components are

1

T

TX

t=1

kbg(xt)�H�1g(xt)k2 = OP

✓
rT,N +

J3 log2 N

T 2

◆
, (4.6)

where rT,N = J2

T 2�
�1

N + Jk cov(�s)k
T + J1�2⌘ + J

TN and

1

T

TX

t=1

kb�t �H�1�tk2 = OP

✓
rT,N +

J4 log2 N

T 2

◆
��1

N +OP

✓
1

N

◆
. (4.7)

In fact J ⇣ J⇤ is the optimal choice in (4.6) ignoring the terms involving k cov(�s)k and

�N . The convergence rates presented in Theorem 4.2 are obtained from (4.6) and (4.7)

with this choice of J .

The presented rates connect well with the literature on both standard nonparametric

sieve estimations and the high-dimensional factor models. To illustrate this, we discuss in

more detail about the rate of convergence in (4.6). This rate is given by:

OP

0

BBBB@
J2

T 2
��1

N
| {z }
e↵ect of

estimating ⇤

+
Jk cov(�s)k

T
+

J

TN
+ J1�2⌘

| {z }
nonparametric sieve

estimation error

+
J3 log2 N

T 2| {z }
higher order from

Huber’s M-estimation

1

CCCCA
.
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More specifically, we have, for et = ⇤�t + ut,

yt = ⇤g(xt) + et, E(et|xt) = 0. (4.8)

If ⇤ were known, we would estimate g(·) by regressing the estimated E(yt|xt) on ⇤. Then

standard nonparametric results show that the rate of convergence in this “oracle sieve

regression” (knowing ⇤) would be

Jk cov(�s)k
T

+
J

TN
+ J1�2⌘.

As we do not observe ⇤, we are running the regression (4.8) with b⇤ in place of ⇤. This leads

to an additional term J2

T 2�
�1

N representing the e↵ect of estimating ⇤, which also depends

on the strength of the signal �N . Finally, Huber’s M-estimation to estimate E(yt|xt) gives

rise to a higher order term J3
log

2 N
T 2 , and is often negligible.

4.3 The signal-noise regimes

We see that the rates depend on cov(�t) and �N . Because Eftf 0t = ⌃f |x+cov(�t), they are

related through

c  �N + k cov(�t)k  C1 (4.9)

for some c, C1 > 0, assuming that there is c > 0 so that kEftf 0tk > c. For comparison, we

state the rates of convergence of the benchmark PCA estimators: (e.g., Stock and Watson

(2002); Bai (2003)) there is a rotation matrix H̃, so that the PCA estimators (e�i,eft) satisfy:

1

N

NX

i=1

ke�i � H̃0�ik2 = OP (
1

T
+

1

N
),

1

T

TX

t=1

keft � H̃�1ftk2 = OP (
1

T
+

1

N
). (4.10)

The first interesting phenomena we observe is that both the estimated loadings and

g(xt) are consistent even if N is finite, due to the “exact identification”. In contrast, the

PCA estimators requires a growing N . For more detailed comparisons, we consider three

regimes based on the explanatory power of the factors using xt. To simplify our discussions,

we consider the rate-optimal choices of J , and ignore the sieve approximation errors, so ⌘

is treated su�ciently large.

Regime I: strong explanatory power: k cov(�t)k ! 0. Because of (4.9), �N is bounded

away from zero. In this case, (4.4)-(4.5) approximately imply (for su�ciently large ⌘):

1

N

NX

i=1

kb�i �H0�ik2 = OP

✓
1

T

◆
,
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1

T

TX

t=1

kbg(xt)�H�1g(xt)k2 = OP

✓
k cov(�t)k

T
+

1

TN
+ (

logN

T
)2
◆
,

1

T

TX

t=1

kbft �H�1ftk2 = OP

✓
k cov(�t)k

T
+

1

N
+ (

logN

T
)2
◆
.

Compared to the rates of the usual PCA estimators in (4.10), either the new estimated

loadings (when N = o(T )) or the new estimated factors (when T = o(N)) have a faster

rate of convergence. Moreover, if k cov(�t)k = o((TN)�1+T�2 log2 N), then bg(xt) directly

estimates the latent factor at a very fast rate of convergence:

1

T

TX

t=1

kbg(xt)�H�1ftk2 = OP

✓
1

TN
+ (

logN

T
)2
◆
.

The improved rates are reasonable due to the strong explanatory powers from the covariates.

Regime II: mild explanatory power: k cov(�t)k is bounded away from zero; �N is either

bounded away from zero or decays slower than
N
T in the case N = o(T ). In this regime, xt

partially explains the factors, yet the unexplainable components are not negligible. (4.4)-

(4.5) approximately become:

1

N

NX

i=1

kb�i �H0�ik2 = OP

✓
1

T
��1

N

◆

1

T

TX

t=1

kbft �H�1ftk2 = OP

✓
1

T
��1

N +
1

N

◆
. (4.11)

We see that the rate for the estimated loadings is still faster than the PCA when N is

relatively small compared to T , while the rates for the estimated factors are the same.

This is because
1

T
��1

N
| {z }

new rate for loadings

⌧ 1

N|{z}
PCA rate for loadings

1

T
��1

N +
1

N| {z }
new rate for factors

⇣ 1

N|{z}
PCA rate for factors

.

On one hand, due to the explanatory power from the covariates, the loadings can be

estimated well without having to consistently estimate the factors. On the other hand, as

the covariates only partially explain the factors, we cannot improve rates of convergence

in estimating the unexplainable components in the latent factors. However, since �t has
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smaller variability than ft, it can still be better estimated in terms of a smaller constant

factor.

Regime III: weak explanatory power: �N ! 0 and decays faster than
N
T when N ⌧ T .

In this case, we have

1

N

NX

i=1

kb�i �H0�ik2 = OP (
1

T
��1

N ) =
1

T

TX

t=1

kbft �H�1ftk2.

While the new estimators are still consistent, they perform worse than PCA. This finding

is still reasonable because the signal is so weak that the conditional expectation E(yt|xt)

loses useful information of the factors/loadings. Consequently, estimation e�ciency is lost

when running PCA on the estimated covariance E{E(yt|xt)E(yt|xt)0}.

In summary, improved rates of convergence can be achieved so long as the covariates

can (partially) explain the latent factors, this corresponds to either the mild or the strong

explanatory power case. The degree of improvements depend on the strength of the sig-

nals. In particular, the consistent estimation for factor loadings can also be achieved even

under finite N . On the other hand, when the explanatory power is too weak, the rates of

convergence would be slower than those of the benchmark estimator.

5 Testing the Explanatory Power of Covariates

We aim to test: (recall that �t = ft � E(ft|xt))

H0 : cov(�t) = 0. (5.1)

Under H0, ft = E(ft|xt) over the entire sampling period t = 1, ..., T , implying that observed

covariates xt fully explain the true factors ft. In empirical applications with “observed

factors”, what have been often used are in fact xt. Hence our proposed test can be applied

to empirically validate the explanatory power of these “observed factors”.

The Fama-French three-factor model (Fama and French, 1992) is one of the most cele-

brated ones in empirical asset pricing. They modeled the excess return rit on security or

portfolio i for period t as

rit = ↵i + birMt + siSMBt + hiHMLt + uit,
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where rMt, SMBt and HMLt respectively represent the the excess returns of the market,

the di↵erence of returns between stocks with small and big market capitalizations (“small

minus big”), and the di↵erence of returns between stocks with high book to equity ratios

and those with low book to equity ratios (“high minus low”). Ever since its proposal,

there is much evidence that the three-factor model can leave the cross-section of expected

stock returns unexplained. Di↵erent factor definitions have been explored, e.g., Carhart

(1997) and Novy-Marx (2013). Fama and French (2015) added profitability and investment

factors to the three-factor model. They conducted GRS tests (Gibbons et al., 1989) on the

five-factor models and its di↵erent variations. Their tests “reject all models as a complete

description of expected returns”.

On the other hand, the Fama-French factors, though imperfect, are good proxies for the

true unknown factors. Consequently, they form a natural choice for xt. These observables

are actually diversified portfolios, which have explanatory power on the latent factors ft,

as supported by financial economic theories as well as empirical studies. The test proposed

in this section validates the specification of these common covariates as “factors”.

5.1 The Test Statistic

Our test is based on a Wald-type weighted quadratic statistic

S(W) :=
N

T

TX

t=1

b� 0
tWb�t =

1

TN

TX

t=1

(yt � bE(yt|xt))
0b⇤Wb⇤

0
(yt � bE(yt|xt)).

The weight matrix normalizes the test statistic, taken as W = AVar(
p
Nb�t)

�1, where

AVar(b�t) represents the asymptotic covariance matrix of b�t under the null, and is given by

AVar(
p
Nb�t) =

1

N
H0⇤0⌃u⇤H.

As ⌃u is a high-dimensional covariance matrix, to simplify the technical arguments, in this

section we assume {uit} to be cross-sectionally uncorrelated, and estimate ⌃u by:

b⌃u = diag{ 1
T

TX

t=1

bu2

it, i = 1, ..., N}, buit = yit � b�
0
i
bft.

The feasible test statistic is defined as

S := S(cW), cW := (
1

N
b⇤

0 b⌃u
b⇤)�1.
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We reject the null hypothesis for large values of S. It is straightforward to allow ⌃u to be

a non-diagonal but a sparse covariance, and proceed as in Bickel and Levina (2008). We

expect the asymptotic analysis to be quite involved, and do not pursue it in this paper.

We show that the test statistic has the following asymptotic expansion:

S = S̄ + oP (
1p
T
),

where

S̄ =
1

T

TX

t=1

u0
t⇤(⇤0⌃u⇤)�1⇤0ut.

Thus the limiting distribution is determined by that of S̄. Note that a cross-sectional

central limit theorem implies, as N ! 1,

(
1

N
⇤0⌃u⇤)�1/2 1p

N
u0
t⇤ !d N (0, IK).

Hence each component of S̄ can be roughly understood as �2-distributed with degrees of

freedom K being the number of common factors, whose variance is 2K. This motivates

the following assumption.

Assumption 5.1. Suppose 1

T

PT
t=1

var(u0
t⇤(⇤0⌃u⇤)�1⇤0ut) ! 2K as T,N ! 1.

We now state the null distribution in the following theorem.

Theorem 5.1. Suppose Assumption 5.1 and assumptions of Theorem 4.2 hold. In addition,

we further assume that {uit}iN is cross-sectionally independent. Then, when J4N logN =

o(T 3/2), T = o(N2), N
p
T = o(J2⌘�1), as T,N ! 1,

r
T

2K
(S �K) !d N (0, 1).

5.2 Testing market risk factors for S&P 500 returns

We test the explanatory power of the observable proxies for the true factors using S&P

500 returns. We calculate the excess returns for the stocks in S&P 500 index that are

collected from the Center for Research in Securities Prices (CRSP). We consider three

groups of proxy factors (xt) with increasing information: (1) Fama-French 3 factors (FF3);

(2) Fama-French 5 factors (FF5); and (3) Fama-French 5 factors plus 9 sector SPDR ETF’s
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(FF5+ETF9). Here the sector SPDR ETF’s, which are intended to track the 9 largest S&P

sectors. The detailed descriptions of sector SPDR ETF’s are listed in Table 5.1. For each

given group of observable proxies, we set the number of common factors K equals the

number of observable proxies.

Table 5.1: Sector SPDR ETF’s (data available from Yahoo finance)

Code Sector Code Sector Code Sector

XLE Energy XLB Materials XLI Industrials

XLY Consumer discretionary XLP Consumer staples XLV Health care

XLF Financial XLK Information technology XLU Utilities

We consider tests using both daily and monthly data. For the daily data, we collect

393 stocks that have complete daily closing prices from January 2005 to December 2013,

with a time span of 2265 trading days. We apply moving window tests with the window

size (T ) equals one month, three months or six months. The testing window moves one

trading day forward per test. Within each testing window, we calculate the standardized

test statistic S for three groups of proxy factors.

As for the monthly excess returns, we use stocks that have complete record from Jan-

uary 1980 to December 2012, which contains 202 stocks with a time span of 396 months.

Here we only consider the first two groups of proxy factors as sector SPDR ETF’s are

introduced since 1998. The window size equals sixty months and moves one month forward

per test. Within each testing window, besides standardized test statistic and p-value, we

also estimate the volatility of �t, the part of factors that can not be explained by xt as:

cVol(�t) =
1

21T

TX

t=1

b� 0
tb�t,

where there are 21 trading days per month. The sieve basis is chosen as the additive Fourier

basis with J = 5. We set the tuning parameter ↵T = C
q

T
log(NJ) with constant C selected

by the 5-fold cross validation.

For the daily data, the plots of S under various scenarios are reported in Figure 5.1.

Under all scenarios, the null hypothesis (H0 : cov(�t) = 0) is rejected as S is always larger

than the critical value 1.96. This suggests a strong evidence that the proxy factors can
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Figure 5.1: S&P 500 daily returns: plots for standardized test statistic S for various window

sizes. The dotted line is critical value 1.96.

not fully explain the estimated common factors. Under all window sizes, a larger group of

proxy factors tends to yield smaller statistics, demonstrating stronger explanatory power

for estimated common factors. Also, we find the test statistics increase while the window

size increases.

The results for the monthly data are reported in Figure 5.2. For both Fama-French

3 factors and 5 factors, the null hypothesis is rejected most of the time except in early

1980s and 1990s. When the null hypothesis is accepted, Fama-French 5 factors tend to
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Figure 5.2: S&P 500 monthly returns: plots for standardized test statistic S, P-value and

the volatility of the part of factors that can not be explained by the proxy factors.

yield larger p-values. The estimated volatility of unexplained part are close to zero over

these two periods. For the rest of the time, the standardized test statistics are much larger

than the critical value 1.96 and hence the p-values are close to zero. Also the estimated

volatilities are not close to zero. This indicates the proxy factors can not fully explain the

estimated common factors during these testing periods.

6 Forecast the excess return of US government bonds

We apply our method to forecast the excess return of U.S. government bonds. The bond

excess return is the one-year bond return in excess of the risk-free rate. To be more specific,

we buy an n year bond, sell it as an n�1 year bond in the next year and excess the one-year
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bond yield as the risk-free rate. Let p(n)t be the log price of an n-year discount bond at

time t. Denote ⇣(n)t ⌘ � 1

np
(n)
t as the log yield with n year maturity, and r(n)t+1

⌘ p(n�1)

t+1
�p(n)t

as the log holding period return. The goal of one-step-ahead forecast is to forecast z(n)T+1
,

the excess return with maturity of n years in period T + 1, where

z(n)t+1
= r(n)t+1

� ⇣(1)t , t = 1, · · · , T.

For a long time, the literature has found a significant predictive power of the excess

returns of U.S. government bonds. For instance, Ludvigson and Ng (2009, 2010) predicted

the bond excess returns with observable variables based on a factor model using 131 (dis-

aggregated) macroeconomics variables. They achieved the out-of-sample R2 ⇡ 21% when

forecasting bond excess return with two year maturity. Using the proposed method, this

section develops a new way of incorporating the explanatory power of the observed char-

acteristics, and investigates the robustness of the conclusions in existing literature.

We analyze monthly data spanned from January 1964 to December 2003, which is avail-

able from the Center for Research in Securities Prices (CRSP). The factors are estimated

from a macroeconomic dataset consisting of 131 disaggregated macroeconomic time series

(Ludvigson and Ng, 2010). The covariates xt are 8 aggregated macro-economic time series,

listed in Table 6.1.

Table 6.1: Components of xt

x1,t Linear combination of five forward rates

x2,t Real gross domestic product (GDP)

x3,t Real category development index (CDI)

x4,t Non-agriculture employment

x5,t Real industrial production

x6,t Real manufacturing and trade sales

x7,t Real personal income less transfer

x8,t Consumer price index (CPI)
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6.1 Heavy-tailed data and robust estimations

We first examine the excess kurtosis for the time series to assess the tail distributions. The

left panel of Figure 6.1 shows 43 among the 131 series have excess kurtosis greater than 6.

This indicates the tails of their distributions are fatter than the t-distribution with degrees

of freedom 5. On the other hand, the right panel of Figure 6.1 reports the histograms

of excess kurtosis of the “fitted data” bE(yt|xt) (the robust estimator of E(yt|xt) using

Huber loss), which demonstrates that most series in the fitted data are no longer severely

heavy-tailed.

The tuning parameter in the Huber loss is of order ↵T = C↵

q
T

log(NT )
. In this study,

the constant C↵ and the degree of sieve approximation J are selected by the out-of-sample

5-fold cross validation as described in Section 3.2.
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Figure 6.1: Excess kurtosis of the macroeconomic panel data. Left panel shows 43 among

131 series in the raw data are heavy tailed. Right panel shows the robustly fitted data

bE(yt|xt) are no longer severely heavy-tailed.

6.2 Forecast results

We compare the rolling window forecast performance between our proposed smoothed PCA

(SPCA) method Q: Do we want to call back ”projected PCA” and two competitors.

The first competitor, denoted as SPCA-LS, is similar to SPCA except ⌃y|x is estimated by
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the sieve least-squares estimator e⌃ rather than the robust estimator b⌃. We refer to Section

3.1 for the detailed definitions of e⌃ and b⌃. The SPCA-LS method can be considered as a

“non-robust” version of SPCA. The second competitor is the benchmark PCA.

We conduct one-month-ahead out-of-sample forecast of the bond risk premia. The

forecast uses the information in the past 240 months, starting from January 1984 and

rolling forward to December 2003. Within each window ended at time t, we fit the following

factor model with SPCA, SPCA-LS and PCA respectively,

ys = ⇤fs + us, s = t� 239, . . . , t,

where ys is the panel data of 131 macroeconomics variables. For all three methods, we set

the number of factors K = 8. For SPCA and SPCA-LS, the sieve basis is chosen as the

additive polynomial basis whose dimension J is chosen by 5-fold cross-validation.

Then we consider two models to predict the bond risk premia at time s = t�238, . . . , t:

Linear model: zs = ↵ + �0Ws�1 + ✏s, (6.1)

Multi-index model: zs = h( 0
1
Ws�1, · · · ,  0

LWs�1) + ✏s, (6.2)

where ↵ is the intercept and h is a nonparametric function. The covariate Ws�1 is either

fs�1 or an augmented vector (f 0s�1
,x0

s�1
)0. Here, the latent factors fs�1 is estimated by either

SPCA, SPCA-LS or PCA as described above. The multi-index model allows more general

nonlinear forecasts and is estimated by the sliced inverse regression (Li, 1991). The number

of indices L is estimated by the ratio-based method suggested in Lam and Yao (2012) and

is usually 2 or 3. We approximate h using an additive model h( 0
1
Ws�1, · · · ,  0

LWs�1) =
PL

l=1
gl( 

0
lWs�1), which is the projection pursuit model (Friedman and Stuetzle, 1981).

Each individual nonparametric function gl(·) is smoothed by the local linear approximation.

After that, we predict zt+1 as:

Linear predictor: bzt+1|t = b↵ + b�
0
Wt, (6.3)

Multi-index predictor: bzt+1|t =

bLX

l=1

bgl(b 
0
lWt), (6.4)

where b↵, b�, b , bL and bgl(·) are estimated from (6.1) and (6.2).
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The forecast performance is assessed by the out-of-sample R2, defined as

R2 = 1�

479P
t=240

(zt+1 � bzt+1|t)2

479P
t=240

(zt+1 � z̄t)2
,

where z̄t is the sample mean of zt over the sample period [t � 239, t]. The R2 of various

methods are reported in Table 6.2. We notice that factors estimated by SPCA and SPCA-

LS can explain more variations in bond excess returns with all maturities than the ones

estimated by PCA. SPCA yields a 59.3% out-of-sample R2 for forecasting the bond excess

returns with two year maturity, which is much higher than the best out-of-sample predictor

found in Ludvigson and Ng (2009). It is also observed that the forecast based on either

SPCA or SPCA-LS cannot be improved by adding any covariate in xt. We argue that, in

this application, the information of xt should be mainly used as the explanatory power for

the factors.

We summarize the observed results in the following aspects:

1. The factors estimated using additional covariates lead to significantly improved out-

of-sample forecast on the US bond excess returns compared to the ones estimated by

PCA.

2. As many series in the panel data are heavy-tailed, the robust-version of our method

(SPCA) can result in improved out-of-sample forecasts.

3. The multi-index models yield significantly larger out-of-sample R2’s than those of the

linear forecast models.

4. The observed covariates xt (e.g. forward rates, employment and inflation) contain

strong explanatory powers for the latent factors. The gain of forecasting bond excess

returns is more substantial when these covariates are incorporated to estimate the

common factors (using the proposed procedure) than directly used for forecasts.
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Table 6.2: Forecast out-of-sample R2 (%): the larger the better.

Wt SPCA SPCA-LS PCA

Maturity(Year) Maturity(Year) Maturity(Year)

2 3 4 5 2 3 4 5 2 3 4 5

linear model

ft 55.4 51.2 45.7 41.8 49.6 45.3 41.5 39.8 45.4 41.5 36.6 33.1

(f 0t , x0
t)

0 54.7 50.5 45.4 41.4 49.3 44.9 40.8 38.7 46.2 42.4 37.1 33.7

multi-index model

ft 59.3 55.6 50.5 46.1 53.8 51.3 46.5 44.4 47.6 43.7 39.9 36.4

(f 0t , x0
t)

0 58.9 54.8 50.1 45.5 53.1 50.9 45.6 42.2 48.9 44.1 40.2 37.0

7 Simulation Studies

7.1 Model settings

We use simulated examples to demonstrate the finite sample performance of the proposed

method, which is denoted by SPCA (smoothed PCA), and compare it with SPCA-LS (which

uses e⌃, the least-squares based smoothed PCA, described in Section 3.1) and the bench-

mark PCA.

Consider the following data generating process,

yt = ⇤ft + ut, and ft = �̃(g)g0(xt) + �̃(�)�0

t , t = 1, · · · , T, (7.1)

where ⇤ is drawn from i.i.d. standard Normal distribution and ut is drawn from either the

i.i.d standard Normal distribution or i.i.d. re-scaled Log-Normal distribution c1{exp(1 +

1.2⇣) � c2}, where ⇣ ⇠ N (0, 1) and c1, c2 > 0 are chosen such that uit has mean zero and

variance 1. We set K = 5.

Here �̃(g) and �̃(�) respectively represent the signal and noise levels. Set �̃(g)2+�̃(�)2 =

1 and �̃(g)2/�̃(�)2 = !, where ! controls the ratio between the explained and unexplained

parts in the latent factors. To address di↵erent signal-noise regimes, we set ! = 10, 1 and

0.1 to represent strong, mild and weak explanatory powers respectively. The baseline �0

t is

drawn from i.i.d. standard Normal distribution and the baseline function g0(·) is set to be

one of the following two models:
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(I) Linear model: We set d = K and xt is drawn from i.i.d. standard Normal distri-

bution. Let g0(xt) = Dxt, where D is a K ⇥K matrix with each entry drawn from

U [1, 2];

(II) Nonlinear model: We set d = 1 and xt is drawn from i.i.d. uniform distribution

[0, 1]. Let g0(xt) = {g0
1
(xt), · · · , g0K(xt)}0 with g0k(xt) = ak cos(2⇡kxt) + bk sin(2⇡kxt)

for k = 1, · · ·K. The coe�cients ak and bk are calibrated from a nonlinear test

function ✓(x) = sin(x) + 2 exp(�30x2) with x 2 [0, 1] so that g0 forms its leading

Fourier bases. To save the space, we refer to the example 2 of Dimatteo et al. (2001)

for the plot of ✓(x).

For each k  K, we normalize g0k(xt) and �0

t,k such that they have means zero, and standard

deviations one.

Throughout this section, the number of factors is estimated by the eigen-ratio method.

In the following simulated examples, the eigen-ratio method can correctly select K = 5

in most replications. The sieve basis is chosen as the additive polynomial basis whose

dimension J is chosen by 5-fold cross-validation. To account the scale of the noise variance,

we also consider the tuning parameter in the Huber loss to admit ↵T,i = C↵�̃i

q
T

log(NT )
,

where �̃i =
q

1

T

P
t(yit � Ẽ(yit|xt))2 and Ẽ(yit|xt) is smoothed by sieve least squares using

additive polynomial basis of order 5. In Subsection 7.2, the tuning parameters C↵ and

J are selected by the in-sample 5-fold cross validation, while in subsection 7.3, they are

chosen using the out-of-sample 5-fold cross validation.

7.2 In-sample Estimation

First, we compare the in-sample model fitting among SPCA, SPCA-LS and PCA under

di↵erent scenarios. For each scenario, we conduct 200 replications. As the factors and

loading may be estimated up to a rotation matrix, the canonical correlations between the

parameter and its estimator can be used to measure the estimation accuracy (Bai, 2003).

For Model (I) and (II) we report the sample mean of the median of 5 canonical correlations

between the true loading and factors and the estimated ones.

The results are presented in Table 7.2. SPCA-LS and SPCA are comparable for light-

tail distributions, and are both slightly better than PCA. This implies that we pay little
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price for the robustness and that the proposed estimators are potentially better than PCA

when N is relatively small, due to the merit of the “finite-N” asymptotics of the proposed

estimators. However, when the error distributions have heavy tails, SPCA yields much

better estimation than other methods as expected. SPCA-LS out-performs PCA when xt

has strong or mild explanatory powers of ft which is in line with the discussion in Section

4.3. When ! = 0.1, the observed xt is not as informative and hence the performance of

SPCA and SPCA-LS are close to regular PCA.

7.3 Out-of-sample Forecast

We now consider using latent factors in a linear forecast model zt+1 = �0ft + ✏t+1, where

✏t is drawn from i.i.d. standard normal distribution. For each simulation, the unknown

coe�cients in � are independently drawn from uniform distribution [0.5, 1.5] to cover a

variety of model settings.

We conduct one-step ahead rolling window forecast using the linear model by estimating

� and ft. The factors are estimated from (7.1) by SPCA, SPCA-LS or PCA. In each

replication, we generate T + 50 observations in total. For s = 1, · · · , 50, we use the T

observations (zs, ..., zT+s�1) to forecast zT+s. We use PCA as the benchmark and define

the relative mean squared error (RelMSE) as:

RelMSE =

50P
s=1

(bzT+s|T+s�1 � zT+s)2

50P
s=1

(z̃PCA
T+s|T+s�1

� zT+s)2
,

where bzT+s|T+s�1 is the forecast of zT+s based on either SPCA or SPCA-LS while z̃PCA
T+s|T+s�1

is the forecast based on PCA. For each scenario, we simulate 200 replications and calculate

the averaged RelMSE as a measurement of the one-step-ahead out-of-sample forecast.

The results are presented in Table 7.1. Again, when the tails of error distributions are

light, SPCA and SPCA-LS perform comparably. But SPCA outperforms SPCA-LS when

the errors have heavy tails. On the other hand, both SPCA and SPCA-LS outperform

PCA when xt exhibits strong or mild explanatory powers of ft, but are slightly worse when

! is small. In general, the SPCA method performs the best under heavy-tailed cases.
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Table 7.1: Out-of-sample Forecast: Mean RelMSE of forecast when N = 40, T = 100:

the smaller the better (with PCA as the benchmark)

Model (I) Model (II)

ut ! SPCA SPCA-LS SPCA SPCA-LS

Normal

10 0.86 0.85 0.88 0.87

1 0.91 0.91 0.92 0.92

0.1 1.01 1.01 1.02 1.01

LogN

10 0.45 0.60 0.49 0.64

1 0.52 0.62 0.51 0.66

0.1 0.55 0.65 0.56 0.70

7.4 Compare with the interactive e↵ect approach

Here we consider three pairs of sample sizes: N = 40, T = 150; N = 60, T = 100 and

N = 60, T = 150. We compare the proposed SPCA method with SPCA-LS (Section 3.1),

regular PCA and pure least squares (LS), which models the covariates and estimates the

parameters by simply using

min
⇤,{ft},�

1

T

TX

t=1

kyt �⇤ft � x0
t�k2.

In Tables 7.2–7.3, we report sample mean of the median of 5 canonical correlations

between the true loading and factors and the estimated ones. Under various sample size

combinations, the findings are similar as discussed in Section 7.2: (1) both SPCA and

SPCA-LS outperform PCA under light-tail distributions when xt has strong or mild ex-

planatory powers of ft; (2) when the error distributions have heavy tails, SPCA outperforms

other methods as expected; (3)when xt has weak explanatory power, the performance of

SPCA and SPCA-LS are close to regular PCA; (4) under all simulated scenarios, the LS

approach gives the worst estimation performance.

7.5 Serial dependent case

In this subsection, we compare the in-sample model fitting among SPCA, SPCA-LS and

PCA under serial dependences. The simulation settings are similar as in Section 7.1 except
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both xt and �t are generated from a stationary VAR(1) model as follows

xt = ⇧xt�1 + "t, �t = ⇧�t�1
+ ⌘t, t = 1, · · · , T,

with x0 = 0 and �
0
= 0. The (i, j)th entry of ⇧ is set to be 0.5 when i = j and 0.4|i�j|

when i 6= j. In addition, "t and ⌘t are drawn form i.i.d. N(0, I).

The performance under 200 replications are presented in Table 7.4 below. Our numerical

findings for the independent data continue to hold for serially dependent data: both SPCA

and SPCA-LS outperform PCA when xt and ft are serially correlated. SPCA gives the

best performance when the error distributions are heavy-tailed.

7.6 Conditional week cross-sectional dependent case

In this subsection, we compare the in-sample model fitting among SPCA, SPCA-LS and

PCA under conditional week cross-sectional dependency. The simulation settings are sim-

ilar as in Section 7.1 except we allow ut to be cross-sectional dependent. First we generate

vt from i.i.d. re-scaled Log-Normal distribution as introduced in Section 7.1. Then we

generate ut = ⌦1/2
u vt, where ⌦u is a correlation matrix whose (i, j)th entry equals 0.5|i�j|.

We set N = 60 and T = 150. The performance under 200 replications are presented in

Table 7.5 below. Similar are the results with cross-sectional independent errors, SPCA give

the best performance among the three methods.

7.7 Testing the explanatory power

We now study the performance of the proposed test statistic under various scenarios. Con-

sider the following data generating process,

yt = ⇤ft + ut, and ft = Dxt + ��t, t = 1, · · · , T, (7.2)

where ⇤ and �t are drawn from i.i.d. standard Normal distribution, D is a K ⇥K matrix

with each entry drawn from U [1, 2] and � is a constant which can be set as either 0 or 1.

Further, xt and ut are jointly generated from one of the following three cases.

(I) Independent case: xt is drawn from i.i.d. standard Normal distribution. ut is

independent of xt and drawn from i.i.d. re-scaled Log-Normal distribution c1{exp(1+
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Table 7.2: In-sample Estimation: Median of 5 canonical correlations of the estimated

loadings/factors and the true ones when N = 40, T = 100: the larger the better

Model (I) Model (II)

ut ! SPCA SPCA-LS PCA SPCA SPCA-LS PCA

Loadings

Normal

10 0.91 0.91 0.82 0.90 0.90 0.75

1 0.88 0.89 0.82 0.84 0.84 0.75

0.1 0.83 0.83 0.82 0.77 0.79 0.75

LogN

10 0.81 0.50 0.36 0.77 0.48 0.31

1 0.77 0.45 0.36 0.73 0.42 0.31

0.1 0.72 0.41 0.36 0.70 0.39 0.31

Factors

Normal

10 0.90 0.90 0.74 0.90 0.90 0.72

1 0.82 0.83 0.74 0.81 0.82 0.72

0.1 0.75 0.76 0.74 0.74 0.74 0.72

LogN

10 0.83 0.54 0.31 0.81 0.57 0.26

1 0.80 0.53 0.31 0.77 0.50 0.26

0.1 0.75 0.48 0.31 0.74 0.46 0.26

1.2⇣)� c2}, where ⇣ ⇠ N (0, 1) and c1, c2 > 0 are chosen such that uit has mean zero

and variance 1.

(II) Serial dependent case: Both xt and ut are generated from stationary VAR(1)

models as follows

xt = ⇧(1)xt�1 + "t, ut = ⇧(2)ut�1 + ⌘t, t = 1, · · · , T,

with x0 = 0 and u0 = 0. In both ⇧(1) and ⇧(2), the (i, j)th entry is set to be 0.5

when i = j and 0.4|i�j| when i 6= j. In addition, "t is drawn form i.i.d. standard

Normal distribution and ⌘t is drawn from i.i.d. re-scaled Log-Normal distribution as

described in (I).

(III) Cross-sectional dependent case: First we generate x⇤
t and u⇤

t similar as in (I).

Then we generate
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Table 7.3: In-sample Estimation: Median of 5 canonical correlations of the estimated

loadings/factors and the true ones when N = 60, T = 150: the larger the better

Model (I) Model (II)

ut ! SPCA SPCA-LS PCA LS SPCA SPCA-LS PCA LS

Loading

Normal

10 0.95 0.95 0.88 0.82 0.93 0.93 0.85 0.78

1 0.92 0.92 0.88 0.83 0.88 0.88 0.85 0.79

0.1 0.85 0.86 0.88 0.86 0.84 0.84 0.85 0.83

LogN

10 0.86 0.59 0.44 0.38 0.84 0.55 0.41 0.34

1 0.83 0.55 0.44 0.40 0.80 0.52 0.41 0.36

0.1 0.79 0.48 0.44 0.43 0.75 0.44 0.41 0.39

Factors

Normal

10 0.94 0.94 0.83 0.75 0.91 0.91 0.81 0.74

1 0.86 0.86 0.83 0.78 0.83 0.83 0.81 0.76

0.1 0.81 0.82 0.83 0.82 0.79 0.79 0.81 0.79

LogN

10 0.85 0.66 0.40 0.33 0.84 0.64 0.37 0.30

1 0.81 0.60 0.40 0.35 0.80 0.61 0.37 0.32

0.1 0.77 0.54 0.40 0.38 0.75 0.56 0.37 0.35

Table 7.4: Dependent data: Median of canonical correlations of the estimated load-

ings/factors and the true ones when N = 40, T = 100: the larger the better

Model (I) Model (II)

ut ! SPCA SPCA-LS PCA SPCA SPCA-LS PCA

Loadings

Normal

10 0.89 0.90 0.78 0.87 0.87 0.73

1 0.84 0.84 0.78 0.82 0.82 0.73

0.1 0.80 0.81 0.78 0.76 0.77 0.73

LogN

10 0.75 0.47 0.25 0.73 0.45 0.22

1 0.69 0.41 0.25 0.69 0.39 0.22

0.1 0.64 0.38 0.25 0.62 0.35 0.22

Factors

Normal

10 0.88 0.89 0.71 0.88 0.88 0.68

1 0.81 0.82 0.71 0.80 0.81 0.68

0.1 0.73 0.74 0.71 0.72 0.72 0.68

LogN

10 0.80 0.59 0.24 0.78 0.55 0.19

1 0.74 0.51 0.24 0.72 0.49 0.19

0.1 0.70 0.45 0.24 0.69 0.40 0.19
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Table 7.5: Cross-sectional Dependent error: Median of canonical correlations of the

estimated loadings/factors and the true ones when N = 60, T = 150: the larger the better

Model (I) Model (II)

! SPCA SPCA-LS PCA SPCA SPCA-LS PCA

Loadings

10 0.81 0.56 0.42 0.79 0.51 0.38

1 0.76 0.53 0.42 0.74 0.49 0.38

0.1 0.72 0.47 0.42 0.71 0.40 0.38

Factors

10 0.80 0.63 0.40 0.79 0.60 0.36

1 0.75 0.57 0.40 0.73 0.57 0.36

0.1 0.73 0.50 0.40 0.71 0.52 0.36

0

@xt

ut

1

A = ⌦1/2

0

@x⇤
t

u⇤
t

1

A ,

where⌦ is a correlation matrix whose diagonal entries equal 1 and o↵-diagonal entries

equal 0.5.

Let N = 50, T = 200 and K = 3. We set the significance level ↵ = 0.05 and repeat

the testing on explanatory power of covariates over 1000 replications. For the first 500

replications, we set � = 0 and hence the null hypothesis H0 : cov(�t) = 0 is true. For the

rest 500 replications, we set � = 1 and hence the null hypothesis is false. The number of

factors K is estimated by the eigen-ratio method suggested in Lam and Yao (2012). The

sieve basis is chosen as the additive polynomial basis whose dimension J is chosen by 5-fold

cross-validation. The false positive rate and true negative rate are reported in Table 7.6.

We see observe size distortions as dependence is presence, and the power is also a↵ected.

As a result, modified covariance estimators should be used in place of b⌃u, such as the sparse

covariance estimator.

Table 7.6: Size and power of test

Independent Serial Dependent Cross-sectional dependent

Size 0.048 0.066 0.082

Power 0.926 0.892 0.848
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8 Conclusions

We study factor models when the factors depend on observed explanatory characteristics.

The proposed method incorporates the explanatory power of these observed covariates,

and is robust to possibly heavy-tailed distributions. We focus on the case dim(xt) is finite,

and on the rates of convergence for the estimated factors and loadings. Under various

signal-noise ratios, substantial improved rates of convergence can be gained.

Related to the above, the idea could be easily extended to the case that dim(xt) is slowly

growing (with respect to (N, T )). On the other hand, allowing dim(xt) to be fast-growing

would require some dimension-reduction treatment combined with covariate selections. In

addition, selecting the covariates would be also useful as the quality of the signal is crucial.

We shall leave these open questions for future studies.
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A Proof of Theorem 2.1

Proof. Let ⇠
1
, ..., ⇠N be the eigenvectors of⌃y|x, corresponding to the eigenvalues �1(⌃y|x) �

�2(⌃y|x)... � �N(⌃y|x). Due to ⌃y|x = ⇤⌃f |x⇤
0, and by the assumption that �min(⌃f |x) >

0, the rank of ⌃y|x equals K. Hence �i(⌃y|x) = 0 for all i > K.

(i) Let L = ⌃1/2
⇤,N⌃f |x⌃

1/2
⇤,N . Let M be a K ⇥K matrix, whose columns are the eigen-

vectors of L. Then D := M0LM is a diagonal matrix, with diagonal elements being the

eigenvalues of L. Let H = ⌃�1/2
⇤,N M. Then

1

N
⌃y|x⇤H = ⇤⌃f |x⌃⇤,NH = ⇤⌃�1/2

⇤,N LM =|{z}
MM0=I

⇤HM0LM = ⇤HD.

In addition, (⇤H)0(⇤H) = NM0M = NIK , hence the columns of ⇤H/
p
N are the eigen-

vectors of ⌃y|x, corresponding to the K nonzero eigenvalues.

(ii) From E(yt|xt) = ⇤g(xt), we have (⇤H)0E(yt|xt) = (⇤H)0⇤HH�1g(xt). This leads

to the desired expression of H�1g(xt).

(iii) The nonzero eigenvalues of ⌃y|x = ⇤⌃f |x⇤
0 equal those of

⌃1/2
f |x⇤

0⇤⌃1/2
f |x = N⌃1/2

f |x⌃⇤,N⌃
1/2
f |x ,

which are also the same as those of N⌃1/2
⇤,N⌃f |x⌃

1/2
⇤,N = NL. Note that

�min(NL) � N�min(⌃f |x)�min(⌃⇤,N) � N�Nc⇤.

B Proofs for Section 4

Here we present the main body of the proof, and refer to the supplementary material for

additional technical lemmas.

B.1 A bird’s-eye view of the major technical steps

We first provide a bird’s-eye view of the major steps in the proof. The key intermediate

result is to prove the following Bahadur representation of the estimated eigenvectors:

b⇤�⇤H =
1

NT

TX

t=1

⇤g(xt)�(xt)
0A

NX

i=1

1

T

TX

s=1

�(xs)
0⇢̇(↵�1

T eis)↵T
b⇤eV�1
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+ e�({xt, et}tT ), (B.1)

for some invertible matrix H. Here the first term on the right hand side is the leading term

that results in the presented rate of convergence in Theorem 4.1, where ⇢̇(·) denotes the

derivative of Huber’s loss function; eV is a K-dimensional diagonal matrix of the eigenvalues

of b⌃/N . The second term e�({xt, et}tT ) is a higher order random term that depends on

both {xt} and {et}, where et = yt � E(yt|xt) = (e1t, ..., eNt).

To have an general idea of how we prove (B.1), recall that b⌃/N := 1

TN

PT
t=1
bE(yt|xt) bE(yt|xt)0,

where each element of bE(yt|xt) is bE(yit|xt) = bb0
i�(xt) with bbi being the M-estimator of

the sieve coe�cients of E(yit|xt), obtained by minimizing the Huber’s loss:

bbi = arg min
b2RJ

Qi(b), Qi(b) =
1

T

TX

t=1

↵2

T⇢

✓
yit � �(xt)0b

↵T

◆
.

Then by the definition of b⇤,
1

N
b⌃b⇤ = b⇤eV. (B.2)

The above is the key equality we shall use to derive (B.1). To use this equality, we need to

obtain the Bahadur representations of bbi and bE(yit|xt) in the following steps.

Step 1: bias of sieve coe�cients. Define, for i = 1, ..., N ,

bi := arg min
b2RJ

E[yit � b0�(xt)]
2, bi,↵ = arg min

b2RJ
E↵2

T⇢

✓
yit � �(xt)0b

↵T

◆
.

Note that the sieve expansion of E(yt|xt) is b0
i�(xt) (to be proved in Lemma D.1). But

bbi is biased for estimating bi, and asymptotically converges to bi,↵. As ↵T ! 1, bi,↵ is

expected to converge to bi uniformly in i  N . This is true given some moment conditions

on et := yt � E(yt|xt).

Step 2: Expansion of bbi � bi,↵.

The first order condition gives rQi(bbi) = 0. But we cannot directly expand this equa-

tion because rQi is not di↵erentiable. As in many M-estimations, define Q̄i(b) = EQi(b),

and µi(b) = rQi(b)�rQ̄i(b). So we have

0 = rQ̄i(bbi)� µi(bbi),

and rQ̄i is di↵erentiable. We shall apply the standard empirical process theory for inde-

pendent data (the symmetrization and contraction theorems, e.g., Bühlmann and van de
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Geer (2011) ) to prove the stochastic equicontinuity of µi(b) and thus the convergence of

maxi kµi(bbi)�µi(bi,↵)k. This will eventually lead to an expansion of bbi�bi,↵, to be given

in Lemma D.3.

Step 3: Expansion of bE(yt|xt)� E(yt|xt). Combining steps 1 and 2 will eventually

lead to

bE(yit|xt) = E(yit|xt) + �(xt)
0A

1

T

TX

s=1

↵T ⇢̇(↵
�1

T eis)�(xs) +Rit (B.3)

where Rit is a high-order remainder term that depends on xt, and A = (2E�(xt)�(xt)0)�1

is the Hessian matrix. We shall bound maxiN
1

T

PT
t=1

Rit in Proposition D.3.

Step 4: Expansion of b⇤ � ⇤H. Substituting the expansion of bE(yit|xt) to (B.3),

with bE(yt|xt) replaced by its expansions, we will eventually obtain (B.1). Then (B.1) can

be directly applied to obtain the rate of convergence for the estimated loadings. This will

be done in Section D.2, where we show that the remainder term is of a smaller order than

the leading term.

Importantly, both the signal strength �N = �min(⌃f |x) and the “noise” cov(�t) plays

an essential role in (B.2), which are to be reflected in the rate of convergence.

B.2 Estimating the loadings

Throughout the proofs, as T, J ! 1, N either grows or stays constant.

Write M↵ be an N ⇥ J matrix, whose ith row is given by

M0
i,↵ :=

1

T

TX

s=1

↵T ⇢̇(↵
�1

T eis)�(xs)
0.

Write Rt = (R1t, ..., RNt)0, where Rit was defined in Proposition D.3. Then the Bahadur

representation in Proposition D.3 can be written in the vector form: A = (2E�(xt)�(xt)0)�1,

bE(yt|xt) = E(yt|xt) +M↵A�(xt) +Rt = ⇤E(ft|xt) +M↵A�(xt) +Rt. (B.4)

Let eV be a K ⇥K diagonal matrix, whose diagonal elements are the first K eigenvalues

of b⌃/N := 1

TN

PT
t=1
bE(yt|xt) bE(yt|xt)0. By the definition of b⇤, 1

N
b⌃b⇤ = b⇤eV. Plugging in

(B.4), with b⌃ = 1

T

PT
t=1
bE(yt|xt) bE(yt|xt)0 we have,

b⇤�⇤H =
8X

i=1

Bi, H =
1

TN

TX

t=1

E(ft|xt)E(ft|xt)
0⇤0b⇤eV�1 (B.5)
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where for A = (2E�(xt)�(xt)0)�1,

B1 =
1

TN

TX

t=1

⇤E(ft|xt)�(xt)
0AM0

↵
b⇤eV�1, B2 =

1

TN

TX

t=1

⇤E(ft|xt)R
0
t
b⇤eV�1,

B3 =
1

TN

TX

t=1

M↵A�(xt)E(ft|xt)
0⇤0b⇤eV�1 B4 =

1

TN

TX

t=1

M↵A�(xt)�(xt)
0AM0

↵
b⇤eV�1,

B5 =
1

TN

TX

t=1

M↵A�(xt)R
0
t
b⇤eV�1, B6 =

1

TN

TX

t=1

RtE(ft|xt)
0⇤0b⇤eV�1,

B7 =
1

TN

TX

t=1

Rt�(xt)
0AM0

↵
b⇤eV�1, B8 =

1

TN

TX

t=1

RtR
0
t
b⇤eV�1.

We derive the rates of convergence by examining each term of (B.5).

B.2.1 Proof of Theorem 4.1: 1

N

PN
i=1

kb�i �H0�ik2

Proposition B.1. Suppose J3 log2 N = O(T ), ⌘ � 2, and J2/T + J�⌘ ⌧ �N . Then

1

N
kb⇤�⇤Hk2F = OP (

J

T
+ J1�2⌘)��1

N .

Proof. From Lemma D.5 and Proposition D.3, we obtain

1

N
kM↵k2 +max

i

1

T

TX

t=1

R2

it = OP (
J

T
+ J1�2⌘ + ↵�2(⇣1�1)

T

J3 logN

T
+

J3 logN log J

T 2
)

 OP (
J

T
+ J1�2⌘)

under the assumption J3 log2 N = O(T ), ↵T = C
p

T/ log(NJ) and ⇣1 > 2. Hence from

Lemma D.5 and Proposition D.3,

1

N
kb⇤�⇤Hk2F = OP (

1

N

8X

i=1

kBik2F )

= OP (
1

N
kM↵k2J max

i

1

T

TX

t=1

R2

it/�
2

N)

+OP (
1

N
kM↵k2��1

N +
1

N
kM↵k4F/(N�2

N))

+OP (max
i

1

T

TX

t=1

R2

it�
�1

N + (max
i

1

T

TX

t=1

R2

it)
2/�2

N)

 OP (�
�2

N J)(
1

N
kM↵k2 +max

i

1

T

TX

t=1

R2

it)
2
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+OP (�
�1

N )(
1

N
kM↵k2 +max

i

1

T

TX

t=1

R2

it)

 OP (
J

T
+ J1�2⌘)��1

N [1 + (
J

T
+ J1�2⌘)��1

N J ]

 OP (
J

T
+ J1�2⌘)��1

N .

The last equality is due to ( JT + J1�2⌘)��1

N J = O(1), granted by ⌘ � 2, and J2/T + J�⌘ ⌧

�N . Q.E.D.

B.2.2 Proof of Theorem 4.1: maxiN k�i �H0�ik

B1 =
1

TN

TX

t=1

⇤E(ft|xt)�(xt)
0AM0

↵
b⇤eV�1, B2 =

1

TN

TX

t=1

⇤E(ft|xt)R
0
t
b⇤eV�1,

B3 =
1

TN

TX

t=1

M↵A�(xt)E(ft|xt)
0⇤0b⇤eV�1 B4 =

1

TN

TX

t=1

M↵A�(xt)�(xt)
0AM0

↵
b⇤eV�1,

B5 =
1

TN

TX

t=1

M↵A�(xt)R
0
t
b⇤eV�1, B6 =

1

TN

TX

t=1

RtE(ft|xt)
0⇤0b⇤eV�1,

B7 =
1

TN

TX

t=1

Rt�(xt)
0AM0

↵
b⇤eV�1, B8 =

1

TN

TX

t=1

RtR
0
t
b⇤eV�1.

Proof. By Lemma D.9 maxiN kMi,↵k = OP (J�⌘
p
J +

p
J(logN)/T ). Let Bi1, ...,Bi8

respectively denote the ith row of B1, ...,B8. We have

max
i

kBi1k  ��1/2
N OP (kM↵

b⇤k/N)  OP (�
�1/2
N max

i
kMi,↵k)

max
i

kBi2k  ��1/2
N OP (max

i

1

T

TX

t=1

R2

it)
1/2)

max
i

kBi3k  ��1/2
N OP (max

i
kMi,↵k) = OP (J

�⌘
p
J +

p
J(logN)/T )��1/2

N

max
i

kBi4k  OP (max
i

kMi,↵k)OP (kM0
↵
b⇤k/N)��1

N

max
i

kBi5k  OP (max
i

kMi,↵k)OP (
p
J max

i

1

T

X

t

R2

it)
1/2��1

N

max
i

kBi6k  OP (max
i

1

T

X

t

R2

it)
1/2)��1/2

N

max
i

kBi7k  OP (max
i

1

T

X

t

R2

it)
1/2

p
J)OP (kM↵

b⇤k/N)��1

N

max
i

kBi8k  OP (max
i

1

T

X

t

R2

it�
�1

N ).
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Hence

max
iN

k�i �H0�ik  OP (max
i

kBi2k+max
i

kBi3k)

= OP (J
�⌘
p
J +

p
J(logN)/T + ↵�(⇣1�1)

T

r
J3 logN

T
)��1/2

N

= OP (J
�⌘
p
J +

p
J(logN)/T )��1/2

N ,

where the last equality follows from

↵�(⇣1�1)

T

r
J3 logN

T
= O(

r
J logN

T
)

under assumptions (logN)2J3 = O(T ) and ⇣1 > 2.

B.3 Proof of Theorem 4.2: factors

Recall that bg(xt) =
1

N
b⇤

0 bE(yt|xt). By (B.4), bg(xt)�H�1g(xt) =
P

4

i=1
Cti, where

Ct1 =
1

N
(b⇤�⇤H)0(⇤H� b⇤)H�1E(ft|xt), Ct3 =

1

N
b⇤

0
M↵A�(xt),

Ct2 = � 1

N
H0⇤0(b⇤�⇤H)H�1E(ft|xt), Ct4 =

1

N
b⇤

0
Rt.

The convergence of 1

T

PT
t=1

kbg(xt) � H�1g(xt)k2 in this theorem is proved in the fol-

lowing proposition.

Proposition B.2. As T ! 1 and N either grows or stays constant,

1

T

TX

t=1

kbg(xt)�H�1g(xt)k2 = OP (
J2

T 2
��1

N +
Jk cov(�s)k

T
+ J1�2⌘ +

J

TN
+

J3 log2 N

T 2
).

Proof. Recall

a2T :=
J

T
+ J1�2⌘, b2NT :=

Jk cov(�s)k
T

+
J

TN
+

J

T
↵�⇣2
T .

By Lemma D.8, kHk = OP (1) = kH�1k. Also, by Proposition B.1 and Lemmas D.6, D.7,

1

N
kb⇤�⇤Hk2F = OP (a

2

T�
�1

N ).

1

N
kM0

↵
b⇤kF = OP (a

2

T�
�1/2
N ) +OP (bNT )

k 1

N
⇤0(b⇤�⇤H)k  OP (�

�1/2
N )(

1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2

it)
1/2)
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Therefore, as 1

T

P
t kE(ft|xt)k2 = OP (�N),

1

T

TX

t=1

kCt1k2  OP (1)[
1

N
kb⇤�⇤Hk2]2�N  OP (a

4

T�
�1

N )

1

T

TX

t=1

kCt2k2  OP (1)[
1

N
⇤0(b⇤�⇤H)]2�N

 OP (a
4

T�
�1

N + b2NT +max
i

1

T

TX

t=1

R2

it)

1

T

TX

t=1

kCt4k2 = OP (max
i

1

T

TX

t=1

R2

it).

Finally, let �i denote the ith row of 1

N
b⇤

0
M↵A, i  K. Then

1

T

TX

t=1

kCt3k2 =
1

T

TX

t=1

k 1

N
b⇤

0
M↵A�(xt)k2 =

KX

i=1

1

T

TX

t=1

(�0
i�(xt))

2


KX

i=1

k�ik2k
1

T

TX

t=1

�(xt)�(xt)
0k

= OP (1)k
1

N
b⇤

0
M↵Ak2F = OP (

1

N2
kb⇤

0
M↵k2)

 OP (b
2

NT + a4T�
�1

N ).

Thus

1

T

TX

t=1

kbg(xt)�H�1g(xt)k2  OP (1)
4X

i=1

1

T

TX

t=1

kCtik2

 OP (a
4

T�
�1

N + b2NT +max
i

1

T

TX

t=1

R2

it)

 OP (
J2

T 2
��1

N + J2�4⌘��1

N + J1�2⌘ +
Jk cov(�s)k

T
+

J

TN
+

J3 logN log J

T 2

+
J

T
↵�⇣2
T + ↵�2(⇣1�1)

T

J3 logN

T
)

(1) OP (
J2

T 2
��1

N +
Jk cov(�s)k

T
+ J1�2⌘ +

J

TN
+

J3 log2 N

T 2
)

where (1) is due to ⇣1, ⇣2 > 2, and J3 log2 N = O(T ),

J

T
↵�⇣2
T + ↵�2(⇣1�1)

T

J3 logN

T
+

J3 logN log J

T 2
= O(

J3 log2 N

T 2
)

and �N � J�⌘ (so J2�4⌘��1

N = O(J1�2⌘)). Q.E.D.

Proposition B.3.

1

T

TX

t=1

kb�t�H�1�tk2 = OP (
1

N
)+OP (�

�1

N )(
J4(logN)2

T 2
+
J2

T 2
��1

N +
Jk cov(�s)k

T
+J1�2⌘+

J

TN
).
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Note that yt � E(yt|xt) = ⇤�t + ut. and b�t =
1

N
b⇤

0
(yt � bE(yt|xt)). Hence from (B.4)

b�t �H�1�t =
1

N
H0⇤0ut +Dt1 +Dt2 +Ct3 +Ct4 (B.6)

where Ct3,Ct4 are as defined earlier, and

Dt1 =
1

N
b⇤

0
(⇤H� b⇤)H�1�t, Dt2 =

1

N
(b⇤�⇤H)0ut

Ct3 =
1

N
b⇤

0
M↵A�(xt), Ct4 =

1

N
b⇤

0
Rt.

Hence for a constant C > 0, 1

T

PT
t=1

kb�t�H�1�tk2  C(
P

2

i=1

1

T

PT
t=1

kDtik2+
P

4

i=3

1

T

PT
t=1

kCtik2).

We look at terms on the right hand side one by one. First of all,

Ek 1
T

TX

t=1

�t�
0
t � cov(�t)k2F =

KX

i=1

KX

j=1

var(
1

T

TX

t=1

�it�jt)

=
KX

i=1

KX

j=1

1

T
var(�it�jt)

= O(T�1) max
i,jK

var(�it�jt).

This implies k 1

T

PT
t=1
�t�

0
tk  OP (cT ) where

cT := k cov(�t)k+ (
1

T
max
i,jK

var(�it�jt))
1/2.

As for Dt1, let G = 1

N
b⇤

0
(⇤H� b⇤)H�1 and let G0

i denote its ith row, i  K. By (D.5),

and kH�1k = OP (1),

kGk2  OP (�
�1

N )(
1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2

it)
1/2)2 +OP (a

4

T�
�2

N ).

Then

1

T

TX

t=1

kDt1k2 =
KX

i=1

1

T

TX

t=1

(G0
i�t)

2 =
KX

i=1

G0
i

1

T

TX

t=1

�t�
0
tGi

 k 1
T

TX

t=1

�t�
0
tkkGk2F

= kGk2FOP (cT )

 cTOP (�
�1

N )(
1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2

it)
1/2)2 +OP (cTa

4

T�
�2

N ).

Terms Ct3 and Ct4 were bounded in the proof of Proposition B.2:

1

T

TX

t=1

kCt3k2 +
1

T

TX

t=1

kCt4k2  OP (max
i

1

T

TX

t=1

R2

it +
1

N2
kb⇤

0
M↵k2).
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Term Dt2 is given in Lemma D.12:

1

T

TX

t=1

kDt2k2

= OP (�
�1

N )(
1

N3
kM0

↵
b⇤k2 + 1

N
max

i

1

T

TX

t=1

R2

it +
1

N2T

TX

s=1

ku0
sM↵k2 +

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2).

By Lemmas D.10, D.11,

1

N2T

TX

s=1

ku0
sM↵k2  OP (

Jk cov(�s)k
TN

+
J

T 2
+

J

N2T
+

J

T
↵�⇣2
T )

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2  OP (

J4 logN log J

T 2
+

J2�2⌘

N
+

J4 logN

T
↵�2(⇣1�1)

T ).

So combined with Lemmas D.6, Proposition D.3,

4X

i=3

1

T

TX

t=1

kCtik2 +
2X

i=1

1

T

TX

t=1

kDtik2 = OP (cTa
4

T�
�2

N )

+OP (1 + cT�
�1

N +N�1��1

N )(
1

N2
kM0

↵
b⇤k2 +max

i

1

T

TX

t=1

R2

it)

+OP (�
�1

N )(
1

N2T

TX

s=1

ku0
sM↵k2 +

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2)

(1) OP (�
�1

N )(
1

N2
kM0

↵
b⇤k2 +max

i

1

T

TX

t=1

R2

it +
1

N2T

TX

s=1

ku0
sM↵k2 +

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2)

+OP (cTa
4

T�
�2

N )

(2) OP (�
�1

N )(
J4(logN)2

T 2
+

J2

T 2
��1

N +
Jk cov(�s)k

T
+ J1�2⌘ +

J

TN
+ a4T�

�1

N )

(3) OP (�
�1

N )(
J4(logN)2

T 2
+

J2

T 2
��1

N +
Jk cov(�s)k

T
+ J1�2⌘ +

J

TN
).

where (1) follows from that 1 + cT�
�1

N + ��1

N N�1 = O(��1

N ) ; (2) is due to J
T ↵

�⇣2
T +

↵�2(⇣1�1)

T
J4

logN
T + J4

logN log J
T 2 = O(J

4
log

2 N
T 2 ) and that cT = O(1) due to Assumption 4.1;

(3) is due to J�⌘��1

N = O(1).

Finally, 1

T

PT
t=1

k 1

NH0⇤0utk2 = OP (
1

TN2

PT
t=1

Ek⇤0utk2) = OP (
1

N ). Hence

1

T

TX

t=1

kb�t�H�1�tk2 = OP (
1

N
)+OP (�

�1

N )(
J4(logN)2

T 2
+
J2

T 2
��1

N +
Jk cov(�s)k

T
+J1�2⌘+

J

TN
).

C Proof of Theorem 5.1

The proof of the limiting distribution of S under the null is divided into two major steps.
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step 1: Asymptotic expansion: under H0,

S =
1

TN

TX

t=1

u0
t⇤HcWH0⇤0ut + oP (T

�1/2).

step 2: The e↵ect of estimating ⌃u is first-order negligible:

1

TN

TX

t=1

u0
t⇤HcWH0⇤0ut =

1

TN

TX

t=1

u0
t⇤(

1

N
⇤0⌃u⇤)�1⇤0ut + oP (T

�1/2).

The result then follows from the asymptotic normality of the first term on the right hand

side. We shall prove this using Lindeberg’s central limit theorem.

We achieve each step in the following subsections.

C.1 Step 1 asymptotic expansion of S

Proposition C.1. Under H0,

S =
1

TN

TX

t=1

u0
t⇤HcWH0⇤0ut + oP (T

�1/2)

Proof. Since kcWk  maxi b�ii = OP (1), it follows from (B.6) that it su�ces to prove under

H0,
N
T

PT
t=1

D0
ti
cW 1

NH0⇤0ut = oP (T�1/2), and N
T

PT
t=1

kDtik2 = oP (T�1/2), i = 2, 3, 4.

By the proof of Propositions B.2, D.3, Lemmas D.6, D.12 and thatDt3 = Ct3,Dt4 = Ct4,

N

T

TX

t=1

kDt4k2 = OP (max
i

N

T

TX

t=1

R2

it)

= OP (NJ1�2⌘ +
NJ3 logN

↵2(⇣1�1)

T T
+

NJ3 logN log J

T 2
)

= oP (
1p
T
)

N

T

TX

t=1

kDt3k2 = OP (
1

N
kb⇤

0
M↵k2)

= OP (
J

T
+

NJ↵�⇣2
T

T
+ J2�4⌘ + ↵�2(⇣1�1)

T

J3 logN

TJ2⌘�1
)

= oP (
1p
T
)

The last equality holds so long as N
p
T = o(J2⌘�1), NJ4 logN log J = o(T 3/2), ⇣1 > 2.

By Lemma D.11,

N

T

TX

t=1

kDt2k2 = OP (
1

N2
kM0

↵
b⇤k2 +max

i

1

T

TX

t=1

R2

it +
1

NT

TX

s=1

ku0
sM↵k2
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+
1

NT 2

TX

s=1

TX

t=1

|u0
sRt|2) = oP (

1p
T
).

The proof of N
T

PT
t=1

D0
ti
cW 1

NH0⇤0ut = oP (T�1/2) is given in Lemmas E.1 and E.2. It then

leads to the desired result.

C.2 Step 2 Completion of the proof

We now aim to show b⇤
0 b⌃u

b⇤/N = H0⇤0⌃u⇤H/N + oP (T�1/2). Once this is done, it then

follows from the facts that H0⇤0⌃u⇤H/N = OP (1) and (H0⇤0⌃u⇤H/N)�1 = OP (1),

(b⇤
0 b⌃u

b⇤/N)�1 = (H0⇤0⌃u⇤H/N)�1 + oP (T
�1/2).

As a result, by Proposition C.1,

S =
1

TN

TX

t=1

u0
t⇤H(H0⇤0⌃u⇤H/N)�1H0⇤0ut + oP (T

�1/2)

=
1

T

TX

t=1

u0
t⇤(⇤0⌃u⇤)�1⇤0ut + oP (T

�1/2).

Hence
TS � TKp

2TK
=

PT
t=1

u0
t⇤(⇤0⌃u⇤)�1⇤0ut � TKp

2TK
+ oP (1) !d N (0, 1).

To finish the proof, we now show two claims:

(1) PT
t=1

u0
t⇤(⇤0⌃u⇤)�1⇤0ut � TKp

2TK
!d N (0, 1).

(2) b⇤
0 b⌃u

b⇤/N = H0⇤0⌃u⇤H/N + oP (T�1/2).

Proof of (1) We define Xt = u0
t⇤(⇤0⌃u⇤)�1⇤0ut and s2T =

PT
t=1

var(Xt). Then

E(Xt) = trE((⇤0⌃u⇤)�1⇤0utu0
t⇤) = K. Also by Assumption 4.1, s2T/T ! 2K, hence

we have E 1

T

PT
t=1

(Xt � K)2 < 1 for all large N, T . For any ✏ > 0, by the dominated

convergence theorem, for all large N, T ,

1

T

TX

t=1

E(Xt �K)21{|Xt �K| > ✏sT}  1

T

TX

t=1

E(Xt �K)21{|Xt �K| > ✏
p
KT} = o(1).

This then implies the Lindeberg condition, 1

s2T

PT
t=1

E(Xt �K)21{|Xt �K| > ✏sT} = o(1).

Hence by the Lindeberg central limit theorem,
P

t Xt � TK

sT
!d N (0, 1).
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The result then follows since s2T/T ! 2K.

Proof of (2) By the triangular inequality,

k 1

N
b⇤

0 b⌃u
b⇤� 1

N
H0⇤0⌃u⇤Hk  k 1

N
(b⇤�⇤H)0(b⌃u �⌃u)b⇤k

+k 1

N
(b⇤�⇤H)0⌃u(b⇤�⇤H)k

+k 1

N
H0⇤0(b⌃u �⌃u)(b⇤�⇤H)k

+k 1

N
H0⇤0(b⌃u �⌃u)⇤Hk

+2k 1

N
(b⇤�⇤H)0⌃u⇤Hk.

Using the established bounds for kb⇤�⇤Hk in Theorem 3.1, it is straightforward to verify

k 1

N (b⇤ � ⇤H)0⌃u(b⇤ � ⇤H)k = oP (T�1/2). Other terms require sharper bounds yet to

be established. These are given in Proposition E.1. It then follows that b⇤
0 b⌃u

b⇤/N =

H0⇤0⌃u⇤H/N + oP (T�1/2). This completes the proof.

Q.E.D.
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D Technical Results for Section 4

D.1 Bahadur representation of the robust estimator

The main goal is to achieve an expansion for bE(yit|xt)�E(yit|xt) (Proposition D.3). This

requires the rates for maxiN kbi,↵ � bik, maxiN kbbi � bik, and an expansion of bbi � bi,↵.

These are given in the propositions below.

Proposition D.1. For any 4 < k < ⇣2 + 2,

max
iN

kbi,↵ � bik = O(↵�(k�1)
T ).

Proof. Let

zit := E(yit|xt)� b
0
i�(xt).

We first prove that for any 0 < k < ⇣2 + 2, maxiN supx E(|eit|k|xt = x) < 1. In fact,

uniformly in x for xt = x and i  N , as long as ⇣2 + 2 > k

E(|eit|k|xt) =

Z 1

0

P (|eit|k > x|xt)dx

 1 +

Z 1

1

P (|eit|k > x|xt)dx

 1 +

Z 1

1

E(e2it1{|eit| > x1/k}|xt)x
�2/kdx

 1 +

Z 1

1

Cx�(⇣2+2)/kdx < 1.

Since ⇣2 > 2 by assumption, there is k > 4 so that maxiN supx E(|eit|k|xt = x) < 1.

Now recall that bi = argminE(yit � b
0
i�(xt))2. Hence

E[(yit � b
0
i,↵�(xt))

2 � (yit � b
0
i�(xt))

2] = (b0
i,↵ � bi)

0E�(xt)�(xt)
0(bi,↵ � bi)

� ckbi,↵ � bik2

On the other hand, let g↵(z) := z2 � ↵2
T⇢(z/↵T ). Then for C > 0 as a generic constant,

E[(yit � b
0
i,↵�(xt))

2 � (yit � b
0
i�(xt))

2]

= Eg↵(yit � b
0
i,↵�(xt))� Eg↵(yit � b

0
i�(xt))

2



+E[↵2
T⇢(↵

�1
T (yit � b

0
i,↵�(xt)))� ↵2

T⇢(↵
�1
T (yit � b

0
i�(xt)))]

(1) Eg↵(yit � b
0
i,↵�(xt))� Eg↵(yit � b

0
i�(xt))

(2) E[|2z̃ � ↵T ⇢̇(↵
�1
T z̃)||�(xt)

0(bi � bi,↵)|],

(3) 2↵�(k�1)
T E|z̃|k|�(xt)

0(bi � bi,↵)|

(4) 2↵�(k�1)
T E|zit + eit + (bi � ebi)

0�(xt)|k|�(xt)
0(bi � bi,↵)|

 C↵�(k�1)
T E(C + |(bi � ebi)

0�(xt)|k)|�(xt)
0(bi � bi,↵)|

where (1) is due to the definition of bi,↵; (2) is by the mean value representation: g↵(z1) �

g↵(z2) = (2z̃ � ↵T ⇢̇(z̃/↵T ))(z1 � z2), with z1 = yit � b
0
i,↵�(xt), z2 = yit � b

0
i�(xt), and

z̃ = yit � eb0
i�(xt) for some ebi lying between bi and bi,↵; (3) is due to

|2z̃ � ↵T ⇢̇(↵
�1
T z̃)|  2|z̃|1{|z̃| > ↵T}

 2|z̃| |z̃|
k�1

↵k�1
T

1{|z̃| > ↵T}

 2|z̃|k/↵k�1
T .

(4) follows from z̃ = yit �E(yit|xt) + b
0
i�(xt) + zit � eb0

i�(xt), and that eit := yit �E(yit|xt).

Next, for ease of presentation, we introduce Mit := C + |(bi � ebi)0�(xt)|k and �i :=

bi � bi,↵. Then the above inequality can be further written as:

E[(yit � b
0
i,↵�(xt))

2 � (yit � b
0
i�(xt))

2]

 C↵�(k�1)
T EMit|�(xt)

0
�i|

= C↵�(k�1)
T E[M2

it�
0
i�(xt)�(xt)

0
�i]

1/2

 C↵�(k�1)
T [�0

iEM2
it�(xt)�(xt)

0
�i]

1/2

 C↵�(k�1)
T kEM2

it�(xt)�(xt)
0k1/2k�ik.

We now bound maxiN kEM2
it�(xt)�(xt)0k = maxiN supk⌫k=1 EM2

it(�(xt)0⌫)2. By the

Cauchy-Schwarz inequality, since �(xt)0⌫ is sub-Gaussian with the universal parameter,

sup
k⌫k=1

[EM2
it(�(xt)

0⌫)2]2  EM4
it sup

k⌫k=1
E(�(xt)

0⌫)4  CEM4
it

 C(C + E|(bi � ebi)
0�(xt)|4k)

 C + CEkbi � ebik4k
 
(b0

i � ebi)0

kbi � ebik
�(xt)

!4k

3



 C + Ck�ik4k sup
k⌫k=1

E(⌫ 0�(xt))
4k  C + Ck�ik4k.

Therefore, we have proved that uniformly in i,

E[(yit � b
0
i,↵�(xt))

2 � (yit � b
0
i�(xt))

2]  C↵�(k�1)
T (C + Ck�ik4k)1/4k�ik

 C↵�(k�1)
T (1 + k�ikk)k�ik

We have also proved that the left hand side is lower bounded by ck�ik2. Uniformly in i,

k�ik  C↵�(k�1)
T (1 + k�ikk).

If maxi k�ik = O(1), then k�ik  C↵�(k�1)
T . Otherwise, maxi k�ik  C↵�(k�1)

T maxi k�ikk,

which then implies 1  C(maxi k�ik/↵T )k�1. However, note that k�ik  kbik + kbi,↵k 

CJ1/2, and J = o(↵2
T ), we have maxi k�ik/↵T = o(1), which is a contradiction. Therefore,

maxi k�ik  C↵�(k�1)
T . Q.E.D.

The following lemma shows the sieve approximation error is uniformly controlled.

Lemma D.1. Under Assumption 3.2, there is ⌘ � 1, as J ! 1,

max
iN

sup
x

|E(yit|xt = x)� b
0
i�(x)| = O(J�⌘).

Proof. Recall that for k  K,

vk = argmin
v

E(fkt � v
0�(xt))

2 = (E�(xt)�(xt)
0)�1E�(xt)fkt

and that bi = argminb2RJ E[yit � b
0�(xt)]2 = (E�(xt)�(xt)0)�1E�(xt)yit. Also note that

yit = �0
ift + uit. We have bi =

PK
k=1 vk�ik. Hence

max
iN

sup
x

|E(yit|xt = x)� b
0
i�(x)|  max

iN
sup
x

|
KX

k=1

�ik(E(ftk|xt = x)� v
0
k�(x))|

 O(1)max
k

sup
x

|E(ftk|xt = x)� v
0
k�(x)|

= O(J�⌘).

Q.E.D.

We now give the uniform convergence rate of bbi as well as its Bahadur representation.

Define

Qi(b) =
1

T

TX

t=1

↵2
T⇢

✓
yit � �(xt)0b

↵T

◆
.

4



Proposition D.2. When ↵T  C
p

T/ log(NJ) for any C > 0, and any 4 < k < ⇣2 + 2,

max
iN

kbbi � bik = OP (

r
J logN

T
+ ↵�(k�1)

T ).

Proof. Let mT =
q

J logN
T . We aim to show, for any ✏ > 0, there is � > 0, when for all large

N, T ,

P (min
iN

inf
k⌫k=�

Qi(bi,↵ +mT⌫)�Qi(bi,↵) > 0) > 1� ✏.

This then implies maxi kbbi�bi,↵k = OP (mT ). The result then follows from Proposition D.1.

By the definition of bi,↵,

E[�(xt)⇢̇(↵
�1
T eit,↵)] = 0, eit,↵ := yit � �(xt)

0
bi,↵.

In addition, we have eit = eit,↵+�it,↵, where�it,↵ := (bi,↵�bi)0�(xt)�zit. Using the formula:

⇢(a+ t)� ⇢(a) = ⇢̇(a)t+
R t

0 (⇢̇(a+ x)� ⇢̇(a))dx for a = ↵�1
T eit,↵ and t = �mT↵

�1
T �(xt)0⌫,

Qi(bi,↵ +mT⌫)�Qi(bi,↵) = � 1

T

TX

t=1

mT↵T ⇢̇(↵
�1
T eit,↵)�(xt)

0⌫

+
1

T

TX

t=1

1{�(xt)
0⌫ < 0}↵2

T

Z �mT↵�1
T �(xt)0⌫

0

⇢̇(↵�1
T eit,↵ + x)� ⇢̇(↵�1

T eit,↵)dx

� 1

T

TX

t=1

1{�(xt)
0⌫ > 0}↵2

T

Z 0

�mT↵�1
T �(xt)0⌫

⇢̇(↵�1
T eit,↵ + x)� ⇢̇(↵�1

T eit,↵)dx.

By the definition of ⇢̇, the integrant can be rewritten as:

⇢̇(↵�1
T eit,↵ + x)� ⇢̇(↵�1

T eit,↵)

= 2x1{|↵�1
T eit,↵ + x| < 1, |↵�1

T eit,↵| < 1}

+(⇢̇(↵�1
T eit,↵ + x)� ⇢̇(↵�1

T eit,↵))1{|↵�1
T eit,↵ + x| � 1, or |↵�1

T eit,↵| � 1}

= 2x� (⇢̇(↵�1
T eit,↵ + x)� ⇢̇(↵�1

T eit,↵)� 2x)1{|↵�1
T eit,↵ + x| � 1, or |↵�1

T eit,↵| � 1}.

In addition, note that

|⇢̇(x1)� ⇢̇(x1)|  2|x1 � x2|, 8x1, x2.

Thus we can further write:

Qi(bi,↵ +mT⌫)�Qi(bi,↵)

5



= � 1

T

TX

t=1

mT↵T ⇢̇(↵
�1
T eit,↵)�(xt)

0⌫

+
1

T

TX

t=1

↵2
T

Z �mT↵�1
T �(xt)0⌫

0

2xdx

� 1

T

TX

t=1

1{�(xt)
0⌫ < 0}↵2

T

Z �mT↵�1
T �(xt)0⌫

0

a(x)b(x)dx

+
1

T

TX

t=1

1{�(xt)
0⌫ > 0}↵2

T

Z 0

�mT↵�1
T �(xt)0⌫

a(x)b(x)dx

� inf
k⌫k=�

1

T

TX

t=1

↵2
T (�mT↵

�1
T �(xt)

0⌫)2

�max
i

sup
k⌫k=�

| 1
T

TX

t=1

mT↵T ⇢̇(↵
�1
T eit,↵)�(xt)

0⌫|

�max
i

sup
k⌫k=1

1

T

TX

t=1

↵2
T

Z mT↵�1
T |�(xt)0⌫|

0

4xb(x)dx

:= A1 � A2 � A3.

In the above,

a(x) = ⇢̇(↵�1
T eit,↵ + x)� ⇢̇(↵�1

T eit,↵)� 2x

and

b(x) = 1{|↵�1
T eit,↵ + x| � 1, or |↵�1

T eit,↵| � 1}.

We now lower bound A1 and upper bound A2, A3.

First of all, there is c > 0 independent of �, with probability approaching one,

A1 = inf
k⌫k=�

⌫ 0 1

T

TX

t=1

m2
T�(xt)�(xt)

0⌫

� �min(
1

T

TX

t=1

�(xt)�(xt)
0)m2

T �
2

� cm2
T �

2.

As for A2, note that |↵T ⇢̇(↵
�1
T eit,↵)|  |eit,↵|  |eit|+ |�it,↵|. Uniformly in i  N, j  J ,

by Holder’s inequality, with an arbitrarily small v > 0, and p = (1 + v)�1,

E(⇢̇(↵�1
T eit,↵)�j(xt))

2  ↵�2
T E(↵T ⇢̇(↵

�1
T eit,↵)�j(xt))

2

6



 2↵�2
T E(e2it +�2

it,↵)�j(xt)
2

 2↵�2
T EE{e2it|xt}�j(xt)

2 + 2↵�2
T E�2

it,↵�j(xt)
2

 C↵�2
T ((E{e2it|xt}1+v)1/p + C)  C↵�2

T .

Note that |⇢̇| < 2 and {�j(xt)} is sub-Gaussian, thus by the Bernstein inequality, for x =

2 log(NJ),

P (| 1
T

TX

t=1

⇢̇(↵�1
T eit,↵)�j(xt)| >

r
2E(⇢̇(↵�1

T eit,↵)�j(xt))2x

T
+

Cx

T
)  2 exp(�x).

Note that when ↵T  C
p

T/ log(NJ),
r

2E(⇢̇(↵�1
T eit,↵)�j(xt))2x

T
+

Cx

T


s
C log(NJ)

↵2
TT

+
C log(NJ)

T
 2

s
C log(NJ)

↵2
TT

.

Thus

P (max
ij

| 1
T

TX

t=1

⇢̇(↵�1
T eit,↵)�j(xt)| >

s
C log(NJ)

↵2
TT

)  CNJ exp(�2 log(NJ)) =
C

NJ
.

Therefore, with probability approaching one,

A2  mT↵T �max
i

k 1
T

TX

t=1

⇢̇(↵�1
T eit,↵)�(xt)

0k

 mT↵T

p
J� max

iN,jJ
| 1
T

TX

t=1

⇢̇(↵�1
T eit,↵)�j(xt)|

 �mT

r
CJ log(N)

T
.

As for A3, note that uniformly for x  mT↵
�1
T |�(xt)0⌫|, and eit = eit,↵ +�it,↵,

1{|↵�1
T eit,↵ + x| � 1, or |↵�1

T eit,↵| � 1}

 1{|↵�1
T eit,↵ + x| � 1}+ 1{|↵�1

T eit,↵| � 1}

 2⇥ 1{|eit,↵| > 3↵T/4}+ 1{mT |�(xt)
0⌫| > ↵T/4}

 2⇥ 1{|eit| > ↵T/2}+ 1{mT |�(xt)
0⌫| > ↵T/4}+ 1{|�it,↵| > ↵T/4}.

In addition, with probability at least 1� ✏/10,

max
i

1

T

TX

t=1

1{|eit| > ↵T/2} (1) max
i

P (|eit| > ↵T/2)

7



+

r
logN

T
max

i
P (|eit| > ↵T/2)

1/2,

1

T

X

t

1{mTk�(xt)k� > ↵T/4}  10P (mT �k�(xt)k > ↵T/4)/✏,

max
i

1

T

TX

t=1

1{|�it,↵| > ↵T/4}  max
i

1

T

TX

t=1

1{k�(xt)k > C↵k
T}+ 1{|zit| > ↵T/4}

 10P (k�(xt)k > C↵k
T )/✏

+CJ�2⌘/↵2
T +

r
logN

T
CJ�⌘/↵T ,

where (1) follows from the triangular inequality,

max
i

1

T

TX

t=1

1{|eit| > ↵T/2}  max
i

P (|eit| > ↵T/2)

+max
i

| 1
T

TX

t=1

1{|eit| > ↵T/2}� P (|eit| > ↵T/2)|,

and we used Bernstein inequality+union bound to bound the second term since the indicator

function is bounded. Hence for an arbitrarily small v > 0, by Holder’s inequality, for some

generic constant C > 0, independent of �,

A3  max
i

sup
k⌫k=�

1

T

TX

t=1

4(mT |�(xt)
0⌫|)2[1{|eit| > ↵T/2}

+1{mT |�(xt)
0⌫| > ↵T/4}+ 1{|�it,↵| > ↵T/4}]

 Cmax
i

(
1

T

TX

t=1

[1{|eit| > ↵T/2}+ 1{mT �k�(xt)k > ↵T/4}+ 1{|�it,↵| > ↵T/4}])1�v

⇥(
1

T

TX

t=1

k�(xt)k2/v)v(mT �)
2

 (mT �)
2C

✓
max

i
P (|eit| > ↵T/2) +

r
logN

T
max

i
P (|eit| > ↵T/2)

1/2

+10P (mT �k�(xt)k > ↵T/4)/✏

+10P (k�(xt)k > C↵k
T )/✏+ CJ�2⌘/↵2

T +

r
logN

T
CJ�⌘/↵T

◆1�v

(C + Ek�(xt)k2/v)v.

We now upper bound Ek�(xt)k2/v and P (k�(xt)k > x) for any x. Since {�j(wt)}jJ is

sub-Gaussian, by Lemma 14.12 of Bühlmann and van de Geer (2011),

Ek�(xt)k2/v  J1/vE(max
jJ

�j(xt)
2/v)
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 J1/vE(max
jJ

|�j(xt)
2/v � E�j(xt)

2/v|) + J1/v max
j

E�j(xt)
2/v

 J1/vC log(J).

P (k�(xt)k > x)  P (max
j

|�j(xt)|2J > x2)  J max
j

P (|�j(xt)| > x/J1/2)

 J exp(�Cx2/J).

Therefore,

A3  (mT �)
2C

✓
max

i
P (|eit| > ↵T/2) +

r
logN

T
max

i
P (|eit| > ↵T/2)

1/2

+CJ exp(�C↵2
T/(Jm

2
T �

2))/✏

+CJ exp(�C↵2k
T /J)/✏+ CJ�2⌘/↵2

T +

r
logN

T
CJ�⌘/↵T

◆1�v

J(log J)v

:= (mT �)
2ClT .

Note that lT = o(1).

Consequently, for any ✏ > 0, there are C, c, and c✏ independent of � (may depend on ✏),

with probability at least 1� ✏, uniformly in i  N and k⌫k = �, for mT =
q

J logN
T ,

Qi(bi,↵ +mT⌫)�Qi(bi,↵) � m2
T �

2(c� c✏lT )� �mTC

r
J logN

T
� mT �(mT �c/2� CmT ) > 0

so long as �c > 2C. Thus maxi kbbi � bi,↵k = OP (mT ).

We now prove a simple lemma.

Lemma D.2. There is M > 0 for all x > M ,

max
iN

sup
x

P (|eit| > x|xt = x)  Cx�⇣2�2

max
iN

sup
x

E(|eit|1{|eit| > x}|xt = x)  Cx�⇣2�1.

Proof. Uniformly in x = xt and i  N ,

P (|eit| > x|xt) = E(1{|eit| > x}|xt)

 E(e2it1{|eit| > x}|xt)x
�2  Cx�⇣2�2

E(|eit|1{|eit| > x}|xt)  E(e2it1{|eit| > x}|xt)x
�1  Cx�⇣2�1.
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Lemma D.3. Uniformly for i = 1, ..., N ,

bbi � bi,↵ = (2E�(xt)�(xt)
0)�1 1

T

TX

t=1

↵T ⇢̇(↵
�1
T eit,↵)�(xt) +Ri,b,

where maxiN kRi,bk = OP (↵
�(⇣1�1)
T +

q
log J
T )J

q
J logN

T .

Proof. Note thatrQi(b) = � 1
T

PT
t=1 ↵T ⇢̇(↵

�1
T (yit��(xt)0b))�(xt). Define Q̄i(b) = EQi(b),

µi(b) := rQi(b)�rQ̄i(b)

= E↵T ⇢̇(↵
�1
T (yit � �(xt)

0
b))�(xt)�

1

T

TX

t=1

↵T ⇢̇(↵
�1
T (yit � �(xt)

0
b))�(xt).

The first order condition gives rQi(bbi) = 0. By the mean value expansion,

0 = rQi(bbi)�rQ̄i(bbi) +rQ̄i(bbi)�rQ̄i(bi,↵) +rQ̄i(bi,↵)�rQi(bi,↵) +rQi(bi,↵)

= µi(bbi) +rQ̄i(bbi)�rQ̄i(bi,↵)� µi(bi,↵) +rQi(bi,↵)

= r2Q̄i(ebi)(bbi � bi,↵) +rQi(bi,↵) + µi(bbi)� µi(bi,↵).

for some ebi in the segment joining bbi and bi,↵. We now proceed by: (i) upper bounding

maxi kµi(bbi)� µi(bi,↵)k, and (ii) finding the limit of r2Q̄i(ebi) uniformly in i.

(i) Note that in the proof of Proposition D.2, we have proved that for any ✏ > 0, there is

� > 0, so that the following event holds with probability at least 1� ✏:

max
i

kbbi � bi,↵k  �mT , mT =

r
J logN

T
.

We bound Emaxi supkb�bi,↵k�mT
kµi(b) � µi(bi,↵)k. Let µij(·) be the jth element of µi,

j  J . Since {yt,xt}tT are serially independent, there exists a Radamacher sequence

{"t}tT with P ("t = 1) = P ("t = �1) = 1/2, that is independent of {yt,xt},

E max
iN,jJ

sup
kb�bi,↵k�mT

|µij(b)� µij(bi,↵)|

(a) 2E max
iN,jJ

sup
kb�bi,↵k�mT

| 1
T

TX

t=1

"t↵T

�
⇢̇(↵�1

T (yit � �(xt)
0
b))

�⇢̇(↵�1
T (yit � �(xt)

0
bi,↵))

�
�j(xt)|
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(b) 4E max
iN,jJ

sup
kb�bi,↵k�mT

| 1
T

TX

t=1

"t�(xt)
0(bi,↵ � b)�j(xt)|

 4�mTEmax
jJ

k 1
T

TX

t=1

"t�j(xt)�(xt)
0k  4�mT

p
JEmax

l,jJ
| 1
T

TX

t=1

"t�j(xt)�l(xt)|

(c) 4�mT

p
J
L

T
logE exp

 
L�1 max

l,jJ
|

TX

t=1

"t�j(xt)�l(xt)|
!

(d) 4�mT

p
J
L

T
log
X

l,jJ

E exp

 
L�1|

TX

t=1

"t�j(xt)�l(xt)|
!

(e) 4�mT

p
J
L

T
log
X

l,jJ

exp

✓
T

2(L2 � LK0)

◆

= 4�mT

p
J
L

T

✓
2 log J +

T

2(L2 � LK0)

◆

= 4�mT

p
J

 
2L log J

T
+

r
c0 log J

4T

!
 C�mT

r
J log J

T
.

Note that |⇢̇(·)|  2 and {�j(·)} is sub-Gaussian, hence (a) follows from the symmetrization

theorem (see, e.g., Theorem 14.3 of Bühlmann and van de Geer (2011)); since ⇢̇(·) is Lips-

chitz continuous, (b) follows from the contraction theorem (e.g., Theorem 14.4 of Bühlmann

and van de Geer (2011)). Let K0 denote constant parameter of the sub-Gaussianity of

{�l(xt)�j(xt)}l,jJ ; for some c0 > 0, let

L = K0 +

s
T

c0 log J
.

Then (c) follows from the Jensen’s inequality; (d) follows from the simple inequality that

exp(max) 
P

exp; (e) follows from an inequality of exponential moment of an average for

sub-Gaussian random variables (Lemma 14.8 of Bühlmann and van de Geer (2011)).

Therefore,

Emax
i

sup
kb�bi,↵k�mT

kµi(b)� µi(bi,↵)k  CJmT

r
log J

T
=

CJ3/2(logN log J)1/2

T
.

Hence

max
i

kµi(bbi)� µi(bi,↵)k = OP (J
3/2(logN log J)1/2/T ).
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(ii) Note that

rQ̄i(b) = �E�(xt)↵T ⇢̇(↵
�1
T (eit + zit) + ↵�1

T �(xt)
0(bi � b)) = �E�(xt)Ait(b)

where Ait(b) = E[↵T ⇢̇(↵
�1
T (eit + zit) + ↵�1

T �(xt)0(bi � b))|xt]. Let ge,i denote the density of

eit, and let Pe denote the conditional probability measure conditioning on xt. Then careful

calculations yield: rAit(b) = �2�(xt)0 +
P8

j=1 Bit,j(b)�(xt)0, where

Bit,1(b) = �2↵Tge,i(↵T � (bi � b)0�(xt)� zit),

Bit,2(b) = �2↵Tge,i(�↵T � (bi � b)0�(xt)� zit),

Bit,3(b) = �2Pe((bi � b)0�(xt) + zit + eit > ↵T ),

Bit,4(b) = 2((bi � b)0�(xt) + zit)ge,i(↵T � (bi � b)0�(xt)� zit),

Bit,5(b) = 2Pe(eit < �↵T � (bi � b)0�(xt)� zit),

Bit,6(b) = �2((bi � b)0�(xt) + zit)ge,i(�↵T � (bi � b)0�(xt)� zit),

Bit,7(b) = 2[↵T � (bi � b)0�(xt)� zit]ge,i(↵T � (bi � b)0�(xt)� zit),

Bit,8(b) = �2(�↵T � (bi � b)0�(xt)� zit)ge,i(�↵T � (bi � b)0�(xt)� zit).

Since maxi kbbi�bik = oP (mT ), maxit |zit| = oP (↵T ), �(xt) is sub-Gaussian and J logN
p
log T =

o(T ), we have: with probability approaching one, for any ✏ > 0,

max
i,t

|(bi � ebi)
0�(xt)|+max

it
|zit| < ✏↵T .

Hence with probability approaching one,

max
i

|
X

j 6=3,5

Bit,j(ebi)|  C↵T max
i

sup
|x|<✏↵T

ge,i(±↵T + x)  C↵�(⇣1�1)
T ,

max
i

|Bit,3(ebi) + Bit,5(ebi)|  Cmax
i

P (|eit| > (1� ✏)↵T )  C↵�(⇣2+2)
T .

Hence

kr2Q̄i(ebi)� 2E�(xt)�(xt)
0k = k

8X

j=1

E�(xt)�(xt)
0Bit,j(ebi)k = O(J↵�(⇣1�1)

T + J↵�(⇣2+2)
T ).

Consequently, bbi � bi,↵ = �(2E�(xt)�(xt)0)�1rQi(bi,↵) +Ri,b, where

max
iN

kRi,bk  k(2E�(xt)�(xt)
0)�1k(kr2Q̄i(ebi)� 2E�(xt)�(xt)

0kkbbi � bi,↵k
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+max
i

kµi(bbi)� µi(bi,↵)k)

= OP (↵
�(⇣1�1)
T + ↵�(⇣2+2)

T +

r
log J

T
)JmT

Proposition D.3. Let bE(yit|xt) = bb0
i�(xt). Then for A = (2E�(xt)�(xt)0)�1,

bE(yit|xt) = E(yit|xt) + �(xt)
0
A

1

T

TX

s=1

↵T ⇢̇(↵
�1
T eis)�(xs) +R1,it +R2,it +R3,it,

where (recall that zit = E(yit|xt)� b
0
i�(xt))

R1,it := �(xt)
0
A

1

T

TX

s=1

↵T [⇢̇(↵
�1
T eis,↵)� ⇢̇(↵�1

T eis)]�(xs)

R2,it := �(xt)
0(Ri,b + bi,↵ � bi), R3,it := �zit.

Write Rit := R1,it +R2,it +R3,it, then

max
i

1

T

TX

t=1

R2
it = OP (J

1�2⌘ + ↵�2(⇣1�1)
T

J3 logN

T
+

J3 logN log J

T 2
),

max
i

1

T

TX

t=1

| bE(yit|xt)� E(yit|xt)|2 = OP (
J logN

T
+ J�2⌘).

Proof. By Lemma D.3 and Proposition D.3,

bE(yit|xt) = E(yit|xt) + �(xt)
0(bbi � bi,↵) + �(xt)

0(bi,↵ � bi)� zit

= E(yit|xt) + �(xt)
0
A

1

T

TX

s=1

↵T ⇢̇(↵
�1
T eis,↵)�(xs) + �(xt)

0(Ri,b + bi,↵ � bi)� zit

= E(yit|xt) + �(xt)
0
A

1

T

TX

s=1

↵T ⇢̇(↵
�1
T eis)�(xs) +Rit.

On the other hand, uniformly in i, for a = �max(
1
T

PT
t=1 �(xt)�(xt)0),

1

T

TX

t=1

R2
it  aCkAk2k 1

T

TX

s=1

↵T [⇢̇(↵
�1
T eis,↵)� ⇢̇(↵�1

T eis)]�(xs)k2

+aCkRi,b + bi,↵ � bik2 + C
1

T

X

t

z2it

 C(
1

T

X

s

|eis,↵ � eis|k�(xs)k)2 + CkRi,bk2 + Ckbi,↵ � bk2 + C
1

T

X

t

z2it
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 C
1

T

X

s

(|zit|2 + kbi,↵ � bik2k�(xt)k2)
1

T

X

t

k�(xt)k2 + CkRi,bk2

+Ckbi,↵ � bk2 +OP (J
�2⌘)

= OP (J)(J
�2⌘ + J↵�2(k�1)

T ) +OP (↵
�2(⇣1�1)
T + ↵�2(⇣2+2)

T +
log J

T
)J2m2

T .

Also note that ↵�2⇣2�4
T = O(logN/T ). Finally,

max
i

1

T

TX

t=1

| bE(yit|xt)� E(yit|xt)|2

 max
i

1

T

TX

t=1

|�(xt)
0(bbi � bi)|2 +max

i

1

T

TX

t=1

z2it

 akbbi � bik2 +max
i

1

T

TX

t=1

z2it

= OP (
J logN

T
+ ↵�2(k�1)

T + J�2⌘).

The term involving ↵�2(k�1)
T is negligible since it is smaller than (logN/T )3.

D.2 Technical lemmas for the loadings

We shall first examine the behavior of eV�1 and H. This is given by the lemma below.

Define

�2N(x) = k 1
T

X

t

E(ft|xt)�(xt)
0k2 + 1

T

X

t

kE(ft|xt)k2.

Lemma D.4. Recall that V is a K ⇥K diagonal matrix, whose diagonal elements are the

eigenvalues of ⌃1/2
⇤,NE{E(ft|xt)E(ft|xt)0}⌃1/2

⇤,N . Suppose J/T +J�⌘+
p
logN/T ⌧ �N . Then

(i)

keV �Vk = OP (J
�⌘ +

r
logN

T
).

(ii) keV�1k = OP (�
�1
N ). (iii) �2N(x) = OP (�N). (iv) kHk = OP (1).

Proof. Recall that ⌃y|x = ⇤⌃f |x⇤
0. Let V be a K⇥K diagonal matrix, whose diagonal ele-

ments are the first K eigenvalues of ⌃y|x/N , which are also the eigenvalues of ⌃1/2
f |x⌃⇤,N⌃

1/2
f |x .

By Assumption ??,

�min(V) = �min(⌃
1/2
f |x⌃⇤,N⌃

1/2
f |x) � c⇤�N
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with c⇤ > 0 being a constant. On the other hand, by Proposition D.3,

kb⌃�⌃y|xk1  max
ij

1

T

X

t

| bE(yit|xt) bE(yjt|xt)� E(yit|xt)E(yjt|xt)|

+max
ij

| 1
T

X

t

E(yit|xt)E(yjt|xt)� E{E(yit|xt)E(yjt|xt)}|

 max
i

kbbi � bikOP (k
1

T

X

t

�(xt)�(xt)
0k) +OP (J

�⌘ +

r
logN

T
)

= OP (J
�⌘ +

r
logN

T
).

By Weyl’s theorem,

keV �Vk  1

N
kb⌃�⌃k  kb⌃�⌃k1 = OP (J

�⌘ +

r
logN

T
).

(ii) Because J�⌘ +
p

logN/T ⌧ �N , with probability approaching one,

�min(eV) � �min(V)� keV �Vk � c⇤�N/2.

(iii) For notational simplicity, write gt := E(ft|xt). First of all, we show gt has a finite

fourth moment. In fact, vk := (E�t�0
t)

�1E�tfkt has a bounded norm due to Assumption

??, thus by Assumption ??, v0
k�(xt) has a bounded forth moment. Then by Assumption

??, there is C > 0,

Ekgtk4  sup
xt

max
k

C|E(fKt|xt)� v
0
k�(xt)|4 + CE(v0

k�(xt))
4 < O(1). (D.1)

Because E(ft|xt) is independent across t, k 1
T

PT
t=1 gtg

0
t � ⌃f |xk = OP (

1p
T
), implying

k 1
T

PT
t=1 gtg

0
tk  OP (T�1/2 +  N) = OP ( N), where the last equality is due to  N :=

�max(⌃f |x) � �N �
p

1/T . Now

Ekgt�j(xt)
0k2  (Ekgtk4E�j(xt)

4)1/2

So each element of gt�j(xt) has a bounded second moment uniformly in j  J . Thus we

have k 1
T

P
t gt�(xt)0�Egt�(xt)0k = OP (

q
J
T ). Similarly, | 1T

P
t kgtk2�Ekgtk2| = OP (T�1/2).

Hence by Assumption ??, recall that �N := �min(Egtg
0
t),

�2N(x)  2kEgt�(xt)
0k2 + 2Ekgtk2 +OP (

J

T
)
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 2kE�(xt)g
0
tgt�(xt)

0k+ 2 trEgtg
0
t +OP (

J

T
)

 C�N +OP (
J

T
) = OP (�N),

where the last equality is due to the assumption J/T ⌧ �N .

(iv) By the definition that the columns of 1p
N
b⇤ are eigenvectors. We have k 1

N⇤
0b⇤k 

k 1p
N
⇤k 

p
c̄⇤ = O(1). So by part (iii)

kHk  k 1
T

TX

t=1

gtg
0
tkk

1

N
⇤

0b⇤kkeV�1k  OP (�N�
�1
N ) = OP (1).

Q.E.D.

Note in Lemma D.5 below that terms B1,B4 and B7 have two upper bounds, where the

second bound uses a simple inequality kM↵
b⇤k2  kM↵k2kb⇤k2. Such a simple inequality is

crude, but is su�cient to prove Proposition ??. On the other hand, given Proposition ??, a

sharper rate for kM↵
b⇤k2 can be found. As a result, the first bounds for B1,B4 and B7 are

used later to achieve sharp rates for bg(xt)� g(xt).

Lemma D.5. (i) kM↵k2 = OP (NJ/T +NJ1�2⌘),

(ii) kB1k2F = OP (kM0
↵
b⇤k2/(N�N)) = OP (kM↵k2/�N),

kB3k2F = OP (kM↵k2/�N).

(iii) kB2k2F = OP (N maxi
1
T

PT
t=1 R

2
it/�N) = kB6k2F ,

(iv) kB4k2F = OP (kM↵k2kM↵
b⇤k2/(N2�2

N)) = OP (kM↵k4F/(N�2
N)),

kB8k2F = OP (N(maxi
1
T

PT
t=1 R

2
it)

2/�2
N),

(v) kB5k2F = OP (kM↵k2J maxi
1
T

PT
t=1 R

2
it/�

2
N).

kB7k2F = OP (maxi
1
T

PT
t=1 R

2
itJkM↵

b⇤k2/(N�2
N)) = OP (kM↵k2J maxi

1
T

PT
t=1 R

2
it/�

2
N).

Proof. By Lemma D.4, �2N(x) = OP (�N).

(i) Recall that eit = eit,↵ +�it,↵, where �it,↵ := (bi,↵ � bi)0�(xt)� zit.

EkM↵k2F = E
NX

i=1

kMi,↵k2 =
NX

i=1

JX

j=1

E(
1

T

TX

s=1

↵T ⇢̇(↵
�1
T eis)�j(xs))

2

 2
NX

i=1

JX

j=1

E(
1

T

TX

s=1

↵T ⇢̇(↵
�1
T eis,↵)�j(xs))

2 + 2
NX

i=1

JX

j=1

E(
1

T

TX

s=1

2|eis � eis,↵||�j(xs)|)2

16



 2
NX

i=1

JX

j=1

1

T
var(↵T ⇢̇(↵

�1
T eis,↵)�j(xs))

+C
NX

i=1

JX

j=1

E(
1

T

TX

s=1

|(bi,↵ � bi)
0�(xs)�j(xs)|)2 + C

NX

i=1

JX

j=1

E(
1

T

TX

s=1

|zis�j(xs)|)2

 O(NJ/T +NJ2↵�2(k�1)
T +NJ1�2⌘),

where the first inequality is due to the triangular inequality and |⇢̇(t1)�⇢̇(t2)|  2|t1�t2|; the

second inequality is due to E⇢̇(↵�1
T eis,↵)�(xs) = 0 and that eis�eis,↵ = (bi,↵�bi)0�(xs)�zis.

(ii) The bound for kB3k2F is similar to kB1k2F . Since keV�1k = OP (�
�1
N ),

kB1k2F  1

N2
k⇤k2k�N�(x)Ak2kM0

↵
b⇤k2keV�1k2 = OP (

�2N(x)

�2
NN

kM0
↵
b⇤k2)

= OP (kM↵k2/�N)

(iii) By Proposition D.3, 1
T

P
t kRtk2  N maxi

1
T

PT
t=1 R

2
it. Hence

kB2k2F  OP (1)keV�1k2F
1

T

X

t

kE(ft|xt)k2
1

T

X

t

kRtk2

= OP (N max
i

1

T

TX

t=1

R2
it/�N).

The bound for kB6k2F is similar.

(iv) We have

kB4k2F  1

N2
kM↵Ak2k 1

T

TX

t=1

�(xt)�(xt)
0
Ak2kM0

↵
b⇤k2keV�1k2

= OP (kM↵k2kM↵
b⇤k2/N2��2

N )

= OP (kM↵k4F/(N�2
N)).

Also, kB8k2F  1
N2 (

1
T

PT
t=1 kRtk2)2kb⇤eV�1k2 = OP (N(maxi

1
T

PT
t=1 R

2
it)

2/�2
N).

(v) B5 and B7 are bounded similarly.

kB7k2F  1

N2
k 1
T

TX

t=1

Rt�(xt)
0
Ak2kM0

↵
b⇤k2keV�1k2

= OP (max
i

1

T

TX

t=1

R2
itJkM↵

b⇤k2/(N�2
N))
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= OP (kM↵k2J max
i

1

T

TX

t=1

R2
it/�

2
N).

Q.E.D.

Given Proposition ??, due to

kM0
↵
b⇤k2F  2kM↵k2kb⇤�⇤Hk2F + 2kM0

↵⇤k2kHk2F ,

the rate of convergence for kM0
↵
b⇤k2F can be improved, reaching a sharper bound than

kM↵k2kb⇤k2F . This is given in Lemma D.6 below. As a result, rates for B1,B4,B7 can

be improved as well.

Write

a2T :=
J

T
+ J1�2⌘, b2NT :=

Jk cov(�s)k
T

+
J

TN
+

J

T
↵�⇣2
T .

Lemma D.6. Given Proposition ??, we have

1

N2
kM0

↵⇤k2F = OP (b
2
NT ),

1

N2
kM0

↵
b⇤k2F = OP (b

2
NT ) +OP (�

�1
N a4T ).

Proof. The proof is a straightforward calculation as follows:

EkM0
↵⇤k2F = Ek

NX

i=1

�iM
0
i,↵k2F

= Ek 1
T

TX

s=1

NX

i=1

�i↵T ⇢̇(↵
�1
T eis)�(xs)

0k2F

=
KX

k=1

JX

j=1

E(
1

T

TX

s=1

NX

i=1

�ik↵T ⇢̇(↵
�1
T eis)�j(xs))

2

=
KX

k=1

JX

j=1

E(
1

T

TX

s=1

NX

i=1

2�ikeis1{|eis| < ↵T}�j(xs))
2

+
KX

k=1

JX

j=1

E(
1

T

TX

s=1

NX

i=1

�ik↵T ⇢̇(↵
�1
T eis)1{|eis| � ↵T}�j(xs))

2

 8
KX

k=1

JX

j=1

var(
1

T

TX

s=1

NX

i=1

�ikeis�j(xs))

+12
KX

k=1

JX

j=1

E(
1

T

TX

s=1

NX

i=1

|�ikeis|1{|eis| > ↵T}�j(xs))
2.
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To bound the first term, Let Ew be the conditional expectation given xs. We need to

bound
P

i,lN |Eweisels|. Note that eis = xis�E(xis|xs) = �0
i�s+uis. Since E(us|fs,xt) = 0,

we have

E(�su
0
s|xs) = E(fsu

0
s|xs)� (Efs|xs)E(u0

s|xs)

= E(fsu
0
s|xs) = E(fsE(u0

s|xs, fs)|xs) = 0.

Hence Ew(eisels) = Ew(�
0
i�s + uis)(�

0
l�s + uls) = �0

i cov(�s)�l + Ew(uisuls). Therefore,

8
KX

k=1

JX

j=1

var(
1

T

TX

s=1

NX

i=1

�ikeis�j(xs)) = 8
KX

k=1

JX

j=1

1

T
var(

NX

i=1

�ikeis�j(xs))

= 8
KX

k=1

JX

j=1

1

T

NX

i=1

NX

l=1

�ik�lkE{Ew(eisels)�j(xs)
2}

 C
JX

j=1

1

T
E�j(xs)

2 sup
x

NX

i=1

NX

l=1

|Ew(eisels)|

 CJ

T

NX

i=1

NX

l=1

|�0
i cov(�s)�l|+

CJ

T
sup
x

NX

i=1

NX

l=1

|Ew(uisuls)|

 CJ

T
N2k cov(�s)k+

CJN

T
sup
x

max
iN

NX

l=1

|Ew(uisuls)|

= O(JN2k cov(�s)k/T + JN/T ).

Note that the second term is bounded by

 C
KX

k=1

JX

j=1

1

T

NX

i=1

NX

l=1

E|eis|1{|eis| > ↵T}|els|1{|els| > ↵T}�j(xs)
2

+C
KX

k=1

JX

j=1

1

T 2

TX

s=1

NX

i=1

TX

t 6=s

NX

l=1

E|eis|1{|eis| > ↵T}|�j(xs)|E|elt|1{|elt| > ↵T}|�j(xt)|

 C
KX

k=1

JX

j=1

1

T

NX

i=1

NX

l=1

sup
x

Ew|eis|1{|eis| > ↵T}|els|1{|els| > ↵T}

+C
KX

k=1

JX

j=1

NX

i=1

NX

l=1

(sup
x

E|eis|1{|eis| > ↵T})2

 C
KJ

T
N2 max

i
sup
x

Ewe
2
is1{|eis| > ↵T}+ CKJN2(max

i
sup
x

E|eis|1{|eis| > ↵T})2

= O(N2J↵�⇣2
T /T +N2J↵�2(⇣2+1)

T ) = O(N2J↵�⇣2
T /T ).
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Hence 1
N2EkM0

↵⇤k2F = O(Jk cov(�s)k/T + J/(TN) + J↵�⇣2
T /T ) := O(b2NT ).

(ii) Write a2T := J
T + J1�2⌘. Proposition (??) shows 1

N kb⇤ � ⇤Hk2F = OP (a2T�
�1
N ). In

addition, Lemma D.4 implies kHk = OP (1). Lemma D.5 implies 1
N kM↵k2 = OP (a2T ). Thus

1

N2
kM0

↵
b⇤k2F  2

N2
kM↵k2kb⇤�⇤Hk2F +

2

N2
kM0

↵⇤k2kHk2F
 OP (a

4
T�

�1
N ) +OP (b

2
NT ).

Lemma D.7. Suppose J2/T + J�⌘ +
p
logN/T ⌧ �N .

k 1

N
⇤

0(b⇤�⇤H)k  OP (�
�1/2
N )(

1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2
it)

1/2)

 OP (�
�1/2
N )(a4T�

�1
N + b2NT + J1�2⌘ + ↵�2(⇣1�1)

T

J3 logN

T
+

J3 logN log J

T 2
)1/2.

In addition, k 1
N
b⇤

0
(b⇤�⇤H)k has the same rate of convergence.

Proof. ⇤
0(b⇤ � ⇤H) =

P8
i=1 ⇤

0
Bi. Keep in mind that k⇤0

M↵k and kb⇤
0
M↵k have sharper

bounds than k⇤kkM↵k, kb⇤kkM↵k, given in Lemma D.6.

For i 6= 3, 4, 5, we simply use k⇤0
Bik  k⇤kkBik = O(

p
N)kBik and Lemma D.5. But

note that for B1,B7, the first upper bound in the lemma is used. So

1

N
k⇤0

B1k = OP (�
�1/2
N )

1

N
kM0

↵
b⇤k

1

N
k⇤0

B2k = OP (�
�1/2
N (max

i

1

T

TX

t=1

R2
it)

1/2) =
1

N
k⇤0

B6k

1

N
k⇤0

B7k = OP (�
�1
N (max

i

1

T

TX

t=1

R2
it)

1/2J1/2kM↵
b⇤k/N),

1

N
k⇤0

B8k = OP (�
�1
N max

i

1

T

TX

t=1

R2
it).

As for B3,B4,B5, we have

1

N
k⇤0

B3k  OP (�
�1
N )

1

N
k⇤0

M↵kk
1

T

TX

t=1

�(xt)E(ft|xt)
0k

= OP (�
�1/2
N

1

N
k⇤0

M↵k

1

N
k⇤0

B4k  OP (�
�1
N )

1

N
k⇤0

M↵kk
1

TN

TX

t=1

�(xt)�(xt)
0kkM0

↵
b⇤k
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= OP (�
�1
N

1

N2
k⇤0

M↵kkM0
↵
b⇤k)

1

N
k⇤0

B5k  OP (�
�1
N )

1

N
k⇤0

M↵kk
1

T
p
N

TX

t=1

�(xt)R
0
tk

= OP (�
�1
N

1

N
k⇤0

M↵k(J max
i

1

T

TX

t=1

R2
it)

1/2).

Hence

k 1

N
⇤

0(b⇤�⇤H)k  O(1)
8X

i=1

k 1

N
⇤

0
Bik

 OP (�
�1/2
N )(

1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2
it)

1/2)

+OP (�
�1
N )(

1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2
it)

1/2)2

+OP (�
�1
N )

1

N
kM0

↵
b⇤kF (J max

i

1

T

TX

t=1

R2
it)

1/2. (D.2)

In addition, by Lemma D.6 with b2NT := Jk cov(�s)k
T + J

TN + J
T ↵

�⇣2
T ,

��1
N J

1

N2
kM0

↵
b⇤k2F = ��1

N JOP (b
2
NT ) + ��1

N JOP (�
�1
N a4T ) = oP (1). (D.3)

The last equality is due to cov(�t) = O(1), ⌘ � 2, and J2/T + J�⌘ ⌧ �N . By Proposition

D.3, with the assumption J3 log2 N = O(T ) and ⇣1 > 2,

��1
N J max

i

1

T

TX

t=1

R2
it = ��1

N JOP (J
1�2⌘ + ↵�2(⇣1�1)

T

J3 logN

T
+

J3 logN log J

T 2
)

= oP (1). (D.4)

Hence the second and third terms of (D.2) are dominated, so

k 1

N
⇤

0(b⇤�⇤H)k  OP (�
�1/2
N )(

1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2
it)

1/2)

 OP (�
�1/2
N )(a4T�

�1
N + b2NT + J1�2⌘ + ↵�2(⇣1�1)

T

J3 logN

T
+

J3 logN log J

T 2
)1/2.

In addition, k 1
N
b⇤

0
(b⇤�⇤H)k  kHkk 1

N⇤
0(b⇤�⇤H)k+ 1

N kb⇤�⇤Hk2. Note that kHk =

OP (1) and
1
N kb⇤�⇤Hk2F = OP (a2T�

�1
N ). Hence

k 1

N
b⇤

0
(b⇤�⇤H)k  OP (�

�1/2
N )(

1

N
kM0

↵
b⇤kF + (max

i

1

T

TX

t=1

R2
it)

1/2)
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+OP (a
2
T�

�1
N ) (D.5)

So k 1
N
b⇤

0
(b⇤�⇤H)k has the same rate of convergence as k 1

N⇤
0(b⇤�⇤H)k in the above.

Q.E.D.

Recall Lemma D.4 shows kHk = OP (1). We now prove kH�1k = OP (1).

Lemma D.8. Suppose J2/T + J�⌘ +
p
logN/T ⌧ �N .

kH0
⌃⇤,NH� Ik = oP (1)

which then implies kH�1k = OP (1).

Proof. Note that

I =
1

N
b⇤

0b⇤

=
1

N
(b⇤�⇤H)0(b⇤�⇤H) +

1

N
(b⇤�⇤H)0⇤H

+
1

N
H

0
⇤

0(b⇤�⇤H) +H
0
⌃⇤,NH.

Hence it su�ces to show 1
N kb⇤ � ⇤Hk2 = oP (1) = k 1

N (b⇤ � ⇤H)0⇤Hk. By Proposition ??

with a2T := J
T + J1�2⌘ and assumption J2/T + J�⌘ ⌧ �N ,

1

N
kb⇤�⇤Hk2F = OP (a

2
T�

�1
N ) = oP (1).

Also by Lemma D.7, k 1
N⇤

0(b⇤�⇤H)k  oP (1). Hence H0
⌃⇤,NH = I+oP (1). It then follows

from the fact that ⌃⇤,N = O(1), we have �min(H0
H) � c for some c > 0 with probability

approaching one. This then implies kH�1k = OP (1).

Q.E.D.

Lemma D.9. maxiN kMi,↵k = OP (J�⌘
p
J +

p
J(logN)/T )

Proof. First, it follows from the proof of Proposition D.2 that

max
i

k 1
T

TX

s=1

↵T ⇢̇(↵
�1
T eis,↵)�(xs)k = OP (

r
J logN

T
).
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Secondly, since |⇢̇(t1)� ⇢̇(t2)|  2|t1 � t2|,

max
i

k 1
T

TX

s=1

↵T (⇢̇(↵
�1
T eis)� ⇢̇(↵�1

T eis,↵))�(xs)k

 max
i

k 1
T

TX

s=1

2|eis � eis,↵|�(xs)k

 max
i

k 1
T

TX

s=1

2|(bi,↵ � bi)
0�(xt)� zit|�(xs)k

 2max
i

kbi,↵ � bikOP (J) +OP (J
�⌘
p
J)

= OP (J
�⌘
p
J + J↵�(k�1)

T ).

The result then follows from the triangular inequality.

Q.E.D.

D.3 Technical Lemmas for factors

Lemma D.10.
PT

t=1 ku0
tM↵k2 = OP (JNk cov(�s)k+ JN2/T + J + JN2↵�⇣2

T ).

Proof. Note that E
PT

t=1 ku0
tM↵k2 = 1

T 2

PT
t=1

PJ
j=1 E(

PN
i=1

PT
s=1 uit↵T ⇢̇(↵

�1
T eis)�j(xs))2.

We now bound the right hand side. In fact, since eis = �0
i�s + uis,

E(
NX

i=1

TX

s=1

uit↵T ⇢̇(↵
�1
T eis)�j(xs))

2

 8E(
NX

i=1

TX

s=1

uiteis1{|eis| < ↵T}�j(xs))
2

+2E(
NX

i=1

TX

s=1

uit↵T ⇢̇(↵
�1
T eis)1{|eis| � ↵T}�j(xs))

2

 CE(
NX

i=1

TX

s=1

uiteis�j(xs))
2 + CE(

NX

i=1

TX

s=1

|uiteis1{|eis| > ↵T}�j(xs)|)2

 CE(
NX

i=1

TX

s=1

uit�
0
i�s�j(xs))

2 + CE(
NX

i=1

TX

s=1

(uituis � E(uituis))�j(xs))
2

+CE(
NX

i=1

TX

s=1

(Euituis)�j(xs))
2 + CE(

NX

i=1

TX

s=1

|uiteis1{|eis| > ↵T}�j(xs)|)2.

(D.6)

(D.7)
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The first term on the right hand side of (D.7) is bounded uniformly in t by

E(
NX

i=1

TX

s=1

uit�
0
i�s�j(xs))

2

=
NX

i=1

NX

l=1

�0
iE�tultuit�j(xt)

2� 0
t�l +

NX

i=1

X

s 6=t

NX

l=1

�0
i cov(�s)E�j(xs)

2�lEultuit


NX

i=1

NX

l=1

E[|(Eultuit|xt, ft)|�j(xt)
2k�tk2] max

i
k�ik2

+T
NX

i=1

NX

l=1

k cov(�s)kE�j(xs)
2|Eultuit|max

i
k�ik2

 NC sup
x,f

max
i

NX

l=1

|(Eultuit|xt, ft)| sup
x

E(k�tk2|xt = x)E�j(xt)
2

+k cov(�s)kTNCmax
i

NX

l=1

|Eultuit|

 NC sup
x,f

max
i

NX

l=1

|(Eultuit|xt, ft)|k cov(�t)k+ k cov(�s)kTNCmax
i

NX

l=1

|Eultuit|

= O(TNk cov(�s)k).

The second term of (D.7) : note that for some v > 1, E{Eu4
it|xt}v < 1, uniformly in t,

E(
NX

i=1

TX

s=1

(uituis � E(uituis))�j(xs))
2

=
NX

i=1

TX

s=1

NX

l=1

TX

k=1

E(uituis � E(uituis))(ultulk � E(ultulk))�j(xk)�j(xs)

=
NX

i=1

NX

l=1

E(u2
it � Eu2

it)(u
2
lt � Eu2

lt)�j(xt)
2 +

NX

i=1

X

s 6=t

NX

l=1

EuitultEulsuis�j(xs)
2


NX

i=1

NX

l=1

E(u2
it � Eu2

it)(u
2
lt � Eu2

lt)�j(xt)
2

+CT (max
i

NX

l=1

|Euitult|)(sup
x

max
l

NX

i=1

|Eulsuis|x)|E�j(xs)
2)

= O(N2 + T ).

The third term of (D.7) is bounded as: uniformly in t,

E(
NX

i=1

TX

s=1

(Euituis)�j(xs))
2 = E(

NX

i=1

(Eu2
it)�j(xt))

2 = O(N2).
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Finally, the fourth term of (D.7) is :

E(
NX

i=1

TX

s=1

|uiteis1{|eis| > ↵T}�j(xs)|)2

= E
NX

i=1

TX

s=1

NX

l=1

TX

k=1

|uiteis1{|eis| > ↵T}�j(xs)||ultelk1{|elk| > ↵T}�j(xk)|

=
NX

i=1

X

s 6=t

NX

l=1

E|uitultelt1{|elt| > ↵T}�j(xt)|E|eis1{|eis| > ↵T}�j(xs)|

+
NX

i=1

NX

l=1

E|uiteit1{|eit| > ↵T}ultelt1{|elt| > ↵T}|�j(xt)
2

+E
NX

i=1

NX

l=1

X

k 6=t

|uitulteit1{|eit| > ↵T}�j(xt)|E|elk1{|elk| > ↵T}�j(xk)|

+
NX

i=1

X

s 6=t

NX

l=1

E|uitult|E|els1{|els| > ↵T}eis1{|eis| > ↵T}�j(xs)
2|

+
NX

i=1

X

s 6=t

NX

l=1

X

k 6=s,t

E|uitult|E|eis1{|eis| > ↵T}�j(xs)|E|elk1{|elk| > ↵T}�j(xk)|

:=
5X

i=1

ai.

We now study a1, · · · , a5 term by term. By Holder’s inequality, and the assumption that

E{E(u4
it|x)}v < 1, and by repeatedly using Cauchy-Schwarz inequality, uniformly in t,

a1 =
NX

i=1

X

s 6=t

NX

l=1

E|uitultelt1{|elt| > ↵T}�j(xt)|E|eis1{|eis| > ↵T}�j(xs)|


NX

i=1

X

s 6=t

NX

l=1

(Ee2lt1{|elt| > ↵T})1/2(Eu2
itu

2
lt�j(xt)

2)1/2 sup
x

E(|eis|1{|eis| > ↵T}|x)E|�j(xs)|

 CTN2 max
i

{E[Eu4
it|xt]

v}1/(2v)↵�(⇣2+1)�⇣2/2
T = O(TN2↵�(⇣2+1)�⇣2/2

T )

a2 =
NX

i=1

NX

l=1

E|uiteit1{|eit| > ↵T}ultelt1{|elt| > ↵T}|�j(xt)
2


NX

i=1

NX

l=1

E|uit�
0
i�t1{|eit| > ↵T}ult�

0
l�t1{|elt| > ↵T}|�j(xt)

2

+
NX

i=1

NX

l=1

E|uit�
0
i�t1{|eit| > ↵T}u2

lt1{|elt| > ↵T}|�j(xt)
2
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+
NX

i=1

NX

l=1

E|u2
it1{|eit| > ↵T}ult�

0
l�t1{|elt| > ↵T}|�j(xt)

2

+
NX

i=1

NX

l=1

E|u2
it1{|eit| > ↵T}u2

lt1{|elt| > ↵T}|�j(xt)
2

 C
NX

i=1

NX

l=1

max
i

(Eu4
it)

1/2(E{Ek�tk4|xt}v)1/(2v)

+C
NX

i=1

NX

l=1

[E(uitu
2
lt)

4/3]3/4(Ek�tk4�j(xt)
8)1/4

+C
NX

i=1

NX

l=1

{E[E(u2
itu

2
lt|xt)]

v}1/v = O(N2)

a3 = E
NX

i=1

NX

l=1

X

k 6=t

|uitulteit1{|eit| > ↵T}�j(xt)|E|elk1{|elk| > ↵T}�j(xk)|


NX

i=1

NX

l=1

X

k 6=t

(E|uitult�j(xt)|2)1/2(Ee2it1{|eit| > ↵T})1/2E|elk1{|elk| > ↵T}�j(xk)|

 TC
NX

i=1

NX

l=1

{E[E(u2
itu

2
lt|xt)]

v}1/2v↵�⇣2/2�(⇣2+1)
T

= O(N2T↵�⇣2/2�(⇣2+1)
T )

a4 =
NX

i=1

X

s 6=t

NX

l=1

E|uitult|E|els1{|els| > ↵T}eis1{|eis| > ↵T}�j(xs)
2|

= O(TN2↵�⇣2
T )

a5 =
NX

i=1

X

s 6=t

NX

l=1

X

k 6=s,t

E|uitult|E|eis1{|eis| > ↵T}�j(xs)|E|elk1{|elk| > ↵T}�j(xk)|

= O(N2T 2↵�2(⇣2+1)
T ).

Therefore, uniformly in t  T ,

E(
NX

i=1

TX

s=1

|uiteis1{|eis| > ↵T}�j(xs)|)2 = O(TN2↵�(⇣2+1)�⇣2/2
T +N2+TN2↵�⇣2

T +N2T 2↵�2(⇣2+1)
T ).

Consequently, (note that JN2↵�⇣2
T + JN2T↵�2(⇣2+1)

T � JN2
p
T↵�(⇣2+1)�⇣2/2

T )

E
TX

t=1

ku0
tM↵k2 = O(JNk cov(�s)k+ JN2/T + J + JN2↵�⇣2

T + JN2T↵�2(⇣2+1)
T ).
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Lemma D.11.

TX

s=1

TX

t=1

|u0
sRt|2 = OP (N

2J4 logN log J + J2�2⌘T 2N + T↵�2(⇣1�1)
T N2J4 logN).

Proof. Recall that Rit = R1,it +R2,it +R3,it, where

R1,it :=
1

T

TX

k=1

↵T [⇢̇(↵
�1
T eik,↵)� ⇢̇(↵�1

T eik)]�(xk)
0
A�(xt)

R2,it := �(xt)
0(Ri,b + bi,↵ � bi), R3,it := �zit.

In addition, recall eit = eit,↵ +�it,↵, where �it,↵ = (bi,↵ � bi)0�(xt)� zit. For notational

simplicity, we also write Hkt := �(xk)0A�(xt).

TX

s=1

TX

t=1

|u0
sRt|2  C

TX

s=1

TX

t=1

(
NX

i=1

uisR1,it)
2+C

TX

s=1

TX

t=1

(
NX

i=1

uisR2,it)
2+C

TX

s=1

TX

t=1

(
NX

i=1

uisR3,it)
2.

We look at these terms respectively.

bounding the first term

TX

s=1

TX

t=1

E(
NX

i=1

uisR1,it)
2

=
TX

s=1

TX

t=1

E{
NX

i=1

uis
1

T

TX

k=1

↵T [⇢̇(↵
�1
T eik,↵)� ⇢̇(↵�1

T eik)]�(xk)
0
A�(xt)}2

 C
TX

s=1

TX

t=1

E{
NX

i=1

uis
1

T

TX

k=1

�ik,↵Hkt}2

+C
TX

s=1

TX

t=1

E{
NX

i=1

|uis|
1

T

TX

k=1

|�ik,↵|1{|eik| > ↵T or |eit,↵| > ↵T}|Hkt|}2

:= Ca1 + Ca2.

For notational simplicity, let Ii,kt := 1{|eik| > ↵T or |eit,↵| > ↵T}.

a1 =
TX

s=1

TX

t=1

E{
NX

i=1

uis
1

T

TX

k=1

�ik,↵Hkt}2

=
1

T 2

TX

s=1

TX

t=1

NX

i=1

NX

j=1

TX

m=1

TX

k=1

E(Euisujs|{xl}lT )�ik,↵Hkt�jm,↵Hmt
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 sup
x

NX

i=1

|E(uisujs|xs)|
1

T 2

TX

s=1

TX

t=1

NX

j=1

TX

m=1

TX

k=1

Emax
i

|�ik,↵||Hkt�jm,↵Hmt|

 CT 2N(↵�(k�1)
T

p
J + J�⌘)2J2.

a2 =
1

T 2

TX

s=1

TX

t=1

E{
NX

i=1

TX

k=1

|uis�ik,↵Ii,ktHkt|}2

 1

T 2

X

t,k,lT

X

s=t or k or l

NX

i=1

NX

j=1

(E(uisujs�ik,↵Hkt�jl,↵Hlt)
2)1/2(EIi,ktIj,lt)

1/2

+
1

T 2

X

t,k,lT

X

s 6=t,k,l

NX

i=1

NX

j=1

E|uisujs|(E(�ik,↵HktHlt�jl,↵)
2)1/2(EIi,ktIj,lt)

1/2

 CN(N + T )

T 2
(↵�(k�1)

T

p
J + J�⌘)2J2

X

t,k,lT

(EIi,ktIj,lt)
1/2

 CJ2NT (N + T )(↵�(k�1)
T

p
J + J�⌘)2↵�(⇣2+2)/2

T

where the last inequality is due to, uniformly in i, j,

P (|eit,↵| > ↵T )  P (|eit| > 3↵T/4) + P (k�(xt)k > C↵k
T )  C↵�(⇣2+2)

T ,
X

t,k,lT

(EIi,ktIj,lt)
1/2  CT 3↵�(⇣2+2)/2

T .

Therefore,
PT

s=1

PT
t=1(

PN
i=1 uisR1,it)2 = OP ((↵

�(k�1)
T

p
J + J�⌘)2J2TN(T +N↵�(⇣2+2)/2

T )).

bounding the second term

By Lemma D.3, maxiN kRi,bk2 = OP (↵
�2(⇣1�1)
T + ↵�2(⇣2+2)

T + log J
T )J

3 logN
T . Hence

TX

s=1

TX

t=1

(
NX

i=1

uisR2,it)
2 =

TX

s=1

TX

t=1

(
NX

i=1

uis�(xt)
0(Ri,b + bi,↵ � bi))

2

 2
TX

s=1

TX

t=1

(
NX

i=1

uis�(xt)
0
Ri,b)

2

+2
TX

s=1

TX

t=1

(
NX

i=1

uis�(xt)
0(bi,↵ � bi))

2

:= a1 + a2, say

a1  2
TX

s=1

TX

t=1

(
NX

i=1

kuis�(xt)k)2 max
i

kRi,bk2

= OP (T
2N2J)max

i
kRi,bk2
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= OP ((T↵
�2(⇣1�1)
T + T↵�2(⇣2+2)

T + log J)N2J4 logN).

E|a2| = 2
TX

s=1

NX

i=1

NX

j=1

(bi,↵ � bi)
0Euisujs

TX

t=1

�(xt)�(xt)
0(bj,↵ � bj)

 2 sup
x

max
i

NX

j=1

|(Euisujs|xs)|max
i

kbi,↵ � bik2
TX

s=1

NX

i=1

Ek
TX

t=1

�(xt)�(xt)k

 O(T 2 max
i

kbi,↵ � bik2N) = O(T 2N↵�2(k�1)
T ).

Therefore,

TX

s=1

TX

t=1

(
NX

i=1

uisR2,it)
2 = OP ((T↵

�2(⇣1�1)
T + T↵�2(⇣2+2)

T + log J)N2J4 logN + T 2N↵�2(k�1)
T ).

bounding the third term

E
TX

s=1

TX

t=1

(
NX

i=1

uisR3,it)
2 =

TX

s=1

TX

t=1

(
NX

i=1

uiszit)
2 =

TX

s=1

TX

t=1

NX

i=1

NX

j=1

Euisujszitzjt = O(NT 2J�2⌘).

Hence the result follows.

Lemma D.12.

1

T

TX

t=1

kDt2k2

= OP (�
�1
N )(

1

N3
kM0

↵
b⇤k2 + 1

N
max

i

1

T

TX

t=1

R2
it +

1

N2T

TX

s=1

ku0
sM↵k2 +

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2).

Proof. First of all, note that maxi
P

j |Euisujs| < 1, hence

E
1

T

TX

s=1

ku0
s⇤k2 =

KX

j=1

E(u0
s�j)

2 = O(N).

In addition, 1
T

PT
t=1 kDt2k2 = 1

T

PT
t=1 k 1

N (b⇤�⇤H)0utk2  C
P8

i=1
1

N2T

PT
t=1 ku0

tBik2.

1

N2T

TX

s=1

ku0
sB1k2 =

1

N2T

TX

s=1

ku0
s⇤

1

TN

TX

t=1

E(ft|xt)�(xt)
0
AM

0
↵
b⇤eV�1k2

= OP (�
�1
N )

1

N4T

TX

s=1

ku0
s⇤k2kM0

↵
b⇤k2 = OP (�

�1
N kM0

↵
b⇤k2/N3),
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1

N2T

TX

s=1

ku0
sB2k2 =

1

N2T

TX

s=1

ku0
s⇤

1

TN

TX

t=1

E(ft|xt)R
0
t
b⇤eV�1k2

= OP (
��1
N

N
max

i

1

T

TX

t=1

R2
it),

1

N2T

TX

s=1

ku0
sB3k2 =

1

N2T

TX

s=1

ku0
sM↵A

1

TN

TX

t=1

�(xt)E(ft|xt)
0
⇤

0b⇤eV�1k2

=
1

N2T

TX

s=1

ku0
sM↵k2OP (�

�1
N ),

1

N2T

TX

s=1

ku0
sB4k2 =

1

N2T

TX

s=1

ku0
sM↵A

1

TN

TX

t=1

�(xt)�(xt)
0
AM

0
↵
b⇤eV�1k2

 1

N4T

TX

s=1

ku0
sM↵k2kM0

↵
b⇤k2OP (�

�2
N )

1

N2T

TX

s=1

ku0
sB5k2 =

1

N2T

TX

s=1

ku0
sM↵A

1

TN

TX

t=1

�(xt)R
0
t
b⇤eV�1k2

= OP (�
�2
N

J

N2T

TX

s=1

ku0
sM↵k2 max

i

1

T

TX

t=1

R2
it)

1

N2T

TX

s=1

ku0
sB6k2 =

1

N2T

TX

s=1

k 1

TN

TX

t=1

u
0
sRtE(ft|xt)

0
⇤

0b⇤eV�1k2

 OP (
��1
N

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2)

1

N2T

TX

s=1

ku0
sB7k2 =

1

N2T

TX

s=1

k 1

TN

TX

t=1

u
0
sRt�(xt)

0
AM

0
↵
b⇤eV�1k2

 OP (�
�2
N

J

N4T 2

TX

s=1

TX

t=1

|u0
sRt|2kM0

↵
b⇤k2)

1

N2T

TX

s=1

ku0
sB8k2 =

1

N2T

TX

s=1

ku0
s

1

TN

TX

t=1

RtR
0
t
b⇤eV�1k2

 OP (�
�2
N )

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2 max

i

1

T

TX

t=1

R2
it.

By (D.3) and (D.4), ��1
N J 1

N2kM0
↵
b⇤k2F + ��1

N J maxi
1
T

PT
t=1 R

2
it = oP (1).

Summarizing, we have
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1

T

TX

t=1

kDt2k2

= OP (
��1
N

N3
kM0

↵
b⇤k2 + ��1

N

N
max

i

1

T

TX

t=1

R2
it

+
J��2

N

N2T

TX

s=1

ku0
sM↵k2 max

i

1

T

TX

t=1

R2
it

+
��1
N

N2T

TX

s=1

ku0
sM↵k2

+
��2
N

N4T

TX

s=1

ku0
sM↵k2kM0

↵
b⇤k2 + ��1

N

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2)

+OP (
J��2

N

N4T 2

TX

s=1

TX

t=1

|u0
sRt|2kM0

↵
b⇤k2)

+OP (1)
��2
N

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2 max

i

1

T

TX

t=1

R2
it

 OP (�
�1
N )(

1

N3
kM0

↵
b⇤k2 + 1

N
max

i

1

T

TX

t=1

R2
it

+
1

N2T

TX

s=1

ku0
sM↵k2 +

1

N2T 2

TX

s=1

TX

t=1

|u0
sRt|2).

E Technical Lemmas for Theorem ??

Lemma E.1. Suppose (N + T )J1�2⌘ = o(1). Then

tr(
N

T

TX

t=1

D
0
t2
cW 1

N
H

0
⇤

0
ut) = oP (T

�1/2)

Proof. It su�ces to prove k 1
T

PT
t=1 Dt2u

0
t⇤k2 = k 1

T

PT
t=1

1
N⇤

0
utu

0
t(b⇤ �⇤H)k2 = oP (

1
T ). To

this end, we need to decompose b⇤ � ⇤H =
P8

i=1 Bi again as in (??). Every term can be

bounded using established bounds except for the term involving B3. More specifically, for

i 6= 3, we use k 1
T

PT
t=1

1
N⇤

0
utu

0
tBik2  k 1

T

PT
t=1

1
N⇤

0
utu

0
tk2FkBik2. On the other hand,

k 1
T

TX

t=1

1

N
⇤

0
utu

0
tk2F  2k 1

T

TX

t=1

1

N
⇤

0
⌃uk2F + 2k 1

T

TX

t=1

1

N
⇤

0(utu
0
t �⌃u)k2F .
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The first term is OP (
1
N ). As for the second tern,

Ek 1
T

TX

t=1

1

N
⇤

0(utu
0
t �⌃u)k2F

=
1

T 2N2

KX

k=1

NX

i=1

TX

t=1

var(
NX

j=1

�jk(ujtuit � Eujtuit))

=
1

T 2N2

KX

k=1

NX

i=1

TX

t=1

NX

j=1

NX

l=1

�jk�lk cov(ujtuit, ultuit)

= O(
1

T
) +

1

T 2N2

KX

k=1

NX

i=1

TX

t=1

NX

j=1

X

l 6=i,t

�jk�lkE(ujtuit � �ij)uitult

= O(
1

T
).

Hence k 1
T

PT
t=1

1
N⇤

0
utu

0
tBik2  OP (

1
T + 1

N )kBik2 = o( 1
T ), for i 6= 3, where the last equality

holds by straightforward verifying ( TN + 1)kBik2 = o(1) using Lemma D.5, assuming (N +

T )J1�2⌘ = o(1).

To allow N/T ! 1, the term involving B3 requires a di↵erent and sharper bound:

k 1
T

TX

t=1

1

N
⇤

0
utu

0
tB3k2 = k 1

T

TX

t=1

1

N
⇤

0
utu

0
tM↵

1

TN

TX

s=1

A�(xs)E(fs|xs)
0
⇤

0b⇤eV�1k2

 k 1

TN

TX

t=1

⇤
0
utu

0
tM↵k2OP (1)

= OP (1)k
1

TN

X

t

⇤
0
ut

NX

i=1

uit
1

T

TX

s=1

↵T ⇢̇(↵
�1
T eis)�(xs)k2

 OP (1)k
1

T 2N

X

t

TX

s=1

NX

i=1

⇤
0
utuituis�(xs)k2

+OP (1)

 
1

T 2N

X

t

TX

s=1

NX

i=1

k⇤0
utk|uit||uis|1{|uis| > ↵T}k�(xs)k

!2

,

(E.1)

where we used the fact that under H0, eis = uis. We respectively bound the two terms on

the right hand side.

First term in (E.1) Note that

Ek 1

T 2N

TX

t=1

TX

s=1

NX

i=1

⇤
0
utuituis�(xs)k2 =

1

T 4N2

JX

l=1

KX

k=1

E(
TX

t=1

TX

s=1

NX

i=1

NX

j=1

�jkujtuituis�l(xs))
2.
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We then expand the term on the right hand side, which leads to many additive terms in the

expansion. Using the assumption of serial independence to analyze each term, we conclude

that

Ek 1

T 2N

TX

t=1

TX

s=1

NX

i=1

⇤
0
utuituis�(xs)k2 = OP (

J

TN
+

J

T 2
+

JN

T 3
).

We omit the lengthy details.

Second term in (E.1) As for the second term, first note that under H0, uit = eit.

So Lemma D.2 implies (E|uis|1{|uis| > ↵T}|xt = x)  C↵�⇣2�1
T . On the other hand, by

assumption, for some C > 0, supx E(u4
it1{|uit| > ↵T}|xt = x)  ↵�⇣5

T C, Ek⇤0
utk2 = O(N).

Hence

1

T 2N

X

t

TX

s=1

NX

i=1

Ek⇤0
utk|uit||uis|1{|uis| > ↵T}k�(xs)k

=
1

T 2N

X

t

NX

i=1

Ek⇤0
utku2

it1{|uit| > ↵T}k�(xt)k

+
1

T 2N

X

t

X

s 6=t

NX

i=1

Ek⇤0
utk|uit|E|uis|1{|uis| > ↵T}k�(xs)k

 1

T 2N

X

t

NX

i=1

(Ek⇤0
utk2)1/2(Ek�(xt)k2)1/2 sup

x
(Eu4

it1{|uit| > ↵T}|xt = x)1/2

+
1

T 2N

X

t

X

s 6=t

NX

i=1

(Ek⇤0
utk2)1/2(Eu2

it)
1/2Ek�(xs)k sup

x
(E|uis|1{|uis| > ↵T}|xt = x)

= OP (

p
JN

T
↵�⇣5/2
T +

p
NJ↵�⇣2�1

T ).

It then implies the second term in (E.1) is OP (
JN
T 2 ↵

�⇣5
T +NJ↵�2⇣2�2

T ).

Thus, when ⇣5 � 1, T = o(J2⌘�1)

k 1
T

TX

t=1

1

N
⇤

0
utu

0
tB3k2 = OP (

J

TN
+

J

T 2
+

JN

T 3
+

JN

T 2
↵�⇣5
T +NJ↵�2⇣2�2

T ) = oP (
1

T
).

As a result,

k 1
T

TX

t=1

Dt2u
0
t⇤k2 = k 1

T

TX

t=1

1

N
⇤

0
utu

0
t(b⇤�⇤H)k2 = oP (

1

T
).
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Lemma E.2. For i = 3, 4,

tr(
N

T

TX

t=1

D
0
ti
cW 1

N
H

0
⇤

0
ut) = oP (T

�1/2)

Proof. Again, it su�ces to verify k 1
T

PT
t=1 Dtiu

0
t⇤k2 = oP (

1
T ) for i = 3, 4. Note that

k 1
T

PT
t=1 �(xt)u0

t⇤k2 = OP (
NJ
T ). Then by definition,

k 1
T

TX

t=1

Dt3u
0
t⇤k2 = k 1

T

TX

t=1

1

N
b⇤

0
M↵A�(xt)u

0
t⇤k2

 OP (
1

N2
)kb⇤

0
M↵k2k

1

T

TX

t=1

�(xt)u
0
t⇤k2 = oP (

1

T
).

On the other hand, recall the definition Rit := R1,it +R2,it +R3,it, where

R1,it := �(xt)
0
A

1

T

TX

s=1

↵T [⇢̇(↵
�1
T eis,↵)� ⇢̇(↵�1

T eis)]�(xs)

R2,it := �(xt)
0(Ri,b + bi,↵ � bi), R3,it := �zit.

Thus it can be verified similarly that

k 1
T

TX

t=1

Dt4u
0
t⇤k2 = k 1

T

TX

t=1

1

N
b⇤

0
Rtu

0
t⇤k2 = OP (

1

NT 2
)

NX

i=1

k
TX

t=1

Ritu
0
t⇤k2 = oP (

1

T
).

The verification is very similar as before, and is omitted here.

Proposition E.1. (i) 1
N⇤

0
⌃u(b⇤�⇤H) = oP (T�1/2);

(ii) 1
N⇤

0(b⌃u �⌃u)⇤ = oP (T�1/2);

(iii) k 1
N (b⇤�⇤H)0(b⌃u �⌃u)Gk = oP (T�1/2), for either G = ⇤ or G = b⇤.

Proof. Define e⇤ = ⌃u⇤. Note that we cannot simply bound these terms by 1
N ke⇤kkb⇤�⇤Hk

or 1
N k⇤k2kb⌃u�⌃uk, as these bounds are too crude to achieve the desired rate of convergence

when N/T ! 1. More careful analysis is called for.

(i) Proving 1
N
e⇤

0
(b⇤�⇤H) = oP (T�1/2) is exactly the same as that of Lemma D.7. Note

that replacing ⇤ with e⇤ does not introduce any complications as ⌃u is a diagonal matrix.

Hence the proof is omitted here to avoid repetitions.
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(ii) For any k, l  K, the (k, l) element of 1
N⇤

0(b⌃u �⌃u)⇤ is given by

1

N

NX

i=1

�ik�il(b�ii � �ii) =
1

N

1

T

X

t

NX

i=1

�ik�il(u
2
it � Eu2

it) +
1

N

NX

i=1

�ik�il
1

T

X

t

(bu2
it � u2

it)

As for the first term,

E| 1

NT

NX

i=1

TX

t=1

�ik�il(u
2
it � �ii)| 

2

4E
 

1

NT

NX

i=1

TX

t=1

�ik�il(u
2
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!2
3

5
1/2

=

"
1

N2T 2

NX

i=1

TX

t=1

NX

j=1

TX

s=1

�ik�il�jk�jl cov(u
2
it, u

2
js)

#1/2

=

"
1

N2T 2

NX

i=1

TX

t=1

�2ik�
2
il var(u

2
it)

#1/2
= o(

1p
T
).

As for the second term, we have

| 1
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NX

i=1

TX

t=1

�ik�il(bu2
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it)|  2| 1
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NX
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2|
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1
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X
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X
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k 1
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+OP (1)(
1

N

X

i

k�ik�il(b�i �H
0�i)k2)1/2(

1

N
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i

k 1
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Note that 1
T

P
t kbft � H

�1
ftk2 = OP ( 2

NT ), maxi
1
T

P
t(buit � uit)2 = OP ( 2

NT + J logN
T ) by

Lemma E.3. Also, 1
N

PN
i=1 kb�i �H

0�ik2 = OP

�
J
T + 1

J2⌘�1 + ( logNT )⇣1J3
�
by Theorem ??. In

addition,

E
1
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X

t

k 1

N

NX
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�ik�iluit�ik2 =
KX

m=1
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1

N

X

i
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2

=
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N2

X
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�2ik�
2
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2
imEu2

it = O(
1
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),
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E
1
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X

i

k 1
T

X

t

uitftk2 =
1

N

X

i

X

k

1

T 2

X

t

Eu2
itf

2
kt = O(

1

T
).

Hence it is straightforward to verify that | 1
TN

PN
i=1

PT
t=1 �ik�il(bu2

it � u2
it)| = oP (T�1/2) so

long as T = o(N2), T = o(J2⌘�1N), J4 logN = o(NT ).

(iii) Let Gik denote the (i, k) element ofG, and let �ik denote the (i, k) element of b⇤�⇤H.

Since maxi kb�i ��ik = oP (1), we have maxik |Gik| = OP (1), regardless of G = ⇤ or G = b⇤.

Then the (l, k) element of the K ⇥K matrix 1
N (b⇤�⇤H)0(b⌃u �⌃u)G is bounded by

| 1
N

NX
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On one hand, by Lemma E.3,
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T
).

On the other hand,

E|
TX

t=1

(u2
it � �ii)|  var(

TX

t=1

(u2
it � �ii))

1/2 = O(T 1/2).

Hence
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1
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|
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(u2
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T
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Lemma E.3. Define

 NT =
1

J⌘�1/2
+

1p
N

+
J2(logN log J)1/2

T
+ (

logN

T
)⇣1/2J2.

Under H0, when N = O(T 2),

(i) 1
T

PT
t=1 kbft �H

�1
ftk2 = OP ( 2

NT ) .

(ii) maxi
1
T

P
t(buit � uit)2 = OP ( 2

NT + J logN
T ).

(iii) 1
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P
i

P
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it � u2
it| = OP ( NT +

q
J logN
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Proof. (i) By Theorem 3.2, under H0,
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(E.2)

(ii) Uniformly in i, by Theorem 3.1,
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(iii) We have, using |a2 � b2|  |a� b||a+ b| and the Cauchy-Schwarz inequality,
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