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Abstract

This paper considers the estimation and inference of the low-rank components in high-
dimensional matrix-variate factor models, where each dimension of the matrix-variates (p ⇥ q)
is comparable to or greater than the number of observations (T ). We propose an estimation
method called ↵-PCA that preserves the matrix structure and aggregates mean and contempo-
rary covariance through a hyper-parameter ↵. We develop an inferential theory, establishing
consistency, the rate of convergence, and the limiting distributions, under general conditions
that allow for correlations across time, rows, or columns of the noise. We show both theoretical
and empirical methods of choosing the best ↵, depending on the use-case criteria. Simulation
results demonstrate the adequacy of the asymptotic results in approximating the finite sam-
ple properties. The ↵-PCA compares favorably with the existing ones. Finally, we illustrate
its applications with a real numeric data set and two real image data sets. In all applications,
the proposed estimation procedure outperforms previous methods in the power of variance
explanation using out-of-sample 10-fold cross-validation.

Key words: Matrix-variate; Latent low rank; Factormodels; Asymptotic normality; High-dimension.

1 Introduction

Large scale matrix-variate data have been widely observed nowadays in diverse fields, such as

neuroscience, health care, economics, and social networking. For example, the monthly import-

export volumes among countries naturally form a dynamic sequence of matrix-variates, each of
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which representing a weighted directional transportation network. Another example is dynamic

panels, such as typical electronic health records (EHRs). In the data-rich intensive care unit (ICU)

environment, vitals and other medical tests are measured for di↵erent patients at sequential time

points. At each time point, the observation is a matrix whose rows represent di↵erent patients

and whose columns represent demographic information, vitals, lab values, etc. Thirdly, 2-D im-

age data can also be modeled as matrix-variate data to preserve the spatial information, where

each entry of an image matrix corresponds to the intensity of colors of each pixel. Development

of statistical methods for analyzing large scale matrix-variate data is still in its infancy, and as a

result, scientists frequently analyze matrix-variate observations by separately modeling each di-

mension or ‘flattening’ them into vectors. This destroys the intrinsic multi-dimensional structure

and misses important patterns in such large scale data with complex structures, and thus leads to

sub-optimal results.

The very first questions to ask when facing large scale data with complex structures are: “Is

there a simpler structure behind the massive data set?” and “How can we infer the simpler struc-

ture from the noisy observations?” Simpler structures provide better understanding of the prob-

lem, reveal more insights into the data, and simplify down-stream analysis. This paper addresses

those questions and provides statistically sound solutions from the perspective of latent factor

models. The proposed method deals with matrix-variate observations directly and works for both

independent and weakly-dependent observations. To the best of our knowledge, we are the first

to provide the asymptotic distributions of the estimators for the proposed model.

We specifically consider the following matrix-variate factor model for observations Yt 2 Rp⇥q,

1  t  T :

Yt = RFtC
> +Et , (1.1)

where Yt is driven by a latent factor matrix Ft 2 Rk⇥r of smaller dimensions (i.e. k⌧ p and r ⌧ q),

plus a noise matrix Et . Matrices R and C are a p ⇥ k and q ⇥ r row and column loading matrices,

respectively. The noise term Et is assumed to be uncorrelated with Ft , but is allowed to be weakly

correlated across rows, columns and observations.

We propose an estimation procedure, namely ↵-PCA, that aggregates the information in both

first and secondmoments and extract it via a spectral method. Specifically, we define the following
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where ↵ 2 [�1,+1) is a hyper-parameter balancing the information of the first and second mo-

ments, Y = 1
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are the sample row and column covariance matrix, respectively. Estimations of R and C can be

obtained, respectively, as
p
p times the top k eigenvectors of bMR and

p
q times the top r eigenvec-

tors of bMC , in descending order by corresponding eigenvalues. We explain its interpretation and

relations to several estimation procedures in Section 2.

In the community of image signal processing, model (1.1) and estimation methods such as

(2D)2-PCA have been actively studied (Yang et al., 2004; Zhang and Zhou, 2005; Kong et al.,

2005; Pang et al., 2008; Kwak, 2008; Li et al., 2010; Meng et al., 2012; Wang et al., 2015). How-

ever, their studies mainly focus on the algorithmic properties and give no statistical properties

on the estimators that are highly demanded in the medical, economics, and social applications

nowadays. The proposed ↵-PCA aggregates the first moment (weighted by 1 +↵) and the second

moment, where ↵ 2 [�1,+1) is a hyper-parameter in (1.2) and (1.3). It encompasses (2D)2-PCA as

a special case of ↵ = �1, which is not a best choice in general. We show theoretically and empiri-

cally how to choose optimal ↵ under di↵erent criteria, such as achieving most e�cient estimators

and providing most accurate predictors. Also, we are the first to apply model (1.1) to provide

convergence and asymptotic normality results of the estimators under a very general setting.

With respect to statistical analyses, Wang et al. (2019) and Chen et al. (2019) consider a similar

model in the bilinear form (1.1), yet under a very di↵erent setting where Et is assumed to be

white noise (Lam and Yao, 2012; Lam et al., 2011). Chen et al. (2021) extends previous results

to time series of tensor observations, again assuming noise tensors are not temporally correlated.

This line of research discards contemporaneous covariance and utilizes only the auto-covariance

between Yt and Yt�h with h � 1. The white noise assumption for Et simplifies the problem by

removing the error covariance E
h
EtE

>

t�h

i
= 0 (h � 1) from E [(Yt �EYt)(Yt�h �EYt�h)>], but the
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resulting data can have little information for the quantity that we would like to learn. Indeed,

the most informative component E [(Yt �EYt)(Yt �EYt)>] is excluded. The `2 convergence rates

obtained by Wang et al. (2019) for the estimators of R and C are both T �1/2 with strong factors

(i.e. Assumption 3 in Section 3). Although they use auto-covariance matrices, their results are

comparable to the noiseless version of our model (1.1). Under the noiseless setting when term

Et in equation (1.1) is ignored, our results give faster convergence rates of (qT )�1/2 for R and

(pT )�1/2 for C with strong factors, same as those obtained in Chen et al. (2021) for order-2 tensor

observations.

Even in the case of ↵ = �1, our models and methods are very di↵erent. We need to deal

with the bias term E
h
EtE

>

t

i
, 0, while the analyses in Wang et al. (2019); Chen et al. (2021) are

largely simplified by assuming Et as white noise and not including contemporaneous covariance

E [(Yt �EYt)(Yt �EYt)>]. Furthermore, our assumption is more general in that Et is allowed to be

weakly correlated across rows, columns and observations.

The contributions of this paper are three folds. Firstly, we expand considerably the scope

of applicability of Wang et al. (2019) and related work, making the theory and methods useful

for a wider range of applications. The previous work uses only cross-covariance to learn the

latent factors and factor loadings. This not only requires the restrictive assumption that {Et} is

a white noise series, but also becomes ine↵ective when auto-correlations are weak. This makes

the procedure inapplicable to i.i.d matrix-variate data, such as gene or proteomic expression data

across samples andmultiple image data illustrated in Section 6.2. It can not be applied to financial

return data due to the e�cient market hypothesis. In contrast, we use the most informative piece

of information: the contemporary covariance matrix. This modification makes the procedure

applicable to i.i.d matrix-variate data and weakly auto-correlated data.

In addition, we point out that the first moments also provide useful information and thor-

oughly incorporate this by aggregating it with the secondmoments via a weighted spectral method.

Theorem 2 shows precisely how much the benefit is (if any). We show how to choose the parame-

ter ↵ in real applications and further point out a generalization of this idea to yield an even more

powerful method by incorporating the auto-covariance as well (Wang et al., 2019).

On theoretical aspects, we establish new results on the asymptotic normality and the optimal

↵ of the ↵-PCA. They are useful in constructing the confidence intervals of the estimators and
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also in choosing the optimal values of ↵.

1.1 More related work

Besides the literature in image processing and matrix-variate factor models, this paper is re-

lated to the literature of vector factor models and statistical tensor data analysis. Model (1.1)

can be seen as a generalization of the vector factor model (Bai and Ng, 2002; Bai, 2003; Fan et al.,

2013; Chang et al., 2015; Fan et al., 2021, 2020) to matrix-variate data. Solvingmodel (1.1) directly

achieves a better convergence rate in a high-dimensional regime than that which results from ap-

plying the vector factor model to vectorized observations. In particular, consider the following

vectorized version of model (1.1):

vec (Yt) = (C⌦R) ·vec (Ft) +vec (Et) , (1.4)

where vec (Yt) 2 Rpq and vec (Ft) 2 Rkr . The `2 convergence rate for [C⌦R obtained by traditional

PCA (Bai, 2003; Bai and Ng, 2002) is min{pq,T }�1/2, without adopting the tensor structure in the

loading matrix. Under similar assumptions, solving model (1.1) directly gives a `2 convergence

rate of min{p,T q}�1/2 for bR and min{q,T p}�1/2 for bC. In a high-dimensional regime where p,q > T ,

our method gives better results. Furthermore, we obtain bR and bC by directly solving model (1.1),

more specifically applying PCA to (1.2) and (1.3), while one needs to carry out a second step to

estimate bR and bC from [C⌦R, which may incur further errors (Cai et al., 2019). See remarks after

Theorem 1 and 2 for more discussion.

Tensor decomposition (Kolda and Bader, 2009; Kolda, 2006) has also been applied to matrix-

variate observations. Note that {Yt}1tT form an order-3 tensor of dimension p⇥q⇥T by stacking

Yt along the third mode 1  t  T . Statistical convergence rates in Frobenius norm have been stud-

ied in Zhang and Xia (2018) under the assumption of homogeneous entries in tensor. However,

vanilla Tucker decomposition does not apply directly here. (See Remark 3 for more discussion.)

We allow correlations across rows, columns and observations in Et and also derived the asymp-

totic normalities forbR andbC. Additionally, by focusing on the simplest multi-dimensional objects

and connecting them with the matrix-variate normal distribution, our analysis provides statis-

tical insights that are potentially helpful in understanding the behavior of higher-order multi-

dimensional observations. Generalizing our method to higher-order tensor decomposition is an

interesting direction for future research.
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1.2 Notation and organization

We use lowercase letter x, boldface letter x, and boldface capital letter X to denote scalar,

vector and matrix, respectively. We use Xi·, X·j , and xij to denote the i-th row, j-th column, and

(i, j)-th element of a matrix X, respectively. For a matrix X, we use the following matrix norms:

maximum norm kXkmax , max
ij
|xij |, `1-norm kXk1 , max

j

P
i |xij |, `1-norm kXk1 , max

i

P
j |xij |,

and `2-norm kXk , �1, where �1 is the largest singular value {�i} of Xwith �i being the i-th largest

square root of eigenvalues of X>X. We also use kXk for `2 norm. When X is a square matrix, we

denote by Tr(X), �max (X), and �min (X) the trace, maximum and minimum singular value of X,

respectively. We let [n] , {1, . . . ,n} denote the set of integers from 1 to n.

The rest of this paper is organized as follows. In Section 2, we introduce estimation method for

model (1.1). We develop the asymptotic normality for the estimated loading matrices in Section

3 and provide consistent estimators of the asymptotic variance-covariance matrices in Section 4.

In Section 5, we study the finite sample performance of our estimation via simulation. Section 6

provides empirical studies. Section 7 concludes. All proofs and technique lemmas are relegated

to Appendix A and B in the supplemental materials.

2 Estimation

2.1 Model identification

We only observe Yt and everything on the right hand side of model (1.1) is unknown. Sep-

aration of the signal part St = RFtC
> and noise part Et can be achieved by the pervasiveness

assumption (i.e. Assumption 3) on loading matrices R and C and the bounded eigenvalues as-

sumption (i.e. Assumption 4) of noise row and column covariances in Section 3. The latent factor

matrix Ft and loading matrices R and C are not separately identifiable. However, they can be

estimated up to an invertible matrix transformation. Particularly, let HR 2 Rk⇥k and HC 2 Rr⇥r

be two non-singular matrices. The triplets (R,Ft ,C) and (RH�1R , HRFtH
>

C, CH
�1
C ) are equivalent

under model (1.1).

Thus instead of the ground truth R
? , F?t and C

? , we aim at estimating transformations of the

true values. Without loss of generality, restrict our estimator bR and bC such that
1
p
bR>bR = I, and

1
q
bC>bC = I. (2.1)
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As shown in the Theorem 2, for any ground truth R
? , C? , F?t and our estimator bR (bC), there

exists an invertible HR (HC ) given in (3.1) ((3.2)) such that bR (bC) is a close estimator of R?HR

(C?HC ) andbFt is an estimator of H�1R F
?
t H
�1
C
>. Knowing R

?
HR, C?HC , and H

�1
R F

?
t H
�1
C
> is as good

as knowing true R
? , C? and F

?
t for many purposes. For example, in regression analysis or time

series prediction, using H
�1
R F

?
t H
�1
C
> as the regressor will give the same predicted value as using

F
?
t as the regressor. Note that the true R

? and C
? do not necessarily satisfy (2.1). If they do, then

HR and HC approach orthogonal matrices in the limit.

2.2 Estimation based on spectral aggregation

Note that the first moment E [Yt] = RE [Ft]C>, which contains also the information of un-

known parameters. Similarly, the second moment

E
h
(Yt �E [Yt]) (Yt �E [Yt])

>
i
= RE

h
(Ft �E [Ft])C>C(Ft �E [Ft])>

i
R
> +E

h
EtE

>

t

i

also contains information about the unknown parameters. In particular, after noticing the matrix

E [(Ft �E [Ft])C>C(Ft �E [Ft])>] is of rank k under some mild conditions and ignoring the second

term (as justified by the pervasive assumption below), it is easy to see R is the same as the top

k eigenvectors of the second moment, up to an a�ne transformation. This justifies our spectral

method based on (1.2) and (1.3) introduced in the introduction.

Let e↵ =
p
↵ +1� 1 and

eYt , Yt + e↵Y, eFt , Ft + e↵Ft , and eEt , Et + e↵Et .

Then we have

eYt = ReFtC> +eEt . (2.2)

Equations (1.2) and (1.3) can be equivalently written as

bMR =
1

pqT

TX

t=1

eYt
eY>t , and bMC =

1
pqT

TX

t=1

eY>t eYt , (2.3)

which can be viewed as the statistics defined on the transformed data eYt . The special case for

↵ = �1 corresponds to the sample row and column covariance matrices of the original data.

The estimatorsbR andbC are respectively obtained as
p
p times the top k eigenvectors of bMR and

p
q times the top r eigenvectors of bMC , in descending order by corresponding eigenvalues.

Remark 1. Auto-covariance based estimation. Wang et al. (2019) and Chen et al. (2019) consider a
similar model in the bilinear form (1.1), yet under a very di↵erent setting where Et is assumed to
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be white noise. The major methodological di↵erence is that Wang et al. (2019) utilizes only the
auto-covariance between Yt and Yt�h with h � 1, discarding the covariance of Yt totally. When
the data is temporally independent or weakly correlated, the population auto-covariance of lag
h � 1 (signal) is equal to or close to zero and the sample auto-covariance has very low signal noise
ratio. In other words, this kind of methods can not be applied to the cross-sectional data such as
high-throughput genomics measurements where t indices an individual or financial return data
where predicability is low due to e�cient markets. The performance comparisons in Section 6
also confirm this concern in real data sets.

Remark 2. Spectral aggregation. The proposed method falls in the category of spectral methods
which are based on eigen-decomposition or singular value decomposition of moments-type statis-
tics, i.e. matricesMR andMC . One major di↵erence between statistical methods in this category is
how the statistics MR (MC ) is constructed. Wang et al. (2019) and Chen et al. (2019) construct M
using the auto-covariance and derive the properties of their auto-covariance-based estimators un-
der the assumption that Et is white noise. They require that the factors be pervasive cross-section
(p,q), and also that the factors be temporally dependent (otherwise the signal part equals zero.)
The present paper constructsMR (MC ) using covariance and the theoretical properties are derived
under a di↵erent set assumptions.

A very interesting point raised by the referee is that whether we can use both covariance and
auto-covariance for spectral aggregation. Forni et al. (2015, 2017) proposed a full dynamic factor
model for vector time series which include both covariance and auto-covariance. While we are
considering a static factor model (Bai, 2003) here, the information of first moment, covariance
and lag-h auto-covariance for h � 1 can be aggregated to yield an even better performance, as
long as Et is white noise. See Fan and Zhong (2018) for the methods and the results on spectral
aggregations.

Remark 3. Tensor decomposition. Matrix-variate time series Yt , t 2 [T ], is the 2nd-order tensor
time series. Also, it can be stacked along a third mode of time to form a 3rd-order tensor Y 2
Rp⇥q⇥T . Tucker decomposition (Kolda and Bader, 2009; Kolda, 2006) can be applied to the 3rd-
order tensor Y directly. Model (1.1) can be written equivalently as a noisy Tucker decomposition
Y = F ⇥1 R⇥2 C⇥3 IT + E where ⇥m is the mode m tensor product and IT is the identity matrix of
size T . At the same time, Tucker decomposition can be applied to the covariance tensor defined
as Cov[Yt] = Cov[Ft]⇥1R⇥2R⇥3C⇥4C, where Cov[Yt] 2 Rp⇥p⇥q⇥q with the ijkl-th element being
Cov

h
yt,ikyt,jl

i
. These two problems are constrained Tucker decomposition: the formal restricts

that the time-mode loading matrix is the identity matrix IT , while the latter restricts that two
loadings are exactly the same. It is of great interest to extend the current algorithms and theories
on Tucker decomposition (See Zhang and Xia (2018) and references therein) to such constrained
Tucker decomposition problems.
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2.3 Relations to LS, ML and PCA estimators

In this section, we provide more interpretation of ↵-PCA. Our estimation approximates the

least squares and maximum likelihood estimators and encompasses PCA type of estimators as a

special case with ↵ = �1. The proposed estimator in Section 2.2 approximately minimizes jointly

the unexplained variation and bias:

minimize
R,C,{Ft}

T
t=1

(1 +↵)
1
pq

���Y�RFC>
���2
F

|               {z               }
sample bias

+
1

pqT

TX

t=1

���Yt �RFtC
>
���2
F

|                        {z                        }
sample variance

subject to
1
p
R
>
R = I,

1
q
C
>
C = I.

(2.4)

The special case ↵ = �1 corresponds to the least squares estimator. However, (2.4) is non-convex.Thus,

instead of solving (2.4) directly, we may consider an approximate solutions by maximizing row

and column variances respectively after projection.

Firstly, {Yt}t2[T ] are projected onto R and maximize the row variances of R>Yt under the con-

straint that 1
pR
>
R = I. On the population level, that is,

maximize
R

Tr
✓
E


(1 +↵)

⇣
R
>
Y

⌘⇣
R
>
Y

⌘>
+

⇣
R
>
Yt �E[R>Yt]

⌘⇣
R
>
Yt �E[R>Yt]

⌘>�◆

= Tr
⇣
pq ·R>MRR

⌘
,

subject to
1
p
R
>
R = I,

where

MR , (1 +↵)M(1)
R +M

(2)
R , M

(1)
R ,

1
pq

E
h
YY
>
i
, and M

(2)
R ,

1
pq

E
⇣
Yt �E[Y]

⌘⇣
Yt �E[Y]

⌘>�
.

Similar expressions can be obtained by using the projections onto C and maximize the column

variances of YtC. Note that a factor of 1
pq does not change the column space ofMR orMC , but will

facilitate theoretical analysis and stabilize numerical computation as p and q increase.

With T observations {Yt}t2[T ], we replace the population mean and covariance matrix by their

sample versions and obtain the maximizerbR (bC) comprised of
p
p (
p
q) times top k (r) eigenvectors

of bMR (bMC ) in descending order by corresponding eigenvalues. Thus the estimator defined in

Section 2.2 approximately solves (2.4).
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2.4 Estimation of the factor and signal matrices

After estimating bR and bC by spectral aggregation described in Section 2.2, we obtain an esti-

mator of Ft using condition (2.1):

bFt =
1
pq

bR>Yt
bC. (2.5)

The signal part St = RFtC
> can be estimated by

bSt =
1
pq

bRbR>Yt
bCbC>. (2.6)

The above estimation procedure assumes that the latent dimensions k⇥r are known. However,

in practice we need to estimate k and r as well. To determine k and r we could use: (a) the eigen-

value ratio-based estimator, proposed by Ahn and Horenstein (2013); (b) the Scree plot which is

standard in principal component analysis. Let b�1 � b� � · · · � b�k � 0 be the ordered eigenvalues of

bMR. The ratio-based estimator for k is defined as

bk = argmax
1jkmax

b�j
b�j+1

, (2.7)

where kmax is a given upper bound. In practice we may take kmax = dp/2e or kmax = dp/3e ac-

cording to Ahn and Horenstein (2013). Ratio estimatorbr is defined similarly with respect to bMC .

Adjustments of estimated eigenvalues are needed when the optimal k grows with p (Fan et al.,

2020).

In the next section, we establish theoretical results showing that under high dimensional set-

tings, bR, bC andbFt are consistent estimators under known fixed k and r. In addition, we obtain the

asymptotic distributions for bR and bC.

3 Theoretical Properties

We first state all the necessary assumptions used in the following sections. To simplify no-

tation, we drop the ? superscript and let Ft 2 Rk⇥r , R, and C be the true latent factor, row and

column loading matrices, respectively. Let F = 1
T

PT
t=1Ft and E = 1

T
PT

t=1Et be the sample means

of the factors and the noise, respectively. Entries in the matrices are respectively denoted as f ij

and eij .

Assumption 1. ↵-mixing. The vectorized factor vec (Ft) and noise vec (Et) are ↵-mixing. Specifically,

a vector process {xt , t = 0,±1,±2, · · · } is ↵-mixing if, for some � > 2, the mixing coe�cients satisfy the
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condition that
1X

h=1

↵(h)1�2/� <1,

where ↵(h) = sup
⌧

sup
A2F ⌧

�1,B2F
1

⌧+h

|P(A\B)�P(A)P(B)| and F s
⌧ is the �-field generated by {xt : ⌧  t  s}.

Assumption 2. Factor and noise matrices. There exists a positive constant C <1 such that for all

N and T ,

(a) Factor matrix Ft is of fixed dimension k ⇥ r and EkFtk
4
 C.

(b) For all i 2 [p], j 2 [q] and t 2 [T ], E
h
et,ij

i
= 0 and E|et,ij |8  C.

(c) Factor and noise are uncorrelated, that is, E
h
et,ij fs,lh

i
= 0 for any t, s 2 [T ], i 2 [p], j 2 [q], l 2 [k],

and h 2 [r].

Assumption 3. Loading matrix. For each row of R, kRi·k = O (1), and, as p,q ! 1, we have���p�1R>R�⌦R

��� �! 0 for some k ⇥ k positive definite matrix ⌦R. For each row of C, kCi·k = O (1),
and, as p,q!1,

���q�1C>C�⌦C

��� �! 0 for some r ⇥ r positive definite matrix ⌦C .

Assumption 3 is an extension of the pervasive assumption (Stock and Watson, 2002) to the

matrix variate data. It ensures that each row and column of the factor matrix Ft has a nontrivial

contribution to the variance of rows and columns of Yt . Thus our analysis is in the regime of

“strong factors” that they lead to exploding eigenvalues relative to the idiosyncratic eigenvalues.

Note that Assumption 1 only deals with temporal dependence. The matrix dimension p and q

also determine the convergence rates, which is a↵ected by the cross-row and cross-column depen-

dence. Thus we need Assumptions 4 and 5 below so that the information accumulated over rows

(p) or columns (q) is also useful. Assumption 4 holds automatically when the errors Et are i.i.d.

over rows and columns for any t.

Assumption 4. Cross row (column) correlation of noise Et . There exists some positive constant

C <1 such that,

(a) Let UE = E
h
1
qT

PT
t=1EtE

T
t

i
and VE = E

h
1
pT

PT
t=1E

T
t Et

i
, we assume kUEk1  C and kVEk1  C.

(b) For all row i 2 [p] and column j 2 [q] and t 2 [T ], we assume
P

l2[p]
l,i

P
h2[q]
h,j

����E
h
et,ij et,lh

i����  C.

(c) For any row i, l 2 [p], any time t 2 [T ], and any column j 2 [q],
X

m2[p]

X

s2[T ]

X

h2[q]
h,j

����Cov
h
et,ij et,lj , es,ihes,mh

i����  C

11



Similar, for any column j,h 2 [q], any time t 2 [T ], and any row i 2 [p],
X

m2[q]

X

s2[T ]

X

l2[p]
l,i

����Cov
h
et,ij et,ih, es,lj es,lm

i����  C

To better interpret the cross-row/column correlation of noise terms in Assumption 4, we con-

sider the special case when Et follows an i.i.dmatrix-variate normal distributionMNp⇥q

⇣
0,eUE,eVE

⌘
.

Then

UE = E

2
666664
1
qT

TX

t=1

EtE
T
t

3
777775 =

eUE ·
1
q
Tr

⇣
eVE

⌘
.

Given that 1
q Tr

⇣
eVE

⌘
= O(1), Assumption 4 (a) requires that the row covariance eUE of the noise

matrix satisfies
���eUE

���
1 < c. Similarly, we require

���eVE

���
1 < c. It is satisfied if UE and VE are diagonal

matrices, or more generally sparse matrices. Given Assumption 2, the remaining assumptions in

Assumption 4 are satisfied if et,ij are independent for all i, j , and t. We allow weak correlations

across i, j or t in the noise, which is more general than the i.i.d. assumption in tensor decomposi-

tion literature (Zhang and Xia, 2018).

Assumption 5. There exists m > 2, 1 < a,b <1, 1/a+1/b = 1, such that, for some positive C <1,

(a) For any l 2 [k], i 2 [p], and t 2 [T ], E
"���� 1
p
q

Pq
j=1 et,ij

����
mb

#
= O (1), E

"���� 1
p
q

Pq
j=1Cj ·et,ij

����
mb

#
= O (1),

and E
h���ft,l·

���mai
 C.

(b) For any h 2 [r], j 2 [q], and t 2 [T ], E
"���� 1
p
p

Pp
i=1 et,ij

����
mb

#
= O (1), E

"���� 1
p
p

Pp
i=1Ri·et,ij

����
mb

#
= O (1),

and E
h���ft,·h

���mai
 C.

(c) For any t 2 [T ], E
"���� 1
p
pq

Pp
i=1

Pq
j=1 et,ij

����
mb

#
= O (1) and E

"���� 1
p
pq

Pp
i=1

Pq
j=1Ri·C

>

j ·et,ij
����
mb

#
= O (1).

Assumption 5 is satisfied by Gaussian noise Et with i.i.d rows and columns. Specifically, if

et,ij ⇠N
⇣
0,�2

⌘
are i.i.d. over i 2 [p] and j 2 [q], then 1

p
p

Pp
i=1 et,ij

D
�!N

⇣
0,�2

⌘
, 1
p
p

Pp
i=1Ri·et,ij

D
�!

N

⇣
0,�2⌦R

⌘
, 1
p
pq

Pp
i=1

Pq
j=1 et,ij

D
�!N

⇣
0,�2

⌘
, and 1

p
pq

Pp
i=1

Pq
j=1(Cj ·⌦Ri·)et,ij

D
�!N

⇣
0,�2⌦C ⌦⌦R

⌘
.

Thus, Assumption 5 on the noise part is satisfied by choosing m = 2 and a = b = 2. It is imposed to

guarantee the
p
pT or

p
qT convergence rate (rather than

p
T ) when rows or columns of Et are not

independent. It will not be needed when the errors Et are i.i.d. over rows and columns for any t

and are independent of the factor Ft , with assumed moments conditions. We include them here

to allow for weakly cross-row (-column) and temporal correlations.

12



Now, we are ready to present theoretical properties of our estimators. To facilitate the analysis,

we first introduce auxiliary matrices HR, HC , VR,pqT and VC,pqT . As noted previously, R, C and Ft

are not separately identifiable. We show in the following that, for any ground truth R, C and Ft

and our estimator bR (bC), there exists an invertible matrix HR (HC ) such that bR (bC) is a consistent

estimator of RHR (CHC ) andbFt is a consistent estimator of H�1R FtH
�1
C
>.

Let VR,pqT 2 Rk⇥k and VC,pqT 2 Rr⇥r be the diagonal matrices consisting of the first k and r

largest eigenvalues of bMR = 1
pqT

PT
t=1

eYt
eY>t and bMC = 1

pqT
PT

t=1
eY>t eYt in decreasing order, respec-

tively. By definition of our estimators bR and bC, we have

bR =
1

pqT

TX

t=1

eYt
eY>t bRV�1R,pqT and bC =

1
pqT

TX

t=1

eY>t eYt
bCV�1C,pqT .

Define HR 2 Rr⇥r and HC 2 Rr⇥r as

HR =
1

pqT

TX

t=1

eFtC>CeF>t R
>bRV�1R,pqT 2 R

k⇥k (3.1)

HC =
1

pqT

TX

t=1

eF>t R
>
ReFtC>bCV�1C,pqT 2 R

r⇥r , (3.2)

which are bounded as p,q,T ! 1 (See Appendix A for more details). Theorem 1 shows that bR

and bC converge in Frobenius and `2 norm.

Theorem 1. Under Assumptions 1 - 5, we have, as k, r fixed and p,q,T !1,

1
p

���bR�RHR

���2
F
= Op

 
1

min {p,qT }

!
,

1
q

���bC�CHC

���2
F
= Op

 
1

min {q,pT }

!
.

Consequently,

1
p

���bR�RHR

���2 = Op

 
1

min {p,qT }

!
,

1
q

���bC�CHC

���2 = Op

 
1

min {q,pT }

!
.

Remark 4. In the vectorized model (1.4), we denote ⇤ = C⌦R. Applying results in Bai and Ng
(2002) and Bai (2003), we obtain 1

pq

���b⇤�⇤H
���2 = Op

⇣
1

min{pq,T }

⌘
whereH 2 Rkr⇥kr is an orthonormal

matrix. Theorem 1 establishes faster `2 convergence rate for both bR and bC in a high-dimensional
regime where p,q � T . Furthermore, we obtain bR and bC directly by applying PCA to (1.2) and
(1.3), which converge faster than the PCA for vectorized model (1.4). In addition, in order to
use the tensor structure in the factor loadings, after obtaining b⇤ from the vectorized PCA, one
needs to carry out a second step to estimate R and C from b⇤ which amounts to noisy Kronecker
production decomposition. See Cai et al. (2018); Wedin (1972); Cai et al. (2019) and references
therein for more discussions on this topic. Since b⇤ = (C⌦R)H+W, whereW is the estimation error
in the first step that are dependent across entries, it is not clear how the second step aggregates
biases and reduce variances.

13



Remark 5. The present paper considers only the fixed k and r, which is common in factor analysis.
The case with growing k and r can be obtained by book-keeping all the k and r in the proofs. See
Fan et al. (2020) and Appendix B of Chen et al. (2020) for results on growing k and r in the vector
factor model setting.

Before presenting our main theorem on the asymptotic normality, we define several quantities

that are used in the theorem. Letting µF = E [Ft] and

⌃FC , E
h
(Ft �µF) (C>C/q) (Ft �µF)

>
i
, and ⌃FR , E

h
(Ft �µF)

> (R>R/p) (Ft �µF)
i
, (3.3)

then

e⌃FC ,
1
q
E

h
eFtC>CeF>t

i
= ⌃FC + (↵ +1)

1
q
µFC

>
Cµ>F ,

e⌃FR ,
1
p
E

h
eF>t R

>
ReFt

i
= ⌃FR + (↵ +1)

1
p
µ>FR

>
RµF.

(3.4)

Consider again the special case where Ft ⇠MN (µF,UF,VF). Then, FtC> ⇠MN (µFC
>,UF,CVFC

>),

RFt ⇠MN (RµF,RUFR
>,VF), and

⌃FC =UF ·Tr
 
VF

C
>
C

q

!
, e⌃FC =UF ·Tr

 
VF

C
>
C

q

!
+ (↵ +1)

1
p
µFR

>
Rµ>F .

⌃FR =VF ·Tr
 
UF

R
>
R

p

!
, e⌃FR =VF ·Tr

 
UF

R
>
R

p

!
+ (↵ +1)

1
p
µFR

>
RµF.

Matrix ⌃FC can be interpreted as the row covariance of Ft scaled by the strengths of column vari-

ances of FtC> and ⌃FR can be interpreted as the column covariance of Ft scaled by the strengths

of row variances of RF>t . Matrices ⌃FC and ⌃FR contain the aggregated information of moments

of rows of FC> and F
>
R, respectively.

Theorem 2 establishes that bR and bC are good estimators of RHR and CHC , respectively, and

each row of bR � RHR and bC � CHC are asymptotically normal. The following assumption on

eigenvalues is needed.

Assumption 6. The eigenvalues of the k ⇥ k matrix ⌦R
e⌃FC are distinct and so are the eigenvalues of

the r ⇥ r matrix ⌦C
e⌃FR.

Theorem 2. Under Assumptions 1-6, as k, r fixed and p,q,T !1, we have:

(i) For row loading matrix R, if
p
qT /p! 0, then

p
qT

⇣
bRi· �H

>

RRi·

⌘
=V

�1
R,pqT ·

bR>R
p
·

1
p
qT

TX

t=1

eFtC>eEt,i· +op (1)
D
�!N

⇣
0,⌃Ri

⌘
,
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where

⌃Ri
,V

�1
R QR

⇣
�R,i,11 +↵�R,i,12µ

>

F +↵µF�R,i,21 +↵2µF�R,i,22µ
>

F

⌘
Q
>

RV
�1
R , (3.5)

and

�R,i,11 = plim
q,T!1

1
qT

TX

t=1

TX

s=1

E
h
FtC

>
et,i·e

>

s,i·CF
>
s

i
,

�R,i,12 =�
>

R,i,21 = plim
q,T!1

1
qT

TX

t=1

TX

s=1

E
h
FtC

>
et,i·e

>

s,i·C
i
,

�R,i,22 = plim
q,T!1

1
qT

TX

t=1

TX

s=1

E
h
C
>
et,i·e

>

s,i·C
i
.

(3.6)

Matrix QR , V
1/2
R  >R

e⌃
�1/2
FC where VR is a diagonal matrix whose entries are the eigenvalues of

e⌃
1/2
FC ⌦R

e⌃
1/2
FC in decreasing order, R is the corresponding eigenvector matrix such that >R R =

I, ⌦R defined in Assumption 3 and e⌃FC is defined in (3.4).

(ii) For column loading matrix C, if
p
pT /q! 0, then

p
pT

⇣
bCj · �H

>

CCj ·

⌘
=V

�1
C,pqT

bC>C
q

1
p
pT

TX

t=1

F
>

t R
>
Et,·j +op (1)

D
�!N

⇣
0,⌃Cj

⌘
,

where

⌃Cj
,V

�1
C QC

⇣
�C,j,11 +↵�C,j,12µF +↵µ

>

F�C,j,21 +↵2µ>F�C,j,22µF

⌘
Q
>

CV
�1
C , (3.7)

and �C,j,11, �C,j,12 and �C,j,22 are defined similarly to �R,i,11, �R,i,12 and �R,i,22. Ma-

trix QC , V
1/2
C  >C

e⌃
�1/2
FR where VC is a diagonal matrix whose entries are the eigenvalues

of e⌃
1/2
FR ⌦C

e⌃
1/2
FR in decreasing order,  C is the corresponding eigenvector matrix such that

 >C C = I, ⌦C is defined in Assumption 3, and e⌃FR is defined in (3.4).

Note that the asymptotic variance depends on ↵ in a quadratic form and its minimum typically

exists. In particular, if �R,i,12 = 0 and �C,i,12 = 0, the linear term is zero and hence ↵opt = 0. In

this case, ↵-PCA outperforms the convention 2D-PCA, which takes ↵ = �1.

Remark 6. (Optimal ↵ based on di↵erent criteria.) Scalar ↵ is a hyper-parameter used in the esti-
mation to balance the information of the first and second moments. When ↵ = �1, ↵-PCA uses
only the second moment and reduces to the 2D-PCA algorithm. Theorems 1 and 2 show that the
convergence rates of bRi· and bCj · are not a↵ected by ↵. However, the asymptotic variances in (3.5)
and (3.7) are dependent on the value of ↵. Thus, the asymptotic variances of bRi· and bCj · can be
used as a criterion to find the optimal ↵.

When µf = 0, (3.5) and (3.7) show that the value of ↵ does not a↵ect the asymptotic variance.
Indeed, in this case, the first moments do not provide any extra information. When µf , 0, one
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criterion is to minimize p�1
Pp

i=1Tr
⇣
⌃Ri

⌘
, which controls the asymptotic variance in an average

sense. We can obtain an analytical form of ↵opt as

↵opt = �
1
2
Tr

⇣
µ>F�R,22µF

⌘�1
Tr

⇣
�R,12µF +µ>F�R,21

⌘
, (3.8)

where �R,kl = p�1
Pp

i=1�R,i,kl for k, l = 1,2. If �R,21 = �R,12 = 0, then ↵opt = 0 for the criterion
of minimizing p�1

Pp
i=1Tr

⇣
⌃Ri

⌘
. In this case, aggregation indeed gains, putting equal weights on

both the first and the second moments. The simulation in Section 5.4 confirms this theoretical
result.

For other criterion based on asymptotic variances such as max
i2[p]

⇣
⌃Ri

⌘
, an analytical form of ↵

does not exist. However, we are still able to use computational methods to search for the optimal
↵ that minimize the criterion as a function of ⌃Ri

and ⌃Cj
based on (3.5) and (3.7).

Remark 7. (Practical guidance for choosing ↵.) As discussed above, the optimal choice of ↵ can be
chosen according to (3.8) for the purpose of minimizing the asymptotic variance. If one decides
to seek for a better choice, one can search ↵ over a grid of points for the one that optimizes
an application-specific criterion. For example, in Section 6.1 with multinational macroeconomic
indices, we would like the variance of estimators to be minimal. So we find optimal ↵ as one that
minimizes the trace Tr

⇣
b⌃R

⌘
where b⌃R = p�1

Pp
i=1

b⌃Ri
. This value can be calculated according to

equation (4.2) for a grid of ↵’s, as plotted in Figure 6. Alternatively, in Section 6.2 with image data
set, we care most about the reconstruction error which is measured by the ratio between residual
sum of squares over the total sum of squares (RSS/TSS). So we search the optimal ↵ that minimize
the RSS/TSS over a grid of ↵s, as plotted in Figure 9.

Theorem 3. Under Assumptions 1-6, as k, r fixed and p,q,T !1, we have

bFt �H�1R FtH
�1
C
>
= Op

 
1

min(p,q)

!
.

Theorem 4. Under Assumptions 1-6, as k, r fixed and p,q,T !1, we have the following convergence

result of the estimator (2.6) of the signal part St = RFtC
>
.

bSt,ij �St,ij = Op

0
BBBBBB@

1

min
⇣
p,q,
p
pT ,
p
qT

⌘

1
CCCCCCA , for any 1  i  p and 1  j  q.

Remark 8. Theorems 3 does not require any restriction on the relationship between p, q and T

except that they all go to infinity. Theorems 3 and 4 show that, in order to estimate the latent
factor Ft and signal St consistently, we need to have dimensions p and q approach infinity. An
explanation is that we need to have su�cient information to distinguish the signal RFtC> from
the noise Et at each time point t. Theorems 2, 3 and 4 present the asymptotic properties when the
dimension of the latent matrix factor k ⇥ r is assumed to be known.
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4 Estimating Covariance Matrices

In this section, we derive consistent estimators of the asymptotic variance-covariance matrices.

According to Theorem 2, the asymptotic covariance of bRi·, 1  i  p, is given by

⌃Ri
=V

�1
R,pqTQR

⇣
Ik ↵µF

⌘ �R,i,11 �R,i,12
�R,i,21 �R,i,22

! 
Ik
↵µ>F

!
Q
>

RV
�1
R,pqT . (4.1)

TermVR,pqT is estimated as the k⇥k diagonalmatrix of the first k largest eigenvalues of 1
pqT

PT
t=1

eYt
eY>t

in decreasing order. To estimate the middle term sandwiched by V
�1
R,pqT , we use the heteroskedas-

ticity and autocorrelation consistent (HAC) estimators (Newey and West, 1987) based on series
n
bFt , bC>,bet,i·

o
t2[T ]

wherebFt and bC are estimated in Section 2 andbEt = Yt �
bRbFtbC>. Specifically, for

a tuning parameter m that satisfies and m!1 and m/ (qT )1/4 �! 0, it is defined as

DR,0,i +
mX

⌫=1

✓
1�

⌫
1+m

◆⇣
DR,⌫,i +D

>

R,⌫,i

⌘
,

where

DR,⌫,i =
⇣
Ik ↵bF

⌘0BBBB@
1
qT

PT
t=1+⌫

bFtbC>bet,i·be>t�⌫,i·bCbF>t�⌫ 1
qT

PT
t=1+⌫

bFtbC>bet,i·be>t�⌫,i·bC
1
qT

PT
t=1+⌫

bC>bet,i·be>t�⌫,i·bCbF>t�⌫ 1
qT

PT
t=1+⌫

bC>bet,i·be>t�⌫,i·bC

1
CCCCA

0
BBBB@
Ik

↵bF
>

1
CCCCA ,

andbF = 1
T

PT
t=1

bFt is the estimated mean. While a HAC estimator based on true
�
Ft , C>, et,i·

 
t2[T ], a

HAC estimator based on
n
bFt , bC>,bet,i·

o
t2[T ]

is estimatingQR�R,iQ
>

R becausebFt estimatesH�1R FtH
>

C
�1,

bC estimates CHC andbF estimates H�1R µFH
>

C
�1. Thus, a HAC estimator of the covariance of ⌃Ri

is

given by

b⌃Ri
=V

�1
pqT ,R

0
BBBBB@DR,0,i +

mX

⌫=1

✓
1�

⌫
1+m

◆⇣
DR,⌫,i +D

>

R,⌫,i

⌘
1
CCCCCAV
�1
pqT ,R (4.2)

Similar for bCj ·, 1  j  q, a HAC estimator of the covariance is given by

b⌃Cj
=V

�1
pqT ,C

0
BBBBB@DC,0,j +

mX

⌫=1

✓
1�

⌫
1+m

◆⇣
DC,⌫,j +D

>

C,⌫,j

⌘
1
CCCCCAV
�1
pqT ,C ,

where

DC,⌫,j =
⇣
Ir ↵bF

>⌘
0
BBBB@

1
pT

PT
t=1+⌫

bF>t bR>bet,·jbe>t�⌫,·jbRbFt�⌫ 1
pT

PT
t=1+⌫

bF>t bR>bet,·jbe>t�⌫,·jbR
1
pT

PT
t=1+⌫

bR>bet,·jbe>t�⌫,·jbRbFt�⌫ 1
pT

PT
t=1+⌫

bR>bet,·jbe>t�⌫,·jbR

1
CCCCA

 
Ir

↵bF

!
,

andbF = 1
T

PT
t=1

bFt is the estimated mean. The following theorem confirms the consistency.

Theorem 5. Under Assumptions 1-6, as k, r fixed and p,q,T !1, b⌃Ri
and b⌃Cj

are consistent for ⌃Ri

and ⌃Cj
, respectively.
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5 Simulation

In this section, we useMonte Carlo simulations to assess the adequacy of the asymptotic results

in approximating the finite sample distributions of bRi· and bCj · and the convergence rate of Ft . We

only report the result for bRi· and Ft because bCj · shares similar properties to bRi·.

5.1 Settings

Throughout, the matrix observations Yt ’s are generated according to model (1.1). The dimen-

sion of the latent factor matrix Ft is fixed at k⇥ r = 3⇥3. The values of p, q, and T vary in di↵erent

settings. The true loading matrices R and C are independently sampled from the uniform distri-

bution U (�1,1). The latent factor and noise matrices are allowed to be dependent across rows,

columns or time, respectively, in di↵erent settings to be specified later.

We present the following results under di↵erent settings in the subsequent subsections. We

refer our method and the one proposed in Wang et al. (2019) as ↵-aggregated PCA (↵-PCA) and

auto-covariance based PCA (AC-PCA), respectively. Results 1-3 compare specifically the results

obtained by ↵-PCA with those by AC-PCA. Result 4 presents the results obtained by ↵-PCA with

di↵erent values of ↵. Result 5 illustrates the optimal choice of the hyper-parameter ↵.

Result 1. (Estimating latent dimensions.) The latent dimensions are estimated by the eigen-ratio

method of (2.7). Results are presented in tables of frequencies ofbk ⇥br.

Result 2. (Proposition 1: Convergence of bR,bC.) We report box plots of the ratios between space

distances D(bR,R) (defined in (5.1)) retrieved from ↵-PCA and those from AC-PCA.

Result 3. (Theorem 3: Convergence ofbFt .) To demonstrate thatbFt is estimating a transformation of

Ft for t 2 [T ], we compute the HR and HC according to (3.1) and (3.2), respectively, and

report box plots of
���bFt �H�1R FtH

�1>
C

���.

Result 4. (Theorem 2: Asymptotic normalitybR�RHR.) We first consider the asymptotic distribution

of bR. We estimateb⌃R0
according to (4.2) and average. Then we compute the k⇥1 vectors

b⌃�1/2R (bR0,· �H
>

RR0,·) and report 1-dimensional histograms of each first component.

Result 5. (Optimal ↵ based on Theorem 2.) For each value of ↵ in [�1,5] with a step-size of 0.1, we

calculate the covariance matrix b⌃R0
of bR0· according to (4.2). The empirical optimal ↵ is

very close to the theoretical value given in (3.8). See Section 5.4 for details.
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5.2 Comparison of convergence

In this section, we consider the the finite sample convergence of bRi·, bCj · and Ft . We choose

(p,q) among (20,20), (20,100), or (100,100) and let T = 0.5pq, pq, 1.5pq, or 2pq, similar to the

setup in Wang et al. (2019). For the AC-PCA estimator, we will use lag parameter h0 = 1 since

we will be considering uncorrelated models or VAR(1) processes only. We use the column space

distance

D

⇣
A,bA

⌘
=

����bA
⇣
bA>bA

⌘�1bA> �A
⇣
A
>
A

⌘�1
A
>

���� , (5.1)

for any rank k matrices bA,A 2 Rp⇥k . To keep things simple, we only use the second moment

information, that is ↵ = �1, in this section. From Theorems 1 and 3, values of ↵ does not a↵ect the

convergence rate in the strong factor regime. Results in this section are based on 100 repetitions,

which are su�cient as shown in the reported standard deviations.

We simulate data and estimations under three settings as follows.

(I) (Uncorrelated.) The entries of both Ft and Et are uncorrelated across time, rows and columns.

Specifically, we simulate temporally independent Ft ⇠MN3⇥3 (0,I,I) and Et ⇠MNp⇥q (0,I,I).

(II) (Weakly correlated cross time.) The entries of Ft and Et are uncorrelated across rows and

columns, but weakly correlated temporally. Specifically, we simulate vec (Ft) from the fol-

lowing Vector Auto-Regressive model of order one (VAR(1) model):

vec (Ft) =� ·vec (Ft�1) + "t ,

where the AR coe�cient matrix� = 0.1 · I6 and Var["t] = 0.99 · I9. Thus, Var[vec (Ft)] = I9.

We simulate noise Et also from VAR(1),

vec (Et) = ·vec (Et�1) +ut ,

where  =  · Ipq and Var[ut] = 1 � 2. Thus, Var[vec (Et)] = Ipq. We choose  = 0.1 and

then increase to  = 0.5 to examine how temporal dependence may a↵ect our results. Note

that setting (II) with  = 0 corresponds to setting (I).

(III) (Weakly correlated cross rows or columns.)The entries of Ft and Et are temporally uncor-

related, but Et is weakly correlated across rows and columns. Specifically, we simulate

temporally independent Ft ⇠MN3⇥3 (0,I,I) and Et ⇠MNp⇥q (0,UE,VE), where UE and VE

both have 1’s on the diagonal, while have 1/p and 1/q o↵-diagonal, respectively. Note that
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Setting (III) correspond to setting (I) when  = 0 and the variance of ut are specified as

VE ⌦UE .

For both latent dimension estimation and convergence results, ↵-PCA consistently converges

faster with lower variance and estimates more accurately than AC-PCA over all chosen settings,

including a special case in Setting (II) where we increase  , the strength of temporal correlation.

Thus it is implied that ↵-PCA has significant advantages over AC-PCA when Ft and Et are uncor-

related or weakly correlated across rows and columns or time. In the sequel, we report results for

latent dimension, loading matrices and factor matrices under Setting (II) with  = 0.1 and  = 0.5.

Results under setting (I) and (III) are similar and relegated to Appendix C.

Accuracy of estimating unknown dimensions. We present the frequencies of estimated (bk,br)

pairs for Setting (II) with  = 0.1 and  = 0.5 in Table 1a and 1b, respectively. In latent dimension

estimation, our results demonstrate higher frequencies of correct estimation, and the accuracy

increases as p, q, and T increase.

(a) Setting II,  = 0.1.

p,q = 20,20 p,q = 100,20 p,q = 100,100
(bk,br) T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq
(2,3) .075 .08 .04 .03 0 0 0 0 0 0 0 0

.025 .005 .005 .015 0 0 0 0 0 0 0 0
(3,2) .06 .05 .035 .06 .025 .035 .02 .045 0 0 0 0

.01 .015 0 .005 .015 .005 .005 0 0 0 0 0
(3,3) .78 .8 .85 .815 .96 .95 .965 .94 1 1 1 1

.955 .975 .995 .98 .985 .995 .995 .995 1 1 1 1
other .085 .07 .075 .095 .015 .015 .015 .015 0 0 0 0

.01 .005 0 0 0 0 .005 .005 0 0 0 0

(b) Setting II,  = 0.5

p,q = 20,20 p,q = 100,20 p,q = 100,100
(bk,br) T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq
(2,3) .095 .105 .075 .035 0 0 0 0 0 0 0 0

.025 .03 .005 .015 0 0 0 0 0 0 0 0
(3,2) .07 .09 .075 .085 .055 .06 .05 .11 0 0 0 0

.02 .02 0 .01 .01 .01 0 .01 0 0 0 0
(3,3) .66 .615 .71 .685 .895 .875 .92 .835 1 1 1 1

.925 .935 .995 .97 .985 .995 .995 .99 1 1 1 1
other .175 .19 .14 .195 .05 .065 .03 .055 0 0 0 0

.03 .015 .005 .005 .005 0 .005 0 0 0 0 0

Table 1: Table of frequencies of estimated (bk,br) pairs estimated by ↵-PCA (highlighted rows) and AC-PCA
(not highlighted rows) under Setting II,  = 0.1,0.5. The truth is (3,3).
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(a) Setting II,  = 0.1.

(b) Setting II,  = 0.5.

Figure 1: Box plots of ratios of space distances between ↵-PCA and AC-PCA estimators. (a) is under Setting
II,  = 0.1; (b) is under Setting II,  = 0.5. The estimation errors of ↵-PCA is much smaller than AC-PCA.

Error of loadingmatrices estimation. Figure 1 (a) and (b) show box plots of ratios of the column

space distances between ↵-PCA and AC-PCA estimators, under Setting II  = 0.1 and  = 0.5

respectively. Clearly, the estimation errors of ↵-PCA are much smaller than those of AC-PCA,

since the ratios are ways below 1.

Detailed numeric values are presented in Table 2 which contains the means and standard

deviations (in parentheses) of D
⇣
bR,R

⌘
, D

⇣
bC,C

⌘
estimated by ↵-PCA (highlighted) and AC-PCA.

All values are multiplied by 10 and rounded.

For the space distances D(bR,R), D(bC,C), there is a tendency for higher convergence as well as

smaller variance at higher (p,q), as well as a slight tendency for better convergence at higher T , al-

though the latter e↵ect is less pronounced. Similar to the space distance results, thebF convergence

also improves as we increase p,q, and improves slightly as we increase T .

Factor matrices estimation errors. Figure 2 presents the box-plots of the `2 norm of the discrep-

ancy between estimatedbFt and transformed true Ft , that is temporal-averaged
����bFt �H�1R FtH

�1
C
>
����,
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(a) Setting II,  = 0.1.

T = 0.5pq T = pq T = 1.5pq T = 2pq
(p,q) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C)

(20,20) .40(.08) .40(.09) .29(.07) .29(.07) .23(.05) .23(.05) .20(.05) .21(.04)
1.12(.24) 1.14(.31) 1.08(.26) 1.06(.23) 1.00(.20) 1.00(.20) .98(.23) .98(.18)

(100,20) .14(.01) .08(.02) .10(.01) .05(.02) .08(.01) .05(.01) .07(.01) .04(.01)
.76(.06) .40(.09) .70(.06) .35(.07) .63(.05) .32(.06) .58(.05) .30(.06)

(100,100) .03(.002) .03(.002) .02(.002) .02(.002) .02(.001) .02(.001) .01(.001) .01(.001)
.23(.02) .23(.02) .18(.01) .18(.01) .15(.01) .15(.01) .13(.01) .13(.01)

(b) Setting II,  = 0.5.

T = 0.5pq T = pq T = 1.5pq T = 2pq
(p,q) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C)

(20,20) .52(.12) .52(.13) .38(.11) .38(.10) .29(.07) .30(.07) .26(.07) .27(.06)
1.50(.33) 1.51(.41) 1.36(.32) 1.34(.29) 1.23(.26) 1.23(.26) 1.18(.25) 1.19(.23)

(100,20) .17(.02) .11(.02) .12(.01) .07(.02) .10(.01) .06(.01) .09(.01) .05(.01)
.87(.07) .46(.10) .79(.06) .40(.08) .72(.06) .36(.07) .66(.06) .34(.07)

(100,100) .03(.003) .04(.003) .02(.002) .02(.002) .02(.002) .02(.001) .02(.001) .01(.001)
.27(.02) .27(.02) .21(.02) .21(.02) .18(.01) .18(.01) .16(.01) .16(.01)

Table 2: Means and standard deviations (in parentheses) of D
⇣
bR,R

⌘
, D

⇣
bC,C

⌘
estimated by ↵-PCA (high-

lighted rows) and AC-PCA (not highlighted rows) under Setting II,  = 0.1,0.5. All values multiplied by 10
and rounded.

under setting II,  = 0.1 and 0.5. As expected, the estimation errors decrease when p or q in-

creases while not a↵ected by T . Results of
����bFt �H�1R FtH

�1
C
>
���� for AC-PCA are not available since

Wang et al. (2019) don’t have explicit forms for the rotation matrices HR and HC .

Figure 2: Boxplot of
����bFt �H�1R FtH

�1
C
>
���� under setting II,  = 0.1 and 0.5.

5.3 Asymptotic normality

In this section, we consider the asymptotic normality of the first row ofbR�H>RR under di↵erent

values of ↵. We simulate data under the following setting:
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(IV) (Ft with non-zero mean.) The entries of both Ft and Et are uncorrelated across time, rows

and columns. Specifically, we simulate temporally independent Ft ⇠MN3⇥3 (3 · I,I,I) and

Et ⇠MNp⇥q (0,I,I).

According to Theorem 2, the asymptotic normality requires
p
qT /p! 0 or

p
pT /q! 0. Thus we

choose (p,q,T ) among (200,200,100), (200,200,150) and (400,400,250). The results for asymp-

totic normality are based on 1000 repetitions. We report results for p,q,T = 200,200,150 in the

main text and the results for the other two settings are relegated to the appendix Under all set-

tings, the presented QQ plots and histograms demonstrate the asymptotic normality expected

from the theorem.

Figure 3 presents the QQ plots of the first dimension of the first row of bR�RHR under setting

(IV) with p,q,T = 200,200,150. Results of the other dimensions are similar.

↵ = �1 ↵ = 0 ↵ = 1

Figure 3: QQ plots of the first dimension of the first row of bR �RHR with ↵ = �1 (left), 0 (middle) and 1
(right) under setting (IV) with p,q,T = 200,200,150.

We calculate the covariance matrix b⌃R0
of the first row of bR�RHR according to equation (4.2)

and plot the histograms of the first dimension of b⌃
�1/2
R0

⇣
bR0· �H

>

RR0·
⌘
in Figure 4. The plots for

other components are similar.

5.4 Hyper-parameter selection and optimality of ↵

In this section, we illustrate the optimal choice of the hyper-parameter ↵ on simulated data set.

Specifically, we consider Setting (I) and (IV) where Ft has zero and non-zero means, respectively.

The dimension (p,q,T ) is fixed at (200,200,150). The range of ↵ is in [�1,5] with a step-size of

0.1. For each value of ↵, we calculate the covariance matrix b⌃R0
of bR0· according to (4.2). Figure

5 presents the estimation errors and the covariance of the estimator versus di↵erent values of
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↵ = �1 ↵ = 0 ↵ = 1

Figure 4: Histograms of the first dimension of b⌃
�1/2
R0

⇣
bR0· �H

>

RR0·
⌘
with ↵ = �1 (left), 0 (middle) and 1

(right) under setting (IV) with p,q,T = 200,200,150. The lines plot the distribution of standard normal
distribution.

↵. Under Setting (IV) where Et are white noise and independent of Ft , we know that �R,i,12 =

�C,j,21 = 0. The optimal value according to (3.8) is ↵opt = 0. The sample estimation of b↵opt using

(3.8) from 200 repetitions has mean �0.0144 and standard deviation 0.009.

Figure 5 (a) plots the diagonal elements b�2
R,ii , i 2 [3], and the trace of the covariance matrixb⌃R0

.

The ↵ value corresponding to the dip of all lines are around ↵ = 0, confirming our calculation

of the value of ↵ that minimizing the covariance of estimators. Although ↵ does not a↵ect the

convergence rate in Theorems 1 and 3, Figure 5 (b) show that the errors using ↵ = �1 is larger

under the finite sample setting.

Figure 5 (c) and (d) are simulated under Setting (I) where Ft has zero mean. As expected the

value of ↵ does not make much di↵erence in the estimators’ properties.

6 Applications

6.1 Example 1: Multinational Macroeconomic Indices

In this section, we apply our estimation method to the multinational macroeconomic indices

data set used in Chen et al. (2019). The data set is collected from OECD. It contains 10 quar-

terly macroeconomic indices of 14 countries from 1990.Q2 to 2016.Q4 for 107 quarters. Thus,

we have T = 107 and p1 ⇥ p2 = 14 ⇥ 10 matrix-valued time series. The countries include United

States, Canada, New Zealand, Australia, Norway, Ireland, Denmark, United Kingdom, Finland,

Sweden, France, Netherlands, Austria and Germany. The indices cover four major groups, namely
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(a) Setting (IV) (b) Setting (IV)

(c) Setting (I)
(d) Setting (I)

Figure 5: Covariance of
p
qT

⇣
bR1· �H

>

RR1·
⌘
and `2 estimation error versus di↵erent value of ↵’s in [�1,5]

with a step-size of 0.1. Subplots (a) and (b) are under the Setting (IV) where µF , 0. Subplots (c) and (d)
are under Setting (I) where µF = 0. Values plotted are means of 200 repetitions.

production (P:TIEC, P:TM, GDP), consumer price (CPI:Food, CPI:Ener, CPI:Tot), money market

(IR:Long, IR:3-Mon), and international trade (IT:Ex, IT:Im). Each original univariate time series

is transformed by taking the first or second di↵erence or logarithm to satisfy the mixing condi-

tion in Assumption 1. See Table 10 in Appendix D for detailed descriptions of the data set and

transformations. Figure 16 in Appendix D shows the transformed time series of macroeconomic

indicators of multiple countries. It is obvious that there exist some similar patterns among time

series in the same row or column.

We apply the ↵-PCA proposed in Section 2.2 for di↵erent ↵ in the range of [�1,5] with step

size 0.1 on the OECD data set. We use the ratio-based method in (2.7) as well as the scree plots to

estimate the number of latent dimensions. Using the scree plot to select the minimal number of

dimensions that explain at least 80 percent of the variance of bM, we get thatbk,br = 4,6. While the

ratio based method givesbk,br = 1,2. Due to the dominance of the largest factors and weak signal

in real data, the estimate by (2.7) tends to be much smaller than the one given by the scree plot.

However, for the purpose of presenting and analyzing some example loading matrix estimates,

we will illustrate with latent dimensions (k, r) = (4,4).
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Letting b⌃R = p�1
Pp

i=1
b⌃Ri

and ⌃C = q�1
Pq

j=1
b⌃Cj

, we plot the traces Tr
⇣
b⌃R

⌘
and Tr

⇣
b⌃C

⌘
versus

di↵erent values of ↵’s in Figure 6. The minimizing ↵’s for Tr
⇣
b⌃R

⌘
and Tr

⇣
b⌃C

⌘
are b↵R = 0.5 and

b↵C = 0.6, respectively. Note that the proposed estimation method supports using di↵erent values

of ↵R and ↵C , since the estimation of R and C are decoupled and the ↵ can be any finite given

scalars in [�1,1). Since b↵R and b↵C are close, we choose ↵ = 0.55 in the middle for a simple

illustration. To illustrate the interpretation of model (1.1) in the real data set, we first present

and analyze the loading matrices estimated by ↵-PCA with ↵ = 0.55 . Figures 7 presents the

eigenvalues and the eigen-ratios of
⇣
bMR,bMC

⌘
calculated according to (1.2) and (1.3) with with

↵ = 0.55.

Figure 6: Traces of covariance Tr
⇣
b⌃R

⌘
and Tr

⇣
b⌃C

⌘
versus di↵erent values of ↵’s in the range of [�1,5] with

step size 0.1. The minimizing ↵’s for Tr
⇣
b⌃R

⌘
and Tr

⇣
b⌃R

⌘
are 0.5 and 0.6, respectively.

Figure 7: Eigenvalues and ratios of bMR and bMC using the OECD data, using ↵-PCA with ↵ = 0.55.
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From these bM with (k, r) = (4,4), we calculate loading matrices bR↵ ,bC↵ and bRAC,bCAC for ↵-

PCA and AC-PCA, respectively. Table 3 shows estimates of the row and column loading matrices.

They are normalized so that the norm of each column is one, VARIMAX-rotated to reveal a clear

structure, and scaled and rounded for ease of display.

We can interpret the latent structure of the global macro-economy by analyzing the estimated

row and column loading matrices. Specifically, from pair of bR↵,rot and bC↵,rot or pair bRAC,rot and

bCAC,rot we can group (clustering) some of countries or macroeconomic indices based on their

loading matrices. Using row loading matrices, three groups can easily be formed: Group 1: (USA,

CAN), Group 2: (NZL, AUS), Group 3: (FRA, NLD, AUT, DEU). In this example, USA and CAN

both load heavily on row 3 of bR↵,rot and bRAC,rot , but lightly on all other rows, NZL and AUS both

load heavily only on row 2 of bR↵,rot and bRAC,rot , and FRA, NLD, AUT, DEU all load the most

on rows 1. This analysis can reveal what countries have stronger correlations in their macroeco-

nomic features. Interestingly, loading matrices estimated by both methods tend to suggest similar

groupings.

From the column loading matrices, we can form groups 1(CPI:Food, CPI: Tot, CPI: Ener),

2:(IR:Long, IR: 3-Mon), 3:(P:TIEC, P:TM, GDP), 4: (IT:Ex, IT:Im) for both bC↵,rot and bCAC,rot . We

can also infer the meaning of each latent column factor from the column loading matrices. Take

bC↵,rot for example, groups 1,2, 3, 4 load most heavily on the 2nd, 4th, 3rd and 1st rows, respec-

tively. Thus, the 2nd, 4th, 3rd and 1st column factors can be interpreted as factors that are related

to consumer price, money market, production, and international trade, respectively. The results

are consistent with our prior knowledge of these macroeconomic indices, where groups 1-4 cor-

respond to the major groups we previously introduced. Corresponding rotated factor series are

plotted in Figure 8.

Next, we illustrate choosing best alpha values based on prediction errors. Specifically, we

use 10-fold cross validation (CV) to compare the performance of ↵-PCA with di↵erent ↵ in the

range of [�1,2] with AC-PCA (with lag factor h0 = 2). We divide the entire time span into 10

sections and choose each of them as testing data. With time series data, the training data may

contain two disconnected time spans. For AC-PCA, in the case of disconnected n time spans we

calculate matrices bM(1)
R . . .bM(n)

R according to (1.2) over each time span separately. The matrix bMR

is re-defined as the sum of
Pn

i=1
bM(i)

R . Loading matrices and latent dimensions are estimated from
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Model Row USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU

bR↵,rot

1 1 0 -1 -1 2 2 3 2 3 3 4 4 4 4
2 1 0 6 6 2 2 2 3 1 2 0 0 -1 -1
3 6 7 1 0 -1 -1 -1 0 0 -2 0 1 0 0
4 0 0 0 1 8 -5 -1 -1 0 0 -1 1 0 0

bRAC,rot

1 -1 2 1 -1 -1 -1 -2 -4 -3 -4 -4 -4 -4 -4
2 2 -1 5 5 1 5 3 2 -1 1 1 0 0 0
3 7 7 1 1 -1 -2 -1 0 1 0 0 0 0 -1
4 1 -1 -1 -2 -9 3 0 0 0 -1 1 -1 0 0

Model Row CPI:Food CPI:Tot CPI:Ener IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im

bC↵,rot

1 0 0 0 0 0 6 6 5 0 0
2 6 5 7 0 1 1 0 -1 0 0
3 -2 1 0 0 0 0 0 0 7 7
4 -1 1 0 7 7 -1 0 1 0 0

bCAC,rot

1 -2 4 1 1 -1 0 0 0 6 6
2 6 3 7 -1 1 0 0 -1 -1 0
3 -1 0 1 0 0 -6 -6 -6 0 0
4 0 -1 0 -8 -6 1 0 -1 0 0

Table 3: Estimations of row and column loading matrices (VARIMAX rotated) of ↵-PCA (subscripted by ↵)
and AC-PCA (subscripted by AC) with ↵ = 0.55 for multinational macroeconomic indices. The loadings
matrix are multiplied by 10 and rounded to integers for ease in display.

(a) ↵-PCA, ↵ = 0.55 (b) AC-PCA

Figure 8: Plots of rotatedbFt 2 R4⇥4 estimated by ↵-PCA, ↵ = 0.55 and AC-PCA, respectively. The rotation
corresponds to the VARIMAX rotation of bR and bC in Table 3. According to the weights in Table 3, the 1st
- 4th columns correspond to the important components of GDP, CPI, international trade and interest rate,
respectively.

this newly defined bMR with procedures in Section 2. We define out of sample R2 on a testing set

of size N as
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out of sample R2 , 1�

PN
t=1

���Yt �
bYt

���2
F

PN
t=1

���Yt �Y
���2
F

, (6.1)

where Y = 1
N

PN
t=1Yt and bYt = bRbR>Yt

bCbC>. The denominator is the baseline total sum of squares

(TSS) from approximating Yt by the sample mean Y. The nominator represent the residual sum

of squares (RSS) from approximating Yt by bYt . The total sum of squares (TSS) averaged over the

10-fold CV on the testing set is 1451.35, computed using sample average as estimator. Figure

9 (a) shows the out of sample R2 versus di↵erent values of ↵ for models with di↵erent chosen

latent dimensions. According the metric of maximizing the out of sample R2, the best value of ↵

is 0.4 for latent dimensions (4,4). The values of the out of sample R2 are reported in Table 4 for

models for themaximizing ↵ and ↵ = �1,0,1 with di↵erent chosen latent dimensions. All reported

values are the averages over the 10-fold CV. Evidently, the proposed estimation procedure with

all chosen values of ↵ performs better than AC-PCA at each chosen (k, r) pair, even though we do

not account for temporal dependence. This implies that the contemporaneous covariance should

not be discarded even for the time series data.

Method
(k, r)

(6,5) (5,5) (4,5) (4,4) (3,4) (3,3)

↵-PCA

↵ = �1 0.465 0.422 0.392 0.310 0.296 0.159
↵ = 0 0.553 0.515 0.478 0.418 0.387 0.320
↵ = 1 0.551 0.506 0.481 0.420 0.383 0.324

↵opt
0.556
(0.3)

0.516
(-0.2)

0.486
(0.7)

0.424
(0.4)

0.391
(0.3)

0.328
(0.2)

AC-PCA 0.429 0.393 0.354 0.248 0.216 0.092

Table 4: Results of 10-fold CV of out-of-sample performance for the multinational macroeconomic indexes.
The numbers shown are average over the cross validation. The numbers in parentheses on the line of ↵opt
are the values of ↵’s maximizing the out-of-sample R2.

6.2 Example 2: Image data sets

An important category of matrix variables is the 2-D gray-scale image data. One gray-scale

image is represented as a single matrix Yt , with each element corresponding to one image pixel.

The values in the matrix represent intensities within some range. In this section, we apply our

method to two real-world image data sets:
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• ORL1 is a well-known dataset for face recognition (Samaria and Harter, 1994). It contains

the face images of 40 persons, for a total of 400 images. The size of the images is 92⇥ 112.

• USPS 2 is an image data set consisting of 9298 handwritten digits of “0” through “9”. We use

a subset of USPS. This subset contains 300 images for each digit, for a total of 3000 images.

The resolution of the images is 16⇥ 16.

The estimation of the low-rank signal part bRbFtbC> in (1.1) can be viewed as a compressed

reconstruction of the original image. In the signal processing literatures, the goodness of approxi-

mation can be measure by the Root Mean Squared Reconstruction Error (RMSRE) which is basically

the square root of the mean residual sum of squares (RSS). To be consistent with Section 6.1, we

use the ratio between RSS and TSS in the empirical evaluation of our method with di↵erent val-

ues of ↵. Figure 9 (b) and (c) show, respectively for ORL and USPS, the plots of RSS/TSS versus

di↵erent values of ↵ for models with di↵erent chosen latent dimensions. The small error suggests

of dimensionality reduction from the original image Yt to the new representation Ft is e↵ective.

(a) Out-of sample R2, OECD (b) RSS/TSS, ORL (c) RSS/TSS, USPS

Figure 9: Choosing ↵ by cross validation using di↵erent metrics. The values of ↵ are from -1 to 2 with step
size of 0.1. The out-of sample R2 is defined in (6.1).

Tables 5 and 6 report values of the percentage of RSS/TSS for selected ↵ and the optimal ↵.

The optimal ↵ is 0 or is very close to ↵ = 0 and the their di↵erences of RSS/TSS are negligible

(10�6). This is in line with our theoretical result. The method with ↵ = �1 produces the largest

errors. The di↵erent between ↵ = 1 and 2 are small while both are a little worse than ↵ = 0.

Figure 17 and 18 in Appendix E show images of 10 di↵erent persons from the ORL and USPS

data sets, respectively. We use 15⇥ 15 latent dimension for the ORL faces and 9⇥ 9 for the USPS

digits. The 10 images in the first row are the original images from the data set. The 10 images

1http://www.uk.research.att.com/facedatabase.html
2http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html
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↵ 15⇥ 15 20⇥ 20 25⇥ 25 30⇥ 30 35⇥ 35 40⇥ 40
-1 7.1721 4.1329 2.4675 1.6245 1.1310 0.8411
0 1.2799 0.9308 0.7004 0.5390 0.4206 0.3315
1 1.2888 0.9372 0.7050 0.5428 0.4236 0.3339
2 1.3045 0.9489 0.7139 0.5497 0.4290 0.3383

min(RSS/TSS) 1.2798 0.9307 0.7004 0.5390 0.4206 0.3315
↵opt 0.1 0.1 0 0 0 0

Table 5: Percentage of the ORL reconstruction RSS/TSS (%). The columns correspond to di↵erent values of
latent dimension k ⇥ k.

↵ 6⇥ 6 7⇥ 7 8⇥ 8 9⇥ 9 10⇥ 10 11⇥ 11 12⇥ 12
-1 11.0150 7.5755 5.4047 3.6838 2.6256 1.8049 1.2059
0 10.1758 7.1874 5.1994 3.6413 2.6048 1.7944 1.1996
1 10.1945 7.1967 5.2027 3.6427 2.6055 1.7946 1.1997
2 10.2317 7.2124 5.2090 3.6458 2.6072 1.7954 1.2001

min(RSS/TSS) 10.1749 7.1874 5.1993 3.6412 2.6047 1.7943 1.995
↵opt 0.1 0.1 0.1 0.1 0.2 0.2 0.2

Table 6: Percentage of the USPS reconstruction RSS/TSS (%). The columns correspond to di↵erent values
of latent dimension k ⇥ k.

in the second row are the ones compressed by our method with ↵ = �1, which is the same as the

(2D)2PCA algorithm. The third, forth, and fifth rows corresponds to our method with ↵ = 0, 1,

and 2, respectively. We observe visually that the proposed method with ↵ = 0 produces the best

compression result, while the method with ↵ = �1 performs the worst. The di↵erences between

↵ = 1 and 2 are very small and not visually detectable.

7 Conclusion

This paper studies the problem of estimating unknown parameters and latent factors from

matrix-variate factor model. Specifically, we preserve the structure of matrix-variate data and

investigate theoretical properties in the setting that the each dimension of the matrix-variates

(p⇥q) is comparable to or greater than the number of observations (T ). The estimation procedure

aggregates information of both first and second moments. It incorporates traditional PCA based

methods as a special case. We derive some inferential theory concerning the estimators, including

the rate of convergence and limiting distributions. In contrast to previous estimation methods

based on auto-covariance, we use more information based on the contemporary data and are also

able to consistently estimate the loading matrices and factor matrices for uncorrelated matrix
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observations when the auto-covariance method can not. In addition, our results are obtained

under very general conditions that allow for correlations across time, rows and columns.
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Appendix A Proofs

We establish the convergence and asymptotic normality of the estimator based on equation
(2.3), under Assumption 1 - 5 in the main text.

A.1 Useful lemmas

We first present lemmas on eYt , eFt , and eEt under Assumption 1 - 5. These results will be used
to prove main theorems. The proofs are delayed to Section B.

Lemma 1. Under Assumption 1 - 4, we have E
���eFt

���4
�
 C <1. As T !1, we have that,

1
qT

TX

t=1

eFtC>CeF>t
P
�! e⌃FC, and

1
pT

TX

t=1

eF>t R
>
ReFt

P
�! e⌃FR.

where e⌃FC = ⌃FC+(1+↵)µF(C>C/q)µ
>

F ,
e⌃FR = ⌃FR+(1+↵)µF(R>R/p)µ

>

F , ⌃FC and ⌃FR are defined

in (3.3).

Lemma 2. Under Assumption 1 - 4, we have that here exists a positive constant C <1 such that for all

N and T ,

(a) For all i 2 [p], j 2 [q] and t 2 [T ], E
h
eet,ij

i
= 0 and E|eet,ij |8  C.

(b) Let eUE = E
h
1
qT

PT
t=1

eEt
eET
t

i
and eVE = E

h
1
pT

PT
t=1

eET
t
eEt

i
, we assume���eUE

���
1  C,

���eVE

���
1  C.

Lemma 3. Under Assumption 1 - 5, we have
TX

s=1

������E
"
1
pq

R
>eEs

eE>t R
#������

2
= O (1) ,

TX

s=1

������E
"
1
pq

C
>eE>s eEtC

#������
2
= O (1) .

Lemma 4. Under Assumption 1 - 5, For any i 2 [p] and j 2 [q],

E

2
6666664

�������
1
p
qT

TX

t=1

eFtC>eet,i·
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237777775 = O (1) , E

2
6666664

�������
1
p
pT

TX

t=1

eF>t R
>eet,·j
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237777775 = O (1) ,

Lemma 5. Under Assumption 1 - 5, we have

(a) For any row i 2 [p],

E

0
BBBBBB@

1
p
pqT

TX

t=1

pX

l=1

qX

j=1

⇣
eet,ljeet,ij �E
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eet,ljeet,ij
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1
CCCCCCA

2

= O (1) .

Similarly, for any column j 2 [q],

E
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p
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TX
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1
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2

= O (1) .
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(b) The k ⇥ k matrix satisfies

E

�������
1
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R
>eEtC

eF>t

�������

2

= O (1) .

Similarly, the r ⇥ r matrix satisfies
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Lemma 6. Under Assumption 1 - 5, we have for all p, q and T ,

(a) For any i, l 2 [p] and j,h 2 [q],
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pqR
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Lemma 7. Under Assumption 1 - 5, we have

(a) For each row i, as q,T !1,

1
p
qT

TX
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eFtC>eet,i·
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(b) For each column j , as p,T !1,

1
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The�R,i,··’s and�C,j,··’s are defined in Theorem 2.

A.2 A high-level summary of proofs

In the remaining part of Section A, we use Yt , Ft , and Et in place for eYt ,eFt , and eEt to improve
the readability of the proofs. Our estimator bR (bC) is then given by the matrix of

p
p (
p
q) times

the top k (r) eigenvectors of bMR , 1
pqT

PT
t=1YtY

>

t (bMC , 1
pqT

PT
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t Yt) in descending order by
corresponding eigenvalues. Recall that some auxiliary matrices VR,pqT , VC,pqT , HC and HR are
defined as following.

Let VR,pqT 2 Rk⇥k and VC,pqT 2 Rr⇥r be the diagonal matrices consisting of the first k and
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Our objective is to derive the asymptotic normality of bRi·�H
>

RRi· (bCj ·�H
>

CCi·) – each row of bR
(bC). We now describe the structure of the proofs for bRi· �H

>

RRi·.

1. In Section A.3, we bound 1
p

���bR�RHR

���2
F
.

2. In Section A.4, we derive the asymptotic behavior of bR>R/p and bC>C/q.

3. In Section A.4, we derive the asymptotic behavior of VR,pqT , VC,pqT , HC and HR.

4. In Section A.5, we derive the asymptotic distributions. The idea is to first bound 1
p

���bR�RHR

���2
F

and then derive asymptotic distribution for each row bRi· �H
>

RRi· for i 2 [p]. Results for
bCj · �H

>

CCj · for 1  j  q are derived analogously with 1
pqT

PT
t=1YtY

>

t .

5. In Section A.6, we analyze the convergence rate forbFt , 1  t  T .

A.3 Theorem 1: bR and bC converge in Frobenius and `2-norm
In the remaining part of Section A, we use Yt , Ft , and Et in place for eYt ,eFt , and eEt to improve

the readability of the proofs.

Lemma 8. Under Assumption 1 - 5, we have
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where the final results is obtained by Lemma 4 and Markov inequality.
Thus, we have
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where the last equality follows from Lemma 6 (a) and Lemma 2 (b).

Proof of Theorem 1

Proof. Consider each term in equation (A.1), we have
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where the last equality of each equation results from Lemma 8. Combing them together, we have
1
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= Op
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Result for bC is derived from equation (A.2) in a similar fashion. Note that

1
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���bR�RHR
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A.4 Asymptotic behavior of VR,pqT , VC,pqT ,
bR>R/p, bC>C/q, HC and HR

In this section, we study the asymptotic behavior ofVR,pqT ,VC,pqT ,bR>R/p,bC>C/q,HC andHR.
The main results of this section include Proposition 1 on the convergence of VR,pqT and VC,pqT ,
Proposition 2 on the convergence of HC and HR, and Proposition 3 on the convergence of bR>R/p
and bC>C/q.

Proposition 1. Under Assumption 1-6, we have, as p,q,T !1:
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= Op (1), where VR is the diagonal matrix consisting of the eigen-
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VR,pqT =
1
p
bR>

0
BBBBB@

1
pqT

TX

t=1

Y
>

t Yt

1
CCCCCA
bR

VR,pqT is the k ⇥ k diagonal matrix of the first k largest eigenvalues of bMR , 1
pqT

PT
t=1YtY

>

t in

decreasing order. By definition of bMR, we have

bMR =
1

pqT
R

TX

t=1

FtC
>
CF
>

t R
> +

1
pqT

TX

t=1

RFtC
>
E
>

t +
1

pqT

TX

t=1

EtCF
>

t R
> +

1
pqT

TX

t=1

EtE
>

t

Applying Lemma 8, we have
�������

1
pqT

TX

t=1

RFtC
>
E
>

t

�������


1
pqT

kRk

�������

TX

t=1

FtC
>
E
>

t

�������
F

= Op

 
1
p
qT

!
,

�������
1

pqT

TX

t=1

EtCF
>

t R
>

�������


1
pqT

kRk

�������

TX

t=1

EtCF
>

t

�������
F

= Op

 
1
p
qT

!
,

�������
1

pqT

TX

t=1

EtE
>

t

�������


1
pqT

�������

TX

t=1

EtE
>

t

�������
F

= Op

 
1
p
p
+

1
p
qT

!
.

Then,
�������
bMR �

1
pqT

R

TX

t=1

FtC
>
CF
>

t R
>

�������
= Op

 
1

�pqT

!
,

where �pqT = 1/min
np

p,
p
qT

o
. We also have�������

1
pqT

R

TX

t=1

FtC
>
CF
>

t R
>
�E

2
666664

1
pqT

R

TX

t=1

FtC
>
CF
>

t R
>

3
777775

�������



�������
1
T

TX

t=1

⇣
Ft(C>C/q)F

>

t �E
h
Ft(C>C/q)F

>

t

i⌘
�������
· kRk

2 /p

= Op

 
1
p
T

!
.

Together, we have �������
bMR �E

2
666664

1
pqT

R

TX

t=1

FtC
>
CF
>

t R
>

3
777775

�������
= op (1) .

Using the inequality that for the i-th eigenvalue,
�����i

⇣
bA
⌘
��i (A)

���� 
���bA�A

���
2, we have���VR,pqT ,i �VR,i

��� = op (1) , for 1  i  k,
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and VR,pqT
P
�!VR. Further we have the first k eigenvalues of 1

pqT R
PT

t=1FtC
>
CF
>

t R
> are bounded

away from both zero and infinity. Thus,
���VR,pqT

���
2 = Op (1) and

����V�1R,pqT
����
2
= Op (1). Results for

VC,pqT are obtained in a similar fashion.

Proposition 2. Under Assumption 1-6, we have

kHRk = Op (1) , and kHCk = Op (1) .

Proof. Applying results from Proposition 1 and Lemma 8, we obtain

kHRk =

�������
1

pqT

TX

t=1

FtC
>
CF
>

t R
>bRV�1R,pqT

�������


�������
1
T

TX

t=1

Ft(C>C/q)F
>

t

�������
kRk

���bR
��� /p

����V�1R,pqT
���� = Op (1) ,

kHCk =

�������
1

pqT

TX

t=1

F
>

t R
>
RFtC

>bCV�1C,pqT

�������


�������
1
T

TX

t=1

F
>

t (R
>
R/p)Ft

�������
kCk

���bC
��� /q

����V�1C,pqT
���� = Op (1) .

Lemma 9. Under Assumption 1 - 5, we have

(a)
1

pqT
PT

t=1
bR>EtCF

>

t Ri· = Op

✓
1

�pqT
p
qT

◆
,

(b)
1

pqT
PT

t=1
bR>RFtC>et,i· = Op

✓
1
p
qT

◆

(c)
1

pqT
PT

t=1
bR>Etet,i· = Op

✓
1

�pqT
p
qT

◆
+Op

✓
1

�pqT
p
p

◆

Proof. (a)

I =
1

pqT

TX

t=1

bR>EtCF
>

t Ri· =
1

pqT

TX

t=1

pX

l=1

qX

j=1

bRl·et,ljC
>

j ·F
>

t Ri·

=
1

pqT

TX

t=1

pX

l=1

qX

j=1

(bRl· �H
>

RRl·)et,ljC
>

j ·F
>

t Ri· +H
>

R
1

pqT

TX

t=1

pX

l=1

qX

j=1

Rl·et,ljC
>

j ·F
>

t Ri·

= I1 + I2.

We bound each term as follows.

kI1k =

��������

1
pqT

TX

t=1

pX

l=1

qX

j=1

(bRl· �H
>

RRl·)C
>

j ·et,ljF
>

t Ri·

��������


1
p
qT

0
BBBBB@
1
p

pX

l=1

���bRl· �H
>

RRl·

���2
1
CCCCCA

1/2
0
BBBBBBBB@
1
p

pX

l=1

��������

1
p
qT

TX

t=1

qX

j=1

et,ljC
>

j ·F
>

t

��������

21CCCCCCCCA

1/2

kRi·k

=
1
p
qT
· Op

 
1

�pqT

!
· Op (1) ,

where the last equality results from Theorem 1 and Lemma 4. We also have
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kI2k =
1
p
pqT

��������
H
>

R

0
BBBBBB@

1
p
pqT

TX

t=1

pX

l=1

qX

j=1

Rl·et,ljC
>

j ·F
>

t

1
CCCCCCARi·

��������
= Op

 
1
p
pqT

!
,

where the last equality results from by Markov Theorem, Lemma 5 (b) and Proposition 2.
(b)

II =
1

pqT

TX

t=1

bR>RFtC>et,i· =
1

pqT

TX

t=1

pX

l=1

bRl·R
>

l·Ft

qX

j=1

Cj ·et,ij

=
1

pqT

pX

l=1

⇣
bRl· �H

>

RRl·

⌘
R
>

l·

TX

t=1

qX

j=1

FtCj ·et,ij +
1

pqT

pX

l=1

H
>

RRl·R
>

l·

TX

t=1

qX

j=1

FtCj ·et,ij

= II1 + II2.

We bound each term as follows.

kII1k =

��������

1
pqT

pX

l=1

⇣
bRl· �H

>

RRl·

⌘
R
>

l·

TX

t=1

qX

j=1

FtCj ·et,ij

��������


1
p
qT

0
BBBBB@
1
p

pX

l=1

���bRl· �H
>

RRl·

���2
1
CCCCCA

1/2
0
BBBBBBBB@
1
p

pX

l=1

��������
R
>

l·
1
p
qT

TX

t=1

qX

j=1

FtCj ·et,ij

��������

21CCCCCCCCA

1/2


1
p
qT

0
BBBBB@
1
p

pX

l=1

���bRl· �H
>

RRl·

���2
1
CCCCCA

1/2
0
BBBBBBBB@
1
p

pX

l=1

kRl·k
2
·

��������

1
p
qT

TX

t=1

qX

j=1

FtCj ·et,ij

��������

21CCCCCCCCA

1/2

= Op

 
1

�pqT
p
qT

!
by Theorem 1 and Lemma 4.

Similarly,

kII2k =

��������

1
pqT

pX

l=1

H
>

RRl·R
>

l·

TX

t=1

qX

j=1

FtCj ·et,ij

��������
=

1
p
qT

�������
1
p

pX

l=1

H
>

RRl·R
>

l·

�������
·

��������

1
p
qT

TX

t=1

qX

j=1

FtCj ·et,ij

��������

= Op

 
1
p
qT

!
.

Combing all the terms, we have

kIIk = Op

 
1
p
qT

!
.
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(c)

III =
1

pqT

TX

t=1

bR>Etet,i· =
1

pqT

TX

t=1

pX

l=1

bRl·e
>

t,l·et,i· =
1

pqT

TX

t=1

pX

l=1

qX

j=1

bRl·et,lj et,ij

=
1

pqT

TX

t=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘
et,lj et,ij +

1
pqT

TX

t=1

pX

l=1

qX

j=1

H
>

RRl·et,lj et,ij

=
1

pqT

TX

t=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘

+
1

pqT

TX

t=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘
E

h
et,lj et,ij

i

+
1

pqT

TX

t=1

pX

l=1

qX

j=1

H
>

RRl·

⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘

+
1

pqT

TX

t=1

pX

l=1

qX

j=1

H
>

RRl·E
h
et,lj et,ij

i

= III1 + III2 + III3 + III4

We bound each term as follows.

kIII1k =

��������

1
pqT

TX

t=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘
��������


1
p
qT

0
BBBBB@
1
p

pX

l=1

���bRl· �H
>

RRl·

���2
1
CCCCCA

1/2

·

0
BBBBBBB@
1
p

pX

l=1

0
BBBBBB@

1
p
qT

TX

t=1

qX

j=1

⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘
1
CCCCCCA

21CCCCCCCA

1/2

= Op

 
1

�pqT
p
qT

!
by Lemma 6 and Markov inequality.

kIII2k =

��������

1
pqT

TX

t=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘
E

h
et,lj et,ij

i
��������


1
p
p

0
BBBBB@
1
p

pX

l=1

���bRl· �H
>

RRl·

���2
1
CCCCCA

1/2

·

0
BBBBBBB@
1
p

pX

l=1

0
BBBBBB@
1
qT

TX

t=1

qX

j=1

E
h
et,lj et,ij

i
1
CCCCCCA

21CCCCCCCA

1/2

= Op

 
1

�pqT
p
p

!
by Lemma 2.
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kIII3k 

��������

1
pqT

TX

t=1

pX

l=1

qX

j=1

Rl·

⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘
��������
· kHRk

= Op

 
1
p
pqT

!
by Lemma 5 (a) and Proposition 2.

kIII4k =

��������

1
pqT

TX

t=1

pX

l=1

qX

j=1

H
>

RRl·E
h
et,lj et,ij

i
��������


1
p
·

���H>R
��� ·

pX

l=1

��������

1
qT

TX

t=1

qX

j=1

E
h
et,lj et,ij

i
��������
·max
l2[p]
kRl·k

= O

 
1
p

!
by Assumption 3 and Lemma 2.

Combing the result on each term, we obtain

kIIIk = Op

 
1

�pqT
p
qT

!
+Op

 
1

�pqT
p
p

!
.

In the following analysis, we use the fact that for positive definite matrices A and B, the eigen-
values of AB, BA and A

1/2
BA

1/2 are the same.

Proposition 3. Under Assumption 1-6,

plim
p,q,T!1

bR>R
p

=QR, and plim
p,q,T!1

bC>C
q

=QC.

The matrix QR 2 Rk⇥k
and QC 2 Rr⇥r

are given, respectively, by

QR =V
1/2
R  >R ⌃

�1/2
FC and QC =V

1/2
C  >C ⌃

�1/2
FR ,

where ⌃FC = E
h
Ft

C
>
C

q F
>

t

i
, ⌃FR = E

h
F
>

t
R
>
R

p Ft

i
, VR (VC) is a diagonal matrix with diagonal entries

being the the eigenvalues of ⌃1/2FC ⌦R ⌃
1/2
FC (⌃1/2FR ⌦C ⌃

1/2
FR ) in decreasing order,  R ( C) is the corre-

sponding eigenvector matrix such that  >R R = I ( >C C = I), and ⌦R (⌦C) is defined in Lemma

3.

Proof. LetXt = FtC
>, multiply the identify 1

pqT
PT

t=1YtY
>

t
bR =bRVR,pqT on both sides by 1

p

⇣
1
qT

PT
t=1XtX

>

t

⌘1/2
R
>

to obtain:
1
p

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2

R
> 1
pqT

TX

t=1

YtY
>

t
bR =

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2
R
>bR
p

VR,pqT .

Expanding YtY
>

t with Yt = RFtC
> +Et , we can rewrite the above as

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2
R
>bR
p

VR,pqT =

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2
R
>
R

p

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA
R
>bR
p

+ dpqT , (A.3)

where
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dpqT =

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2 2666664
R
>
R

p
·

1
pqT

TX

t=1

FtC
>
E
>

t
bR+

1
p2qT

TX

t=1

R
>
EtCF

>

t R
>bR+

1
p2qT

TX

t=1

R
>
EtE

>

t
bR

3
777775 .

We have
1
qT

TX

t=1

XtX
>

t =
1
T

TX

t=1

Ft(C>C/q)F
>

t

=
1
T

TX

t=1

⇣
Ft(C>C/q)F

>

t �E
h
Ft(C>C/q)F

>

t

i⌘
+
1
T

TX

t=1

E
h
Ft(C>C/q)F

>

t

i

= Op (1) .

Proof of Lemma 9 (a) shows that 1
pqT

PT
t=1FtC

>
E
>

t
bR = op (1). Using Lemma 9 (b), we have�������

1
p2qT

TX

t=1

bR>RFtC>E>t R

�������
=

�������
1

p2qT

pX

i=1

TX

t=1

bR>RFtC>e>t,i·Ri·

�������



0
BBBBBB@
1
p

pX

i=1

�������
1

pqT

TX

t=1

bR>RFtC>e>t,i·

�������

21CCCCCCA

1/2 0
BBBBB@
1
p

pX

i=1

kRi·k

1
CCCCCA

1/2

= op (1) .

Using Lemma 9 (c) in the same way as above, we have 1
p2qT

PT
t=1R

>
EtE

>

t
bR = op (1). Putting all

together, we have dpqT = op (1).
Define

ApqT =

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2
R
>
R

p

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2

,

BpqT =

0
BBBBB@
1
qT

TX

t=1

XtX
>

t

1
CCCCCA

1/2
R
>bR
p

,

we rewrite equation (A.3) as
BpqTVR,pqT =

⇣
ApqT + dpqTB

�1
pqT

⌘
BpqT .

Each column of BpqT is an eigenvector of the matrix
⇣
ApqT + dpqTB

�1
pqT

⌘

By Proposition 1, we have

B
>

pqTBpqT =
bR>R
p

0
BBBBB@
1
qT

TX

t=1

Ft(C>C/q)F
>

t

1
CCCCCA
R
>bR
p

P
�!VR, (A.4)

and VR is the diagonal matrix consisting of the eigenvalues of ⌃1/2FC ⌦R ⌃
1/2
FC . Thus the eigenvalues

of B>pqTBpqT are asymptotically bounded away from infinity and zero, and B
�1
pqT = Op (1).

Let V⇤R,pqT be a diagonal matrix consisting of the diagonal elements of B>pqTBpqT . From (A.4),
we have

V
⇤

R,pqT
P
�!VR. (A.5)

Denote
 R,pqT = BpqTV

⇤

R,pqT
�1/2, (A.6)
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then
��� R,pqT

��� = 1 and
 R,pqTVR,pqT =

⇣
ApqT + dpqTB

�1
pqT

⌘
 R,pqT ,

that is, each column of R,pqT is an eigenvector of ApqT + dpqTB
�1
pqT .

From Lemma 2 and 3, dpqT = op (1), and B
�1
pqT = Op (1), we have ApqT

p
�! ⌃1/2FC ⌦R ⌃

1/2
FC and

dpqTB
�1
pqT = op (1). By eigenvector perturbation theory (Franklin, 2012) and Assumption 6, there

exists a unique eigenvector matrix  R of ⌃1/2FC ⌦R ⌃
1/2
FC such that

��� R,pqT � R

��� = op (1), where
 R is the eigenvector matrix of ⌃1/2FC ⌦R ⌃

1/2
FC .

From (A.6) and (A.5), we have

R
>bR
p

=

0
BBBBBB@
1
qT

qTX

t=1

XtX
>

t

1
CCCCCCA

�1/2

 R,pqTV
⇤

R,pqT
1/2 p
�! ⌃�1/2FC  R V

1/2
R .

A.5 Theorem 2: Asymptotic distribution of bRi· �H
>

RRi·
We make use of the following equality for each row of equation (A.1): for each row vector

Ri· 2 Rk , i 2 [p], we have

bRi· �H
>

RRi· = V
�1
R,pqT

0
BBBBB@

1
pqT

TX

t=1

bR>EtCF
>

t Ri· +
1

pqT

TX

t=1

bR>RFtC>et,i· +
1

pqT

TX

t=1

bR>Etet,i·

1
CCCCCA

= V
�1
R,pqT (I + II + III) . (A.7)

In the following proofs, we let �pqT =min
np

p,
p
qT

o
and �pqT =min

np
q,
p
pT

o
.

Proof of Theorem 2

Proof. The dominant terms in equation (A.7) are II2 + III2 = Op

✓
1
p
qT

◆
+Op

⇣
1
p

⌘
.

If
p
qT /p! 0, the dominant term in equation (A.7) is II. Then

p
qT

⇣
bRi· �H

>

RRi·

⌘
= V

�1
R,pqT

bR>R
p

1
p
qT

TX

t=1

FtC
>
et,i· +op (1)

= V
�1
R,pqT

bR>R
p

1
p
qT

TX

t=1

FtC
>
et,i· +op (1)

D
�! N

⇣
0,⌃Ri

⌘
, by Lemma 7 and continuous mapping thoerem.

where
⌃Ri
,V

�1
R QR

⇣
�R,i,11 +↵�R,i,12µ

>

F +↵µF�R,i,21 +↵2µF�R,i,22µ
>

F

⌘
Q
>

RV
�1
R ,

and �R,i,·· are given in Theorem 2. Matrix QR , V
1/2
R  >R

e⌃
�1/2
FC where VR is a diagonal matrix

whose entries are the eigenvalues of e⌃
1/2
FC ⌦R

e⌃
1/2
FC in decreasing order,  R is the corresponding

eigenvector matrix such that >R R = I, ⌦R defined in Assumption 3 and e⌃FC is defined in (3.4).
If liminf

p
qT /p � ⌧ > 0, the dominant term in equation (A.7) is II2 + III2. Under certain as-

sumptions,
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p
⇣
bRi· �H

>

RRi·

⌘
= Op

 
p
p
qT

!
+Op (1) = Op (1) .

Now we consider estimated column loading matrix bC. Using equation (A.2), we have

bCj · �H
>

CCj · = V
�1
C,pqT

0
BBBBB@

1
pqT

TX

t=1

bC>E>t RFtCj · +
1

pqT

TX

t=1

bC>CF>t R
>
et,·j +

1
pqT

TX

t=1

bC>E>t et,·j

1
CCCCCA

= V
�1
C,pqT (I + II + III) (A.8)

Similar to the proofs of Lemma 9, we have that if
p
pT /q! 0, the dominant term in equation

(A.8) is II. Then

p
pT

⇣
bCj · �H

>

CCj ·

⌘
= V

�1
C,pqT

bC>C
q

1
p
pT

TX

t=1

F
>

t R
>
et,·j +op (1)

D
�! N

⇣
0,⌃Cj

⌘
, by Lemma 7 and continuous mapping thoerem.

where
⌃Cj
,V

�1
C QC

⇣
�C,j,11 +↵�C,j,12µF +↵µ>F�C,j,21 +↵2µ>F�C,j,22µF

⌘
Q
>

CV
�1
C ,

and�C,j,·· are Theorem 2. Matrix QC , V
1/2
C  >C

e⌃
�1/2
FR where VC is a diagonal matrix whose en-

tries are the eigenvalues of e⌃
1/2
FR ⌦C

e⌃
1/2
FR in decreasing order, C is the corresponding eigenvector

matrix such that >C C = I, ⌦C is defined in Assumption 3, and e⌃FR is defined in (3.4).
If liminf

p
pT /q � ⌧ > 0, then

q
⇣
bCj · �Q

>

RCj ·

⌘
= Op

 
q
p
pT

!
+Op (1) = Op (1) .

A.6 Theorem 3: Convergence rate ofbFt

Proof of Theorem 3.

Proof. Under the assumption that 1
p
bR>bR = Ip and 1

q
bC>bC = Iq, we have

bFt =
1
pq

bR>Yt
bC =

1
pq

bR>RFtC>bC+
1
pq

bR>Et
bC.

Writing R =
⇣
R�bRH�1R

⌘
+bRH�1R and C =

⇣
C�bCH�1C

⌘
+bCH�1C , we obtain

bFt �H�1R FtH
�1
C
>
=

1
pq

bR>
⇣
R�bRH�1R

⌘
Ft

⇣
C�bCH�1C

⌘>bC

+
1
p
bR>

⇣
R�bRH�1R

⌘
FtH

�1
C
>

+
1
q
H
�1
R Ft

⇣
C�bCH�1C

⌘>bC

+
1
pq

bR>Et
bC.

(A.9)
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We further decompose bR = bR �RHR +RHR and bC = bC �CHC +CHC in the last term of (A.9) and
rearrange the equation. We have

bFt �H�1R FtH
�1
C
>

=
1
pq

bR>
⇣
R�bRH�1R

⌘
Ft

⇣
C�bCH�1C

⌘>bC

+
1
p
bR>

⇣
R�bRH�1R

⌘
FtH

�1
C
>

+
1
q
H
�1
R Ft

⇣
C�bCH�1C

⌘>bC

+
1
pq

⇣
bR�RHR

⌘>
Et

⇣
bC�CHC

⌘

+
1
pq

⇣
bR�RHR

⌘>
Et

bC

+
1
pq

bR>Et

⇣
bC�CHC

⌘

+
1
pq

H
>

RR
>
EtCHC

=
7X

i=1

Ii .

Since 1
p
p

���R�bRH�1R
��� = op (1) and 1

p
q

���C�bCH�1C
��� = op (1) by Theorem 1 and Proposition 2, term

I1 is dominated by I2 and I3, and term I4 is dominated by I5 and I6. Now we bound I2, I3, I5, I6
and I7.

I2 =
1
p
(bR�RHR)>

⇣
R�bRH�1R

⌘
FtH

�1
C
>
+
1
p
H
>

RR
>
⇣
R�bRH�1R

⌘
FtH

�1
C
>

= Op

0
BBBBB@

1
�2pqT

1
CCCCCA ,

by Theorem 1 and Proposition 2, and 10. Similarly, using results in Theorem 1, Proposition 2 and
Lemma 10, and 11, we have

I2 = Op

0
BBBBB@

1
�2
pqT

1
CCCCCA , I5 = Op

0
BBBBB@

1
�2pqT

1
CCCCCA , I6 = Op

0
BBBBB@

1
�2
pqT

1
CCCCCA .

Finally, we have

bFt �H�1R FtH
�1
C
>
=

1
pq

H
>

RR
>
EtCHC +Op

0
BBBBB@

1
�2pqT

1
CCCCCA+Op

0
BBBBB@

1
�2
pqT

1
CCCCCA = Op

 
1

min(p,q)

!
,

where we uses results in Lemma 12.

A.6.1 Technical lemmas

Lemma 10. Under Assumption 1-6, the k ⇥ k matrix

1
p

⇣
bR�RHR

⌘>
R = Op

0
BBBBB@

1
�2pqT

1
CCCCCA ;

The r ⇥ r matrix

1
q

⇣
bC�CHC

⌘>
C = Op

0
BBBBB@

1
�2
pqT

1
CCCCCA .
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Proof. Using the identity (A.1), we have

1
p

⇣
bR�RHR

⌘>
R =V

�1
R,pqT

0
BBBBB@

1
p2qT

TX

t=1

bR>EtCF
>

t R
>
R+

1
p2qT

TX

t=1

bR>RFtC>E>R+
1

p2qT

TX

t=1

bR>EtE
>

t R

1
CCCCCA

=V
�1
R,pqT (I + II + III).

From the following bounds on each term I, II, and III, we get

1
p

⇣
bR�RHR

⌘>
R = Op

 
1

�pqT
p
qT

!
+Op

 
1

�pqT
p
p

!
+Op

 
1
p
pqT

!
+O

 
1
p

!
= Op

0
BBBBB@

1
�2pqT

1
CCCCCA .

Similarly, we have

1
q

⇣
bC�CHC

⌘>
C = Op

 
1

�pqT
p
pT

!
+Op

 
1

�pqT
p
q

!
+Op

 
1
p
pqT

!
+O

 
1
q

!
= Op

0
BBBBB@

1
�2
pqT

1
CCCCCA .

We begin with term I,

I =
1

p2qT

TX

t=1

⇣
bR�RHR

⌘>
EtCF

>

t R
>
R+

1
p2qT

TX

t=1

H
>

RR
>
EtCF

>

t R
>
R = I1 + I2

We have

I = Op

 
1

�pqT
p
qT

!
+Op

 
1
p
pqT

!
.

Since,

kI1k =

�������
1

p2qT

TX

t=1

⇣
bR�RHR

⌘>
EtCF

>

t R
>
R

�������


��������

1
pqT

TX

t=1

pX

l=1

qX

j=1

(bRl· �H
>

RRl·)C
>

j ·et,ljF
>

t

��������
·
1
p

���R>R
���


1
p
qT

0
BBBBB@
1
p

pX

l=1

���bRl· �H
>

RRl·

���2
1
CCCCCA

1/2

·

0
BBBBBBBB@
1
p

pX

l=1

��������

1
p
qT

TX

t=1

qX

j=1

C
>

j ·et,ljF
>

t

��������

21CCCCCCCCA

1/2

·
1
p

���R>R
���

=
1
p
qT
· Op

 
1

�pqT

!
· Op (1) using Lemma 4,

and

kI2k =

�������
1

p2qT

TX

t=1

H
>

RR
>
EtCF

>

t R
>
R

�������


1
p
pqT

kHRk ·

�������
1
p
pqT

TX

t=1

R
>
EtCF

>

t

�������
·
1
p

���R>R
���

= Op

 
1
p
pqT

!
, using Lemma 5 and Proposition 2.

Second, we deal with term II,

II =
1

p2qT

TX

t=1

bR>RFtC>E>t R =
1
p
pqT

·
1
p
bR>R ·

1
p
pqT

TX

t=1

FtC
>
E
>

t R = Op

 
1
p
pqT

!
,

where we use Proposition 3 and Lemma 5.
Finally, we deal with term III,

15



III =
1

p2qT

TX

t=1

bR>EtE
>

t R =
1

p2qT

TX

t=1

⇣
bR�RHR

⌘>
EtE

>

t R+
1

p2qT

TX

t=1

H
>

RR
>
EtE

>

t R

=
1

p2qT

TX

t=1

⇣
bR�RHR

⌘> ⇣
EtE

>

t �E
h
EtE

>

t

i⌘
R+

1
p2qT

TX

t=1

⇣
bR�RHR

⌘>
E

h
EtE

>

t

i
R

+
1

p2qT

TX

t=1

H
>

RR
>
⇣
EtE

>

t �E
h
EtE

>

t

i⌘
R+

1
p2qT

TX

t=1

H
>

RR
>E

h
EtE

>

t

i
R

= III1 + III2 + III3 + III4.

We have

III = Op

 
1

�pqT
p
qT

!
+Op

 
1

�pqT
p
p

!
+Op

 
1
p
pqT

!
+O

 
1
p

!

Since

kIII1k
2 =

�������
1

p2qT

TX

t=1

⇣
bR�RHR

⌘> ⇣
EtE

>

t �E
h
EtE

>

t

i⌘
R

�������

2

=

��������

1
p2qT

TX

t=1

pX

i=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘
R
>

i·

��������

2


1
qT

1
p

pX

l=1

���bRl· �H
>

RRl·

���2 ·
1
p

pX

l=1

��������

1
p

pX

i=1

1
p
qT

TX

t=1

qX

j=1

⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘
R
>

i·

��������

2


1
qT

1
p

pX

l=1

���bRl· �H
>

RRl·

���2 ·
1
p

pX

l=1

1
p

pX

i=1

0
BBBBBB@

1
p
qT

TX

t=1

qX

j=1

⇣
et,lj et,ij �E

h
et,lj et,ij

i⌘
1
CCCCCCA

2

·
1
p

pX

i=1

���R>i·
���2

= Op

 
1
qT

!
· Op

0
BBBBB@

1
�2pqT

1
CCCCCA · Op (1) , using Theorem 1 and Lemma 6.
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kIII2k
2 =

�������
1

p2qT

TX

t=1

⇣
bR�RHR

⌘>
E

h
EtE

>

t

i
R

�������

2

=

��������

1
p2qT

TX

t=1

pX

i=1

pX

l=1

qX

j=1

⇣
bRl· �H

>

RRl·

⌘
E

h
et,lj et,ij

i
R
>

i·

��������

2


1
p
·
1
p

pX

l=1

���bRl· �H
>

RRl·

���2 ·
pX

l=1

��������

1
pqT

TX

t=1

pX

i=1

qX

j=1

E
h
et,lj et,ij

i
R
>

i·

��������

2


1
p
·
1
p

pX

l=1

���bRl· �H
>

RRl·

���2 ·
1
p

pX

l=1

pX

i=1

0
BBBBBB@
1
qT

TX

t=1

qX

j=1

E
h
et,lj et,ij

i
1
CCCCCCA

2

·
1
p

pX

i=1

���R>i·
���2

=
1
p
· Op

0
BBBBB@

1
�2pqT

1
CCCCCA · O (1) using Lemma 2.

= Op

0
BBBBB@

1
p�2pqT

1
CCCCCA .

kIII3k =

�������
1

p2qT

TX

t=1

H
>

RR
>
⇣
EtE

>

t �E
h
EtE

>

t

i⌘
R

�������


1
p
pqT

·

0
BBBBB@
1
p
p

�������
1
p
qT

TX

t=1

⇣
EtE

>

t �E
h
EtE

>

t

i⌘
�������

1
CCCCCA · kHRk ·

1
p
kRk

2

= Op

 
1
p
pqT

!
,

kIII4k
2 =

�������
1

p2qT

TX

t=1

H
>

RR
>E

h
EtE

>

t

i
R

�������

2


1
p2

�������
E

2
666664
1
qT

TX

t=1

EtE
>

t

3
777775

�������

2

·
1
p2
kRk

4
· kHRk

2

= O
 
1
p2

!
, by Lemma 2.

Lemma 11. Under Assumption 1 - 5, the k ⇥ r matrix

1
pq

⇣
bR�RHR

⌘>
EtC = Op

0
BBBBB@

1
�2pqT

1
CCCCCA

1
pq

R
>
Et

⇣
bC�CHC

⌘
= Op

0
BBBBB@

1
�2
pqT

1
CCCCCA

Proof. Under Assumption 1-6, we have
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1
pq

⇣
bR�RHR

⌘>
EtC =V

�1>
R,pqT

0
BBBBB@

1
p2q2T

TX

s=1

bR>EsCF
>
s R
>
EtC

= +
1

p2q2T

TX

s=1

bR>RFsC>E>s EtC

+
1

p2q2T

TX

s=1

bR>EsE
>
s EtC

1
CCCCCA

=V
�1
R,pqT (I + II + III).

(A.10)

First, we show that I = Op

✓
1

�pqT
p
qT

◆
in (A.10),

I =
1

p2q2T

TX

s=1

bR>EsCF
>
s R
>
EtC =

1
p2q2T

TX

s=1

⇣
bR�RHR

⌘>
EsCF

>
s R
>
EtC+

1
p2q2T

TX

s=1

H
>

RR
>
EsCF

>
s R
>
EtC.

For each term on the right hand side, we have
�������

1
p2q2T

TX

s=1

⇣
bR�RHR

⌘>
EsCF

>
s R
>
EtC

�������


1
p
pqT

·
1
p
p

���bR�RHR

��� ·

�������
1
p
qT

TX

s=1

EsCF
>
s

�������
F

·

�����
1
pq

R
>
EtC

�����

=
1
p
qT
·
1
p
p

���bR�RHR

��� ·

0
BBBBBBBB@
1
p

pX

i=1

��������

1
p
qT

TX

s=1

qX

j=1

FsC
>
es,i·

��������

21CCCCCCCCA

1/2

·

�����
1
pq

R
>
EtC

�����

= Op

 
1

�pqT
p
qT

!
,

where we used Theorem 1, Lemma 4, Lemma 6 and Markov inequality. Similarly,

kI2k =

�������
1

p2q2T

TX

s=1

H
>

RR
>
EsCF

>
s R
>
EtC

�������


1
p
pqT

kHRk ·

�������
1
p
pqT

TX

s=1

R
>
EsCF

>
s

�������
·

�����
1
pq

R
>
EtC

�����

= Op

 
1
p
pqT

!
,

where we used Proposition 2, Lemma 6 and Markov inequality.
Next we consider term III in (A.10):
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III =
1

p2q2T

TX

s=1

bR>EsE
>
s EtC =

1
p2q2T

⇣
bR�RHR

⌘>
·

TX

s=1

EsE
>
s EtC+

1
p2q2T

H
>

RR
>

TX

s=1

EsE
>
s EtC

=
1

p2q2T

⇣
bR�RHR

⌘>
·

TX

s=1

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
EtC+

1
p2q2T

⇣
bR�RHR

⌘>
·

TX

s=1

E
h
EsE

>
s

i
EtC

+
1

p2q2T
H
>

RR
>
·

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
EtC+

1
p2q2T

H
>

RR
>
·

TX

s=1

E
h
EsE

>
s

i
EtC

= III1 + III2 + III3 + III4.
(A.11)

We bound each term on the right hand side of (A.11) in the sequel.

kIII1k 
1

p2q2T

����
⇣
bR�RHR

⌘>���� ·

�������

TX

s=1

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
EtC

�������


1

pq
p
pqT

·

����
⇣
bR�RHR

⌘>���� ·

�������
1
p
pqT

TX

s=1

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
�������
· kEtCkF

=
1
p
qT
·
1
p
p

����
⇣
bR�RHR

⌘>���� ·

�������
1
p
pqT

TX

s=1

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
�������
·

0
BBBBBBBB@
1
p

pX

i=1

��������

1
q

qX

j=1

et,ijCj ·

��������

21CCCCCCCCA

1/2

= Op

 
1

�pqT
p
qT

!
,

where we use Lemma 6 (a) in the last step.

kIII2k =

�������
1

p2q2T

⇣
bR�RHR

⌘>
·

TX

s=1

E
h
EsE

>
s

i
EtC

�������


1
pq
·
1
p
p
·
1
p
p

����
⇣
bR�RHR

⌘>���� ·

�������
E

2
666664
1
qT

TX

s=1

EsE
>
s

3
777775

�������
· kEtCkF

=
1
p
·
1
p
p

����
⇣
bR�RHR

⌘>���� ·

�������
E

2
666664
1
qT

TX

s=1

EsE
>
s

3
777775

�������
·

0
BBBBBBBB@
1
p

pX

i=1

��������

1
q

qX

j=1

et,ijCj ·

��������

21CCCCCCCCA

1/2

= Op

 
1

p�pqT

!
,

where we use Theorem 1 and Lemma 2.

19



kIII3k =
1

p2q2T

�������
H
>

RR
>
·

TX

s=1

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
EtC

�������


1
p
pqT

·

���H>R
��� ·

1
p
p

���R>
��� ·

�������
1
p
pqT

TX

s=1

⇣
EsE

>
s �E

h
EsE

>
s

i⌘
�������
·

0
BBBBBBBB@
1
p

pX

i=1

��������

1
q

qX

j=1

et,ijCj ·

��������

21CCCCCCCCA

1/2

= Op

 
1
p
pqT

!
,

where we use Lemma 6 (a) in the last step.

kIII4k =

�������
1

p2q2T
H
>

RR
>
·

TX

s=1

E
h
EsE

>
s

i
EtC

�������


1
p
·

���H>R
��� ·

1
p
p

���R>
��� ·

�������
E

2
666664
1
qT

TX

s=1

EsE
>
s

3
777775

�������
·

0
BBBBBBBB@
1
p

pX

i=1

��������

1
q

qX

j=1

et,ijCj ·

��������

21CCCCCCCCA

1/2

= Op

 
1
p

!
,

Finally, we deal with term II in (A.10). Note that

II =
1

p2q2T

TX

s=1

bR>RFsC>E>s EtC

=
1

p2q2T

TX

s=1

⇣
bR�RHR

⌘>
RFsC

>
E
>
s EtC+

1
p2q2T

TX

s=1

H
>

RR
>
RFsC

>
E
>
s EtC

= II1 + II2

Similar to analysis of term III, we obtain II = Op

✓
1

�2pqT

◆
.

Lemma 12. Under Assumption 1-6,

1
pq

H
>

RR
>
EtCHC = Op

 
1
p
pq

!
.

Proof. Firstly, by Lemma 6 (b) and Markov inequality, we have 1
p
pqR

>
EtC = Op (1). Combining

results in Proposition 2, we have
1
pq

H
>

RR
>
EtCHC =

1
p
pq

H
>

R

 
1
p
pq

R
>
EtC

!
HC = Op

 
1
p
pq

!
.

A.7 Theorem 4: Convergence rate ofbSt

Proof of Theorem 4. Define eRi· =H
>

RRi·, eCj · =H
>

CCj ·, andeFt =H
�1
R FtH

>

C
�1, we have
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bSt,ij �St,ij =bR>i·bFtbCj · �R
>

i·FtCj · =bR>i·bFtbCj · �
eR>i·eFteCj ·

=
⇣
bRi· �

eRi·

⌘> ⇣
bFt �eFt

⌘⇣
bCj · �

eCj ·

⌘

+
⇣
bRi· �

eRi·

⌘>eFt
⇣
bCj · �

eCj ·

⌘
+ eR>i·

⇣
bFt �eFt

⌘⇣
bCj · �

eCj ·

⌘
+
⇣
bRi· �

eRi·

⌘> ⇣
bFt �eFt

⌘
eCj ·

+ eR>i·eFt
⇣
bCj · �

eCj ·

⌘
+
⇣
bRi· �

eRi·

⌘>eFteCj · +eR>i·
⇣
bFt �eFt

⌘
eCj ·.

Dominant terms are the last three terms. Note that
���eFt

��� = Op (1),
���eCj ·

��� = Op (1) and
���eR>i·

��� = Op (1).
From Theorem 2, we have

bRi· �
eRi· = Op

0
BBBBBB@

1

min
⇣
p,
p
qT

⌘

1
CCCCCCA , and bCj · �

eCj · = Op

0
BBBBBB@

1

min
⇣
q,
p
pT

⌘

1
CCCCCCA .

Then using Theorem 3, we have

bSt,ij �St,ij = Op

0
BBBBBB@

1

min
⇣
p,q,
p
qT ,
p
pT

⌘

1
CCCCCCA .

A.8 Theorem 5: Consistent covariance estimators

Proof. In the following, we show that under Assumption A-G and uncorrelated rows and columns,
as p, q, T �!1, b⌃Ri

is consistent for ⌃Ri
. Proof for b⌃Cj

is similar.
It su�ce to prove that the HAC estimator based on estimators {bFtbC>bet,i·}t=1,...,T , that is

b�R , DR,0,i +
mX

⌫=1

✓
1�

⌫
1+m

◆⇣
DR,⌫,i +D

>

R,⌫,i

⌘
,

is a consistent estimator of QR�R,iQ
>

R .
Because bFt estimates H

�1
R FtH

>

C
�1 and bC estimates CHC , the HAC estimator b�R is estimating

H
0,�1
R �R,iH

0,�1
R

>

where H0
R is the limit of HR (Newey and West, 1987). Recall that

HR =
1

pqT

TX

t=1

FtC
>
CF
>

t R
>bRV�1R,pqT

P
�! ⌃FCQ

>

RV
�1
R ,

and kHRk = Op (1) and
���H�1R

��� = Op (1). By Proposition 3, we further have,
⌃FCQ

>

RV
�1
R = ⌃FC

⇣
V

1/2
R  >R ⌃

�1/2
FC

⌘>
V
�1
R = ⌃1/2FC  R V

�1/2
R =Q

�1
R ,

where we use the fact that >R R = I. Thus,b�R consistently estimates QR�R,iQ
>

R .

Appendix B Proofs of Lemma 1 - 7

We prove Lemma 1 - 7 under Assumption 1 - 5. In the following proofs, we repeated use the
fact thateet,ij , et,ij + e↵eij ,eFt , Ft + e↵F and 2e↵ + e↵2 = ↵.

Proof of Lemma 1.

Proof. Under Assumptions 1, 2 and 3, an application of Proposition 2.8 and Theorem 2.20 in Fan

and Yao (2003) implies that, as T !1, we have 1
T
PT

t=1Ft
P
�! µF ,
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1
qT

TX

t=1

⇣
Ft �F

⌘
C
>
C

⇣
Ft �F

⌘> P
�! ⌃FC and

1
pT

TX

t=1

⇣
Ft �F

⌘>
R
>
R

⇣
Ft �F

⌘
P
�! ⌃FR,

where ⌃FC and ⌃FR are defined in (3.3). Plugging in eF , Ft + e↵F and using the fact that e↵ =
p
↵ +1� 1, 2e↵ + e↵2 = ↵, we have that,

1
qT

TX

t=1

eFtC>CeF>t
P
�! e⌃FC, and

1
pT

TX

t=1

eF>t R
>
ReFt

P
�! e⌃FR.

where e⌃FC = ⌃FC + (1+↵)µF(C>C/q)µ
>

F and e⌃FR = ⌃FR + (1+↵)µF(R>R/p)µ
>

F .

we have E
���eFt

���4
�
 cE

h
kFtk

4
i
 C <1.

Using 2e↵ + e↵2 = ↵, we have
1
qT

TX

t=1

eFtC>CeF>t
P
�! e⌃FC, and

1
pT

TX

t=1

eF>t R
>
ReFt

P
�! e⌃FR.

wheree⌃FC = ⌃FC+(1+↵)µF(C>C/q)µ
>

F ande⌃FR = ⌃FR+(1+↵)µF(R>R/p)µ
>

F are positive definite.

Proof of Lemma 2.

Proof. PluggingeEt = Et + e↵E in the definition that eUE , E
h
1
qT

PT
t=1

eEt
eE>t

i
and using the fact that

e↵ ,
p
↵ +1� 1, we derive

(a) E
h
eet,ij

i
= 0 and E|eet,ij |8 = O (1).

(b) We have

eUE =UE +E
"
↵
q
EE
>

#
 (1 +↵)UE.

Similarly for eVE , we have

eVE =VE +E
"
↵
q
E
>
E

#
 (1 +↵)VE.

The results follow from Assumption 4.

Proof of Lemma 3.

Proof. Step 1. We first show that
TX

s=1

������E
"
1
pq

R
>
EsE

>

t R

#������ = O (1) and
TX

s=1

������E
"
1
pq

C
>
E
>
s EtC

#������ = O (1) . (B.1)

By Davydov’s inequality (Corollary 16.2.4 in Athreya and Lahiri (2006)), there is a constant
C > 0, for any i, l 2 [p], j 2 [q], and s, t 2 [T ],

����E
h
es,ij et,lj

i����  c · ↵(|t � s|)1�2/� . Under ↵-mixing

Assumption 1, we have
P

h>1↵(h)
1�2/� = O (1).
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TX

s=1

������E
"
1
pq

R
>
EsE

>

t R

#������ 
TX

s=1

��������

1
q

qX

j=1

E
h
es,·je

>

t,·j

i
��������
· kRk

2 /p = O (1) .

The second equation in (B.1) follows by a similar argument.
Step 2. Now we show results in Lemma 3. Plugging in eEt , Et + e↵E and using the fact that

2e↵ + e↵2 = ↵, we have

TX

s=1

������E
"
1
pq

R
>eEs

eE>t R
#������ 

TX

s=1

������E
"
1
pq

R
>
EsE

>

t R

#������+ e↵
TX

s=1

1
T

TX

t=1

������E
"
1
pq

R
>
EsE

>

t R

#������

+ e↵
TX

s=1

1
T

TX

s=1

������E
"
1
pq

R
>
EsE

>

t R

#������+ e↵2
TX

s=1

1
T 2

TX

s=1

TX

t=1

������E
"
1
pq

R
>
EsE

>

t R

#������

 (1 +↵)
TX

s=1

������E
"
1
pq

R
>
EsE

>

t R

#������

= O (1) .

By similar argument, we obtain
PT

s=1

����E
h
1
pqC

>eE>s eEtC
i���� = O (1).

Proof of Lemma 4.

Proof. Step 1. We first show that for any i 2 [p], j 2 [q],

E
���� 1
p
qT

PT
t=1

Pq
j=1 et,ijFtCj ·

����
2�

= O (1) , E
"����

q
T
q
Pq

j=1 eijFCj ·

����
2
#
= O (1) , (B.2)

E
���� 1
p
pT

PT
t=1

Pp
i=1 et,ijF

>

t Ri·

����
2�

= O (1) , E
"����

q
T
p
Pp

i=1 eijF
>
Ri·

����
2
#
= O (1) . (B.3)

Proofs for (B.2) and (B.3) are the same. Here we only present the proof for (B.2).
For any i 2 [p] and t 2 [T ], we define a random vector xt = 1

p
q

Pq
j=1Cj ·et,ij , which is ↵-mixing

over t. We rewrite 1
p
qT

PT
t=1

Pq
j=1 et,ijFtCj · = 1

p
T

PT
t=1Ftxt . By Assumption 2, we have E [Ftxt] = 0.

Now we show that there exists some m > 2 such that EkFtxtk
m
 C < 1. Since Ft is of fixed

dimensions, it su�ces to show that E
h⇣
f
>

t,l·xt

⌘mi
 C and E

h
xmt,h

i
 C for any l 2 [k] and h 2 [r].

By Holder inequality, we have for any 1 < a,b <1 and 1/a+1/b = 1,
E

h⇣
f
>

t,l·xt

⌘mi
 E

h���ft,l·
���m kxtkm

i


⇣
E

h���ft,l·
���mai⌘1/a ⇣

E
h
kxtk

mb
i⌘1/b

.

By Assumption 5, we have E
h⇣
f
>

t,l·xt

⌘mi
 C for any l 2 [k]. Similarly, we have E

h
xmt,h

i
 C for any

h 2 [r]. Then Theorem 2.20 in Fan and Yao (2003) implies the desired result.
Next, we have, using convexity of k·k2,

E

2
66666664

��������

r
T
q

qX

j=1

eijFCj ·

��������

2377777775
= E

2
66666664
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1
T
p
qT

qX
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t=1
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2377777775
 E

2
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1
T

TX
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1
p
qT

qX

j=1

TX

t=1

et,ijCj ·

��������

2

kFsk
2

3
77777775

= O (1) .
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Step 2. Now we show results in Lemma 4. Plugging ineet,ij , et,ij + e↵eij ,eFt , Ft + e↵F and using
the fact that 2e↵ + e↵2 = ↵, we have

1
p
qT

TX

t=1

qX

j=1

eet,ijeFtCj · =
1
p
qT

TX

t=1

qX
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r
T
q

qX
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Thus equation (B.2) implies E
���� 1
p
qT
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Pq
j=1eet,ijeFtCj ·

����
2�

= O (1). Similarly, equation (B.3)

implies E
���� 1
p
pT
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t=1

Pp
i=1eet,ijeFtCj ·

����
2�

= O (1).

Proof of Lemma 5.

Proof. (a) Step 1. We firstly prove (B.4) and (B.5) stated as follows.. For any row i 2 [p],

E

0
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1
p
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(B.4)

Similarly, for any column j 2 [q],
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(B.5)

For equation (B.4), we have that, under Assumption 4 (b), for any row i,
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Then,
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The proofs of (B.5) for any column j are similar.

Step 2. Now we show the final results of Lemma 5 (a). We have, for all row i,
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Equation (B.5) therefore implies
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The remaining part for the columns can be derived in the same way.

(b) Step 1. We firstly prove (B.6) and (B.7) stated as follows. The k ⇥ k matrix satisfies
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Similarly, the r ⇥ r matrix satisfies
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For (B.6), we have
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The rest of the proof of is similar to that of (B.2) by setting Xt = 1
p
pq

Pp
i=1

Pq
j=1Ri·C

>

j ·et,ij and
using Assumption 5, and Theorem 2.20 in Fan and Yao (2003).

Step 2. Now we show the final results of Lemma 5 (b). We have
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Equation (B.6) therefore implies that the k ⇥ k matrix satisfies
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Similarly, from equation (B.7), the r ⇥ r matrix satisfies
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Proof of Lemma 6

Proof.

(a) Step 1. We firstly prove (B.8) stated as follows. For any i, l 2 [p] and j,h 2 [q],
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(B.8)

By Davydov’s inequality (Corollary 16.2.4 in Athreya and Lahiri (2006)), there is a constant
C > 0, for all i, l 2 [p], j,h 2 [q], and s, t 2 [T ],

����Cov
h
et,ij et,lh, es,ij es,lh

i���� = O (1)↵(|t � s|)1�2/� .

Under ↵-mixing Assumption 1, we have
P

h>1↵(h)
1�2/� = O (1). We have, for any row i and

l,
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where we also used Assumption 4 (d) on weak row-/column-wise correlation of Et to bound
the last two terms. Similarly for columns j and h, we have
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The remaining results follow by a similar argument.

Step 2. Following the same argument as that of Step 2 of Lemma 5, we can show the final
results of Lemma 6.

(b) Step 1. We firstly prove that, for all 1  t  T , E
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which follows from Assumption 5.

Step 2. Next, we have, for all 1  t  T ,
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Proof of Lemma 7.

Proof.

(a) Step 1. We firstly prove (B.9) stated as follows.
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For any i 2 [p] and t 2 [T ], we define a random vector xt = 1
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In order to apply the central limit theorem for ↵-mixing data (Fan and Yao, 2003, Theorem
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any h 2 [r]. Then Theorem 2.21 in Fan and Yao (2003) implies the desired result.

Step 2. Now we show the final results of Lemma 7 (a).

Plugging ineet,ij , et,ij + e↵eij ,eFt , Ft + e↵F and using the fact that 2e↵ + e↵2 = ↵, we have
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By (B.9) and continuous mapping theorem, we have for each row i, as q,T !1,
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(b) Step 1. Following the same argument as in that in (a), we have that for each column j , as
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Step 2. Now we show the final results of Lemma 7 (b).
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Appendix C More Simulation Results

In this section, we present the more simulation results for Setting (I) and (III). Results are sim-
ilar to those for Setting (II) presented at the main text. For both latent dimension estimation and
convergence results, ↵-PCA consistently converges faster with lower variance and estimates more
accurately than AC-PCA over all chosen settings. Thus it is implied that ↵-PCA has significant
advantages over AC-PCA when Ft and Et are uncorrelated or weakly correlated across rows and
columns or time.

C.1 Uncorrelated across time, rows, and columns

This section presents results for Setting (I) where Et are uncorrelated across time, rows, and
columns. The entries of both Ft and Et are uncorrelated across time, rows and columns. Specifi-
cally, we simulate temporally independent Ft ⇠MN3⇥3 (0,I,I) and Et ⇠MNp⇥q (0,I,I).

Table 7 and 8 presents the frequencies of estimated (bk,br) pairs and means and standard devi-
ations of D(bR,R)),D(bC,C)), respectively, for Setting (I).

Figure 10 (a) shows the box plots of the ratios between space distances D(bR,R), D(bC,C) of the
two methods under Setting (I). The estimation error of ↵-PCA is much smaller than AC-PCA.

Figure 11 (a) presents the box plots of `2 norm of distance betweenbFt estimated by ↵-PCA and
transformed true Ft , which shows the convergence of estimated factors under Setting (I).
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(a) Setting (I).

(b) Setting (III).

Figure 10: Box plots of ratios of space distances between ↵-PCA and AC-PCA estimators. (a) is under
Setting I; (b) is under Setting III. The estimation errors of ↵-PCA is much smaller than AC-PCA

.
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p,q = 20,20 p,q = 100,20 p,q = 100,100
(bk,br) T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq
(2,3) .05 .085 .035 .035 0 0 0 0 0 0 0 0

.025 .005 .005 .015 0 0 0 0 0 0 0 0
(3,2) .05 .03 .01 .045 .025 .015 .015 .02 0 0 0 0

.01 .015 0 .01 .005 .005 0 0 0 0 0 0
(3,3) .845 .835 .92 .895 .975 .975 .98 .975 1 1 1 1

.955 .975 .995 .975 .995 .995 1 1 1 1 1 1
other .055 .05 .03 .01 0 .01 .005 .005 0 0 0 0

.01 .005 0 0 0 0 0 0 0 0 0 0

Table 7: Table of frequencies of estimated (bk,br) pairs estimated by ↵-PCA (highlighted rows) and AC-PCA
(not highlighted rows) under Setting I. The truth is (3,3).

T = 0.5pq T = pq T = 1.5pq T = 2pq
(p,q) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C)

(20,20) .40(.08) .40(.09) .28(.07) .29(.07) .23(.05) .23(.05) .20(.05) .20(.04)
1.11(.24) 1.12(.31) 1.11(.27) 1.11(.26) 1.07(.23) 1.10(.22) 1.08(.27) 1.09(.22)

(100,20) .14(.01) .08(.02) .10(.01) .05(.01) .08(.01) .04(.01) .07(.01) .04(.01)
.80(.07) .45(.10) .80(.07) .45(.10) .80(.07) .45(.10) .80(.07) .44(.09)

(100,100) .03(.002) .03(.002) .02(.002) .02(.002) .02(.001) .02(.001) .01(.001) .01(.001)
.34(.02) .34(.03) .34(.03) .33(.03) .34(02) .33(.02) .34(.03) .33(.03)

Table 8: Means and standard deviations in parentheses of D(bR,R)),D(bC,C)) estimated by ↵-PCA (high-
lighted) and AC-PCA (not highlighted rows) under Setting I. All values multiplied by 10 and rounded for
ease of presentation.

(a) Setting (I).

(b) Setting (III).

Figure 11: Boxplot of `2 norm of distance between estimatedbFt and transformed true Ft .
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C.2 Weakly row- or column-wisely correlated Et
This section presents results for Setting (III) where Et are weakly correlated cross rows and

columns. The entries of Ft and Et are temporally uncorrelated, but Et is weakly correlated across
rows and columns. Specifically, we simulate temporally independent Ft ⇠MN3⇥3 (0,I,I) and Et ⇠

MNp⇥q (0,UE,VE), where UE and VE both have 1’s on the diagonal, while have 1/p and 1/q o↵-
diagonal, respectively.

Table 9 and 12 presents the frequencies of estimated (bk,br) pairs and means and standard devi-
ations of D(bR,R)),D(bC,C)), respectively, for Setting (III).

p,q = 20,20 p,q = 190,20 p,q = 100,100
(bk,br) T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq T = .5pq T = pq T = 1.5pq T = 2pq
(2,3) .105 .095 .1 .08 0 0 0 0 0 0 0 0

.05 .085 .035 .065 0 0 0 0 0 0 0 0
(3,2) .08 .095 .07 .1 .095 .095 .05 .105 0 0 0 0

.04 .105 .045 .06 .07 .085 .03 .07 0 0 0 0
(3,3) .69 .65 .695 .685 .84 .87 .92 .835 1 1 1 1

.84 .75 .835 .82 .895 .9 .94 .9 1 1 1 1
other .075 .16 .135 .135 .065 .035 .03 .06 0 0 0 0

.07 .065 .085 .055 .035 .015 .03 .003 0 0 0 0

Table 9: Table of frequencies of estimated (bk,br) pairs estimated by ↵-PCA (highlighted rows) and AC-PCA
(not highlighted rows) under Setting (III). The truth is (3,3).

T = 0.5pq T = pq T = 1.5pq T = 2pq
(p,q) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bC,C) D(bR,R) D(bR,R)

(20,20) .83(.38) .84(.39) .81(.43) .79(.40) .72(.32) .76(.39) .74(.42) .79(.40)
1.41(.53) 1.44(.51) 1.41(.55) 1.39(.54) 1.30(.43) 1.35(.41) 1.37(.62) 1.38(.45)

(100,20) .15(.02) .70(.31) .11(.01) .74(.33) .09(.01) .69(.29) .09(.02) .67(.32)
.80(.07) .87(.33) .80(.07) .91(.36) .80(.07) .85(.35) .80(.07) .85(.35)

(100,100) .06(.02) .06(.02) .05(.02) .06(.02) .05(.02) .05(.02) .05(.02) .05(.02)
.34(.02) .34(.03) .34(.03) .34(.03) .34(.03) .34(.03) .34(.03) .34(.03)

Figure 12: Means and SDs in parentheses of D(bR,R)),D(bC,C)) estimated by the Chen method (highlighted)
and Wang method under Setting (III). All values multiplied by 10 and rounded.

Figure 10 (b) shows the box plots of the space distances D(bR,R), D(bC,C) for both methods
under Setting (III). Note the scales of the y-axis in two sub-figures are di↵erent. The estimation
errors of ↵-PCA is much smaller than AC-PCA.

Figure 11 (b) presents the box plots of `2 norm of distance between estimated bFt and trans-
formed true Ft , which shows the convergence of estimated factors under Setting (III).

Figure 13 shows the box plots of the space distances D(bR,R), D(bC,C) for both methods under
Setting (I) T <

p
pq with (p,q,T ) = (100,100,50).

C.3 Asymptotic normality

In this section, we present results of asymptotic normality for Setting (IV) with (p,q,T ) equal
to (200,200,100) and (400,400,250). The results for asymptotic normality are based on 1000 rep-
etitions. Under all settings, the presented QQ plots and histograms demonstrate the asymptotic
normality expected from the theorem.

Figure 15 presents the QQ plots of first dimension of the first row of bR �RHR under setting
(IV) p,q,T = 200,200,100 and 400,400,250.
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Figure 13: Box plots of the space distances of ↵-PCA and AC-PCA estimators respectively. Setting I with
(p,q,T ) = (100,100,50). The estimation errors of ↵-PCA is much smaller than AC-PCA under the setting
that T <

p
pq.

.

Figure 14 presents the histograms of the first dimension of
⇣
bR0· �H

>

RR0·
⌘
b⌃
�1/2
R0

with ↵ = �1
(left), 0 (middle) and 1 (right) under setting (IV) with p,q,T = 200,200,150.

Results of the other dimensions are similar.
QQ plots of the first dimension of the first row of bR�RHR with ↵ = �1 (left), 0 (middle) and 1

(right) under setting (IV) with p,q,T = 200,200,150.

Appendix D Multinational Macroeconomic Indexes Dataset

Table 10 lists the short name of each series, its mnemonic (the series label used in the OECD
database), the transformation applied to the series, and a brief data description. All series are from
the OECD Database. In the transformation column, � denote the first di↵erence, � ln denote the
first di↵erence of the logarithm. GP denotes the measure of growth rate last period.
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(a) p,q,T = 200,200,100.

↵ = �1 ↵ = 0 ↵ = 1

(b) p,q,T = 400,400,250.

↵ = �1 ↵ = 0 ↵ = 1

Figure 14: Histograms of the first dimension of
⇣
bR0· �H

>

RR0·
⌘
b⌃
�1/2
R0

with ↵ = �1 (left), 0 (middle) and 1
(right) under setting (IV) with p,q,T = 200,200,100 and 400,400,250. The lines plot the distribution of
standard normal distribution.
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(a) p,q,T = 200,200,100.

↵ = �1 ↵ = 0 ↵ = 1

(b) p,q,T = 400,400,250.

↵ = �1 ↵ = 0 ↵ = 1

Figure 15: QQ plots of the first dimension of the first row of bR�RHR with ↵ = �1 (left), 0 (middle) and 1
(right) under setting (IV) with p,q,T = 200,200,100 and 400,400,250.

Short name Mnemonic Tran description
CPI: Food CPGDFD �2 ln Consumer Price Index: Food, seasonally adjusted
CPI: Ener CPGREN �2 ln Consumer Price Index: Energy, seasonally adjusted
CPI: Tot CPALTT01 �2 ln Consumer Price Index: Total, seasonally adjusted
IR: Long IRLT � Interest Rates: Long-term gov bond yields
IR: 3-Mon IR3TIB � Interest Rates: 3-month Interbank rates and yields
P: TIEC PRINTO01 � ln Production: Total industry excl construction
P: TM PRMNTO01 � ln Production: Total manufacturing
GDP LQRSGPOR � ln GDP: Original (Index 2010 = 1.00, seasonally adjusted)
IT: Ex XTEXVA01 � ln International Trade: Total Exports Value (goods)
IT: Im XTIMVA01 � ln International Trade: Total Imports Value (goods)

Table 10: Data transformations, and variable definitions
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Country ISO ALPHA-3 Code Country ISO ALPHA-3 Code
United States of America USA United Kingdom GBR
Canada CAN Finland FIN
New Zealand NZL Sweden SWE
Australia AUS France FRA
Norway NOR Netherlands NLD
Ireland IRL Austria AUT
Denmark DNK Germany DEU

Table 11: Countries and ISO Alpha-3 Codes in Macroeconomic Indices Application

Figure 16 in the supplemental material shows the transformed time series of macroeconomic
indicators of multiple countries. It is obvious that there exist some similar patterns among time
series in the same row or column.
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Figure 16: Time series plots of macroeconomic indicators of multiple countries (after data transformation).
Only a subset of the countries and indicators is plotted due to the space limit.
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Appendix E More results on the image datasets

Figure 17: ORL face reconstruction with 15 ⇥ 15 latent dimension. The 1-st row displays ten raw images
from ORL data set. The 2nd to the 5th row correspond to reconstruction using our method with ↵ = �1, 0,
1 and 2, respectively. The compression ratio is approximately 2.18%.

Figure 18: USPS digits reconstruction with 9⇥9 latent dimension. The compression ratio is approximately
31.64%. The 1-st row displays ten raw images from USPS data set. The 2nd to the 5th row correspond to
reconstruction using our method with ↵ = �1, 0, 1 and 2, respectively.

Appendix F Codes

All codes are available online in https://github.com/ElynnCC/Matrix-Factor-Models.
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