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Abstract

We study factor models augmented by observed covariates that have explanatory
powers on the unknown factors. In financial factor models, the unknown factors can
be reasonably well explained by a few observable proxies, such as the Fama-French
factors. In diffusion index forecasts, identified factors are strongly related to several
directly measurable economic variables such as consumption-wealth variable, finan-
cial ratios, and term spread. With those covariates, both the factors and loadings are
identifiable up to a rotation matrix even only with a finite dimension. To incorporate
the explanatory power of these covariates, we propose a smoothed or projected prin-
cipal component analysis (PCA): (i) regress the data onto the observed covariates,
and (ii) take the principal components of the fitted data to estimate the loadings
and factors. This allows us to more accurately estimate the percentage of both ex-
plained and unexplained components in factors and thus to assess the explanatory
power of covariates. We show that both the estimated factors and loadings can be
estimated with improved rates of convergence compared to the benchmark method.
The degree of improvement depends on the strength of the signals, representing the
explanatory power of the covariates on the factors. The proposed estimator is robust
to possibly heavy-tailed distributions. We apply the model to forecast US bond risk
premia, and find that the observed macroeconomic characteristics contain strong ex-
planatory powers of the factors. The gain of forecast is more substantial when the
characteristics are incorporated to estimate the common factors than directly used
for forecasts.
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1 Introduction

In this paper, we study the identification and estimations of factor models augmented by
a set of additional covariates that are common to all individuals. Consider the following
factor model:

yt:Aft+ut, t:17 77—'. (11)

Here y; = (yis, ..., yn¢)' is the multivariate outcome for the " observation in the sample;
f; is the K-dimensional vector of latent factors; A = (A, ....;Ay) is an N x K matrix of
nonrandom factor loadings; u; = (u1y, ..., unt) denotes the vector of idiosyncratic errors. In
addition to {y;}.,, we also observe variables, denoted by x;, that have some explanatory
power on the unknown factors and hence impact on observed vector y;. We model f; by

using the model
fi = g(x¢) + 71, (1.2)

for some (nonparametric) function g = E(f;|x;). Here g(x;) is interpreted as the component
of the factors that can be explained by the covariates, and =y, is the components that cannot
be explained by the covariates. We aim to provide an improved estimation procedure when
the factors can be partially explained by several observed variables x;. In addition, by
accurately estimating -,, we can estimate the percentage of both explained and unexplained
components in the factors, which describes the proxy/explanatory power of covariates.

Note that model (1.1) implies:
cov(y;) = A cov(fy) A" + cov(uy), (1.3)

where cov(y;) and cov(u,) respectively denote the N x N variance-covariance matrices of
y: and uy; cov(f) denotes the K x K variance-covariance matrix of f;. Under usual factor
models without covariates, \/LNA is identified asymptotically as the first K eigenvectors of
cov(y;) as N — oo and can be estimated using the first K eigenvectors of the sample
covariance matrix of y; (e.g,, Stock and Watson (2002); Bai (2003)).

With additional covariates, on the other hand, exact identification can be achieved
through covariance of the “smoothed data”. By (1.1), assuming exogeneity of x;, we have
E(yix:) = AE(fi|x:) so that it becomes a “noiseless” factor model with smoothed data

E(y:|x;) as the input and E(f;|x;) as latent factors. The factor loadings and latent factors
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can be extracted from
ye = E{E(y:|[x:) E(y:|x:)'}- (1.4)

It is easy to see from the model that
Y = AZ A (1.5)

where Xy, = E{E(fi|x:)E(fi|x;)'} is a K x K low-dimensional positive definite matrix.
This decomposition is to be compared with (1.3), but the noise covariance cov(u;) is re-
moved. Therefore, as long as X, is of full rank, A falls in the eigenspace generated by
Y z- In other words, A is exactly identifiable up to an orthogonal transformation. Be-
cause of such exact identification, we allow N to be finite as a special case. The number of
factors is assumed to be known throughout the paper. In practice, K can be consistently
estimated by many methods such as AIC, BIC-based criteria, or eigenvalue-ratio methods
studied in Lam and Yao (2012); Ahn and Horenstein (2013).

The above discussion prompts us the following new method to estimate the factor
loadings A that incorporates the explanatory power of x;: (See Section 3 for details of
estimators)

(i) (robustly) regress {y:} on {x;} and obtain fitted value {y,;};

(ii) conduct the principal components analysis (PCA) on the fitted data (yi,...,y7) to
estimate the factor loadings.

We employ a regression based on Huber (1964)’s robust M-estimation in step (i). The pro-
cedure involves a diverging truncation parameter, called adaptive Huber loss, to reduce the
bias when the error distribution is asymmetric (Fan et al., 2017). This allows our procedure
to be applicable to data with heavy tails.! There are two important quantities that deter-
mine the rates of convergence for the estimators: the “signal” Xy, = E{E(f|x;)E(f|x;)'}
and the “noise” cov(7y,). The rates of convergence are presented using these two quantities.
Under model (1.2), we can test v, = 0 almost surely in the entire sampling period,

under which the observed x; fully explains the true factors. This is the same as testing

Hy : cov(y,) =0.

In this paper, by “heavy-tail” we mean tail distributions of (u,y;) that are heavier than the usual
requirements on the high-dimensional factor model (which are either exponentially-tailed or have eighth

or higher moments). But we do not allow large outliers on the covariates.



While it is well known that the commonly used Fama-French factors have explanatory
power for most of the variations of stock returns, it is questionable whether they fully ex-
plain the true (yet unknown) factors. These observed proxies are nevertheless used as the
factors empirically, and the remaining components (7, and u;) have all been mistakenly
regarded as the idiosyncratic components. The proposed test provides a diagnostic tool
for the specification of common factors in empirical studies, and is different from the “effi-
ciency test” in the financial econometric literature (e.g., Gibbons et al. (1989); Pesaran and
Yamagata (2012); Gungor and Luger (2013); Fan et al. (2015)). While the efficiency test
aims to test the asset pricing model through whether the alphas are zero for the specified
factors, a rejection could be due to either mispecified factors or the existence of outper-
forming (underperforming) assets. In contrast, here we directly test whether the factor
proxies are correctly specified. We test the specification of Fama French factors for the
returns of S&P 500 constituents using rolling windows. We find that the null hypothesis
is more often to be rejected using the daily data compared to the monthly data, due to a
larger volatility of the unexplained factor components. The estimated overall volatility of

factors varies over time and drops significantly during the acceptance period.

1.1 Further Literature

In empirical applications, researchers frequently encounter additional observable covariates
that help explain the latent factors. In genomic studies, in the study of breast cancer data
such as the Cancer Genome Atlas (TCGA) project (Network, 2012), there are additional
information of cancer subtype for each sample. These cancer subtypes can be regarded as
a partial driver of the factors for gene expression data. In financial time series forecasts,
researchers often collect additional variables that characterize financial markets. The Fama-
French factors are well-known to be related to the factors that drive financial returns (Fama
and French, 1992).

Most existing works simply treat x; as a set of additional regressors in (1.1), or additional
outcomes combined with y;. This approach does not take advantage of the difference of
observed variables (e.g. aggregated versus disaggregated macroeconomic variables; gene

expressions versus clinical information) and the explanatory power of the covariates on



the common factors, and hence does not lead to improved rates of convergence even if
the signal is strong. The most related work is Li et al. (2016), who specified f; as a linear
function of x;. Also, Huang and Lee (2010) proposed to use the estimated g(x;) to forecast.
Moreover, our expansion for ¥, is also connected to the literature on asymptotic Bahadur-
type representations for robust M-estimators, see, for example, Portnoy (1985), Mammen
(1989), among others.

The “asymptotic identification” was described perhaps first by Chamberlain and Roth-
schild (1983). In addition, there has been a large literature on both the static and dynamic
factor models, and we refer to Lawley and Maxwell (1971); Forni et al. (2005); Stock and
Watson (2002); Bai and Ng (2002); Bai (2003); Doz et al. (2012); Onatski (2012a); Fan
et al. (2013), among many others.

The rest of the paper is organized as follows. Section 2 establishes the new identifi-
cation of factor models. Section 3 formally defines our estimators and discusses possible
alternatives. Section 4 presents the rates of convergence. Section 5 discusses the problem
of testing the explanatory power. Section 6 applies the model to forecasting the excess
return of US government bonds. We present the extensive simulation studies in Section 7
Finally Section 8 concludes. The main body of the proofs are given in the appendix, while
the technical lemmas are referred to the supplementary material.

Throughout the paper, we use Apin(A) and Ayax(A) to denote the minimum and max-
imum eigenvalues of a matrix A. We define |Alp = tr'/2(A’A), [|A] = Ma(A’A),
|All;y = max; Y, |a;;| and ||Al|max = max; ; |a;;|. For two sequences, we write ar > by or

br < ar if by = o(ar) and ar < by if ar = O(by) and by = O(ar).

2 Identification of the covariate-based factor models

2.1 Identification

Suppose that there is a fixed d-dimensional observable vector x; that satisfies F(f;|x;) # 0
(associated with the latent factors) and E(u¢|x;) = 0 (idiosyncratic term impredicable by

x;). Taking the conditional expectation on both sides of (1.1), we have

E(yi|x:) = AE(f]x:), (2.1)



This implies
Yy = AX A, (2.2)

where
e = E{E(yi|x) E(yelxe)'}, g = E{E(fi|x) E(fi[x:)'}.

Note that E(y:|x;) is identified by the data generating process with observables {(y:, X¢) }r<7.
Since N > K, (2.2) implies that 3, is a low-rank matrix, whose rank is at most K. Fur-
thermore, we assume Xy, is also full rank, so 3, has exactly K nonzero eigenvalues.

To see how the equality (2.2) helps achieve the identification of A and g(x;), for the
moment, suppose the following normalization holds:

1
NAIA =1Ig, 3y, is a diagonal matrix. (2.3)

Then right multiplying (2.2) by A/N, by the normalization condition,

1

We see that the (K) columns of \/1_NA are the eigenvectors of 3, corresponding to its
K nonzero eigenvalues, which also equal to the diagonal entries of 3,. Furthermore,
left multiplying A’/N on both sides of (2.1), one can see that even if f; is not observable,
E(f|x;) is also identified as:

glx) = Blfibx) = A Blyilx),

The normalization (2.3) above is useful but is not required in this paper. Without them
we show that A and g(x;) can be identified up to a rotation matrix transformation.

Let
iy = A'A/N, XN = Amin(E{E(fi|x:) E(fi[x:)'}).

Assumption 2.1. Suppose {f;,x;, u; 1< are identically distributed. Assume:
(i) Rank condition: xn > 0.
(ii) There are positive constants cy,cn > 0, so that all the eigenvalues of the K x K

matriz X n are confined in [cy, Ca|, Tegardless of whether N — oo or not.



Condition (i) is the key condition on the explanatory power of x; on factors, where
X~ represents the “signal strength” of the model. We postpone the discussion of this
condition after Theorem 2.1. Condition (ii) in Assumption 2.1 can be weakened to allow
the eigenvalues of 3, y to slowly decay to zero. While doing so allows some of the factors
to be weak, it does not provide any new statistical insights, but would bring unnecessary
complications to our results and conditions. Therefore, we maintain the strong version as
condition (ii).

Generally, we have the following theorem for identifying (A, g(x;)) (up to a rotation

transformation).

Theorem 2.1. Suppose E(u:|x;) = 0, Assumption 2.1 holds and N > K. Then there is
an 1mvertible K x K matriz H so that:
(i) The columns of AH are the eigenvectors of X, corresponding to the nonzero distinct

eigenvalues.

(i) Given AH, g(x;) := E(f;|x;) satisfies:
H™'g(x,) = [(AH)'AH]'AH'E(y:[x,).
(iii) Let A (X)) denote the Kth largest eigenvalue of Xy, we have
A (Byje) > Nxney-

where xn and c, are defined in Assumption 2.1. In addition, under the normalization
conditions that E{E(f|x;)E(fi|x;)'} is a diagonal matriz and that ¥y n = I, we have
H=1x.

2.2 Discussions of Condition (i) of Assumption 2.1

In the model
fi =g(x) +7v, 8x) = E(fix),

XN = Amin(Z f|x) represents the “signal” of the covariate model. We require yy > 0 so
that the rank of 3, is K. Only if this condition holds are we able to identify all the
K factor loadings using the eigenvectors corresponding to the nonzero eigenvalues. From

the estimation point of view, we are using the PCAs of the estimated X,,, and can only

ylzo
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consistently estimate its rank(3,,)-number of leading eigenvectors. So this condition is
also essential to achieve the consistent estimation of the factor loadings.

Note that requiring X, be of full rank might be restrictive in some cases. For instance,
consider the linear case: E(f|x;) = Bx; for a K x d coefficient matrix 3, also suppose Ex;X;
is of full rank. Then Xy, = BExx;03, and is full-rank only if d > K. Thus we implicitly
require, for linear models, the number of covariates should be at least as many as the
number of latent factors. Note that if E(f;|x;) is nonlinear, it is still possible to satisfy the

full rank condition even if d < K, and we illustrate this in the simulation section. 2

3 Definition of the estimators

The above identification strategy motivates us to estimate A and g(x;) respectively by A
and g(x;) as follows. Let 3 and E(y|x;) be some estimator of Yy and E(y¢|x;), whose
definitions will be clear below. Then the columns of \/LNIAX are defined as the eigenvectors
corresponding to the first K eigenvalues of f), and

1 ~r~

g(x;) = NA E(y|x).

Recall that f; = g(x;) + ~v,. We estimate f; using least squares:

~ A~ -~/ 1 ~1
ft = (A A>_1A Yt = NA Y.

P < A~ A, = . .
Finally, we estimate v, by: 4, = f; — §(x;) = +A (y: — E(y¢|x;)). Estimating g(x;) and
v, separately allows us to estimate and distinguish the percentage of explained and unex-
plained components in factors, as well as to quantify the explanatory power of covariates.

Below we introduce the estimators & and E (y¢|x¢) to be used in this paper.

3.1 Robust estimation for

Recall that ¥, = E{E(y:x:)E(y:|x:)'}, and let us first construct an estimator for

E(y:|x:) as follows. While many standard nonparametric regressions would work, here

2Suppose E(fi|x;) is nonlinear and can be well approximated by a series of orthogonal basis functions
D(xs) = (P1(X¢t), .., 5(x¢)), where Eg;(x¢)¢p;(x¢) = 1{t = j}, then for some K x J coefficient a, we have
E(fi|x;) = o’ ®(x;) so B{E(fi|x;)E(fi|x;)'} = aa’. For nonlinear functions, it is not stringent to require

aa’ be full rank since K < J as J — oo.



we choose an estimator that is robust to the tail-distributions of y; — E(y:|x:).

Let ®(x;) = (¢1(x¢), ..., ¢s(x¢))" be a J x 1 dimensional vector of sieve basis. Suppose
E(y:|x:) can be approximated by a sieve representation: E(y;|x;) ~ B®(x;), where B =
(by,...,by)" is an N x J matrix of sieve coefficients. To adapt to different heaviness of
the tails of idiosyncratic components, we use the Huber loss function (Huber (1964)) to

estimate the sieve coefficients. Define

22, |z| <1

2|z -1, |z] > 1.
For some deterministic sequence ar — oo (adaptive Huber loss), we estimate the sieve
coefficients B by the following convex optimization:

b, = arg mln— Zp <th — o) b) ., B= (Bl, ...,BN)'.

berRs T

We then estimate X, by

T
1 N N N
Y= Z E(yix)E(y:|x:)', where E(y|x;) = B®(x,).

TS
An alternative method to the robust estimation of X, is based on the sieve-least
squares, corresponding to the case where ar = co. Let Y = (y1, ..., yr), which is (N x T),

and

P=&(30)'0, (T xT), &= (B(x)),...,0(xz)), (] x T).

Then, the sieve least-squares estimator for X, is > = %YPY’ . While this estimator is
attractive due to its closed form, it is not as good as 3 when the distribution of u; has
heavier tails. As expected, our numerical studies in Section 7 demonstrate that it performs
well in light-tailed scenarios, but is less robust to heavy-tailed distributions. Our theories

are presented for f], but most of the theoretical findings should carry over to 3.

3.2 Choosing ar and J

The selection of the sieve dimension J has been widely studied in the literature, e.g., Li

(1987); Andrews (1991); Hurvich et al. (1998), among others. Another tunning parameter



is a, which diverges in order to reduce the biases of estimating the conditional mean when

the distribution of y; — F(y:|x;) is asymmetric. Throughout the paper, we shall set

| T
ar = Ca log(—NJ) (31)

for some constant C, > 0, and choose (J,C,) simultaneously using the multi-fold cross-
validation®. The specified rate in (3.1) is due to a theoretical consideration, which leads
to the “least biased robust estimation”, as we now explain. The Huber-estimator is biased
for estimating the mean coefficient in E(y;|x;), whose population counterpart is

b, := arg 5’161]113 Ep (yit —jT(Xt)/b> ’

As ar increases, it approaches the limit b; := arg mingcgs Ely; — b'®(x;)]? with the speed
bl = —co
mas [~ by = Olaz™)

for some constant ¢y > 0 that depends on the thickness of the tail distribution of y;; —
E(yit|x¢). Hence the bias decreases as ar grows. On the other hand, our theory requires

the uniform convergence (in i = 1, ..., N) of (for e;; =y — E(yu|xs))

T
1 o1

%%(Hf;p(% eir) P (x)]], (3-2)

where p(-) denotes the derivative of p(:). It turns out that ap cannot grow faster than

O( ﬁ) in order to guard for robustness and to have a sharp uniform convergence for

(3.2). Hence the choice (3.1) leads to the asymptotically least-biased robust estimation.

3.3 Alternative estimators

Plugging f; = g(x;) + ~, into (1.1), we obtain

vt = h(x;) + Ay, +u;, where h(x;) = Ag(x;). (3.3)

30ne can also allow ar to depend on var(y;|x;) to allow for different scales across individuals. We
describe this choice in the simulation section. In addition, the cross-validation can be based on either
in-sample fit for F(y;¢|x:) or out-of-sample forecast, depending on the specific applications. In time series
forecasts, one may also consider the time series cross validation (e.g. Hart, 1994) where the training and

testing sets are defined through a moving window forecast.
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A related model is:
y: = h(x;) + Afy +uy, (3.4)

for a nonparametric function h(-), or simply a linear form h(x;) = 8x;. Models (3.3) and
(3.4) were studied in the literature (Ahn et al., 2001; Bai, 2009; Moon and Weidner, 2015),
where parameters are often estimated using least squares. For instance, we can estimate

model (3.3) by

1

T
S ; lye = h(xe) — A *. (3.5)

But this approach is not appropriate in the current context when x; almost fully explains
f, for all t = 1,..., 7. In this case, 7, ~ 0, and least squares (3.5) would be inconsistent.
4 In addition, A in (3.4) would be very close to zero because the effects of f; would be
fully explained by h(x;). As a result, the factors in (3.4) cannot be consistently estimated
(Onatski, 2012b) either. We conduct numerical comparisons with this method in the sim-
ulation section. In all simulated scenarios, the interactive effect approach gives the worst
estimation performance.

Another simpler alternative is to combine (x¢,y;), and apply the classical methods on
this enlarged dataset. One potential drawback is that the rates of convergence would not
be improved, even if x; has strong explanatory power on the factors. Another drawback,
as mentioned before, is that it does not distinguish the disaggregated variables x; and
aggregated variables y;, which can provide very different information (e.g. Fama-French

factors versus returns of individual stocks).

4 Rates of Convergence

4.1 Assumptions

Let e;; = vyi — FE(yu|x¢). Suppose the conditional distribution of e; given x; = x is

absolutely continuous for almost all x, with a conditional density g.;(:|x).

4The inconsistency is due to the fact that aA~y, ~ A~, for any scalar a in the case v, ~ 0. Thus A is

not identifiable in the least squares problem.
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Assumption 4.1 (Tail distributions). (i) There are (;,(o > 2, C >0 and M > 0, so that
for all x > M,

sup HL%{ge,i(ﬂx) < Cxr™, sup max E(e21{|ey| > r}|x, = x) < Ca™%. (4.1)
(ii) ®(x;) is a sub-Gaussian vector, that is, there is L > 0, for any v € RY so that ||v|| = 1,
P(|[V'®(x;)| > x) < exp(l —2*/L), VYo >0.

Assumption 4.2 (Sieve approximations). (i) For k =1,..., K, let vj, = argmin, E(fx —
v'®(x;))%. Then there isn > 2, as J — oo,

max sup | B fuxlx = x) - v 2(x)[ = O(J 7).
(ii) There are ¢y, co > 0 so that
1 < Amin(EP (%) P(x4)') < Amax(EP(x4)P(x¢)") < co.
Recall v, = f; — E(fi|x;). Let v be its k& th component.

Assumption 4.3. (i) (serial independence) {f;, us, X; }i<7 is independent and identically
distributed;
(i) (weak cross-sectional dependence) For some C > 0,
N
supmaxz |E(upulx; = x,f, =f)] < C.

xf 1SN 4
Kl ]:1

(111) E(ulfy,x;) = 0, max;<n ||[N]] < C, and cov(v,|x:) = cov(vy,) almost surely, where
cov(7,|x;) denotes the conditional covariance matriz of v, given x;, assumed to exist.
Recall that
z]f|z = E{E(ft|xt)E<ft|Xt>/}7 XN ‘= )\mln(zﬂz)

Assumption 4.4 (Signal-noise). (i) There is C > 0,

Amax(Z(z) Amax (E{® (%) E(fy|x) E(fi]x,)®(x;)})
)‘min(zflx) >‘min<zf|x>

(ii) There is v > 1, so that maxz<x E[F(v]x:)]" < 0.
(iii) We have J3log*? N = O(T) and

J?T + J "+ +/(log N)/T < xn.

12

< C, <C.




Assumption 4.1 allows distributions with relatively heavy tails on y; — E(y;|x;). We
still require sub-Gaussian tails for the sieve basis functions. Assumption 4.2 is regarding the
accuracy of sieve approximations for nonparametric functions. Assumption 4.4 strengthens
Assumption 2.1. We respectively regard Api, (X ¢;) and cov(vy,) as the “signal” and “noise”
when using x; to explain common factors. The explanatory power is measured by these
two quantities.

Assumption 4.3 (i) requires serial independence, and we admit that it can be restrictive
in applications. Allowing for serial dependence is technically difficult due to the non-
smooth Huber’s loss. To obtain the Bahadur representation of the estimated eigenvectors,
we rely on the symmetrization and contraction theorems (e.g., van der Vaart and Wellner
(1996)), which requires the data be independently distributed. Nevertheless, the idea of
using covariates would still be applicable for serial dependent data. For instance, it is not
difficult to allow for weak serial correlations when the data are not heavy-tailed, by using
the sieve least squares estimator X (introduced in Section 3.1) in place of the Huber’s
estimator . We conduct numerical studies when the data are serially correlated in the
simulations, and find that the proposed methods continue to perform well in the presence

of serial correlations.

4.2 Rates of convergence

We present the rates of convergence in the following theorems, and discuss the statistical

insights in the next subsection. Recall A= (/):Z :1 < N).

Theorem 4.1 (Loadings). Under Assumptions 2.1-4.4, there is an invertible matriz H,

as T, J — oo, and N either grows or stays constant,

1 Y N / 2 J 1 -1
NZH)V—H)VH = Or|7+ 3= ) X (4.2)
i=1
> JlOgN 1 —1/2
/ _ /
I%%(”)‘i -HX| = Op ( T + Jn—1/2> XN -
(4.3)

The optimal rate for J in (4.2) is J < T " which results in

1

N

1 N —(1—1y _

D IR = HA = Op(T0 750\, (44)
=1
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Here 1 represents the smoothness of E(f;|x; = -), as defined in Assumption 4.2.

Define
T
* — mi TNYY/@n) (= /A4 L
J min {( ) , (logN)

Theorem 4.2 (Factors). Let J =< J*. Suppose (J*)*log? N = O(T), and Assumptions
2.1-4.4 hold. For H in Theorem 4.1, as T — oo, and N either grows or stays constant,

we have

1 . logN 3
= 86x) — H'g(x,) > = O (N (= >2‘”") ,
t=1

o J2—1  Jrlcov()|| 1 \1-5;
where 17y = Xy + 7 + (F5) 2 and

1 — log N o _a
TR HE = Op (i o+ (R ) i
t=1

+Op (%) . (4.5)

These two convergences imply the rate of convergence of the estimated factors due to

£ =8(x) + 7

Remark 4.1. For a general J, the rates of convergence of the two factor components are

(4.6)

J31log®> N
T2 ’

T

1 AN —

130 1B~ H () = O (rr +
t=1

2. -1 J _
where rry = L Xy +M+J1 204 1 and

T

1 ~ _ J*log? N\ _ 1

T S 1A - H ', > =0p (rT,N + T) Xy +Op (N) ST
t=1

In fact J =< J* is the optimal choice in (4.6) ignoring the terms involving || cov(«y,)| and
x~n. The convergence rates presented in Theorem 4.2 are obtained from (4.6) and (4.7)
with this choice of J.

The presented rates connect well with the literature on both standard nonparametric
sieve estimations and the high-dimensional factor models. To illustrate this, we discuss in

more detail about the rate of convergence in (4.6). This rate is given by:

2 3 2
Op J_X—l 4 J|| cov(v,)]] 4 J Loy J*log” N
™y T TN ) 1?2
N—— ~~
effect of nonparametric sieve higher order from
estimating A estimation error Huber’s M-estimation
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More specifically, we have, for e; = Ay, + u,
Yt = Ag(Xt) + €4, E(et’Xt) = 0 (48)

If A were known, we would estimate g(-) by regressing the estimated F(y;|x;) on A. Then
standard nonparametric results show that the rate of convergence in this “oracle sieve

regression” (knowing A) would be

Tcovv)ll | T
T TN

As we do not observe A, we are running the regression (4.8) with A in place of A. This leads

+ J

to an additional term IJTzXJ_Vl representing the effect of estimating A, which also depends
on the strength of the signal yy. Finally, Huber’s M-estimation to estimate E(y;|x;) gives

75—, and is often negligible.

rise to a higher order term

4.3 The signal-noise regimes

We see that the rates depend on cov(vy,) and xn. Because Efif] = Xy, +cov(y,), they are
related through
¢ < xn +[[eov(y)ll < € (4.9)

for some ¢, Cy > 0, assuming that there is ¢ > 0 so that || Ef;f/|| > ¢. For comparison, we
state the rates of convergence of the benchmark PCA estimators: (e.g., Stock and Watson

(2002): Bai (2003)) there is a rotation matrix H, so that the PCA estimators (X;, f;) satisfy:

1

1SN~ . 1 1~ - 1 1
=D N -HXP=0p(=+ =), = _IIf—H > = On(
Ni:l T Tt:l

T + N) (4.10)

The first interesting phenomena we observe is that both the estimated loadings and
g(x;) are consistent even if NV is finite, due to the “exact identification”. In contrast, the
PCA estimators requires a growing N. For more detailed comparisons, we consider three
regimes based on the explanatory power of the factors using x;. To simplify our discussions,
we consider the rate-optimal choices of J, and ignore the sieve approximation errors, so 7
is treated sufficiently large.

Regime I: strong explanatory power: | cov(sy,)|| — 0. Because of (4.9), xn is bounded

away from zero. In this case, (4.4)-(4.5) approximately imply (for sufficiently large 7):
LS IR AR - o (7)
N — T
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T
1 2: = -1 2 _ [ cov(v)ll 1 log N\,
T p” ||g(Xt) H g(Xt)“ - OP < T + TN + ( T ) )

T
1 ~ _ |cov(y)|l 1 log N
NI —H? = reoviyol  — 2)
IR -Ee = 0p (1070 L (5

Compared to the rates of the usual PCA estimators in (4.10), either the new estimated
loadings (when N = o(T')) or the new estimated factors (when 7" = o(N)) have a faster
rate of convergence. Moreover, if || cov(~,)|| = o((TN)~' +T~2log? N), then g(x,) directly

estimates the latent factor at a very fast rate of convergence:

T
1 1 log N

— g —-H'f|)? = — 2.
72 llgte 2= 0n (i + (5)

The improved rates are reasonable due to the strong explanatory powers from the covariates.

Regime II: mild explanatory power: || cov(v,)| is bounded away from zero; xn is either
bounded away from zero or decays slower than % in the case N = o(T). In this regime, x;
partially explains the factors, yet the unexplainable components are not negligible. (4.4)-

(4.5) approximately become:

AN 1

NZH)‘i—H/)\iHQ = Op (TXJ_V1>
=1

A 1 1

fZHft—HflftHQ = Op (CFXN1+N> (4.11)
t=1

We see that the rate for the estimated loadings is still faster than the PCA when N is
relatively small compared to T, while the rates for the estimated factors are the same.

This is because

1 < 1

_X —_—

TN N

~— ~—
new rate for loadings PCA rate for loadings

Loyl 1
7N N N

~—~

new rate for factors PCA rate for factors

On one hand, due to the explanatory power from the covariates, the loadings can be
estimated well without having to consistently estimate the factors. On the other hand, as
the covariates only partially explain the factors, we cannot improve rates of convergence

in estimating the unexplainable components in the latent factors. However, since =, has
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smaller variability than f;, it can still be better estimated in terms of a smaller constant
factor.
: ) , N
Regime III: weak explanatory power: xny — 0 and decays faster than =z when N < T

In this case, we have

NZHA H'Aj||* = Op( XN Z\Ift H "

While the new estimators are still consistent, they perform worse than PCA. This finding
is still reasonable because the signal is so weak that the conditional expectation E(y|x;)
loses useful information of the factors/loadings. Consequently, estimation efficiency is lost
when running PCA on the estimated covariance E{E(y:|x:)E(y:|x:)'}.

In summary, improved rates of convergence can be achieved so long as the covariates
can (partially) explain the latent factors, this corresponds to either the mild or the strong
explanatory power case. The degree of improvements depend on the strength of the sig-
nals. In particular, the consistent estimation for factor loadings can also be achieved even
under finite N. On the other hand, when the explanatory power is too weak, the rates of

convergence would be slower than those of the benchmark estimator.

5 Testing the Explanatory Power of Covariates
We aim to test: (recall that v, = f; — E(f|x;))
Hy : cov(y,) = 0. (5.1)

Under Hy, f; = E(f;|x;) over the entire sampling period ¢t = 1, ..., T, implying that observed
covariates x; fully explain the true factors f;. In empirical applications with “observed
factors”, what have been often used are in fact x;. Hence our proposed test can be applied
to empirically validate the explanatory power of these “observed factors”.

The Fama-French three-factor model (Fama and French, 1992) is one of the most cele-
brated ones in empirical asset pricing. They modeled the excess return r; on security or

portfolio ¢ for period t as
T = Q; + biTMt + SiSMBt + hZHMLt + Ui,
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where ry;, SMB; and HML; respectively represent the the excess returns of the market,
the difference of returns between stocks with small and big market capitalizations (“small
minus big”), and the difference of returns between stocks with high book to equity ratios
and those with low book to equity ratios (“high minus low”). Ever since its proposal,
there is much evidence that the three-factor model can leave the cross-section of expected
stock returns unexplained. Different factor definitions have been explored, e.g., Carhart
(1997) and Novy-Marx (2013). Fama and French (2015) added profitability and investment
factors to the three-factor model. They conducted GRS tests (Gibbons et al., 1989) on the
five-factor models and its different variations. Their tests “reject all models as a complete
description of expected returns”.

On the other hand, the Fama-French factors, though imperfect, are good proxies for the
true unknown factors. Consequently, they form a natural choice for x;. These observables
are actually diversified portfolios, which have explanatory power on the latent factors f;,
as supported by financial economic theories as well as empirical studies. The test proposed

in this section validates the specification of these common covariates as “factors”.

5.1 The Test Statistic

Our test is based on a Wald-type weighted quadratic statistic

T T
N — — ]_ jas -~ -~/ ~
S(W) 1= D HWA, = o= > (ve =~ Eyibx)/AWA (y0 — B(yilxi).
t=1 t=1

The weight matrix normalizes the test statistic, taken as W = AVar(v/N7,)~!, where

AVar(7,) represents the asymptotic covariance matrix of 4, under the null, and is given by
- 1
AVar(VN7,) = HA'S, AR

As 3, is a high-dimensional covariance matrix, to simplify the technical arguments, in this

section we assume {u;} to be cross-sectionally uncorrelated, and estimate X, by:

A~

T
S I _
2u:diag{f2ui,z:1,...,N}, Uit = Yir — At
t=1

The feasible test statistic is defined as



We reject the null hypothesis for large values of S. It is straightforward to allow 3, to be

a non-diagonal but a sparse covariance, and proceed as in Bickel and Levina (2008). We

expect the asymptotic analysis to be quite involved, and do not pursue it in this paper.
We show that the test statistic has the following asymptotic expansion:

S = S + OP(%),

where

T
_ 1 B
S = 7 ;:1: WAANZ,A) Ay,

Thus the limiting distribution is determined by that of S. Note that a cross-sectional

central limit theorem implies, as N — oo,

1 1

—AZ A —u A = N(0,Tg).

( N ) \/Nut N ( ) +K )

Hence each component of S can be roughly understood as y?-distributed with degrees of
freedom K being the number of common factors, whose variance is 2K. This motivates

the following assumption.
Assumption 5.1. Suppose £ 30 var(w,A(A'S,A)'A'w,) — 2K as T, N — cc.
We now state the null distribution in the following theorem.

Theorem 5.1. Suppose Assumption 5.1 and assumptions of Theorem 4.2 hold. In addition,
we further assume that {u; }i<y is cross-sectionally independent. Then, when J*N log N =

o(T??), T = o(N?), NVT = o(J*"1), as T, N — o0,

\/g(S — K) =4 N(0,1).

5.2 Testing market risk factors for S&P 500 returns

We test the explanatory power of the observable proxies for the true factors using S&P
500 returns. We calculate the excess returns for the stocks in S&P 500 index that are
collected from the Center for Research in Securities Prices (CRSP). We consider three
groups of proxy factors (x;) with increasing information: (1) Fama-French 3 factors (FF3);

(2) Fama-French 5 factors (FF5); and (3) Fama-French 5 factors plus 9 sector SPDR ETF’s
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(FF54+ETF9). Here the sector SPDR ETF’s, which are intended to track the 9 largest S&P
sectors. The detailed descriptions of sector SPDR ETF’s are listed in Table 5.1. For each
given group of observable proxies, we set the number of common factors K equals the

number of observable proxies.

Table 5.1: Sector SPDR ETF’s (data available from Yahoo finance)
Code Sector Code Sector Code Sector
XLE Energy XLB Materials XLI | Industrials

XLY | Consumer discretionary | XLP Consumer staples XLV | Health care
XLF Financial XLK | Information technology | XLU Utilities

We consider tests using both daily and monthly data. For the daily data, we collect
393 stocks that have complete daily closing prices from January 2005 to December 2013,
with a time span of 2265 trading days. We apply moving window tests with the window
size (T') equals one month, three months or six months. The testing window moves one
trading day forward per test. Within each testing window, we calculate the standardized
test statistic S for three groups of proxy factors.

As for the monthly excess returns, we use stocks that have complete record from Jan-
uary 1980 to December 2012, which contains 202 stocks with a time span of 396 months.
Here we only consider the first two groups of proxy factors as sector SPDR ETF’s are
introduced since 1998. The window size equals sixty months and moves one month forward
per test. Within each testing window, besides standardized test statistic and p-value, we
also estimate the volatility of «4,, the part of factors that can not be explained by x; as:

T

1 PN

Vol(v,) = T YVt
t=1

where there are 21 trading days per month. The sieve basis is chosen as the additive Fourier

basis with J = 5. We set the tuning parameter a; = C' m with constant C' selected
by the 5-fold cross validation.

For the daily data, the plots of S under various scenarios are reported in Figure 5.1.
Under all scenarios, the null hypothesis (Hy : cov(7y,) = 0) is rejected as S is always larger

than the critical value 1.96. This suggests a strong evidence that the proxy factors can
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Window size: one month (T=21)
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Window size: three months (T=63)
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Figure 5.1: S&P 500 daily returns: plots for standardized test statistic .S for various window

sizes. The dotted line is critical value 1.96.

not fully explain the estimated common factors. Under all window sizes, a larger group of
proxy factors tends to yield smaller statistics, demonstrating stronger explanatory power
for estimated common factors. Also, we find the test statistics increase while the window
size increases.

The results for the monthly data are reported in Figure 5.2. For both Fama-French
3 factors and 5 factors, the null hypothesis is rejected most of the time except in early

1980s and 1990s. When the null hypothesis is accepted, Fama-French 5 factors tend to
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Figure 5.2: S&P 500 monthly returns: plots for standardized test statistic S, P-value and
the volatility of the part of factors that can not be explained by the proxy factors.

yield larger p-values. The estimated volatility of unexplained part are close to zero over
these two periods. For the rest of the time, the standardized test statistics are much larger
than the critical value 1.96 and hence the p-values are close to zero. Also the estimated
volatilities are not close to zero. This indicates the proxy factors can not fully explain the

estimated common factors during these testing periods.

6 Forecast the excess return of US government bonds

We apply our method to forecast the excess return of U.S. government bonds. The bond
excess return is the one-year bond return in excess of the risk-free rate. To be more specific,

we buy an n year bond, sell it as an n—1 year bond in the next year and excess the one-year
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bond yield as the risk-free rate. Let pgn) be the log price of an n-year discount bond at

time ¢. Denote (" = —%pgn) as the log yield with n year maturity, and rﬁ_?l = pg:l) — pi")

as the log holding period return. The goal of one-step-ahead forecast is to forecast zgle,

the excess return with maturity of n years in period T + 1, where

n n 1
Z§+)1:Tt(+)1_gt()a t=1,---,T.

For a long time, the literature has found a significant predictive power of the excess
returns of U.S. government bonds. For instance, Ludvigson and Ng (2009, 2010) predicted
the bond excess returns with observable variables based on a factor model using 131 (dis-
aggregated) macroeconomics variables. They achieved the out-of-sample R? ~ 21% when
forecasting bond excess return with two year maturity. Using the proposed method, this
section develops a new way of incorporating the explanatory power of the observed char-
acteristics, and investigates the robustness of the conclusions in existing literature.

We analyze monthly data spanned from January 1964 to December 2003, which is avail-
able from the Center for Research in Securities Prices (CRSP). The factors are estimated
from a macroeconomic dataset consisting of 131 disaggregated macroeconomic time series
(Ludvigson and Ng, 2010). The covariates x; are 8 aggregated macro-economic time series,

listed in Table 6.1.

Table 6.1: Components of x;

x1;4 | Linear combination of five forward rates

x9y | Real gross domestic product (GDP)

x3:+ | Real category development index (CDI)

Tay Non-agriculture employment
Ty Real industrial production

Tt Real manufacturing and trade sales
T74 Real personal income less transfer
Tgy Consumer price index (CPI)
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6.1 Heavy-tailed data and robust estimations

We first examine the excess kurtosis for the time series to assess the tail distributions. The
left panel of Figure 6.1 shows 43 among the 131 series have excess kurtosis greater than 6.
This indicates the tails of their distributions are fatter than the ¢-distribution with degrees
of freedom 5. On the other hand, the right panel of Figure 6.1 reports the histograms
of excess kurtosis of the “fitted data” FE(y:|x;) (the robust estimator of E(y:|x;) using
Huber loss), which demonstrates that most series in the fitted data are no longer severely
heavy-tailed.

The tuning parameter in the Huber loss is of order ar = C, 4/ W. In this study,
the constant C, and the degree of sieve approximation .J are selected by the out-of-sample

5-fold cross validation as described in Section 3.2.

Excess Kurtosis of raw data Excess Kurtosis of fitted data

40
30

20 25

30
15

Frequency
20
Frequency
10

10

5

Figure 6.1: Excess kurtosis of the macroeconomic panel data. Left panel shows 43 among
131 series in the raw data are heavy tailed. Right panel shows the robustly fitted data

E (y¢|x:) are no longer severely heavy-tailed.

6.2 Forecast results

We compare the rolling window forecast performance between our proposed smoothed PCA
(SPCA) method Q: Do we want to call back ”projected PCA” and two competitors.
The first competitor, denoted as SPCA-LS, is similar to SPCA except 3, is estimated by
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the sieve least-squares estimator 3 rather than the robust estimator 3. We refer to Section
3.1 for the detailed definitions of £ and &. The SPCA-LS method can be considered as a
“non-robust” version of SPCA. The second competitor is the benchmark PCA.

We conduct one-month-ahead out-of-sample forecast of the bond risk premia. The
forecast uses the information in the past 240 months, starting from January 1984 and
rolling forward to December 2003. Within each window ended at time ¢, we fit the following
factor model with SPCA, SPCA-LS and PCA respectively,

ys =Af; +u,, s=t-239,...,¢,

where y, is the panel data of 131 macroeconomics variables. For all three methods, we set
the number of factors K = 8. For SPCA and SPCA-LS, the sieve basis is chosen as the

additive polynomial basis whose dimension J is chosen by 5-fold cross-validation.

Then we consider two models to predict the bond risk premia at time s =t —238, ..., t:
Linear model: 2o =0+ B W, +e,, (6.1)
Multi-index model: — z, = h(pi)W,_q, -+, Y. W, 1) + e, (6.2)

where « is the intercept and h is a nonparametric function. The covariate W,_; is either

f;_1 or an augmented vector (f]_,,x. ;)’. Here, the latent factors f;_; is estimated by either

s—10 X
SPCA, SPCA-LS or PCA as described above. The multi-index model allows more general
nonlinear forecasts and is estimated by the sliced inverse regression (Li, 1991). The number
of indices L is estimated by the ratio-based method suggested in Lam and Yao (2012) and
is usually 2 or 3. We approximate h using an additive model h(¢)\W,_q, -+, . W,_ 1) =
Zle gi(¥;W,_1), which is the projection pursuit model (Friedman and Stuetzle, 1981).

Each individual nonparametric function g;(+) is smoothed by the local linear approximation.

After that, we predict 2z, as:

Linear predictor: Zepie = O+ B/Wt, (6.3)
Multi-index predictor: Ziie = Z g, Wy), (6.4)
=1

where @, 8, ¥, L and g1(+) are estimated from (6.1) and (6.2).
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The forecast performance is assessed by the out-of-sample R?, defined as

479 R
> (2001 — Zt+1|t)2
2 =240
RE=1- 479 )
> (i1 — )2
t=240

where Z; is the sample mean of z; over the sample period [t — 239,¢]. The R? of various
methods are reported in Table 6.2. We notice that factors estimated by SPCA and SPCA-
LS can explain more variations in bond excess returns with all maturities than the ones
estimated by PCA. SPCA yields a 59.3% out-of-sample R? for forecasting the bond excess
returns with two year maturity, which is much higher than the best out-of-sample predictor
found in Ludvigson and Ng (2009). It is also observed that the forecast based on either
SPCA or SPCA-LS cannot be improved by adding any covariate in x;. We argue that, in
this application, the information of x; should be mainly used as the explanatory power for
the factors.

We summarize the observed results in the following aspects:

1. The factors estimated using additional covariates lead to significantly improved out-

of-sample forecast on the US bond excess returns compared to the ones estimated by

PCA.

2. As many series in the panel data are heavy-tailed, the robust-version of our method

(SPCA) can result in improved out-of-sample forecasts.

3. The multi-index models yield significantly larger out-of-sample R?’s than those of the

linear forecast models.

4. The observed covariates x; (e.g. forward rates, employment and inflation) contain
strong explanatory powers for the latent factors. The gain of forecasting bond excess
returns is more substantial when these covariates are incorporated to estimate the

common factors (using the proposed procedure) than directly used for forecasts.
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Table 6.2: Forecast out-of-sample R? (%): the larger the better.

W, SPCA SPCA-LS PCA
Maturity(Year) Maturity(Year) Maturity(Year)
2 3 4 5 2 3 4 ) 2 3 4 5
linear model

f; 55.4 512 45.7 41.8 | 49.6 453 415 39.8 | 454 415 36.6 33.1

(f/, x;)" | 54.7 50.5 454 41.4| 493 449 40.8 38.7 | 46.2 424 371 33.7
multi-index model

f; 59.3 556 50.5 46.1 | 53.8 51.3 46.5 444 | 476 43.7 39.9 364

(F, x))' | 58.9 54.8 50.1 455|531 509 456 422|489 441 402 37.0

7 Simulation Studies

7.1 Model settings

We use simulated examples to demonstrate the finite sample performance of the proposed
method, which is denoted by SPCA (smoothed PCA), and compare it with SPCA-LS (which
uses f], the least-squares based smoothed PCA, described in Section 3.1) and the bench-
mark PCA.

Consider the following data generating process,

_ t=1, - T, (7.1)

Af, +u;, and f, = 6(g)g0(xt) + &(7)7?,

Y

where A is drawn from i.i.d. standard Normal distribution and w; is drawn from either the
i.i.d standard Normal distribution or i.i.d. re-scaled Log-Normal distribution ¢;{exp(1 +
1.2¢) — c2}, where ¢ ~ N(0,1) and ¢,y > 0 are chosen such that u; has mean zero and
variance 1. We set K = 5.

Here 6(g) and &(7) respectively represent the signal and noise levels. Set 5(g)*+a(v)* =
1 and 6(g)%/5(7)* = w, where w controls the ratio between the explained and unexplained
parts in the latent factors. To address different signal-noise regimes, we set w = 10,1 and
0.1 to represent strong, mild and weak explanatory powers respectively. The baseline Y is
drawn from i.i.d. standard Normal distribution and the baseline function g°(-) is set to be

one of the following two models:
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(I) LINEAR MODEL: We set d = K and x; is drawn from i.i.d. standard Normal distri-

bution. Let g(x;) = Dx;, where D is a K x K matrix with each entry drawn from

Ull, 2[

(II) NONLINEAR MODEL: We set d = 1 and x; is drawn from i.i.d. uniform distribution
0,1]. Let g°(z;) = {g?(z¢), -, g% (x)} with g2 (x;) = ay, cos(2mkx;) + by sin(2wkx;)
for k = 1,--- K. The coefficients a; and b, are calibrated from a nonlinear test
function 0(z) = sin(x) + 2exp(—30z?%) with x € [0,1] so that g° forms its leading
Fourier bases. To save the space, we refer to the example 2 of Dimatteo et al. (2001)

for the plot of 6(x).

For each k < K, we normalize g} (x;) and fyg & such that they have means zero, and standard
deviations one.

Throughout this section, the number of factors is estimated by the eigen-ratio method.
In the following simulated examples, the eigen-ratio method can correctly select K = 5
in most replications. The sieve basis is chosen as the additive polynomial basis whose
dimension J is chosen by 5-fold cross-validation. To account the scale of the noise variance,

we also consider the tuning parameter in the Huber loss to admit ar; = Cy0;4/ ﬁ,

where ¢; = \/ A5 (Wie — E(yur|x:))? and E(ys|x;) is smoothed by sieve least squares using
additive polynomial basis of order 5. In Subsection 7.2, the tuning parameters C, and
J are selected by the in-sample 5-fold cross validation, while in subsection 7.3, they are

chosen using the out-of-sample 5-fold cross validation.

7.2 In-sample Estimation

First, we compare the in-sample model fitting among SPCA, SPCA-LS and PCA under
different scenarios. For each scenario, we conduct 200 replications. As the factors and
loading may be estimated up to a rotation matrix, the canonical correlations between the
parameter and its estimator can be used to measure the estimation accuracy (Bai, 2003).
For Model (I) and (II) we report the sample mean of the median of 5 canonical correlations
between the true loading and factors and the estimated ones.

The results are presented in Table 7.2. SPCA-LS and SPCA are comparable for light-
tail distributions, and are both slightly better than PCA. This implies that we pay little
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price for the robustness and that the proposed estimators are potentially better than PCA
when N is relatively small, due to the merit of the “finite-N” asymptotics of the proposed
estimators. However, when the error distributions have heavy tails, SPCA yields much
better estimation than other methods as expected. SPCA-LS out-performs PCA when x;
has strong or mild explanatory powers of f; which is in line with the discussion in Section
4.3. When w = 0.1, the observed x; is not as informative and hence the performance of

SPCA and SPCA-LS are close to regular PCA.

7.3 Out-of-sample Forecast

We now consider using latent factors in a linear forecast model 2z, = B'f, + €41, where
€; is drawn from i.i.d. standard normal distribution. For each simulation, the unknown
coefficients in 3 are independently drawn from uniform distribution [0.5, 1.5] to cover a
variety of model settings.

We conduct one-step ahead rolling window forecast using the linear model by estimating
B and f;. The factors are estimated from (7.1) by SPCA, SPCA-LS or PCA. In each
replication, we generate 1" + 50 observations in total. For s = 1, --- |50, we use the T
observations (zs, ..., 274+s_1) to forecast zr,s. We use PCA as the benchmark and define

the relative mean squared error (RelMSE) as:

50
Z:l(/Z\T-‘rS\T—&-s—l - ZT+s)2

_ 5=
RelMSE = = — ,
zjl(ZT-&-s\T—Fs—l — 21r4s)°

s=

where Zp g 74s-1 is the forecast of zp, based on either SPCA or SPCA-LS while 255;“{[ a1
is the forecast based on PCA. For each scenario, we simulate 200 replications and calculate
the averaged RelMSE as a measurement of the one-step-ahead out-of-sample forecast.
The results are presented in Table 7.1. Again, when the tails of error distributions are
light, SPCA and SPCA-LS perform comparably. But SPCA outperforms SPCA-LS when
the errors have heavy tails. On the other hand, both SPCA and SPCA-LS outperform

PCA when x; exhibits strong or mild explanatory powers of f;, but are slightly worse when

w is small. In general, the SPCA method performs the best under heavy-tailed cases.
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Table 7.1: Out-of-sample Forecast: Mean RelMSE of forecast when N = 40,7 = 100:
the smaller the better (with PCA as the benchmark)
Model (I) Model (II)

uy w | SPCA SPCA-LS | SPCA SPCA-LS
10 | 0.86 0.85 0.88 0.87
Normal | 1 | 0.91 0.91 0.92 0.92
0.1 ] 1.01 1.01 1.02 1.01
10 | 0.45 0.60 0.49 0.64
LogN 1 | 0.52 0.62 0.51 0.66
0.1 | 0.55 0.65 0.56 0.70

7.4 Compare with the interactive effect approach

Here we consider three pairs of sample sizes: N = 40, T' = 150; N = 60, T = 100 and
N =60, T'= 150. We compare the proposed SPCA method with SPCA-LS (Section 3.1),
regular PCA and pure least squares (LS), which models the covariates and estimates the
parameters by simply using

T
1
min — — Af, — X.3]%
A,{ft},,Bthzl:HYt t t/BH

In Tables 7.2-7.3, we report sample mean of the median of 5 canonical correlations
between the true loading and factors and the estimated ones. Under various sample size
combinations, the findings are similar as discussed in Section 7.2: (1) both SPCA and
SPCA-LS outperform PCA under light-tail distributions when x; has strong or mild ex-
planatory powers of f;; (2) when the error distributions have heavy tails, SPCA outperforms
other methods as expected; (3)when x; has weak explanatory power, the performance of
SPCA and SPCA-LS are close to regular PCA; (4) under all simulated scenarios, the LS

approach gives the worst estimation performance.

7.5 Serial dependent case

In this subsection, we compare the in-sample model fitting among SPCA, SPCA-LS and

PCA under serial dependences. The simulation settings are similar as in Section 7.1 except
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both x; and =, are generated from a stationary VAR(1) model as follows
Xt :th—1+€ta Vi :H’thl—f_ntv = 1a T T;

with xo = 0 and 7, = 0. The (4, 5)th entry of IT is set to be 0.5 when i = j and 0.4/~
when ¢ # j. In addition, &; and 7; are drawn form i.i.d. N(0,I).

The performance under 200 replications are presented in Table 7.4 below. Our numerical
findings for the independent data continue to hold for serially dependent data: both SPCA
and SPCA-LS outperform PCA when x; and f; are serially correlated. SPCA gives the

best performance when the error distributions are heavy-tailed.

7.6 Conditional week cross-sectional dependent case

In this subsection, we compare the in-sample model fitting among SPCA, SPCA-LS and
PCA under conditional week cross-sectional dependency. The simulation settings are sim-
ilar as in Section 7.1 except we allow u; to be cross-sectional dependent. First we generate
v; from i.i.d. re-scaled Log-Normal distribution as introduced in Section 7.1. Then we
generate u; = Qll/ %v,, where Q,, is a correlation matrix whose (4, 7)th entry equals 0.5l
We set N = 60 and T' = 150. The performance under 200 replications are presented in
Table 7.5 below. Similar are the results with cross-sectional independent errors, SPCA give

the best performance among the three methods.

7.7 Testing the explanatory power

We now study the performance of the proposed test statistic under various scenarios. Con-

sider the following data generating process,
yi = Afy+w, and f,=Dx,+6vy, t=1, --- T, (7.2)

where A and =, are drawn from i.i.d. standard Normal distribution, D is a K x K matrix
with each entry drawn from U[1, 2] and § is a constant which can be set as either 0 or 1.

Further, x; and u,; are jointly generated from one of the following three cases.

(I) INDEPENDENT CASE: X; is drawn from ii.d. standard Normal distribution. u, is

independent of x; and drawn from i.i.d. re-scaled Log-Normal distribution ¢;{exp(1+
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Table 7.2: In-sample Estimation: Median of 5 canonical correlations of the estimated

loadings/factors and the true ones when N = 40,7 = 100: the larger the better

(I11)

Model (I) Model (II)
uy w | SPCA SPCA-LS PCA | SPCA SPCA-LS PCA
10 | 0.91 0.91 0.82 0.90 0.90 0.75
Normal | 1 0.88 0.89 0.82 0.84 0.84 0.75
0.1 ] 0.83 0.83 0.82 0.77 0.79 0.75
Loadings
10 | 0.81 0.50 0.36 | 0.77 0.48 0.31
LogN 1 0.77 0.45 0.36 | 0.73 0.42 0.31
0.1 ] 0.72 0.41 0.36 | 0.70 0.39 0.31
10 | 0.90 0.90 0.74 | 0.90 0.90 0.72
Normal | 1 0.82 0.83 0.74 | 0.81 0.82 0.72
0.1 ] 0.75 0.76 0.74 | 0.74 0.74 0.72
Factors
10 | 0.83 0.54 0.31 0.81 0.57 0.26
LogN 1 0.80 0.53 0.31 0.77 0.50 0.26
0.1 ] 0.75 0.48 0.31 0.74 0.46 0.26

1.2¢) — ¢}, where ¢ ~ N(0,1) and ¢y, ¢; > 0 are chosen such that u; has mean zero

and variance 1.

SERIAL DEPENDENT CASE: Both x; and u; are generated from stationary VAR(1)

models as follows
Xy = H(l)xt—l +E&, W= H(Z)llt_1 +n, t=1,---, T,

with xo = 0 and uy = 0. In both TI") and TI®, the (i, j)th entry is set to be 0.5
when i = j and 0.4°77 when i # j. In addition, &, is drawn form i.i.d. standard

Normal distribution and 7, is drawn from i.i.d. re-scaled Log-Normal distribution as

described in (I).

CROSS-SECTIONAL DEPENDENT CASE: First we generate x; and uj similar as in (I).

Then we generate
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Table 7.3: In-sample Estimation: Median of 5 canonical correlations of the estimated

loadings/factors and the true ones when N = 60,7 = 150: the larger the better

Model (I) Model (IT)
uy w | SPCA SPCA-LS PCA LS | SPCA SPCA-LS PCA LS
10 0.95 0.95 0.88 0.82 | 0.93 0.93 0.85 0.78
Normal | 1 0.92 0.92 0.88 0.83 | 0.88 0.88 0.85 0.79
0.1 | 0.85 0.86 0.88 0.86 | 0.84 0.84 0.85 0.83
Loading
10 0.86 0.59 0.44 0.38 | 0.84 0.55 0.41 0.34
LogN 1 0.83 0.55 0.44 0.40 | 0.80 0.52 0.41 0.36
0.1 | 0.79 0.48 0.44 0.43 | 0.75 0.44 0.41 0.39
10 0.94 0.94 0.83 0.75 | 0.91 0.91 0.81 0.74
Normal | 1 0.86 0.86 0.83 0.78 | 0.83 0.83 0.81 0.76
0.1 | 0.81 0.82 0.83 0.82 | 0.79 0.79 0.81 0.79
Factors
10 0.85 0.66 0.40 0.33 | 0.84 0.64 0.37 0.30
LogN 1 0.81 0.60 0.40 0.35 | 0.80 0.61 0.37 0.32
0.1 | 0.77 0.54 0.40 0.38 | 0.75 0.56 0.37 0.35

Table 7.4: Dependent data: Median of canonical correlations of the estimated load-

ings/factors and the true ones when N = 40,7 = 100: the larger the better

Model (I) Model (IT)
uy w | SPCA SPCA-LS PCA | SPCA SPCA-LS PCA
10 0.89 0.90 0.78 0.87 0.87 0.73
Normal | 1 0.84 0.84 0.78 0.82 0.82 0.73
0.1 0.80 0.81 0.78 0.76 0.77 0.73
Loadings
10 0.75 0.47 0.25 0.73 0.45 0.22
LogN 1 0.69 0.41 0.25 0.69 0.39 0.22
0.1 0.64 0.38 0.25 0.62 0.35 0.22
10 0.88 0.89 0.71 0.88 0.88 0.68
Normal 1 0.81 0.82 0.71 0.80 0.81 0.68
0.1 0.73 0.74 0.71 0.72 0.72 0.68
Factors
10 0.80 0.59 0.24 0.78 0.55 0.19
LogN 1 0.74 0.51 0.24 0.72 0.49 0.19
0.1 0.70 0.45 0.24 0.69 0.40 0.19
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Table 7.5: Cross-sectional Dependent error: Median of canonical correlations of the

estimated loadings/factors and the true ones when N = 60,7 = 150: the larger the better

Model (I) Model (II)
w | SPCA SPCA-LS PCA | SPCA SPCA-LS PCA
10 | 0.81 0.56 0.42 | 0.79 0.51 0.38
Loadings | 1 0.76 0.53 042 | 0.74 0.49 0.38
0.1 | 0.72 0.47 0.42 0.71 0.40 0.38
10 0.80 0.63 0.40 0.79 0.60 0.36
Factors 1 0.75 0.57 0.40 | 0.73 0.57 0.36
01| 0.73 0.50 0.40 | 0.71 0.52 0.36
Xt _ Q2 X; 7
w u;

where €2 is a correlation matrix whose diagonal entries equal 1 and off-diagonal entries

equal 0.5.

Let N =50, T = 200 and K = 3. We set the significance level a = 0.05 and repeat
the testing on explanatory power of covariates over 1000 replications. For the first 500
replications, we set 0 = 0 and hence the null hypothesis Hy : cov(7y,) = 0 is true. For the
rest 500 replications, we set § = 1 and hence the null hypothesis is false. The number of
factors K is estimated by the eigen-ratio method suggested in Lam and Yao (2012). The
sieve basis is chosen as the additive polynomial basis whose dimension J is chosen by 5-fold
cross-validation. The false positive rate and true negative rate are reported in Table 7.6.

We see observe size distortions as dependence is presence, and the power is also affected.
As a result, modified covariance estimators should be used in place of iu, such as the sparse

covariance estimator.

Table 7.6: Size and power of test

Independent | Serial Dependent | Cross-sectional dependent
Size 0.048 0.066 0.082
Power 0.926 0.892 0.848
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8 Conclusions

We study factor models when the factors depend on observed explanatory characteristics.
The proposed method incorporates the explanatory power of these observed covariates,
and is robust to possibly heavy-tailed distributions. We focus on the case dim(x;) is finite,
and on the rates of convergence for the estimated factors and loadings. Under various
signal-noise ratios, substantial improved rates of convergence can be gained.

Related to the above, the idea could be easily extended to the case that dim(x;) is slowly
growing (with respect to (N, 7). On the other hand, allowing dim(x;) to be fast-growing
would require some dimension-reduction treatment combined with covariate selections. In
addition, selecting the covariates would be also useful as the quality of the signal is crucial.

We shall leave these open questions for future studies.
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A  Proof of Theorem 2.1

Proof. Let &, ..., &y be the eigenvectors of ¥, corresponding to the eigenvalues A\ (3,,) >
Ao (Byjz).-. > An(Zyz). Due to Xy, = AX s, A’, and by the assumption that Awin(Xf;) >
0, the rank of X, equals K. Hence \;(%,,) = 0 for all i > K.

(i) Let L = E}\{JQVZf|$2/1\{]2V. Let M be a K x K matrix, whose columns are the eigen-
vectors of L. Then D := M'LM is a diagonal matrix, with diagonal elements being the
eigenvalues of L. Let H = EX}A/,QM. Then
%EWAH =AY, S\ vH = AEX}]\GLM N AHM'LM = AHD.

MM/=I
In addition, (AH) (AH) = NM'M = NI, hence the columns of AH/v/N are the eigen-
vectors of X, corresponding to the K nonzero eigenvalues.

(i) From E(y;|x;) = Ag(x;), we have (AH)' E(y;|x;) = (AH)’AHH 'g(x;). This leads
to the desired expression of H™'g(x;).

(iii) The nonzero eigenvalues of X, = AX;, A’ equal those of
/2 1A 1/2 1/2 1/2
Vi NAX = N3jp, Band,
which are also the same as those of NE}\{?VEf‘xZ}X{JQV = NL. Note that

Amin(NL) 2 N)\min(zf\x)Amin(EA,N) 2 NXNQA-

B Proofs for Section 4

Here we present the main body of the proof, and refer to the supplementary material for

additional technical lemmas.

B.1 A bird’s-eye view of the major technical steps

We first provide a bird’s-eye view of the major steps in the proof. The key intermediate

result is to prove the following Bahadur representation of the estimated eigenvectors:

T N T
-~ . 1 / ]- ! - —1 A~*1
A—-AH = NT ; Ag(x)P(x)'A Z T Z D (x;) plag eis)arAV

i=1 s=1
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+A{x, e hier), (B.1)

for some invertible matrix H. Here the first term on the right hand side is the leading term

that results in the presented rate of convergence in Theorem 4.1, where p(-) denotes the
derivative of Huber’s loss function; V is a K-dimensional diagonal matrix of the eigenvalues

of & /N. The second term A({x;, e:}+<r) is a higher order random term that depends on
both {x;} and {e;}, where e, = y; — E(y:|x:) = (e1t, ..., ent)-

To have an general idea of how we prove (B.1), recall that /N := i ST E(y/|x)E(y:|x.),

where each element of E(y;|x;) is E(yi|x:) = b,®(x;) with b; being the M-estimator of

the sieve coefficients of E(y;|x;), obtained by minimizing the Huber’s loss:

Yit — ‘I)(Xt)'b) _

ar

T
b e in Qb)) = 1> as
t=1

beR/

Then by the definition of IAX,
1 ~n o~
—3XA=AV. B.2
- (B.2)
The above is the key equality we shall use to derive (B.1). To use this equality, we need to
obtain the Bahadur representations of b; and E(yy|x,) in the following steps.
Step 1: bias of sieve coefficients. Define, fori=1,..., N,

it — P(x¢)'b
b, = arg i Bl ~ bOx)%, by = ang i, B (L TE0R )
beR’ beR/

ar
Note that the sieve expansion of E(y,|x;) is bi®(x;) (to be proved in Lemma D.1). But
Bi is biased for estimating b;, and asymptotically converges to b; .. As ap — 00, b;, is
expected to converge to b; uniformly in ¢« < N. This is true given some moment conditions
on e =y, — E(yx).

Step 2: Expansion of B, —bjq-

The first order condition gives VQi(Bi) = 0. But we cannot directly expand this equa-
tion because VQ; is not differentiable. As in many M-estimations, define Q;(b) = EQ;(b),
and p,;(b) = VQ;(b) — VQi(b). So we have

0= VQ(b;) — p(by),

and V(Q; is differentiable. We shall apply the standard empirical process theory for inde-

pendent data (the symmetrization and contraction theorems, e.g., Bithlmann and van de
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Geer (2011) ) to prove the stochastic equicontinuity of p,(b) and thus the convergence of
max; || ,ul(gl) — p;(b; o )||- This will eventually lead to an expansion of b; — b; o, to be given
in Lemma D.3.

Step 3: Expansion of E(y|x;) — E(y:|x;). Combining steps 1 and 2 will eventually
lead to

E(yalx:) = E(yalx:) + ®(x;)’ ZaT,o o7'ei)®(x,) + R (B.3)

where R;; is a high-order remainder term that depends on x;, and A = (2E®(x;)®(x;)") !
is the Hessian matrix. We shall bound max;<y % Zthl R;; in Proposition D.3.

Step 4: Expansion of A — AH. Substituting the expansion of E(y;|x;) to (B.3),
with E(y;|x;) replaced by its expansions, we will eventually obtain (B.1). Then (B.1) can
be directly applied to obtain the rate of convergence for the estimated loadings. This will
be done in Section D.2, where we show that the remainder term is of a smaller order than
the leading term.

Importantly, both the signal strength xny = Amin(Xfz) and the “noise” cov(vy,) plays

an essential role in (B.2), which are to be reflected in the rate of convergence.

B.2 Estimating the loadings

Throughout the proofs, as T, J — oo, N either grows or stays constant.

Write M, be an N x J matrix, whose ¢th row is given by

T
1 -
M, = T E arplaztes)®(x,)".
s=1

Write Ry = (Ryy, ..., Ryt)', where R;; was defined in Proposition D.3. Then the Bahadur

representation in Proposition D.3 can be written in the vector form: A = (2E®(x;)®(x;)") ",
E(yilx) = B(yix) + MaA®(x) + Ry = AB(fi[x)) + MoA®(x) +Ri.  (BA)

Let V be a K x K diagonal matrix, whose diagonal elements are the first K eigenvalues
of &/N := ﬁ ST E(yi|x:)E(y:|x;)". By the definition of A, %i?& = AV. Plugging in
(B.4), with X = %Zt . E(y:|x:)E(y|x;)’ we have,

T
- 1
A—AH= ZBZ-, = 7x Z (F,|x;) E(£|x,) A'AV ™! (B.5)
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where for A = 2E®(x;)®(x;)") 7},
1« Ny

B = ;AE(ft]xt)CD(xt)’AM;AVl, B, =
1 Ny

B; = TN ; Mo AP(x) B(f[x;) A'AV™ B, =

T T
1 e 1 e
Bs = > MAS)RAV!,  Bg= N > RE(filx)A'AV
=1 =1
1 tT . T .
Br = — Z:; R,®(x)AM,AV™,  By=——> RRAV "

t=1

We derive the rates of convergence by examining each term of (B.5).

B.2.1 Proof of Theorem 4.1: + 37 | X; — H'\|?
Proposition B.1. Suppose J?log® N = O(T), n > 2, and J?/T + J " < xn. Then

—HA AHHF—OP( + X

Proof. From Lemma D.5 and Proposition D.3, we obtain

T
1 1 J _ J3log N J%log Nlog J
VL2 * 2 _ 1-2n 2((1 1)
FIMAP s 7 S = Opl 7 e, Tloelod,
J
< OP(?—FJI*Z")

under the assumption J%log® N = O(T), ar = C+/T/log(NJ) and ¢; > 2. Hence from
Lemma D.5 and Proposition D.3,

8
L~ 2 1 2
~A—AH[E = OP(N;HBZ-IIF)
1 . 1 <&
= Op(5IMal*Tmax > | R /x3)
t=1

o1
+Op(—||M ||2 L+ 5 IMa. ||A%/(Nx?v))

+Op( max—ZthXN + maX—ZR 2/x%)

IN

OP(X;\fzJ)<NHMaH2 +max Z R;,)’

t=1
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T
iy, 1 1
0P O (R IMG 12+ max = S R2)
t=1

TR (L ]

J
Op(= T

b
< OP( + J7E) R

IN

The last equality is due to (% + J*=*7)xy'J = O(1), granted by 5 > 2, and J?/T + J " <

B.2.2

B, =

B3:

B5:

B; =

Proof of Theorem 4.1: max;<y [|A; — H'A{]|

T T
1 g 1 g
N ; AB(f|x)®(x,)AM. AV~ B, = N ; ABE(f|x,)RIAV !,

T T
—1 'AAV L _ 1 / I Ar—1
i tzl M, A®(x,)E(f,|x,)AAV Bi= Z M, AD(x,)B(x,) AM, AV

T T
1 ~~ 1 ~~
_N E MaAq)(Xt)RgAvil, B6 = ﬁ E RtE(ft’XtyA/Avil,

t=1

t=1

T T
1 e 1 S
N E R;®(x,) AM/, AV, Bs = v § R,RAV .

Proof. By Lemma D.9 max,<y |M,a| = Op(J"WJ + \/J(log N)/T). Let By, ..., Bis
respectively denote the ith row of By, ..., Bg. We have

max 1Bl
max B2l

max |Bisl|

max | Bial|

max |Bis |
max B ||
max Bz ||

max | Bisl|

<

IN

IN

IN

IN

IN

IN

IN

_1/2OP(||M AH/N) < OP(X m;aXHMz,aH)
N /2Op maX—Z:R2 1/2

X' ?Op(max HMWH) = Op(J T + v/ T(log N)/T)x 5"
Op(maXIIMmH)OP(HM’KH/N) N

Op(maXHMmH)Op(\/_maX—ZR2 )2

maX—ZR 1/2

Op(max ZR?t )2V 1)0p(IMA|/N) xR

max = Z RZxXN)-
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Hence
max [|A; — H'A|| < Op(max [|Bio|| + max [|Bis]|)

—-1 [SPlog N _
= Op(JWT +\/T(log N)/T + a7 D/ ;g ek
= Op(J " J++/J(logN)/ _1/2,

where the last equality follows from

_i—1) [J3log N Jlog N
aT(Cl 1) - = O( = )

under assumptions (log N)?J? = O(T) and (; > 2.

B.3 Proof of Theorem 4.2: factors

Recall that g(x;) = %./AX E(y:|x:). By (B.4), g(x;) — H_lg(xt) = Z?Zl C;;, where

1

N 1
o~ -~/

Ct2 = —NH/A/(A — AH)HilE(fAXt), Ct4 = NA Rt.

Cn = —(A—AHY(AH-—A)H'E(f]x,), Cuz= %K/MQACI)(xt),

The convergence of & >1_ ||g(x;) — H 'g(x,)||? in this theorem is proved in the fol-

lowing proposition.

Proposition B.2. As T — oo and N either grows or stays constant,

v 2
1 ~ -1 2 T2 Illeov(v)ll 1-92 J J3log® N
T E llg(x;) — H  g(xy)|| _Op(_ZXN Tl I L. A LN Sl ¥ : ).

Proof. Recall

J N J|| cov ()]l J J _
2 . 2 1-2n 2 . s C2
ag : T+J , byp = T —|—TN+Ta

By Lemma D.8, |[H|| = Op(1) = ||[H™!||. Also, by Proposition B.1 and Lemmas D.6, D.7,

1~ .
V1A = AH% = Op(adai).

1 ~ _
FIMoAllr = Op(azxy') + Op(byr)

| AR — AH)| < Op(x) (5 IMLA l + ( max—ZPf )2)
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Therefore, as + >, [|E(fi|x¢)[|? = Op(xn),
1 o 1~
T dolICal* < O[5 1A - AH|*Pxn < Op(arxy')
t=1
1 o 1, ~
T Do lICel? < Op(D[FA'(A — AH)Pxx
— o
< OP(CLZLTXX/1 + b + max T Z R?t)

T T a
1 1
72 lICulP = Op(max Y~ RY).

t=1 t=1

Finally, let 8, denote the ith row of ~A M, A, i < K. Then

T T
=Gl = Z | A ML AR = Z L)
t=1 =1 t=1

K
1
< ZH@HQHTZ‘I’(XJ@(XQ
i=1 =1
1~ 9 1~ 9
— Op() A MLAIE = Ol [AML )
< Op(byr +arxy')-
Thus
1 I 1,7
7 3 I8%) g0 < 0p(1) 3 1 3 Gl
=1
< Op(a?‘pxj\,l—l—bNT—i—maX ZR
J? Jllcov(v)ll = J  J3logNlogJ
< ST pedn -1, -2 s
= OZ(T2XN +J XJ 1+‘]N L A
_ og
+fO‘T + T2(<l ) T —)
J?2 T cov(v)l _ J  JPlog?N
<M Op(y by 20V I/ g2
< PaXy + T + t N T )

where (1) is due to (1, ¢, > 2, and J3log? N = O(T),

_ J3log N J3log NlogJ J3log? N
2(¢1-1) g g gJ g

?OZT + T v T + T2 - ( T2 )

and xy > J77 (so J2 4yt = O(J'72)). Q.E.D.

Proposition B.3.

JHlog N)?  J2 1 Jllcov(v,)l J

T
1 1
= /\_H—l 2: s o A Y S o A T YN Ts/l 1-2n .
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Note that y; — E(y:|x¢) = Ay, + u;. and 7, = %K/(Yt - E(yt\xt)). Hence from (B.4)
~ _ 1
v, —H 1’7t = NH’A/ut + Dy + Dy + Cyz3 + Cug (B.6)

where C,3, Cyy are as defined earlier, and
1 ~/ ~ 1 ~
Dﬂ = NA (AH — A)H_l’yt, Dtg = N(A — AH)'ut

1 ~/ 1~/
Ctg = NA MQACD(Xt), Ct4 = NA Rt.

Hence for a constant C' > 0, % Zt 1 |7, —H~ 1')’1:”2 < C(Zz 17 Zt 1 ||Dn||2+21 37T Zt 1 HCtZH )-
We look at terms on the right hand side one by one. First of all,

T
! 1
Bl S vt = covtmlp = 303 var(z v
t=1 —

T Var(%t%’t)

Il
N
| =

= O(T ") max var(viryjt)-

1, j<K

This implies || 7 ST A < Opler) where
1
er = [[cov(y,) + (5 masg var(vier0)) .

As for Dy, let G = 2A'(AH — A)H™! and let G/ denote its ith row, i < K. By (D.5),
and |[H™!| = Op(1),

IGI* < Or(xy )(—IIM’AIIF+ max—ZR2 )22 + Op(azxi’)-

Then

1 T K T K 1 T
f;HDnHQ = ZfZ(G;'Yt)Q:;G;T;'YtV;G
T

t=1

< ||— Z%%IIIIGIIF
= HG”FOP(CT)

< cT0p<x;V1)< IML A - + max—ZR Y22+ Op(erarxy’)-

t=1

Terms C;3 and C,4 were bounded in the proof of Proposition B.2:
1 - 2 4 2 N 2
fZIICt:’)H lecmll <Op maX—ZRnJr 2HAMaII )-
t=1
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Term Dy, is given in Lemma D.12:

1 T
fz Do |?
t=1

_ 1
= On(x3) (5 IMLAJ? + —max—ZRwNQTZHuM eSS R

s=1 t=1

By Lemmas D.10, D.11,

T
Jleov(v)l | J | J [ J -
/Ma 2 < O SHYPVUTs) J C2
N2T;Hus H > P( TN +T2 +N2T—|—TaT )
T T
L J'log NlogJ — J*21  J'logN g, -
o 2 DR < Op(m 4 e+ a0 ),

s=1 t=1

So combined with Lemmas D.6, Proposition D.3,

4 2 T
1 1 _
S LS el + 3 LSS I = Orferata?)
=3 t=1 =1 t=1

T
1 ~ 1
+O0p(L+erxy' + N7 71)<_2HM/0¢AH2+maX_ZR?t)

t=1

+0P( NQTZHU 06”2 N2T2 ZZ|H Rt|

s=1 t=1

N2T Z M| + N2T2 ZZ [WR.[%)

s=1 t=1

IA

M OP(val)(mHM;AHZ + max Z R, +
t=1

+OP(CTG%‘C‘J(_VQ) > S [ cov(¥,)ll

_1v,J (log N Jo J|| cov(~y J _

<@ Op(x\y)(——— + Xy 2 T S arxy)
- 2 2N TAN

<(3) O ( 1)(‘]4(lggN>2 _|_*1]—’2 —1_,_ JHC0€<75)“ +J12n+TjV)

= W T T2 T TN

where (1) follows from that 1 + cpxy' + Xy N™' = O(x3}) ; (2) is due to Za; +

a;Q(Cl_l) J41;gN + J41°gT]\2”°gJ = O(‘IH;—%N) and that ¢ = O(1) due to Assumptlon 4.1;

(3) is due to J "y = O(1).
Finally, £ S0 [+ HA'w||? = Op(5iz 1, E||Aw|?) = Op(L). Hence

Jog NP Py Jleov(y)l | ey, T

T
1 2 1. 12 1 -1
T t_zl 17, —H v, ||" = OP(N)+OP(XN ) T2 TEXN T TN)'

C Proof of Theorem 5.1

The proof of the limiting distribution of S under the null is divided into two major steps.
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step 1: Asymptotic expansion: under Hy,
1 < —
S=7v ; W AHWH A'w, + op(T71?).
step 2: The effect of estimating 3, is first-order negligible:
1 1 1
L ’ WA A AT —1 A7 -1/2
v ;utAHWH Ay = ;utA(NA S, A) A, + op(T7V3).

The result then follows from the asymptotic normality of the first term on the right hand
side. We shall prove this using Lindeberg’s central limit theorem.

We achieve each step in the following subsections.

C.1 Step 1 asymptotic expansion of S

Proposition C.1. Under Hy,
1 « .
§=rs > W AHWH'A'u, + op(T1/?)
t=1

Proof. Since HV/\\/'H < max; g; = Op(1), it follows from (B.6) that it suffices to prove under
Ho, X7 D,WLH AW, = 0p(T2), and X7 [|Dy||2 = 0p(T71/2),i = 2,3, 4.
By the proof of Propositions B.2, D.3, Lemmas D.6, D.12 and that D;3 = C;3,Dy = Cyy,

N & N &
?ZHDmHz = Op(mngZR?t)
t=1 t=1

NJ3logN NJ3log NlogJ

_ 1-2n
= Op(NJ'™%" + R T2 )
1
ey [0} B —
) P(\/T)
N 1~
T2 IDalP = Op(5IAM.IP)
t=1
J | NJag® a1y S log N

2—4n
T + T +J + ar Tt )
1

= 0] _—
P(\/T)
The last equality holds so long as NvVT = o(J?""1), NJ*log N log J = o(T?/?), ¢; > 2.
By Lemma D.11,

= Op(

N & 1 1 < 1 «
2 _ NP 2 / 2
TEHD&H = OP(WHMQAH +m?Xf;Ru+W;HUSMaH
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7 Y MR = o).

s=1 t=1
The proof of & ST D;iW%H’A'ut = op(T~Y/?) is given in Lemmas E.1 and E.2. It then

leads to the desired result.

C.2 Step 2 Completion of the proof

We now aim to show K,f]u‘//i/N = H'A'S,AH/N + op(T~'/?). Once this is done, it then
follows from the facts that H'A’S,AH/N = Op(1) and (H'A'S,AH/N)~! = Op(1),

(A'S,A/N)™ = (HA'S,AH/N) ™ + 0p(T712).

As a result, by Proposition C.1,

T
. 1 ! I A/ —11y/ A/ —1/2
S = ﬁ;:l WAH(H'A'S, AH/N) "H'A"u; + op(T1?)

T
1
= = > WANE,A) A+ op(T7).
t=1

Hence

TS-TK Y. wAAZA) A, —TK
V2TK 2TK

To finish the proof, we now show two claims:

(1)

+op(1) =4 N(0,1).

ST WANS,A) A, — TK
2TK
(2) AS,A/N = H'A'S,AH/N + op(T1/2).
Proof of (1) We define X; = w,A(A'S,A)"'A'n, and s% = Y, var(X;). Then
E(X;) = tr E(A'E2,A)*A'u,ujA) = K. Also by Assumption 4.1, s%/T — 2K, hence
we have E% Zthl(Xt — K)? < oo for all large N,T. For any ¢ > 0, by the dominated

—% N(0,1).

convergence theorem, for all large N, T,
1 & 1 &
- ;E(Xt — K)*1{|X, — K| > esp} < - ; E(X, — K)*1{|X, — K| > eV KT} = o(1).

This then implies the Lindeberg condition, % ST LE(X, — K)21{|X, — K| > esp} = o(1).
T
Hence by the Lindeberg central limit theorem,
S, X, — TK
ST

—4 N(0,1).
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The result then follows since s2./T — 2K.

Proof of (2) By the triangular inequality,

ASA - “HAS,AH| < H%(fx _AHY(S, - A

1 ~ ~
I (A — AH)E, (A — AH)|

= 1
N N
1 ~ —~

1 ~

1 ~
+2||57(A ~ AH)'S,AH].

Using the established bounds for ||1/i — AH]J| in Theorem 3.1, it is straightforward to verify
|i(A — AHYS, (A — AH)| = op(T~'/?). Other terms require sharper bounds yet to
be established. These are given in Proposition E.1. It then follows that KliuK/N =
H'A'S,AH/N + op(T~%/?). This completes the proof.

Q.E.D.
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D Technical Results for Section 4

D.1 Bahadur representation of the robust estimator

The main goal is to achieve an expansion for E(y;|x;) — E(y:|x;) (Proposition D.3). This
requires the rates for max;<y ||b;o — b;||, max;<y ||gZ — b;||, and an expansion of BZ — b

These are given in the propositions below.

Proposition D.1. For any 4 < k < (o + 2,

_hll = —(k—1)
mas by — byl = Olaz ).

Proof. Let
zit = E(yin|x:) — bi®(xy).

We first prove that for any 0 < k < ( + 2, max;<y sup, F(|ex|*|x; = x) < oo. In fact,

uniformly in x for x, =x and i < N, aslong as (o +2 > k
E(leq||x) = / P(leq|* > x|x;)dx
0
< 1+/ P(lex)® > x|x,)dx
1
<1+ / B(e21{jen] > 2%} )2~ da
1

< 1 +/ Cz~CHt/k gy « oo,
1

Since ¢, > 2 by assumption, there is k > 4 so that max;<y sup, E(|e;|*|x; = x) < oo.

Now recall that b; = arg min E(y;; — bl®(x;))?. Hence

E(yie — bia®(xt))* = (yie = Di@(x0))*] = (o — i) ER(x:) (1) (Do — by)

> c|bio — byl
On the other hand, let g,(2) := 2% — aZp(z/ar). Then for C' > 0 as a generic constant,

El(yi — b;’aCI)(Xt))Q — (Y — bQ@(Xt))Q]
= Ega(yi — bio®(xt)) — Ega(y — b®(x:))

2



+EBlo}paz! (ya — b, (x1)) — adp(az’ (v — BiD(x1)))]
<) Ega(yit — b}, P(xt)) — Ega(yir — bi®(x))

<@ E[2Z — arplaz'2)[|@(x,) (b; — by,

<@ 207" VEE|®(x,) (b; — b

<w 205" VE|z + ey + (b — b)) ®(x,)[F|@(x,)'(b; — bio)|
< Cap* VE(C + |(b; — b)) ®(x;)[")|@(x:)' (b — bya)|

where (1) is due to the definition of b; ,; (2) is by the mean value representation: g,(2z1) —
9a(22) = (22 — arp(Z/ar))(z1 — z), with 21 = yi — b (%), 22 = vy — bjP(x;), and
Z =y — B;@(xt) for some Bl lying between b; and b, ,; (3) is due to

22— arplag'2)| < 22| > ar)
EIE -
2|2 == HIZ| > ar}
Qp
< 20z /o

IN

(4) follows from Z = y; — E(yit|x¢) + biP(x4) + 231 — Bg@(xt), and that ey = yir — E(yu|X¢)-
Next, for ease of presentation, we introduce My = C + |(b; — b;)®(x,)|F and A; =

b; — b, . Then the above inequality can be further written as:

E[(yit — b} ,®(x¢))* — (yir — bj®(x4))?]
Coy " VEM;|®(x,) A

Cog " VE[M2A!D(x,)D(x,) A2
Cor " VA EMED(x,)D(x,) A] "/
Cog“ V|| EME® (%)@ () |2 Al

IN I IA

IN

We now bound maxi<y || EMG®(x,)®(x)'|| = max;<y supy, = EMj(®(x;)'v)?. By the
Cauchy-Schwarz inequality, since ®(x;)'v is sub-Gaussian with the universal parameter,

sup [EMZ(®(x,)v)?)? < EM;; sup E(®(x,)v)* < CEM,;

[vl=1 lv]=1

< C(C + E|(b; — by)d(x;)|*)

~ 4k
- b, — b,
[bi — by

IN

3



< C+ C’HAZ-H% sup E(V/(I)(Xt))4k <C+ C’HAZ-H‘““.

[v)=1

Therefore, we have proved that uniformly in 7,

El(yss — b, ®(x:))? — (e — bi®(x,))?] < Caz""(C+ CllA ™) 4| A
< Car" V4 AdM A

We have also proved that the left hand side is lower bounded by ¢||A;||?. Uniformly in 4,
Al < Car™ P+ A,

If max; ||A;|| = O(1), then || A;]| < Coz;(k_l). Otherwise, max; ||A;|| < C’oz;(k_l) max; || A||¥,
which then implies 1 < C(max; | A;]|/ar)*~!. However, note that |A;]| < ||b|| + [|biall <
CJY2 and J = o(a2), we have max; ||A;||/ar = o(1), which is a contradiction. Therefore,
max; || A < Ca;(k_l). Q.E.D.

The following lemma shows the sieve approximation error is uniformly controlled.
Lemma D.1. Under Assumption 3.2, there isn > 1, as J — o0,
maxsup | E(yalx; = x) — bib(x)| = O(J™).
Proof. Recall that for £ < K,
Vi = arg min E(fir — V'®(x))? = (E®(x,)P(x,)) ' ED(xy) fre

and that b; = argmingcps Ely;; — b'®(x¢)]? = (E®(x;)P(x;) ) P EP(x;)y;:. Also note that
Vit = ANify + u. We have b; = Z,ﬁil vi\ir. Hence

K
maxsup | E(yalx, = x) = bi®(x)| < maxsup| ’; Nik(E(fulxe = x) = v, @(x))]
< O(1) maxsup |E(fix|x; = x) = vi®(x)|

O(J).

Q.E.D.
We now give the uniform convergence rate of BZ as well as its Bahadur representation.

Define

ar

Qb =7 ga%p (B i),

4



Proposition D.2. When ar < C\/T/log(NJ) for any C >0, and any 4 < k < (o + 2,

=~ JlOgN —(k—1
max [bi — byl| = Op(y) “—— + a7 7Y).

Proof. Let mp = M. We aim to show, for any € > 0, there is 6 > 0, when for all large
N, T,
P(min inf Q;(bjo+mrv) —Qi(bin) >0)>1—e

i<N |u]=3
This then implies max; ||b; — b; .ol = Op(mr). The result then follows from Proposition D.1.
By the definition of b; ,,

E[®(x¢)p(az'ena)] =0, Cita = Yit — P(x¢)'Dj a0
In addition, we have e;s = €;1 o+t o, Where Ay, == (b; o —b;) ®(x;) — 2. Using the formula:
pla+1t)—pla) = pla)t + fot(,b(a + ) — pla))dz for a = ap'ey o and t = —mrays ®(x) v,

T
1 Lo
Qi(bjo +mrv) — Qi(b o) = T Z mTOéTP(QTleit,a>(I)(Xt)/V

t=1

1 T ) —mral ®(x) v ) )
+ > Hoe(x)v < O}aT/ plag eia + 1) — plag eira)de
=1 0
T 0

— H{o(x) v > O}a%/ p(a}leit,a + ) — p(agleit,a)dx.

=1 —mTaq_}q?(xt)’u

By the definition of p, the integrant can be rewritten as:

p(a%leit,a + fE) - p'(a}leit,a)
= 2x1{|a;1eit,a +z| < 1, |oz;leit7a| <1}
+(plag'eira + ) — plap'eia)){lap eira + 2| > 1, or lag'ena| > 1}

= 2r— (p(a;leim +x)— p(agleim) — 2x)1{|a;16it,a +zx| >1, or \a;leim] > 1}

In addition, note that

p(w1) — px1)| < 2|21 — 23], Vg, @0

Thus we can further write:

Qi(bio +mrv) — Qi(biy)

5



1 o
= ——ZmTosz(oleeim)(I)(Xt)’u
=1
mTocT

+= Z aT/ Qxdx
1 —mTa;lé(xt)’u
—— Z H{o(x)'v < O}Oz?p/ a(z)b(z)dx
0

t=1

’ﬂ

~

0

& (x,)v > 0}a2 / a(2)b(x)dx

mraor Lo (x;) v

+

N[ =
zma

v

IIVII 5TZQT mTaT D(x;)'v)?
T

1
—max sup |— myarp(ag e q)®(x) v
: HVP(S\T; rarp(ar €ia)P(x:) V|

mrarp |<I> xt)'v|
—max sup — Qo 4ab(x)dx
ZW%TZT/ (x)

= Al A2 A3

In the above,
a(z) = plag' eina + ) — plag'eira) — 20
and

b(x) = 1{]04}16”,& +z| > 1, or |a;1eit7a\ > 1}.

We now lower bound A; and upper bound A,, As.
First of all, there is ¢ > 0 independent of §, with probability approaching one,

Ay = inf V=) mid(x)P(x,) v
lvll=6 Z
T
Z mln Z Xt ’rn’T(s2
—1
> cmT(52.

As for Ay, note that |arp(az'eira)| < leial < leit] + |Aial. Uniformly ini < N, j < J,

-1
)

by Holder’s inequality, with an arbitrarily small v > 0, and p = (1 + v)

E(plag'eina)d;(x)) < ap’Elarp(az’eia)d;(x))”

6



IN

20‘;2E<€?t + A?t,a)¢j (Xt)2
< 20 BE{e}|x:}0i(x¢)* + 20;° EAY, ¢ (%)
< Cop?((E{elx}' )P 4+ C) < Caz?.

Note that [p| < 2 and {¢;(x;)} is sub-Gaussian, thus by the Bernstein inequality, for x =
2log(NJ),

T =1 , 2 T
P Y 05 o = | LSO ) g,
t=1

Note that when ar < C+/T/log(NJ),
\/ 2B (p(oag eina) ) (x1))%

N Cx < C'log(NJ) N C'log(NJ) <9 C'log(NJ)

T T = 02T T - o2T
Thus
T
1 Lo C'log(NJ) C
P(max | ; plag eina)d(x1)] > aap ) S ONJexp(=2log(N)) = 5.

Therefore, with probability approaching one,

T
1 L
Ay < mTaTCSmZ.aXHfE Pl eire) ®(xe)|

t=1

i<Nj<J T

T
1 o
< mpapVJ§ max |—Zp(aTleit7a)¢j(xt)]
=1

C'Jlog(N)

< omyp 7

As for As, note that uniformly for x < mrpan'|®(x;)'v], and e = €0 + At

Hlar o + 2| > 1, or |ag'enq| > 1}

g ein + o] 2 1} + oz esal = 1}

2 X {|eira| > 3ar/4} + 1{mr|P(x:) v| > ar/4}

2 x {|ex| > ar/2} + H{mr|P(x) V| > ar/4} + 1{|Aio| > ar/4}.

IAIA

IN

In addition, with probability at least 1 —€/10,

1 T

miafoH]eit\ >oar/2} <@ mla,XP(]eit\ > ar/2)

t=1



log N
T

max P(|e;| > aT/2)1/2,

= Umrl| @[5> ar/4) < 10P(mad|B(x)]| > ar/4) e

T T

1 1
max ; Aol > 0r/4} < max ; || ®(x,)|| > Cak} + 1{|zi] > ar/4}
< 10P([|@(x)]| > Cat)/e
log N
YOI 02+ Og CJ " ar,

where (1) follows from the triangular inequality,

T

1
mzaxf21{|eit| > ar/2} < m?XP(|€it| > ar/2)

t=1
T

1
+mlax|?z Hlew| > ar/2} — P(lei| > ar/2)],

t=1

and we used Bernstein inequality+union bound to bound the second term since the indicator

function is bounded. Hence for an arbitrarily small v > 0, by Holder’s inequality, for some

generic constant C' > 0, independent of ¢,

As <

IN

IN

a1 24 el P [1{leal > ar/2)
g v 5

+1{mT|‘P(>;) V| > ar/4} + H[Airal > ar/4}]

C’max Z Hlew| > ar/2} + H{mzd||®(x)|| > ar/4} + 1{|Awal > ar/4}])

ZH@ IP)" (mrd)?

log N
(mTé)gC(maxP(|eit| > ar/2) + 4/ O’; max P(|e;| > aT/2)1/2
+10P(mzo||P(xq)|| > ar/4) /e

log N -
HOP(Jo0)] > Caf)fe-+ Cah 45X 0T ar) (4 B0

We now upper bound E||®(x;)[|?* and P(||®(x;)|| > x) for any z. Since {&;(w;)};<s is
sub-Gaussian, by Lemma 14.12 of Biithlmann and van de Geer (2011),

Bllo(x)||" < JY"B(max ;(x,)*")
S



P([[@(x)]| > x)

Therefore,

As

IA

TV B (a5 (%) — Boj(x0)?/*]) + T/ max B (x,)"
J J

< JY°Clog(J).
< P(max|¢;(x)[?J > 2%) < Jmax P(|¢;(x,)| > z/J"?)
j j
< Jexp(—Cz?/J).
(mT5)2C<maXP(]eit| > ar/2) + 4/ log%maxp(]eﬂ > ozT/2)1/2

+CJexp(—Caz/(Jm3.6%)) /e
log N
T

1—v
+CJexp(=Ca2¥/J) /e + CT /a2 + cJn /ozT) J(log J)"

= (mT(S)ZClT.

Note that Ir = o(1).

Consequently, for any € > 0, there are C, ¢, and ¢, independent of § (may depend on ¢),

with probability at least 1 — €, uniformly in i < N and ||v|| = 0, for mp = /28X

T

Jlog N
T

V

Qi(bi o +mrv) — Qi(bio) > mid*(c—clr) — dmpC

> mgpd(mrdc/2 — Cmy) >0

so long as d¢ > 2C. Thus max; ||b; — b; ol = Op(mr).

We now prove a simple lemma.

Lemma D.2. There is M > 0 for all x > M,

maxsup P(|ey| > z|x, =x) < Cz=%72
<N y
max sup £ (|eg|1{|ex| > z}|x, =x) < Ca 7L
<Ny =

Proof. Uniformly in x = x; and ¢« < N,

P(leq| > x|x;)

E({lew| > w}|x)
< E(ei]|ey] > 2}|x)2™? < Cx=272

E(21{|ey| > x}|x,)z™" < Cox=7h,

IN

Elei|Hlew| > }xi)



Lemma D.3. Uniformly fori=1,...,N,

Bi — b = (2E¢(Xt Z an aT ezta (Xt) + Ri,ba

where max;<y |Rip|| = Op(ag &Y +\/logJ J\/JlogN

Proof. Note that VQ;(b) = —+ ST arplazt (yiu—@(x;)'D))@(x;). Define Q;(b) = EQ;(b),

pi(b) = VQi(b) — VQ;(b)
= E@T/)(a%l(yz‘t — ®(x)'b))P(x¢) — %Z aTﬁ(‘)‘%l(yit — ®(x¢)'b)) P (x).

The first order condition gives VQZ(BZ) = (. By the mean value expansion,

0 = VQi(b) — VQi(b;) + VQi(b;) — VQi(bio) + VQi(bia) — VQi(bia) + VQi(by )
= ( i) + VQ@( i) — vaQ; (bia) — t;(bia) + VQi(b;a)
= V2Qi(b;)(b; — bia) + VQi(bia) + p;(by) — p;(bi).

for some b; in the segment joining b; and b; . We now proceed by: (i) upper bounding
max; ||u,l(BZ) — p;(b;o)||, and (ii) finding the limit of V2Q;(b;) uniformly in 1.

(i) Note that in the proof of Proposition D.2, we have proved that for any € > 0, there is
0 > 0, so that the following event holds with probability at least 1 — e:

Jlog N
i

max Ib; — bl < dmp, mp=

We bound Emax; supyp,_,  <smy [#:(P) — 1;(bia)|. Let ui;(-) be the jth element of p,,
j < J. Since {y:,X; <7 are serially independent, there exists a Radamacher sequence

{et} i< with P(e; = 1) = P(e; = —1) = 1/2, that is independent of {y;, x;},

E max sup |,Uij(b) - Mz‘j(bi,a)\

ISNIST b—b; o [<6mer
< 2E max su ]— e — ®(x4)'b))
>(a) A , P t T yzt t
ISNIST ||b—b, of|<émp T

—plag (yae — q)(xt)/bz,a))) ¢J (Xt)|

10



1 T

4F max sup | = Z £:®(x¢) (bso — b)gj(x4)]

NS by o<omr 1

IA
L
=

T T
1 1
< 4domgFE max ”T ;1 10 (x) (%) || < 40mpV JE max |T ;1 1 (x¢) i (xe)|
I T
< A0mgV I log Eexp (Ll ma| ;_1 €t¢j(xt)¢z(xt)\>

T
<) 45mT\/j; log Z Eexp (L_1| Zst¢j(xt)¢l(xt)|>
t=1

Li<d

L T
<@ 4 =1 ———
<(e) (5mT\/7T og Z exp (2(L2 — LKO))

LisJ

L
= 46 — (21 —_—
mT\/jT( OgJ+2(L2—LKO))

2Llog J colog J Jlog J
= 4 < )
smpV'J ( ot T | < Comry [

Note that |p(-)| < 2 and {¢;(-)} is sub-Gaussian, hence (a) follows from the symmetrization

theorem (see, e.g., Theorem 14.3 of Bithlmann and van de Geer (2011)); since p(-) is Lips-
chitz continuous, (b) follows from the contraction theorem (e.g., Theorem 14.4 of Bithlmann

and van de Geer (2011)). Let K, denote constant parameter of the sub-Gaussianity of

{1(x4)d;(x¢) }1.5<; for some ¢y > 0, let

| T
L=K .
ot colog J

Then (c) follows from the Jensen’s inequality; (d) follows from the simple inequality that

exp(max) < Y exp; (e) follows from an inequality of exponential moment of an average for
sub-Gaussian random variables (Lemma 14.8 of Biihlmann and van de Geer (2011)).
Therefore,

logJ  C.J32(log Nlog J)'/?
E max sup le;(b) — p;(bio)| < Cdmrp 087 _ (log N'log J) .
o Ib=byo||<émp T T

Hence

max || (bi) = pi(bia)|| = Op(J**(log N'log J)'/*/T).

11



(ii) Note that
VQ;(b) = —ECID(Xt)an(oz;l(eit + zi) + a;lé(xt)'(bi —b)) = —Ed(x;)Au(b)

where Ay (b) = Elarp(ar (ex + 2i) + az ®(x;) (b; — b))|x]. Let g.; denote the density of
eit, and let P, denote the conditional probability measure conditioning on x;. Then careful

calculations yield: VA;(b) = —2®(x;)" + Z?:1 B j(b)®(x;)’, where

=)

= —2argei(ar — (b; — b)@(x;) — 2a),

= —2argei(—ar — (bi —b)'®(x;) — zi),

= —2P.((b; — b)'®(x;) + 23t + €;r > ar),

= 2((bi = b)'®(x¢) + zit)gei(ar — (b; = b) D(x;) — 2ur),

= 2P.(e;y < —ar — (b; — b)®(x4) — 2it),

= —2((b; = b)'®(x¢) + 2it)ge,i(—ar — (b; — b)'®(x;) — 2it),

= 2[ar — (b; = b)'®(x;) — 2it)gei(ar — (b = b)'®(x;) — 2it),

= —2(—ar — (bi = b)'®(x¢) — 2it)gei(—ar — (bi — b)'P(x) — 2u).

~
~
—

=}

N
R
V)

=}

~
=
w

=3

<
o~
N

~ N /N /N N N

o

T o

<
S
=}

=}

~
=
3

SSRICS NS ISR RS S o

~
o~
0]

Since max; ||b;—b;|| = op(mr), maxy |zi| = op(ar), ®(x;) is sub-Gaussian and J log Ny/Iog T =

o(T), we have: with probability approaching one, for any ¢ > 0,
max|(b; — b;)/(x,)| + max|z| < ear.
Hence with probability approaching one,

max | Z Bit7j(gl-)| < Carmax sup g.;(far+z) < Ca;(crl),
7 - v jzl<ear
J#3,5

max | By 3(bi) + Bis(b))| < Cmax P(ley| > (1—€)ar) < Cag@*?
Hence
_ o~ 8 N
||V2Q7,(bz) - 2E(I)(Xt)q)(xt)’” = || ZE(I)(Xt)q)(Xt)/Bit,j(bi)H _ O(Ja;(ﬁ—l) + J(X;(CTM))'
j=1

~

Consequently, b; — b; , = —(2E®(x;)®(x;)") ' VQi(b; ) + Rip, where
max [Riy|| < 1(2E® (%) ®(x.)) "M |([V2Qi(bi) — 2B®(x,)B(x,)'[||[bi — biall

12



+max [[p;(bi) — py(bia)ll)
log J
T

= Op(&;(clil) + Oé;(@JrQ) + )JmT

Proposition D.3. Let E(yy|x,) = B;CI)(xt). Then for A = (2E®(x;)P(x;) )},
. 1 &
E(yi|x) = E(yulx:) + ‘ID(Xt)/Af Z O‘TP(OZEIQS)‘I’(XS) + Ry + Roji + R,
s=1
where (recall that zy = E(yi|x:) — biP(xy))

T
1 L L
Rl,it = CI)(Xt)/AT ; aT[p(aTleis,a) - p<aT16is)]q)(Xs)

Roiw = ®(x)(Rip+bio—by), Rs i = —2.

Write Rit = Rl,it + RZ,it + Rgﬂ't, then

T
1 B sy JPlog N JPlog Nlog J
mlax— ;1 R?t = Op(J1 m 4 ar (@-1) + 5

1~ 4 Jlog N
max 7 Z |E(yirlxt) — E(yielx:)|> = Op( T + J7).

t=1

),

Proof. By Lemma D.3 and Proposition D.3,

~

E(yirlx:) = E(yislx) + B(x,) (b — bia) + P(x) (bs.0 — by) — 241

T
1 -
= E(yulx:) + @(xt)’A? Z arp(ar'eisa)P(x,) + @(x) (Rip + bia — bi) — 2is
, S;l
= E(yit|xt) + (I)(XtYA? ; OéTIO.(Oé;lQ'S)q)(XS) + Rit‘
On the other hand, uniformly in i, for a = Apax(7 Zthl O (x;)P(x4)'),

T T

1 1 o .

=2 B < aClAIPIZ Y arlplor!ena) — plore)] (x|
t=1 s=1

1
2 2
+CLCHRi7b+bZ‘7a _sz +Cf¥’zzt

IA

1 1
D leina — i [DGE))? + ClIRG + Cllbi — b + O 37 22
s t

13



IA

1 1
C ) (aul® + bia = bil Pl @(x) %) D 120x)[* + C[ R
t

+C|bsa = b||* + Op(J )
_9 log J

— Op(N(T2+ Jaz” ") 4+ O0p(a;” 7V + 0y “2*2)+—T ) J2m2.

Also note that a;2<2_4 = O(log N/T). Finally,

T
1 N
max E |E(yirxt) — E(yielx:) |
=1
T

< maX—Z@xt b; — b; |2—|—maX Z

= =1
< a|b; — bi|*+ mlaxf Zz;
=1

Jlog N _9

k— _
= Op(—— +ag" 1+J2’7).

The term involving a;Q(k_l) is negligible since it is smaller than (log N/T')3.

D.2 Technical lemmas for the loadings

We shall first examine the behavior of V- and H. This is given by the lemma below.
Define
) =l S BRI+ 5 D (G
t
Lemma D.4. Recall that V is a K x K diagonal matriz, whose diagonal elements are the
eigenvalues ofE}\{?VE{E(fﬂxt)E(ft|Xt)’}§]/1\/’]2v. Suppose J/T+J "+ /log N/T < xn. Then
()
log N).
T

(ii) V71 = Op(xy"). (ifi) 33 (x) = Op(xn)- (iv) [H| = Op(1).

IV =V =0p(J7"+

Proof. Recall that X, = AX,A’. Let V be a K x K diagonal matrix, whose diagonal ele-
ments are the first K eigenvalues of X, /N, which are also the eigenvalues of 2%32 A, NE%;.
By Assumption 7?7,

Amin(V) = Auin(S S v E2) > caxw

14



with ¢, > 0 being a constant. On the other hand, by Proposition D.3,
12 =Byl < max— Z |E Yirlxe) E (y]tlxt) E(yit|xe) E(yje|xe)]

+max |f Z E(yi[xe) E(yje[xe) — E{LE(yir|xe) E(yje[xe) }H|

log N

< max||b; — by Op( ||—Z¢>xt (x,)'[|) + Op(J " + gT )
log N
— Op(J7"+ gT ).

By Weyl’s theorem,

logN)
)

~ 1~ ~
IV =Vl < SIE -2 < |2 =Xl = 0p(J7" +
(ii) Because J~" + /log N/T < xn, with probability approaching one,
Amin({/) Z /\m1n<V) - H{} - VH Z QAXN/2

(iii) For notational simplicity, write g; := E(f|x;). First of all, we show g; has a finite
fourth moment. In fact, v, := (E®;®,) ' E®, f;; has a bounded norm due to Assumption
??, thus by Assumption ??, v, ®(x;) has a bounded forth moment. Then by Assumption

7?7, there is C' > 0,
E|g* < sup max C|E(fx|x:) — V;CCD(xt)|4 + OE(VZ@(Xt))ZL < O(1). (D.1)

Because E(fi|x;) is independent across t, H%ZtT:l g8 — s = Op(\/LT), implying
HTZt Lggll < Op(T7Y2 + 4y) = Op(n), where the last equality is due to ¢y =
)\max(zﬂz) > XN >/ 1/T Now

Ellged; () 1? < (Ellgl|* oy (x0)) '/

So each element of g;¢;(x;) has a bounded second moment uniformly in j < J. Thus we

have [| 7 3=, g: (%) — Egi®(x,)'|| = 0p<\/¥>. Similarly, | 37, g~ Ellg:]l*| = Op(T~?).
Hence by Assumption 77, recall that xn = Anin (Fg:8}),

, J
On(x) < 2| Eg®(x)[” +2B|eill* + Or(z)

15



J
< 2||EP(x;)gie®(x,) || + 2tr Egig) + OP(T)

J
< Cxn+ Op(?) = Op(xn),

where the last equality is due to the assumption J/T < xn.
(iv) By the definition that the columns of \/LN./AX are eigenvectors. We have H%A'JAXH <

H\/LNAH < v/2x = O(1). So by part (iii)

T
1 1~ _
IH) < 11 > el ARV < Op (i) = Op(D)

Q.E.D.

Note in Lemma D.5 below that terms B, B, and B have two upper bounds, where the
second bound uses a simple inequality |MaA|2 < M2 A% Such a simple inequality is
crude, but is sufficient to prove Proposition ??. On the other hand, given Proposition 77, a
sharper rate for |[MyA||? can be found. As a result, the first bounds for By, By and B+ are

used later to achieve sharp rates for g(x;) — g(x).

Lemma D.5. (i) |[M,||? = Op(NJ/T + NJ'721),
(i1) | Bill} = Op(IMLA|2/(Nxw)) = Op([Mal[?/xn),
IBs[|% = Op(IIMall*/xn)-
(iii) | Bsl[} = Op(N max; 3, R},/xn) = |Bsll%,
(iv) |Bal} = Op(|[MaPIMaAl2/(N2xE)) = Op(|[Mallt/ (N X)),
Bl = Op(N(max; 5 3, B3)*/x%),
(v) B} = Op(IMa|*J max; 3 3y Ba/x30)-
IB1[|% = Op(max; £ Y1, R2J[MaA|/(NX3)) = Op(||Mq ) max; £ S R2/X3%).

Proof. By Lemma D.4, 6% (x) = Op(xn)-
(l) Recall that Cit — 6#70[ + Ait,aa Where Ait,a = (bi,oc — bz)/q)(Xt) — Zit-

N N J 1z
E|Mll7=E ) [Mial* = ZZE(f Zan(aEleis)qﬁj(Xs))z
N J 1 ZT1 o N J
< 2y ) K TZan ar'eina) 05(x))* +2) D Bl 22!% — €is,al |65 (xs)])*
i=1 j=1 s=1 i=1 j=1

16



=1 ]{7:1 y . . . .
*CZZE% S I(bia = b D)oy ()P + O 37 ST Bl 3 i)

< (NJ/T + NJ2a2F0 4 N2,

where the first inequality is due to the triangular inequality and |p(t1) — p(t2)| < 2|t; —ta|; the
second inequality is due to E/)(a;leis,a)@(xs) = 0 and that e;s— €50 = (b0 —b;) P(xs) — 2is.
(i) The bound for ||Bj||% is similar to ||By||%. Since |V = Op(x3)),

1 2 52 ,
1Bl < 7l AF IO GOAIPIMLAIFIV T = Op (S ( )HM All%)
= Op(|Mal*/xn)

(iii) By Proposition D.3, & ", ||R¢||> < Nmax; ~ >/, R2. Hence
~_ 1 1
IBafl7: < Op(IV 1”%;2 HE(ft!Xt)HZTZ IR:|”
t
= NmaX—ZR /XN)-

The bound for |Bg||% is similar.

(iv) We have

IBallE < HM Al H—Zfb ) (x:)' Al ML APV
= Op(|Mal*[M, A|| INXN)
= Op(IMall5/(NX))-

Also, [|Bs|[3 < 32 (7 ey IRePIAVH? = Op(N(max; 1 0, B2)?/xR).
(v) Bs and By are bounded similarly.

T
1,1 SO
—2||—ZR@(Xt)’AHQHM;AIIQIIV ik

IB7[|7 < N

= max—ZR JIMLA|*/(Nx3))

17



T
1
Op (M max = S 12 /%)

t=1

Q.E.D.

Given Proposition 77, due to
IMGANIE < 2[Ma [ A — AH|IE + 2| ML A[||HIZ,

the rate of convergence for |M.AJ|% can be improved, reaching a sharper bound than
]|1\/Ia||2||./A\||% This is given in Lemma D.6 below. As a result, rates for By, By, B7 can
be improved as well.

Write
3 J|| cov(v,)|| J J _
1-2n 2 . s Cz
+J , by = T + TN + = T

2

Lemma D.6. Given Proposition 77, we have

1
IMLAR = 0p(Ry)

1 "~ _
HIMLAIE = Op@Rs) +Op(xilad),

Proof. The proof is a straightforward calculation as follows:

N
E|MAlR = Bl Y XM

T N
1 .
= Bl DD darplazte)®(x,) |7

s=1 i=1
K

J T N
= > Z E(% > Z Ainarpag eis) o;(xs))”
klz(l ]jl 1 s=1 i=1

= E(TZZQ/\ikeisl{|eiS| < aT}¢j(X8))2

k=1 j=1 Sl’Ll
J

Nu

S B S hwarplaze el 2 ar)a ()

=1 j=1 s=1 i=1
T N

J
ZV ;1 Z zkezs¢] Xs

=1 1 i=1

J 18 T N
ZE fZZ Nineis| H{leis| > ar}e;(x,))?.

]:1 s=1 i=1

+
o

A
(070]
Mw

k‘

=1

<.

+12

&Mw
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To bound the first term, Let F, be the conditional expectation given x,. We need to
bound 37, .y | Eweisers|. Note that e, = x5 — E(wis]X,) = ANy, +uis. Since E(u,lfy, x) =0,

we have

E(7su;|XS) = E(fsu/s’XS) - (EfS|XS)E(u;|x5)
= FE(fyu)|x,) = B(f,E(u|x,, f,)|xs) = 0.

Hence By (eise1s) = Ew(Ny, + i) ( ANy + ws) = X cov(v,)A; + Ey(uisuys). Therefore,
s I Is 7 s

K J 1 K. J N
82 Zvar T Z Z Aik€is®i(Xs)) = 82 Z T Var(z Nik€is®i(Xs))
k=1 j=1 s=1 i=1 k=1 j=1 i=1
K J N
- 822 ZZ)\zk/\lkE{E ezsels)¢](xs)}
k=1 j5=1 =1 =1

IA
Q

M“

NSl

Eo¢j(xs) supZZ\E €is€s)|

j=1 =1 =1
CJ L& NN
< TZZ'A;COV Vs )\l|+_SUPZZ|Ew U’ZSUZS
i=1 =1 z 1 1=1
CJ C
< —N?| cov(v,)| + sup maxz | By (uisugs )|
1=

T
O(JN?|| cov(v,)||/T + JN/T).

Note that the second term is bounded by

K J N N
1
< OZZ ZZE|6i5|1{‘€i5| > ar}les|Hlew| > ar}e;(x,)?
=1

IA
Q
[™] =
Mu
M|
Mz
M=~
S
'U
Dj
3
=
g‘)
v
5
-
2
=
2
v
5
=B

e ZZZZ@@EWHM > ar})’

N maxsupE ez {|eis| > ar} + CKJN?*(maxsup Ele;s|1{|eis| > ar})?
= 0(N2Jof<2 /T + N*Jar V) = O(N*Jaz®/T).

IN
Q
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Hence 55 E|M, A3 = O(J || cov(y )Il/T + J/(TN) + Jag? [T) := O(bz).
(i) Write a2 := Z + J'=?1. Proposition (??) shows —||A AH|%2 = Op(a2xy). In
addition, Lemma D.4 implies |[H|| = Op(1). Lemma D.5 implies +||[M,||? = Op(a?.). Thus

1 ~ 2 ~ 2
WHM’QAH% < mHMaHZHA—AHH%JFWHM;AHQHHH%
< Op(apxy') + Op(b3r).

Lemma D.7. Suppose J?/T + J"+ /log N/T < xn.

| AR — AH)| < Op(xs ) (5 IMLA] e + (ma 7 ZR2 )'"?)

26 J? logN+ J‘r)’log]\flogJ)l/2

< OP(XN1/2)(CLTXN + 0y + I 7+ a T T2

In addition, ||+ (A AH)|| has the same rate of convergence.

Proof. A'(A — AH) = 5% A’B;. Keep in mind that [[A’M, | and ||K/Ma|| have sharper
bounds than [|Al||[M]], | Al[|| Mg, given in Lemma D.6.

For i # 3,4,5, we simply use |A'B;|| < ||A]||Bi|| = O(V'N)||B;| and Lemma D.5. But
note that for By, B, the first upper bound in the lemma is used. So

1 _ 1 -

SIABi = Orlx 1/2>—||M'A||

1 _

SIABall = Oplx Rl (max — ZRZ )1/2) !AB6H

1 ~

FIABrl = Or(xi'( mw—ZRQ ) 2TV MG A]|/N),
t 1

i||A'B | = Op( —1maleRZ)

N 8 P\X N < Tt:1 it/

As for Bs, By, Bs, we have
1
yIABsll < Or(xy )—||A'M = Z¢> x) E(fi]x:)'|
_1/0 1
= Op(xn"* 1AM
1 1 —
NINBAL < On0 I M7y 3 oot M

20



= Op( | A'ML|[MAl)

XN NQ’
1 1

—||A'Bs|]| < V) =AM =—= P (xR,
v IIABs|| < OP(XN) I ||HT\/—Z (x) Ry

= Op(xy N||A’1\/I ||(Jmax—ZR2 )1/2).

Hence

H—A’(A AH)|| <01 Z H—AB I

< op<x;v”2>< IMLA - + max_z R2)V2)
+0p(Xn )(—HM’AHF+ max—ZRZ )1/2)?
t 1
+0p(XN )—||M’A||F(Jmax—ZR2 )2, (D.2)
t=1
In addition, by Lemma D.6 with b3, := M + 2+ Joz;@,
VI IMLALE = GO0RRg) + G O0RGl) =op(1). (D)

The last equality is due to cov(vy,) = O(1), n > 2, and J*/T + J " < xn. By Proposition
D.3, with the assumption J3log? N = O(T) and ¢; > 2,

T
_ 1 o,y 2 log N J3log Nlog J
XNljmiaX?ZR?t = XNleP(Jl 277_|_ 2(¢1-1) - n 2 )
t=1

= op(1). (D.4)

Hence the second and third terms of (D.2) are dominated, so

I A R — AF)| < Op (G (5 IMALr + max—ZR2 ")
a1y JP log N N J3logNlogJ
T 12
In addition, ||N (A AH)|| < ||H||||NA’(A AH)|| + N||A AH|*. Note that |HJ|| =
Op(1) and NHA — AH||%2 = Op(a2.xy'). Hence

< Op(xy)adhxyt + 03y + T2+ ag )12,

H— (A—AH)| < Op(x *“2>< IMLA 5+ ( max-ZRZ )'?)

t=1
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+Op(azxy') (D.5)

So H%K/(K — AH)|| has the same rate of convergence as H%A’(K — AH)|| in the above.
QE.D.
Recall Lemma D.4 shows |[H|| = Op(1). We now prove |[H™!|| = Op(1).

Lemma D.8. Suppose J?/T + J~" + y/log N/T < xn-.
IH'ZA vH — 1| = 0p(1)
which then implies |[H™'|| = Op(1).

Proof. Note that

1 ~rn

I = —AA

—=

= —(A—AH)(A - AH) + %(K — AH)YAH

=

1 ~
+HA(A— AH) + H'S, yH.

Hence it suffices to show %HK — AH|]? = 0p(1) = H%(K — AH)'AH]||. By Proposition ??
with a% := % + J'721 and assumption J?/T + J ™7 < xn,

L~ _
VA AHE = Op(apxy') = op(1).

Also by Lemma D.7, ||%A'(.//§ —AH)|| <op(1). Hence H'Y )\ yH = I+o0p(1). It then follows
from the fact that 3, y = O(1), we have Api(H'H) > ¢ for some ¢ > 0 with probability
approaching one. This then implies |[H™!|| = Op(1).

Q.E.D.

Lemma D.9. max;<y |[M;o| = Op(J"V.J ++/J(log N)/T)

Proof. First, it follows from the proof of Proposition D.2 that

T

1 o
max || > arp(ag e a) (x| = Op(

s=1

JlogN)
T )
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Secondly, since |p(t1) — p(te)| < 2|t — taf,

T
ma | " ar(plag'en) — plageise) 205
, 5;1
< max ||T Z 2[ess — €is,a P(x) ||
s=1
< max|= ZT: 2|(bia — b)) ®(x:) — 2| D(x,)
= i T L 7,Q 7 t 1t S
< 2max||bsa — bil|Op(]) + Op(J~"J)

= Op(J7WJ + Jaz "),

The result then follows from the triangular inequality.

Q.E.D.

D.3 Technical Lemmas for factors
Lemma D.10. 37, [[W/M,|?> = Op(JN|| cov(vy,)|| + JN?/T + J + JN?a;%).

Proof. Note that By, [wM,|? = &>, X0 E(CN, S0 wwarp(og'es)d;(x,))%
We now bound the right hand side. In fact, since e;; = Xy, + u;s,

N T
EQ) Y usarplag'es)d;(x,))?
i=1 s=1
S E(Zzuiteisl{‘eis| < aT}¢j(Xs))2
iles:IT
+2B() Y uiarplag'es)Hles| > ar}e;(x,))”
=1 s=1
N T
< E(Z Zuiteis¢j(xs + CE( Z Z |uireis1{]eis| > 04T}¢j(xs)|)2
i=1 s=1 i=1 s=1
N T
< CEOQY uidivdi(x))? + CEO > (uiuis — Euguis))d;(x.))
i=1 s=1 i=1 s=1
N T
+CEO) Y (Buyui)i(x,))* + CEO Y ugeisl{lei] > ar}e;(x,)])*
i=1 s=1 i=1 s=1
(D.6)

(D.7)
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The first term on the right hand side of (D.7) is bounded uniformly in ¢ by

N T
By Y wnXiv(x.))?
N i=1 s=1 N N
= Z Z Ny i (%) 2y A + Z Z Z X; cov () Edj(xs)? N Euyuiy
i=1 i=1 =1 st 1=1
N N
< D0 Bll(Bu e, )16 (xlye|7) max | A
=1 I=
LN
+T YD leov(v )1 Ee; (x.)*| Bunuir| max i
i=1 1=
Yo
< NCsuwpmax S |(Buguad, )]s B, = %56, (x0)°
X, t = x
' N
s )TN Comgs S B
< NC sup maxz |(Fugwie|xe, £)||| cov(v,) || + || cov(y)IITNC maxz | By

=1

= (TNH COV(%)H)

The second term of (D.7) : note that for some v > 1, E{Fu},|x;}" < oo, uniformly in ¢,

— Z Z Z E(uituis — E(uituis))(ultulk - E(Ultulk))@ (Xk)gbj (Xs)

N N N N
= Z Z E(uf, — Euj)(uj — Euth)ij(Xt)Q + Z Z Z EuitultEulsUis¢j(Xs)2
i=1 1=1 i=1 s#t 1=1

Euzt) (Ult Eult)¢] (Xt)

WE
WE
Eg

i=1 [=1
+COT( maxz |Euztult|)(sup maxz | Bugguis|x) | Egj(x,)?)
=1 i=1
= O(N*+T)

The third term of (D.7) is bounded as: uniformly in ¢,

N

E(ZZ Buituis);(x:))* = EQY_(Bug)e;(x:))* = O(N?).

=1 s=1 =1
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Finally, the fourth term of (D.7) is :

FE{E(u}]x)}" < 0o, and by repeatedly using Cauchy-Schwarz inequality, uniformly in ¢,

ai

a2

We now study aq, - - -

IN

IN

IN

N T

EO Y lugeii{lei] > ar}e;(x)])>

i=1 s=1

N T N T
EZ Z Z Z [uiress1{]eis| > ar}o;(xs)|[uen1{]ew| > ar}o;(xp)l

i=1 s=1 I=1 k=1

N N
- Z > Bluyeal{|ex| > arupenl{len] > ar}|é;(x.)*

N N
+EY Y fugugend{lea| > arye;(xi)|Elend{len] > ar}e;(xi)|

i=1 =1 k+#t

N
+Z ZZE|uitult|E|el81{|€lS| > aT}ei81{|€i5| > O‘T}¢j(XS)2’

i=1 s#t I=1
N N

>0 > D Eluwunl Bleil{lew| > ar}é;(x,)|Elen{len| > arye;(xi)]

i=1 s#t =1 k#s,t

N N
Z Z Z Eluguer1{ler] > ar}o;(x:)|Eleis1{]eis| > ar}e;(x,)]

1=1 s#t I=1

N N
DX (Eept{leul > arh) A (Buiuié;(a)*) sup Eless|1{]es| > ar}x)Elo;(x,)]
i=1 s#t I=1 x
CTN? maX{E[Eu;Lt|Xt]v}1/(2v)a;(C2+1)—C2/2 _ O(TNQQ;(C2+1)_C2/2)

N N

Z Z E|Uit€it1{’€it’ > aT}ulteltlﬂelt‘ > OéT}Wj(Xt)Q

i=1 [=1

N N

> EluaXy {lewl > arbupdiy, 1 {len] > ar}|é;(x)”

i=1 [=1

N N
+ZZE|Uit>\§7t1{|eit| > arup 1 {|en] > ar}|;(x:)?

i=1 [=1

25

, as term by term. By Holder’s inequality, and the assumption that



N N
+3 ) Elupi{leu] > artundpy,1flen] > ar}d;(x:)”

=1 I=1

+ > Blugifleal > arupl{len] > ar}|é;(x)?

i=1 [=1

C Y > max(Bu)(B{E||y||*|x.}*)"*

zlll

O3 S ) B )

1111

Z Z{E[E(Uiuilxtﬂ"}l/” =O(N?)
a3 = EY )Y luguneal{leq] > arye;(x)|Elen1{len| > arke,(xi)|

IN

=1 =1 7&
N N
< ZZZ Elultult¢] X | )1/2(E612t1{|6it| > &T})1/2E|€lk1{|€lk| > aT}¢j(Xk)|
i=1 1=1 ket
N N
< TCYD Y ABEhu )]y g Y
i=1 [=1
= O ;42/2 <2+1))
N N
a = Y > > EluguulBled{les] > aryei{|e] > ar}é;(x,)’|
i=1 s#t I=1
= O 2 —Cz)
N

as
-1 1=1 k#s,t
O(N2T2a, —2( Cz+1)>

(TN
ZZZ Z Eluguy|Eleis1{|eis| > ar}d;(xs)|Elen1{lew| > ar}d;(xx)|
s#t
o(

Therefore, uniformly in ¢t < T,
N T

B Y luneil{les| > ar}e;(x))) = O(TN?az V"L N L TN ar @ N2 TP "),
=1 s=1
Consequently, (note that JN2a; + JN?*Tay At > JNQ\/TQ;(@H){Q/Q)

T
EZ WM, |2 = O(JN| cov(y,)|| + JN?/T + J + JN?a;* + JN?Ta —2(Cz+1))
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Lemma D.11.

T T
SS T RP = Op(NT*log Nlog J + J*'T2N + Taz " VN2 log N).

s=1 t=1
Proof. Recall that Ry = Ry + Rou + Rsi, where
1
T =1
Ryu = @(x4)'(Rip+bia —by), R3 it := — 2.

] =

Ry = ar(plagzeina) — plag ei)|®(xx) AP (x,)

el

In addition, recall e;; = €10 + Ajt o, Where Ay o = (b; o —b;) ®(x;) — 2. For notational

simplicity, we also write Hy; 1= ®(xx) AP(x;).

T T T T N T T N T N
DD MR SCOY D wiRial+0 ) Q) wsRau)+C Y ) (3 uiRei)
s=1 t=1 s=1 t=1 i=1 s=1 t=1 i=1 s=1 t=1 i=1

We look at these terms respectively.

bounding the first term

T T N
Z Z E(Z uzsRl zt)
s=1 t=1 =1

IA
Q
B
]~
=
]
=
(]
g
5
£

s=1 t=1 =1 k=1
T T N 1 T
+C;;E{; ’uwyf ; |Airall{lew] > ar or |eia| > ar}|Hyl}?
= Cal + CGQ.

For notational simplicity, let [; x; := 1{|ex| > oz or |eita] > ar}.

T T N L T
a = DD B g ) Aot}
s=1 t=1 =1 k=1
N N T

M=

E(Euisujs ‘ {Xl}l§T>Aik,aHktAjm,aHmt
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T T N T T
1
S SUPZ ’E uzsujs|Xs T2 Z Z Z Z Z Emax |Aik,a||HktAjm,aHmt‘
=1 s=1 t=1 j=1 m=1 k=1 !
< C’T2N( (b= 1)\/_+J 72 J2,

ay = ﬁ Z Z E{Z Z |wis Aigo Li et Hie |}

s=1 t=1 zlkl

S T2 Z Z ZZ uzsujs zkaHktAjlaHlt)) 2(E]i,kt[j,lt>1/2
tkl<Ts tor korli=1 j=1
1 N N
tom D Do 22 Eluital (B(Aika HiHiljio)) > (Bligedjae)
tkI<T s#t.k,l i=1 j=1
CN(N+T), 4
< (T)(O‘T(k NI+ T2 (ELedin)
tkI<T
< CINT(N + T)(ap""IVT 4 J7)2a, @2/

where the last inequality is due to, uniformly in 7, 7,

P(leital > ar) < P(lei| > 3ar/4) + P(||P(x)]| > Cak) < Ca;(CQH)’
ST (BLwl)'? < CT a2

tk,I<T

Therefore, 31 3, (0, wisRu)? = Op((a7 VT + T2 PTN(T 4 Nag @27)),
bounding the second term

OP( —2(¢G1— 1)+ 2(<2+2)+ logJ)J l;gN Hence

By Lemma D.3, max;<y ||Rip||* =

Z Z(Z uisRQ,it)2 = Z Z(Z UisP(x¢) (Rip + bia — bi))2

=1 t=1 =1 s=1 t=1 i=1

2> Y (O ui®(x1)Rip)’
s=1 1 =1

=1 t=

+2 Z Z(Z s (%) (bi — b))

s=1 t=1 =1

IN

‘= a1 + az, say

T T N
i < 2303 (O (o) )7 max [Ro

s=1 t=1 =1

= Op(T*N?J) max || R;|?
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= Op((Taz” ™V 4+ Ta;2 % 4 log J)N?J*log N).
T

N N
E’a2| = 2222 za_ EUZSUJSZ(I) Xt )(bj,a—bj)
s=1 =1 j 1 t=1
N
< 2supmax2| Eusujs|xs) |max||bm b;||? ZZEHZ@ (x;)®
s=1 =1 t=1
< o(r” maXHbi,a—bin N) = O(T*Na;2*7Y).

Therefore,

E Z Z(Z UisR3,it)2 — Z Z(Z Uis2it)? = Z Z Z Z Buigujszizy = O(NT2J~2).

Hence the result follows.

Lemma D.12.
1
T > |De?
t=1

T
1 ~ 1 1
_ —1 / 2 E 2 E 2 § §
- OP(XN )(N3 HMOcAH + Nmzaxf p Rit NQT ||u a|| N2T2 |u Rt|

s=1 t=1

Proof. First of all, note that max; Zj | Eu;sujs| < 0o, hence

T K
1
B AR = Y Bl = O(N).
s=1 7=1

In addition, "7, D2 = 257 1A ~ AHYw|? < OS5, v Y5, [uiBi1

T
L ! 2 / 112
NQT;H“sBIH = NQTZHHA ZE f,|x,)®(x,) AM,AV |
_ 1
= Op(x 1N4TZ”“ AJZIMLAJR = Op (3 IMLA|12/N3),
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1 T
> By
s=1

1 T
= > By
s=1

1 T
o > B
s=1

1 T
= > B
s=1

1 T
o D B
s=1

1 T
= > B
s=1

1 T
WZ [ Bs||”
s=1

IN

IN

IA

<

Summarizing, we have

T
2
s=1

Xy 1<
P(—NmaX—ZRi)y
N2TZHUMA Z(I)Xt

NZT Z ||ui‘3Ma||2OP<XJ_V1>7

T
1 s
_N§ E(f|x,)RAV?
t=1

N2T

o Z o, ML 2V A POp ()

N2T2||u Mo A

Xv NQTZHU M., ||2maX ZR

Zcp x ) RIAV

N2T Z HTN Zu R, E(f,|x,)A'AV |2

N2T Z ||TN Zu R,®(x,)) AM, AV} |?

P(XN Y172 N4T2 ZZIU R |[M,A[%)

sltl

N2T Z HuSTN ZRtR,AV i

N2T2 ZZ]u RtIQmaX—ZR )

s=1 t=1

Op(Xy

By (D.3) and (D.4), x5 J 2 IMLA|Z + vy max, £ 57| RE = op(1).
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1 T
=3 IDw?
t=1

- 0( ||M'A||2 XJJVV maX—ZR

,QT

N2TZ” M, |* max ZR
NQTZ [ M| ?

- Z M P VLA + 8

u Rt|

IA
S
<
=2
3
=
| —
.E
:
=l
M=
£

T Tﬁ
N2Tz“u Mo+ N21T2ZZ|“§Rt|2)-

s=1 t=1

E Technical Lemmas for Theorem 77

Lemma E.1. Suppose (N +T)J'™2" = o(1). Then

T
N —~ 1
tr(T > jDQQWNH'A'ut) = op(T71/?)
t=1

Proof. Tt suffices to prove |4 21 DAl = £ 321, LA wu)(A — AH)|]®> = 0p(%). To
this end, we need to decompose A — AH = S | B, again as in (??). Every term can be
bounded using established bounds except for the term involving B3. More specifically, for

i # 3, we use ||= 3 2AwuB,|? < |23, LA w2 ]|B,]2. On the other hand,

1 1 1 1 R
I > A wilh <207 > AR 205 D A (= 2
t=1 t=1 t=1
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The first term is Op(+7). As for the second tern,

I
<
S0
+
~
<
M)~
WE
M~
Mz

E A‘kAlkE(ujtuit - Uz'j)uz'tult

k=1 i=1 t=1 j=1 I#£it

- 0(z).

Hence ||& 301, £ AuyB; |2 < Op(L + £)||Bi|? = o(L), for i # 3, where the last equality
holds by straightforward verifying (% + 1)[|B;[|* = o(1)
T)J'721 = o(1).

using Lemma D.5, assuming (N +

To allow N/T — oo, the term involving B3 requires a different and sharper bound:

T
1 1
H?ZNA’utuQB:J,Hz = H—Z NA’utut TN ZAQD xs) E(f; ]xs)/A’AV 2
t=1
< —NZA’ututM I20p(1)
t:11 N 1 T
_ / | 2
= OP(1)||ﬁzt:Aut;Uz‘tf;&Tp(aT €is) (%)
1 T N N
< Dy 2222 D Ameuiuis®(x,) |
t s=1 =1
2
+0p(1 (T2N ZZZ 1A e o s 1{ tis | > aT}||<1>(Xs)||>
t s=1 i=1
(E.1)

where we used the fact that under Hy, e;s = u;s. We respectively bound the two terms on
the right hand side.
First term in (E.1) Note that

1 T T N 1 J K T T N N
EH T2N Z Z Z A,UtUitUisq)(X5> H2 = W Z Z E(Z Z Z Z )\jkujtuituisgbl (XS))z.
t=1 s=1 i=1 =1 k=1 t=1 s=1 =1 j=1



We then expand the term on the right hand side, which leads to many additive terms in the
expansion. Using the assumption of serial independence to analyze each term, we conclude

that

T T N
! ' 2 J J JN
T2NZZZA“t“ztuzs x)|I* = Op(7y + 75 + 7))

t=1 s=1 i=1
We omit the lengthy details.

Second term in (E.1) As for the second term, first note that under Hy, uy = €.
So Lemma D.2 implies (E|us|1{|uis| > ar}x; = x) < Caz®"". On the other hand, by
assumption, for some C' > 0, sup, F(ul1{|uy| > ar}|x; = x) < a;°C, E|A'w||*> = O(N).

Hence

TQN ZZZEIIA’utIIqutlluzsll{luzsl > ar}||®(x)]l

slzl

- 7w S Bl w e {luel > ar) )]
t =1

N
1
+T2N D> Bl willual Bluss | H{]uis| > ar}[@(x,)]

t s;étzl

ZZ (Bl AW ) 2B (x)|*)"? sup( B {[ua| > ar}fx; = x)!/?

IA

TQN

b Y S BN B o) sup(Blus,| i > arfx, = x)

t s#t i=1

_O(';N _45/2_’_/ J*CQI)

It then implies the second term in (E.1) is Op (25 NS + NJap > ?),
Thus, when (5 > 1, T = o(J*11)

T
1 1 J J JN JN _ Y 1
H? Z NA’utu£B3|]2 = Op(ﬁ + ﬁ + F + FaTgs —+ ]\TJQT2< 2) — 0P(?)-

t=1

As a result,
1 < 1<~ 1 1
7 2o DAl =l > A wui(A = AFI* = or (7).
t=1 =1
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Lemma E.2. Fori:= 3,4,

ZD W— HA’ut) = op(T™Y?)

Proof. Again, it suffices to verify H%ZtT:l D,uA|]? = (:lp) for i = 3,4. Note that
|4 >, @(x)u,A |2 = Op(2). Then by definition,
1 < L1
|7 D DewAl* = Z Z A ML AD(x,) WA
1 1
< Op(pIAML? ||—Z<1> (AL = on( 1)

On the other hand, recall the definition R;; := Ry 4 + Roit + R34, where

Thus it can be verified similarly that

T
1 1
H—ZDMWAHQ = || T g ~A RuA|? = Op( NT2 Z | ZR’LtutAH = OP(T)

t=1 t=1

The verification is very similar as before, and is omitted here.

Proposition E.1. (i) & LAY (K — AH) = op(T7/?);
(ii) LA (Z, — B)A = op(T~2);
(iii) | L(A — AHY (2, — 2,)G|| = op(T~'2), for either G = A or G = A.

Proof. Define A = %, A. Note that we cannot simply bound these terms by * |A][|A—AH]|
or ~||A[1?] 3. — .|, as these bounds are too crude to achieve the desired rate of convergence
when N/T — oco. More careful analysis is called for.

(i) Proving + 1A (A — AH) = op(T~1/2) is exactly the same as that of Lemma D.7. Note
that replacing A with A does not introduce any complications as ¥, is a diagonal matrix.

Hence the proof is omitted here to avoid repetitions.
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(ii) For any k,l < K, the (k,[) element of ]lVA'(iu — X,)A is given by

N
—zm it — o) = zzm — Bu) 4 5 S Nk (@~ )
=1 t

As for the first term,

1 N T 1 N T
NT;; KAt =0 NT;tZ kit = 0
N T N
- NQTQZZZ
=1 t= 13 1 s=

12
= N2T2 ZZ)\ 2 var(u ] = O(ﬁ .

=1 t=1

T 1/2
)\zk)\zl)\]k)\]l COV zt’ ]5
1

As for the second term, we have

N T
LN SO Aadal@ - ud) <2 Z Z ikt (e — ie) it

i=1 t=1 zltl

N T
v Z Z Ak (Ui — wir)?|

i=1 t=1

1 ~
T Z If; — H7'%) ) (5 Z ”_ Z Nkt Ai|?) )2
+0p(1 Z A (A — B |12)Y2( Z ||— Zuztftﬂ )1/2

T

1 ~
+0O(1) max T Z(un — uip)?

7

1
—1 1/2 1/2 1/2.
£0p(1 §j||ft Iy ol }jnx A1)

Note that 437, [f — H™'f||> = Op (Y3r), max; & 3, (@ — ua)? = Op(@%p + 22N by
Lemma E.3. Also, + le\il ||XZ —HXN|?=0p (4 + 757 + (@)Cl J?) by Theorem ?7. In
addition,

IN

=

N
t =1

m=1
1

2 212 2_
NQE:A NN By = O(55).

[
Mw
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Py S lp S udl = YN 5 S Eif =0

Hence it is straightforward to verify that |z SN S°T Apa (@2 — u2)| = op(T~?) so
long as T = o(N?), T = o(J*""IN), J*log N = o(NT).

(iii) Let Gy, denote the (4, k) element of G, and let 6; denote the (i, k) element of A—AH.
Since max; ||XZ — Xi|| = op(1), we have max;;, |G| = Op(1), regardless of G = A or G = A.
Then the (I, k) element of the K x K matrix %(K — AH)(Z, — %,)G is bounded by

al N T
1 1 ~2 1 L , )
I 2 8uGu 2T = 0wl < maxlBuGiud 7 310 (@ = wi) + (v = o)l

On one hand, by Lemma E.3,

Jlog N ~
max|5dGm|NTZZ|un wil = Op(dnr+ /=) max | X —H'A|

i=1 t=1 ]
).

Op(ﬁ

On the other hand,

. O'” 1/2 _ O(T1/2).

M*ﬂ

—0y)| < var(

o
1

t:l

Hence

T
max 0 G| 5 Z|Z —0y)| = Op(—)max||)\ H'\;|| = op(
= t=1

3H
3=

Lemma E.3. Define

1 1 J?(log N log J)'/? N log N

_ /2 72
YNT Jn71/2+\/ﬁ+ T ( T ) e T

Under Hy, when N = O(T?),

(i) %50 [f = H2 = Op (43).

(ii) max; 3 >, (U — uy)? = Op(Y3p + TN,
(i) s 3 S | — w] = Op(r + 1/ 28%),
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Proof. (i) By Theorem 3.2, under Hy,

T T T
1 ~ _ 1 ~
FIE B < 2SR - H gl + 27 7 25— Ho
t=1

=1
1 J*logNlog.J 1 logN )
- o (N+ = Tt M)

(E.2)
(ii) Uniformly in ¢, by Theorem 3.1,

1 -
fZ(Uit—Uitf < O ZH)\ Aill? ||ft||2+0 ZH}\H £ — £
t
= WNT)

(iii) We have, using |a? — b%| < |a — b||a + b| and the Cauchy-Schwarz inequality,

1 N 1 ~
NT Z Z i, — ufy)? < max Zt:(uz't - Uz‘t)2ﬁ > [2(T — uq)® + 4uj)]

it
2(max % zt:(ﬁn — Uit)2)2

+4 max % ;(azt - uit>2% ; u?t
_ oAHl?X%E@t — )
= Op(YFr + Jl(;%N)-

IN
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