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Abstract

This paper considers the estimation and inference of the low-rank components in high-
dimensional matrix-variate factor models, where each dimension of the matrix-variates (p x q)
is comparable to or greater than the number of observations (T). We propose an estimation
method called a-PCA that preserves the matrix structure and aggregates mean and contempo-
rary covariance through a hyper-parameter a. We develop an inferential theory, establishing
consistency, the rate of convergence, and the limiting distributions, under general conditions
that allow for correlations across time, rows, or columns of the noise. We show both theoretical
and empirical methods of choosing the best @, depending on the use-case criteria. Simulation
results demonstrate the adequacy of the asymptotic results in approximating the finite sam-
ple properties. The a-PCA compares favorably with the existing ones. Finally, we illustrate
its applications with a real numeric data set and two real image data sets. In all applications,
the proposed estimation procedure outperforms previous methods in the power of variance
explanation using out-of-sample 10-fold cross-validation.

Key words: Matrix-variate; Latent low rank; Factor models; Asymptotic normality; High-dimension.

1 Introduction
Large scale matrix-variate data have been widely observed nowadays in diverse fields, such as
neuroscience, health care, economics, and social networking. For example, the monthly import-

export volumes among countries naturally form a dynamic sequence of matrix-variates, each of
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which representing a weighted directional transportation network. Another example is dynamic
panels, such as typical electronic health records (EHRs). In the data-rich intensive care unit (ICU)
environment, vitals and other medical tests are measured for different patients at sequential time
points. At each time point, the observation is a matrix whose rows represent different patients
and whose columns represent demographic information, vitals, lab values, etc. Thirdly, 2-D im-
age data can also be modeled as matrix-variate data to preserve the spatial information, where
each entry of an image matrix corresponds to the intensity of colors of each pixel. Development
of statistical methods for analyzing large scale matrix-variate data is still in its infancy, and as a
result, scientists frequently analyze matrix-variate observations by separately modeling each di-
mension or ‘flattening’ them into vectors. This destroys the intrinsic multi-dimensional structure
and misses important patterns in such large scale data with complex structures, and thus leads to
sub-optimal results.

The very first questions to ask when facing large scale data with complex structures are: “Is
there a simpler structure behind the massive data set?” and “How can we infer the simpler struc-
ture from the noisy observations?” Simpler structures provide better understanding of the prob-
lem, reveal more insights into the data, and simplify down-stream analysis. This paper addresses
those questions and provides statistically sound solutions from the perspective of latent factor
models. The proposed method deals with matrix-variate observations directly and works for both
independent and weakly-dependent observations. To the best of our knowledge, we are the first
to provide the asymptotic distributions of the estimators for the proposed model.

We specifically consider the following matrix-variate factor model for observations Y; € RP*Y,
1<t<T:

Yt:RFtCT+Et, (1.1)

where Y, is driven by a latent factor matrix F, € R**" of smaller dimensions (i.e. k < p and r < g),
plus a noise matrix E;. Matrices R and C are a p xk and g x r row and column loading matrices,
respectively. The noise term E, is assumed to be uncorrelated with F;, but is allowed to be weakly
correlated across rows, columns and observations.

We propose an estimation procedure, namely a-PCA, that aggregates the information in both

first and second moments and extract it via a spectral method. Specifically, we define the following



statistics

_ 1 1 & _ —
Mg :p—q[(1+a) YY +7;(Yt—y)(Yt—Y)T], (1.2)
1 1 _ _
M, :p—q[(l+a)-YTY+T;(Yt—Y)T(Yt—Y), (1.3)

where a € [-1,+0) is a hyper-parameter balancing the information of the first and second mo-
ments, Y = %ZLYi is the sample mean, %Zthl (Yt —Y) (Yt —?)T and %Zthl (Yt —Y)T (Yt —?)
are the sample row and column covariance matrix, respectively. Estimations of R and C can be
obtained, respectively, as 4/p times the top k eigenvectors of My and /9 times the top r eigenvec-
tors of Mc, in descending order by corresponding eigenvalues. We explain its interpretation and
relations to several estimation procedures in Section

In the community of image signal processing, model (1.1) and estimation methods such as
(2D)?>-PCA have been actively studied (Yang et al., 2004; Zhang and Zhou, 2005; Kong et al.,
2005; Pang et al., 2008; Kwak, 2008; Li et al., 2010; Meng et al., 2012; Wang et al., 2015). How-
ever, their studies mainly focus on the algorithmic properties and give no statistical properties
on the estimators that are highly demanded in the medical, economics, and social applications
nowadays. The proposed a-PCA aggregates the first moment (weighted by 1 + a) and the second
moment, where & € [~1,+c0) is a hyper-parameter in (1.2) and (1.3). It encompasses (2D)2-PCA as
a special case of @ = —1, which is not a best choice in general. We show theoretically and empiri-
cally how to choose optimal a under different criteria, such as achieving most efficient estimators
and providing most accurate predictors. Also, we are the first to apply model (1.1) to provide
convergence and asymptotic normality results of the estimators under a very general setting.

With respect to statistical analyses, Wang et al. (2019) and Chen et al. (2019) consider a similar
model in the bilinear form (1.1), yet under a very different setting where E; is assumed to be
white noise (Lam and Yao, 2012; Lam et al., 2011). Chen et al. (2021) extends previous results
to time series of tensor observations, again assuming noise tensors are not temporally correlated.
This line of research discards contemporaneous covariance and utilizes only the auto-covariance
between Y; and Y; j with h > 1. The white noise assumption for E; simplifies the problem by

removing the error covariance IE[EtEtT_h] =0 (h>1) from E[(Y; - EY;)(Y;_, —EY;_;) "], but the



resulting data can have little information for the quantity that we would like to learn. Indeed,
the most informative component E[(Y; - EY;)(Y; —[EY;) "] is excluded. The ¢, convergence rates
obtained by Wang et al. (2019) for the estimators of R and C are both T~'/2 with strong factors
(i.e. Assumption 3 in Section 3). Although they use auto-covariance matrices, their results are
comparable to the noiseless version of our model (1.1). Under the noiseless setting when term
E; in equation (1.1) is ignored, our results give faster convergence rates of (qT)_l/2 for R and
(pT)_l/2 for C with strong factors, same as those obtained in Chen et al. (2021) for order-2 tensor
observations.

Even in the case of @ = —1, our models and methods are very different. We need to deal
with the bias term IE[EtEtT] # 0, while the analyses in Wang et al. (2019); Chen et al. (2021) are
largely simplified by assuming E; as white noise and not including contemporaneous covariance
E[(Y; - EY;)(Y;—EY;)"]. Furthermore, our assumption is more general in that E; is allowed to be
weakly correlated across rows, columns and observations.

The contributions of this paper are three folds. Firstly, we expand considerably the scope
of applicability of Wang et al. (2019) and related work, making the theory and methods useful
for a wider range of applications. The previous work uses only cross-covariance to learn the
latent factors and factor loadings. This not only requires the restrictive assumption that {E;} is
a white noise series, but also becomes ineffective when auto-correlations are weak. This makes
the procedure inapplicable to i.i.d matrix-variate data, such as gene or proteomic expression data
across samples and multiple image data illustrated in Section 6.2. It can not be applied to financial
return data due to the efficient market hypothesis. In contrast, we use the most informative piece
of information: the contemporary covariance matrix. This modification makes the procedure
applicable to i.i.d matrix-variate data and weakly auto-correlated data.

In addition, we point out that the first moments also provide useful information and thor-
oughly incorporate this by aggregating it with the second moments via a weighted spectral method.
Theorem 2 shows precisely how much the benefit is (if any). We show how to choose the parame-
ter a in real applications and further point out a generalization of this idea to yield an even more
powerful method by incorporating the auto-covariance as well (Wang et al., 2019).

On theoretical aspects, we establish new results on the asymptotic normality and the optimal

a of the a-PCA. They are useful in constructing the confidence intervals of the estimators and



also in choosing the optimal values of a.

1.1 More related work

Besides the literature in image processing and matrix-variate factor models, this paper is re-
lated to the literature of vector factor models and statistical tensor data analysis. Model (1.1)
can be seen as a generalization of the vector factor model (Bai and Ng, 2002; Bai, 2003; Fan et al.,
2013; Changetal., 2015; Fanetal., 2021, 2020) to matrix-variate data. Solving model (1.1) directly
achieves a better convergence rate in a high-dimensional regime than that which results from ap-
plying the vector factor model to vectorized observations. In particular, consider the following
vectorized version of model (1.1):

vec(Y;) = (C®R)-vec(F;) + vec(E;), (1.4)

where vec(Y,) € RP? and vec (F,) € R¥". The ¢, convergence rate for C® R obtained by traditional
PCA (Bai, 2003; Bai and Ng, 2002) is min{pg, T}~"/?, without adopting the tensor structure in the
loading matrix. Under similar assumptions, solving model (1.1) directly gives a ¢, convergence
rate of min{p, Tq)~/2 for R and min{g, Tp}~"/? for C. In a high-dimensional regime where p,q > T,
our method gives better results. Furthermore, we obtain R and C by directly solving model (1.1),
more specifically applying PCA to (1.2) and (1.3), while one needs to carry out a second step to
estimate R and C from C®R, which may incur further errors (Cai et al., 2019). See remarks after
Theorem | and 2 for more discussion.

Tensor decomposition (Kolda and Bader, 2009; Kolda, 2006) has also been applied to matrix-
variate observations. Note that {Y;},<;<7 form an order-3 tensor of dimension p xgx T by stacking
Y; along the third mode 1 <t < T. Statistical convergence rates in Frobenius norm have been stud-
ied in Zhang and Xia (2018) under the assumption of homogeneous entries in tensor. However,
vanilla Tucker decomposition does not apply directly here. (See Remark 3 for more discussion.)
We allow correlations across rows, columns and observations in E; and also derived the asymp-
totic normalities for R and C. Additionally, by focusing on the simplest multi-dimensional objects
and connecting them with the matrix-variate normal distribution, our analysis provides statis-
tical insights that are potentially helpful in understanding the behavior of higher-order multi-
dimensional observations. Generalizing our method to higher-order tensor decomposition is an

interesting direction for future research.



1.2 Notation and organization

We use lowercase letter x, boldface letter x, and boldface capital letter X to denote scalar,
vector and matrix, respectively. We use X;,, X,j, and x; j to denote the i-th row, j-th column, and
(1,7)-th element of a matrix X, respectively. For a matrix X, we use the following matrix norms:
maximum norm ||X||,,,,x = rri_?x |x;;l, €1-norm [|X||; = m]jclx 2 ilxijl, €oo-norm [[X||, = max Zj|xij|,
and ¢,-norm ||X|| £ o7, where oy is the largest singular value {0;} of X with o; being the i-th largest
square root of eigenvalues of XTX. We also use ||X]| for £, norm. When X is a square matrix, we
denote by Tr(X), A4y (X), and A,,;, (X) the trace, maximum and minimum singular value of X,
respectively. We let [n] = {1,...,n} denote the set of integers from 1 to n.

The rest of this paper is organized as follows. In Section 2, we introduce estimation method for
model (1.1). We develop the asymptotic normality for the estimated loading matrices in Section
and provide consistent estimators of the asymptotic variance-covariance matrices in Section

In Section 5, we study the finite sample performance of our estimation via simulation. Section

provides empirical studies. Section 7 concludes. All proofs and technique lemmas are relegated

to Appendix A and B in the supplemental materials.

2 Estimation

2.1 Model identification

We only observe Y; and everything on the right hand side of model (1.1) is unknown. Sep-
aration of the signal part S; = RF;C" and noise part E; can be achieved by the pervasiveness
assumption (i.e. Assumption 3) on loading matrices R and C and the bounded eigenvalues as-
sumption (i.e. Assumption 4) of noise row and column covariances in Section 3. The latent factor
matrix F, and loading matrices R and C are not separately identifiable. However, they can be
estimated up to an invertible matrix transformation. Particularly, let Hgz € R®* and He € R™
be two non-singular matrices. The triplets (R,F;,C) and (RHl_{l, HRFtHE, CHEI) are equivalent
under model (1.1).

Thus instead of the ground truth R*, F’f and C*, we aim at estimating transformations of the

true values. Without loss of generality, restrict our estimator R and C such that

1o — 1o
“R'R=1, and -C'C=L (2.1)
p q



As shown in the Theorem 2, for any ground truth R*, C*, F’; and our estimator R (E), there
exists an invertible Hy (H¢) given in (3.1) ((3.2)) such that R (C) is a close estimator of R*Hy
(C*H¢) and F, is an estimator of H! F’;HEIT. Knowing R*Hy, C*H, and HI_QIF’;HE1T is as good
as knowing true R*, C* and Fy for many purposes. For example, in regression analysis or time
series prediction, using Hl‘elF’;‘HE1T as the regressor will give the same predicted value as using
F} as the regressor. Note that the true R* and C* do not necessarily satisfy (2.1). If they do, then

Hjy and H¢ approach orthogonal matrices in the limit.

2.2 Estimation based on spectral aggregation
Note that the first moment E[Y;] = RE[F,]CT, which contains also the information of un-
known parameters. Similarly, the second moment

E[(Y;~E[Y,]))(Y; - E[Y;])T] = RE[(F, — E[F,])CTC(F, - E[F,])T|RT + E[EE] |

also contains information about the unknown parameters. In particular, after noticing the matrix
E[(F; - E[F;])CTC(F; —E[F;]) "] is of rank k under some mild conditions and ignoring the second
term (as justified by the pervasive assumption below), it is easy to see R is the same as the top
k eigenvectors of the second moment, up to an affine transformation. This justifies our spectral
method based on (1.2) and (1.3) introduced in the introduction.

Let@=+Va+1-1and

?téYt+ﬁ, FtéFt‘f‘aft, and EtéEt‘Fﬁt.

Then we have

Equations (1.2) and (1.3) can be equivalently written as

T T
— 1 == —~ 1 _—
Mg=—9 Y,Y/, and Mc=—) Y/Y, (2.3)
which can be viewed as the statistics defined on the transformed data Y,. The special case for
a = —1 corresponds to the sample row and column covariance matrices of the original data.

The estimators R and C are respectively obtained as /P times the top k eigenvectors of My and

1/q times the top r eigenvectors of M¢, in descending order by corresponding eigenvalues.

Remark 1. Auto-covariance based estimation. Wang et al. (2019) and Chen et al. (2019) consider a

similar model in the bilinear form (1.1), yet under a very different setting where E; is assumed to



be white noise. The major methodological difference is that Wang et al. (2019) utilizes only the
auto-covariance between Y; and Y;_j, with h > 1, discarding the covariance of Y; totally. When
the data is temporally independent or weakly correlated, the population auto-covariance of lag
h>1 (signal) is equal to or close to zero and the sample auto-covariance has very low signal noise
ratio. In other words, this kind of methods can not be applied to the cross-sectional data such as
high-throughput genomics measurements where t indices an individual or financial return data
where predicability is low due to efficient markets. The performance comparisons in Section 6

also confirm this concern in real data sets.

Remark 2. Spectral aggregation. The proposed method falls in the category of spectral methods
which are based on eigen-decomposition or singular value decomposition of moments-type statis-
tics, i.e. matrices Mg and M. One major difference between statistical methods in this category is
how the statistics Mg (M) is constructed. Wang et al. (2019) and Chen et al. (2019) construct M
using the auto-covariance and derive the properties of their auto-covariance-based estimators un-
der the assumption that E; is white noise. They require that the factors be pervasive cross-section
(p,q), and also that the factors be temporally dependent (otherwise the signal part equals zero.)
The present paper constructs Mg (M) using covariance and the theoretical properties are derived
under a different set assumptions.

A very interesting point raised by the referee is that whether we can use both covariance and
auto-covariance for spectral aggregation. Forni et al. (2015, 2017) proposed a full dynamic factor
model for vector time series which include both covariance and auto-covariance. While we are
considering a static factor model (Bai, 2003) here, the information of first moment, covariance
and lag-h auto-covariance for h > 1 can be aggregated to yield an even better performance, as
long as E; is white noise. See Fan and Zhong (2018) for the methods and the results on spectral

aggregations.

Remark 3. Tensor decomposition. Matrix-variate time series Y;, t € [T], is the 2nd-order tensor
time series. Also, it can be stacked along a third mode of time to form a 3rd-order tensor ) €
RP*4*T | Tucker decomposition (Kolda and Bader, 2009; Kolda, 2006) can be applied to the 3rd-
order tensor ) directly. Model (1.1) can be written equivalently as a noisy Tucker decomposition
Y =F x1 Rx; Cx31Ip + & where x,, is the mode m tensor product and It is the identity matrix of
size T. At the same time, Tucker decomposition can be applied to the covariance tensor defined
as Cov[Y;] = Cov[F;] x; Rx; R x3Cx4C, where Cov[Y,] € RP*P*7*9 with the ijkI-th element being
Cov [Pt,ik}’t,jl]- These two problems are constrained Tucker decomposition: the formal restricts
that the time-mode loading matrix is the identity matrix I, while the latter restricts that two
loadings are exactly the same. It is of great interest to extend the current algorithms and theories
on Tucker decomposition (See Zhang and Xia (2018) and references therein) to such constrained

Tucker decomposition problems.



2.3 Relations to LS, ML and PCA estimators

In this section, we provide more interpretation of a-PCA. Our estimation approximates the
least squares and maximum likelihood estimators and encompasses PCA type of estimators as a
special case with a = —1. The proposed estimator in Section approximately minimizes jointly
the unexplained variation and bias:

T
. l o oo-~112 1 2
nﬁlghr{l}?:zle (1+a) ba ||Y—RFCT||F+ T ;:1 ||Yt —RFtCT”F

sample bias .
sample variance

subject to lRTR =1, lCTC =L
p q
The special case @ = —1 corresponds to the least squares estimator. However, (2.4) is non-convex.Thus,
instead of solving (2.4) directly, we may consider an approximate solutions by maximizing row
and column variances respectively after projection.
Firstly, {Y/},[r) are projected onto R and maximize the row variances of R"Y; under the con-

straint that %RTR =1. On the population level, that is,

maximize Tr(IE [(1 +)(RTY)(RTY)" +(RTY, ~E[RTY,])(RTY; - IE[RTYt])T])

= Tr(pq-RTMRR),
subject to %RTR =1,

where
| 1 _ _
Mg 2 (1+a)My + My, My 2 m E[YY'], and My = m IE[(Yt ~E[Y])(Y, —IE[Y])T].

Similar expressions can be obtained by using the projections onto C and maximize the column
variances of Y;C. Note that a factor of % does not change the column space of M or M, but will
facilitate theoretical analysis and stabilize numerical computation as p and g increase.

With T observations {Y,},c[7], we replace the population mean and covariance matrix by their
sample versions and obtain the maximizer R (E) comprised of /p (1/g) times top k (r) eigenvectors
of Mg (M) in descending order by corresponding eigenvalues. Thus the estimator defined in

Section 2.2 approximately solves (2.4).



2.4 Estimation of the factor and signal matrices
After estimating R and C by spectral aggregation described in Section 2.2, we obtain an esti-

mator of F; using condition (2.1):
1

F,= —R"Y,C. (2.5)
= o t
The signal part S; = RF,CT can be estimated by
U
S;= —RR'Y,CC". (2.6)
pq

The above estimation procedure assumes that the latent dimensions k xr are known. However,
in practice we need to estimate k and r as well. To determine k and r we could use: (a) the eigen-
value ratio-based estimator, proposed by Ahn and Horenstein (2013); (b) the Scree plot which is
standard in principal component analysis. Let A >A>. > :\\k > 0 be the ordered eigenvalues of

Mgy. The ratio-based estimator for k is defined as

—

— A
k= argmaxA—], (2.7)
1Sjgkmax /\j+1

where k.. is a given upper bound. In practice we may take ky. = [p/2] or kyax = [p/3] ac-
cording to Ahn and Horenstein (2013). Ratio estimator 7is defined similarly with respect to M.
Adjustments of estimated eigenvalues are needed when the optimal k grows with p (Fan et al,,
2020).

In the next section, we establish theoretical results showing that under high dimensional set-
tings, ﬁ, C and /F\t are consistent estimators under known fixed k and r. In addition, we obtain the

asymptotic distributions for R and C.

3 Theoretical Properties

We first state all the necessary assumptions used in the following sections. To simplify no-
tation, we drop the % superscript and let F, € R®", R, and C be the true latent factor, row and
column loading matrices, respectively. Let F = %Zthl F, and E = %ZtT:l E; be the sample means
of the factors and the noise, respectively. Entries in the matrices are respectively denoted as ]_fi]-
and ¢;;.
Assumption 1. a-mixing. The vectorized factor vec (F;) and noise vec (E;) are a-mixing. Specifically,
a vector process {xy,t = 0,+1,+2,---} is a-mixing if, for some y > 2, the mixing coefficients satisfy the

10



condition that

8

Za(h)l_z/y < oo,

h=1

where a(h) =sup  sup  |P(ANB)—P(A)P(B)| and F} is the o-field generated by {x; : T <t <s}.
T AeF* ,BeFST

T+h

Assumption 2. Factor and noise matrices. There exists a positive constant C < oo such that for all
Nand T,

(a) Factor matrix ¥, is of fixed dimension k x r and ]E||Ft||4 <C.
(b) Forallie(p],jelqlandte[T], IE[et,ij] =0and ]Elet,ijl8 <C.

(c) Factor and noise are uncorrelated, that is, lE[et,iij'lh] =0foranyt,se[T), ie[p] jelql I k]
and h € [r].

Assumption 3. Loading matrix. For each row of R, |R;|| = O(1), and, as p,q — oo, we have
||p‘1RTR—QR“ —> 0 for some k x k positive definite matrix Qg. For each row of C, ||C;.|| = O(1),
|q*1CTC - QC” —> 0 for some r x r positive definite matrix Q.

and, as p,q — oo,

Assumption 3 is an extension of the pervasive assumption (Stock and Watson, 2002) to the
matrix variate data. It ensures that each row and column of the factor matrix F; has a nontrivial
contribution to the variance of rows and columns of Y;. Thus our analysis is in the regime of
“strong factors” that they lead to exploding eigenvalues relative to the idiosyncratic eigenvalues.

Note that Assumption | only deals with temporal dependence. The matrix dimension p and g
also determine the convergence rates, which is affected by the cross-row and cross-column depen-
dence. Thus we need Assumptions 4 and 5 below so that the information accumulated over rows
(p) or columns (g) is also useful. Assumption 4 holds automatically when the errors E; are i.i.d.

over rows and columns for any t.

Assumption 4. Cross row (column) correlation of noise E,. There exists some positive constant
C < oo such that,

(a) Let Ug =[5 XL BB | and Vi = E[ 5 T, BTE, |, we assume |Ugl, < C and |[Vg||, < C.
(b) Forall row i€ [p]and column j € [q] and t € [T], we assume }_jc[p] ) _he[q] I]E[et,i]-etllh” <C.
1#i h#j

(c) Forany row i,l € [p], any time t € [T], and any column j € [q],

Z Z Z |C0V[et,ijet,lj’ es,ihes,mh” <C
melp]

se[Thelq]
h=#j

11



Similar, for any column j,h € [q], any time t € [T], and any row i € [p],

Z, Z Z |C0V[et,ijet,ih: "s,ljes,zm” <C
me(q]s€[T]l€(p]

1#i

To better interpret the cross-row/column correlation of noise terms in Assumption 4, we con-
sider the special case when E, follows an i.i.d matrix-variate normal distribution ./\/l/\/'pxq (0, Ug, Vg )

Then
1 T
Ur=FE|— Y EE!
=¥ e ) B!

Given that %Tr(VE) = O(1), Assumption 4 (a) requires that the row covariance Ug of the noise

:ﬁE . %TI'(VE)

matrix satisfies ||[~IE||1 < c. Similarly, we require ||VE||1 <c. Itis satisfied if Ug and V are diagonal
matrices, or more generally sparse matrices. Given Assumption 2, the remaining assumptions in
Assumption 4 are satisfied if ¢;;; are independent for all i, j, and t. We allow weak correlations
across i, j or t in the noise, which is more general than the i.i.d. assumption in tensor decomposi-

tion literature (Zhang and Xia, 2018).

Assumption 5. There exists m>2,1<a,b<oco, 1/a+1/b =1, such that, for some positive C < oo,

) [ 1 q mb] [ 1 q mb]
(a) Foranylel[k],ie[p], andte[T], E |\/—§Z]-:1 et,ij' =0(1), E szj:l C]'_et,,'j” =0(1),
and E[|[f,.|""] < . ’ ‘ ’
. [ 1 p mb] [ 1 p mb]
(b) Foranyhe(r],jelql, andte[T], E |W Y i et,ij| =0(1), E ”\/_17 Y i Ri,et’in =0(1),

and E||f,.| "] < C.

(c) Foranyte[T], E

|\/Lp77 Zle Z;Ll 6t,ij|mb] =0O(1)and E [H\/%TJ Zle Z?Zl Ri,C]T.et’i]'Hmb] =0(1).

Assumption 5 is satisfied by Gaussian noise E; with i.i.d rows and columns. Specifically, if
erij ~ /\/’(0,0'2) are i.i.d. over i € [p] and j € [g], then \L@Zle e ij 2, N(O,o*z), \L@Zle R;.e; i 2,
N (0,02Qx), = Y0 T €5 —> N (0,0%), and <= T2 Y1 (C8R; ey i — N (0,020 @0g).
Thus, Assumption 5 on the noise part is satisfied by choosing m =2 and a = b = 2. It is imposed to
guarantee the v/pT or v/qT convergence rate (rather than VT) when rows or columns of E, are not
independent. It will not be needed when the errors E; are i.i.d. over rows and columns for any ¢

and are independent of the factor F;, with assumed moments conditions. We include them here

to allow for weakly cross-row (-column) and temporal correlations.

12



Now, we are ready to present theoretical properties of our estimators. To facilitate the analysis,
we first introduce auxiliary matrices Hg, Hc, Vg o7 and V¢ 7. As noted previously, R, C and F;
are not separately identifiable. We show in the following that, for any ground truth R, C and F;
and our estimator R ( ), there exists an invertible matrix Hg (H¢) such that R (C) is a consistent
estimator of RHy (CH() and F, is a consistent estimator of HilFtHEI

Let Vg pgr € R and Ve, pgr € R™ be the diagonal matrices consisting of the first k and r
largest eigenvalues of My = MLT YL, Y, Y] and Mc = MLT YL, Y/]Y, in decreasing order, respec-

tively. By definition of our estimators R and C, we have

T
= VTV cv-1
R=— 7 ZY Y/RV;) ; and C= AT YIY,.CV, o
Define Hy € R™" and Hc € R™ as
1 T
He=—7) ZFtCTCFIRTRV};}p 7 € RO (3.1)
Hc = qu ZFTRTRF CTCV{, r eR™, (3.2)

which are bounded as p,q,T — oo (See Appendix A for more details). Theorem | shows that R
and C converge in Frobenius and ¢, norm.

Theorem 1. Under Assumptions 1 - 5, we have, as k, r fixed and p,q, T — oo,

| 2 1 1= 2 1
IRt =0, (i) S Ie-ctely =0 ()

Consequently,
1~ 2 1 Liic 2 :
I_j“R_RHR” :Op(m)l E”C—CHC“ :OP(W)

Remark 4. In the vectorized model (1.4), we denote A = C®R. Applying results in Bai and Ng
(2002) and Bai (2003), we obtain - ||A AH” = (W) where H € REF"™*k" s an orthonormal
matrix. Theorem | establishes faster ¢, convergence rate for both R and C in a high-dimensional
regime where p,q > T. Furthermore, we obtain R and C directly by applying PCA to (1.2) and
(1.3), which converge faster than the PCA for vectorized model (1.4). In addition, in order to
use the tensor structure in the factor loadings, after obtaining A from the vectorized PCA, one
needs to carry out a second step to estimate R and C from A which amounts to noisy Kronecker
production decomposition. See Cai et al. (2018); Wedin (1972); Cai et al. (2019) and references
therein for more discussions on this topic. Since A= (COR)H+W, where W is the estimation error
in the first step that are dependent across entries, it is not clear how the second step aggregates

biases and reduce variances.
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Remark 5. The present paper considers only the fixed k and r, which is common in factor analysis.
The case with growing k and r can be obtained by book-keeping all the k and r in the proofs. See
Fan et al. (2020) and Appendix B of Chen et al. (2020) for results on growing k and r in the vector
factor model setting.

Before presenting our main theorem on the asymptotic normality, we define several quantities

that are used in the theorem. Letting pur = [E[F,] and

Trc 2 B[(F, - pp)(CTC/q) (B —pp)T], and  Tpp £ E[(F, - pp)T RTR/p) (- pp)|,  (3.3)

then

— 1~ — 1
Yot —IE[FtCTCFtT] =Ypc+(a+1)=ppCTCuy,
o 1 (3.4)
Trr 2 EIE[FtTRTRFt] =Yrr+(a+1) Eu;RTRuF.
Consider again the special case where F; ~ MN (up, Ug, Vi). Then, F,CT ~ MN (upCT,Ug, CVECT),
RFt ~ MN(RMF,RUFRT,VF), and

T T

C'C = Cc'C 1
ZFC:UF'TI(VF ), EFC:UF'TI'(VF )+(0(+1)—[,LFRTR[,L;_:.
p

T T

R'R = R'R 1
EFR :VI:'TI‘(UP ), EFR:VF'TI'(UI: )+(a+1)EMFRTRMF.

Matrix Xpc can be interpreted as the row covariance of F; scaled by the strengths of column vari-
ances of F,CT and Xy can be interpreted as the column covariance of F; scaled by the strengths
of row variances of RF/. Matrices Xrc and Trp contain the aggregated information of moments
of rows of FCT and FTR, respectively.

Theorem 2 establishes that R and C are good estimators of RHg and CH, respectively, and
each row of R — RHy and C — CH are asymptotically normal. The following assumption on

eigenvalues is needed.

Assumption 6. The eigenvalues of the k x k matrix QrXpc are distinct and so are the eigenvalues of

the r X r matrix QCEFR.
Theorem 2. Under Assumptions 1-6, as k, r fixed and p,q, T — oo, we have:
(i) For row loading matrix R, if \/qT/p — 0, then

— ~ RR 1 - D
\/q_T(RZ-.—H;R,-.):VR}MT-T-ﬁ;FtCTEM,mPu)—>N(0,2Ri),
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where

Tg, 2 V' Qg ((DR,i,ll +a®@piopf + app®p o + OézuPCDR,i,zzlt;) Qi V%, (3.5)
and
T T
(I)Rlll_pj!lmq ZZ FC etl SICFT]
q,T—00 o
L L
P2 = P = plim — Y ) E[FCTe, el ] (3.6)

. N <=-1/2 . . . . .
Matrix QR = Vl/2 W} Yp¢ where Vi is a diagonal matrix whose entries are the eigenvalues of
=1/2
Yrc Qg ZPC in decreasing order, W is the corresponding eigenvector matrix such that Wy Wp =

1, Q defined in Assumption 3 and Tpc is defined in (3.4).

(i) For column loading matrix C, if \/pT/q — 0, then

- CT
VpT(C;.-HIC;.) = V¢ quch \/1_ ZFIRTEW- +0,(1) > N (0,Z¢),
=1

where
Yc = vilQce (CI)C,j,ll +a®@c,j1opp+ appDc,jo + szﬂgcpc,j,zzﬂF)QgVE}, (3.7)

and ®c ;11, Pcj12 and P 2o are defined similarly to ®g;11, Pri1z and Pr;ry. Ma-
. N =-1/2 . . . . .
trix Q¢ = Vl/2 Wl Ypr where Vi is a diagonal matrix whose entries are the eigenvalues
=1/2
of Xrr Q¢ ZFR in decreasing order, W is the corresponding elgenvector matrix such that

‘I’E\I’C =1, Q¢ is defined in Assumption 3, and ZFR is defined in (3.4).

Note that the asymptotic variance depends on « in a quadratic form and its minimum typically
exists. In particular, if @p; 1, = 0 and @c ;1 = 0, the linear term is zero and hence «,,; = 0. In

this case, a-PCA outperforms the convention 2D-PCA, which takes a = —1.

Remark 6. (Optimal a based on different criteria.) Scalar « is a hyper-parameter used in the esti-
mation to balance the information of the first and second moments. When a = -1, a-PCA uses
only the second moment and reduces to the 2D-PCA algorithm. Theorems 1 and 2 show that the
convergence rates of R;. and Ej, are not affected by . However, the asymptotic variances in (3.5)
and (3.7) are dependent on the value of a. Thus, the asymptotic variances of R;. and C;. can be
used as a criterion to find the optimal a.

When pr =0, (3.5) and (3.7) show that the value of a does not affect the asymptotic variance.
Indeed, in this case, the first moments do not provide any extra information. When py =0, one
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criterion is to minimize p~! Zle Tr(E R, ), which controls the asymptotic variance in an average

sense. We can obtain an analytical form of a,; as
1 -1
Qopt = —ETY(MIICDR,zzlJJF) Tr(Pp12pr + nEPro1 ), (3.8)

where ®@p ;= p! Zle Dp ik for k,1=1,2. If @py = Pry; =0, then a,,; = 0 for the criterion
of minimizing p~! Zle Tr(ERl_ ) In this case, aggregation indeed gains, putting equal weights on
both the first and the second moments. The simulation in Section confirms this theoretical
result.

For other criterion based on asymptotic variances such as m[@]((ZRi ), an analytical form of «
i€lp
does not exist. However, we are still able to use computational methods to search for the optimal

« that minimize the criterion as a function of X and ZC]. based on (3.5) and (3.7).

Remark 7. (Practical guidance for choosing a.) As discussed above, the optimal choice of a can be
chosen according to (3.9) for the purpose of minimizing the asymptotic variance. If one decides
to seek for a better choice, one can search a over a grid of points for the one that optimizes
an application-specific criterion. For example, in Section with multinational macroeconomic
indices, we would like the variance of estimators to be minimal. So we find optimal a as one that
minimizes the trace Tr (ER) where fR =p! Zlej‘fRi. This value can be calculated according to
equation (4.2) for a grid of a’s, as plotted in Figure 6. Alternatively, in Section 6.2 with image data
set, we care most about the reconstruction error which is measured by the ratio between residual
sum of squares over the total sum of squares (RSS/TSS). So we search the optimal a that minimize
the RSS/TSS over a grid of as, as plotted in Figure

Theorem 3. Under Assumptions 1-6, as k, r fixed and p,q, T — oo, we have

— 1
F,-Hg'FHZ =0, ——|.

A )
Theorem 4. Under Assumptions 1-6, as k, r fixed and p,q, T — oo, we have the following convergence
result of the estimator (2.6) of the signal part S; = RF,CT.

1

min (p,q, vpT, vqT)

gt,ij_st,ijzop , forany1<i<pand1<j<gq.

Remark 8. Theorems 3 does not require any restriction on the relationship between p, g and T
except that they all go to infinity. Theorems 3 and 4 show that, in order to estimate the latent
factor F; and signal S; consistently, we need to have dimensions p and g approach infinity. An
explanation is that we need to have sufficient information to distinguish the signal RF,C" from
the noise E; at each time point t. Theorems 2, 3 and 4 present the asymptotic properties when the

dimension of the latent matrix factor k x r is assumed to be known.
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4 Estimating Covariance Matrices
In this section, we derive consistent estimators of the asymptotic variance-covariance matrices.

According to Theorem 2, the asymptotic covariance of R;., 1 <i < p, is given by

Dy (O N
Y, = V—l Q I a ( R,,11 R,Z,lZ)( )Q 4.1
R ™ T Rpal R( ¢ MF) @piz Dpris)\ap;) R RPqT (4.1)

Term Vg p,7 is estimated as the kxk diagonal matrix of the first k largest eigenvalues of MLT Yo Y YT
in decreasing order. To estimate the middle term sandwiched by Vl_z,lp g7 We use the heteroskedas-
ticity and autocorrelation consistent (HAC) estimators (Newey and West, 1987) based on series
[F,CT %,

a tuning parameter m that satisfies and m — oo and m/(qT)l/4 — 0, it is defined as

m
SRS N[ )

felT] where E and C are estimated in Section 2 and ft =Y, —/Iii:\tET. Specifically, for

where

= =T  CRT 1 vT TCTa . 2T
qT Zt 1+vF CTetl zCFt v q_TZt:1+v FtCTet,i'et—v,le)( L )
CF/ C ’

Dgry,i= (I F) =
2% k@ CTe. .ol 1 yT Te. . er
qT Zt 14v C etlet v,i- =iy q_TZt:1+vC erie_,;.C

and F = %ZtT:l/F\t is the estimated mean. While a HAC estimator based on true {F;, CT, etri'}te[T]’ a

HAC estimator based on {E, CT, ’é},i.} is estimating Qr @ ;Qj; because E estimates HI}lFtHE4 ,

te[T]
C estimates CH and F estimates Hil [,LFHE_l. Thus, a HAC estimator of the covariance of X, is

given by
— ¢ v
Tr = Vi1 x| Droi+ Z(1 - m)(DR Wi 4D ) [Volr (4.2)
Similar for Ej., 1 <j <gq,a HAC estimator of the covariance is given by
m
= ol v »
Xc; = Vpgrc|Peoj* Z(l 1+ m)(DC vt D¢, V]) paT.C’
v=1
where
Deyj=(1, oF )(pT Lictor FrR e 2, RE PT L F R, el viR)( Ir—)
h a =],
" ' oT Zt:le €t.j€ t—v,~]RFt—V pT Zt:1+vR €t,.j€ t—v,~jR aF

and F = %Zthlft is the estimated mean. The following theorem confirms the consistency.

Theorem 5. Under Assumptions 1-6, as k, r fixed and p,q, T — oo, fR,— and EC}_ are consistent for L.
and X, respectively.
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5 Simulation
In this section, we use Monte Carlo simulations to assess the adequacy of the asymptotic results
in approximating the finite sample distributions of R;. and Ej, and the convergence rate of F;. We

only report the result for ﬁi. and F; because Ej, shares similar properties to ﬁ,-..

5.1 Settings

Throughout, the matrix observations Y,’s are generated according to model (1.1). The dimen-
sion of the latent factor matrix F; is fixed at k xr = 3 x 3. The values of p, g, and T vary in different
settings. The true loading matrices R and C are independently sampled from the uniform distri-
bution ¢/ (-1,1). The latent factor and noise matrices are allowed to be dependent across rows,
columns or time, respectively, in different settings to be specified later.

We present the following results under different settings in the subsequent subsections. We
refer our method and the one proposed in Wang et al. (2019) as a-aggregated PCA (a-PCA) and
auto-covariance based PCA (AC-PCA), respectively. Results 1-3 compare specifically the results
obtained by a-PCA with those by AC-PCA. Result 4 presents the results obtained by a-PCA with

different values of a. Result 5 illustrates the optimal choice of the hyper-parameter a.

Result 1. (Estimating latent dimensions.) The latent dimensions are estimated by the eigen-ratio
method of (2.7). Results are presented in tables of frequencies of k x 7.

Result 2. (Proposition 1: Convergence of R,C.) We report box plots of the ratios between space
distances D(ﬁ,R) (defined in (5.1)) retrieved from a-PCA and those from AC-PCA.

Result 3. (Theorem 3: Convergence of F;.) To demonstrate that F, is estimating a transformation of
F, for t € [T], we compute the Hg and H¢ according to (3.1) and (3.2), respectively, and
report box plots of |[F, - HR'F,HZ' ™.

Result 4. (Theorem 2: Asymptotic normality R—RHg.) We first consider the asymptotic distribution
of R. We estimate fRO according to (4.2) and average. Then we compute the k x 1 vectors
fl_{l/ z(ﬁof —H}R, ) and report 1-dimensional histograms of each first component.

Result 5. (Optimal a based on Theorem 2.) For each value of a in [-1,5] with a step-size of 0.1, we
calculate the covariance matrix :‘fRO of Ry. according to (#4.2). The empirical optimal a is

very close to the theoretical value given in (3.8). See Section 5.4 for details.
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5.2 Comparison of convergence

In this section, we consider the the finite sample convergence of R;., E]-. and F;. We choose
(p,gq) among (20,20), (20,100), or (100,100) and let T = 0.5pq, pq, 1.5pq, or 2pq, similar to the
setup in Wang et al. (2019). For the AC-PCA estimator, we will use lag parameter hy = 1 since
we will be considering uncorrelated models or VAR(1) processes only. We use the column space
distance

o~~~ —1 —~

D(AA)= “A(ATA) AT-A(ATA)" AT', (5.1)

for any rank k matrices A,A € RP**. To keep things simple, we only use the second moment
information, that is &« = —1, in this section. From Theorems 1 and 3, values of & does not affect the
convergence rate in the strong factor regime. Results in this section are based on 100 repetitions,
which are sufficient as shown in the reported standard deviations.
We simulate data and estimations under three settings as follows.
(I) (Uncorrelated.) The entries of both F, and E, are uncorrelated across time, rows and columns.
Specifically, we simulate temporally independent F; ~ MN3,3(0,LI) and E; ~ MN,,, (0,L,1).
(II) (Weakly correlated cross time.) The entries of F, and E; are uncorrelated across rows and
columns, but weakly correlated temporally. Specifically, we simulate vec (F;) from the fol-

lowing Vector Auto-Regressive model of order one (VAR(1) model):

vec(F;) = @ -vec(F;_1) +¢&;,

where the AR coefficient matrix @ = 0.1 -I¢ and Var[e;] = 0.99-1y. Thus, Var[vec(F;)] = Io.

We simulate noise E; also from VAR(1),

vec(E;) =W -vec(E,_q) +u,

where W = ¢ -1,, and Var[u;] =1 - 2. Thus, Var[vec(E;)] = I,,. We choose ¢ = 0.1 and
then increase to ) = 0.5 to examine how temporal dependence may affect our results. Note
that setting (II) with i) = 0 corresponds to setting (I).

(III) (Weakly correlated cross rows or columns.)The entries of F, and E; are temporally uncor-
related, but E,; is weakly correlated across rows and columns. Specifically, we simulate
temporally independent F; ~ MN3,3(0,1,1) and E; ~ MN,,,, (0,Ug, Vi), where Ug and Vg

both have 1’s on the diagonal, while have 1/p and 1/q off-diagonal, respectively. Note that
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Setting (III) correspond to setting (I) when W = 0 and the variance of u; are specified as
VeE®Ug.

For both latent dimension estimation and convergence results, a-PCA consistently converges
faster with lower variance and estimates more accurately than AC-PCA over all chosen settings,
including a special case in Setting (II) where we increase 1, the strength of temporal correlation.
Thus it is implied that a-PCA has significant advantages over AC-PCA when F; and E; are uncor-
related or weakly correlated across rows and columns or time. In the sequel, we report results for
latent dimension, loading matrices and factor matrices under Setting (II) with ¢ = 0.1 and ¢ = 0.5.

Results under setting (I) and (III) are similar and relegated to Appendix C.

Accuracy of estimating unknown dimensions. We present the frequencies of estimated (k,7)

pairs for Setting (II) with ¢» = 0.1 and ¢ = 0.5 in Table ! a and 1b, respectively. In latent dimension
estimation, our results demonstrate higher frequencies of correct estimation, and the accuracy

increases as p, ¢, and T increase.

(a) Setting II, 1 = 0.1.

p,q=20,20 p,q=100,20 p,q=100,100
(k7) | T=.5pq T=pq T=15pg T=2pq | T=.5pqg T=pq T=15pg T=2pq|T=.5pq T=pgq T=15pq T=2pq
(2,3) .075 .08 .04 .03 0 0 0 0 0 0 0 0
.025 .005 .005 .015 0 0 0 0 0 0 0 0
(3,2) .06 .05 .035 .06 .025 .035 .02 .045 0 0 0 0
.01 .015 0 .005 .015 .005 .005 0 0 0 0 0
(3,3) .78 .8 .85 .815 .96 .95 .965 .94 1 1 1 1
5 75 .995 .98 .985 .995 .995 .995 1 1 1 1
other .085 .07 .075 .095 .015 .015 .015 .015 0 0 0 0
.01 .005 0 0 0 0 .005 .005 0 0 0 0
(b) Setting II, 1 = 0.5
p,q=20,20 p,q=100,20 p,q=100,100
(k,7) | T=.5pq T=pq T=15pq T=2pq | T=5pqg T=pg T=15pq T=2pq|T=.5pg T=pq T=15pq T=2pq
(2,3) .095 .105 .075 .035 0 0 0 0 0 0 0 0
.025 .03 .005 .015 0 0 0 0 0 0 0 0
(3,2) .07 .09 .075 .085 .055 .06 .05 a1 0 0 0 0
.02 .02 0 .01 .01 .01 0 .01 0 0 0 0
(3,3) .66 615 71 .685 .895 .875 .92 .835 1 1 1 1
.925 .935 .995 .97 .985 .995 .995 .99 1 1 1 1
other 175 .19 .14 .195 .05 .065 .03 .055 0 0 0 0
.03 .015 .005 .005 .005 0 .005 0 0 0 0 0

Table 1: Table of frequencies of estimated (k,7) pairs estimated by a-PCA (highlighted rows) and AC-PCA
(not highlighted rows) under Setting II, ¢ = 0.1, 0.5. The truth is (3, 3).
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(a) Setting II, ¢ = 0.1.

T=0.5pq T=pq T=1.5pq T=2pq
0.40 0.40 0.40 0.40 R
[ Jlleta)
0.35 ﬁ 0.35 035 0.35 == D(RA)
A
0307 0.30 R 0.30 0.30
025 0.25 = 0.25 E ' 0.25
H ¢
¢
2
%020 —:f_:E 0.20 0.20 0.20 %
+ ¢
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—— +a +
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(b) Setting II, ¢ = 0.5.
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Figure 1: Box plots of ratios of space distances between a-PCA and AC-PCA estimators. (a) is under Setting
II, = 0.1; (b) is under Setting II, ¢ = 0.5. The estimation errors of @-PCA is much smaller than AC-PCA.

Error of loading matrices estimation. Figure | (a) and (b) show box plots of ratios of the column
space distances between a-PCA and AC-PCA estimators, under Setting II ¢ = 0.1 and ¢ = 0.5
respectively. Clearly, the estimation errors of a-PCA are much smaller than those of AC-PCA,
since the ratios are ways below 1.

Detailed numeric values are presented in Table 2 which contains the means and standard
deviations (in parentheses) of D(ﬁ,R), D(E,C) estimated by a-PCA (highlighted) and AC-PCA.
All values are multiplied by 10 and rounded.

For the space distances D(E,R), D(E,C), there is a tendency for higher convergence as well as
smaller variance at higher (p, g), as well as a slight tendency for better convergence at higher T, al-

though the latter effect is less pronounced. Similar to the space distance results, the F convergence

also improves as we increase p,q, and improves slightly as we increase T.

Factor matrices estimation errors. Figure 2 presents the box-plots of the £, norm of the discrep-

II

ancy between estimated F; and transformed true F,, that is temporal-averaged HE - HilFtHE}T
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(a) Setting II, ¢ = 0.1.

T =0.5pq T =pq T =1.5pq T =2pq
(p,q) D(R,R) D(C,C) DR,R) D(CC) DRR) D(CC) D(R R) ( ,C)
(20,20) .40(.08)  .40(.09) .29(.07) .29(.07)  .23(.05) .23(.05) 20(.05) 21(.04)
1.12(.24) 1.14(.31) 1.08(.26) 1.06(.23) 1.00(.20) 1.00(.20) .98(.23) 98(.18)
(100,20)  .14(.01) .08(.02) .10(.01) .05(.02) .08(.01) .05(.01) 07(.01) 04(.01)
.76(.06)  .40(.09) .70(.06) .35(.07) .63(.05) .32(.06) 58(.05) 30(.06)
(100,100) .03(.002) .03(.002) .02(.002) .02(.002) .02(.001) .02(.001) .01(.001) .01(.001)
.23(.02)  .23(.02) .18(.01) .18(.01) .15(.01) .15(.01) .13(.01) .13(.01)

(b) Setting II, 1 = 0.5.

T =0.5pq T =pq T =1.5pq T =2pq
(p,9q) D(R,R) D(C,C) DR,R) D(CC) DRR) D(CC) DRR) D(CC)
(20,20) .52(.12)  .52(.13)  .38(.11)  .38(.10) .29(.07) .30(.07) .26(.07) 27(.06)
1.50(.33) 1.51(.41) 1.36(.32) 1.34(.29) 1.23(.26) 1.23(.26) 1.18(.25) 1.19(.23)
(100,20) 17(.02) 11(.02) 12(.01) .07(.02) .10(.01) .06(.01) .09(.01) .05(.01)
.87(.07)  .46(.10) .79(.06)  .40(.08) 72(.06)  .36(.07) .66(.06) .34(.07)
(100,100) .03(.003) .04(.003) .02(.002) .02(.002) .02(.002) .02(.001) .02(.001) .01(.001)
27(.02) 27(.02) 21(.02) 21(.02)  .18(.01) .18(.01) .16(.01) .16(.01)

Table 2: Means and standard deviations (in parentheses) of D(ﬁ,R), D(E,C) estimated by a-PCA (high-

lighted rows) and AC-PCA (not highlighted rows) under Setting II, ¢ = 0.1, 0.5. All values multiplied by 10
and rounded.

under setting II, i = 0.1 and 0.5. As expected, the estimation errors decrease when p or g in-
creases while not affected by T. Results of ”E - HilFtHEIT” for AC-PCA are not available since
Wang et al. (2019) don’t have explicit forms for the rotation matrices Hz and H.
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Figure 2: Boxplot of Hﬁ

~H'FH! || under setting 11, = 0.1 and 0.5.

5.3 Asymptotic normality
In this section, we consider the asymptotic normality of the first row of E—HER under different

values of @. We simulate data under the following setting:
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(IV) (F, with non-zero mean.) The entries of both F; and E; are uncorrelated across time, rows
and columns. Specifically, we simulate temporally independent F; ~ MN3,3(3-1,L,I) and
Et ~ MNqu (O,I, I).

According to Theorem 2, the asymptotic normality requires \/qgT/p — 0 or \/pT/q — 0. Thus we
choose (p,q,T) among (200,200,100), (200,200,150) and (400,400,250). The results for asymp-
totic normality are based on 1000 repetitions. We report results for p,q, T = 200,200,150 in the
main text and the results for the other two settings are relegated to the appendix Under all set-
tings, the presented QQ plots and histograms demonstrate the asymptotic normality expected
from the theorem.

Figure 3 presents the QQ plots of the first dimension of the first row of R — RHg under setting
(IV) with p,q, T = 200,200, 150. Results of the other dimensions are similar.
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Figure 3: QQ plots of the first dimension of the first row of R- RHjy with a = -1 (left), 0 (middle) and 1
(right) under setting (IV) with p,q, T = 200,200, 150.

We calculate the covariance matrix /E\RO of the first row of R — RHy, according to equation (4.2)

—1/2 j—~
and plot the histograms of the first dimension of ZRO/ (RO. —HERO,) in Figure 4. The plots for

other components are similar.

5.4 Hyper-parameter selection and optimality of a

In this section, we illustrate the optimal choice of the hyper-parameter a on simulated data set.
Specifically, we consider Setting (/) and where F; has zero and non-zero means, respectively.
The dimension (p,q, T) is fixed at (200,200,150). The range of «a is in [-1,5] with a step-size of
0.1. For each value of a, we calculate the covariance matrix fRO of R, according to (4.2). Figure

presents the estimation errors and the covariance of the estimator versus different values of

23



0.4 0.4 1 0.4 1

0.3 A 0.3 1 0.3 1

0.2 A1 0.2 1 0.2 1

0.1 A 0.1+ 0.1

0.0 T T T T T 0.0 T T T T T 0.0 T T T T T
4 2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 4: Histograms of the first dimension of fl_ai/z (ﬁo_ —HERO.) with @ = -1 (left), 0 (middle) and 1
(right) under setting with p,q, T = 200,200,150. The lines plot the distribution of standard normal
distribution.

a. Under Setting where E; are white noise and independent of F;, we know that ®p; 1, =
@ ;71 = 0. The optimal value according to (3.5) is a,,; = 0. The sample estimation of @,,; using
(3.8) from 200 repetitions has mean —0.0144 and standard deviation 0.009.

Figure 5 (a) plots the diagonal elements 6\1%,1'1" i € [3], and the trace of the covariance matrix fRO-
The a value corresponding to the dip of all lines are around a = 0, confirming our calculation
of the value of a that minimizing the covariance of estimators. Although a does not affect the
convergence rate in Theorems | and 3, Figure 5 (b) show that the errors using @ = —1 is larger
under the finite sample setting.

Figure 5 (c) and (d) are simulated under Setting (I) where F; has zero mean. As expected the

value of a does not make much difference in the estimators’ properties.

6 Applications

6.1 Example 1: Multinational Macroeconomic Indices

In this section, we apply our estimation method to the multinational macroeconomic indices
data set used in Chen et al. (2019). The data set is collected from OECD. It contains 10 quar-
terly macroeconomic indices of 14 countries from 1990.Q2 to 2016.Q4 for 107 quarters. Thus,
we have T = 107 and p; x p, = 14 x 10 matrix-valued time series. The countries include United
States, Canada, New Zealand, Australia, Norway, Ireland, Denmark, United Kingdom, Finland,

Sweden, France, Netherlands, Austria and Germany. The indices cover four major groups, namely
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Figure 5: Covariance of \/qT(ﬁl. —HERI.) and ¢, estimation error versus different value of a’s in [-1, 5]

with a step-size of 0.1. Subplots (a) and (b) are under the Setting (IV) where pup # 0. Subplots (c) and (d)
are under Setting (I) where g = 0. Values plotted are means of 200 repetitions.

production (P:TIEC, P:TM, GDP), consumer price (CPI:Food, CPI:Ener, CPI:Tot), money market
(IR:Long, IR:3-Mon), and international trade (IT:Ex, IT:Im). Each original univariate time series
is transformed by taking the first or second difference or logarithm to satisfy the mixing condi-
tion in Assumption |. See Table 10 in Appendix D for detailed descriptions of the data set and
transformations. Figure 16 in Appendix D shows the transformed time series of macroeconomic
indicators of multiple countries. It is obvious that there exist some similar patterns among time
series in the same row or column.

We apply the a-PCA proposed in Section for different « in the range of [-1,5] with step
size 0.1 on the OECD data set. We use the ratio-based method in (2.7) as well as the scree plots to
estimate the number of latent dimensions. Using the scree plot to select the minimal number of
dimensions that explain at least 80 percent of the variance of IVI, we get that /k\,’r\: 4,6. While the
ratio based method gives k,7 = 1,2. Due to the dominance of the largest factors and weak signal
in real data, the estimate by (2.7) tends to be much smaller than the one given by the scree plot.
However, for the purpose of presenting and analyzing some example loading matrix estimates,

we will illustrate with latent dimensions (k,7) = (4, 4).
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Letting fR =p! Zle fRf and ¢ =q7! Z]q-zl fcj; we plot the traces Tr (ER) and Tr (EC) versus
different values of a’s in Figure 6. The minimizing a’s for Tr (fR) and Tr (EC) are ag = 0.5 and
ac = 0.6, respectively. Note that the proposed estimation method supports using different values
of ag and a¢, since the estimation of R and C are decoupled and the a can be any finite given
scalars in [-1,00). Since ay and ac are close, we choose @ = 0.55 in the middle for a simple
illustration. To illustrate the interpretation of model (1.1) in the real data set, we first present
and analyze the loading matrices estimated by a-PCA with o = 0.55 . Figures 7 presents the
eigenvalues and the eigen-ratios of (IVIR, IVIC) calculated according to (1.2) and (1.3) with with
a =0.55.

Tr(Z) v.s. a

— Tr(%)
250 Tr(%c)

200
150

100

50
~. | /

Figure 6: Traces of covariance Tr (/Z\R) and Tr (:‘:\C) versus different values of a’s in the range of [-1,5] with

step size 0.1. The minimizing a’s for Tr (fR) and Tr (ER) are 0.5 and 0.6, respectively.
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Figure 7: Eigenvalues and ratios of Mg and M¢ using the OECD data, using a-PCA with a = 0.55.
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From these M with (k,7) = (4,4), we calculate loading matrices Ea,é\a and EAC,EAC for a-
PCA and AC-PCA, respectively. Table 3 shows estimates of the row and column loading matrices.
They are normalized so that the norm of each column is one, VARIMAX-rotated to reveal a clear
structure, and scaled and rounded for ease of display.

We can interpret the latent structure of the global macro-economy by analyzing the estimated
row and column loading matrices. Specifically, from pair of ﬁa,m and /C\a,m or pair EAC,rot and
EAC’W we can group (clustering) some of countries or macroeconomic indices based on their
loading matrices. Using row loading matrices, three groups can easily be formed: Group 1: (USA,
CAN), Group 2: (NZL, AUS), Group 3: (FRA, NLD, AUT, DEU). In this example, USA and CAN
both load heavily on row 3 of f{\a,mt and i{\AC’mt, but lightly on all other rows, NZL and AUS both
load heavily only on row 2 of ﬁa,mt and ﬁAC,rot, and FRA, NLD, AUT, DEU all load the most
on rows 1. This analysis can reveal what countries have stronger correlations in their macroeco-
nomic features. Interestingly, loading matrices estimated by both methods tend to suggest similar
groupings.

From the column loading matrices, we can form groups 1(CPI:Food, CPI: Tot, CPI: Ener),
2:(IR:Long, IR: 3-Mon), 3:(P:TIEC, P:TM, GDP), 4: (IT:Ex, IT:Im) for both C, ,,; and Cac ,o;. We
can also infer the meaning of each latent column factor from the column loading matrices. Take
’C\a,mt for example, groups 1,2, 3, 4 load most heavily on the 2nd, 4th, 3rd and 1st rows, respec-
tively. Thus, the 2nd, 4th, 3rd and 1st column factors can be interpreted as factors that are related
to consumer price, money market, production, and international trade, respectively. The results
are consistent with our prior knowledge of these macroeconomic indices, where groups 1-4 cor-
respond to the major groups we previously introduced. Corresponding rotated factor series are
plotted in Figure

Next, we illustrate choosing best alpha values based on prediction errors. Specifically, we
use 10-fold cross validation (CV) to compare the performance of a-PCA with different « in the
range of [—1,2] with AC-PCA (with lag factor hy = 2). We divide the entire time span into 10
sections and choose each of them as testing data. With time series data, the training data may

contain two disconnected time spans. For AC-PCA, in the case of disconnected n time spans we

—

calculate matrices Mg)...l\//\[g) according to (1.2) over each time span separately. The matrix Mg

)

is re-defined as the sum of )} ", IVIg . Loading matrices and latent dimensions are estimated from
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Model Row | USA CAN NZL AUS NOR IRL DNK GBR FIN SWE FRA NLD AUT DEU
1 1 0 -1 -1 2 2 3 2 3 3 4 4 4 4
R 2 1 0 6 6 2 2 2 3 1 2 0 0 -1 -1
arot 3 6 7 1 0 -1 -1 -1 0 0 -2 0 1 0 0
4 0 0 0 1 8 -5 -1 -1 0 0 -1 1 0 0
1 -1 2 1 -1 -1 -1 ) 4 -3 -4 -4 -4 -4 -4
R 2 2 -1 5 5 1 5 3 2 -1 1 1 0 0 0
ACrot 3 7 7 1 1 -1 -2 -1 0 1 0 0 0 0 -1
4 1 -1 -1 ) -9 3 0 0 0 -1 1 -1 0 0
Model Row | CPI:Food CPI:Tot CPI:Ener IR:Long IR:3-Mon P:TIEC P:TM GDP IT:Ex IT:Im
1 0 0 0 0 0 6 6 5 0 0
—~ 2 6 5 7 0 1 1 0 -1 0 0
Carot 3 %) 1 0 0 0 0 0 0 7 7
4 -1 1 0 7 7 -1 0 1 0 0
1 ) 4 1 1 -1 0 0 0 6 6
c 2 6 3 7 -1 1 0 0 -1 -1 0
ACrot 3 -1 0 1 0 0 -6 -6 -6 0 0
4 0 -1 0 -8 -6 1 0 -1 0 0

Table 3: Estimations of row and column loading matrices (VARIMAX rotated) of a-PCA (subscripted by «)
and AC-PCA (subscripted by AC) with a = 0.55 for multinational macroeconomic indices. The loadings
matrix are multiplied by 10 and rounded to integers for ease in display.

(a) a-PCA, a = 0.55 (b) AC-PCA

EEE

F===
IFFE
I =
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333
133

$= =

Figure 8: Plots of rotated F, € R¥* estimated by a-PCA, a = 0.55 and AC-PCA, respectively. The rotation
corresponds to the VARIMAX rotation of R and C in Table 3. According to the weights in Table 3, the 1st
- 4th columns correspond to the important components of GDP, CPI, international trade and interest rate,
respectively.

this newly defined My with procedures in Section 2. We define out of sample R? on a testing set

of size N as
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Y-l
L e

where Y = % Zﬁl Y; and Y; = RRTY,CC". The denominator is the baseline total sum of squares

out of sample R 21 — (6.1)

(TSS) from approximating Y; by the sample mean Y. The nominator represent the residual sum
of squares (RSS) from approximating Y; by Y,. The total sum of squares (TSS) averaged over the
10-fold CV on the testing set is 1451.35, computed using sample average as estimator. Figure

(a) shows the out of sample R? versus different values of @ for models with different chosen
latent dimensions. According the metric of maximizing the out of sample R?, the best value of &
is 0.4 for latent dimensions (4,4). The values of the out of sample R? are reported in Table 4 for
models for the maximizing a and @ = -1, 0, 1 with different chosen latent dimensions. All reported
values are the averages over the 10-fold CV. Evidently, the proposed estimation procedure with
all chosen values of a performs better than AC-PCA at each chosen (k, ) pair, even though we do
not account for temporal dependence. This implies that the contemporaneous covariance should

not be discarded even for the time series data.

(k,7)
Method (6,5 (55 (45 (44 (34) (3,3)
a=-1 [0.465 0.422 0.392 0.310 0.296 0.159
4pCA | @=0 [0.553 0515 0478 0.418 0.387 0.320
a=1 [0.551 0.506 0.481 0.420 0.383 0.324
R 0.556 0.516 0.486 0.424 0.391 0.328
opt (0.3) (-0.2) (0.7) (0.4) (0.3) (0.2)
AC-PCA 0.429 0.393 0.354 0.248 0.216 0.092

Table 4: Results of 10-fold CV of out-of-sample performance for the multinational macroeconomic indexes.
The numbers shown are average over the cross validation. The numbers in parentheses on the line of a,,,

are the values of a’s maximizing the out-of-sample R>.

6.2 Example 2: Image data sets

An important category of matrix variables is the 2-D gray-scale image data. One gray-scale
image is represented as a single matrix Y;, with each element corresponding to one image pixel.
The values in the matrix represent intensities within some range. In this section, we apply our

method to two real-world image data sets:
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* ORL' is a well-known dataset for face recognition (Samaria and Harter, 1994). It contains

the face images of 40 persons, for a total of 400 images. The size of the images is 92 x 112.

* USPS - is an image data set consisting of 9298 handwritten digits of “0” through “9”. We use
a subset of USPS. This subset contains 300 images for each digit, for a total of 3000 images.

The resolution of the images is 16 x 16.

The estimation of the low-rank signal part RF,CT in (1.1) can be viewed as a compressed
reconstruction of the original image. In the signal processing literatures, the goodness of approxi-
mation can be measure by the Root Mean Squared Reconstruction Error (RMSRE) which is basically
the square root of the mean residual sum of squares (RSS). To be consistent with Section 6.1, we
use the ratio between RSS and TSS in the empirical evaluation of our method with different val-
ues of a. Figure 9 (b) and (c) show, respectively for ORL and USPS, the plots of RSS/TSS versus
different values of a for models with different chosen latent dimensions. The small error suggests
of dimensionality reduction from the original image Y; to the new representation F; is effective.

(a) Out-of sample R?, OECD (b) RSS/TSS, ORL (c) RSS/TSS, USPS

055
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k=200 k:
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0.40 — k=40.0 — k=11
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Figure 9: Choosing a by cross validation using different metrics. The values of a are from -1 to 2 with step
size of 0.1. The out-of sample R? is defined in (6.1).

Tables 5 and 6 report values of the percentage of RSS/TSS for selected a and the optimal «.
The optimal « is 0 or is very close to @ = 0 and the their differences of RSS/TSS are negligible
(107%). This is in line with our theoretical result. The method with @ = —1 produces the largest
errors. The different between a = 1 and 2 are small while both are a little worse than a = 0.

Figure 17 and 18 in Appendix E show images of 10 different persons from the ORL and USPS
data sets, respectively. We use 15 x 15 latent dimension for the ORL faces and 9 x 9 for the USPS

digits. The 10 images in the first row are the original images from the data set. The 10 images

Yhttp://www.uk.research.att.com/facedatabase.html
2http: [ /www-stat-class.stanford.edu/~tibs/ElemStatLearn/data.html
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a 15x15 20x20 25x25 30x30 35x35 40x40

-1 7.1721  4.1329 2.4675 1.6245 1.1310 0.8411

0 1.2799 0.9308 0.7004 0.5390 0.4206 0.3315

1 1.2888 0.9372 0.7050 0.5428 0.4236 0.3339

2 1.3045 0.9489 0.7139 0.5497 0.4290 0.3383

min(RSS/TSS) | 1.2798 0.9307 0.7004 0.5390 0.4206 0.3315
Qopt 0.1 0.1 0 0 0 0

Table 5: Percentage of the ORL reconstruction RSS/TSS (%). The columns correspond to different values of
latent dimension k x k.

o 6x6 7%x7 8x8 9%x9 10x10 11x11 12x12

-1 11.0150 7.5755 5.4047 3.6838 2.6256 1.8049 1.2059

0 10.1758 7.1874 5.1994 3.6413 2.6048 1.7944 1.1996

1 10.1945 7.1967 5.2027 3.6427 2.6055 1.7946 1.1997

2 10.2317 7.2124 5.2090 3.6458 2.6072 1.7954 1.2001

min(RSS/TSS) | 10.1749 7.1874 5.1993 3.6412 2.6047 1.7943 1.995
Qopt 0.1 0.1 0.1 0.1 0.2 0.2 0.2

Table 6: Percentage of the USPS reconstruction RSS/TSS (%). The columns correspond to different values
of latent dimension k x k.

in the second row are the ones compressed by our method with @ = —1, which is the same as the
(2D)2PCA algorithm. The third, forth, and fifth rows corresponds to our method with « =0, 1,
and 2, respectively. We observe visually that the proposed method with a = 0 produces the best
compression result, while the method with a = —1 performs the worst. The differences between

a =1 and 2 are very small and not visually detectable.

7 Conclusion

This paper studies the problem of estimating unknown parameters and latent factors from
matrix-variate factor model. Specifically, we preserve the structure of matrix-variate data and
investigate theoretical properties in the setting that the each dimension of the matrix-variates
(pxq) is comparable to or greater than the number of observations (T). The estimation procedure
aggregates information of both first and second moments. It incorporates traditional PCA based
methods as a special case. We derive some inferential theory concerning the estimators, including
the rate of convergence and limiting distributions. In contrast to previous estimation methods
based on auto-covariance, we use more information based on the contemporary data and are also

able to consistently estimate the loading matrices and factor matrices for uncorrelated matrix
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observations when the auto-covariance method can not. In addition, our results are obtained

under very general conditions that allow for correlations across time, rows and columns.
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Supplemental Materials of
”Statistical Inference for High-Dimensional
Matrix-Variate Factor Models”

Appendix A Proofs
We establish the convergence and asymptotic normality of the estimator based on equation
(2.3), under Assumption | - 5 in the main text.

A.1 Useful lemmas

We first present lemmas on Y,, F;, and E; under Assumption | - 5. These results will be used
to prove main theorems. The proofs are delayed to Section

Lemma 1. Under Assumjption - 4, we have E [”E”AL] <C <Too. As T — oo, we have that,
1 = = P = 1 = = P =
— F.C"CF/ Yro, d — F/R'RF Yrr.
qTZt t —> ZFC, 4an pT;t t 7 &FR

where pc = pe+(1 + a) pup(CTC/q)pf, Trr=Err+(1+ a) pp(RTR/p)puf, Tpc and Ty are defined
in (3.3).

Lemma 2. Under Assumption 1 - 4, we have that here exists a positive constant C < co such that for all
NandT,

(a) Forallie(p],jelqlandte[T], IE[E,Z-j] =0and E|E,ij|8 <C.

(b) Let Ug = IE[qLT ZthlftET] and Vg = IE[pl—T Zthl ETE], we assume

G, <. |
Lemma 3. Unde?Assumption - 5, we have .
1 - = 1 _—
Z IE[—RTESEZR] = 0(1), Z IE[—CTE;FEtC] ~0(1).
= pq 2 = pq 2
Lemma 4. Under Assumption | - ,2Por anyi€[plandje [
T
1 —~
— ) FCTe .|l [=0(1), F/R'e;. —O( ),
frbie. G,
Lemma 5. Under Assumption 1 - 5, we have
(a) For anyrow i€ [p],
, L2d 2
——= ejenij—Elegjenij|)| =O(1).
mZZZ]Z o Fleaa)
Similarly, for any column j € [q],
;L 2
——= einerij —Eleinesij| )| =O(1).
v L ot




(b) The k x k matrix satisfies

T
1 _ -
E —E RTE,CF/| =0(1).
,—qu - t= Lt

Similarly, the r x r matrix satisfies

T
1 —_ —
E —E F/RTE,C| =0(1).
VpaT =1 !

Lemma 6. Under Assumption 1 - 5, we have for all p, gand T,

(a) Foranyi,le[p]andj,helq],

T 4

E iﬂ ZZ 1ij%,; — E[2,1j%17])

t=1 j=1

T p

— ) ) (@manEfEmal)

t=1 i=1

1 : TTE TTE
W;(Et Et—lE[Et Et])

=0(1) =0(1),

ﬁ\

2
EE] -E[EE]])| =0q),

1 =
o t =0(1).
e ;( F (1)

2
F

2
(b) Forall1<t<T, lE”—RE cT|| = oq).

Lemma 7. Under Assumption 1 - 5, we have

(a) Foreachrowi,as q, T — oo,
T
gir LFCa o emgrt oo )
(b) For each column j, as p,T — oo,
T
e L ot (oo 50 e )
The ®r;.’s and @ ; .’s are defined in Theorem

A.2 A high-level summary of proofs

In the remaining part of Section A, we use Y;, F;, and E; in place for Y,, F,, and E, to improve
the readability of the proofs. Our estimator R (C) is then given by the matrix of /p (1/q) times
the top k (r) eigenvectors of 1\7[R £ MLT Zthl Y. Y, (1\7[C £ MLT Zthl Y/ Y;) in descending order by
corresponding eigenvalues. Recall that some auxiliary matrices Vg y41, Vc,pqr, He and Hp are

defined as following.

Let Vg 41 € Rk and Ve,pgr € R™ be the diagonal matrices consisting of the first k and
r largest eigenvalues of MLTZtT:lYthT and M%Ztll Y/Y; in decreasing order, respectively. By
definition of eigenvectors and eigenvalues, we have

—

1 = = 1 Rv-l
paT = PAt =



T T
1 —_ = 1 -
— Y Y/Y,C=CV(.,, 1, or C=—) Y/Y cvi .
T &Y YO e pat £V Ve

Define Hg € R** and He € R™" as

T

1

T ) FCTCE[RTRVE), e R
t=1

T

1

=T Z F/RTRF,CTCV_!, 1 € R™".
=1

Then we have

and

T T
— 1 = = -1
R-RH; = M—T[ZYIR—RZECTCFIRTR Vit (A1)
1 t=1
— TRT TRTR
- [quZRFC E R+p—ZE CF/R R+—p ZEE R|ViL.r
T T
C-CH; = T ZYIYtC—CZFIFtCTC A (A.2)
t=1
_ ™TT T T T
- [quZCF R EC+p—ZE RF,C C+—p ZE EC |V r

Our objective is to derive the asymptotic normality of R;. ~HZR;. (Ej. ~H[C;) - each row of R
(C). We now describe the structure of the proofs for R, - H}R;.

1.

2.

3.

A.3

In Section , we bound ,l) “ﬁ— RHR”;.

In Section A.4, we derive the asymptotic behavior of RTR/p and CTC/q.

In Section , we derive the asymptotic behavior of Vg y,1, Vc,pq7, Hc and Hg.

. . T . . . . = 2
In Section A.5, we derive the asymptotic distributions. The idea is to first bound 11—7 ||R - RHR” s

and then derive asymptotic distribution for each row R;. — HjR;. for i € [p]. Results for

Ej. - HEC]'. for 1 < j < g are derived analogously with p;_T Zthl Y, Y/

. In Section A.6, we analyze the convergence rate for F;, 1 <t <T.
Theorem 1: R and C converge in Frobenius and ¢,-norm

In the remaining part of Section A, we use Y, F;, and E; in place for Y,, F,, and E, to improve
the readability of the proofs.

Lemma 8. Under Assumption 1 - 5, we have



T 2 T 2
Z:FgﬁEj = Z:Exmj =0, (pqT)
t=1 F t=1 F

T 2

Z’EtEtT = O, (quT)+Op (pquz)

t=1 F

Proof. We have F,C'E; = (EtCFtT)T, so their Frobenius norms are the same. Expanding each
terms, we have

2 2 2

q T
et ]®Ft

=Yy R —ar| Y

t=1 j=1 F t=1j
q
Z tlthCj'
j=1

[\/]&

(CTE}

a
H

N
Il
—_

p
= qTZ

i=1
= Op (qu)'

ur“ﬂﬂ

where the final results is obtained by Lemma 4 and Markov inequality.
Thus, we have ||ZtT:1 FtCTEtT”lz: =0, (1).

2 2
T T q ol

- Yot Z]‘:l €€,
) EE] T

t=1 F

\VagT

1 F
T 4 2

Yzt Loy Crijer]

p
I

~.

IA
=
[N}
A
H
< =
P
M-
N
-
—
D
I
N
=
&
r—
Y
I
N
=

where the last equality follows from Lemma 6 (a) and Lemma 2 (b). O
Proof of Theorem

Proof. Consider each term in equation (A.1), we have



2

1 _ 1 T . .
s Sl B R =)
2
1 d _ 1 1
e R IR ||RT||F||R||F (7)
T 2
1 = 1
s R M ZEET IR =00 )+ oL

where the last equality of each equation results from Lemma 8. Combing them together, we have

1= 2 1 1
I_)”R_RHR”F:OP I_)+q_T .

Result for C is derived from equation (A.2) in a similar fashion. Note that
£ IR R} < [R-Ritg|” < [R-REe .

We also have

CIR-RA =0, () - el =0,

P\ min{p,qT) ”(min{q,pT})'

A.4 Asymptotic behavior of Vi .7, Vi py1) ﬁTR/p, ETC/q, H: and Hy
In this section, we study the asymptotic behavior of Vg o7, Vc po1, R"R/p, CTC/q, Hc and Hy.
The main results of this section include Proposition | on the convergence of Vg p,7 and V¢ 471,

Proposition 2 on the convergence of He and Hg, and Proposition 3 on the convergence of RTR/p
and CTC/q.

Proposition 1. Under Assumption 1-6, we have, as p,q, T — oo:
VepgT = —RT Y, Y] [R
. p quZ
- Igr| L Zr«tcTCFtT 1R R+0,(1)
p qT p g
2 vp,
1 1 v
Ve,or = -C'l— ) Y/Y,|C
Pq p qu; t Tt
1 1 &
= —C'C|= ) F/R'RF,;|-C"C+o,(1
, T; TRRF, +0p(1)
v,



||VR,qu||2 =0, (1) and ||VR qu” = 0, (1), where Vy, is the diagonal matrix consisting of the eigen-

values of 21/2 Qr Ellr/g and V¢ is the diagonal matrix consisting of the eigenvalues of E%% Q¢ E%QZ.

Covariance Xpc = IE[FtCTTCFtT], YFrR = ]E[FtTR;TRFt] Matrices Qg and Q¢ are defined in Assumption

Proof. From T Zt Y Y] R =RV 24T and RTR = Ikr we have
\'% = YTY
RpqT = qu Z t

VR pgr is the k x k diagonal matrix of the first k largest eigenvalues of IVIR = p;—TZ;F:l Y,Y/ in

decreasing order. By definition of Mg, we have

Mp = p;TRZF CTCF/RT T ZRF CTE] T ZE CF/RT + p— ZE E/

Applying Lemma 8, we have

1 1
RF,.C'E/|| < — R ECTE]| =0 (—)
paT L paT ; T P\aT
1 . 1
E,.CF/RT|| < —|R| E,CF/|| =0 (—)
quZ paT ; L P vaT
T T
1 1 11
P e T
Tzl pqaT ; : P V4T
Then,
1 1
Mp-—R)Y EC'CF/RT|| = O (—)
‘ o rRY e .

where 0p,1 = 1/m1n{\/_ Vq } We also have
1
——R ) F,C'CF/RT-E —R F,CTCF/R"
Z ol Z

pqaT
1 L
- ;(Ft(CTC/q)FtT ~E[F.(CTC/)FT )| IRIE/p
1
o [—]|.
)
Together, we have .
— 1
Mg -E|——R ) F,C'CF/R" 1).
‘ ¢ quRZ (CTCF/ R |[=0,(1)
Using the inequality that for the i-th eigenvalue, |; (X) - A (A)| < | A—A ’21 we have
|VR,qu,i - VR,i| =0,(1), forl<i<k,




and Vg ;47 LN V. Further we have the first k eigenvalues of RZt L F,CTCF/RT are bounded

away from both zero and infinity. Thus, VR,qu||2 =0,(1) and ||VR qu” = O, (1). Results for

V¢ pqr are obtained in a similar fashion.

Proposition 2. Under Assumption 1-6, we have
IHgl =0, (1), and |Hcll=0,(1).

Proof. Applying results from Proposition | and Lemma &, we obtain

T T
1 — 1 = _
I[Hg| = _TthcTCFZRTRVR}MT < |7 Y_FuCTC/qF ||R||||R||/p||VR}qu||:Op(l),
t=1
1 T
C||_H—ZFTRTRF CTeve ol < ?ZIFtT(RTR/p)F ICHl[Cll/a [VEyr| = 0p 1.
=
O
Lemma 9. Under Assumption 1 - 5, we have
1 vT [T TR. — 1
(a) ;7 T, RTE,CE]R, Op( - vqu)

(b) 537 LI RTRE,CTe;;. =0, (ﬁ)

(c) th Ry =0y (517 )+ 0y (515

Proof (a)
1 « 1 &
I = — Y R'E,CF/R;. = —— R, ;CIF/R;.
= ]_
1 T p 4 1 T p 4
- = T~ CTE™R.
- quZZZ R;.-H}R,)e, jCIF/R;.+ H quZZZRI,et’,]C],Ft R;.
t=1 I=1 j=1 t=1 I=1 j=1
= Il+12

We bound each term as follows.

T p ¢
1 —
Il = == ) ) (Ru-H{R.)Cley IR,
L S
1 (1 hael 1 &y "
—| - R;. —HyR; e;1iCIF, IR.|
vqT[PH” R P:Z qTZUZl e ’

1 1
- W'O"(%)'Q’“)’

where the last equality results from Theorem | and Lemma 4. We also have



T p 4
1 1
mall = e [HR —WZZZRW”JC]F
L=

where the last equality results from by Markov Theorem, Lemma 5 (b) and Proposition

ol

T p q
1 —
II = R"RF,;C =— R;R, F C
= ]_
1 p T ¢ 1 p T 9
= — (RI—HRRI)RITZZFth,et,ij+ TZHIZRZRZTZZEC]%
PAt = t=1 j=1 Pat i3 t=1 j=1
= IIl+IIZ
We bound each term as follows
1 p T 49
) = —TZ (R.-HIR.)R] ) ) FiCjeyj
= t=1 j=1
1 (1& V2 b , LoJ 2\!2
= 2
< —| - R, -H}R,. — R — F,Cie ;i
aT p;” R ” pL I /—qT;; j-eij
1 (12 1/21p , I 2\12
= 2
< —|-) |IR.-HzR, =Y IR | —= F,Ci.e ;i
it | & R 2 o L R
1
= 0 (—) by Theorem | and Lemma
P 5qu\/qT
Similarly,
1 1 p 1 T 4
— T T — - 1= T T - .
I = ZH R.R] ZZFC “uij|| = 7o || 5 L HRRIRE ||| == ) ) FieCrens
t=1 j=1 I=1 t=1 j=1
1
afin
P\vaT
Combing all the terms, we have
I =0 (—)
VT



[T

I =

(ITIL |

1T§TE.—1TPET quR
M—T; tet,z.—pq—T;; 1€ = pqT ;;]1 1-€11jCt,ij
1 T p 94 1 T p 4
—TZZZ R.-H Rl)e”]e“] —TZZZHERz.et,ljet,ij
L L s
T p 4
MLTZZZ(E -H Rl)(etl]etzj_]E[etljet,ij])
t=1 I=1 j=
L Lopd
WZZZ R;. —HJR.)E[e,je; ]
t=1 I=1 j=1
;] Lpd
pq_TZ H etljetlj_IE[etl]etI]]
t=1 I=1 j=1

m
._.
T

t=1 j=1

[ S slose]|

) by Lemma 6 and Markov inequality.

T P 4
i LYY (Rmsin e

o 1/2 T g 2\1/2
< |1V |R.-HER,|| - —Z Lzzm[e ]
B \/ﬁ p 1= : : 1=1 T t=1 j=1 v
= O( 1\/_) by Lemma 2.
OpqT



T P 4
1
sl <)) D Re(ewjenss ~ Efensjens])| - IHx
t=1 l: ]:1
1
= Op|——=—=| byLemma 5 (a) and Proposition
pqaT
1 T P 4
gl = or ) ) ) HRRE[ene]

T 9
< Y| YD Bfeens ]| maximvid

1
@) ( 1_7) by Assumption 3 and Lemma

Combing the result on each term, we obtain

1 1
=0, (5 0, (5
P 5qu\/q_T g 5qu\/‘l_7

O]

In the following analysis, we use the fact that for positive definite matrices A and B, the eigen-
values of AB, BA and A/2BA'/2 are the same.

Proposition 3. Under Assumption 1-0,
RTR C’C
plim =Qg, and plim
p,q,T—o0 p .9, T—00 q

=Qc.

The matrix Qg € R** and Q¢ € R™" are given, respectively, by
Qr=VY’W]E/? and Qc=VZI>Wl.r?

where Xpc = IE[FtC;CFtT] Yrr = IE[FT RTRFt] Vi (V¢) is a diagonal matrix with diagonal entries

being the the eigenvalues of 21/2 Qr 21/2 (21/2 21/2) in decreasing order, W (W) is the corre-
sponding eigenvector matrix such that ‘I’T‘I’R = I (WIWe =1), and Qg (Qc) is defined in Lemma

)1/2

Proof. LetX; = F;CT, multiply the identify p;—T Yo, YthTﬁ = /IEVR,qu on both sides by Ilﬂ (qLT YL X XT) 'RT

to obtain:

1 & 172 1 & 2
E RIS R B e
1 t=1
Expanding Y,Y; with Yt =RF,CT + E;, we can rewrite the above as
1 v 2 R'R R
[_T ) X fXT _VR”T B [ fo f qT ZX XI5ty (A3
=1

where

10



T
R R
T = F CTETR+ RTE CFTRTR—‘,- RTE ETR
We have .
1
T Zl X == ;Ft(CTC/q)FtT
1w LT
=7 )_(FUCTC/q)F] ~E[F(CTC/q)F] )+ 7 ) E[F(CTC/q)FY ]
t=1 =
=0,(1).
Proof of Lemma T( a) shows that ; T ft 1F CTETR op( ). Using Lemma 9 (b), we have
RTRF CTETR = RTRF CTe
ey s

IA
= |-
Sholy

=0, (1).

Using Lemma 9 (c) in the same way as above, we have ﬁztll RTEtEtTﬁ = 0, (1). Putting all
together, we have d,;r =0, (1).
Define

1
ApgT = [_T

L 1/2
e T
Pl
1/2

RTR

J

i

1
Bpgr = _T

we rewrite equation (/A.3) as
_ -1
BpgrVRpgr = (Apgr + dququT)quT'

Each column of B,,7 is an eigenvector of the matrix (quT + dququT)

By Proposition |, we have r

1
pi ) F(CTC/q)F]

t=1

R™R R'R P
quTquT = T T —> VR, (A4)

and Vy, is the diagonal matrix consisting of the eigenvalues of Z}_/g Qr 21/2 Thus the eigenvalues
of quT pqT are asymptotically bounded away from infinity and zero, and BP;T =0, (1).

lI;et Vi pqT be a diagonal matrix consisting of the diagonal elements of quTquT' From (A.4),
we have

" P
VR,qu —)VR. (AS)

Denote
* -1/2
‘PR,qu = quTVR,qu / y (A6)

11



then ”‘pR,qu” =1and
WRpgTVRpgT = (AMT + dquB;;T)lpR,qu’

that is, each column of Wy, ,, 7 is an eigenvector of A7 + dququT

From Lemma 2 and 3, dp,r = 0,(1), and BP;T = 0, (1), we have A7 LN 21/2 Qr Z}/Cz and
dquB;;T =0, (1). By eigenvector perturbation theory (Franklin, 2012) and Assumption 6, there
exists a unique eigenvector matrix Wy of 21/2 Qr lef/g such that ||\PR,qu - \PR” =0, (1), where

Wr is the eigenvector matrix of 21/2 Qr Z}F/Cz
From (A.6) and (A.5), we have

RTR qT ZX X7

-1/2
* 172 P v-1/2 1/2
lPR’quVR’qu e EFC ‘PR VR .

A.5 Theorem 2: Asymptotic distribution of R, — H;R;.
We make use of the following equality for each row of equation (A.1): for each row vector
R, € R¥, i € [p], we have

T T T
— 1 = 1 = 1 =
-1 z 2 }
R;. - H];Rz = VR,qu [pq_T L RTEtCF;rRZ‘, + W L RTRFtCTet,i. + pq_T 1 RTEtet’i_
= = t=

Vipgr (I+11+110). (A.7)

In the following proofs, we let 0,1 = min{\/;_), \/qT} and y,4r = min{\/ﬁ, \/pT}.

Proof of Theorem

Proof. The dominant terms in equation (A.7) are II, +III, = O

o()
If \/qT/p — 0, the dominant term in equation (A.7) is II. Then

£3) T 1 ETR 1 o T
VgT (R;. —HyR;. = Vi _— F.C'e;;. +0,(1
q ( 1 R 1) R,qu p \/q_T;’ t t,1 p( )

0,3}

R™R 1

T
= Vﬁ}quTﬁ Z{FtCTet,i. +0,(1)
=

D
— N (O:ER,-): by Lemma 7 and continuous mapping thoerem.

where
Tr 2 VRQr(@ri1 +a®riiopty + apup®r ;o) + @’ ur®rinpy |QE Ve
R; R <R R,i,11 R, 12HF F*'R,i,21 F*'R,i,22HF RYR~

. . . <=-1/2 . . .
and @y ; . are given in Theorem 2. Matrix Qg = V}{/z ‘I’; Yrc where Vy is a diagonal matrix

whose entries are the eigenvalues of F)fll:/c Qr EF/g in decreasing order, Wy is the corresponding
eigenvector matrix such that W Wp =1, Qp defined in Assumption 3 and EFC is defined in (3.4).

If liminfy/qT/p > © > 0, the dominant term in equation (A.7) is I, + III,. Under certain as-
sumptions,

12



p(R.-HiR;) = O,,(L)+op(1) =0, (1).

VaT
Now we consider estimated column loading matrix C. Using equation (A.2), we have
1 ¢ 1 ¢ 1 v
C.-HlC. = v, ; [pq—T ) CTE[RF,C; + iT ) CTCE[RTe; j+ T ) C'Ele,,
t=1 t=1 t=1
= VE}MT (I+ 11 + I1I) (A.8)

Similar to the proofs of Lemma 9, we have that if \/pT/q — 0, the dominant term in equation
(A.8)is II. Then

/ ral T - ETC 1 L TRT
pT(C]'.—HCC]'.) = VCqu q \/_thFtR et,.j+op(1)

D
— N (O,EC]_), by Lemma 7 and continuous mapping thoerem.

where
-1 T 2, T Ty—-1
e, =Ve QC(q)C,j,ll +a®cjopp+appPcjr+apmp q)C,j,ZLuF)QCVC ,

. N =-1/2 . . .
and @ ;. are Theorem 2. Matrix Q¢ = VIC/2 W[ Xrr where V¢ is a diagonal matrix whose en-

=1/2 o <172
tries are the eigenvalues of )ZP/R QcX ng in decreasing order, W¢ is the corresponding eigenvector
matrix such that lPE‘PC =1, Q¢ is defined in Assumption 3, and Xy is defined in (3.4).
If liminfy/pT/q > T > 0, then

Yal T _ q _
q(C.-QxC;) = Op(ﬁ)uopu) =0, (1).
O
A.6 Theorem 3: Convergence rate of F,
Proof of Theorem
Proof. Under the assumptlon that RTR =1 1and icc= I, 9 Ve have
F = —RTY C-= —RTRF C'C+ —R'"E; C.
rq pq pq
Writing R = (R —EH )+ RHR1 and C (1? CHE )+ CHCI, we obtain
F,-H'FH' quT(R RHy')F,(C-CHg ) C
1~ —
+ —RT(R-RHg!)F,H '
! . (A.9)
+ aH;Ft(c -CH') C
+ —RTEC.
pq

13



We further decompose R=R-RHz+RHgand C=C- CH¢ + CH¢ in the last term of (A.9) and
rearrange the equation. We have

F-H'FHY T = %ﬁT(R—ﬁHﬁl)Ft(C—EHgl)TE
+ %ET (R-RHR')FH

+ %H‘RlFt (c-CH)'C

1 —~ T —
+E(R—RHR) E,(C-CH()
+ i(ﬁ—RHR)TEtE

Pq

1Rme (G-
+qu E,(C-CH()

1
+ —HZRTE,CH

=) L

i=1
Since \/LE ||R —f{\Hf{l || =o0,(1)and \/Lq ||C —EHEI || =0, (1) by Theorem | and Proposition 2, term
I; is dominated by I, and I3, and term I, is dominated by I5 and Is. Now we bound I, I3, I5, I4

and I.

1~ — 1 _
I,= I—)(R ~RHp)" (R-RHg')FHC' "+ l—)H;'RT (R-RHR')FH "

1
= OP 62 ’
pqT
by Theorem | and Proposition 2, and 10. Similarly, using results in Theorem |, Proposition 2 and
Lemma 10, and 11, we have
1 1 1
IZZOP 2—], 15:Op 62—), 16:Op 2—]
VpqT pqT Vpqt
Finally, we have
F-H;'FH = LHIRTE,CH-+0,| —— |+0,| —O( ! )
- =— C = —— | = — |
t —Hg FeHe pg RO H p%ﬂ p7ﬁT P\ min (p, q)
where we uses results in Lemma 12. O

A.6.1 Technical lemmas
Lemma 10. Under Assumption 1-06, the k x k matrix

1/~ 1

~(R-RHg) R=0,| o |;

p 6qu
The r x r matrix

1/~ 1

~(C-cHe) €=0,| 5|

q yqu

14



Proof. Using the identity (A.1), we have

T T
_ 1 _
) R'RE,CTE'R+ Y R'EE/R
p?qT = t

T
—— Y RTE,CF/R"R+
24T Z t t quT —

1 /= T _
I;(R_RHR) R=Vipgr
= Vigpgr(I+ 11+ 1),

From the following bounds on each term I, II, and III, we get

s 20,5 L)ool ol )

Similarly, we have

1,~ T 1 1 1 1 1
2(€-cHg) c=0 (—)+o (—)+o ( )+0(—):0 —
q( ) P\opgrVPT | P\Opgrva) "\ paT 1 ! Voar

We begin with term I

~RHg) E,CF/R"R+ — ZHTRTE CFIR™R=1I,+],

qT 4 p*qT
We have
=05 ) ol
5qu qT g qu
Since,
1 < . 1 & 1
Iil=|——=) (R-RHg) ECFRTR|<||—=) ) ) (Ri.-HiR.)Cley Bl |- [[RTR|
1T = s p
1 (14 N & 1 & 21/21
<—|=) [R.-H}R, -y |—== Cle, i F/ =|R"R
S AL R P Fo M NE T | I
1 1 .
=— Op(—) 0,(1) using Lemma 4,
qT OpqT
and
1 1 1 « 1
Il =||——= ) HRRTE,CF/R'R||< ——|Hg|'||—== ) RTE,CF/||--|[R"R
pquZ R VpaT \/qu; t p” |
1
—, using Lemma 5 and Proposition
P (\/qu ) & P
Second, we deal with term 1II,
1 11 1 « 1
II: t _—'—RTR'— FtCTETR:O (—);
p?qT = " VpaT p PqT; t P\VpaT

where we use Proposition 3 and Lemma
Finally, we deal with term III,

15



T T T
III_pzz ;RTEtEjR:pzzT ;(R—RHR) EE/R+— T;HIQRTEtE,TR
T T
:p Z (R- RHR) (BB -E[EE]]) R+p 1qT ;(ﬁ—RHR)THa[EtEZ]R
T
+p T ;HTRT (E:E -E[EE]]) R+p2 TZHTRTIE[E E/ |R
= TI1; + 11, + I115 + 111,
We have .
@ +0 O
= (qu\/_) (qu\/_) (V T)+ (P)
Since
1 < ’
L2 = pqu;(R—RHR)T(EtEtT—IE[EtEtT]R
T p P 14
= TZ ZZ R;. -Hj Rl etl]etl] IE[etl]etl]]
t=1 i=1 I=1 j=1
2
11 I¢(1E 1 & o
< q—TEl 1||R1 H;Rl ”2;; E;’?;’;(et’”etl] IE[etl]etl]])
2
e AR Y Y Y (e Efengen )| LY RIS
TP 5 PizPim\ Vil =S Y Y P
= p(qLT).Op 5§1ﬂ O, (1) using Theorem | and Lemma
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[T, |2

"Q

IA
==
= |-
g
E

=

=

Z
™
™1

IA
= | =

==

5] = ‘

I/\

IILy)1* =

P 18 E (1 &
Z”RI.—H;RL” ]_)ZZ[q_TZ IE etl]et,]]

T
m ZH;RT (EE[ - E[EE]|)R

ZHTRT]E[E ET]R
=1

) E[EE/|R 2

2

=

ZIIRTII2

t=1 j=1

-O(1) using Lemma 2.

T
T [% \/__:ZI(EtEI—IE[EtE?]) ]'”HR”'%”RHZ

el

<_

El7) ZE ET]

4
—2||R|| | gl

by Lemma 2.

Lemma 11. Under Assumption 1 - 5, the k x r matrix

Proof. Under Assumption |-

1 —~ T
E(R—RHR) E,C=0, %

1 -
—R"E(C-CH)=0,|
pq Vit

, we have
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1

— E—RHR) EC=Vg ¢ o

Pq(

T TT
2TZR E,CF/R"E,C

_ T TrT
= 2TZRRFCEEC

e (A.10)

ZRTE E]E,C

p qZT
= Vil r (I+I1+1I0).

. _ 1 .
First, we show that [ = O, (—5qu \F) in ( ),

~

T
1
— H/RTE,CF/RTE,C.
t t
p2q2T L :1 s p2q2T Z R s=Ts

For each term on the right hand side, we have

T T
1 — T 1 1 = 1
— R-RHy) E,CF/RTE,C| < -— |IR-RHg||- ||[—== ) E,CF/] ‘—RTEtC
Y (Romg) ECE S OO WS |
2\ 1/2
- R 2y | Ly Y rere] | iR
S S,1
aT VP |V =i
1
o5
OpqT
where we used Theorem |, Lemma 4, Lemma 6 and Markov inequality. Similarly,
1T, H,RTE,CF/R"E,C
p qu Z
1 1 1
——|Hgll-||[——== ) RTE,CF/ «”—RTEtCH
VpaT \/qu; T llpg
1
o)
P\VpaT
where we used Proposition 2, Lemma 6 and Markov inequality.
Next we consider term III in ( ):
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T
_ 1 nT T 1 T TRT T
III_TERESESEtC_pq R RHR EEE EC+ HR EEE E,C

T
:pzqu (R-RHg) ;EET IE[EET]EC+pq (R-RHp) ZIE[EET]EC

+p2;2TH1§RT (EE] - E[EE]|)E,C+

=111, + 111, + 111, + 111,

pQ;ZTHgRT ZIE[E E!|E,C

(A.11)
We bound each term on the right hand side of ( ) in the sequel.

T
I < o ||(R—RHR)T||~ 5 (EET - E[EE]])E,C
s=1
T
< |Rrm) | ) (eEr B [E]) | E.C
1 1 S;l 1|1 i
- . N | T _ T - - .
T ”R RH)' H W;(ESES E[EET]) [p; qj;ewcj. ]
1
-0, ———|,
p(équ\/q_T)
where we use Lemma 6 (a) in the last step
||1112||_H Z;ZT (R-RHp) ZIE[E E|E,C
ﬁ'\_r' \/_”R RHy)'|-|IE q—TZlEET] [[E:Cll
—l-LH(R—RH )T” E LiE ETIl. 1 - lie .C "
_p b R qT L s&s pi:1 qul t,ij~]
05,7
P péqu '

where we use Theorem | and Lemma 2.
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HpRT- i(ESE;r ~E [ESEZ])EtC

5| =
pquT s=1
2\1/2
T p 1 q
< — - E|EE; - - ¢,C
< 181 S LR Ly 2o
1
o)
P\VpaT
where we use Lemma 6 (a) in the lasthtep.
1
Ly = || ——=HERT - Z]E[ESEST]EtC
P9 T s=1
2\1/2
<Ll el ) |2 1Y e
—p 6]T7 ss p & q & et,1]]
s=1 i=1 j=1
1
o3}
Finally, we deal with term IT in ( ). Note that
I = R'RF,CTEJE,C
p qu Z
1 T d
= Z(R—RHR) RF,CTE]E,C+ T ZHIIRTRFSCTEjEtC
= =1
= IIl + 112
Similar to analysis of term III, we obtain I = O, ( 521 ) ]
pqaT
Lemma 12. Under Assumption 1-0,
1 1
—HR"E,CH: =0 (—)
q R t p \/p_q
Proof. Firstly, by Lemma 6 (b) and Markov inequality, we have \/LPTIRTEtC = 0, (1). Combining
results in Proposition 2, we have
1 1 1 1
—H}RTE,CH¢ = —HT(—RTE C)HC =0 (—)
pa vra “\ypa o P\vpa
O

A.7 Theorem 4: Convergence rate of gt

Proof of Theorem 4. Define R;. = H}R;, “c'j. =H[C;, and F, = HI‘QlFtHgfl, we have
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]
) + ﬁ;l’ (Ft _Ft) (6] - E]) + (ﬁl - i‘ilx)—r (Ft —E)GJ

+ ﬁ;l'ift (E] - E]) + (ﬁl - i‘il)—r’Ft’é] + ﬁ;l’ (i:\t —Ft)aj

Dominant terms are the last three terms. Note that ||Ft|' =0,(1) 1) and ”fiﬂ| =0,(1).

From Theorem 2, we have

R;.-R;. =0,

1 —~ = 1
—min(p’ \/q_’]")]’ and C] —C]'. = Op —min(q, \/ﬁ)]

Then using Theorem 3, we have

St,ij=Sij =0

1
! min(p,q,\/q_T,\/ﬁ)]'

A.8 Theorem 5: Consistent covariance estimators
Proof. In the following, we show that under Assumption A-G and uncorrelated rows and columns,

asp,q, T — oo, ER is consistent for X . Proof for ZC is similar.

It suffice to prove that the HAC estlm%tor based on estimators {FtET?t,i.} T, that is

Ty 2 DR’O’i—I—Z(l—1:m)(DR,v,i+D;Q—,v,i)’

.....

is a consistent estimator of QRq)R,iQ;Q—-
Because /F\t estimates HﬁlFtHg_l and C estimates CH, the HAC estimator I'y is estimating
_ T . -

H% I(I)R’,'H% 1" where H% is the lernlt of Hg (Newey and West, 1987). Recall that

R= qu ZF CTCFJRTRVZ,, ¢ —> TrcQRVR.,

and |[Hg|| = O, (1) and | H- 1” =0, (1). By Proposition %, we further have,
ZFCQRVR — EPC (V1/2 \pT 2—1/2) VRl _ 21/2 w, V—1/2 _ QR ’

where we use the fact that W Wg = 1. Thus, FR consistently estimates Qr®p ;Qp. O

Appendix B Proofs of Lemma 1 -
We prove Lemma | - 7 under Assumption | - 5. In the following proofs, we repeated use the
fact that'e; ;; = e ;; + ae;;, F, = F; + aF and 2a' + a’=a.

Proof of Lemma

Proof. Under Assumptions |, 2 and 3, an application of Proposition 2.8 and Theorem 2.20 in Fan

and Yao (2003) implies that, as T — oo, we have %ZL F, 2, UE,
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MH

T
A e

where Tpc and Tpp are defined in (3.3). Plugging in F £ F, + @F and using the fact that @ =
Va+1-1,2a+a’=aq, » we have that,

T
1 v -~ P =
qT E FCTCF —)):,Pc, and p_T i F;FRTRFt—>ZFR.

where Tpc = Xpc+ (1 + a)uF(CTC/q)u; and pp = ETpr+ (1 + a) pp(RTR/p)puf
we have [E [”E”LL] < CIE[||Ft||4] <C<oo.
Using 2a + a” = a, we have .
l e o P o~ l = P o~
q_T ZFtCTCF: — ch, and ﬁ ZF:RTRFt — EFR'

where Tpc = pe+(1 + a) pp(CTC/q)p} and Yrr = Xpr+(1+ a) pp(RTR/p)pp are positive definite.
O]

Proof of Lemma
Proof. Plugging E, = E, + @E in the definition that Uz 2 E [qLT Yo, EET] and using the fact that

a=vVa+1-1,wederive
) E[;]= 0 and Bz, = O(1).

(b) We have
—~ [ ]
UE:UE+IE —EE S(1+6¥)UE.
| 4 ]
Similarly for Vg, we have
VE :VE-I-IE EETE S(l-l-O()VE.
[ 4 ]

The results follow from Assumption

O
Proof of Lemma
Proof. Step 1. \/VTe first show that
1
Z IE[—RTESEIR]H = [ CTEE, c H . (B.1)
s=1 pq

By Davydov’s inequality (Corollary 16.2.4 in Athreya and Lahiri (2006)), there is a constant
Cc>0, for any i,l € [p], ] S [q], and s,t € [T], 'IE[eS,ijet,lj]' <c- a(|t—s|)1—2/7' Under a_mixing
Assumption |, we have ) ;. a(h)=27 =0(1).
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T 9

< Z %Zm[es,.je;].] R|I?/p=0(1).

s=1 j=1

L 1
§ HIE[—RTESEIR]
—|"|pa

The second equation in (B.1) follows by a similar argument. _
Step 2. Now we show results in Lemma 3. Plugging in E; 2 E; + @E and using the fact that

2 + @2 = a, we have
T 1 T T I 1
) IE[—RTESEZR] < Z [ R'E ETR] ay =y IE[—RTESEtTR]H
s=1 paq =1 s=1 T t=1 pq
T T T, LT ]
ZTZ [ RTE.E/R ZZFZZ JE[—RTESE,TR]H
s=1 s=1 t=1 pq
o
<(1+a) IE[—RTE ETR]H
co) [o Lres
=0(1).
By similar argument, we obtain ¥’ HIE[Z%qCTETEC]H =0(1
0
Proof of Lemma 4.
Proof. Step 1. We first show that for any i € [p], j € [q],
2
B||| e £ E Ly PG| ]: [||\f y!,eFC|| ] o), (B.2)
[Hth (X0 e FIR, ” ] [”\/721 \&iF RZ-.” ]:0(1). (B.3)

Proofs for (B.2) and (B.3) are the same. Here we only present the proof for (5.2).
For any i € [p] and t € [T], we define a random vector x;, = == y 1 Cie i, whichis a-mixing
) \/ﬁ =117 tiyr
over t. We rewrite ﬁ Zthl Z?Zl eijFiCj. = \/LT ZL F,;x;. By Assumption 2, we have [E[F;x;] = 0.
Now we show that there exists some m > 2 such that E||Fx,||" < C < co. Since F; is of fixed

dimensions, it suffices to show that IE[ f ) ] <Cand E|x; h] <Cforanyle[k]and he|r].
By Holder inequality, we have for any 1 <ab<coand 1/a+1/b=1,

B[(6,x)"] < B[l | ] < (B[ ™]) " ([ ]) "

By Assumption 5, we have IE[ ftTl,xt ] < C for any [ € [k]. Similarly, we have IE[x;”h] < C for any
h € [r]. Then Theorem 2.20 in Fan and Yao (2003) implies the desired result.
Next, we have, using convexity of 1%,

2 2 2

T q _ 1 9 T T 1 q T
E \/;ZEijFCf =E TW;;;et,istcj. ) qTZZet,,.jcj. I[E]1>

j=1 t=1

’ﬂ|
M'ﬂ
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Step 2. Now we show results in Lemma “. Plugging in'e; ;; = ¢ ;; + ae;;, F, 2F,+aF and using
the fact that 2a + @2 = a, we have

1 T 4 1 T 4 ] T gq
VaT ;; tZ] = W;;emmqﬂraﬁ ;;et iiFC;
-7 =1 j= =T =
T 4 T ¢
+~% ;;eUFtCJ +52% ;J_;EUFCJ

I
S ‘ -
H
™1~
Eﬂ&
5
0
+
S
|
™
NN
e
\O

~ 2
Thus equation (B.2) implies IE[”% ZtT:1 Z]q':l?t,ithCj-H ] = O(1). Similarly, equation (B.3)

implies [Hﬁ yT, zlea,iji:}cj.nz] —0(1).

[
Proof of Lemma 5.
Proof. (a) Step 1. We firstly prove (B.4) and (B.5) stated as follows.. For any row i € [p],
S ) WL S| IR s oy e o |
——= et gjenij—Elerjenii|)| =0(1), — ejjeij—Eleje;i|)| =0(1).
T t=1 I=1 j=1 pa I=1 j=1
(B.4)
Similarly, for any column j € [q],
53 (Bl =om. w3 (Bl )| -
—— (er,inerij —Elerinenii|)| =0(1), — 1h61] E zhez] o(1)
PaT o P4 == lb.5)
B.5

For equation (B.4), we have that, under Assumption 4 (b), for any row i,

T p 4 ?
ﬁ Z Z Z(et,ljetyij -E [etrlf etrif])J

1 T p 4| T P
—TZZZ ZZ |C0V etl]etz]' € mheszh”

t=1 I=1 j=1 t=1 I=1 j=1|s=1 m=1h
hi[]]




P4 2 T T p 4 2
E \/g;j;(éljzij_m[afaf]) E %s;ﬁ ;;;(es,ljet,ij_IE[es,ljet,ij])
1 v 1 v ?
<+l G L L et
s= =1 I=1 j=
=0(1).

The proofs of (5.5) for any column j are similar.

Step 2. Now we show the final results of Lemma 5 (a). We have, for all row i,

T P 4
ﬁ ;;]‘—1 (E;f,lja,ij - IE[?t,lj?t,ij])
;. LE g Lrd
= W;;;(et,ljet,ij_E[et,ljet,ij])+ \/M—T;;Z etleij—lE[et,leij])
T T p 9 2 T P 4
T\ VpaT ;;]Zl,(zljet'ij_E[Eljet,ij]) + \/—T;;;(EUEZ‘]‘_E[EUEU])
1 & &
= W;;; etljetlij—IE[et,ljet,ij]) + 2« \/p:ZZ eljelj IE[el]e,]]

Equation (B.5) therefore implies
2

T p 4
E ﬁZZZ(EJ}"ELU_IE[’evt,lja,ij]) =0(1).

The remaining part for the columns can be derived in the same way.

(b) Step 1. We firstly prove (B.6) and (B.7) stated as follows. The k x k matrix satisfies
2

E ﬁiRTEtCFZ 2:(’)(1), and E ‘ RTECF ' || =0O(1). (B.6)
Similarly, the r x r matrix satisfies
2
E WZFTRTEC 2:(’)(1), and E \/%FTRTEC‘:O(U. (B.7)
For (B.6), we have
;iRTE CF/ 2:IE Li[LiiR Cle ;i |F] 2
‘/pq_thl o Ti=\VP1 i3 SR




The rest of the proof of is similar to that of (B.2) by setting X; = \/Lp? szl Z?zl RiC]-T.et,ij and
using Assumption 5, and Theorem 2.20 in Fan and Yao (2003).

Step 2. Now we show the final results of Lemma 5 (b). We have

T
1 -~ -
— VY R'ECF| < “# yT RTE CFT“ + 2a|| RTECF H
\pgT —t=1 t t
‘ \/qu t_er 1z ‘/7
Equation (B.6) therefore implies that the k x k matrix satisfies
T 2
1 - -
— ) RTECF]| =0(1)
VpaT ; 5
Similarly, from equation (55.7), the r x r matrix satisfies
T 2
1 _
E|l—) F/RTE.C|| =0(1)
vpaT ; >
O
Proof of Lemma
Proof.
(a) Step 1. We firstly prove (B.8) stated as follows. For any i,/ € [p] and j,h € [g],
2 2
1 v v 1 1 1
El|l— ce.1:—TEle, i e, 1 =0[—], E|= 2.2 —TEle. e =0(—],
qT ;,J;(ehllet'l] [efﬂlefflf]) O(qT) q ];,(ellelJ [ellell]) O(qT
1 v« ¢ ’ L) ogliy ’ 1
E ﬁ;;(etljetzh_m[etljetzh] :O(ﬁ)r I_7 - eszih_IE[EijEih]) :O(ﬁ ’
T [T 1117
1 1 1 1
E||— ) EE/—-—E|) EE/ :O(—), ' :0(—,
qu; ' paT ; SOl e qu poo\4T
T [T 2 )
1 1 1 1
E|l— E/E,———R E/E :(’)(—), “—E E——IE E E ' :O(— .
qu;” paT _;”_F pT = ]p pT
(B.8)

By Davydov’s inequality (Corollary 16.2.4 in Athreya and Lahiri (2006)), there is a constant
C >0, forall i,l € [p], j,h €[q], and s,t € | COV[et,ijet,lhfes,ijes,lh” = O01)a(lt—s) 7.

Under a-mixing Assumption 1, we have ¥ ;.; a(h)!=%7 = O(1). We have, for any row i and
L,
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T 4 ’
—zz<[1>]
t

q T 9
t ] t=1 ]:1 s+t
T 9
T2 COV[et,ijet,ljret,ihet,lh] T2 ZZZZCOV[3t,ijet,ljres,ihes,lh]
t ] h#j t=1 j=1 s#t h=#j
:() —,
qT

where we also used Assumption 4 (d) on weak row-/column-wise correlation of E; to bound
the last two terms. Similarly for columns j and h, we have
Next, we have

pT ZZ €t 1]et1h IE[et ij
L& 1+ v v
E EZ(EUEU—IE[E:';'EU]) qT? ZZZ e, ifes,lj_m[eflifes'lf])

t=1 i=

) j=1 t=1 s=1
1 & 1 L& ’
< T ZIE T ZZ €4,ij€s,lj —IE[et,ijes,lj])]
s=1 1 j=1 t=1
1
o)

2
Similarly, we can show that [E |’% Zle (Eijé,-h - lE[Ei]-El-h])l = (’)(,%T).
Finally, we have

2 2

T

1 1
— Y EE - —F
qu; "t paT

E

t=1

LI I
R IS RAES S R

The remaining results follow by a similar argument.

T
ZEtEtT}

F

Step 2. Following the same argument as that of Step 2 of Lemma 5, we can show the final
results of Lemma

(b) Step 1. We firstly prove that, forall 1 <t < T, [E ” L RE CTH =
We have,




which follows from Assumption

Step 2. Next, we have, forall 1 <t < T,

2 2
j 1
——RE, CT ——RE,;CT +&IE ——RE,C" §(1+55)1E‘—RE C’|| =0(1).
H H g 2
O
Proof of Lemma 7.
Proof.
(a) SteP 1. We firstly prove (B.9) stated as follows.
For eachrow i € [p],as q,T — oo,
1 T Te. .
W{Zt:j} Ft(;:r €. 2}/\/(0, (CDR,Z',II cDR,i,]Z)). (B9)
vt Li=1C e Dgi21 Pri22

For anyi € [p]and t € [T], we define a random vector x; = Cj.e;ij, which is a-mixing

1 q
Vi Lj-1
over t. By Assumption 2, we have IE [tht] 0 and IE[ ] = 0. We rewrite

(R

% Zt:l C et,1~
In order to apply the central limit theorem for a-mixing data (Fan and Yao, 2003, Theorem
m
2.21), we need to show that there exists an m > 2 such that [E [H(FtT Ir)Txt' ] < C. Since F;

is of fixed dimensions, it suffices to show that IE[(fZl.xt)m] < Cand lE[xZ“h] < Cforany! € [k]
and h € [r].

By Holder inequality, we have for any 1 <a,b<ocoand 1/a+1/b =1,
B[(€7,x) " < B ] < (B[ ™)™ (B []) "

By Assumption 5, we have IE[(fIl,xt)m] < C for any [ € [k]. Similarly, we have IE[ ] < C for
any h € [r]. Then Theorem 2.21 in Fan and Yao (2003) implies the desired result.

Step 2. Now we show the final results of Lemma 7 (a).

Plugging in ¢;;; = e;;; + ae;j, F, 2 F,+aF and using the fact that 2@ + @* = a, we have

VT 1

T
; et,,'. = W? (Ft +ﬁ) CcT (et,i~ +E§i.)

ﬁ\

u[\/]H

F CTet’i.

T
C et,i'

Il
—_

— Y
\/7 t=1
Ik F)[ th 1

By (B.9) and continuous mapping theorem, we have for each row 7, as ¢, T — oo,
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T
— F,.C'¢e,;, — N 0,(I a ( R,i,11 R,z,lz)( k ))
aT ; t t,i ( ( k “F) Dpio Prin Ocp,;_:
(b) Step 1. Following the same argument as in that in (a), we have that for each column j, as

p, T — oo,
2, N(o,(q)c’j'“ cDc’j'”)), (B.10)

Dcj2 P

r Zt 1 RTet,~j

Step 2. Now we show the final results of Lemma 7 (b).

Plugging in e;;; = e;;; + ae;j, F, 2 F,+aF and using the fact that 2@ + @> = a, we have

\ 3

T
\/_ZFTRTet] = \/_ ZFt+a RT(et,,j+’a‘§_j)

FTRTet ]

Yo
\/7 t=
(Ir 0( )[ th 1RTet]

By ( ) and Continuous mapping theorem, we have for each column j, as p,T — oo,

D D I
FTRTe _)N( a T ( C,j,11 C,],IZ)( r ))
Z b ( ' “F) Dcj2 Pcj)\apr

Appendix C More Simulation Results

In this section, we present the more simulation results for Setting (I) and (III). Results are sim-
ilar to those for Setting (II) presented at the main text. For both latent dimension estimation and
convergence results, a-PCA consistently converges faster with lower variance and estimates more
accurately than AC-PCA over all chosen settings. Thus it is implied that a-PCA has significant
advantages over AC-PCA when F; and E; are uncorrelated or weakly correlated across rows and
columns or time.

C.1 Uncorrelated across time, rows, and columns

This section presents results for Setting (I) where E; are uncorrelated across time, rows, and
columns. The entries of both F; and E; are uncorrelated across time, rows and columns. Specifi-
cally, we simulate temporally independent F; ~ MN3,3(0,LI) and E; ~ MN,,, (0,L1I).

Table 7 and & presents the frequencies of estimated (k,7) pairs and means and standard devi-
ations of D(ﬁ,R)),D(aC)), respectively, for Setting (I).

Figure 10 (a) shows the box plots of the ratios between space distances D(ﬁ, R), D(E,C) of the
two methods under Setting (I). The estimation error of @-PCA is much smaller than AC-PCA.

Figure 1| (a) presents the box plots of £, norm of distance between F, estimated by a-PCA and
transformed true F;, which shows the convergence of estimated factors under Setting (I).
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(a) Setting (I).

T=0.5pq T=pq T=1.5pq T=2pq
0.40 4 . 0.40 4 0.40 0.40 4 mm D(C.0)
= D(RRA)
035 ﬁ 0.35 0.35 0351
030 ! 0.30 0.30 030
0251 ¢ 0.25 ﬁ 0.25 0.25
e ¢ )
€020 | 0.20 0.20 % 0.20 E *
0.15 ! 0.15 0.15 0154 ¢
0.104 0.104 § Y 0.10 0.104
0.05 4 0.054 — 0.05 ———$— | 0051 —_—
0.00 - - - - - - - - - - - -
(20,20) (100,20) (100,100) (20,20) (100,20) (100,100) (20,20) (100,20) (100,100) (20,20) (100,20) (100,100)
(p. @) (p.a) (C)) (p. @)
(b) Setting (III).
T=0.5pq T=pq T=1.5pq T=2pq
. mm D(C0)
1.0 1.0 . 1.0 1.0 == bRA)
08{ % o8] ¢ 08 08{ ¢
4
006 ¢ 06 06 0.6 !
®
| ' '
. ] ‘.
04y 04 04 M 04 .
.
, ; ’ ‘ .
0.2 - 02 02 0.2
=== =t =
0.0 - - - - - - - - - - - -
(20,20) (100,20) (100,100) (20,20) (100,20) (100,100) (20,20) (100,20) (100,100) (20,20) (100,20) (100,100)
(p, @) (p. @) (p. @) (p. @)

Figure 10: Box plots of ratios of space distances between a-PCA and AC-PCA estimators. (a) is under
Setting I; (b) is under Setting III. The estimation errors of @-PCA is much smaller than AC-PCA
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p,q=20,20 p,q=100,20 p,q=100,100
(k,7) | T=.5pq T=pq T=15pq T=2pq | T=.5pqg T=pgq T=15pq T=2pq | T=.5pq T=pgq T=15pq T=2pq
(2,3) .05 .085 .035 .035 0 0 0 0 0 0 0 0
.025 .005 .005 .015 0 0 0 0 0 0 0 0
(3,2) .05 .03 .01 .045 .025 .015 .015 .02 0 0 0 0
.01 .015 0 .01 .005 .005 0 0 0 0 0 0
(3,3) .845 .835 .92 .895 975 975 .98 .975 1 1 1 1
.955 .975 .995 .975 .995 .995 1 1 1 1 1 1
other .055 .05 .03 .01 0 .01 .005 .005 0 0 0 0
.01 .005 0 0 0 0 0 0 0 0 0 0

Table 7: Table of frequencies of estimated (k,7) pairs estimated by a-PCA (highlighted rows) and AC-PCA
(not highlighted rows) under Setting I. The truth is (3, 3).

T =0.5pq T =pq T =1.5pq T =2pq
(p,q) D(R,R) D(C,C) D(R,R) D(CC) DRR) D(CC) DRR) D(CC)
(20,20) .40(.08)  .40(.09)  .28(.07)  .29(.07)  .23(.05) .23(.05) .20(.05) .20(.04)
1.11(.24) 1.12(.31) 1.11(.27) 1.11(.26) 1.07(.23) 1.10(.22) 1.08(.27) 1.09(.22)
(100,20)  .14(.01) .08(.02) .10(.01) .05(.01) .08(.01) .04(.01) .07(.01) .04(.01)
.80(.07)  .45(.10) .80(.07)  .45(.10) .80(.07)  .45(.10) .80(.07)  .44(.09)
(100,100) .03(.002) .03(.002) .02(.002) .02(.002) .02(.001) .02(.001) .01(.001) .01(.001)
.34(.02)  .34(.03) .34(.03) .33(.03) .34(02) .33(.02) .34(.03) .33(.03)

Table 8: Means and standard deviations in parentheses of D(ﬁ,R)),D(E,C)) estimated by a-PCA (high-
lighted) and AC-PCA (not highlighted rows) under Setting I. All values multiplied by 10 and rounded for
ease of presentation.
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Figure 11: Boxplot of £, norm of distance between estimated F; and transformed true F;.
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C.2 Weakly row- or column-wisely correlated E,

This section presents results for Setting (III) where E; are weakly correlated cross rows and
columns. The entries of F; and E, are temporally uncorrelated, but E; is weakly correlated across
rows and columns. Specifically, we simulate temporally independent F; ~ MN3,3(0,LI) and E; ~
MN,q(0,Ug, V), where Ug and Vg both have 1’s on the diagonal, while have 1/p and 1/q off-
diagonal, respectively.

—

Table 9 and 12 presents the frequencies of estimated (k,7) pairs and means and standard devi-
ations of D(R,R)),D(C, C)), respectively, for Setting (III).
p,q=20,20 p,q=190,20 p,q=100,100
(k7) | T=5pq T=pq T=15pqg T=2pq | T=.5pg T=pq T=15pq T=2pq | T=.5pq T=pq T=15pq T=2pq
(23) | 105 095 1 .08 0 0 0 0 0 0 0 0
.05 .085 .035 .065 0 0 0 0 0 0 0 0
(3,2) | .08 .095 .07 1 095 095 .05 105 0 0 0 0
.04 105 .045 .06 .07 .085 .03 .07 0 0 0 0
(3,3) | .69 65 695 685 84 87 92 835 1 1 1 1
84 75 835 82 895 9 94 9 1 1 1 1
other | .075 16 135 135 065 035 .03 .06 0 0 0 0
.07 .065 .085 .055 035 015 .03 .003 0 0 0 0

Table 9: Table of frequencies of estimated (k,7) pairs estimated by a-PCA (highlighted rows) and AC-PCA
(not highlighted rows) under Setting (III). The truth is (3, 3).

T =0.5pq T =pq T =1.5pq T =2pq
(p,9q) D{R,R) D(CC) | DR,R) D(CC) | DR,R) DCC) | DRR) D(R,R)
(20,20) .83(.38)  .84(.39) | .81(.43) .79(.40) | .72(.32) .76(.39) | .74(.42) .79(.40)
1.41(.53) 1.44(.51) | 1.41(.55) 1.39(.54) | 1.30(.43) 1.35(.41) | 1.37(.62) 1.38(.45)
(100,20) | .15(.02) .70(.31) | .11(.01) .74(.33) | .09(.01) .69(.29) | .09(.02) .67(.32)
.80(.07)  .87(.33) | .80(.07) .91(.36) | .80(.07)  .85(.35) | .80(.07)  .85(.35)
(100,100) | .06(.02) 06(.02) | .05(.02) .06(.02) | .05(.02) .05(.02) | .05(.02) 05(.02)
.34(.02)  .34(.03) | .34(.03) .34(.03) | .34(.03) .34(.03) 34(.03)  .34(.03)

Figure 12: Means and SDs in parentheses of D(R, R)),D(E,C)) estimated by the Chen method (highlighted)
and Wang method under Setting (III). All values multiplied by 10 and rounded.

Figure

Figure

Figure

(b) shows the box plots of the space distances D(R,R), D(C,C) for both methods
under Setting (III). Note the scales of the y-axis in two sub-figures are different. The estimation
errors of @-PCA is much smaller than AC-PCA.
(b) presents the box plots of £, norm of distance between estimated /F\t and trans-
formed true F;, which shows the convergence of estimated factors under Setting (III).
shows the box plots of the space distances D(ﬁ,R), D(E,C) for both methods under
Setting (I) T < 4/pq with (p,q, T) = (100,100, 50).

C.3 Asymptotic normality

In this section, we present results of asymptotic normality for Setting (IV) with (p,q, T) equal
to (200,200,100) and (400,400, 250). The results for asymptotic normality are based on 1000 rep-
etitions. Under all settings, the presented QQ plots and histograms demonstrate the asymptotic
normality expected from the theorem.
presents the QQ plots of first dimension of the first row of R — RHy under setting

Figure

(IV) p,q, T =200,200,100 and 400,400, 250.
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Figure 13: Box plots of the space distances of @-PCA and AC-PCA estimators respectively. Setting I with
(p,q,T) =(100,100,50). The estimation errors of a-PCA is much smaller than AC-PCA under the setting

that T < y/pq.

Figure 14 presents the histograms of the first dimension of (ﬁo. —H;RO,):‘Z\IQ/Z with a = -1
(left), 0 (middle) and 1 (right) under setting (IV) with p,q, T = 200,200, 150.

Results of the other dimensions are similar.

QQ plots of the first dimension of the first row of R-RHg with a = -1 (left), 0 (middle) and 1
(right) under setting (IV) with p,gq, T = 200, 200, 150.

Appendix D Multinational Macroeconomic Indexes Dataset

Table 10 lists the short name of each series, its mnemonic (the series label used in the OECD
database), the transformation applied to the series, and a brief data description. All series are from
the OECD Database. In the transformation column, A denote the first difference, Aln denote the
first difference of the logarithm. GP denotes the measure of growth rate last period.
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(a) p,gq, T = 200,200,100.

a=-1 a=0 a=1
0.5
0.4 0.4 A 0.4
0.3 0.3 0.31
0.2 0.2 0.21
0.1 0.1 0.1
0.0 T T T T T 0.0 T T T T T 0.0 T T T T T
-4 -2 ) 2 4 -4 -2 0 2 4 -4 -2 0 2 4
(b) p,q, T = 400,400, 250.
a=-1 a=0 a=1
0.5 0.5
0.4+ 0.4 0.4
0.3 0.3 0.3
0.21 0.2 0.21
0.14 0.1 0.14
0.0 0.0 T T T T T 0.0 T T T T T
-4 =2 0 2 4 -4 -2 0 2 4 -4 2 0 2 4

— —1/2
Figure 14: Histograms of the first dimension of (RO, —HERO.)ER(l)/ with @ = -1 (left), 0 (middle) and 1
(right) under setting (IV) with p,q, T = 200,200,100 and 400,400,250. The lines plot the distribution of
standard normal distribution.
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Ordered Values

Ordered Values

(a) p.g, T = 200,200, 100.

a=-1 a=0 a=1
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0.4 0.10
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0.0 g s
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4 4
02 8 8
o O —
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(4 -0.10
06 0.10
L]
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Theoretical quantiles Theoretical quantiles Theoretical quantiles
(b) p,g, T = 400,400, 250.
a=-1 a=0 a=1
0.6
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Figure 15: QQ plots of the first dimension of the first row of R- RHjy with a = -1 (left), 0 (middle) and 1
(right) under setting (IV) with p,q, T = 200,200,100 and 400,400, 250.

Short name  Mnemonic Tran description

CPI: Food CPGDFD  A’In Consumer Price Index: Food, seasonally adjusted
CPI: Ener CPGREN  A’In Consumer Price Index: Energy, seasonally adjusted
CPI: Tot CPALTTO1 A’In Consumer Price Index: Total, seasonally adjusted
IR: Long IRLT A Interest Rates: Long-term gov bond yields

IR: 3-Mon IR3TIB A Interest Rates: 3-month Interbank rates and yields
P: TIEC PRINTO01  Aln Production: Total industry excl construction

P: TM PRMNTOO01 Aln Production: Total manufacturing

GDP LQRSGPOR Aln GDP: Original (Index 2010 = 1.00, seasonally adjusted)
IT: Ex XTEXVA01 Aln International Trade: Total Exports Value (goods)
IT: Im XTIMVAO1  Aln International Trade: Total Imports Value (goods)

Table 10: Data transformations, and variable definitions
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Country ISO ALPHA-3 Code Country ISO ALPHA-3 Code

United States of America USA United Kingdom GBR
Canada CAN Finland FIN
New Zealand NZL Sweden SWE
Australia AUS France FRA
Norway NOR Netherlands NLD
Ireland IRL Austria AUT
Denmar k DNK Germany DEU
Table 11: Countries and ISO Alpha-3 Codes in Macroeconomic Indices Application

Figur n the ppl mental material shows the transformed time series of macroeconomic

indic t f multiple ¢ CItis b s that there exist some similar patterns among time
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Appendix E More results on the image datasets

Figure 17: ORL face reconstruction with 15 x 15 latent dimension. The 1-st row displays ten raw images
from ORL data set. The 2nd to the 5th row correspond to reconstruction using our method with @ = -1, 0,
1 and 2, respectively. The compression ratio is approximately 2.18%.
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Figure 18: USPS digits reconstruction with 9 x 9 latent dimension. The compression ratio is approximately
31.64%. The 1-st row displays ten raw images from USPS data set. The 2nd to the 5th row correspond to
reconstruction using our method with a = -1, 0, 1 and 2, respectively.

Appendix F Codes

All codes are available online in https://github.com/ElynnCC/Matrix-Factor-Models.
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