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Abstract

The measurement of treatment (intervention) effects on a single (or just a few) treated
unit(s) based on counterfactuals constructed from artificial controls has become a popu-
lar practice in applied statistics and economics since the proposal of the synthetic control
method. In high-dimensional setting, we often use principal component or (weakly) sparse
regression to estimate counterfactuals. Do we use enough data information? To better
estimate the effects of price changes on the sales in our case study, we propose a general
framework on counterfactual analysis for high dimensional dependent data. The frame-
work includes both principal component regression and sparse linear regression as specific
cases. It uses both factor and idiosyncratic components as predictors for improved coun-
terfactual analysis, resulting a method called Factor-Adjusted Regularized Method for
Treatment (FarmTreat) evaluation. We demonstrate convincingly that using either fac-
tors or sparse regression is inadequate for counterfactual analysis in many applications
and the case for information gain can be made through the use of idiosyncratic compo-
nents. We also develop theory and methods to formally answer the question if common
factors are adequate for estimating counterfactuals. Furthermore, we consider a simple
resampling approach to conduct inference on the treatment effect as well as bootstrap test
to access the relevance of the idiosyncratic components. We apply the proposed method
to evaluate the effects of price changes on the sales of a set of products based on a novel
large panel of sale data from a major retail chain in Brazil and demonstrate the benefits
of using additional idiosyncratic components in the treatment effect evaluations.
Keywords: counterfactual estimation, synthetic controls, ArCo, treatment effects, factor
models, high-dimensional testing, LASSO, FarmTreat.



1 Introduction

The evaluation of treatment (intervention) effects on a single (or just a few) treated unit(s)
based on counterfactuals constructed from artificial controls has become a popular practice
in applied statistics since the proposal of the synthetic control (SC) method by |Abadie and
Gardeazabal (2003) and Abadie et al.| (2010). Usually, these artificial (synthetic) controls are
built from a panel of untreated peers observed over time, before and after the intervention; see
Doudchenko and Imbens (2016) and |Athey and Imbens (2017) for recent discussions.

The great majority of methods based on artificial counterfactuals relies on the estimation of a
statistical model between the treated unit(s) and a potentially large set of explanatory variables
coming from the peers and measured before the intervention. Therefore, the dimension of the
model to be estimated is frequently large compared to the available number of observations and
some sort of restrictions must be imposed. In the original method put forward by |Abadie and
Gardeazabal| (2003), the counterfactual model is linear with coefficients restricted to be positive
and must add up to one. |Li and Bell (2017) and |Carvalho et al. (2018) relaxed the original
restrictions by considering penalized estimation of the linear model by Tibishirani’s (1996)
Least Absolute and Shrinkage Operator (LASSO). |Carvalho et al.| (2018) derived a number of
theoretical results, including consistency and asymptotic normality of the average intervention
effect.E] Their results rely on some sort of model sparsity and the analysis is done under the
assumption that the number of observations, both before and after the intervention, diverges.

Sparsity is relaxed by some authors as in Chernozhukov, Wuthrich and, Zhu (2018a,b,c) or
Masini and Medeiros| (2019). In their papers, the authors assume only approximate sparsity.
Some others also relaxed the original restrictions but they only considered a low-dimensional
setup. See, for example, |Ferman and Pinto (2016), Li (2017), or Masini and Medeiros (2020).
Nevertheless, low-dimensional settings do not seem to be realistic for most applications. On the
other hand, (Gobillon and Magnac (2016) estimate counterfactuals based on pure factor models
without exploring potential cross-correlations among the idiosyncratic components.

The aim of this paper is to propose a methodology that includes both principal component
regression and sparse linear regression for estimating counterfactals as specific examples for

better evaluation of the effects on the sales of a set of products after price changes in our case

!The average is taken over the post-intervention period and not over the treated units as in most cases there
is only one unit suffering the intervention.



study. It does not impose neither sparsity or approximate sparsity in the mapping between the
peers and the treated by using the information from hidden but estimable idiosyncratic com-
ponents. Furthermore, we show that inferential models where the number of post-intervention
observations is fixed can be used in the framework considered in the paper. Finally, we also
consider a high-dimensional test to answer the question whether the use of idiosyncratic compo-
nent actually leads to better estimation of the treatment effect. Our framework can be applied
to much broader context in prediction and estimation and hence we leave more abstract and
general theoretical developments to a different paper Fan et al.| (2020).

The proposed method consists of four steps. In the first step, the effects of exogenous (to
the intervention of interest) variables are removed, for example, deterministic trends, season-
ality and other calendar effects, and/or known outliers. In the second step, a factor model is
estimated based on the residuals of the first-step model. The idea is to uncover a common
component driving the dynamics of the treated unit and the peers. This second step is crucial
when relaxing the sparsity assumption. To explore potential remaining relation among units,
a LASSO regression model is established among the residuals of the factor model, which are
called the idiosyncratic components in the factor model. Sparsity is only imposed in this last
step and it is less restrictive than the sparsity assumption in the second step. Note that all
these three steps are carried out in the pre-intervention period. Finally, the model is projected
for the post-intervention period under the assumption that the peers do not suffer the inter-
vention. Inspired by [Fan et al. (2020), we call the methodology developed here FarmTreat, the
factor-adjusted regularized method for treatment evaluation.

In terms of theoretical results we show that the estimator of the instantaneous treatment
(intervention) is consistent which enable the use of straightforward residual resampling proce-
dures to test general hypotheses about the treatment effect without relying on any asymptotic
result for the post-intervention period. All our results are uniquely based on pre-intervention
asymptotics. We also show that a bootstrap-based inference for cross-section dependence among
idiosyncratic components is valid.

We believe our results are of general importance for the following reasons. First and most
importantly, the sparsity or approximate sparsity assumptions do not seem reasonable in ap-

plications where the cross-dependence among all units in the panel are high. In addition,



due to the cross-dependence, the conditions needed for the consistency of LASSO or other
high-dimensional regularization methods are violated (Fan et al., 2020). Second, first filtering
for trends, seasonal effects and/or outliers seems reasonable in order to highlight the poten-
tial intervention effects by removing uninformative terms. Finally, modeling remaining cross-
dependence among the treated unit and a sparse set of peers are also important to gather all
relevant information about the correlation structure about the units.

We conduct a simulation study to evaluate the finite-sample properties of the estimators
and inferential procedures discussed in the paper. We show that the proposed method works
reasonably well even in very small samples. Furthermore, as a case study, we estimate the
impact of price changes on product sales by using a novel dataset from a major retail chain in
Brazil with more than 1,400 stores in the country. We show how the methods discussed in the
paper can be used to estimate heterogeneous demand price elasticities, which can be further
used to determine optimal prices for a wide class of products. In addition, we demonstrate that
the idiosyncratic components do provide useful information for better estimation of elasticities.

The rest of the paper is organized as follows. We give an overview of the proposed method
and the application in Section 2l We present the setup and assumptions in Section |3| and state
the key theoretical result in Section Inferential procedures are presented in Section We
present the results of a simulation experiment in Section [4|and discuss the empirical application
in detail in Section[5] Section [6] concludes the paper. Finally, the proof of our theoretical result

is relegated to the Appendix.

2 Overview of Case Study and the Methodology

This section first briefly describes the problem for our case study and then summarizes the
methods that we develop for evaluating the treatment effects. The proposed methods have

broader applications than what we applied here.

2.1 Case study

The overarching goal is to optimalize price setting in the retail industry in Brazil via coun-
terfactual analysis. Price changes affect the quantities of sales and the counterfactor analysis

is to determine the amounts of changes in sales. Our dataset consists of the daily prices and
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quantities sold of five different products commercialized by one of the major retail chains in
Brazil, aggregated at the municipal level. The company has more than 1,400 stores distributed
in more than 400 municipalities over the country The chosen products differ in terms of
magnitude of sales and in importance as a share of the company’s total revenue.

Our sample consists of about 50% of the municipalities where there are stores. As the
number and size of stores differ across municipalities, we will present the results in terms of
total sales per store. To determine the optimal price of each of the products (in terms of profit
or revenue maximization), a randomized controlled experiment has been carried out. More
specifically, for each product, the price was changed in a group of municipalities (treatment
group), while in another group, the prices were kept fixed at the original level (control group).

The selection of the treatment and control groups was carried out according to the socioe-
conomic and demographic characteristics of each municipality as well as to the distribution of
stores in each city. Nevertheless, it is important to emphasize three facts. First, we used no
information about the quantities sold of the product in each municipality, which is our output
variable, in the randomization process. This way, we avoid any selection bias and can maintain
valid the assumption that the intervention of interest is independent of the outcomes. Second,
although according to municipality characteristics, we keep a homogeneous balance between
groups, the parallel trend hypothesis is violated, and there is strong heterogeneity with respect
to the quantities sold and consumer behavior in each city, even after controlling for observables.
This implies that price elasticities are quite heterogeneous and optimal prices can be remark-
ably different among municipalities. Finally, there are a clear seasonal pattern in the data as

well as common factors affecting the dynamics of sales across different cities.

2.2 FarmTreat

The dataset is a realization of {Z;;, W : 1 <i <n,1 <t < T}, in which Z; is the quantity of
sale in the municipality ¢ at time ¢ and W ;; describes heterogeneity of municipality ¢ at that
time, including seasonal pattern (days of the weeks). Suppose we are interested in estimating
the effects on the variable in Z;; of the first unit after an intervention that occurred at Ty + 1.

We estimate a counterfactual based on a number peers Z_y; := (Zy, ..., Z,;) that are assumed

2Due to a confidentiality agreement, we are not allowed to disclosure either the name of the products or the
name of the retail chain.



to be unaffected by the intervention. We allow the dimension of Z_; to grow with the sample
size T', i.e. n := nr. We also assume that there are a number of covariates W ;; which are not
affected by the intervention. Our key idea is to use both information in the latent factors and
idiosyncratic components, called FarmTreat.

The procedure is thus summarized by the following steps:

1. For each unit ¢ = 1,...,n, run the regression:
Zit :7;Wzt+th7 t = ]-7"'7T07

and compute the residuals ]:?Z»t = Ly — '%Wn This step removes heterogeneity due to

Wi

2. Write R; := (Ry, ..., Ry)’, which is the cross-sectional data Z; := (Zy,- -, Z.,) after

the heterogeneity adjustments. Fit the factor model
Rt = AFt + Ut,

where F; is a r-dimensional vector of unobserved factors, and A is an unknown n x r
loading matrix and U, is an n-dimensional idiosyncratic component. The second step
consists of using the panel data {IA{t}tT:l to learn the common factors F; and factor

loading matrix A and compute the estimated idiosyncratic components by
U, =R, — AF,

A~ ~ /
where U, = (Uu, cee Um> . There is a large literature on high-dimensional factor anal-

ysis; see the book by Fan et al.| (2020) for detail.

3. The third estimation step is to use the idiosyncratic component to further augment the
prediction on the treatment unit. It consists of first testing for the null of no remaining
cross-sectional dependence. If the null is rejected, fit the model in the pre-intervention
period

Uy =60U_1,+V,, t=1,...,Tp,



~ ~ ~ /
by using LASSO, where U _y; = (Ugt, ceey Unt> . Namely, compute

To

~ A A 2
01 = arg min [Z <U1t — 9/1U71t> + 5”011] . (21)
t=1
This step uses cross-sectional regression of the idiosyncratic components to estimate that
in the treated unit. The model includes sparse linear model on R; as a specific example
(see ([2.3) below) and the required model selection conditions are more easily met due to
the factor adjustments. It also encompass the principal component regression in which

6, = 0, namely, using no cross-sectional prediction.

4. Finally, the intervention effect is estimated for ¢ > Tj as
~ ~ A~ A~ PNAPN
5,5 = th — ("Y/IWU + AlFt + 01U—1t> . (22)

where 5\1 is the estimated loading of unit 1, the first row of A. During the post treatment

period, the realized factors F are learned without using R ;.

5. Use the estimator to test for null hypothesis of no intervention effect in the form[|
Hy 0 =0, te{lp+1,...,T},

where 9§, is the (possibly random) intervention effect for periods t € {Ty + 1,...,T}.

The innovations of our approach in estimating counterfactuals are multi-folds. For simplic-
ity, let us suppose that we have no W, component, so that R, = Z;. First of all, the proposed
procedure explores both the common factors and the dependence among idiosyncratic compo-
nents. This not only makes use of more information, but also makes the newly transformed
predictors less correlated. The latter makes the variable selection much easier and prediction
more accurate. Note that factor regression (principal component regression) to estimate coun-
terfactuals is a special case when @, = 0. Clearly, the method explores the sparsity of 8, to

improve the performance and also includes the case of sparse regression on Z_1; to estimate

3Clearly, we can also accommodate heterogeneous null hypothesis of the form 6; = ¢; for given constants c;.



counterfactuals as in Masini and Medeiros| (2019), where counterfactuals are estimated as

Z1t=9'1Z_1t+et, t = 1, ,TD.

However, the variables Z_q; are highly correlated in high dimensions as they are driven by
common factors, which makes variable selection procedures inconsistent and prediction ineffec-
tive. Instead, Fan et al. (2020) introduces the idea of lifting, called factor adjustments. Using

the factor model in step 2, we can write the linear regression model as

th = OllA_lFt + 0/1U_1t + €, (23)

where A_; and U _y; are defined as A and U without the first row. When we take XA; = 7A_1,
this reduces to use sparse regression to estimate the counterfactuals, but now use more powerful
FarmSelect of Fan et al. (2020) to fit the sparse regression. Again, FarmSelect imposes
the condition @7A_; as the regression coefficients of F;. Our method does not require this
constraint. This flexibility allows us to apply our new approach even when the sparse linear
model does not hold.

Finally, we also propose a test for the contribution of the idiosyncratic components by
testing the null hypothesis that 8; = 0. Note that this is a high-dimensional hypothesis test,
which is equivalent to testing the uncorrelatedness between the idiosyncratic component Uy,

for the treated unit and those from the untreated units U _y; in the pre-intervention period.

2.3 Guide to Practice

In this section we provide practical guidance to the implementation of the FarmTreat method.

The first step involves the definition of the variables in W ;. This is, of course, application
dependent. Nevertheless, typical candidates are bounded deterministic functions of time, i.e,
f(t/T), in order to capture trends, an intercept to remove the mean, seasonal dummies or
other calendar effects, or any other dummy to remove potential outliers. The second step is
the estimation of A and the sequence of factors {F, t € Z} for the full sample, before and
after the intervention. Therefore, we cannot just rely on pre-intervention period to estimate

the factors. On the other hand, if we use all the observations from the treated unit, we will



bias our estimation under the alternative of nonzero treatment effects. Therefore, there are two

possible ways to estimate the factors and the factor loadings:

1. Note that E(R;) = 0 by definition. Hence, we can replace the post-intervention observa-
tions of Ry; by 0 in order to carry the factor analysis. As the number of post-intervention
observations is expected to be quite small, this replacement will have negligible effects.

It is important to notice, however, that we do this just to estimate the factors.

2. The other alternative is to estimate the factors and factor loadings without the treated
unit. In order to estimate the loadings Xlof the first unit, we then regress Ri; on the
estimated factors. This is the approach adopted in both simulations and in the empirical

application.

To determine the number of factors we advocate the use of the eigenvalue ratio test (Ahn
and Horenstein, [2013). Other possibility is the use of one of the information criteria discussed
in Bai and Ng| (2002).

After the estimation of the common factor structure, we can test for remaining cross-
dependence using the test described in Section In the case of rejection of the null of
no remaining dependence, the last step consists of a LASSO regression. This step of testing
is optional for evaluating the treatment effect, as the sparsity of Lasso includes no effect as a
specific example. Nevertheless, it is an interesting statistical problem whether the idiosyncratic
component contributes to the prediciton power. For selecting the penalty parameter in Lasso,
we recommend the use of an information criterion, such as the BIC as in [Masini and Medeiros

(2019).

3 Assumptions and Theoretical Result

Suppose we have n units (municipalities, firms, etc.) indexed by ¢ = 1,...,n. For every
time period t = 1,...,7T, we observe a realization of a real valued random vector Z; :=
(Z1, - - .,Znt)’. We assume that an intervention took place at 1o + 1, where 1 < Ty < T.

Let D, € {0,1} be a binary variable flagging the periods where the intervention was in place.

4We consider a scalar variable for each unit for the sake of simplicity, and the results in the paper can be
easily extended to the multivariate case.



Therefore, following Rubin’s potential outcome framework, we can express Z;; as

1 0

Zy =D 2y + (1 -D)ZY),

where Zi(tl) denotes the potential outcome when the unit 7 is exposed to the intervention and
Zi(t0 ) is the potential outcome of unit i when it is not exposed to the intervention.

We are ultimately concerned with testing the hypothesis on the potential effects of the

intervention in the unit of interest. Without loss of generality, we set unit 1 to be the one of

interest. The null hypothesis to be tested is:
Ay 6,=20 - 79 ~0, vi>T,. (3.1)

It is evident that for each unit « = 1,...,n and at each period t = 1,...,T, we observe either
Zi(t0 ) or ZZ.(tl). In particular, Zl(?) is not observed from ¢ = T + 1 onwards. For this reason, we
henceforth call it the counterfactual — i.e., what would Z;; have been like had there been no
intervention (potential outcome).

The counterfactual is constructed by considering a model in the absence of an intervention:

20 =M (29:0) + Vi, t=1...T, (3.2)
where Z (_O%t = (Zé?), e Zﬁfz))’ be the collection of all control variables (all variables in the

untreated units) , M:Zx0O - R, Z < R is a known measurable mapping up to a vector
of parameters indexed by € € ® and © is a parameter space. A linear specification (including
a constant) for the model M(Z,; 0) is the most common choice among counterfactual models
for the pre-intervention period. FarmTreat uses a more sophisticated model.

Roughly speaking, in order to recover the effects of the intervention, we need to impose that
the peers are unaffected by the intervention in the unit of interest. Otherwise our counterfactual

model would be invalid. Specifically we consider the following key assumption

Assumption 1 (Intervention Independence). ZEO) 1s independent of D for all1 < s,t < T.

5We could also have included lags of the variables and/or exogenous regressors into Z;, but again, to keep
the argument simple, we have considered only contemporaneous variables; see |Carvalho et al.| (2018) for more
general specifications.
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The main idea is to estimate using just the pre-intervention sample, t = 1,..., Ty,
since under Assumption Z(f?t = Z_y := (Zo,...,Zy) in the pre-intervention period.
Consequently, the estimated counterfactual for the post-intervention period, ¢t = Ty + 1,..., T,
becomes 29 = M(Zy; @TO). Under some sort of stationary assumption on Z;, in the context
of a linear model, Hsiao et al. (2012) and |Carvalho et al. (2018), show that 8y 1= Zyy — 21(?) is
an unbiased estimator for §; as the pre-intervention sample size grows to infinity in the low and
high dimensional sparse case respectively.

We model the units in the absence of the intervention as follows.

Assumption 2 (DGP). The process {Zi(to) 11 <i<n,t>=1} is generated by

Zz'(tO) =Y Wi + NFy + Uy (3.3)

(2

where ~; € RF is the vector of coefficients of the k-dimensional observable random vector Wy
of attributes of unit i, F; is a r-dimensional vector of common factors and \; its respective
vector of loads for unit i; and Uy is a zero mean idiosyncratic shock. Finally, we assume that

W, Fy and Uy are mutually uncorrelated.

The reason to include W, is to accommodate an intercept, deterministic trends, seasonal
dummies or any other exogenous (possibly random) characteristic of unit ¢ that the practitioner

judge to be helpful in the construction of the counterfactual. Our counterfactual model is

)

nothing more than the sample version of the projection of Zf(t) onto the space spanned by

(Wi, Fi,U_1,;)". Under Assumption [2| the counterfactual can be taken as
ZY) = A\ Wi + X\ Fy + 00Uy, + Vi, (3.4)

where 6, is the coefficient of the linear regression of Uy; onto U_1; and V; the respective

regression error.

3.1 Theoretical Result

In order to state our result in a precise manner we consider the following technical assumption
Assumption 3 (Regularity Conditions). There is a constant 0 < C' < o0 such that:

11



(a) The covariance matriz of Wy, is non-singular;
(b) E|Wiy? < C and E|Uy|P** < C for somep =4 and e >0 forie n], te[T] and { € [k];

(¢) The process {(F,,U,), t € Z} is weakly stationary with strong mizing coefficient o satis-

fying a(m) < exp(—2cm) for some ¢ > 0 and for all m € Z;
(d) [01]0 < C;

(e) ko =k (BU U}, So,3) = C~! where k() is the compatibility condition defined in (A.1)) in
the Appendiz and Sy := {i : 61, # 0}.

A few words on the assumptions above are in order. Condition (a) is necessary for the linear
projection parameter 7, to be well defined. Conditions (b) and (c) taken together are sufficient
for a law of large number for strong mixing processes that can be applied to appropriately scaled
sums. In particular, (b) bounds the p-th plus moment uniformly, however, if U;; has exponential
tails as contemplated in Assumption 3 in [Fan et al.| (2020), we could state a stronger result in
terms of the allowed number of non-zero coefficients as a fraction of the same size. The mixing
rate in condition (c) can be weaken to polynomial rate at the expense of an interplay between
(c) and the conditions appearing Proposition

Finally, conditions (d) and (e) in Assumption [3| are regularity condition on the high-
dimensional linear model to be estimated by LASSO in step 3. Condition (e) ensures the
(restricted) strong convexity of the objective function which is necessary for consistently esti-
mate 8; when n > T. In effect, it lower bounds the minimum restricted /;-eigenvalue of the
covariance matrix of U; uniformly. For simplicity, the bounds appearing in (d) and (e) were
assumed to hold uniformly. However, both conditions could also be somewhat relaxed to allow
161 to grow slowly and/or ko decreases slowly to 0 as n diverges. Once again, at the expense

of having both terms included in the condition of Proposition
Proposition 1. Under Assumptions[IH3, assume further that:

(a) There is a bounded sequence 1) := Nz such that |[U — U|max = Op(n); and

W) 1] = 0 ({nlnrye sn) s 2}

12



If the penalty parameter £ in (2.1) is set to be at the order of % + nTYP then, as Ty — oo,
101 — 01]1 = Op (§|Sol), and for every t > Ty:

5, — 6, =V, +0p S T)\/P n’®
— 0=V, + +—17,
t t t P{| Olﬁ(n ) \/TH

where Vy is the stochastic component not explainable by untreated units defined by (3.4))

Remark 1. Condition (a) and (b) are high level assumptions that translate into a restriction
on the estimation rate in steps 1 and 2 of the proposed methodology, which in turn puts an upper
bound the number of non-zero coefficients in 6, (sparsity) in order for the estimation error to be
negligible. The rate n can be explicitly obtained in terms of n and T by imposing conditions on
projection matriz of W, and the factor model. For the former, we need uniform consistencies
of both the factor and the loadings estimators that take into account the projection error in the
previous step. In a more general setup, Corollary 1 in|Fan et al. (2020) state conditions under

né/p T1/pP

which n = ==y + T

Proposition (1} is key for our inference procedure discussed in Section For instance, it

~ . 3/
can be used to argue that &; — 0; = Vi + 0,(1) provided that |Sy [n(nT)l/p + ”—\/;] = o(1).
Since V; is zero mean by construction, as Ty — o0, gt is an unbiased estimator for J; for every
post-intervention period. Furthermore, as described below, we can estimate the quantiles of V;

using the pre-intervention residuals to conduct a valid inference on ¢;.

3.2 Testing for Intervention Effect

The inference procedure presented in this section is based on the sequence of estimators {&}DTO
and is grounded on the results of Masini and Medeiros (2019a,b). Let Ty := T—T} be the number
of observations after the intervention and define a generic continuous mapping ¢ : R”2 — R?
whose argument is the T5-dimensional vector (5ATO+1 — OTys1s - - ,ST — 7).

We are interested in the distribution of $ = ¢(3T0+1_5T0+17 e 5AT—6T) under the null ,
where ¢ is a given vector of function such as the average treatment effect, median treatment
effect, or maximum treatment effect, among others. The statistic gg is used to test the presence
of the treatment effect. The typical situation is the one where the pre-intervention period is

much longer than the post intervention period, Ty » T5. In several cases, it could be well the

13



case that T, = 1. However, V; does not vanish as in most cases there is a single treated unit.
Nevertheless, under strict stationarity and consistency of the treatment effect estimator, it is
possible to resample the pre-intervention residuals following the procedure described in Masini
and Medeiros (2019a,b) to compute the sample quantile of the statistic of interest.

Under the asymptotic limit taken on the pre-invention period (Ty — o), by Proposition ,
we have that $ — ¢ = op(1), where ¢, := ¢(Vr,11,..., Vr). Thus, the distribution of $ can
be estimated by that of ¢,. Under the strict stationary assumption of {V;}, we can use the pre-
intervention period information to estimate the distribution of $ Consider the construction
of qg using only blocks of size T5 of consecutive observations from the pre-intervention sample.

There are Ty — Ty — 1 such blocks denoted by

A~

$j::¢<‘7j"'7‘/j+T2—l> j:]_,...,To—T2+1,

~ Al A~ A~ A~
where V, .= 7}, — (’Ayllwlt + X\ F; + 01U_1t) for the pre-intervention period, the same as in

E2).
For each j, we have that qz;j —¢; = op(1) where ¢; := d(Vj,...,Vjy1,1) and ¢, is equal in

distribution to ¢, for all j. Hence, we propose to estimate the distribution Qr(x) := P(¢ < x)

by its empirical distribution

. 1 To—T>2+1 .
= 1(¢. < x),
(@) i= 77 Z (¢, < =)

where, for a pair of vectors a,b € R?, we say that a < b <= a; < b;,Vi. Finally, Theorem 2

in Masini and Medeiros| (2019) establish condition under which
sup |@T(«’IJ) — Qr(x)| = 0p(1) as Ty — 0.

3.3 Testing for Idiosyncratic Contributions

The question of statistical and practical interest is if the idiosyncratic component contributes

the estimation of the treatment effect. To answer this question, let us write the DGP as
Zt:I‘Wt‘i‘AFt‘f'Ut, tE{].,...,T},

14



where Z, := (Zy,...,Zw), Uy == (Uy,...,Uy), and W, := (W', ..., W'.). The (n x
nk) block diagonal matrix T' is such that each block is given by (v},...4/). Finally, A :=
(A, )

Let IT := (m;;)1<ij<n denote the (n x n) covariance matrix of U;. Our proposed method
exploits the sparsity of the off-diagonal elements of II. In particular, we are interested in
testing whether U _q; has linear prediction power on the treated unit U;;. This amounts to the
following high-dimensional hypothesis test: %, :m,; =0, V2 < j <n.

In order to conduct the test we propose the following test statistic

S = Qe

where Q := \/LT ZtT:1 D, D, = ﬁltﬁqt, and lA],-t = Rl-t—);-/ﬁ’t. Also let ¢*(7) be the T-quantile
of the Gaussian bootstrap

5% = Q% oo,

where Q*|Z, W ~ N (0, i‘) For a given symmetric kernel k(-) with £(0) = 1 and bandwidth

h > 0 (determining the number of lags), we have that

Y= ) k(¢/n)M, with M,:=1 i D.,D,_,
|t|<T t=0+1
is the estimator of the long-run covariance matrix Y := Vé, where @ = \/LT Zthl UU _q4.
Notice that Y is just the Newey-West estimator if k(-) is chosen to be the triangular kernel.
More generally, the choice of kernels can be made in class of kernels described in |Andrews
(1991). The validity of such a method has been proved in |[Fan et al. (2020) under a more

general setting. In particular, the authors show under some regularity conditions

sup |P(S <c*(1)) — 7| =o0(1) under H,.
7€(0,1)
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4 Simulations

In this section we report simulations results to study the finite sample behavior of the method

proposed in this paper. We consider the following data generating process:

Zip = 0y + ;W + Ry
R = A;Ft + Uy
Fy=(08)F;.1+V, (4.1)

BU_y +eqy, ifi=1,
Ui =

it otherwise,

where {e;;} is a sequence of independent and normally distributed zero-mean random variables
with variance equal to 0.25, V; is a sequence of independent and normally distributed zero-
mean random vectors taking values on R? such that E(V,V}) = I, and E(;;V ;) = 0, for all
i,t, and s. The parameters are set as follows: =, is p-dimensional vector of ones and, for each
replication, the elements of A;, ¢ > 1, are drawn independently from a normal distribution
with mean two and unit variance and, for i = 1, the elements of ‘\; are drawn from a normal
distribution with mean -6 and variance 0.04. The first two elements of 3 are set to one and the
rest is set to zero. We consider the following sample sizes: Ty = 50,100, and 500; and T, = 5.
For each sample size, n is set as n = {T,27,3T'}. p is kept fixed and equal to five. The number
of factors is set to two. For size simulations, é; = 0 for all 7 and ¢. For power simulations,
04 =2fori=1andt > T.

Tables [1f and [2| show descriptive statistics for the counterfactual estimation. The table
depicts the mean, the median and the mean squared error (MSE) for A = T+TO ZLTO 5, under
the null and alternative hypotheses, respectively. Three cases are considered. In the first
one, the factor structure is neglected and a sparse LASSO regression of the first unit against
the remaining ones is estimated. This is the ArCo methodology put forward by |Carvalho
et al.| (2018). The second one is equivalent to the approach of |Gobillon and Magnac| (2016),
where a pure factor model is considered. Finally, the FarmTreat approach is considered, which
encompasses the previous two methods as a specific example.

From the inspection of the results in the tables, it is clear that the biases for estimating
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of the treatment effect are negligible and MSEs are predominately the variance. Furthermore,
the ArCo delivers very robust estimates, but the MSE can be substantially reduced by the
FarmTreat methodology when T > 50. Therefore, there is strong evidence supporting method-
ology derived in this paper, which is consistency with our theoretical results. Furthermore, as
expected, the MSE decreases as the sample size increases. Second, as already shown in the
simulations in |Carvalho et al. (2018), the performance of the pure factor model is poor. This
is particularly the case when n or 7' is small, since the factors are not well estimated. When
this happens, the prediction power of the idiosyncratic components comes to rescue (compar-
ing the performance with FarmSelect). This demonstrates convincingly the need of using the
idiosyncratic component to augment the prediction.

Table[3| presents the empirical size of the resampling test when Ty = 5 and the counterfactual
is estimated according to the three methods described above. By inspection of the results it
is clear that all methods have negligible size distortions. This demonstrates the validity of our
bootstrap methods.

Table[4] presents equivalent statistics to the ones in Table[I]but the DGP has no idiosyncratic
contribution, i.e., 3 = 0. This case favors to PCR, which is indeed when n and T are sufficiently
large. As we can see, FarmTreat achieves the best results in terms of MSE reduction. This
shows that when n and T are large, the factors are well estimated and FarmSelect performs
as we as the PCR method which is the best by design. This shows that FarmSelect adapts
well to this specific case. When n or 7' are not sufficiently large, latent factors are not well
estimated and PCR does not perform as well as expected. In this case, FarmSelect augments
further the prediction power by using the idiosyncratic components when the latent factors are

not well estimated.

5 Application: Price Elasticity of Demand

In this section we report the results of the experiment described in Section [2. Table [5] describes
each one of the experiments carried out for each product. The table shows the sample date,
the period of the experiment (usually two weeks), the type of the experiment (if the price was
increased or decreased) and the number of municipalities in the treatment (n;) and control

groups (ng). n is the total number of municipalities considered. n, ng, and n; vary according
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to the product, but we omit the product identification to simplify notation.

Figures show the data considered in the application. For each product, Panel (a) in
each figure reports the sales per store aggregated in the treatment and control groups. The plot
also indicates the date of the intervention. Panels (b) and (c) display the distribution of the
average sales per store over time in the treatment and control groups, respectively. Panels (d)
and (e) present fan plots for the evolution of sales per store for each municipality. The black
curves there represent the cross-sectional medians over time. Several interesting facts emerge
from the plots. First, the dynamics of sales change depending of the product and the sample.
Nevertheless, there is a clear weekly seasonal pattern in the data. The big spikes in Panel (a) of
Figures 2 and [4| are related to major promotions. We selected this particular product/sample to
illustrate that our methodology is robust to outlying observations. One important point that
deserves attention is that promotions took place in both control and treatment groups and,
therefore, do not have any harmful implication to our methodology. The experiment involving
Product I was a price decrease and we expect, as a consequence, a positive impact on sales.
However, eyeballing the graph displayed in Panel (a) of Figure , we see a major drop in sales
around the date of the experiment. The histograms in Panels (b) and (c) corroborate this fact.
However, the fall in sales happened before the beginning of the experiment and happened in
both control in treatment groups. We like this experiment as it clearly shows the benefits of
our method in comparison, for instance, with the before-and-after estimator. The latter will
for sure indicate a negative impact of the price reductions. Finally, observing Panels (d) and
(e) in the figures, it is easy to notice a significant heterogeneity across municipalities.

We continue by estimating the models discussed in this paper. For each day ¢, qz(t] ) represents
the total quantities sold per store of product j in municipality ¢, wherei =1,... ., n,t =1,...,T,
and 7 = 1,...,5. For each product and each municipality, we run a first-stage regression of
quantities on seven dummies for the days of the week, a linear deterministic trend and the
number of stores that are open at municipality ¢ on day ¢t. For the municipalities in the control
group the above regression is estimated with the full sample. For the municipalities in the
treatment group we use data only up to time Tj. The second step consists of estimating factors
for the first-stage residuals. We select the number of factors, k, by the eigenvalue ratio test

described in Ahn and Horenstein (2013). In the third step we run a LASSO regression of
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each idiosyncratic component of treated units on the idiosyncratic terms of the control group.
As described in Section the penalty parameter is determined by the BIC. Finally, we
compute the counterfactual for each municipality « = 1,...,n; for t = Ty + 1,...,T: @(f)

We also compute the instantaneous and average intervention impact as gfg ) = qft] ) /q\l(t] ) and

AU _ 1 T 50)

= To7 2ut=Ty+1 %it respectively.

We consider the null hypothesis of no intervention effect as in . The results are displayed
in Figures and in Table @ For each product, Panel (a) in the figures displays a fan plot
of the p-values of the re-sampling test for the null hypothesis .75, : 6, = 0 for each ¢ after the
treatment, using the test statistics gbl(gt) = |5At|, which is the same as using the test statistic gf .
The black curve represents the cross-sectional median across time t. Panels (b) and (c) display

the distribution of the p-values of the re-sampling tests for the null
I 6 =0Vte{To+1,...,T}

using the test statistics ¢2(5AT0+1> . ,5AT) = ZtT:TOH gf and ¢3(§To+1, . ,5AT) = ZtT:TOH ]gt],
respectively. Panel (d) shows an example for one municipality. The panel shows the actual and
counterfactual sales per store for the post-treatment period. 95% confidence intervals for the
counterfactual path are also displayed.

Table |§| reports, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-
quantiles, maximum, average, and standard deviation for several statistics. We consider the
distribution over the treated municipalities. In Panel (a) in the table we report the results for
the R-squared of the pre-intervention model. Panel (b) displays the p-value results for testing
the average intervention effect 4 ; : 6; = 0 over the experiment period across different treated
municipalities. It summarizes the results presented in Panel (a) of Figures In particular,
the average and the median of the average treatment effects across treated municipalities are
also presented there. Panels (c) and (d) depict the results for the p-values of the re-sampling test
described in Section [3.2] for the null hypothesis 57 : §; = 0,¢ = To+1, ..., T, using, respectively,
the test statistics ¢ (dgy41, ... ,07) = P 62 and ¢o(Op11,...,07) = P 16;|. Panel (e)
presents the results for the p-values of the null hypothesis of no idiosyncratic contribution.

A number of conclusions emerge from the figures and the table. First, apart from Product

I, the pre-intervention model in general fits the data quite well as can be attested by the large
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values of the R-squared. Nevertheless, there is some variation in terms of the goodness-of-fit
across municipalities. The low quality of the fit is, in most cases, associated with cities with
a very small number of stores and few sales. Second, there is a huge heterogeneity in terms
of intervention effects across different municipalities as can be seen from Panels (a)-(c) in the
Figures and Panel (b) in the table. For Product I, the price intervention has effects only on
a small number of municipalities. More specifically, according to the re-sampling test for H,,
the impacts are statistically relevant (at a 1% level) only on three out of 110 municipalities.
As expected, the average effect is positive in all cases. This is not surprising as Product I has
very low sales. The maximum value for A over the municipalities is less than 2 units per store.
This is not surprising as the median sale for this product is zero.

The same pattern of heterogeneity can be found in Product II. However, there are more
cases where the price changes had significant effects: 12 out of 100 with 1% significance. This
result doubles if we consider 10% significance level. The values for A are also much higher.

For Product III the impacts are much more significant: at a 1% significance level there are
15 cities with relevant impacts when the squares statistic is used to test for Hy and 23 when
the absolute value is used. If we set the significance level to 10% the numbers move to 31 and
41, respectively. Products IV and V have a similar behavior as Product III.

Under the hypothesis of linear demand function, price elasticities ¢;; for each municipality

¢ and product j can be recovered as

~ Bijpij,Toq
61‘7 — _—7
o
where Bij = N?Tijpj? ﬁij is the estimated average effect for municipality ¢ and product 7, N; is

the number of stores, A, is the price change, p;;r,—1 is the price before the intervention and
@Zj is the average counterfactual quantity sold. Finally, optimal prices for profit maximization
can be determined by:

(1 — Taxes;;)(Qy; — Biypijm,—1) — By x Costsy,

* p—
pij - ’

_231']' (]_ — Taxes,-j)

where Taxes;; and Costs;; are the municipality-product-specific tax and costs,respectively.
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6 Conclusions

In this paper we considered a new methodology to estimate the effects of interventions when
there is potentially only one (or just a very small number) of treated units. The outputs of
interest are observed over time for both the treated and untreated units, forming a panel of
time series data. The untreated units are called peers and a counterfactual to the output of
interest in the absence of intervention is constructed by writing a model relation the unit of
interest to the peers. The novelty of this paper concerns how this model is constructed. In our
case we combine factor models with sparse regression on the idiosyncratic components. This
model includes both the principal component regression and sparse regression on the original
measurements as a specific case. The main advantage of our proposal is that we avoid the usual
assumption of (approximate) sparsity and make model selection consistency conditions easier
to be satisfied. The inadequacy of using only the principal component regression has also been
evidenced in our case studies. The formal test is also proposed to prove the case for using the
idiosyncratic components.

Acknowledgments: Fan’s research was supported by NSF grant DMS-1712591, NIH grant
2R01-GMO072611-15, and ONR grant N00014-19-1-2120. Masini’s and Medeiros’ research was
partially supported by CNPq and CAPES.

A  Proof of the Main Result

Before proving our main result, we define below the compatibility constant for convenience.

Definition 1. For a (n x n) matric M, a set S < [n] and a scalar ¢ = 0, the compatibility

constant is given by

|=" M|

NG

Moreover, we say that (M, S, () satisfies the compatibility condition if k(M ,S,() > 0.

K(M,S, () i= inf{ |zs]i:z e R : |as. 1<g||m5||1}. (A.1)

Note that the compatibility constant is closely related to ¢;-eigenvalue of M restricted to

a cone in R™.
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A.1 Proof of Proposition [1

The fact that \|§1 — 01]1 = Op(&|Sy|) follows from Theorem 4 in |Fan et al. (2020). We are left

to show the second part. By the triangle inequality, for ¢ > Tj:

100 — 0 = Vil = [y — 7)) Wit + M Fy = N Fy + 0,U_y, — 01U

A~ p A~ ~
< |1 =) W] + Uit = Ung| + 10U —11 — 01U _y4.
Using Holder’s inequality, the third term can be further bounded as

A~ A~ ~/ A~ ~
10U 1y — 01U 1| < [0, (U—1, = U_y)| + [(61 — 6:)'U_y]
<0410 s = U_rt]oo + |61 — 611 |U 1t
< (1011 + 161 = 6:1[)[U 1t = U_ss]oo + |61 — 611U 1t

= Op[ (6] + v[SolrH(T))v + v|So|b(T) " (n)].
Combining the last two expressions we are left with
16 — 0 — Vil < 1By =) Wi + (1 + [01]1 + |61 — 01 )T — Uil + |61 — 611 |[U .

The first term is Op(1/+/T) by Assumption (a). The second is Op(|Sy|n) because by As-
sumption (d) we have that [61]1 < |So|[|61] s < C|So| and 61 — 611 = Op(1) by Assumption
f). Finally, the third term is Op(£|Sp|n'/?) by Assumption (b) and the maximum inequality.

Therefore we conclude that

8 — 6 — Vi = Op (T7Y2 4 |So|n + €|So|n'?) = Op [|So|(n + €n'/P)] .
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Table 1: Average Treatment (A) Estimation under the Null.

The table reports descriptive statistics for the average treatment estimation under the null of no effect. The
table reports the mean, median, and mean squared error (MSE) of the estimator A for five post-intervention
observations. Panel (a) considers the case where the counterfactual is estimated by a LASSO regression of the
treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed by |Carvalho et al.
(2018). Panel (b) presents the results when the counterfactual is estimated by principal component regression
(PCR), i.e., an ordinary least squares (OLS) regression of the treated unit on factors computed from the pool of
peers. This is equivalent to the method of |Gobillon and Magnac| (2016)). The number of factors is determined by
the eigenvalue ratio test of |Abadie and L'Hour (2019). Finally, Panel (c) displays the results of the FarmTreat

methodology.
Panel(a): LASSO (ArCo)
Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 -0.049 -0.076 0.043 -0.061 -0.150 -0.006 1.988 1.552 1.459
100 -0.057 -0.044 0.057 -0.038 -0.051 0.058 0.862 0.646 0.655
500 -0.001 -0.027 -0.001 0.026 -0.037 -0.003 0.212 0.202 0.186
Panel(b): PCR
Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.103 -0.136 0.203 0.214 -0.128 0.112 10.137 5.657 6.913
100 -0.065 -0.031 0.070 -0.026 -0.016 0.033 2.376 1.573 1.402
500 -0.012 -0.047 0.065 -0.023 -0.038 0.046 0.983 0.488 0.459
Panel(c): FarmTreat
Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.037 -0.055 0.126 0.019 -0.053 0.083 6.114 2.007 2.785
100 -0.041 -0.019 0.051 -0.030 -0.031 0.035 1.152 0.366 0.340
500 0.018 -0.002 0.011 -0.015 -0.001 0.008 0.516 0.067 0.065
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Table 2: Average Treatment (A) Estimation under the Alternative.

The table reports descriptive statistics for the average treatment estimation under the alternative of an average
effect of 2. The table reports the mean, median, and mean squared error (MSE) of the estimator A for five
post-intervention observations. Panel (a) considers the case where the counterfactual is estimated by a LASSO
regression of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed
by |Carvalho et al. (2018). Panel (b) presents the results when the counterfactual is estimated by principal
component regression (PCR), i.e., an ordinary least squares (OLS) regression of the treated unit on factors
computed from the pool of peers. This is equivalent to the method of |Gobillon and Magnac (2016). The
number of factors is determined by the eigenvalue ratio test of |Abadie and L’Hour (2019). Finally, Panel (c)

displays the results of the FarmTreat methodology.
Panel(a): LASSO (ArCo)

Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =150 1.951 1.924 2.043 1.939 1.850 1.994 1.988 1.552 1.459
100 1.943 1.956 2.057 1.962 1.949 2.058 0.862 0.646 0.655
500 1.999 1.973 1.999 2.026 1.963 1.997 0.212 0.202 0.186

Panel(b): PCR

Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 2.103 1.864 2.203 2.214 1.872 2.112 10.137 5.657 6.913
100 1.935 1.969 2.070 1.974 1.984 2.033 2.376 1.573 1.402
500 1.988 1.953 2.065 1.977 1.962 2.046 0.983 0.488 0.459

Panel(c): FarmTreat

Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 2.037 1.945 2.126 2.019 1.947 2.083 6.114 2.007 2.785
100 1.959 1.981 2.051 1.970 1.969 2.035 1.152 0.366 0.340
500 2.018 1.998 2.011 1.985 1.999 2.008 0.516 0.067 0.065

Table 3: Rejection Rates under the Null (empirical size)

The table reports the rejection rates of the partial ressampling test with five observation after the intervention.
Panel(a): LASSO (ArCo)

a=0.01 a = 0.05 a=0.10
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.2670 0.2490 0.2810 0.3650 0.3560 0.3750 0.4230 0.4060 0.4340
100 0.0550 0.0630 0.0690 0.1510 0.1380 0.1450 0.2150 0.2040 0.2130
500 0.0140 0.0190 0.0190 0.0780 0.0790 0.0680 0.1350 0.1420 0.1330

Panel(b): PCR

a=0.01 a = 0.05 a=0.10
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.3140 0.3000 0.3320 0.3940 0.3860 0.4240 0.4420 0.4460 0.4750
100 0.0220 0.0250 0.0130 0.1000 0.0790 0.0670 0.1690 0.1440 0.1180
500 0.0100 0.0150 0.0090 0.0640 0.0620 0.0560 0.1160 0.1130 0.1030

Panel(c): FarmTreat

a=0.01 a=0.05 a=0.10
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.3180 0.3450 0.3960 0.4000 0.4350 0.4740 0.4560 0.4820 0.5240
100 0.0170 0.0280 0.0170 0.0870 0.0880 0.0740 0.1580 0.1430 0.1230
500 0.0090 0.0150 0.0090 0.0670 0.0570 0.0550 0.1160 0.1170 0.1080
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Table 4: Average Treatment (A) Estimation under the Null and No Idiosyncratic
Contribution.

The table reports descriptive statistics for the average treatment estimation under the null of no effect and
B = 0. The table reports the mean, median, and mean squared error (MSE) of the estimator A for five
post-intervention observations. Panel (a) considers the case where the counterfactual is estimated by a LASSO
regression of the treated unit on all the peers. This is the Artificial Counterfactual (ArCo) approach proposed
by |Carvalho et al. (2018). Panel (b) presents the results when the counterfactual is estimated by principal
component regression (PCR), i.e., an ordinary least squares (OLS) regression of the treated unit on factors
computed from the pool of peers. This is equivalent to the method of |Gobillon and Magnac (2016). The
number of factors is determined by the eigenvalue ratio test of |Abadie and L’Hour (2019). Finally, Panel (c)

displays the results of the FarmTreat methodology.
Panel (a): LASSO (ArCo)

Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 -0.108 -0.087 0.121 -0.133 -0.068 0.181 2.155 1.501 1.172
100 -0.037 -0.041 0.028 -0.028 -0.020 -0.009 0.994 0.796 0.808
500 -0.053 -0.002 -0.002 -0.042 -0.023 0.003 0.466 0.407 0.452
Panel (b): PCR
Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.104 -0.122 0.204 0.103 -0.154 0.046 10.854 5.440 6.816
100 -0.017 -0.016 0.027 -0.055 -0.064 0.021 4.458 1.322 1.189
500 -0.067 -0.011 0.001 -0.037 0.016 0.023 0.987 0.238 0.248
Panel (c): FarmTreat
Mean Median MSE
n=T n=2xT n=3xT n=T n=2xT n=3xT n=T n=2xT n=3xT
T =50 0.020 -0.071 0.161 -0.018 -0.088 0.090 7.167 1.937 2.688
100 0.001 -0.017 0.033 -0.014 -0.010 0.049 3.680 0.491 0.469
500 -0.059 -0.006 0.007 -0.035 -0.003 0.025 0.951 0.209 0.222

Table 5: Experiments.

The table shows, for each product considered in the paper, the sample, the period when the experiment was
carried out, the type of the experiment (price increase or decrease) and the number of cities in the control and

treatment groups.

Product Sample Experiment Period Experiment Type Control Group Treatment Group
I Aug-14-2016 — May-02-2017  Apr-19-2017 — May-02-2017 Price reduction 328 110
I May-14-2016 — Jan-23-2017  Jan-17-2017 — Jan-23-2017 Price reduction 321 100
111 Feb-13-2016 — Oct-31-2016  Oct-16-2016 — Oct-31-2016 Price increase 318 97
v May-14-2016 — Jan-23-2017  Jan-17-2017 — Jan-23-2017 Price increase 321 102
A% Feb-13-2016 — Oct-31-2016  Oct-16-2016 — Oct-31-2016 Price increase 309 106
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The table reports estimation results.

Table 6: Results.

In each panel we report, for each product, the minimum, the 5%-,

25%-, 50%-, 75%-, and 95%-quantiles, maximum, average, and standard deviation for a given statistic. We

consider the distribution over the treated municipalities. In Panel (a) we report the results for the R-squared

of the pre-intervention model. Panel (b) displays the p-value results for the average intervention effect over

the experiment period 44 : 0; = 0 for a given ¢. Panels (c) and (d) depict the results for the p-values of the

re-sampling test for the null hypothesis % : 6; = 0,Vt € {Tp + 1,...,T} using respectively the test statistics

¢2(8\Tg+17 cey

gT) = Z;:TO+1 8;2 and (]53(8\1"04,_1, ceay

the p-values for the test for idiosyncratic contribution.

ST) = ZtT:TO +1 |Z§t| Finally, Panel (e) reports the results for

Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile =~ Max  Average Std. Dev
I 0.0337 0.0514 0.1040 0.1672 0.2705 0.4436 0.6642  0.2002 0.1282
11 0.4028 0.6745 0.8825 0.9323 0.9652 0.9894 0.9988  0.8981 0.1073
111 0.1134 0.1951 0.3610 0.4916 0.6215 0.7566 0.9065 0.4878 0.1764
v 0.4669 0.7236 0.8744 0.9252 0.9551 0.9848 0.9961 0.8978 0.0916
\Y% 0.1190 0.3092 0.5221 0.6969 0.8254 0.9281 0.9535 0.6691 0.1970

Panel (b): Average Treatment Effect (over time): A

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile =~ Max  Average Std. Dev
I -1.2630 -0.9181 -0.4980 -0.1862 0.1420 0.6933 1.5493  -0.1672 0.4856
11 -3.0126 -1.8272 -0.4593 0.2748 1.3074 3.7670 6.6975  0.5515 1.6794
111 -19.1670 -16.8416 -7.8397 -3.4310 -1.2491 1.3600 3.5261  -5.1397 5.4411
v -45.4717 -28.3762 -14.6982 -7.4852 -3.4748 2.1461 36.6423 -9.4225  11.0010
\% -54.5934 -17.3325 -6.5691 -2.6661 -0.6040 0.8332 7.1110  -5.0361 8.0906

Panel (c): p-value of the test on squared values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile =~ Max  Average Std. Dev
I 0 0.0638 0.3106 0.6298 0.9319 1.0000 1.0000  0.5970 0.3286
II 0 0 0.1219 0.3657 0.7045 0.9669 1.0000  0.4125 0.3284
111 0 0 0.0638 0.2298 0.5670 0.8438 0.9532  0.3203 0.2954
v 0 0.0107 0.0826 0.3182 0.6157 0.9306 0.9959  0.3785 0.3068
\Y% 0 0 0.0809 0.2702 0.5830 0.9200 0.9702  0.3525 0.2927

Panel (d): p-value of the test on absolute values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile  Max  Average Std. Dev
I 0 0.0596 0.2511 0.6489 0.9191 1.0000 1.0000  0.5967 0.3374
11 0 0 0.1012 0.4029 0.6612 0.9256 1.0000  0.4095 0.3280
111 0 0 0.0426 0.1447 0.5500 0.8787 0.9915  0.2968 0.3091
v 0 0 0.0537 0.2645 0.6281 0.9091 0.9917  0.3565 0.3149
\% 0 0 0.0426 0.2468 0.5957 0.9123 0.9745 0.3320 0.3103

Panel (e): p-value of the test for idiosyncratic contribution

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile =~ Max  Average Std. Dev
I 0.0110 0.0180 0.2110 0.3445 0.5140 0.7750 0.8810  0.3616 0.2200
11 0.0240 0.0450 0.1030 0.1800 0.3075 0.4420 0.7340  0.2080 0.1375
111 0 0.0010 0.0187 0.0780 0.2240 0.6969 0.7770  0.1617 0.2000
v 0.0060 0.0242 0.0600 0.1280 0.2600 0.4436 0.6690  0.1810 0.1482
\Y% 0 0 0.0080 0.0705 0.1600 0.3252 0.5330  0.1064 0.1171
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Figure 1: Product I data.

Panel (a) reports the sales per store aggregated in the treatment and control groups. The plot also
and (c) display the distribution of the average sales
per store over time across municipalities in the treatment and control groups, respectively. Panels (d)
and (e) present fan plots of sales across municipalities in the treatment and control groups for each
given time point. The black curves represent the cross-sectional medians over time and the vertical

indicates the date of the intervention. Panels (b)

green line indicates the date of intervention.

(a): Sales/Number of Stores

o 1000
g All municipalities
[ Treatment Group
S Control Group Nﬂ
o L
- 500 Treatment Date /\) M/\ {f\ wM M /\1 /
8 AR AR T v’mf/ I
© A SV TN w\,/\ /\A»r\ ‘w ,J»\/ o \/ \( ’_\l\ m
%) k/\ \\»4\\4\/‘, - LAY Y \/ AT 1T "1 o Y
10/2016 01/2017 04/2017
Month/Year
(b): Average Sales - Treatment Group (c): Average Sales - Control Group
2 4 ¥
I
+
= T - $
0 - E] 0 o =
Before treatment  After treatment Before treatment  After treatment
®» (d): Sales - Treatment Group »g (e): Sales - Control Group
) )
o6 S
(45} 04t
5 4 5
* *
B 2 92
< <
3 WM.M 3 M.M..L
no wo
10/2016 01/2017 04/2017 10/2016 01/2017 04/2017
Month/Year Month/Year
Figure 2: Product II data.
The same caption as Figure [1|is used.
4 10* (a): Sales/Number of Stores
%]
g All municipalities
h || Treatment Group
S ol Control Group )
3 Treatment Date
2 |
s |}, W N aa
D gkt Paaf o\ . R . Yt
06/2016 07/2016 08/2016 09/2016 10/2016 11/2016 12/2016 01/2017
Month/Year
(b): Average Sales - Treatment Group (c): Average Sales - Control Group
15 i 20 .
+ E2
10 * + 10 i %
e I
5 E
0 = = 0 E3 =

Before treatment  After treatment

(d): Sales - Treatment Group

Before treatment  After treatment

(e): Sales - Control Group

8 8 200

S 200 e

%) %)

S S

% 100 « 100

. 1. l

S haad Al S oA | Al
07/2016 10/2016 01/2017 07/2016 10/2016 01/2017

Month/Year Month/Year

27



Figure 3: Product III data.

The same caption as Figure [1|is used.
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Figure 4: Product IV data.

The same caption as Figure [1|is used.
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Figure 5: Product V data.

The same caption as Figure [1|is used.
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Figure 6: Results for Product I.

Panel (a) displays a fan plot, across n; municipalities in the treatment group, of the p-values of the
re-sampling test for the null J&; : 6; = 0 at each time t after the treatment. The black curve
represents the median p-value across municipalities over ¢. Panels (b) and (c) display the distribution
of the p-values of the re-sampling tests for the null hypothesas H 6 = 0,Vt e {T o+1,...,T} using
respectively the test statistics ¢2(6T0+1, oo, 0p) = Zt Tot1 (5 and ¢3((5T0+1, ., 07) = Zt Tot1 |(5t\
Panel (e) shows an example for one munimpahty. The panel depicts the actual and counterfactual
sales per store for the post-treatment period. 95% confidence intervals for the counterfactual path is
also displayed.
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Figure 7: Results for Product II.

The same caption as in Figure [6]is used.
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Figure 8: Results for Product III.

The same caption as in Figure [6] is used.

5 0.8

z
006

=]
© 04
3

Q0.2

Sun,10/23 Sun,10/30

20

wW
o

10

p-value dist é
- n
o o

p-value dist

0
0 0.5 1 0 0.5 1
Example for one specific municipality

. Counterfactual Sales + 95% CI
=—Jl— Actual Sales

&

Total Quantity Sold
n
o

Sun,10/23 Sun,10/30
Date

30



Figure 9: Results for Product 1V.

The same caption as in Figure [6]is used.
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The same caption as in Figure [6] is used.
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1 Introduction

This is a supplement to the paper “Do We Exploit all Information for Counterfactual Analysis?
Benefits of Factor Models and Idiosyncratic Correction”. The document is organized as follows.
In Section [2| we describe the algorithm used to split the cities into the treatment and control
groups. Section |3| contains additional empirical results. More specifically, in Section we
compare the empirical results when the ArCo methodology of |Carvalho, Masini, and Medeiros
(2018) and the Principal Component Regression (PCR) as in |Gobillon and Magnac (2016)
are used to estimate the counterfactuals. In Section we evaluate different approaches to
model trending behavior in the data, while in Section we present the results at a state-level

aggregation. The proof of the main result in the paper is presented in Section

2 Randomization Algorithm

In this section we describe the algorithm used to split the municipalities into two different
groups according to a set of characteristics. Once the groups are formed we randomly label
them as treatment and control groups.

Let Z be a n x J matrix of municipalities’ variables, where each column j is a different
characteristic (covariate) and each row 7 is a municipality, n is the number of municipalities
and J is the number of covariates. We consider the following variables: human development
index, employment, GDP per capita, population, female population, literate population, aver-
age household income (total), household income (urban areas), number of stores, and number
of convenience stores.

The goal is to match the average of each characteristic of the treatment group with the
control group. Once each group of municipalities is created, each group is further divided
into two other groups, resulting in four different sets of municipalities. The experiments were
carried on different combinations of the groups. In the paper, we report only one set of the

experiments.



The optimization problem is defined as
14 10 ¢ 1
G-arEming ) s 2 b~ w2

subject to: Z a; = Kanda; € {0,1} V4,
i=1
where a = (v, ..., @), a; = 1 if municipality i belongs to the first group and «; = 0 otherwise;

K is the number of municipalities in the first group. The optimization problem above can be

transformed into a mixed integer program.

3 Additional Empirical Results

In this section we report a number of additional empirical results with the aim of showing the

robustness and advantages of the proposed methodology.

3.1 Additional Plots

Figures display relevant data for Products II-V. Panel (a) in the figures reports the
daily sales at each group of municipalities (all, treatment, and control) divided by the number of
stores in each group. More specifically, the plot shows the daily evolution of qé{ﬁt. = % > qu ),

)

Qeontrolt: = % P qff), and ¢\ = i Dlicng+1 q,(,f ). The plot shows the data before and

Gtreatment,t-

after price changes and the intervention date is represented by the horizontal line. Panels (b)
and (c) display the distribution across municipalities of the time averages of c“]fg ), before and
after the intervention and for the treatment and control groups, respectively. Panels (d) and (e)
present fan plots for the evolution of c}fg ). The black curves there represent the cross-sectional
means over time.

Figures display some estimation results. For each product, Panel (a) in the figures
displays a fan plot of the p-values of the ressampling test for the null hypothesis Hy : 6; = 0 for
each given t after the treatment, using the test statistic qb(gt) = |3t|, which is the same as using
the test statistic gf The black curve represents the cross-sectional median across time ¢. Panel
(b) shows an example for one municipality. The panel shows the actual and counterfactual

sales per store for the post-treatment period. 95% confidence intervals for the counterfactual

path are also displayed.



Figure displays the distribution of the daily evolution of the inventory of each product

across different municipalities.

3.2 Effects of Additional Information: ArCo, PCR, and FarmTreat

We report the estimation results when either the ArCo methodology of Carvalho, Masini, and
Medeiros| (2018) or principal component regression (PCR) in the spirit of |Gobillon and Magnac
(2016) are used. For the ArCo methodology we construct counterfactuals by estimating a
LASSO regression of E]ftj) on the values of Qg), where k € {1,...,n}/i. Note that we do not
include any other regressor. For PCR, we consider the first two stages of the FarmTreat
methodology.

The ArCo results are reported in Tables [S.1] and [S.2] while the results for the PCR method
are shown in Tables and [S.4] Some interesting facts emerge from the tables. First, the ArCo
and FarmTreat show similar results, with the later having a slightly better pre-intervention
fit. One key difference, however, is the substantially smaller number of municipalities with
significant intervention effects when the ArCo methodology is considered. Comparing the PCR
approach and the FarmTreat, we can clearly see an improvement in the pre-intervention fit,
as expected. As in the ArCo method, the PCR approach yields a smaller fraction of cities with

significant effects of the price changes. Finally, one important point to highlight is that all

three methods suggests that on average the current prices must be decreased.

3.3 Effects of Trends

Tables[S.5]and [S.6|report the results of the FarmTreat methodology is used without detrending
the data in the first step. Compared to the baseline results presented in Tables [6] and [7] in the
main text we highlight the following facts. First, the counterfactual model adjustment is similar
with only marginal differences concerning the pre-intervention R-squared. Second, without
detrending, the average treatment effects are smaller but the rejection rates are higher. Third,
the number of municipalities where the estimated A has the correct sign and is statistically
significant at the 10% level is much smaller when we do not include a linear trend in the first
step of the methodology, specially in the case of Product V. We note that for this last product,

the recommendation is a price increase and not decrease. For the other four products, the



conclusions are similar as the baseline case.

3.4 State-Level Aggregation

Tables and report the results of the FarmTreat methodology applied to data aggregated
at the state level. The control and treatment groups at the state-level are constructed by
aggregating the untreated and treated municipalities in each state, respectively. From the
tables we see that for Products IV and V we do not find significant effects at the state level.
This is mainly due to heterogeneity across municipalities within each state. On the other hand,
for Products I, II and III we find significant effects of price changes on sales. On the average,
the optimal price for Products III and V are higher than the actual ones, whereas for Product
IV the FarmTreat method indicates that on average the prices should be reduced. However,
even for this products the effects are significant in only a fraction of states. These results,

corroborates the huge municipality heterogeneity.

3.5 Before-and-After Estimation

Table reports estimation the average treatment effect using the before-and-after estimator.
In each panel we report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and
95%-quantiles, maximum, average, and standard deviation for a variety of different statistics.

We consider the distribution over the treated municipalities.

4 Proof of the Main Result

Before proving our main result, we define below the compatibility constant for convenience.

Definition 1. For a (n x n) matric M, a set S < [n] and a scalar ¢ = 0, the compatibility

constant is given by
|=" Mz|

K(M,S,C) = inf{ TS < §||m3||1}. (S.1)

Moreover, we say that (M, S, () satisfies the compatibility condition if k(M ,S,() > 0.

stHl cxeR™: ||$3c

The compatibility constant is related to ¢;-eigenvalue of M restricted to a cone in R™.



4.1 Proof of Proposition [1

The fact that |6, — 0,1, = Op(£|Sy|) follows from Theorem 3 in [Fan, Masini, and Medeiros

(2021). We are left to show the second part. By the triangle inequality, for ¢ > T:
G — = Vi| = [(F — ) W + X;ﬁt — XN F, + g’;ﬁ—lt — 01U _y

< |1 =) Wil + |01 = U] + 18,01 — 61U |

Using Holder’s inequality, the third term can be further bounded as

0,01~ 0U | < [0,(T 1~ U_1)| +1(61 — 0.)U_y

< BT -1 = U—sillo + 161 = 011 |U - o
< (|01 + 161 = 611U —1p — U_s]lo + 61 — 6111 |U _11]co
= Op[(101]1 + vISo[™(T))v + vISo[ ™ (T)¥ ™" (n)].

Combining the last two expressions we are left with

@ — = Vil < |F1 = 7)) Wl + (1+ 03] + [0 — 01T = Uilloo + 61 — 011 |U o

The first term is Op(1/4/T) by Assumption (a). The second is Op(|Sy|n) because by
Assumption d) we have that [|01]; < |So|[61]w < C|So| and [|6; — 61, = Op(1) under the
assumptions of the Proposition. Finally, the third term is Op(&|So|n'/?) by Assumption (b)

and the maximum inequality. Therefore we conclude that

QG — oy — Vi = Op (T7Y% + |Soln + €|So|n*?) = Op [|So|(n + &n'P)] .



Table S.1: Results: Estimation and Inference (ArCo).

The table reports estimation results using the ArCo methodology of |[Carvalho, Masini, and Medeiros
(2018). In each panel we report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and
95%-quantiles, maximum, average, and standard deviation for a variety of different statistics. We
consider the distribution over the treated municipalities. In Panel (a) we report the results for the
R-squared of the pre-intervention model. Panel (b) displays the results for the average intervention
effect over the experiment period (A). Panels (¢) and (d) depict the results for the p-values of the
ressampling test for the null hypothesis Hg : 6; = 0,Vt € {Tp + 1,...,T} using respectively the test
statistic ¢(§TU+17 . ,ST) = ZtT:TOH gf or ¢(3T0+1, cee ZS\T) = ZtT:TO+1 |3t| Finally, Panel (e) reports

the results for the p-values for the test for the idiosyncratic contribution.
Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0.1421 0.3367 0.4389 0.6276 0.7821 0.8958  0.4641 0.1981
11 0.4448 0.6555 0.8691 0.9218 0.9575 0.9851 0.9958  0.8899 0.1073
111 0.0639 0.3119 0.4957 0.6937 0.8181 0.9115 0.9679  0.6554 0.2018
v 0.3688 0.6902 0.8823 0.9262 0.9635 0.9888 0.9987  0.8984 0.1056
\Y% 0 0 0 0.0966 0.2210 0.4319 0.6975  0.1452 0.1545

Panel (b): Average Treatment Effect (over time): A

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
1 -20.1194 -12.0679 -6.0420 -2.9966 -0.6335 1.7254 7.2911  -3.6588 4.3075
11 -40.6070 -25.4886 -9.9769 -3.1266 0.2057 9.9614 59.7638 -4.2132  11.6643
11T -37.8542 -8.5142 -3.3295 -1.0079 0.2364 3.7909 9.6714  -2.0799 5.8070
v -2.5440 -1.6212 -0.5723 0.1673 1.4634 3.8332 6.4165 0.4945 1.6339
A% -1.2218 -0.8548 -0.4922 -0.2797 0.0044 0.4945 1.1978  -0.2476 0.4234

Panel (c¢): p-value of the test on squared values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0.0085 0.1830 0.3702 0.6351 0.9147 0.9787  0.4077 0.2838
11 0 0.0388 0.2273 0.4876 0.7521 0.9521 1.0000  0.4905 0.2967
11T 0 0.0306 0.2638 0.4894 0.6638 0.8928 0.9915  0.4735 0.2658
v 0 0 0.0888 0.3802 0.7004 0.9029 0.9793  0.4092 0.3162
\Y% 0 0.0894 0.3574 0.6936 0.9149 1.0000 1.0000  0.6452 0.3015

Panel (d): p-value of the test on absolute values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile =~ Max  Average Std. Dev
I 0 0 0.0787 0.3149 0.5691 0.8960 0.9872  0.3593 0.2995
I 0 0.0223 0.1818 0.5021 0.7273 0.9504 1.0000  0.4753 0.3095
11T 0 0 0.2681 0.4532 0.6766 0.8655 1.0000  0.4624 0.2671
v 0 0 0.1033 0.3946 0.7066 0.9318 0.9876  0.4124 0.3220
\Y% 0 0.1234 0.3787 0.6745 0.8809 0.9957 1.0000  0.6284 0.2886




Table S.2: Results: Elasticities and Optimal Prices (ArCo).

The table reports elasticities estimates as well the percentage difference between the current prices
and the optimal price maximizing profit when the ArCo methodology by [Carvalho, Masini, and
Medeiros (2018]) is used. In each panel we report, for each product, the minimum, the 5%-, 25%-,
50%-, 75%-, and 95%-quantiles, maximum, average, and standard deviation for a given statistic.
We consider the distribution over the selected treated municipalities. We only report results
concerning the cities where the estimated A has the correct sign and the effects are
statistical significance at the 10% level. The last column indicates the fraction of cities that
satisfy the criterium described above. In Panel (a) we report the results for the estimated elasticities.

In Panel (b) we show the results for the difference between the current price and the optimal price.
Panel (a): Elasticities

Product Min 5%-quantile  25%-quantile Median  75%-quantile 95% quantile Max Average Std. Dev Fraction
I -6.1256 -6.0847 -3.4902 -2.7145 -2.1592 -1.3585 -1.2700  -3.1159 1.4785 0.1443
11 -16.8229 -16.8229 -12.6336 -11.4970 -7.5925 -4.0746 -4.0746  -10.5119  3.9061 0.0882
i -3.0759 -3.0759 -2.8387 -2.0602 -1.8896 -1.6480 -1.6480  -2.2876 0.5477 0.0755
v -44.2416 -34.5020 -11.9050 -6.5419 -4.5606 -2.4450 -1.9634 -10.6109 10.1396  0.2400
\4 -135.5289  -135.5289 -19.1707 -10.1509 -5.4511 -4.3575 -4.3575 -30.8017 51.5716  0.0545

Panel (b): Price Discrepancies (% Difference)

Product Min 5%-quantile  25%-quantile Median 75%-quantile 95% quantile Max Average Std. Dev Fraction
I -15.5005 -15.4441 -9.3372 -5.2233 -0.5061 13.6720 157075  -4.2981 8.5470 0.1443
11 -21.3235 -21.3235 -20.3202 -19.9466 -17.6746 -12.0246 -12.0246 -18.6809  2.8620 0.0882
i -9.0999 -9.0999 -7.7113 -1.0822 1.1540 4.9837 4.9837  -2.4244 5.1882 0.0755
v -18.5830 -18.2201 -15.5075 -12.0222 -8.7234 1.1269 5.7524  -11.2130  5.9686 0.2400
\Y -19.3704 -19.3704 -17.1312 -14.8087 -10.5669 -8.2649 -8.2649 -14.1585  4.1117 0.0545




Table S.3: Results: Estimation and Inference (PCR).

The table reports estimation results using principal component regressions. In each panel we report,
for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average,
and standard deviation for a variety of different statistics. We consider the distribution over the
treated municipalities. In Panel (a) we report the results for the R-squared of the pre-intervention
model. Panel (b) displays the results for the average intervention effect over the experiment period
(A). Panels (c) and (d) depict the results for the p-values of the ressampling test for the null
hypothesis Ho : §; = 0,Vt € {Tp + 1,...,T} using respectively the test statistic gb(gToH, ce ST) =

T N < < T <
Zt:T0+l 5t2 or ¢(6T0+1, Ce 7(5T) = Zt:To+1 |6t|
Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0.1115 0.1727 0.3307 0.4491 0.6011 0.7294 0.7892  0.4517 0.1707
11 0.2549 0.4633 0.7428 0.8345 0.8815 0.9456 0.9759  0.7898 0.1445
11 0.1026 0.1588 0.2489 0.3466 0.5095 0.6296 0.6944  0.3751 0.1545
v 0.1300 0.2384 0.5805 0.7173 0.8236 0.8941 0.9627  0.6723 0.1996
\Y% 0.0255 0.0366 0.0739 0.1236 0.2068 0.3815 0.5079  0.1545 0.1033

Panel (b): Average Treatment Effect (over time): A

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I -21.9722 -17.1898 -7.6521 -3.4870 -1.0735 1.6398 3.6122  -5.0798 5.6688
11 -47.0186 -32.5355 -15.2901 -7.5150 -2.8772 9.9514 40.2040 -9.2082  12.9511
11 -55.4751 -17.1204 -7.2165 -3.4482 -0.6900 1.8316 8.8381  -5.6288 9.8650
v -4.3269 -1.9948 -0.7039 0.2394 1.5064 4.1167 7.3901 0.5691 1.9752
\Y% -2.0826 -0.9796 -0.5058 -0.1766 0.1292 0.6744 1.6705 -0.1831 0.5190

Panel (c): p-value of the test on squared values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0.0723 0.2553 0.6170 0.8985 0.9915  0.3445 0.3063
11 0.0289 0.0421 0.2355 0.4566 0.6901 0.8983 0.9752  0.4697 0.2844
11 0 0.0664 0.2809 0.4511 0.6340 0.9336 1.0000  0.4624 0.2478
v 0 0.0723 0.2459 0.4153 0.7169 0.9917 1.0000  0.4794 0.2878
\Y% 0 0.0596 0.3277 0.6511 0.9319 1.0000 1.0000  0.6050 0.3302

Panel (d): p-value of the test on absolute values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0.0511 0.2128 0.6053 0.9019 0.9957  0.3199 0.3199
11 0 0.0207 0.1570 0.4256 0.6942 0.9298 0.9628  0.4481 0.3038
111 0 0.0102 0.2128 0.4128 0.5957 0.9319 1.0000  0.4248 0.2689
I\ 0 0.0517 0.2149 0.4070 0.7521 0.9690 1.0000  0.4710 0.3001
\Y% 0 0.0511 0.2681 0.6638 0.9234 1.0000 1.0000  0.6084 0.3362




Table S.4: Results: Elasticities and Optimal Prices (PCR).

The table reports elasticities estimates as well the percentage difference between the current prices
and the optimal price maximizing profit when the counterfactuals are estimated by principal compo-
nent regression. In each panel we report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-,
and 95%-quantiles, maximum, average, and standard deviation for a given statistic. We consider the
distribution over the selected treated municipalities. We only report results concerning the
cities where the estimated A has the correct sign and the effects are statistical signifi-
cance at the 10% level. The last column indicates the fraction of cities that satisfy the criterium
described above. In Panel (a) we report the results for the estimated elasticities. In Panel (b) we

show the results for the difference between the current price and the optimal price.
Panel (a): Elasticities

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile = Max  Average Std. Dev Fraction
1 -6.5287 -5.5838 -4.3723 -3.5023 -2.9266 -1.7697 -0.9696  -3.5689 1.1443 0.2784
11 -17.7671 -17.5199 -14.5000 -13.1484 -8.6987 -2.8126 -1.9998 -11.8098  4.2565 0.1275
111 -3.3805 -3.3805 -3.2669 -2.9047 -2.7249 -2.3503 -2.3503  -2.9405 0.3565 0.0755
v -15.8735 -15.8735 -12.4477 -11.0990 -9.2416 -1.0297 -1.0297 -10.3376  4.6432 0.0700
\% -36.2752 -36.2752 -25.0377 -15.3515 -5.8105 -3.3284 -3.3284  -16.8591  12.4347 0.0545

Panel (b): Price Discrepancies (% Difference)

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev Fraction
I -16.0044 -14.6686 -12.1884 -9.3865 -6.5784 6.3136 27.9067 -7.6159 8.1823 0.2784
I -21.4814 -21.4382 -20.8472 -20.4928 -18.5425 -2.0321 0.7073 -18.4545  5.8816 0.1275
111 -10.5643 -10.5643 -10.0456 -8.1187 -6.9926 -4.0815 -4.0815  -8.1200 2.1928 0.0755
v -16.5633 -16.5633 -15.6963 -15.2083 -14.2557 28.8451 28.8451 -9.0521 16.7294 0.0700
\% -18.3610 -18.3610 -17.7424 -16.3414 -11.1343 -4.7169 -4.7169 -14.1062 5.2776 0.0545

10



Table S.5: Results: Estimation and Inference (no trend).

The table reports estimation results without the trend component in the counterfactual model. In

each panel we report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles,

maximum, average, and standard deviation for a variety of different statistics. We consider the

distribution over the treated municipalities aggregated at the state level. In Panel (a) we report

the results for the R-squared of the pre-intervention model. Panel (b) displays the results for the

average intervention effect over the experiment period (A). Panels (c¢) and (d) depict the results for

the p-values of the ressampling test for the null hypothesis Ho : §; = 0,Vt € {Tp + 1,...,T} using

respectively the test statistic ¢(§TU+17~--

~ T A~ ~
75T) = Zt:TO+1 6752 or ¢(6To+17"'a

or) = Z;[:TOH |St|

Finally, Panel (e) reports the results for the p-values for the test for the idiosyncratic contribution.

Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0.1112 0.1983 0.3463 0.4910 0.6302 0.7556 0.9029  0.4869 0.1777
11 0.4876 0.6913 0.8721 0.9280 0.9563 0.9850 0.9945  0.9007 0.0905
111 0.1141 0.2904 0.5243 0.7085 0.8324 0.9336 0.9600  0.6736 0.2041
v 0.3824 0.6693 0.8802 0.9344 0.9632 0.9869 0.9986  0.8969 0.1101
\Y% 0.0243 0.0378 0.0895 0.1461 0.2706 0.4143 0.6396  0.1876 0.1321

Panel (b): Average Treatment Effect (over time): A

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I -16.1305 -11.3082 -5.0625 -2.6195 -0.8542 1.4314 9.9071  -3.3187 4.1600
11 -46.3695 -27.3151 -10.4665 -4.1799 -0.6947 6.8649 58.5092 -5.9179  11.9431
111 -26.5438 -9.0437 -3.0657 -0.9038 0.6108 4.8286 16.0986  -1.5804 5.2233
v -3.9357 -1.6404 -0.5186 0.2410 1.2506 4.0381 6.3938  0.5208 1.7143
\Y% -1.0360 -0.5738 -0.2827 -0.1076 0.1859 0.7279 1.0478  -0.0468 0.3770

Panel (c): p-value of the test on squared values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0.0143 0.1564 0.4213 0.6298 0.8764 0.9872  0.4112 0.2786
11 0 0.0198 0.1818 0.4628 0.7273 0.9793 1.0000  0.4626 0.3138
11 0 0.0170 0.2638 0.4745 0.7064 0.9583 1.0000  0.4864 0.2839
I\ 0 0 0.1302 0.3802 0.7025 0.9545 0.9876  0.4074 0.3110
\Y% 0 0.0766 0.3447 0.8170 0.9872 1.0000 1.0000  0.6779 0.3238

Panel (d): p-value of the test on absolute values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0.1000 0.4000 0.5936 0.8979 0.9957  0.3785 0.2885
11 0 0.0025 0.1446 0.4029 0.7355 0.9694 1.0000  0.4471 0.3213
11 0 0 0.2170 0.4787 0.7234 0.9149 1.0000  0.4757 0.2918
v 0 0 0.0992 0.3616 0.7066 0.9360 0.9917  0.4000 0.3137
\Y% 0 0.1064 0.4340 0.8021 0.9915 1.0000 1.0000  0.6974 0.3104

Panel (e): p-value of the test for idiosyncratic contribution

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0.0300 0.0820 0.2525 0.6636 0.9500  0.1824 0.2145
11 0.0080 0.0224 0.0620 0.1250 0.2520 0.4940 0.6760  0.1771 0.1488
111 0 0 0.0080 0.0590 0.1540 0.3468 0.5460  0.0995 0.1180
v 0.0300 0.0470 0.0990 0.1920 0.2800 0.4410 0.6400  0.2093 0.1317
\Y% 0 0.0240 0.1160 0.2890 0.4180 0.7080 0.8400  0.2977 0.2083

11



Table S.6: Results: Elasticities and Optimal Prices (no trend).

The table reports elasticities estimates as well the percentage difference between the current prices
and the optimal price maximizing profit. In each panel we report, for each product, the minimum,
the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average, and standard deviation for a
given statistic. We consider the distribution over the selected treated municipalities. We only
report results concerning the cities where the estimated A has the correct sign and the
effects are statistical significance at the 10% level. The last column indicates the fraction of
cities that satisfy the criterium described above. In Panel (a) we report the results for the estimated
elasticities. In Panel (b) we show the results for the difference between the current price and the

optimal price.

Panel (a): Elasticities

Product Min 5%-quantile 25%-quantile Median  75%-quantile 95% quantile Max Average Std. Dev Fraction
I -6.1709 -6.1363 -4.3408 -2.9859 -2.2372 -1.5650 -1.4268  -3.4141 1.4124 0.1753
11 -17.2147  -16.8507 -12.9427 -11.9334 -8.7978 -3.4640 -2.8945 -10.9383  3.8642 0.1569
111 -2.8147 -2.8147 -2.4532 -1.8840 -1.6626 -1.6254 -1.6254  -2.0550 0.4905 0.0755
v -32.7958  -24.6827 -11.4079 -6.6815 -3.9395 -2.6159 -2.4158  -8.5285 7.1821 0.2000
Y% -30.6356  -30.6356 -28.5022 -25.0506 -23.6188 -15.6706 -15.6706 -24.7547  5.2214 0.0545

Panel (b): Price Discrepancies (% Difference)

Product Min 5%-quantile 25%-quantile Median = 75%-quantile 95% quantile Max Average Std. Dev  Fraction
I -15.5604  -15.5143 -12.1436 -6.9179 -1.3130 8.7227 11.3806  -6.3656 7.4661 0.1753
11 -21.3911  -21.3250 -20.4324 -20.1047 -18.5991 -9.0741 -7.0214 -18.6833  3.6201 0.1569
111 -7.5915 -7.5915 -4.5816 1.2230 4.7269 5.4073 5.4073 0.0690 5.2832 0.0755
I\% -18.1886  -17.4421 -15.3303 -12.2240 -7.0189 -0.4867 0.9835 -10.4346  5.6478 0.2000
A% -18.1073  -18.1073 -17.9851 -17.7375 -17.6224 -16.5487 -16.5487 -17.6231  0.5603 0.0545
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Table S.7: Results: Estimation and Inference (state level).

The table reports estimation results at the state level. In each panel we report, for each product,

the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average, and standard

deviation for a variety of different statistics. We consider the distribution over the treated munic-

ipalities aggregated at the state level. In Panel (a) we report the results for the R-squared of the

pre-intervention model. Panel (b) displays the results for the average intervention effect over the

experiment period (A).

Panels (c) and (d) depict the results for the p-values of the ressampling

test for the null hypothesis Hg : &; = 0,Vt € {To + 1,...,T} using respectively the test statistic

¢(ES\T0+17 . 7S\T) = ZtT:ToJrl th or Qb(gTo-&-la ey

results for the p-values for the test for the idiosyncratic contribution.

ST) = ZtT:TO 1 |Z§t| Finally, Panel (e) reports the

Panel (a): R-squared

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0.3553 0.3804 0.6776 0.8027 0.8969 0.9573 0.9603  0.7593 0.1814
11 0.8830 0.8895 0.9410 0.9812 0.9934 0.9962 0.9962  0.9659 0.0351
11T 0.2983 0.3604 0.6552 0.7726 0.8651 0.9422 0.9642  0.7329 0.1763
v 0.7566 0.8014 0.9377 0.9684 0.9874 0.9952 0.9962  0.9480 0.0587
\Y% 0.0996 0.1249 0.1795 0.3048 0.5028 0.8898 0.9024  0.3687 0.2298

Panel (b): Average Treatment Effect (over time): A

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile =~ Max  Average Std. Dev
I -4.9172 -4.6035 -3.3475 -1.8782 0.1261 1.8318 1.8886  -1.6650 2.1306
11 -17.5812 -16.8032 -9.1995 -2.6898 2.0167 13.5124 14.5276  -2.9574 9.0027
11T -7.5112 -6.7144 -3.5990 -0.9333 0.3148 14.7754 32.3728  -0.2965 7.6855
v -2.0756 -1.7365 -0.7512 -0.3154 0.3816 0.8821 1.0061  -0.2839 0.7757
\Y% -0.7695 -0.6821 -0.3421 -0.1571 -0.0078 0.3294 0.4216  -0.1837 0.2904

Panel (c): p-value of the test on squared values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0.0511 0.2511 0.4883 0.8736 0.9957  0.3041 0.2823
11 0 0 0.0548 0.3017 0.5610 0.9731 0.9876  0.3717 0.3427
11T 0 0.0194 0.2043 0.4128 0.7511 0.9387 0.9830  0.4503 0.3201
v 0.0331 0.0793 0.2500 0.4215 0.5723 0.7901 0.8017  0.4166 0.2206
\Y% 0 0.0070 0.3170 0.8426 0.9543 0.9930 1.0000  0.6470 0.3741

Panel (d): p-value of the test on absolute values

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0.0032 0.3404 0.4553 0.9109 0.9957  0.3189 0.2930
11 0 0 0.0207 0.3430 0.4824 0.9599 0.9628  0.3493 0.3421
11T 0 0 0.1372 0.3830 0.7660 0.9257 0.9617  0.4213 0.3406
v 0.0331 0.0605 0.2397 0.4793 0.5981 0.7837 0.8140  0.4256 0.2377
\Y% 0 0 0.3319 0.7830 0.9340 0.9930 1.0000  0.6237 0.3796

Panel (e): p-value of the test for idiosyncratic contribution

Product Min 5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I 0 0 0 0.0020 0.0210 0.1724 0.1920  0.0314 0.0593
11 0 0 0.0110 0.0380 0.0545 0.2964 0.3440  0.0616 0.0893
11T 0 0 0.0105 0.0420 0.0990 0.5157 0.6080  0.1017 0.1640
v 0.0940 0.1164 0.1780 0.2040 0.2310 0.5657 0.6420  0.2408 0.1292
\Y% 0 0 0.0350 0.0820 0.1350 0.5735 0.6780  0.1370 0.1767
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Table S.8: Results: Elasticities and Optimal Prices (state level).

The table reports elasticities estimates as well the percentage difference between the current prices

and the optimal price maximizing profit. In each panel we report, for each product, the minimum,

the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles, maximum, average, and standard deviation for a
given statistic. We consider the distribution over the selected treated municipalities. We only
report results concerning the cities where the estimated A has the correct sign and the
effects are statistical significance at the 10% level. The last column indicates the fraction of

cities that satisfy the criterium described above. In Panel (a) we report the results for the estimated

elasticities. In Panel (b) we show the results for the difference between the current price and the
optimal price.

Panel (a): Elasticities

Product Min 5%-quantile 25%-quantile Median  75%-quantile 95% quantile Max Average Std. Dev Fraction
1 -1.8282 -1.8282 -1.7647 -1.5235 -1.1270 -0.8921 -0.8921  -1.4431 0.3720 0.2222
11 -11.5235 -11.5235 -7.7493 -5.8728 -4.4528 -4.1237 -4.1237  -6.5147 2.9592 0.1852
111 -3.2089 -3.2089 -2.9427 -1.9333 -1.0804 -0.9708 -0.9708  -2.0116 1.1006 0.1481
v - - - - - - - - - -
v . . . — . — . . . -

Panel (b): Price Discrepancies (% Difference)

Product Min 5%-quantile 25%-quantile Median = 75%-quantile 95% quantile Max Average Std. Dev  Fraction
I 3.6865 3.6865 4.6703 9.3255 20.7040 32.3850 32.3850 13.3495 11.2129  0.2222
11 -19.9566  -19.9566 -17.4338 -15.7817 -13.0450 -12.1705 -12.1705 -15.5676  3.0364 0.1852
111 -9.7734 -9.7734 -8.2241 4.9918 21.4037 26.1490 26.1490  6.5898 17.5845  0.1481
v - - - - - - - - - -
\Y _ _ - - - = _ -

Table S.9: Results: Estimation and Inference (Before-and-After).

The table reports estimation the average treatment effect using the before-and-after estimator. In
each panel we report, for each product, the minimum, the 5%-, 25%-, 50%-, 75%-, and 95%-quantiles,
maximum, average, and standard deviation for a variety of different statistics. We consider the
distribution over the treated municipalities.

Product Min  5%-quantile 25%-quantile Median 75%-quantile 95% quantile ~ Max  Average Std. Dev
I -23.8652 -17.2270 -8.1333 -4.1126 -1.1093 2.1760 11.5150 -5.2622 6.0399
1I -74.8229 -53.2274 -30.7149 -18.4681 -10.3370 1.8621 13.1138 -22.0736  16.9785
11T -48.8512 -15.3860 -5.6494 -2.1679 -0.5397 2.4336 11.1025 -3.9888 7.0311
v -5.5069 -4.7638 -2.1703 -1.2016 -0.1093 1.7353 3.5901  -1.2483 1.9274
\Y% -2.0595 -1.3942 -0.8139 -0.4505 -0.1244 0.4032 1.1809  -0.4682 0.5426
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Figure S.1: Data for Product II.

Panel (a) reports the daily sales divided by the number of stores aggregated for all cities as well as for the treatment and control
groups. The plot also indicates the date of the intervention. Panels (b) and (c) display the distribution of the average sales per
store over time across municipalities in the treatment and control groups, respectively. Panels (d) and (e) present fan plots of sales
across municipalities in the treatment and control groups for each given time point. The black curves represent the cross-sectional
mean over time and the vertical green line indicates the date of intervention.
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Figure S.2: Data for Product III.

Panel (a) reports the daily sales divided by the number of stores aggregated for all cities as well as for the treatment and control
groups. The plot also indicates the date of the intervention. Panels (b) and (c) display the distribution of the average sales per
store over time across municipalities in the treatment and control groups, respectively. Panels (d) and (e) present fan plots of sales
across municipalities in the treatment and control groups for each given time point. The black curves represent the cross-sectional
mean over time and the vertical green line indicates the date of intervention.
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Figure S.3: Data for Product IV.

Panel (a) reports the daily sales divided by the number of stores aggregated for all cities as well as for the treatment and control
groups. The plot also indicates the date of the intervention. Panels (b) and (c) display the distribution of the average sales per
store over time across municipalities in the treatment and control groups, respectively. Panels (d) and (e) present fan plots of sales
across municipalities in the treatment and control groups for each given time point. The black curves represent the cross-sectional
mean over time and the vertical green line indicates the date of intervention.
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Figure S.4: Data for Product V.

Panel (a) reports the daily sales divided by the number of stores aggregated for all cities as well as for the treatment and control
groups. The plot also indicates the date of the intervention. Panels (b) and (c) display the distribution of the average sales per
store over time across municipalities in the treatment and control groups, respectively. Panels (d) and (e) present fan plots of sales
across municipalities in the treatment and control groups for each given time point. The black curves represent the cross-sectional
mean over time and the vertical green line indicates the date of intervention.
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Figure S.5: Results for Product 11

Panel (a) displays a fan plot, across n1 municipalities in the treatment group, of the p-values of the re-sampling test for the null
) : 0+ = 0 at each time t after the treatment. The black curve represents the median p-value across municipalities over ¢. Panel
(b) shows an example for one municipality. The panel depicts the actual and counterfactual sales per store for the post-treatment
period. 95% confidence intervals for the counterfactual path is also displayed.
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Figure S.6: Results for Product III

Panel (a) displays a fan plot, across n1 municipalities in the treatment group, of the p-values of the re-sampling test for the null
4 : 6t = 0 at each time t after the treatment. The black curve represents the median p-value across municipalities over t. Panel
(b) shows an example for one municipality. The panel depicts the actual and counterfactual sales per store for the post-treatment
period. 95% confidence intervals for the counterfactual path is also displayed.
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Figure S.7: Results for Product IV

Panel (a) displays a fan plot, across n1 municipalities in the treatment group, of the p-values of the re-sampling test for the null
) : 0+ = 0 at each time ¢t after the treatment. The black curve represents the median p-value across municipalities over ¢. Panel
(b) shows an example for one municipality. The panel depicts the actual and counterfactual sales per store for the post-treatment
period. 95% confidence intervals for the counterfactual path is also displayed.

Product IV

(a) Distribution of the $p$-values of the ressampling test

o o 4
S o ®

p-value dist

o
N}

Tue,01/17 Wed,01/18 Thu,01/19 Fri,01/20 Sat,01/21 Sun,01/22 Mon,01/23
time

(b) Example for one specific municipality

Counterfactual Sales + 95% CI
—l— Actual Sales

o
T

Total Quantity Sold
N £
I I

=

| | | |
Tue,01/17 Wed,01/18 Thu,01/19 Fri,01/20 Sat,01/21 Sun,01/22 Mon,01/23
Date

Figure S.8: Results for Product V

Panel (a) displays a fan plot, across n1 municipalities in the treatment group, of the p-values of the re-sampling test for the null
4 : 6t = 0 at each time t after the treatment. The black curve represents the median p-value across municipalities over t. Panel
(b) shows an example for one municipality. The panel depicts the actual and counterfactual sales per store for the post-treatment
period. 95% confidence intervals for the counterfactual path is also displayed.
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Figure S.9: Daily Inventory Distribution.
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