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This article studies large N limits of a coupled system of N interacting
o4 equations posed over T for d = 2, known as the O(N) linear sigma
model. Uniform in N bounds on the dynamics are established, allowing us
to show convergence to a mean-field singular SPDE, also proved to be glob-
ally well posed. Moreover, we show tightness of the invariant measures in
the large N limit. For large enough mass, they converge to the (massive)
Gaussian free field, the unique invariant measure of the mean-field dynamics,
at a rate of order 1/+/N with respect to the Wasserstein distance. We also
consider fluctuations and obtain tightness results for certain O (N) invariant
observables, along with an exact description of the limiting correlations.
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1. Introduction. In this paper, we consider the following system of equations on the
d-dimensional torus T¢ for d = 2:

1 N
(1.1) $¢i=—ﬁzq’§‘bi+5i, ©;(0) =¢i,
j=1

where X =0, — A +m withm >0, Ne N, and i € {1,..., N}. The collection (éi)fvzl
consists of N independent space-time white noises on a stochastic basis, that is, (2, F, P)
with a filtration, and (¢l-)fv= | are random initial datum independent of (éi)lN: 1-Ind =2, the
system (1.1) requires renormalization, and the formal product CI>§CI>,- will be interpreted as
the Wick product :QD%QD,-: whose definition is postponed to Section 2.

This system arises as the stochastic quantization of the following N-component general-
ization of the CI>3 model, given by the (formal) measure

N N N 2
N def 1 2 2 1 2
(1.2) dv (CIJ)—C—Nexp(—/;TdZ:IVd)jI +m¥¢j+ﬁ(z¢j) dx)DdD
j=1 j=l1 j=1
over RY valued fields ® = (&, s, ..., ®y) and Cy is a normalization constant. In d = 2,

the interaction should be Wick renormalized :(Z;VZ 1 d%)z: for the measure to make sense.
This is also referred to as the O (N) linear sigma model, since this formal measure is invariant
under a rotation of the N components of ®. ! This symmetry will play an important role
throughout the paper.

Our focus in this article is on the asymptotic behavior as N — oo of the system (1.1) and
its invariant measures (1.2) as well as observables which preserve the O (N) symmetry. Note
that a factor 1/N has been introduced in front of the nonlinearity (resp., the quartic term
in the measure), and heuristically, this compensates the sum of N terms so that one could
hope to obtain an interesting limit as N — oo. The study of physically meaningful quantities
associated with a quantum field theory model such as (1.2) as N — oo is generally referred
to as a large N problem; see Section 1.1 where we introduce more background, references
in physics and mathematics, and different approaches to this problem. To the best of our
knowledge, the present article provides the first rigorous results on large N problems in the
formulation of stochastic quantization.

In Theorem 1.1 below, we study the N — oo limit of each component in the Wick renor-
malized version of (1.1) in d = 2 (cf. (2.1) below), and show that a suitable mean-field sin-
gular SPDE governs the limiting dynamics. Before giving the statement, let us first comment
on the notion of solution used. Recall that the well posedness of (1.1) in the case N =1 and
d =2 (i.e., the dynamical CI>‘2t model) is now well developed: two classical works being [2]
where martingale solutions are constructed and [20] where strong solutions are addressed,
as well as the more recent approach to global well posedness in [53]. These results can be
generalized to the vector case (with fixed N > 1) without much extra effort. As in [20] and
[53], the solutions are defined by the decomposition ®; = Z; + Y;, where

(13) £z, =§,

1 N
(14) LY = - YN (Y YIZi 42V Y Zj +2Y 1 Zi 2 + 25 Vit i Zi 231
j=1

IThe word “linear” here only means that the target space RY is alinear space. “Nonlinear” sigma models on the
other hand refers to similar models where the target space is subject to certain nonlinear constraints, for example,
@ takes value in a sphere in R or more generally in a manifold.
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and :Z;Zj: , :Z; ij.: are Wick renormalized products (see Section 2). For the uninitiated
reader, note that (1.4) arises by inserting the decomposition of ®; into (1.1) and reinterpreting
the ill-defined products Z; Z; and Z; Z? that appear.

The mean-field SPDE formally associated to (1.1) takes the form

(1.5) LV =BV, +&, ¥;(0) =

On the formal level this equation arises naturally: assuming the initial conditions {qb,-}lN: |
are exchangeable,” the components {d>,-}fV: | will have identical laws, so that replacing the
empirical average % Z;V:l CI>§ in (1.1) by its mean and relabeling ® as W leads us to (1.5).
In two space dimensions, (1.5) is a singular SPDE where the ill-defined nonlinearity depends
on the law of the solution and similar to (1.1), it also requires a renormalization. Postponing
for the moment a more complete discussion of this point, we now state our first main result.

THEOREM 1.1 (Large N limit of the dynamics for d =2). Let {(¢>iN , 1//l~)}lN: | be random
initial datum with components in C™% for some small k > 0 and all moments finite, where
C™* denotes the Besov space introduced in Section A. Assume that for each i € N, ¢I.N con-
verges to Y; in LP(2; C™%) forall p > 1, % ZlNzl ||¢>iN — 1//,~||é,,( —P0and (y); are i.id.
Here, —¥ 0 means the convergence in probability.

Then for each component i and all T > 0, the solution CI>IN defined by (1.3)—(1.4) with
initial datum ¢iN converges in probability to V; in C ([0, T1], C~1(T?%)) as N — oo, where U;
is the unique solution to the mean-field SPDE formally described by

(1.6) LV = —E[W} - ZH; + &, W(0) =,

and Z; is the stationary solution to (1.3). Furthermore, under the additional hypothesis that
(¢iN , 1//,-)?]: | are exchangeable, for each t > 0 it holds that

(1.7) Nli_r)nooEH oY (1) = Wi ()] 7272, = 0.

In Section 4, we actually prove this convergence result under more general conditions for
initial data (see Assumption 4.1). Along the way to Theorem 1.1, we prove new uniform in
N bounds through suitable energy estimates on the remainder equation (1.4). We are inspired
in part by the approach in [53], but subtleties arise as we track carefully the dependence of
the bounds on N. Indeed, the natural approach (e.g., [53] for dynamical <I>‘21 model) to obtain
global in time bounds for fixed N is to exploit the damping effect from Y /2 Y;. However, the
extra factor 1/N before the nonlinear terms makes this effect weaker as N becomes large.
In fact, the moral is that we cannot exploit the strong damping effect at the level of a fixed
component Y;, rather we are forced to consider aggregate quantities, and ultimately we focus
on the empirical average of the L?-norm (squared) instead of the L”-norm, p > 2; cf. Lemma
2.3 and Remark 2.6. This is natural on one hand due to the coupling of the components, but
also for the slightly more subtle point that we ought to respect the structure of the mean-field
SPDE (1.6), for which the damping effect seems to hold only in the mean square sense, not
at the path-by-path level.

In this direction, we now discuss a bit more the solution theory for the mean-field SPDE
(1.6). While the notion of solution we use is again via the Da-Prato—Debussche trick, the
well-posedness theory for (1.5) requires more care than for <I>‘21 since we cannot proceed by

2This means that the sequence of random variables (¢1, ..., ¢n) has the same joint probability distribution as
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pathwise arguments alone. In fact, similar to (1.3)—(1.4), we understand (1.6) via the decom-
position ¥; = Z; + X; with X; satisfying

(1.8) ZX; = —(E[X7]X; + E[X3]Z; + 2E[X,; Z;1X; + 2E[X, Z;1Z;).

Here, we actually introduce an independent copy (X, Z;) of (X;, Z;), which turns out to
be useful for both the local and global well-posedness of (1.6). Indeed, one point is that the
term E[X;Z;]Z; in (1.8) cannot be understood in a classical sense; however, we can view
it as a conditional expectation E[X ;Z;Z;|Z;] and use properties of the Wick product Z; Z;
to give a meaning to this; cf. Lemma 3.1. Furthermore, to obtain global bounds, using this
independent copy allows us to approach the a priori estimates for (1.8) much like the uniform
in N bounds for (1.4). Indeed, after taking expectation, E[ X %]X i in (1.8) also plays the role
of the damping mechanism, which helps us to obtain uniform bounds on the mean-squared
L?-norm of X;; cf. Lemma 3.3.

Theorem 1.1 can be viewed as a mean-field limit result in the context of singular SPDE
systems. Our proof is indeed inspired by certain mean-field limit techniques, and we combine
them with a priori estimates that are specific to our model; see the discussion above Theo-
rem 4.1 for a more detailed discussion on this strategy. We will provide more background
discussion on mean-field limits below in Section 1.2. By a classical coupling argument, this
result also yields a propagation of chaos type statement: if the initial condition is asymp-
totically chaotic (i.e., independent components as N — 00), then although the ®-system is
interacting, as N — oo the limiting system becomes decoupled ([41], Definition 3, Defini-
tion 5).

The second part of this paper (Section 5) is concerned with equilibrium theories, namely
stationary solutions, invariant measures and large N convergence. For N = 1, the long-time
behavior of the solutions was investigated in [56] and [68]. In the vector valued setting, by
lattice approximation (see [32, 37, 73]), strong Feller property in [38] and irreducibility in
[40], it can be shown that v¥ is the unique invariant measure to (1.1) and the law of ®;(¢)
converges to vV as + — co. Our goal then is to study the large N limit of the O (N) linear
sigma model v". Our second main result yields the convergence of the unique invariant
measure vV of (1.1) to the invariant measure of (1.6), provided the mass is sufficiently large.

To state the result, consider the projection onto the ith component,

(1.9) M : S (THN > (19, (@) E @,

. . - def _
Noting that vV is a measure on S’(T¢)N NS N o T, I

Furthermore, consider

(1.10) n® . s (THY - (T, n® @)= ()<<

, we define the marginal law v

and define the marginal law of the first k components by vi¥ LEN o (o)=L,

THEOREM 1.2 (Large N limit of the invariant measures). There exists mg > 0 such that
the following results hold:

e For m > 0, the Gaussian free field v def

(1.6).
e For m >0, the sequence of probability measures (V™) y>1 are tight on C™* for k > 0.
e For m > my, the Gaussian free field N (0, %(m — A Y is the unique invariant measure to
equation (1.6).
o Form > mg, v

N(0, %(m — A)*l) is an invariant measure for

N.i converges to v and v,ﬁv convergestov X --- X v, as N — oo. Further-

. 1
more, Wo(v™V-/ v) <Nz,
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These statements will follow from Theorem 5.9, Theorem 5.4 and Theorem 5.11. Here,
Wy (vi, vp) is the C*-Wasserstein distance defined in (5.12) before Theorem 5.11. The
Gaussian free field limit is expected (at a heuristic level) by physicists, for example, [70]
and also in mathematical physics [45].> Our result, Theorem 1.2, provides a precise justifi-

cation provided m > mg, with the convergence rate N -3 (which is expected to be optimal;
see, for instance, [42], Remark 4) in terms of Wasserstein distance. The large m assumption
could also be formulated as a small nonlinearity assumption; see Remark 5.12.

Note that the study of ergodicity properties of the dynamic (1.6) is nontrivial. In fact,
the dynamic for W depends on the law of W itself, so the associated semigroup is generally
nonlinear (see Section 5.1). As a result, the general ergodic theory for Markov process (see,
e.g., [21], [39], [38]) could not be directly applied here. Instead, we prove the solutions to
(1.6) converge to the limit directly as time goes to infinity, which requires m > my.

We now comment on our approach to the fourth part of Theorem 1.2. It would be natural
to try and use Theorem 1.1 together with the tightness result from the second part of Theorem
1.2 to derive the convergence of vV to v directly (see, e.g., [37]). However, it is not clear to
the authors how to implement this strategy in the present setting. Indeed, to apply Theorem
1.1, it is important that each component ; of the initial data is independent of each other.
However, we are not able to deduce that an arbitrary limit point v* has this property. If we
use P v* to denote the marginal distribution of the solution to (1.6) starting from the initial
distribution v*, we cannot write P;*v* as [(P;*§y)v*(dy) due to the lack of linearity, which
makes it difficult to overcome the assumption of independence. Alternatively, we follow the
idea in [32] and construct a jointly stationary process (®, W) whose components satisfy (1.1)
and (1.6), respectively. In this case W = Z, since the Gaussian free field gives the unique
invariant measure to (1.6). We then establish the convergence of v™ >/ to v by deriving suitable
uniform estimates on the stationary process.

Our next result is concerned with observables in the stationary setting. In QFT models with
continuous symmetries, physically interesting quantities involve more than just a component
of the field itself but also quantities composed by the fields, which preserve the symmetries,
called invariant observables. These acquire the same interest in SPDE (a natural example
being the gauge invariant observables, e.g., [58], Section 2.4). In the present setting of (1.1),
anatural quantity that is invariant under O (N )-rotation is the “length” of ®; another being the
quartic interaction in (1.2). We thus consider the following two O (V) invariant observables:

for ® = vV,

1 X (&N
(1.11) > e, = :(Zcb,?) L
VN i=1 N\
Here, the precise definition is given in Section 6.1. One could consider more general renor-
malized polynomials of }_; <I>l-2 but we choose to focus on the above two in this article. We
establish the large N tightness of these observables as random fields in suitable Besov spaces
by using iteration to derive improved uniform estimates in the stationary case.

Note that the physics literature usually considers integrated quantities, that is, partition
function of correlations of these observables. Our SPDE approach allows us to study these
observables as random fields with precise regularity as N — oo, which is new.

Moreover, we investigate the nontrivial statistics of the large N limit of the O(N) in-
variant observables. We show that although for large enough m the invariant measure of ®;

3n [70], it was written that “If one now looks at vacuum expectation values of individual & fields, all diagrams
vanish like 1/N (at least), except for the free-field terms.” In the Introduction of [45], it was mentioned that “the
1/N expansion predicts that the theory is close to Gaussian as N becomes large enough,” but this reference did
not intend to prove this statement (see Section 1.1 below).
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converges as N — oo to the invariant measure of Z; that is, Gaussian free field, the limits of
the observables (1.11) have different laws than those if ®; in (1.11) were replaced by Z;:

& 1 (&N
(1.12) — Z5, — :< Z-) .
\/ﬁ; l N ; 1

THEOREM 1.3. Suppose that ® = vV . For m large enough, the following result holds
for any k > 0:

1 N .52, ;04 . —2k
° ﬁZizl @7 istightin B, 5.
1. N AV . -3
o (D, @) istightin By 1",
e The Fourier transform of the two point correlation function of ﬁ Z,N:1 :CI>I~2: in the limit

as N — oo is given by the explicit formula ZC/E/(I + ZC/Q), where C = %(m —A)"land C
is the Fourier transform; moreover, E% :(Zf\/:l CI>l.2)2: converges as N — oo to the explicit
formula given by —43 ;> C/’\Z(k)z/(l + 26\2(]()). (In particular, the limiting laws of the
observables (1.11) are different from those of (1.12)).

These results are proved in Theorem 6.3 and Theorem 6.5. The last statement on correla-
tion formulas of the observables are known—first heuristically by physicists who expressed
these formulas in terms of the sum of “bubble” diagrams, and then derived in [45], equa-
tion (15), using constructive field theory techniques such as “chessboard estimates.” Our new
proofs of these correlation formulas using PDE methods are quite simple and straightforward
once all the a priori estimates are available. We expect that these methods can be applied to
study more O(N) invariant observables and higher order correlations; we will pursue these
in future work. We also mention that all the results in Theorem 1.1-Theorem 1.3 hold for
d =1 (see [59] for more details.)

Let us also mention the three-dimensional construction of local solutions [11, 33, 35],
global solutions [1, 31, 50, 52], as well as a priori bounds in fractional dimension d < 4
by [13], though we focus on d = 2 in this paper. It would also be interesting to see if our
methodology could be used to study limits of other singular SPDE systems as dimensionality
of the target space tends to infinity, such as coupled dynamical ¢§,4 coupled KPZ systems
[26], random loops in N dimensional manifolds [9, 16, 36, 54] and the Yang—Mills model
[12] with N— dimensional Lie groups (or abelian case [58] with Higgs field generalized to
value in CV). These are, of course, left to further work.

1.1. Large N problem in QFT: Background and motivation. Large N methods (or “1/N
expansions”) in theoretical physics are ubiquitous and are generally applied to models where
dimensionality of the target space is large. It was first used in [62] for spin models, and
then developed in quantum field theories (QFT), which was pioneered by [70] (®* type and
Fermionic models), [30] (Fermionic models), [65] (Yang—Mills model), and the idea was
soon popularized and extended to many other systems; see [8] for an edited comprehensive
collection of articles on large N as applied to a wide spectrum of problems in quantum field
theory and statistical mechanics; see also the review articles [71], [18], Chapter 8, and [51] for
summaries of the progress. Loosely speaking, in terms of our model (1.2), the ordinary QFT
perturbative calculation of for instance a two-point correlation of ®; is given by sum of Feyn-
man graphs with two external legs and degree-4 internal vertices, each vertex carrying two

“4In fact, we have obtained some partial results for coupled dynamical <1>‘3‘, such as convergence of invariant
measures to the Gaussian free field.
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distinct summation variables and a factor 1/N that represents the interaction % i CIDI-ZCD?,
such as (a), (b) below:

J ! J

! J
Heuristically, graph (a) is of order % >_j ~ O(1) and graph (b) is of order ﬁ DR O(%).
The philosophy of [70] is that graphs with “self-loops” such as (a) get canceled by Wick
renormalization, and all other graphs with internal vertices including (b) are at least of order
O(1/N), and thus vanish, so the theory would be asymptotically Gaussian free field, which
is what we prove in Theorem 1.2. On the other hand, for observables such as ﬁ ZlN: 1 :@%: ,

two-point correlation at x, y may have O(1) contributions as shown in graph (c),> which is
the heuristic behind the existence of a nontrivial correlation structure for such observables
as in Theorem 1.3. The “1/N expansion” is a reorganization of the series in the parameter
1/N, with each term typically being a (formal) sum of infinitely many orders of the ordinary
perturbation theory. Besides directly examining the perturbation theory, alternative (and more
systematic) methodologies of analyzing such expansion were discovered in physics, for in-
stance, a method via “dual” field [19], [51], Section 2, via Schwinger—Dyson equations [63],
or via stochastic quantization (with references below).

Rigorous study of large N in mathematical physics was initiated by Kupiainen [44—46].
The literature most related to the present article is [45], which studied the QFT in continuum
in d = 2 given by (1.2), and proved that the 1/N expansion of the pressure (i.e., vacuum
energy or log of partition per area) is asymptotic, and each order in this expansion can be
described by sums of infinitely many Feynman diagrams of certain types. Borel summability
of 1/N expansion of Schwinger functions for this model was discussed in [7].

In [46], Kupiainen also proved that on the lattice with fixed lattice spacing, the large N
expansion of correlation functions of the N-component nonlinear sigma model (which sim-
plifies to “spherical model” as N — 00) is asymptotic above the spherical model criticality;
asymptoticity was later extended to Borel summability by [25]. Large N limit and expansion
for the Yang—Mills model has also been rigorously studied; see [48] (also [5]) for conver-
gence of Wilson loop observables to master field in the continuum plane, and [14] (resp.,
[15]) for computation of correlations of the Wilson loops in the large N limit (resp., 1/N
expansion), which relates to string theory.

Large N problems in the stochastic quantization formalism have also been discussed in
the physics literature, for instance, [3, 4], [22], Section 8. [51], Section 5.1, is close to our
setting; it makes an ‘““ansatz” that % Z?’:l <I>% in (1.1) would self-average in the large N
limit to a constant; our present paper justifies this ansatz and in the nonequilibrium setting
generalizes it.

In summary, the study of large N problems in QFT is motivated by the following properties
(among others). The first property is simplification or solvability as N — oo. This is the
motivation ever since the earliest literature [62] as aforementioned: the model studied therein
becomes a simplified, solvable model as N — oo known as the Berlin—Kac spherical model.
In our setting, this simplification or solvability heuristics are reflected by the Gaussian free
field asymptotic as well as the rigorous derivation of exact formula (which would not be
possible for finite N) for certain correlation of observables in Theorem 1.2 and Theorem 1.3.
Another property is that when N is large, 1/N serves as a natural perturbation parameter
in QFT models, as already discussed above. Of course, this went much farther than just
simplifying things later when applied to more sophisticated models like gauge theory, for

Sbut there are infinitely many O (1) graphs



138 SHEN, SMITH, ZHU AND ZHU

which 1/N expansions led to the discovery of so-called gauge-string duality as mentioned
above.

1.2. Mean-field limits. As mentioned above, the proof of our main theorems borrows
some ingredients from mean-field limit theory (MFT). To the best of our knowledge, the
study of mean-field problems originated from McKean [49]. Typically, a mean-field problem
is concerned with a system of N particles interacting with each other, which is often modeled
by a system of stochastic ordinary differential equations, for instance, driven by independent
Brownian motions. A prototype of such systems has the form dX; = % > f(Xi, Xj)dr +
dB; (see, for instance, the classical reference by Sznitman [64], Section I(1)), and in the
N — oo limit one could obtain decoupled SDEs each interacting with the law of itself: dY; =
[ f(Yi, y)u(dy)dr + dB; where w(dy) is the law of Y;. So just as in QFT the motivation of
MFT is also a simplification of an N-body system to a one-body equation, which interacts
with itself, that is, the system is factorized.

In simple situations, the interaction f is assumed to be “nice,” for instance, globally Lips-
chitz ([49]); much of the literature aims to prove such limits under more general assumptions
on the interaction; see [64] for a survey.6 Our Theorem 1.1 can be viewed as a result of this
flavor, in an SPDE setting, and in fact the starting point of our proof is indeed close in spirit
to [64], Section I(1), where one subtracts X; from Y; to cancel the noise and then bound a
suitable norm of the difference.

We note that mean-field limits are studied under much broader frameworks or scopes of
applications, such as mean-field limit in the context of rough paths (e.g., [6, 10, 17]), mean-
field games (e.g., survey [47]), quantum dynamics (e.g., [24] and references therein). We do
not intend to have a comprehensive list, but rather refer to survey articles [28, 41] and the
book [61] besides [64], Chapter 8.

The study of mean-field limit for SPDE systems also has precursors; see, for instance,
the book [43], Chapter 9, or [23]. However, these results make strong assumptions on the
interactions of the SPDE systems such as linear growth and globally Lipschitz drift, and
certainly do not cover the singular regime where renormalization is required as in our case.

1.3. Structure of the paper. 'This paper is organized as follows. Sections 2—4 are devoted
to the proof of Theorem 1.1. First, in Section 2.1 we recall the definition of the renormaliza-
tion for Z;, which satisfies the linear equation (1.3). Then a uniform in N estimate for the
average of the L?-norm of Y;, the solutions to equation (1.4), is derived in Section 2.2. Local
well-posedness to equation (1.6) is proved in Section 3.1. Global well-posedness to equation
(1.6) is proved in Section 3.2 by combining a uniform L?-estimate with Schauder theory. The
difference estimate for ®; — \V; is given in Section 4, which gives the proof of Theorem 1.1.

Section 5 is concerned with the proof of Theorem 1.2. In Section 5.1, uniqueness of invari-
ant measures to (1.6) for large m is proved. The convergence of invariant measures from v?'-!
to the Gaussian free field v is shown in Section 5.2 by comparing the stationary solutions
(®i, Zi).

Section 6 mainly concentrates on the observables and the nontriviality of the statistics of
the observables. Section 6.1 is devoted to the study of the observables and the proof of first
two parts of Theorem 1.3. We derive an L?-estimate of ¥; in Section 6.2 and prove the third
part of Theorem 1.3 in Section 6.3.

%In the context of SDE systems, one also considers the empirical measures of the particle configurations, and
aims to show their convergence as N — oo to the McKean—Vlasov PDEs, which are typically deterministic.
Note that in this paper we do not consider the “analogue” of McKean—Vlasov PDE (which would be infinite
dimensional) in the context of our model.
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Finally, in Appendix A, we collect the notation and useful lemmas used throughout the
paper. In Appendix B, we give the proof of global well-posedness of equation (1.4). In Ap-
pendix C, the application of Dyson—Schwinger equations has been derived, which is useful
in studying the limiting law of the observables. In Appendix D, we give the proof of Step 7
in the proof of Theorem 4.1.

Notation. Throughout the paper, we use the notation a < b if there exists a constant ¢ > 0
such that a < c¢b, and we write a >~ b if a < b and b < a. Given a Banach space E with a
norm || - ||g and T > 0, we write C7 E = C ([0, T]; E) for the space of continuous functions
from [0, T'] to E, equipped with the supremum norm | f{|c; £ = sup,¢o 7y |/ @)l £. For
p € [1, 00], we write LP E =L?([0,T]; E) for the space of L”-integrable functions from
[0, T] to E, equipped Wlth the usual LP-norm. Let S’ be the space of distributions on T¢.

2. Uniform in N bounds on the dynamical linear sigma model. In this section, we
obtain new estimates on the Wick renormalized version of (1.1), given by

1 N
2.1) Zcb,-:—ﬁzlzcbﬁcbi: +&, Di(0)=¢.
J=

The notion of solution to (2.1) is the same as in [20] and [53], where the case N = 1 is treated.
For a fixed NV, these well-posedness results are easy to generalize to the present setting, so we
only give the statement here and refer the reader to Appendix B for the proof. Our primary
goal in this section is rather to obtain bounds, which are stable with respect to the number of
components N, which we will send to infinity in Section 4.

As is well known, it is natural to consider initial datum to (2.1) belonging to a negative
Holder space with exponent just below zero. We will be slightly more general and consider
random initial datum of the form ¢; = z; + y; satisfying E||z; ”lClK < 1 for k > 0 small enough

and every p > 1, and E||y; ||i2 < 1, where the implicit constants are independent of i, N.

The notion of solution to (2.1) is based on the now classical trick of Da-Prato and De-
bussche; cf. [20]. Namely, we say that ®; is a solution to (2.1) provided the decomposition
®; = Z; + Y; holds, where Z; is a solution to the linear SPDE,

(2.2) LZi=¢&, Zi(0)=z,

and Y; is a weak solution to the remainder equation

] N
03 =—% Y (YIYi+YIZi 42V YiZj+2Y 1 Zi 2+ 25 Vit 1 Zi 250,
. i=1

Y;(0) =i

The notation :Z;Z;: , :Z?: and :Z; ij-: denotes a renormalized product of Wick type,
which will be defined in Section 2.1 below.

2.1. Renormalization. To define the renormalized products appearing in (2.3), it is con-
venient to make a further splitting of Z; relative to the corresponding stationary solution to
(2.2), which we will denote by Z;. For Z, , these products have a canonical definition that we
now recall. Namely, let §; . be a space-time mollification of &; defined on R x T? and let Z,,g
be the stationary solution to .’ Zi,g =§; .. For convenience, we assume that all the noises are
mollified with a common bump function. In particular, Z,-, ¢ are 1.1.d. mean zero Gaussian. For
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k>1landiy,...,ir €{l,..., N}, we then write 32:‘1 ---Zik: as the limit of :Zil,s . '-Zk,g:
as ¢ — 0. Here, :Z; ---Z;, ¢ is the canonical Wick product, which in particular is mean
zero. More precisely,

llm(Z2 —a;) (=)),

e—>0

lim Zi,ezj,s @ #7J),
e—>0

NN)
&Nl
Il

2.4) . 3 . .
~ 5 hm( —3a, 18) =},
.7, . _ Je—0

2 Z; Zj. =17 . .
llm(Zi,Eng _asZi,s) @#J),
e—0 b

where a, = E[Zl% .(0,0)] is a diverging constant independent of i and the limits are under-

stood in C7C™* for k > 0. (see [53], Section 5, for more details).
We now define the Wick products for Z; by combining the above with the smoothing

properties of the heat semigroup S; associated with .Z. Defining Z; &f zi — Zi(0), we have
the decomposition

Zi=7Zi+ 8.

We then overload notation and define the Wick products of Z; by the binomial formula’
namely

:Z]2~: = :212-: + ZSthZj + (Ssz)z,

(2% =173 4382178 +3(8,2)°Z; + (5,2))°,
and fori # j
ZiZp = :Zl-Zj: + StZ,'Zj + SthZi + 8:2i5:7,
(ZiZ% =225 + 8% 2% 4285 22y A 2858525+ ($iE) 2 + Sizi(8iE)*
We caution the reader that this definition is noncanonical, in the sense that these renormalized

products are not necessarily mean zero. By the calculation in [53], Corollary 3, (see also [57],
Lemma 3.5), we have the following estimate.

LEMMA 2.1. Foreach k' >k >0 and all p > 1, we have the following bounds:
EIZig, v +EIZiE ¢ S 1,
El:ZiZj |0 cv +E|:ZiZ5: ¢ e ST,

E( sup ¥ ZiZj: ||C—K)p+E< sup tz"/H :Z,-Z?: ||C,K)p§ 1.
1€[0,T7] 1€[0,T]

Furthermore, the proportional constants in the inequalities are independent of i, j, N.
By Lemma 2.1, there exists a measurable 29 C Q with P(2g) = 1 such that for w € Q¢
and every i, j,

1Zillcpers + sup 01 :ZiZj: e« + sup 1| :ZiZ}: || oor < 0.
t€l0,T] t€l0,T]

TThis definition is in line with [53], (5.42), which first considers a linear solution with O initial condition rather
than a stationary solution as here.
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In the following, we always consider w € €2¢. With the above choice of renormalization, clas-
sical arguments from [20] can be used to obtain local existence and uniqueness to equation
(2.3) by a pathwise fixed-point argument. This solution can also be shown to be global, as a
simple consequence of a much stronger result, Lemma 2.3, which will be established in detail
below. Since the well-posedness arguments for solving equation (2.3) with a fixed number of
components is essentially known, we relegate the proof to Appendix B and only state the
result here.

LEMMA 2.2. For each N, there exist unique global solutions (Y;) to equation (2.3) such
thatfor1 <i <N,Y; € CrL>N L} L*N L} H".

2.2. Uniform in N estimate. 'We now turn to our uniform in N bounds on equation (2.3)
and note that Y; itself depends on N, but we omit this throughout. In the following lemma, we
show that the empirical averages of the L2 norms of ¥; can be controlled pathwise in terms
of averages of the C7C™* norms of Z;, :Z;Z;: and :Z?Zj: discussed in Lemma 2.1.

LEMMA 2.3. Lets € [2«, }‘). There exists a universal constant C such that

1
7 sup ZIIYIIL2+ an ||L2L2+H ZW

1€[0,71 J 1 LiL?
(2.5
T 1 5
gcf RNdz+—Z||yjlle,
0 Nj:1
where
1 N 5 % 1 N 5 2475
Ry:=1+ (ﬁ > IIZjllc—s) + (ﬁ 21225 e
j=1 j=1
(2.6)

# (e X1z i )_ (w2 21232 1)

i,j=1 i,j=1

PROOF.  The proof is based on an energy estimate. In Step 1, we establish the energy
identity (2.9), which identifies the coercive quantities and involves three types of terms on
the right-hand side. These are labeled 7, I]%, and I;’,, which are respectively linear, quadratic
and cubic in Y. In Steps 24, we estimate each of these quantities, proceeding in order of
difficulty, in terms of the coercive terms and the quantities Rﬁv fori =1, 2, 3 defined below.
The main ingredient is Lemma A.5, restated here: for s € (0, 1),

2.7) (g, N S (VI Mg + gl )l f e

The final output of Steps 1-4 is that for some universal constant C it holds

N
Z Yl + D 2+%Z||Yjuiz
j=1

Rl
scWN +C(RY +RY)— ZMY 125,

2

(2.8)
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where Rj\, fori =1, 2,3 are defined in (2.11), (2.14), (2.18) below. Noting that by Holder’s
inequality
N

1 o 2 N 2 1 2
v 2 Wil =<2 v =3
i=1 i=1 L! =
the estimate (2.5) follows from Young’s inequality with exponents (2,2) and an integra-
tion over [0, T']. The condition s € [2«, zlt) ensures that Ry is integrable near the origin; cf.

Lemma 2.1.
STEP 1 (Energy balance)

In this step, we justify the energy identity

Yill%, + VY%, + Yill%, + Y?
2.9) Z I| ||L2 ,Z%” ||L2 m;ll ||L2 H\/—Z

=IN+ I3+ 13,
where the quantities / le fori =1, 2,3 are defined by

1 N
e =3, 22z ),
N
i,j=1
o 1 &
e -5 3 2AYYy, 1 ZiZi )+ (VP 1251 ),
i,j=1
3 def 2
C
In=—5 22307, Z)).
i,j=1

Notice that [ 1{,, 1 1%, and I]%, are linear, quadratic and cubic in Y, respectively. Formally,
the identity (2.9) follows from testing (2.3) by Y;, integrating by parts, summing over
i=1,..., N, and using symmetry with respect i and j. Since Y; is not sufficiently smooth in
the time variable, some care is required to make this fully rigorous, and we direct the reader
to [53], Proposition 6.8, for more details.

STEP 2 (Estimates for /)
In this step, we show there is a universal constant C such that

(2.10) ZHVY 13, +ZIIY I3, + CRY,.
l 1 i=1

where

2.11) R! defz

i=1

2

222

To establish (2.10), we apply (2.7) with ¥; playing the role of g and + Z 1 Z Z;: playing
the role of f to find

C—s

(2.12) Iy SO (Yl UV Yl + 1Yl )
i=1

1y,
NZ VAVS
j=1

We now use Young’s inequality with exponents (%, %, 2) for the first term and (2, 2) for the
second term and the embedding of L? into L! to obtain (2.10).

C—s
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STEP 3 (Estimates for I]%,)
In this step, we show there is a universal constant C such that

1 N
(2.13) ZZ|VYi||§2+c (1+ R%) (ZuYan),
where
1
def [ 1 = 1 Y 5 |17
R12v=< - Z 1:Z;Z;: Iz ) +H—Z:zj:
(2.14) N2 N c

df T\ A
()™ + (R

Applying (2.7) with Y;Y; playing the role of g and :Z;Z;: playing the role of f followed
by Holder’s inequality in L2, the product rule and symmetry with respect to i, j we find

1 N
N Z (Yin, :ZjZl'i )
i,j=1

1 Y » ,
S 2 Y VYL + WYl 22 Zi lles
i,j=1
1 N
@15) Sy 20 WGl Vil 2 IV Yillpe + 1Yl 21 Y120 22 Zi llees
i,j=1

1
N
2(1— 4 "’ 1
5<Z||Y,-||iz) (Znyn( vy ) (R3)? + (ZHYHLZ) )2
j=1

—

—_

1

,%(jénmniz)l <Z||VY||L2> R3)? + <Z||Y||L2)ie7 )2

where we used Holder’s inequality for the summation in i, j With exponents (2,2) followed
by Holder’s inequality for the summatlon in i with exponents (1 —> S) Finally, applying (2.7)

with Y2 playing the role of g and + Z ] 22 playing the role of f, we find

1 g N - —
N Z 7S U 0ol + 12 ) Ry
N N
(2.16) SO VAR IVYilS + 1Yil72) Ry,

—_

N -3 /N 5 N o
< [(Z ||Yi||iz) (Z ||VY,-||iz> +3 ||Yi||iz]R%v,
i=1 i=1 i=1

where we used Holder’s inequality for the summation in i with exponents (2 < s) The
1nequahty (2.13) now follows from (2.15)—(2.16) by Young’s inequality with exponents

(2ss)
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STEP 4 (Estimates for 113\,: cubic terms in Y)
In this step, we show there exists a universal constant C such that

N
)+C 1+ RyY) (Z |Y,-||iz>,
2 :

1 N
(2.17) 13,5-(2 ||VY,-||%2—|—H—ZY2
A\ VN

where
L 1
1—s —
def 1 s def
(2.18) Ry = ( an [ ) :(NQPN> with 2y = ZIIZ./H%—»
j=1
Appealing again to (2.7), we find
N 1—s N s
Iy 5NZ< > YR V(ZYiZY]) Y; )llellcs
=1 \lli=1 L! i=l1 L! L!
N N 2(1—s) N 2s % Il
(2.19) — Z Y vy, V(> riy; %
N =1lli=1 L! j= !
= = i=1 L
(NN 2y,
+ _< i Yj ) 1\%
N j=1lli=1 L!
By Holder’s inequality, it holds that
N
(2.20) > vy, 1Yz
i=1 L! L?
Furthermore, we find that
N N N
v(yrm)| z[yren) [y
i=1 Ll i Ll i=1 L!
(2.21)
N N 172 172
SIIRG ||VYj||Lz+(Z||VYi||§2) ZY2Y2
i=1 L? i=1 L!

Hence, we find that

N | N 2(1-9) N
IIMRE V(ZYi2Y1>
i=1

j=1lli=1 L1

2s

L1

2(1—
(Z 1751125 S’||VYJ~||§2>

L2 \j=

2(1—s) N s
(Z ||VY,-||32> (Z
i=1

L? j=1

2 (Z 1Y lle> B (}2: ||VY]-||§2>S

N

ZYZ

2(1—s
||Yj||L2 ”)

2(1—s) s/ N
(Z ||VY,-||iz> (Z
i=1

N

2.1

ZY2

L2

S/ N 1—s
Y; ) (Z 1Y, ||L2>
L! j=1
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(Z 1Y, ||L2> B (12: ||VY,-||§2)S.

Inserting this into (2. 19), taking the square root and using (2.20) we find

3 1 i 2
< Y;
N i=1 L?

5

N , s N \?
(Z llelle> (Z ||VYj||L2) 22

N 3
(Z ||Yj||iz> %
L2 \j=1

Applying Young’s inequality with exponent (2, IL %) we arrive at (2.17). [

(2.22)
N

1
+ 5[ 22

COROLLARY 2.4. Let g > 1, s € [2«, q%). There exists a universal constant C such

that

g—1 1 N 1 N 2
sup( ZnYan) +f( Z”Y”Lz) [—an,-niﬁHNZY? }dt
t€[0,T] Nj:l i=1 L2

g+l 1 N 5 q
<C/ Ry di + (—ZnyjuLz),
N &

with Ry introduced in Lemma 2.3.

PROOF. Set V = 4 XL, ¥ill2, and G = 5 XY VY12, + Il 2/, VA2,
(2.8) in the proof of Lemma 2.3, we deduce forg > 1,
d q+1

arl ]
AR GVIT' <CRyVI™' <CR} + qu“.

Note that G > V2 since || Z — Y2||L1 Z 1 1Y ||L2, which implies the result. [

LEMMA 2.5. Lets € [2«, 1/4). There exists a universal constant C such that

sup Z 1Yj17. + Z IVY; ||L2L2+

1€[0,T] i= 1 2.1
(2.23) /= i=
T
= C(”RN”LI + Z IIyJIILz> eXp{/ (1+ R}, +R§’V)dz},
j=1

where RIZV, R?\, given in the proof of Lemma 2.3 and
2
(2.24) N

— — L2

PROOF. The proof is almost the same as Lemma 2.3. We appeal to Steps 1, 3 and 4 of
Lemma 2.3 and only modify Step 2. To estimate ), we write

| N N
RS SIS ) are
i=1 j=I

1 N N

1 C
—Z 1Yille + g DIVl + 15 2
i=1 i=l1

L2
(2.25) 5

OO

N
2 A7
j=1

L2
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where, in the last step, we applied Young’s inequality for products, and then interpolation.
Combining (2.13), and (2.17) (2.16) with (2.25) and inserting these inequalities into the en-
ergy identity (2.9), we obtain

N

Z ||Y ||L2+Z||VY lle+

jl j=1

N
+m2 Y113,

L? j=1

(2.26)

N
<CRY+ Y _1Y17,C(1 + Ry + RY).
j=1

The estimate (2.23) now follows from Gronwall’s inequality. [J

REMARK 2.6. For the estimate of 1 N 1 Y ||2L2 in Lemma 2.3, the dissipation term
(B N ZN 1 Y2||22 could be used to aV01d Gronwall s lemma. However, for Z 1Y 112 72 Or
v Zl: I1Y; || for p > 2 it is less clear how to exploit the corresponding dissipation term

and we need to use Gronwall’s inequality to derive a uniform estimate. Since the Rlzv, R;’V
appear in the exponential, this makes it unclear how to obtain moment estimates directly.

3. Global solvability of the mean-field SPDE. In this section, we develop a solution
theory for the mean-field SPDE (1.6), the renormalized version of the formal equation (1.5).
In two dimensions, this is a singular SPDE where the ill-defined nonlinearity depends on the
law of the solution. As a result, we cannot proceed via pathwise arguments alone as in [20]
and [53] and we need to develop a few new tricks for both the local and global well-posedness.

We begin by explaining our assumptions on the initial data and our notion of solution to
(1.6). The initial datum v; decompose as {; = z; + n;, where E||z; ||Z_K <1 for k > 0 and
every p > 1, and E||n; ||‘z4 < oo (except for Lemma 3.4 which is an L? estimate). We define
W; to be a solution to the renormalized, mean-field SPDE (1.6) starting from v; provided that
V; = Z; + X; holds, where Z; is the solution to (2.2) with Z;(0) = z; as in Section 2 and X;
is a random process satisfying

3.1 LXi=—px;(Xi +Zj), Xi(0)=n;.
Here, 1 x, depends on the law of X; and is defined as

wx, € E[X?] +2E[X; Zi] + E[ : 2% ].
In the following, we write p for py, for simplicity.

We now comment on the meaning of the nonlinearity in equatlon (3.1). Recall from Sec-
tion 2.1 that Z; € C™* (Lemma 2.1), while E[ : Z2 1= E[(S:Z:)?] with Z; = z; — Z;(0), so
by Schauder theory we expect that X; is Holder continuous. Hence, we anticipate that E[ X l.z]
is a well-defined function, while E[X; Z;] is a distribution satisfying for > 0 and 8 > «,

|EIX: Zi1(0) | ¢« SE[Xi O] s | Zi ] e -

We immediately find that all terms in u(X; + Z;) are classically defined in the sense of
distributions except for E[X; Z;]Z;, which requires more care and a suitable probabilistic
argument. The idea used to overcome this difficulty, which is repeated in different ways
throughout the section, is to view the expectation p as coming from a suitable independent
copy of (X;, Z;). To avoid notational confusion, we now comment further on our convention
throughout this section. We consider equation (1.6) for a fixed i and when we write (1;, z;)
for j #i we mean an independent copy of (n;, z;), and we then write (Z;, X ;) for the solu-
tion driven by white noise &;, which is independent of &;, from initial data (z;, n;).
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3.1. Local well-posedness.

LEMMA 3.1. For p e[l,o00]and 0 <k < s, it holds
1 1
(3.2) |ZiELZi Xi)] o, < (BN, )2 (B[ ZiZ): g | Zi)).
Here, the conditional expectation is on the o -algebra generated by the stochastic process Z;.

PROOF. Letting (X, Z;) be an independent copy of (X;, Z;) we have
Z,E[Z; X;1=ZE[Z;X;|=E[:Z;Z;: X; | Z;].
We then use Jensen’s inequality to find
| ZBIZ; X g, <B:ZiZj: Xjllgox | Zi) <E[I:ZiZj: e 11X I8 ., | Zi].

where we used Lemma A.3 in the last line. The claim now follows from conditional Holder’s
inequality and the independence of X ; from Z;. [J

We now apply the above result to obtain a local well-posedness result for (3.1), which
yields in turn a local well-posedness result for (1.6).

LEMMA 3.2. There exists T* > 0 small enough such that (3.1) has a unique mild so-
lution X; € L>(S; Cy+L* N C((0, T*1; CP)) and for B > 3k small enough, y = B + %, one
has

E| sup |X;l%s | <1.
[te[O,T*] l Cﬁ]

PrROOF. For T > 0, define the ball

def

Br € {X; € L@, C((0,T1; CF)) | B[ sup 7[[Xilgs] <1, Xi(0) =i,

tel0,T]

Here, we endow the space C((0, T']; C#) with norm (Sup;eq0.77 24 ||f(t)||éf,)1/2.
For X; € By, define M7 X; : (0, T]— CP via

t
M1 X;(t) :='/(; St_sE[Xiz +2X;Z;+ 2Zi22 ](Xl' + Z;)ds + S;n;.

Using Lemma A.4 and Lemma A.3 noting 8 > «, we find that
|M7Xi (@) — Sini| s

4 _ Btk
< /0 (t — )~ T |EIX; Zi1Zi | v ds

t Btk
+/O (IEX?|cs + |E:Z7: | op + (0 — )7 2 |ELXi Zi]| o) | X ll o ds

s [0 (B o + B2 o)1l dedeMf)-

We start by applying Lemma 3.1 to obtain the pathwise bound

1

! Bk 1 1
Jl(z>sf0 (t—)""7 (ElIXillgs)2 (B[l :Zi Zj: g | Zi])2 ds

' 3 ! Btk +2u’
S (€[ swp (%5212 Ol 1)) =055 5 as
rel0,t] 0
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for ¥’ >k > 0, which is integrable provided 8 <2 — k and y < 2 — 2«’. We may now apply
Lemma 2.1 to find that

E[i(0]° SE| sup ("] :ZiZ;: ()| o) |27 PHE20) g 2 (Bt

sup
rel0,t]

Before estimating J,(¢) and J3(¢), we make three observations. First, note that by Jensen’s
inequality and Lemma A.3 it holds

|EX?] s SE[IXilZs] Ss77.
Furthermore, using again Lemma A.4 we find
|E:Z7: s <E[(Si2)?os <ENSiZillgs S 570,

Finally, note that by Lemma A.3

1

[ELX: Z) o SEQIX el Zille <] S (BQIXi 12 )2 (B[ Zi012- )2 S5 %

Inserting these three bounds, we find the inequalities

R

t Btk
Jz<r>§,/ (577 45~ 1 (0 — o~ 5 5) 1 Xi s s,
0

t Btk
1) < / (t — )5 (577 4 5~ B+) | Zy]| o d.
0

Squaring and taking expectation, we find

E|J2(t)|2 SV (127 4 2B | 2= (Bt
E|J3(0)|? < (2 B2 4 2308400

Under our assumption on § these are all bounded by ¢~ . Finally, note that by Lemma A .4
and the embedding L*C C_% , wWe obtain

_ 1428
(3.3) ISinllcs St * lInliza.
Combining the above estimates, we can find 7* small enough to have
E[ sup [MrXO]es] <1,
1€[0,7%]

which implies that for 7* small enough M7+ maps B+ into itself. The contraction property
follows similarly. Now the local existence and uniqueness in L%(2; C((0, T, CP)) follows.
Furthermore, we know f(; S;_s (X (s) + Z(s)) ds is continuous in C# and S;n; € CyL*. The
result follows. [

3.2. Global well-posedness. We now extend our local solution to a global solution
through a series of a priori bounds, starting with a uniform in time on the L(2; L?) norm of
X; together with an L2($; LZTHI) bound.

LEMMA 3.3. There exists a universal constant C such that

2
sup B[ X[, +EIVXill2, o+ [EX] |72, + mEIXi]7,
tel0,T] T r T
(3.4)

T
gc/O Rdt + Ellni |2,

where, for i # j we define

2
RE 1+ (BIZI2-)™ +E|:22Z;: | + C(EI :Z;Zi: 12-.)" + C(E] :Z2: | o).
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PROOF.  The proof is similar in spirit to the proof of Lemma 2.3, proceeding by energy
estimates.

STEP 1 (Expected energy balance)

In this step, we establish the following identity:

1d 2
(3.5) 5EEuxi 13 + EIVX;i 17, + |EX? |2 + mEIX; 5, = 1"+ P+ I,

where

I'EE(X;, :2:2%),

def
(3.6) P S E(X], :Z3: )+ 2E(Xi X}, Zi Z;),
3 def 2
1P < 3E(X?X;, Z)).

Testing (3.1) with X;, integrating by parts and using that X;, X; Z; and :Zl-2: are respectively
equal inlaw to X;, X;Z; and :Z?: we find

1d

5 X2 + IV XG5 + ml X2 + | XPEXF

=—(Xi. ZiE(: 25 ) — (X7 E(:Z25:)) — 2(X;, ZiIE(X, Z)))
—2(X7. E(X; Z))) - (X;E(X3). Zi).

Taking expectation on both sides, using independence, and the fact that XiZX jZ; has the
same law as X?Xi Z; we obtain (3.5).

STEP 2 (Estimates for 1)
In this step, we show there is a universal constant C such that

1 2 2
(3.7) 1" < J(EXZ| 2 + EIVXilL) + C(1+E| 2 Z3: ).
To prove the claim, we apply (2.7) to have
" SE[XG IV XS+ 1 Xl | 25 Zis [ s

Hence, (3.7) follows from the inequality E| X; ||i1 < ||EX i2|| 12 and Young’s inequality with
exponents ( z2 2 2) and (2, 2).

I—s’5s°

STEP 3 (Estimates for I2)
In this step, we show that there is a universal constant C such that

1
58 I < L (BIVX;|7 + [EX1) + C + C(EI :2;Zi: &)
. 4
+C(E[:Z5: )™

Using again (2.7), Young’s inequality, Holder’s inequality and the independence of X; and

X; we obtain
EXiXj, :Z;Zi: ) SE(IXi Xl + IVXi Xjllp + 1 XiVXjlip) 2 ZiZi e

S
SEXill 20X 12 + IVXill 21X 1 2) 2 Z5 Ziz e

3.9
1/2 1/2
SEIX15ENX 12 +EIVXAZEIX 12.) (Il :Z; Zi: 12-)"

S (|BX? |70 +EIVX: 12 |[EX3] 1) 2 (Bl :Z; Zi 11e-) ">
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Similarly, using this time independence of X 12 and :Z?: we obtain
E(X7. .23 ) SE(IXP 0 + IVl 21Xl 2) | 25 e
(3.10) = (|EX?| 1 +EIVXill 21 Xill 2) E] :Z5: o

1/2 1/2

S ([EXF] 0+ (BIVXi|72) p

[EX2|V2)E] 22 ..

To obtain (3.8), we use Young’s inequality with exponents (2,2) and (2, 4, 4) for both (3.9)
(3.10).

STEP 4 (Estimates for 3)
In this step, we show there is a universal constant C such that

s+ 1).

2
—

(3.11) < %(Euvxiniz + |EX?|3.) + C((El1Z;1%-)
To this end, we write
1 SE(IXPXG ] IV X ) 0+ XX 1) 125l
S EIXX | Zjlle) T EIVEX ) 1Z)e)" +EIXEX | 12l
By independence and Hoélder’s inequality, it holds that
E|X?X; | 11Z)llc—s < [EXTE[IX 1 Zllc-]] 1
(3.12) SIEXF] 2| (EX5) 2 (E1Z;1E-) 2,2

1

SIEX?] 2 (EIX;12)2 (BIZ;12-) ",

1
where we used that || (EX?)I/z 2= ||EX§ 17, = ElX; ||§2)%. Furthermore,
E|XPVX;|1Zlcs = [EXFE(VXIIZ )

< |EX?| 2 |E(VXZ)lics)] 2
(3.13) ) 2l 2 L
<[EX;| 2 |(EIVX;17)2(ElZ)lic—s)? 2

< IEX?] 2 (EIVX;12,) 2 (®)1Z12 ).
Similarly, note that
EIXiX;VXillplZjllcs SEIXi Xl 2(IVXill 21 Zjllc)
(3.14) S EIX:X,17) " (BIVXIENZ le-)'
S IEXE] 2 (BIVXGIT) (BN Zj11E ) ™.
Combining the above estimate, we arrive at
P S [EXE 2 (BIVX13)* (BIX2) 7 (BIZ;13-)°

1 1

(3.15) + [EX?] 2 (BIX172)° (BN Zjl1g—)?
3—s s 1 3 1
SIEX?] 5 (BIVXill72) (BIZ)l—)? + [EXF [ (BIZ)lIE-)?

Applying Young’s inequality with exponents (32, 2, 1), we arrive at (3.11). O
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In Section 4, we will study the large N limit of (2.1) by comparing the dynamics of each
component to the corresponding mean-field evolution. To control the equation for the differ-
ence, we will need a stronger control on X; than the L? type bound obtained above. In the
following lemma, we show that L” bounds can be propagated in time, which will turn out to
be a necessary ingredient in Section 4.

LEMMA 3.4. Let p > 2 and assume that E||n; ||Lp < 1. Then we have

~

S[‘SPTE”X||U+E|||X| T VX2 o+ [BIXGIPEX? 0 ST,
te

where the implicit constant is independent of i.

PROOF. Given p > 2, we fix s > 0 sufficiently small such that sp < % and % +s5 < 1.
We will perform an L? estimate: integrating (3.1) against | X;|P~2X; we get

1d _
EEEWNZ+QPJEM&WZWKVhrHWW#WﬂU+mEWNZ

(3.16) = —2E(E[X,Z;].|X;|") — E[E[X3]|1X;|P*X;, Zi) — 2E(E[X,; Z;1Z;. | Xi|" > X;)

+E(E[:23: ). 1X:|?)+ E(E[ : Z}: ]X;|X;|P72, Z) = 25:

Set D& ||Xp 2|VX |2 ;1 and A = def ||Xl-pX%||L1. We claim that there is some R so that

T
(3.17) E1«:A+10ED+( [|X7],1]+C)R, with/o RS

STEP 1 (Estimate of 1)
Using Lemma A.5, we have

L SE[XGXP P IV G [ Z o] + BU X X 1 Zjlles ] =2 110 + 1.
Using
(3.18) 1% X0 |0 S AV2 XD 7

~

and independence, one has
1
1Y <E[AV[X] |71 Z)le-] < {5BA+ CE|X] | LB Z g

Regarding [ 1(1) , using Holder inequality and then Gagliardo—Nirenberg with (s, g, r, @) =
0,4,2, 1),

IV (XG1X1P) [ 0 < IVXG 21X 2 | Ja + 201X 2 X 2 | VIXG 12 2
SNXi 2 [ 11612 21X 11 + V/AD.
Since [[|X:15 151 < D? +|I1X;1% |l 12, together with (3.18) one has
1—s I1=s s s s s
LV SEAT X)) (D3XPIZ0X W0 + 1 X 1500 X515 + A2 D3)IZjlc]

1 1 p 2
_EEA+1OED+CE”X I (ElIX; || N Zjlic-s

+EMHHWZW“+EMHMIW
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where in the last inequality we used independence and Young’s inequality for products with
exponents (I—Es, 2, %) for the first and third term, and exponents (1—Es, 12?) for the second
term. Therefore, invoking Lemma 3.3 to deduce

T
/0 (E”Xj” NZjlg— +EIX; III“ 1Z; IIIH) sS 1,
which implies a bound of the form (3.17).

STEP 2 (Estimates for I5)
For the second term on the right-hand side of (3.16), we use Lemma A.2 to have

L =E(A (X3X;|Xi|"7%), A Z;)
SE[A G IXT 2 1472 ]
+ B[ XG] o A (X Xl ") e [ATZi] o]
="+ 1.

Using independence, ||AS(X§)“LP SHA Xl 720 11X 1720 by (A.1), and Lemma A.1(iii) with
sp <1,

B SENXNL A7 Zil < JBL A (X)) S (LX) + DEQIX 3]

Regarding I2 , by the interpolation Lemma A.2 followed by Holder’s inequality,

_ 11— 1
A2y SIVOGIXIP D o 171+ %07,
(3.19)

(1 3).17 1 S(sz) r—1

<D X]] N +HX;-”HLT-

By (A.2) with (¢, s,«, ) = (2p, 0, 8,2) with 8 efyp_ 1 and then Holder inequality

2(1— _
(320)  E|X3|,, SE[X;1200%,0158 7] < (E||Xj||H1) PEIX112)" 7
Recall from Lemma 3.3 that E[|| X || L2] < 1. With (3.19)—(3.20), using again independence,

and Holder’s inequality with exponents (%, %), together with Lemma 2.1, we obtain
@ 2 B ; PR
157 < (E1X; 1) ED)E[|X] ] A 2| 2]

+E[1X; 1307 (B[ X7 | L EIX; 12, + 1),

where 1 &ef a-1- —)2 - and clearly n < 1. The first term on the right-hand side can

p
be bounded by, using Young’s inequality with exponents (2, 5= ) and then with exponents

11

(7]’ l_n)’

2
2

1 -
ToBIDI+ CE[| X[, A "Zi| IR IELIX17]5

L
s T—

I 28

< DI+ CE|X] |1 + B A~ X E[1X; 13, )
By Lemma A.1 and Lemma 2.1, we easily find E||A™Z;||?.c <1 for every g > 1. Using
Lemma 2.1, and Lemma 3.3 noting that 28/(2 — 5) < 1 by our smallness assumption on
s > 0, we obtain a bound of the form (3.17) for /5.
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STEP 3 (Estimate of I3-15)
Using Lemma A.2, we obtain

L=E(A(X;X:|X;1P72), A™5(:Zi Z;2))

p—1

SE[ATCZiZi)] < | A X HmHX”HLl ]
+E[ATCZiZ)| o X I | A° (il XiP72) | e ] = B+ 1.

For 13(1), we use Sobolev embedding H! ¢ H », and Young’s inequality and independence to
have

1 — p
K SE[IAZ iz ] + {1 TELX 1)
For 13(2), we plug in (3.19):

—1

1(2)<E[(Ds/2”XP”(2p 2— sp)/(ZP)_i_”Xp”Ll )IX; lLr|A™5(:2Z; Z;: )“Loo]

Using Young’s inequality with (S ) 2 > p) and (2=

=T p), and Sobolev embedding,

157 < 1oED+CE||X"HL1E||X 157 B EIXY )+ CEIA™ 2,2 ).

For s > 0 small enough % + s < 1 so that 217_2% < 2, so Lemma 3.3 applies.
By (3.19), we have for € > 0 small enough

Iy + Is
SIEL:Z3: 1 EQIXill 7] + B[ :Z23: U e B[ A (Xi 1 Xi P 2) | 1 | A Zi | 1]

(1— )[’ 1 Y([7*2) _
' AT Zi o]

S IEL:Z: ) Bl X070 + H [:25: s LD 2T
+|E[:Z: ]| core E [||Xp|| ||A "Zi 1]
SEDIE[|X] 7,147z |50 e 2

it e
+ |E[:Z3: ]| core (BLIXNIT,] + 1)
1 14 2 % —s %
< EE[DHCEHIX,- I ]+ CIE[:Z5: | &El AT Zi| 1]
+ C|E[:Z3: 1] core (BLI XN, ] + 1),

for ¢ = 1/(1 — n). Combining all the above estimates and using Gronwall’s inequality, we
obtain the claimed bound. [J

We now conclude this section by combining our energy estimates with Schauder theory to
obtain a global Holder bound on X;.

LEMMA 3.5. Assume that E||n; ||L4

< 1. For B > « sufficiently small, y = B +
have

E| sup #[|X;i[Igs | S 1.
[te[O,T] e ]
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PROOF. Recall that X; satisfies the mild formulation of (3.1), which we write using our
independent copy (X;, Z;) as

t
Xi0) =S+ [ S B[X3 +2X,2,+: 2% (X, + Z) ds.

We start by applying the Schauder estimate, Lemma A.4, with § playing the role 8+ 1, § +«
and 8+« + %, respectively, to bound

| X () — Simi s
< [a—o B - ds

+‘/0 (t_s)*%”E[:Zf: [Xi +Z) | - ds

—i—/ot(t—s
+_/(;t(t—s

To estimate Jp, first recall Lemma 3.4 implies that

R ZAX o + B Z L 3)ds Y

(3.21) sup ||EX ||L2 sup ||Exi2||izg sup E|X;l7, S L,
tel0, [0,T] tel0,T]

which can be combined with the Sobolev embedding L? < C~! in d = 2 corresponding to
Lemma A.1 witha =0, p; =¢g; =2 and pp = ¢> = oo to find

d _BtL ! _ Bl
ns [fa= TR a1l ds S [0 =97 F 1Ko ds.

We now turn to J; and apply Lemma A.3 to find for 8 > k and k" > «
! _Btx 2 2
RS /0 (t—9)" 2 [|E[:Z}: ]|l e« I Xillcs + |E[ : Z5: ]| coc 1 Zill ¢+ dis

4 _ B i
sfo(t—s) T Xl ds + 121 ey

We now turn to J3 and J4 and use the Besov embedding B3 ,, — C~ k=3 ind =2 in Lemma
A.1. Let us begin with J3, which is simpler. Using Lemma 3 4 and Lemma A.1 and Lemma
A.2, we have

T vz < [Mraiy2 20 o [T el a2 w2\ T2
S VB s S [ RIX? goc Fas 5 [ B> (7)o ds
< ["E|aE? *d
SN [EA(X7)] 143] ds

(3.22) .
< /0 [EIX; | 1 1 X1 e ds

T
< /0 E[J1X; 112, JE[I1X;12,]ds < 1.

where we used (A.1) in the fourth inequality and Hdolder inequality in the fifth inequality.
Note that by Holder’s inequality in time which exponents (%, 3) and taking into account that
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%(;3 + % + k) < 1 for B small enough and using Lemma A.3 we find

T
J3 5/ [ELX;Z)1Zi |« ds

3
24d

(3.23) Nf B[ 13, 12 (E[I:Z:2: 1 | Zi)F

<1+/ [1:Z:Z;: 1% | Zi])0 ds

Here, we used Lemma 3.1 and (3.22). Finally, we turn to J4. By Lemma A.3 and Lemma
A.2, we deduce

2 1-2 1-2
IXillp2e S UXillga,  SUXily 11X || CSIXl Xl 2,
l+2/c 200
which implies that

/ ||E(XZ)||B « ds</

0

T
E[I1X; 2 1Zille-]

T
3(1-2
(3.24) /0 E[1X 18113072 23

/ (X120 ] +/ CaA +/ [1Zilo] S 1.

for some [ > 1. This combined with (3.22) and Lemma A.3 implies that

t _ BH2/3+x 2
555 [ @ =97 (B 2 gy X + [BIX g1 Z2l ) ds

t
s
0
For S;n;, we use (3.3) to have the desired bound. Combining the above estimates, using
(3.24), Holder’s inequality and Gronwall’s inequality, the result follows. [

Al pox 1 Xilles ds + 1 Zillepes

Combining the local well-posedness result and the uniform estimate Lemma 3.5 we con-
clude the following result.

THEOREM 3.6. For given Z; as the solution to (2.2) and E||n; ||‘£4 < 1, there exists a

unique solution X; € L3(2: C((0, TT; CHYNCrL*) 1o (3.1) such that
E| sup " X;llcs |+ sup EIIX 17 +EIXil?, ., S L
|:te[O T] Cﬁ:l t€[0, Lt L2H1

<1, p > 1, there exists a unique solution

~

In particular, for every ¥; € C™* with E||; ||€ "
; € L>(Q; C7C™) to (1.6) such that

E| sup 7|V — Zi|2| <1
|:te[O,T] l l Cﬁ]

for B > 3k > 0 small enough and y = % + B.
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4. Large N limit of the dynamics. In this section, we study the large N behavior of a
fixed component QDlN satisfying (2.1) with initial condition qbiN = yiN + le . Namely, under
suitable assumptions on the initial conditions, we show that as N — oo, the component con-
verges to the corresponding solution W; to (1.6) with initial condition ¥; = n; + z;. Recall
that by definition, QDZN = YiN + ZIN , where Y. I.N satisfies (2.3) and ZI-N satisfies (2.2) with ini-
tial conditions yiN and le , respectively. Similarly, ¥; = X; + Z;, where X; satisfies (3.1) and
Z; satisfies (2.2) with initial conditions y; and n;, respectively. We now define

def
oV YN

For future reference, we note that in light of the decomposition (cf. Section 2.1 for the defi-
nition of Z;),

ZN=Zi+ S - Zi0),  Zi=Zi+Si(zi — Zi(0)),
it follows that
(I)N—lIIl-:YiN—X,‘—{—ZI-N—Zl':UiN—FSz(ZlN—Zi).

1

Hence, our main task is to study viN and this will occupy the bulk of the proof. We now give
our assumptions on the initial conditions.

ASSUMPTION 4.1. Suppose the following assumptions:

e The random variables {(z;, r;,-)}f\’:1 are 1.1.d.
e Forevery p > 1, and every i,

E[ls) —zlg-]—0.  E[|y" —mifz:]—>0. asN oo,

1Y 1N
_ZHZI{V_ZiHE*K —-Fo, —ZHy,-N—mHiz —P0, asN— oo,
NS N4

where —¥ means the convergence in probability.

e Forsome g > 1, po > 4/(1 —4«k), and every p > 1,

| N q
E[| V2o +1zill2- ]S 1 Elmillf, S 1. E[ﬁ Sl ||%2:| <1,
i=1
where the implicit constant is independent of i, N.

The following theorem is our main convergence result, which in particular implies The-
orem 1.1. The proof is inspired by mean-field theory for SDE systems such as Sznitman’s
article [64], which as the general philosophy starts by directly subtracting the two dynamics
and thereby canceling the white noises, and then controls the difference. To this end, we es-
tablish energy estimates for the difference viN below; cf. (4.5) from Step 1. The key to the
proof is that for the terms collected in 7, I2N below we interpolate with C™* and Bj .1 spaces
and leverage various a priori estimates obtained in the previous sections; but for terms col-
lected in I3N , which are suitably centered, we interpolate with Hilbert spaces and invoke the
following fact (4.1), which in certain sense gives us a crucial “factor of 1/N:

Recall that for mean-zero independent random variables Uy, ..., Uy taking values in a
Hilbert space H, we have

2
4.1) E

N
>u
i=1

N
=EY U 1%.
H i=1
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This simple fact is important for us since the square of the sum on the left-hand side of (4.1)
appears to have “N? terms” but under expectation it’s only a sum of N terms, in certain sense
giving us a “factor of 1/N.”

THEOREM 4.1. If the initial datum (ZZN, yl-N, Zi, ;)i satisfy Assumption 4.1, then for
every i and every T > 0, ||vl-N lc, L2 converges to zero in probability, as N — 00. Moreover,

under the additional hypothesis that (le , yiN , Zis r],-)lN: | are exchangeable, for all t > 0 it
holds

(4.2) lim E[|o} ) — w072 =0.

PROOF.  The proof has a similar flavor to the Lemma 2.3, and in fact we will continue
to use the notation Rﬁv for i =1,2,3 for the same quantities. One additional ingredient re-
quired is the following instance of the Gagliardo—Nirenberg inequality (a special case of
Lemma A.2):

4.3) IglLs < Cliglyilgl,s.
In the proof, we omit the superscript N and simply write v; for viN throughout. Furthermore,
in Steps 1-5 we work under the simplifying assumption that le = z;, so that also ZZ.N =Z;.
In Step 7, we sketch the argument in the more general case.

STEP 1 (Energy balance)

In this step, we justify the following energy identity:

1d Y 2 Al 2 Y 2
5 o il Do Vil +m Y il
i=1 i=1 i=1

4.4)
| N , Iy 2 3 N
+ 5 2 Wil X =5
ij=1 j=1 L2 k=l
where
Ndef 1 al 2 .0 2
VS~ 3 @iy, 2 Zi )+ 0] 25 )+ 20]Y5 Z5),
i,j=1
N def 1 i
I =—— (vivj, (XiY; + GBX; +Y)Zi)),
4.5) N5
vt 1o 2 2
I8 =% Z ([:z7: —E:Z7: + X;(X;+2Z))

i j=1
—EX;(X;+2Z))|(X;i + Z), vi).

In the definition of I3N , to have a compact formula, we slightly abuse notation for the contri-
bution of the diagonal part i = j, where we understand Z; Z; to be :Z?: and :ZJZ.: Z; to be
’ l T . . . . . . .

We now turn the justification of this identity, and for the convenience of the reader, we
write the equations for ¥; and X; side-by-side as

1 N
(46) LYi=-— Y (Y4 YiZi+2Y,Z,Yi +2Y : ZiZj: +Yi 25 +:Zi 250,
j=1
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| N
LXi=— Y (E(X7)X: + E(X7)Zi +2E(X,; Z))X; + 2E(X,; Z;) Z; + X;E : Z7:
j=1
4.7) ! )
where we used that X ; and X; are equal in law. We now compare each of the first 4 terms in
(4.6) to the corresponding terms in (4.7). Note first that
2 2 2 2 2 2
Y;Y; —E(X7)X; =Y;Y; — X;Xi + (X; —E(X3))X;
= szvi +v;(Y;+X;)X; + (Xf - E(X%))X,-.
Similarly, we find
(Y? —E(X2))Zi = v, (Y; + X)Zi + (X} —E(X2)Z;,
2Y;Z;Yi = 2B(X;Z)Xi =20} +v; X) Zj + 2(X; Z; — B(X,; Z))) X
2Y;:ZiZjn —2B(X;Zj)Zi =2v;:ZiZj: +2(X;:ZiZ;: —E(X;Zj)Z;),
Y; ;ZJZ.; = :ZJZ-: + X; ZZJZC .

Taking the difference of (4.6) and (4.7), using the identities above, multiplying by v;, inte-
grating by parts, and summing over i leads to (4.5). Indeed, notice that each equality gives a
sum of two pieces, one with a factor of v and one without any factor of v, but with a recen-
tering. The terms which have a factor of v lead to / 1N and 12N , except for Y?v; and v iXiXi,
which lead to the two coercive quantities on the left-hand side of (4.5). The terms which have
been recentered lead to I3N .

STEP 2 (Estimates for /")
In this step, we show there is a universal constant C such that

< Z||Vvl||L2+— Z 1Y;0i17
'3l )

4.8) hI=

N
FC(1+ R+ Ry +RY) Y uil%,
i=1

where RIZv and R13\, are defined in terms of Z in the same way as in (2.14) and (2.18) and

e | S/
RY = (1 +=> IIVYjIIiz> (— > IIZiII%s),
N j=1 N3
with 1 > s > 2« and s small enough. Indeed, (4.8) follows from arguments identical to the
ones leading to (2.13) and (2.17) in Lemma 2.3, but with a different labelling of the inte-
grands, which we now explain. There are three contributions to / IN and each can be treated
separately. For the contribution of v;v; :Z;Z;: we argue exactly as for (2.15) but with v;v;
in place of Y;Y;. For the contribution of vi2 :ij-: , we argue exactly as in (2.16), but with vi2

in place of Y, l.2. This leads to the inequality

— Z (vivj, :Zi .,-:)—i-(viz, :ZJZ-: )
l] 1

%(Z IV; ||L2> c(1 +R%;)§:||Ui”%2-

i=1

4.9)
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Finally, for the contribution of vi2 Y;Z; the argument is similar as for (2.17). This leads to the
estimate

| NN )
_NZ<ZviY1vZ/>
j=1\i=1
1N N I—s N s N
SNZ<Zv?Yj V(Zv?Yj) + | Do viY; )nzjnc-s
410 j=1\lli=1 L! i=1 L! i=l1 L!
(4.10) AN R 2(1—s) N 2\ 1/2
2 2 3
SN(Z D oviY; V(Z%ﬂ') ) 2N
j=1lli=1 L! i=1 L!
1 /NN 2N\12
) 1
+N<Z > vty ) Z,
j=1lli=1 L

where Zy def 9’:1 Z; I2._, as in (2.18). By Holder’s inequality, it holds that

N /2 / N 1/2
§<Z||viY,~||iz) (vainiz) :
i=1 i=1

@.11)

N
Y vy
i=1

L 1
Furthermore, we find that

N

2 VY,
i=1

N
V(Z UEYJ->
i=1

S
1

_|_
1

N
ZVUivi Y;
i=1

L L Ll

N 12 /N 1/2
S i3IVl + (Z ||Vv,-||iz> (Z ||viY,-||iz>
i=1 i=1 i=1
N 172 /N 1/2
5( ||vl-||%,l> (Dmn;) IVYll2

=1 i=1

1
N 1/2 /N 1/2
+ (Z ||Vv,~||iz) (Z ||v,-Y,~||iz> ,
i=1 i=1

where we used (4.3) in the last step. Hence, we find that

2(1—s) 2s

N N N
S| in| ()
j=1lli=1 i=1 L!

N l-s / N s N s
< ( > ||v,-Y,-||iz) (Z ||vl~||%,1) ( ||vi||iz) (Z ||VY,-||iz)
i=1 j=1

i,j=1

N
>
i=1

N S/ N l-s / N
+<Z ||Vv,~||iz) (Z ||v,-||iz> (Z
i=1 i=1 i j=

Ll

2
Ivinlle)-

|
1
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Inserting this into (4.10), taking the square root and using (4.11) and Young’s inequality with

exponent (1 5 2) we arrive at

1 1
_N Z(ZUZYJ,Z <—<Z|| U,||L2+ Z ||Y U’”L2>
i,j=1 i=1 lj 1

(4.12)

+C(1+R3 + RSN)Z i 1175
i=1

Combining (4.9) and (4.12) and recalling the definition of IN we obtain (4.8).
STEP 3 (Estimates for 12N )
In this step, we show there is a universal constant C such that
2
(Z IVvill7. + — Z li¥il7. + H Z v; X )
l Lj=1 \/7 L2
(4.13)
3 4 5 6 1 g 2 o 2
+C(1+ Ry + Ry + Ry + Ry + ﬁZuxinm Yo lvillz2 |
i=1 i=1
where R,3V is defined as in (2.18) and Rj‘\, and R,6V are defined by
d f = 1Y =
()
Z X7 ) =D 1Zilgs
NI
| S/1 N
+{= 2 IVX05 ) (=2 1Zille— )
N j=1 N3

—S

df
( ZIIYIIL4) Ry

We break 12N into the separate contributions where v;v; multiplies X;Y;, X;Z; and Y; Z;,
respectively. For the first contribution, Cauchy—Schwarz’s inequality yields

— Z/v,vade

l] 1
<11 %/ 2Y2dx+C Z/ viX7d
=8N 4 g
i,j=1 l] 1
11 X 22 Y 2 1 Y 2
ST /vi Y,~dx+C<Z ||v,-||L4> (NZHXZ-MH)
i,j=1 i=1 i=1
11 12 / N 172 |
<—— Y uYili.+C levzllHl > il — > IXill74 ).
8Nl,]: i=1 i=1 Ni:l

where we used (4.3). Using Young’s inequality with exponents (2, 2) leads to the last contri-
bution to (4.13). The remaining contributions to 12N are more involved to estimate. Our next
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[

claim is that

3 N N 1 N 5
= . X, Zi )<~ \ZIP
N':l<leU1 j z>_8(;” Ul||L2+“J—ZUj

i =1
(4.14) /

+CO1+RY + R?V)Z i 13-
i=1

The basic setup is the same as the bound leading to (2.19) via the inequality (2.7) with

v Z?’:l v; X ; playing the role of g and Z; playing the role of f, followed by an application

of the Cauchy—Schwarz inequality for the summation in i. The left-hand side of (4.14) is then
2s'

bounded by
ol T
; X — :
v(wxun) ) (32)
j=1 L

Using Holder’s inequality in the form ||v; Z 1V Xl < llvill 2|l Z _, v Xl 2 together
with
N
V(vi Z vaj>
j=1 L!

N
ZUjX

j=1
N 1/4 / N /4 / N 1/2
1/2 1/2
+||v,||/||v,||/(va,-nig) <Z||vj||§,1> (Zuvxjniz) ,
j=1 j=l1 j=1

where we used (4.3), and inserting this into (4.15) and applying Holder’s inequality for the
summation in i together with

2(1—s")

U, Zvj

@15 > % (Z

s'efs,0} i=1 L!

= IVuille

L2

1 1
12,172 al 2 V(S 2\’
+ llvill 2 lvill Z”VUj”Lz lelelyt
=1 =1

1

21ms) 2 N ) TN >\

s s s

E lvill 2 vl il | < E lvill72 E il ) >
i=1 i=1

we obtain a majorization by

o] )
Hfz’ 2<i221||1||y i

1 N I-s / N
+| = 2o viX; ||v-||22)
\/N; I (; s

5

) 2,1 12
lvi ll71 —2ZN
H N

M

~1/N o\ 1 & ) LI 1/2
(Zuvium) (NZ||XJ||L4> (N5N>
i=1 j=1
1—s

| i i ) éi )\ li A FERRNT
= S x; ( ||vi||L2> ( ||v,-||H1) (— ||vxj||L2> (—ffN) .
‘/ﬁjzl i=1 i—=1 N N

L2

M=

1

=
%)

L2

Finally, we apply Young’s inequality with exponents (2, I—EY %) for the first term, (ﬁ, 55
34—5) for the second term, and (I—Es, 2, %) for the third term, which leads to (4.14).
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Similar to (4.14), we now claim that

| NN
NZ<ZvinYjaZi> (levvzlle-i-— Z lv: Y ”L2>
i=1

i,j=1

(4.16)

( ) RN)va,an
ke(3.5,6)

The basic setup is again similar to the bound leading to (2.19) via the inequality (2.7) with
Z?’:l v;v;Y; playing the role of g and Z; playing the role of f, followed by an application
of the Cauchy—Schwarz inequality for the summation in i. The left-hand side of (4.16) is then
bounded by

(4.17) > \/_<i

s'efs,0} i=l1

2s’ % 1 %
()’
L1 N

By Holder’s inequality and the Cauchy—Schwarz inequality, we find

N 12 / N 1/2
< (Z ||vin||iz> (Z ||v,-||iz> :
j=1 j=1

2(1-s")

N
Zviij]

j=1

N
> V(iv;Y))
j=1

L1

VY

L1
together with (4.3) to have

N
Y V(v;Y;)

J=1

L1

N /2 / N 1/2
< (Z llvi Y,~||iz) (Z ||w,~||iz>
j=1 j=1
N /2 /N 1/2
- ||Vv,-||Lz<Z ||v,-||i4) (Z ||Y,-||i4>
j=1

j=1

N 12 / N 1/2

+||v,-||L4<Z||v,-||i4) (ZHVYJ-niz) :
Jj=1 j=1

Inserting this into (4.17) and applying Holder’s inequality for the summation in i with expo-

nents (IITS, %) leads to a majorization by

3 /N ) N , L 1,2
( Sy, lle) (Zuvian> (anian) (N%v)
i=1 i=1

i,j=1

N N =N 5
2 2 2
( va,-Y,-an) (va,-an) (z||vj||L4)
i,j=1 Jj=1 j=I

ZIH

N NTT X NI
< (S Ivulzy) (= S, (—%v)
i=1 Nj:l N

l 1

[
+< éllleﬂliz) (valn,,l) (énv,-niz)j
(&

| 2 12
Zuwjniz) (N%v) .

Jj=1

2|~
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Note that for the third term we also took advantage of (4.3). We now apply Young’s inequal-
1ty w1th exponents (2, 1 =, s) for the first term, (1 - 125 = —) for the second term, and
(1 =, 5 2) for the third term, which leads to (4.16). Finally, combmlng (4.14) and (4.16) we
obtain (4.13).

STEP 4 (Law of large numbers type bounds: estimates for I3N )

For I3N , we obtain a bound in expectation in the spirit of the law of large numbers in a
Hilbert space to generate cancellations. To this end, we define

def

G; ¥ (X2 —EX}) +2(X,Z; —EX;Zp) + (: 2% —E:2%) €26 + 6P + GV,

‘We show there is a universal constant C such that

2 N
_ _ 1
IV <C(Ry+Ry) + < 5 2 il
2 P
(4.18) N e
4/(1=2 4
+C(Z||vi||iz)[ 14— Z X174 ”+HA‘XI~HL4)},
i=1
with
1
def Z G(]) + Z Z G(k) ’
HS  kef2,3) H—S
def 1Y (k)
D/
Ry = Z _22 ZG Zi ’
kef2,3} =1lj=1 Hs
1
def s 1—s
&2 (yoiaaln)
We write IV = Y3 _ 1( t J3 ) with
et 1 L[ & ) def 1 L[ Y )
I?{Yk:—z ZG] Xl',Ul', ‘I:{Yk:_z ZG] Zivvi'
N ! , N “ ,
i=11\j=1 i=11\j=1
We consider each term separately: For 13]\” |» we have the following:
N N ) 2
<Y 6P I x| =c ZG() ZX v;
’ N j=1 L2lli=1 L2 8N L?

For J3A” 1» we use (A.1), the interpolation Lemma A.2 and Young’s inequality to obtain

ekl

i=1

fﬁ[

i=1

N
J

j=1

N
A GE-I)

llvill 2 +

2 Iwulia 18~z
= L L
1/

N
ZG(I)

j=1

AR 1
+2Olevz||H1+C > (Z”Uz”Lz)(ﬁZ”A SZiHioo)
i=1

s’'€{0,s}
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For I3Nz, we have

N _
I3, =—

N
<AS > G, A“(X,'v,-)>

= 1=

IA
=z 0
g

2

c (& ?

2

Gy +N<;||AS<Xivi)||L2>
1=

j=1 H—s

N o | N
Y6 52 il
j=1 20

H*S

A

=1ie)

N N

1 s s
+c<§j||vi ||iz)(N S XA+ A X, H‘24)>,
=

1 i=1
where we used (A.1), (4.3) to have

1 (& ?
~ (;||A‘<Xiv,~>ﬂu)

(& , :
(4.19) S ﬁ(Z”AAXi | allvill g+ + | A% v; ||L4||Xi||L4>
i=1

2
<—<Z||v,||”2|| vl 2 A X, ||L4+Z||vl| ||vl|| |X,-||L4) ,

i=1

followed by Holder inequality with exponents (4, 4, 2), (pfﬁ’ ﬁ, 2), Young’s inequality
and finally Jensen’s inequalities for the terms with X; in the last inequality. For J;YZ, we have

ZG(Z)Z

j=1

J32~sz

| AN
+— v; .
2 20;:1 il

For I3N3, we have

3
Rxglze?]  +p(Timal)
j=1 H—S i=1
AN L
Sy ZIG? 2—2 lvi 12,1
j= H-S i=1

N N
1
+ (} juv,-n%z) (ﬁ ST+ | ax; ||}E4)>,
i=1

i=1

where we used (4.19) in the last inequality. For the last term, we have

1 N
I3 NNZ Z ZG“)Z 35 2 il
i=1

i=1lj=1
Combining all the estimates for I3 « and J3Nk, we arrive at (4.18). In the following, we cal-
culate E||Ry || Lh +E|R, vl LL- To this end, we recall the general fact (4.1) for centered inde-
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pendent Hilbert space-valued random variables. Applying (4.1), we obtain
5 )2 2)12 3) 2
E”RN”Ll §EHG§ )||L2THS +EHG§ )HLQTH—S +EHG(1 )HLZTH—S'

It is obvious that E|| G(3) 1% < 1. By Lemma 3.4, we know

L2H s~
T
BG5S [ BUX VX + X1 dr S 1.
T
(4.20) E[GP12: - < / E[I1Z112 0 | X111%:] dt
N/ E[IX1 12 + 1% 14.] + 1) dr < 1,

where we used Lemma A.2 and Lemma A.3. Therefore, E|| Ry ||L1T < 1. For R;v’ we have

22 ZG@Z

N2 Z EGYZ:. G Zi),-

i=1llj=1 H—* i,j =1
1
RE PRI
i=j=( i=j#l L=jF#i

SE|X1:Z% |3 +EIXy :Z1Z2: 13-,

where we used independence to have ), i, = 0. Similarly, we have

)

Combining the above two estimates and using Lemma 2.1 and the same argument as in (4.20)
with Z; replaced by :Z{Z>: and Z1 , we obtain E||R ||L1 1.

STEP 5 (Convergence of v; to zero in Lz(Q))
We now combine our estimates and conclude the proof of (4.2). Namely, we insert the
estimates (4.8) and (4.13) into (4.5) and also appeal to our bounds from Step 4 to obtain

qn

2

dt§ lvill72
i=1

N 2

>G5z

2 2
SE|:Z3: [ + B[220 [y
H*S

4.21) <C(Ry +RYy)
N
+ c(1 + ZRN + Z 1X 14 + At ||‘£4)) >_lvillga,
=2 i=1 i=l

where Ry + Ié;v is uniformly bounded in LI(Q x [0, T]). Furthermore, by Lemma 2.1,
Lemma 2.3, Lemma 3.4 and (4.3), we deduce also that ij is uniformly bounded in
LY (2 x [0, T]) foreach i = 2 , 7. By the Gagliardo—Nirenberg inequality in Lemma A.2,

we have for s > 2«, r > 4, 1 7= 2 + L= SONAS Xl | X; || S XG ||4(1 =) , which combined
with Lemma 3.4 implies that

L4f\J|

T 1 N L
E/ ZHXHI2S+||A‘YXi||i4)dt§E/(; ¥ (Xl 1% TS+ 1 < oo
i=1 -
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We now divide (4.21) by N and use the above observations together with Gronwall’s inequal-
ity. Note that in light of Assumption 4.1, it holds that

1 N
(4.22) v > v ] 72 —Fo.
i=1

It now follows that

sup — Z lvill7 + — Z 19172 4

t€l0,T]

(4.23)
2

ZX vj

converges to zero in probability by Lemma 4.2 below. We now upgrade this from conver-
gence in probability to convergence in L'(€2) by bounding higher moments and applying
Vitali’s convergence theorem. Only in this part we use the condition that the initial condi-
tions (le , yiN , Zis Ui)lN: | are exchangeable, which implies that the law of v;(¢) and v;(?),
i # j are the same.

Indeed, first note that sup, g, 7 % vazl I1Y; ||i2 is uniformly bounded in L7(<2) for ¢g in
Assumption 4.1 by Lemma 2.3. Additionally, by Lemma 3.4, Jensen’s inequality and the
fact that X; and X; are identically distributed (which follows from the i.i.d. hypothesis in
Assumption 4.1), it holds

Z 1Yjvill72 2+ <3 N2

2712
ljl LyL

1 2
sup sup E(—Z||X,~(t)||iz> < sup E||X1(t)||iz<oo.
N=1ref0,71 \N 5 1€[0,T]

Notice that at this stage we are appealing to the assumption E||#; || i‘},o < 1 in order to meet the

hypotheses of Lemma 3.4 and deduce the final step above. Hence, by the triangle inequality
we find that

up sup E( vamnu)

N=>1t€[0,T]

which implies the following convergence upgrade: % Z,Nzl lvi (t)||2L2 converges to zero in

L'(Q) foreach € [0, T]. Finally, we appeal once more to the first bullet point in Assumption
4.1, which is designed to ensure that v; and v; have the same law. As a consequence, we can
now pass from empirical averages to components in light of

1 N
(4.24) E|vi(0)]3. = ~ > E|vi(1)]7. — 0.

STEP 6 (Convergence as a stochastic process)

The proof is largely the same as above, except that we do not estimate v; by an average
over i as in (4.24), since a supremum over time would not commute with a sum over i. Instead
we deduce the following bound:

1
Enviniz + Euvini[.
(4.25)

L2

Ry =, 1Y 5 1 2
=C{— TRy +N;nvium+m ;x_,-v,-
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+C(1+R + Y Ry+ Y R"—i— an 174
kef3,5} ke{3,4,7}

4/(1=2s)

+ (11X, + |AX; ||‘£4)>||vl-||iz

1 N
(4.26) +C(1+ R +RN+RN+RN+||X||L4 3 i3,

where all the “tilde R-terms” are defined analogously to their “untilde” counterparts with
slight tweaks:

R}Vdﬁf ! ,
. s
def 1 2/(2— def 1
Ry = ZH ZH LS, RRE Zn ZiZj |2,
S 2
def 2/(1— def =
Ry E iz, R E( ZHVY Ile> 1Zi 115

25
2

def - 5
Ry = <1+ ZIIX ||H1> (Zill¢= +1)

2
1 = s 1 2 5
+(g2v) XL+ (2w ) 1l
S 2
df = df 2/(1—s
RS, ( ZIIYIIL4> 1Zi&s, Ry E Az,

where %y is as in (2.18). In fact, all of the terms are similar as above except the following
two terms:
N

1 g 2
_N Z/X,-vajvi dx — N Z(X,-vjv,-, Zj) = J] + Jz.
j=1 j=1
The term Jj is treated differently than above, since without the sum over i we could not move
it to the left-hand side as a coercive quantity. We have

1 N 22 1 ul 2y2
=y 3 [ixtane 53 [oixar
j=1 Jj=1
1 N
—C<NZ |v,||L4)||X 174+ Cllvilizan ZIIX I7s
j:
| N 12,1 N 1/2
co(ynmmn) (yXmi)
=1 j=1

1 1 & 2
+ = lillz + Cllvill3a (= S 1X51134 )
8 N &
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which by Young’s inequality deduce one contribution to (4.26). For the second term, we have

1 1
/\ 2 1 2
2(1— 2
4.27) ns Y ( Z Erdk S)HV(vivai)HLs]> (NEXN> .
s’'€{0,s}

Using Holder’s inequality in the form |lv;v;X;[l;1 < [lvill;2llv;Xill > together with the
bound for the ﬁrst}erm in J;, we obtain the estimate for s’ = 0 in J, which corresponds
to the last term in R;‘\,. Moreover, we have

2 1/2
lvill

1
[V@iv X 1 < IVvill 2l Xill 2 + llvil 2 ; IVl 11Xl s

1/2 1/2 1/2 1/2
ol vl s 1 o 1 IV X e,

and inserting this into the term s’ = s in (4.27) and applying Holder’s inequality for the
summation in j leads to the following:

1 N\ 1\l
(ﬁ 3 v X ||L2> il il (5 2v)
j=1

12
2(1— 1—s/2 2 1
( vajx 12 ”uv,-uz,;l) EPSETIHEAAEEN

1/2

2lms) 1/2 1 1/2
( Zn 0 X% ||vj||;,1||vj||;2> VXl oy (5 20)

Finally, we apply Young’s inequality and obtain the contribution of ﬁ?v in the estimate (4.26).

Using the fact that (4.23) converges to zero in probability, we deduce the L' (0, T') norm of
(4.26) and the right-hand side of (4.25) converges to zero in probability. Then by Gronwall’s
inequality and Lemma 4.2 imply sup, o 7 [lvi () ||i2 — 0 in probability, as N — oo. In this
step, we see that we do not use the condition that the initial conditions (le , yl-N » Zis 77!')1(\]:1 are
exchangeable.

STEP 7 (General initial datum) To this end, define u; def St (le — z;) and note that we have
the following extra terms:

=—— Z v+ 20 Yiu g, v) + 2Yv, 2N 2V 22,250 )
l] 1
N2 52, .7N N2 | 2.
+(Yivi, 1 Z% = Z5 )+ v, 120 200 =1 2250 )]
These terms could also be estimated similarly as that for IIN and 12N by using [|uillcs <
s+ 2||zfv — zi|lc-«. Since the proof follows a similar line of argument as in Steps 2-3,
we place the details in Appendix D. [

We recall the following result from probability theory, used in Steps 4 and 6 of the above
lemma, which can be deduced with elementary arguments.

LEMMA 4.2.  Let {UyN}}_, be a nonnegative sequence of 1d random variables converg-
ing to zero in probability. Let {Vn}3_, be a nonnegative sequence of random variables with
tight laws. Then the sequence {(Uy VN3 _, converges to zero in probability.
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5. Invariant measure and observables. We now study the invariant measure for the
equation

5.1 LV =—E[V? - Z*|W + ¢,

with E[W? — Z?] = E[X?] 4+ 2E[X Z] for X = W — Z and & space-time white noise. Here,
since we are only interested in the stationary setting in this section, we overload the notation
in the previous sections and simply write Z for the stationary solution to the linear equation

(5.2) L7 =k,

and we consider the decomposition (slightly different from Section 3) X Ly — Z, so that
(5.3) ZX =—E[X*+2XZ|(X +Z), X(0)=W¥(0)— Z(0).

For the case that m = 0, we restrict the solutions W and Z satisfying (¥, 1) = (Z, 1) =0.
By Theorem 3.6, for every initial data

Y0)=yeC™"

with E||¢ ||£,K < 1 there exists a unique global solution W to (5.1). We immediately find that
Z is a stationary solution to (5.1). This follows since the unique solution to (5.3) starting
from zero is identically zero. Furthermore, we define a semigroup P;*v to denote the law of
W (¢) with the initial condition distributed according to a measure v. By uniqueness of the
solutions to (5.1), we have P* = P (P} for t > s > 0. By direct probabilistic calculation,
we easily obtain the following result, which implies that the implicit constant in Lemma 2.1

is independent of m.

LEMMA 5.1. For«’' >k > 0and p > 1, it holds that

sup E[IZ; ¢, -] + sup E[Il - Zi Z;: lig, -] + sup Ef| ZiZ5 |2 el S

m=>0 m>0

where the proportional constants are independent of i, j, N.

PROOF. By a standard technique (cf. [34]), it is sufficient to calculate

E|A,Zi(1)|* < Z/ 6(271k)?|e 20— IKm) | g < ™ pa

keZ? keZ?

1
|| (&[> +m)’
where A, is a Littlewood—Paley block and 6 is the Fourier multiplier associated with A, .

From here, we see the bound is independent of m. Other terms can be bounded in a similar
way. [

For R?v defined in (2.24) with Z; stationary, we have the following result.

LEMMA 5.2.  Forevery g > 1, it holds that
(5:4) E[(R})] < 1.

PROOF. Since we will have several similar calculations in the sequel, we first demon-
strate such calculation in the case ¢ = 1. We have
2 N

— L Z E<A—S .22 Z A—S .ZZ Z )

_ 2 . jl L+ . ]'2 I .
L? i,j1,j2=1
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We have 3 summation indices and a factor 1/N2. The contribution to the sum from the cases
ji=ior jo=ior ji = jis bounded by a constant in light of Lemma 5.1. If i, jj, j, are all
different, by independence and the fact that Wick products are mean zero, the terms are zero.

For general ¢ > 1, by Gaussian hypercontractivity and the fact that R?\, is a random vari-
able with finite Wiener chaos decomposition, we have

E[(RY)"] SE[(RY)*].

For the case that ¢ = 2, we write it as

1 l - 2 - 2 - 2 - 2
— > EBATZ3Zi AT Z5 i AU 25 Ziy AT 25 2y ).
i1,i2, jk=1
=1..4
We have 6 indices i1, i7, jr, k=1, ...,4 summing from 1 to N and an overall factor 1/N4.

Using again Lemma 5.1, we reduce the problem to the cases where five or six of the indices
are different. However, in these two cases, by independence the expectation is zero, so (5.4)
follows. O

5.1. Uniqueness of the invariant measures. We now turn to the question of uniqueness
for the invariant measure of (5.1). Since the nonlinearity in the SPDE (5.1) involves the law
of the solution, the associated semigroup P/* is generally nonlinear, that is,

Prv #/(Pfé@v(dx/r),

for a nontrivial distribution v (see, e.g., [69]). As a result, its unclear if the general ergodic
theory for Markov processes (see, e.g., [21], [39]) can be applied directly in our setting.
Fortunately, (5.3) has a strong damping property in the mean-square sense, which comes to
our rescue and allows us to proceed directly by a priori estimates.

LEMMA 5.3. There exists Co > 0 such that for all

1
m > 2Co(Ell :Z2Z1: s + (BN Z11[7s) T + 1) := my,

there exists a universal C with the following property: for every solution V to (5.1) with
v(0)eC™,

(5.5) supe ¥ E|W () — Z(1)|% < C.
t>1

PROOF. The proof relies heavily on several computations performed in Lemma 3.3
where we used slightly different notation, so we will write X; instead of X and Z; instead of
Z for the remainder of this proof. Revisiting the first step of Lemma 3.3 where we established
(3.5), we find that 7! defined in (3.6) and the first contribution to 72 defined in (3.6) vanishes
in light of E(:Z3: ) = 0. It follows that

1d
S EIXI3: +EIVX I3, +mEIXi 12, + [EX?];

= —2E<X,‘Xj, Z,‘Zj) — 3E(X1X3, Zi)-
Furthermore, in light of (3.9) and (3.15), we obtain

1

E(X;X;. ZiZj) S (|EXF |10 +BIVXIT[EXF] ) (Bl 225 Zi: 1)

1

s l=s 1
E(X; X3, Zi) S [EX? | 2 (BIVXill72) 2 (B Xi1172) (B Zillg-s)?

1

1 1
+ |EX?| 2 (EIX125)2 (BN Z:i 122
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We will use these estimates in two different ways. On one hand, using Young’s inequality
with respective exponents (2, 2) and (2, 2, %) followed by Lemma 5.1, we find that

1d
(5.6) @ —E|X; IILz + EIIVX IILz + mE|[ X; IILz + ||EX2||L2 S
As a consequence, noting that |[EX 2||2 > (E| X;|| 2)2, applying Lemma A.6 it holds

(5.7) sul(t;(t ADE[|X:(0)]32] S 1,
t>

where the implicit constant is independent of the initial data. On the other hand, Young’s
inequality also yields

d L
(58) L BIXill[, +mEIXilL> < Co(Ell : Z2Z1: ligs + (BIZ1lig-) ™ + DEIXi[7.
Applying Gronwall’s inequality over [1, 7] leads to

" VE| X, (0|72 SEIXi (D],

so choosing m > mg, using (5.7), and taking the supremum over ¢ > 1, we arrive at (5.5). [J

We now apply the above result to show that for sufficiently large mass, the unique invariant
measure to (5.1) is Gaussian. To this end, define the C~'-Wasserstein distance

1/p
W (v, )= inf /—” d,d),
porv)y = int ([19 = il (g, dv)
where €' (vy, v2) denotes the collection of all couplings of vy, v, satisfying [ ||¢ ||é_1 v;i(do) <
oo fori=1,2.

THEOREM 5.4. For mq as in Lemma 5.3 and m > mq the unique invariant measure to
(5.1) supported on C™* is N(0, %(—A +m)™Y), the law of the Gaussian free field.

PROOF. Recall that Z is a stationary solution to (5.1). Indeed, by definition, ¥ = X 4 Z,
where X solves (5.3). However, since X (0) = 0, the identically zero process is the unique
solution to (5.3). Hence, the law of Z, which we now denote by v, is invariant under P*. We
now claim that for m > my, this is the only invariant measure supported on C~". Indeed, let
v1 be another such measure, then modifying the stochastic basis if needed, we may assume
there exists v € C™* on it such that ¢ ~ v;. By similar arguments as in Theorem 3.6, we may
construct a solution W to (5.1) with W (0) = i. By invariance of v; and v and the embedding
L? <> C~! (cf. Lemma A.1), it follows that

W)(v, v1)* =Wy (P7v, Pfvi)’ <E[W(0) = Z0)]gr Se %

for ¢t > 1 by Lemma 5.3. Letting t — oo, we obtain v =v;. [

REMARK 5.5. Note that for the limiting equation £V = —uW + &, if we assume that u
is simply a constant, it has a Gaussian invariant measure N (0, %(—A +m+ ,u)_1 ). Assuming
v~ A0, %(—A +m+ )Y and Z ~ N(0, %(—A + m)~1), the self-consistent condition
E[W? — Z?] = u then yields

)
— :/"L
k%2(|k|2+m+u kP +m

and for  +m > 0 we only have one solution u = 0, since the left-hand side is monotonically
decreasing in u.
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REMARK 5.6. Changing the renormalization constant in (5.1) will alter the mass of the
Gaussian invariant measure. For instance, if we change the renormalization constant in (5.1)
to EZZ.ZS(O, 0) with Z; by the stationary solution to (d; — (A —a))Z; = &; with a > 0, one

invariant measure is Gaussian v défj\f (0, %(—A +m + o)1) with pg satisfying

=)
_ = Q-
kZZ:Z(IkIZerJrMo IkI? +a

Moreover, by the same proof of Lemma 5.3 and Theorem 5.4, for m + ug large enough, v
is the unique invariant measure. Indeed, let W = X + Z with Z the stationary solution to
L7 =—noZ + &, then X satisfies the following equation:

ZLX =—poX —E[X*+2XZ|(X + 2),

which is the same case as (3.1) with m replaced by m + .

5.2. Convergence of the invariant measures. As a consequence of Lemma 2.2, the solu-
tions (®;)1<i<y to (2.1) form a Markov process on (C~)N, which by strong Feller property
in [38] and irreducibility in [40], will turn out to admit a unique invariant measure, hence-
forth denoted by v". Our goal in this section is to study the large N behavior of vV and
show that for sufficiently large mass, as N — oo, its marginals are simply products of the
Gaussian invariant measure for W identified in Theorem 5.4. For this, we rely heavily on the
computations from Section 2.2 for the remainder Y, but we leverage these estimates with
consequences of stationarity. To this end, it will be convenient to have a stationary coupling
of the linear and nonlinear dynamics (2.2) and (2.1), respectively, which is the focus of the
following lemma.

LEMMA 5.7. There exists a unique invariant measure v on (CT)N 1o (2.1). Further-
more, there exists a stationary process (CDIN , Zi)1<i<N such that the components (D , Z; are
stationary solutions to (2.1) and (2.2), respectively. Moreover, E|| CIJIN (0) — Z; (0|2 I 5 1 and
for every g > 1,

1 N 5 q
(5.9) E<NZH<I>N(0) Z,-(0)||L2> <1

i=1

PROOF. Inthe proof, we fix N. Let ®; and Z; be solutions to (2.1) and (2.2), respectively.
By the general results of [38], Section 2, it follows that (®;, Z;)1<;<n is a Markov process on
(C)2N and we denote by (PtN )s>0 the associated Markov semigroup. To derive the desired
structural properties about the limiting measure, we will follow the Krylov—Bogoliubov con-
struction with a specific choice of initial condition that allows to exploit Lemma 2.3. Namely,
we denote by ®; the solution to (2.1) starting from the stationary solution Z; (0), so that the
process Y; = ®; — Z; starts from the origin. Using Lemma 2.3 and Corollary 2.4 with y; =0
together with Lemma 5.1 to obtain a uniform bound on ERy with Ry defined in (2.6), we
find for every T > 1,

T 1 N
(5.10) /O E(ﬁ;HY,-(I)H?{l)dt,ST,
T(1 N ) q
(5.11) E (— 6] 2> dr ST,
/0 N ;1 L
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where the implicit constant is independent of 7" and for m = 0 we used the Poincaré inequal-
ity. By (5.10), we obtain

T (1N ) r (1J 2
/(;E<N;”(Di(t)||c—x/2)+/o E<N;||Zi(f)”c—x/2>5f

Defining R" := % J§ PN dr, the above estimates and the compactness of the embedding
C~*/?2 < C~* imply the induced laws of {RTN }i>0 started from (Z(0), Z(0)) are tight on
(C~*)?N Furthermore, by the continuity with respect to initial data, it is easy to check
that (PIN )i>0 1s Feller on (C*")ZN . By the Krylov—Bogoliubov existence theorem (see [21],
Corollary 3.1.2), these laws converge weakly in (C™)*" along a subsequence #;, — oo to an
invariant measure 7y for (P,N )s>0. The desired stationary process (d>f.V , Zi)1<i<n 1s defined
to be the unique solution to (2.1) and (2.2) obtained by sampling the initial datum (¢;, z;);
from 7. By (5.10), we deduce

E™ | ®;(0) — Zi(0)|21 = E™ sup[B; (0) = Zi(0) o)

) 1 T 2
:Esngli)moo[F/O (Yi(t),(p)dt]

< i ! TEY-t 2 dr<1
_Timm?f() 1Yi ()] 51 de S 1,

where sup,, is over smooth functions ¢ with ||¢|| z—1 < 1. Similarly using (5.11), (5.9) fol-
lows. Finally, we project onto the first component and consider the map I; : S’(T?)%N —
S/ (T%HN defined through [1,(d, Z) = . Letting vV =7np o0 1=[1—1 yields an invariant mea-
sure to (2.1), and uniqueness follows from the general results of strong Feller property in
[38], Theorem 3.2, and irreducibility in [40], Theorem 1.4. [

REMARK 5.8. Using a lattice approximation (see, e.g., [32], [37, 73]), one can show that
the measure vV (d®) indeed has the form (1.2) (with Wick renormalization).

The next step is to study tightness of the marginal laws of vV over S'(T?)V. To this
def

end, consider the projection IT; : S (T?)N — S'(T?) defined by IT;(®) = ®; and let V"I =
vV oIl i ! be the marginal law of the ith component. Furthermore, for k < N, define the map
n® : 8" (TN — S'(T2* via TP (d) = (;)1<;< and the let v¥ VN o (D)1 be the
marginal law of the first K components. We have the following result.

THEOREM 5.9. {vN*i}Nzl form a tight set of probability measures on C™* for k > 0.

PROOF. Let (CI>lN ,Zi)1<i<n be the jointly stationary solutions to (2.1) and (2.2) con-
structed in Lemma 5.7. To prove the result, in light of the compact embedding of C™/2 <
C™* and the stationarity of CDZN , it suffices to show that the second moment of || <I>lN Ol g—xr2
is bounded uniformly in N. To this end, let YiN = cI>lN — Z;, which is also stationary and note
that

BloY 2= 2 [ Elof o) as
i C T )2 i C

T

4 2 4 (T N a2
< — E Zi —Kk d — E|Y: d .
= [ EIZO s+ 2 [ B @l as
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The first term is controlled by Lemma 5.1. For the second term, symmetry yields YiN and Y jN
are identical in law, which combined with Lemma 2.3 implies that

—f EHYN(S)HH]ds_Tf ZEHYN(S)HH,ds< E[/ RNdr]<c

where we used that by stationarity >/_, E|YN(T) |2, = YL, E|[Y(T/2)|12,. with both
being finite in view of Lemma 5.7. For m = 0, we also used the Pomcare inequality. [J

REMARK 5.10. Itisreasonable to expect that any limiting measure obtained in Theorem
5.9 is an invariant measure for (1.6) assuming only m > 0. However, this cannot be directly
deduced from our main result in Section 4 because we do not know a priori that any limiting
measure of vV is a product measure. This is problematic because the initial conditions for
each component of W; are assumed to be independent in Section 4. Nevertheless, we can
prove below that this is indeed true if m is large.

In the following, we prove the convergence of the measure to the unique invariant measure
by using the estimate in Lemma 2.5, which requires m large enough.
Define the C™-Wasserstein distance

12
(5.12) Wa(vr,v2)i= inf (f||¢>—z/f||é_m(d¢,dw>) ,

Te? (v,v2)
where €' (v1, v2) denotes the set of all couplings of vy, vy satisfying [ ||¢||%,K Vi (d¢) < o0
fori =1,2.

THEOREM 5.11. Let v =N (0, %(m — A)YY. There exist Cy > 0 such that for all m >
mj where

2
mi & CoEIZ1155 +E] 22 |25 + Ell 220 13 +1)

one has

(5.13) Wy (N v) < CN ™2

Furthermore, v,ﬁv convergestov X -+ X v,as N — 00.

PROOF. By Lemma 5.7, we may construct a stationary coupling (CDf.V ,Zi) of vy and v
whose components satisfy (1.1) and (2.2), respectively. The stationarity of the joint law of
(chN , Z;) implies that also YiN = CDZN — Z; is stationary. In the following, we freely omit the
time argument of expectations of stationary quantities. We now claim that

(5.14) E|YN |3 <cNT,

which implies (5.13) by definition of the Wasserstein metric and the embedding H' < C~*
in d = 2; cf. Lemma A.l. To ease notation, we write Y; = YiN in the following. By (2.26)
combined with the stationarity of (Y;); and (Z;);, we find

N

2

ZEHVY 17, +mZE||Y 17, + E
j=1 j=1

N
< CERY + E(Z Y1172 (Dw + Dzlv)>’
j=1
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where R, is defined in (2.24) and

515 Dy=C ( Zuz 2 L zu 2% |5 )

(5.16) Dy=cC ( 5 Z 1:Z;Zi: - )

i,j=1

Setting A def EDy and A défEH VAYAR ||2,S we may recenter Dy and Dzlv above and
divide by N to obtain

ﬁZEHVY )72+ m—A- Al)ﬁ ZEHYU)I\Lz+ <’>

Jj=1 Jj=1

<C— ER°+ E(Z{|Y(t)||L2(|DN—A|+|DN A1|))
j=1

2
1 ad )
<C—ERy+:— Z||Y,~||§2 +E|Dy — A +E|D) — Ay]*.
N 2N\ A
Form > A+ Ay + 1, using that ¥; and Y; are equal in law, we obtain

E|Yil}) < — ZEHVY 072+ m—A- Al)— ZEIIY 17
(5.17) J 1 J 1
§CNER9\,+E|DN—A|2+E{D}V—A1|2.

Using independence, we find

C
(5.18) E|Dy(1) — A" < —Var(IIlelc_s + || :z3: ||C_s) 5
To estimate D}v, wewrite M; j = || :Z;Z;: ”C*S —Ajfori# jand M;; = | :Ziz: ||%,S — A
and have

(o) o )

i,j=1 i=1j#i

2 2 )
=i Y. EWi ;M )+ 2 E(Miy)
NFEJLI#E]
1 2 1
< N + NQE(MI 1) N
where we used that for the case that (i, j, iy, j1) are different, E(M; ;M;, ;) = EM; ; x
EM; ;, =0.
Then we have
1
(5.19) E[D) — AP S —

N
Inserting the estimates (5.18), and (5.19) into (5.17) and using (5.4), we obtain (5.14), com-
pleting the proof. [l
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REMARK 5.12. Instead of assuming m large, one could alternatively consider arbi-
trary m > 0 and assume small nonlinearity. Namely, we could consider a nonlinearity
-+ :®2®;: instead of that of (2.1), and —AE[W? — Z*]W instead of that of (5.1),
for A > 0. By tracing the proofs of Lemma 5.3 and Theorem 5.11, we can easily see that
given any m > 0, there exists a constant Ao > 0, so that the statements of Lemma 5.3 and
Theorem 5.11 hold for any A € (0, Ag).

REMARK 5.13. Following Remark 5.6, with a change of renormalization constant
therein, we can write ®; = Y; + Z; with Z; the stationary solution to £ Z; = —uoZ; + &;.
Then Y; satisfies

> - 1N-2— 525 > 55 555 52, > 52

LY = —uoYi — N Z(Yle‘ +YjZl' +2YjY,'ZJ' +2Y Z; Z +: Zji i+ 2ZiZj1 )

j=1

wo o -
- T(Yi +Z;),

which is the same case as (2.3) with m replaced by m + o and an extra term 2” 0(Y; + Z;).

Here, the Wick product of Z is defined similarly as in Section 2.1. By the same proof of
Theorem 5.11, we know for m + g large enough, v (renormalized as in Remark 5.6)
converges to v and the other results in Theorem 5.11 also hold in this case.

6. Observables and their nontriviality.

6.1. Observables. In quantum field theories with symmetries, quantities that are invariant
under action of the symmetry group are of particular interest; examples of such quantities in
the SPDE setting include gauge invariant observables, for example, [58], Section 2.4. The
model we study here exhibits O () rotation symmetry and formally functions of the squared
“norm” ) _; CIDi2 are quantities that are O (N) invariant. Of course, such observables need to be
suitably renormalized to be well defined and suitably scaled by factors of N to have nontrivial
limit as N — oo.

In this section, we study the following two observables:

(LA (&N
(6.1) W;:cbi:, N:(;obi) L,

with ® = (®;)<;j<y ~ v for the invariant measure v to (2.1) given in Lemma 5.7. In this
section, we omit the superscript N for simplicity. These are defined as follows. By Lemma
5.7, we decompose ®; = Y; + Z; with (Y,-, Z;) stationary. With this, we define

1 Y def 2 2.
(6.2) s (Y2 +2Y,Zi4 : 22
NZ: «/—Z )
1 (Y Pl &
(6.3) N :(Z @%) S S (YVPYPHAYRY;Z5+2vE 2%
j— i,j=1
7272, . 2. . .
(6.4) ViZ7Z5 +AY ZiZT +AYY L2,

Here, the Wick products are canonically defined as in (2.4) with a; = E[ZiZ, -(0,0)], in partic-
ular,

6.5 272 gh_rf%)( ie _6aSZ'2,e+3a§) =7,
> SO T him (2, - ae)(Z3, —ae) G # )
e—0" " J:& € :
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REMARK 6.1. One could also define (6.1) in L? (vV) directly without using the decom-
position ®; = Y; + Z;. In fact, by similar argument as in [27] or [60], Section 8.6, one can
show that v¥ is absolutely continuous with respect to the corresponding Gaussian free field
U with a density in L? (D) for p € (1, 00). Since (6.1) with each ®; replaced by Z; can be
defined via L? (V) limit of mollification, using argument along the line of [57], Lemma 3.6,
we know that (6.1) can be also defined as L”(v") limit of mollification (essentially Holder
inequality), and they have the same law as the right-hand side of (6.2) and (6.3), (6.4).

In this section, we also consider Y;, Z; as stationary process with Z; as the stationary
solution of (5.2) and Y; as the solution of (2.3).

LEMMA 6.2. There exists an mg such that for m > mg and q > 1

(6.6) E[(é ||Yi||%2>qi| +E[(i 1117, + 1>q<é ||VY,-||22>] <1,

i=1
2
L2:|

PROOF. First, we observe that (6.7) may be quickly deduced from (6.6) with the help of
the inequality

N

17

N q
©.7) E[(Z Y1172 + 1)
i=1

where the implicit constant is independent of N .

N
NG
i=1

2
(6.8)

N
NG
i=1

To obtain (6.8), note first that

N N
< (Z ||Yi||§,1> (Z ||Y,-||§2>.
2 i=1 i=1

L

2 N
_ 2
= Z 1YiYilly2-
L2 i, j=1

N
Yt
i=1

Furthermore, by Holder’s inequality, (4.3) and Young’s inequality,

2 2 2
1YiYillze < 0YillzalYillze S NYill g 1Y 020 g 1Yill 2
2 2 2 2

S WYl Y5l + 1Yl 1507

Summing both sides over i, j and using symmetry with respect to the roles of i and j, we
obtain (6.8). The remainder of the proof is devoted to (6.6).

. . ... £
To shorten the expressions that follow, we introduce the quantities F' def f-vzl IVY; II%2 +

%H Z,N:1 Yl.2||%2 and U & lNzl |Y; ”22‘ Note that F and U are stationary, so we will freely

omit the time argument below. Our starting point is the key inequality (2.26), which may be
recast in terms of U and F' as

d
GUHF+mU < CRY +C(Dy + D})U,
where Dy and D }V are introduced in (5.15) and (5.16). Muliplying the above by U -1 we
find that for ¢ > 1 it holds
1d

;EU‘I + U 'F +mUY < CRYUI™ + C(Dy + D)UY



178 SHEN, SMITH, ZHU AND ZHU

As in the proof of Theorem 5.11, we now define A def E(Dy) and A défEH WAVAS ||2C,5.
Subtract the mean from Dy + D }\, and take expectation on both sides to find

E[UY'F]+ (m — A — A)E[UY]
< CE[RQUY™"] 4 CE[(Dy + D}, — A — A1) UY].

q
1

g-1
= C”R?\/HLq(Q)(EUq) T +C|[Dy - A+ Dzlv - A1||L11+1(Q)(EUq+l)q+

< C(EU%)'T + CN~*(BU7H)it,

where we used EU?(¢) = EUY(0) in the first inequality and we used a Gaussian hypercon-
tractivity upgrade of (5.18) and (5.19) in the last line. Using Young’s inequality, we may
absorb the first term to the left and obtain

69  E[UYF]4(m—A— A~ DE[U'] < C + CN H(BUTH)7H.

The strategy now is to first use the dissipative quantity on the left-hand side of (6.9) to obtain

E(U?) <CN qz;l, and then use the massive term on the left-hand side of (6.9) to iteratively
decrease the power of N and eventually arrive at E(U?) < C. Once this is established, plug-
ging the bound back into (6.9) completes the proof.

Indeed, first observe that F > N~1U? so that E(Uq*1 F)> NflE(Uq“). Hence, Young’s

inequality with exponents (g + 1, £11) leads to E(U?) < CN'T". Defining A, & EUY and
discarding the dissipative term, (6.9) implies

9
(6.10) AgSATINTP 41

We have A; SN ‘T, which gives
2 1
Ay SNT@FD 2 41,
Substituting into (6.10) and use induction we have for n > 1,
(6.11) Ay §N“"’q+1,
with a, ; = q(zq(;j_n)l) 100 +k) i Here, Y9_, =0 and the proportional constant
may depend on n. In fact we could check (6.1 1) by

Aq S (Nan.(ﬁ—l)qq?N_% + 1 S N[er—l,q + 1

For fixed ¢ > 1, we could always find n large enough such that a, ; < 0, which implies that
A; $1 and the result follows. Here, we emphasize that even if the proportional constant
depends on n, which is a fixed constant for given g, the bound for A, depends on g and is
independent of N as required. [

THEOREM 6.3. Let ® = (P;)1<i<y ~ vV and m be given as in Lemma 6.2, then the
laws of ﬁ ZINZI :CDl.z: are tight on Bi%K, and the laws of % 3(ZZN:1 6191-2)2: are tight on

-3k
Bl,l .

PROOF. Note that the first term «/LN Zf\’: | Yl-2 on the right-hand side of (6.2) converges to

zero in L?(§2; L?) as an immediate consequence of (6.7); so we can actually prove a stronger
result than stated, namely the subsequential limits can be identified with those of the last two
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terms in (6.2). We will now show that the other two quantities induce tight laws on B, g" ,
which implies the first part of the theorem. The second sum in (6.2) can be estimated using
Lemma A.3 and Lemma A.1 to find for s € (k, 2k),

1
by Zl Y1185, 1 Zi e
By5 1=

ZnYnBs + — Zuzncx
l 1

i=1

|

=

=z

N
21— 1
Y2517 175 ”+NZ||2,-||%7K
L Z

Mz

1115, +ZIIY lle+ an [

=1

which is bounded in expectation by a constant using Lemma 6.2 for ¢ = 1 and Lemma 5.1.
For the third sum in (6.2) we use independence to find for s € (k, 2k),

1/ X N ,
:EN<A SN ZE ATy izh: >:EH 7% ”B{% <1
i=1 i=1 ’

“fz z

By
By the triangle inequality and the embedding L? — B, 5 we find that \/LN ZlNzl :d>i2: is

bounded in L'(£; B, ) In light of the compact embedding 32 > CB, %" , the tightness claim
follows. ’

For the second observable, we will also show a stronger result: the subsequential limits
can be identified with those of the last three terms in (6.4). We start with the first 3 terms in
(6.3), which will be shown to converge to zero in L' (; By fs) for s > k. For the first term
of (6.3), we use Lemma 6.2 to obtain

450

i,j=1

N

2
E|Y v’

1

L!

9’

=

so this term converges to zero in L'(€2; L'). For the second term of (6.3), using (2.22) of
Lemma 2.3 with ¢ Z; in place of Z; we obtain

N
sup Z (Y?v;z;,
leleas <t NV ;524
11 N =N 5/ N 1/2
Sy (Z ||Y_,-||§z) (Z |VY,~||22> <Z ||zj||2cs>
P — 2 . — P
i=1 L= \j=1 = j=1
1 N S/ N 172
+— > (k) (Xnzie)
Nz L2 \j=1 j=1

Hence, using Young’s inequality we find for § > O small enough

N 2 N
“ Z Y?Y,Z; >y} +N_‘S<Z||VYJ-||i2>
i=1 L?

i,j=1 j=1

<N~7®
—2.
Bl,ls
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N | N =
*(Z ||Y,-||§2) (N Y NZjlig—s + 1) .

Both terms above converge to zero in L'(Q)asa consequence of (6.6), (6.7) and Lemma 5.1.
For the third term in (6.3), a calculation similar to (2.16) using Lemma A.3 with Y; replaced
by ¢Y; with ¢ € C* yields

1
sup

lollgas <1

i=1 j=l L2
(6.12) N N
(Zuvyn”suyu +HY2HL2) AT
i=1 j=1 L2
N s s | N
S Znnni,l) ZnYan — Y A :
i=1 Nj:l L?

where we used (A.1) and Lemma A.2 to have
[AS (V)] 2 S IAYi] allYill o SUVYE Nl + 1Yl
L

The first part of the product in (6.12) is bounded in LY(Q) by (6.6). For the second part of
the product, we use independence to obtain

2

1 Y _ 5, 1
Sz LEIATCZE ) S5

so together we find E||+ N i Y2 Z2 IIB—zA converges to 0.

We now turn to terms in (6.4) and derlve suitable moment bounds. For the first of these
terms, we have

le

1 - a 272 - N 272
—EW<A SN ZIZE AT Y 777

By} ij=1 ij=1

2 1 2
SE| 7373 [y + LB] 2 [ 51

~ =°

For the next term, using (2.25) with ¢Y; in place of ¥; we find

N
— Z (Y; :Z,~Z12~: . ®)

i,j=1

N 5 172 | NN
SOSTANES ) S
i=1 —1lli=1

N s/2/ N (1-5)/2 1
S (Z ||Yi||§,1) (Z 1Y, ||iz> (m >
i=1 i=1 i=1

sup
”‘p”ch <1

2 1/2
)
L2

N
Y AT(:Z3Z
j=1

2\ 1/2
>).
L2
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Using (5.4) and Lemma 6.2, we deduce for some p satisfying sp < 2,

Z Y;, :ZiZ5:

-2
1 Lj=1 Bl,ls

p
< 1.

~

For the last term, we argue similar to (2.13) but :Z;Z;: replace by ¢ :Z;Z;: for ¢ € C° to

deduce boundedness in L' (€2; B_zs)
Combining the above observations with the triangle mequahty, we find that the second
observable is uniformly bounded in probablhty asa By 1 ¥ valued random variable. By com-

pactness of the embedding of B 1 ¥ into By =3 for 8 > 0, we obtain the result. []

6.2. LP-estimate. Inlight of Lemma 6.2 and the Sobolev embedding theorem, it follows
that for each component i, E| ¥; ||% » $1, p > 1. Our goal now in this subsection is to upgrade
from the second moment to higher moments of the L” norm. We do so by revisiting the
energy estimates for the PDE (2.3). Since we work with a fixed component rather than an
aggregate quantity, these bounds come with a price: the estimate is no longer uniform in
N. Nonetheless, the power of N that appears is ultimately small enough for a successful
application of the estimate in Lemma 6.6, en route to Theorem 6.5.

LEMMA 6.4. Let m as in Lemma 6.2 and p > 2. For each component i, it holds

N
-2 2 1 2 2
EYilL, +E[Y/ IV + 5 DY YL S NP
j=1
where the implicit constant is independent of N and i.
PROOF. Fix a component i. Given p > 2, let s > 0 be a small number to be selected

(depending on p) in the final step of the proof. We will perform an L? estimate: integrating
(2.3) against |Y;|P~2Y; we obtain

1
;—||Y||Lp+<p—1>H|Y|P VY + ZH|Y|”Y2HLI+m||Y||L,,
j 1

1 Y 1 & 2 2
__2<N2szj’|Yi|p>_<NZYj|Yi|p_ Yi7zi>
j=1 j=1

(6.13)

1 & _
—2<NZYJ'IZJ'ZZ'2 ,|Yi|p 2Yi>
j=1

+<N >z |Yi|f’>+<ﬁ > iZiZ3 YilYl” 2> = I
j=1 j=1 k=1

Define D &' ||Yip_2|VY,-|2||L| and for each j, let A;

STEP 1 (Estimate of /;) In this step, we show that

f
Er? Y3,

1 1
6.14 L <—— Aj D+ C|Y;
(6.14) 1 < ONZ i+ 1P +Cl I}, F,
where

2/(1—
ZIIYII 1Zj12s + ~ an I+ 1
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In the following, we prove (6.14). By Lemma A.5, we have

1Y 1 _
LS~ Y Uil |l Zile=]+ < Sy %P | 2 IV [0 Z o]
N & N &

— 10 4 1@,

To estimate [/ 1(1), notice that the Cauchy—Schwarz inequality yields

(6.15) IVE17 )0 < 1000 ] 012 = A2
Combining this with Young’s inequality, we obtain
a 1 al Al2 1 al
I SNZ[ ||Y||Lp||z lc- —ONZ +C||Y||Lp an [
j=1 j=1

To estimate 1\, note first that V(Y;|Y;]?) = VY;(|¥;|2)? + 2Yj|Yi|%V|Yi|%. Hence, us-
ing Holder’s inequality followed by Gagliardo—Nirenberg (A.2) with (s, q,r, @) = (0,4, 2,
)

V) 4 4
IV IIP) [ UV Y G2 1Yi12 7+ 20518302 | 2| V1Yl 2] 12

SN2 [ 1Y 2] 200 1 + /A, D

Since [[1%i15 [l 1 S D2 + 11¥;1% 1|2, using (6.15) again and [[1Y;151|2 = [1%;17 11}/ yields

N _ s
‘Z)SNZ AT P DA Y51+ [P Y10 + A DI Z ]
<i—§ + D+l ZnYu 1Z512
S10N =70 L <
al 1+3 1+s 2/(1 5)
NZ YT IZAES + < lez [ )
1 N
—Oﬁg D+C||Y||Lp

where the second inequality follows from three applications of Young’s inequality. We

JE 2
view the summand in first term as Aj2 D3(||Y; 17115111 Zjlic-s) and use exponents
I=s p(i+s)
(li, %, 2). We view the second summand as A 2 (Yl Y || IZjlic-s) and we use
p(l )
exponents (1 <5 +Y) Flnally, the third summand is viewed as A D2(||Y l.0” NZjllcs)

and we use exponents (2, 2 - s)

STEP 2 (Estimates for /) In this step, we show that

Z YZYP

1
+ D+ C|Y;l;, + CFi,

(6.16) 10

I
2—10
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SP

Y; LI( ZIIY ||H1) 1Zi ||

12l +
L

1Y, 1Y
NZYJ ﬁ;

To prove (6.16), by Lemma A.5 one has

N
Z (Y7Y;1Y;1P72), Zi)

P

‘ ZY2Y|Y|” 2
j=1 L!
N

N Zv (Y7YilYi|P7?)
j=1

1—s
) | Zillc—s-
Ll

-1 1
Using the triangle inequality, writing YJ.2|Y,-|1”_1 = (YJ.2|Y,- |P )pT(sz)E and using Holder’s
inequality,

1 N
5 2 Yivii
j=1

L!

N |—

1 N
H ZY2Y|Y|1’ 2 ZY2|Y|P ‘NZY]Z
Jj=1 L! j=I1 L!
Another application of Holder’s inequality gives
r=2
61D VP e S IVHILT [T s = DY) T

Lr-1 Lp-2

For r > 2, using Holder’s inequality and the Sobolev embedding H' C L =) we have

1 N
”ﬁ 2 VYT

j=1 L
1 l 2 2 2
SN;HV(EIEIP W e Y7 IV YY1 2 ViY77

1 12 » 2 o2 2 201-9) 1
S 2 DY 17 12 + Dt ZnYnHl
j=1
I ¢ 2 ») 1/2 e
< (3 X0t Jamer Y - o )
j=1
1 1
where in the second inequality we used that || Y;|Y;|P~ 2||Lr:|||Y|2||Lq » for ¢ 2’(1;j D

and again the Sobolev embedding theorem. Combining the above estimates, we deduce

[N 1Y 2%
~ 2 Vil ~ 2V
j=1 j=1 Ll

p—1
P

1Zillc—s

1_;3 1 N s
Y; (— > ||Yj||3,,)
L! Nj:l

L1
(p—DHd-s)

1 N
H ZY2|Y|” 5 2
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-2

1) pP—<
DVl ) N Zill s

ZY2

x (1%l

1 N
0 NZYfIYiIP 1Zillg—s
j=1

1
+ogD+

L1

sp

( ZNWHW) HZH A CIYillE, + 1,
L1

1 N

¥ 'ﬁ 2.7}
Jj=l1
where we applied Cauchy’s inequality with exponents (%, p) for the first term and

(m, > S) for the second term.

STEP 3 (Estimate of I3-1s)
In this step, we show that

1
(6.18) Zlk_—D+ﬁﬁZ||Y2|Y|P||L1+C||Y||LPF2+CF3,
where
1
N T—s/2
def || 1 2
FR= NZ:.Z] B +1,
j=1 C
N % N 21p—x 2{)15
gt [ 1 1 (EONE =
BE(=D1:ZiZjlle— | +( <D 1:ZiZj e N 4
N & N & N &
1 N 5 p
j:l C—s

To prove (6.18), we apply Lemma A.5 to find
|
L= MY YIY|P2, Zi 20 )
j=1

1 Y B I -
<NZ(||YjYi|Yi|p 2| o+ 1YY 222 IV [0 ZiZg: lies.

By the Cauchy—Schwarz inequality,
) 1 1
[V 01%17 72 = [ ) Y2 0 S IYRYP L 11772 s
and by Holder’s inequality and the Sobolev embedding theorem,
VOGP ) 0 S IV 2+ VYY1l
p200—1)
SIVY 1Y 2] a0 +D“2H|Yi|P||L" 1Yjllzr,
L P

» 21— 1 2
SIVY 8 127+ D21 | T 1Y,
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where we used (6.17). Combining these observations and applying the Cauchy—Schwarz in-
equality for the summation we find

| N 172 (1 X
LS (ﬁ Z||Y}|Yi|f’||u> [17:17=217, (ﬁZ I:2:2: “2cs>
j=1 /=

12

N 1
»)
NZ IVY; IleHIleHHl HY,-2|Y,-|PHL1 Dk ZHU 1:ZiZj: s
1 N s s(p=2) ) 5
+NZDZ|IY|P||LIP IS Y2 D2, 022z s
j=1

3
= I
k=1

To estimate /31, we use Young’s inequality with exponents (p, 2, %) together with the
embedding L?P — LP~ 2 and this leads to the 1 in F» and first term in F3. To estimate I3,

we use Holder’s 1nequahty for the summation with exponents 2,2 R s) to find

2s( 1—s
Iazs\HYﬁHHl |||Y|P 213

| N s/2 | N L 1 N
x (ﬁ > ||w,-||§2) (N 2 Yf|Y,-|”Hu) (ﬁ > I:Ziz;: II%—S>

1/2

1 p 1

o2 1 N ) s/(1—=s) 1 N ) 1/(1—s)
+ 1Y 075 NZ”VY/”H NZn:zizj: [ :
j=1 j=1

where we used Young’s inequality with exponents (—< = m, ’S’ , ]2s’ 12 ) in the last step. The
estimate for /33 uses Holder’s inequality with the same exponents, followed by the Sobolev

embedding theorem to yield

s(p=2)

s 1—s
Ly SD2||Y;|P 1172 3

”Ll
1—s

1 N 5/2 | T/ N 1/2
X (NZIIYJ-H%,I) (ﬁ ZUY}IY,-V?”U) (NZ” ZiZj: ||2CS>
j=1 j=1 j=1

1

1 N
4_ _ONZ{YQYPHLI—’_”Y”LP

s/(1—s) 1/(1—s)

Y. p—2 1 o Y 2 V Y 1 y VAV 2 Y

+ 1Y 175 ﬁZII il NZII- iZj s ,
j=1 j=1

where we used Young’s inequality with exponents (2, =5 12 < T S) in the last step. Combin-

ing the above estimates, (6.18) follows for I3 by Young’s inequality with exponents (-2 5203 By,
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We now turn to I4 and note that V1Y [Pl 1 S IVIYi |51 211¥:1 2112 S DYV Y1712,
so that
1y,
14=<NZ: Zj‘,IYi|p>
j=1
1Y 2 1
—S S

N NZZZJ (Y12 o+ NP [ 2 VIX P ()
j=1 Cc
[ p(1=5/2) 1ys/2

S NZ:Z, _(||Y||L,,+||Y|| D*/?)

1

1—s/2
+ 1>||Y,-||ip,

C—s

C
< —D—}—C(H Z :ZJZ-:
=1

by Young’s inequality with exponents (2
mate /5 and note

), which implies (6.18) for /4. Finally, we esti-

s25

1 ¥ _ 1yl PN

Sly Xz |+ i v )l
j=1 Cc—s

s 7,72 (P=D1=) 38 1y ZT

S| 2z W15 + 1y iy, 7y ),
j=1 Cc—s

which gives (6.18) for /5 by Young’s inequality.
STEP 4 (Conclusion) We now insert the inequalities (6.14), (6.16) and (6.18) into the
right-hand side of (6.13) to obtain

1
||Y|| —H|Y|P 2\vy; I |+— H|Y|pY2H N andais
619y pdr UE L7 2n ]X; L Ly

<C(F+ F)|IYi|}, + CF| + CF;3,

where F and F, F, F3 are introduced in (6.14) and (6.16), (6.18). First, note that by Holder’s
inequality and Young’s inequality, it holds

1Yill7o(F + F2) < |Yill? .o (F + F2)

_P_
+2

(6.20) (N PNYP ) (NP2 (F + F))

2 P p+2
< Ly f eNE R+ B
and by choosing s sufficiently small depending on p, we may apply Lemma 6.2 and Lemma
2.1 to obtain
2
E(F+F)'" +E(Fi +Fy) S 1.

By a similar argument as in the proof of Lemma 5.7, we first obtain E||Y; (0)||? r SC(N).
In fact, we choose the solution ®; to equation (2.1) starting from the stationary solution
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Z;(0), so that the process Y; = ®; — Z; starts from the origin. Using (6.19) and (5.10), (5.11),
Lemma 2.1, we find for 7 > 1,

[N LGIE

which implies that E||Y; (0)]| ’L’ » S C(N) by similar argument as in the proof of Lemma 5.7.
Taking expectation on both sides of (6.19) and using stationarity of (¥;);, we find

mE|Y;||7, + E|||Y|f’ VY2 +—ZEH|Y|"Y2HL1
j=l1

<N2E(F—|—F2) S + CE(F + F3),

which completes the proof. [

6.3. Correlations of observables. Now we turn to study the statistical property of the
limiting observable, namely, we show that the limiting observables have nontrivial laws, in
the sense that although ®; converges to the (trivial) stationary solution Z; (and :<I>i2: —
:Zl.z: as N — oo for each i), the observables do not converge to the ones with ®; replaced

by Z;. We then write for shorthand

N N N N
621) LS 0?2 e EY ek, 22¥Y 72 z2 €Yy .z
i=1 i=1 i=1 i=1

The two observables in (6.1) can be then written as ﬁ :®2: and % :(<I>2)2: . We are in the
same setting as in Section 6.1, that is, we decompose ®; = Y; + Z; with (Y;, Z;) stationary
and we also consider Y;, Z; as stationary process with Z; as the stationary solution of (5.2)
and Y; as the solution of (2.3).

To state such “nontriviality” results, we consider the correlation function

1 1
Gn(x —2) :E[— (@7 (x)——= % (z)].
VN VN
This precisely means the following. For a smooth function g and a distribution F (such as
:®2: ), we write F(g) &f (F, g). Then for a smooth test function f the above correlation
function Gy is understood as

def LTSV ST S
G (/)& tim /E[—:@: e (x — 2)dz
/ T 0% () 9% 60) | £
for some mollifier p with pf(z) = 8‘2,0(%) and p{ — 8, as ¢ — 0. Here, by translation
invariance of vV, Gy (f) does not depend on x. We define the Fourier transform of Gy as
Gnk) =Gpn(e—r) with k € 72, with {er} the Fourier basis. For comparison, we first note
that

: 1 72, £ 1 72, ey | 2
for any N and x,z € T2, where C = %(m — A)~!, which follows from definition of :Z2:
and Wick’s thegrem. Also, E :(Z*)% =0 for any N.
We denote f the Fourier transform of a function f.
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THEOREM 6.5. Let m as in Lemma 6.2. It holds that
lim Gy =2C2/(1+2C2),
N—o0
(6.22) 1 "2 —~ 5 -
lim lim EN( (%)%, pl)=—4 > C2(k)* /(1 +2C2(k)).

N—00e—0
kez?

In particular, in view of the discussion above the theorem as N — oo the limiting law of
ﬁ :®2: and L '(<I>2)2 are different from that of \/_ :Z%: and % (252 .

PROOF. Integration by parts formula gives us the following identities (see Appendix C):

- (N +2) PN
2 —— lim E[ (%)%, pf) = 2 R
(6.23) oy Im E(:(@9)% pf) = ——— > C* (OGN (k) + Ry,
keZ?
1 N+2
6.24) (5 + Tcz)GN _CCx + On/N
with

Cn(f) = gli_r)r(l)/E[q’l(pi)%(P;)]f(x —7)dz,
Ry = ! li C C
N—_mgg%/ (x —z)C(x —z22)
x E[:®1 9% (pf ) : 0187 (of,) : @ (pf)]dz1 dza,
Oy =-2 lim/C(x —y)C(x — 2)E[ : ;&% (py) @1(05)] dy
+ hm —/C(x —z21)C(x — 22)

x E[ D 0% (,021) D D% (pzz) P2 (pf)]dz1 dza
def

= oY +07.

We first use (6.24) and we know Cy N — Cas N — 00 by using Lemma 6.2 and
CN () = CE [ N0 Yi(@eelr = ) dedx + B [ N0(Z1, eelor = )
+cE / Yi()|Z1, e—i(- — 2))dz + C k),

for constant c. Since C is posmve definite, C is a positive function, and so is C=; C2; this allows
us to divide both sides by A s +C C2 in (6.24). In Lemmas 6.8 and 6.9 below, we show that
Q ~(k)/N vanishes in the limit for every k. We therefore obtain (6.22).

By Lemma 6.9, Ry converges weakly to 0 as N — oo. However, Ry is independent of x
as a consequence of spatial translation invariance, so we also obtain pointwise convergence
of Ry to zero. By Lemma 6.7, C{CTv(k) is uniformly bounded by c(m + |k|?)~1+% for ¢ > 0
and small ¥ > 0. By the dominated convergence theorem, we have

N+2) « = CCx (k) C2(k) - C2(k)
C2(k) - ————, asN — 0.
keZZ:Z (3 + M¥2C2 (k) keZZ:Z 1 +2C2(k)
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By Lemmas 6.8 and 6.9 and the dominated convergence theorem, we find

(N +2)

~ On (k
v 2 C) v —0, asN — oo,

Py N+ 2202 (1))

which combined with Lemma 6.9 and (6.23), (6.24) implies that

1 L (2 2 2 2
Nh_r)nooE4N(.(<I> )% pf) = keXZ:ZC (k) - C2(k)/ (1 +2C2(k))

where the sum is over integers (i.e., Fourier variables). This is nonzero, showing that the
limiting law of % :(®2)2: is different from that of % (ZH% . O

We will use Lemmas 6.2 and 6.4 to control the remainder terms from integration by parts
formula. In fact, all the remainder terms will be controlled by the following terms:
EA[' A2 AY,
with ¢; > 0, where (for s > 3k > 0 small enough)

A= Nl + 121l -5

N N
=12 Wil Zill s +
i=1

L' i=1

(STt

N
Z :ZiZ:
i=1

+

Llts

N
=|r ) v}
i=1

N
AT (zl > Y,?)
i=1

Llts

N
A™° (Y1 >y Zi)

N
-5 (Y1 Z :Z,-2: )
i=1

LEMMA 6.6. For m as in Lemma 6.2 and for each £; > 0 with Zzg + 3435 < 1, it holds

N
A™* <21 ZY,-Zi>
i=1

Llts Llits

6

N
—+ Z ZZ]Z?Z
Ll+s i=1 H—S i=1
EAflAgZA? < N(£2+E3)/2’

where the implicit constant is independent of N.

PROOF. By Lemma 6.2 and Lemma 2.1, it follows that EAel < 1 forevery £; > O Using

the interpolation Lemma A.2 followed by Holder’s inequality with exponents (K , 1 =, 2), we
find
o ol RV /N 3 N
A2§;||Yi||iz+ (21 ||Yi||%2) (Zl ||Y,-||§{1) (Zl ||Zi||é_g> n 2222 »
1= = i= im -

= A1 + A + Aoz

By Lemma 6.2 and Lemma 2.1, it follows that for all £, > 0 with %fz <1,

14 14 14
EAZ <1, EAZ+EA%<N?,
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where we used (4.1) and Gaussian hypercontractivity for the bound of A»3. It remains to con-

sider As3. Starting with A3y, let p € (1,2) and g > 1 satisfy é + % = 1 then use Holder’s

=i,
inequality and interpolate to obtain

N 2]

NG

i=l

N 2-2
ZYiZ = A31.

i=l

Az1 S IY1llLa SIYiliza

Lr

N p
NG
L2 li=1 L1
Given £3 > 0, choosing p close enough to 1 and g > ¢3 to ensure ¢3(2 — %)qg—[3 <2, we
may use Lemma 6.4 and Lemma 6.2 and Holder’s inequality to obtain the bound
1) 4
EA5] SN7T.

The next three terms can be estimated by using Lemma A.3 and Lemma A.2. Specifically,
we use that for s € (0, 1) it holds

1A (fe) | Lres SN f Il

1+s,1

lgllc=ste S (IF s A A% £l ) lIglles+e,

for s > 3k > 0 small enough.

N
A3S Z Yiz

i=1

AR S Zilg-ste

N 33 /N 1-3s
SN Zilles (Z % ||§,1) (Z mn;) = Az,
i=1 i=1

Ll
_ N
A33 S N Zilleste 1Yl ggas 1Y 1 s

i=1
1-3s

N 1/2 N 3s/2 / N 5
S (Z ||Z,-||%;W) AR A (Z ||Yi||§,1> (Z |m||iz> 1= Az,
i=1 i=1 i=1

N
Az S N Z1 Zit Nl g-see 1 Yl s

i=1

1-2s

N 12 /' N S/ N >
< (Z I:212Z;: ||ZCW> (Z IY; ||§,l) (Z ||Yi||§2) 1= A4,
i=1 i=1

i=1

and
N N
Ass S| :zh S qzk 1711 g3
i=1 Bl =1 H—stk
N
SIDCzk IV Y5 = Ass.
i=1 H—stx

By Lemma 6.2, we deduce that for 3435 < 1,

4
EADSNT,

1

with i =2, ...,5. The last term is given as

N
Azg 1= Z :ZIZl-zI
i=1

El

H—s
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4
which by similar argument as in the proof of (5.4) implies that EA§36 <N 73, Combining the
above estimates and Holder’s inequality, we obtain

l 4 V4 l V4 V4 lr+4€3)/2
EA]'AZAT S ) EA1;1A2§2A313.3§N(2 3/2, -

(i1,i2,i3)

In the following proof, we use ¢ to denote positive constant, which may change from line
to line.

LEMMA 6.7. It holds that
ICCn ()| < (14 [k2) 1,

for k > 0, where the proportional constant is independent of k.
PROOF. By translation invariance, we know for some positive constant ¢ > 0,
Eav(k) = limOE/ Cx —2)P1(p5)P1(pS)e—r(x —z)dz
£—
=c lin})E/ Cx —2)P1(p5)P1(pf)e—k(x —z)dzdx
E—>

= cE(®(m — A) " 1(®1¢1), ex)

=cE Y ®(k)(m+ Ik —ki2) " @1 (—k)

k|€Z2
5
<[E( @0 P+ -y )]
k1eZ?
1
_ _N\12
* [E( > @1 (k)P (m + ke — ki ) 1)]
k1€Z2
11
SN R LS

I is bounded by

E > Vi) (m+ 1k — ki) +E Y ZiG) [ (m + 1k — ki ?) 7
ki eZ? ki e€Z?
Using Lemma 6.2, we know
E[Yi (ko S (1+ ki) BNV S (L+ k)™
Using translation invariance, we find
E Y |Zik)(m+ 1k — ki)~ =cC2k).
k]GZz
Now the desired bound for /; follows from Lemma A.7. Similarly, we deduce the required

bound for /> and the result follows. O

LEMMA 6.8. It holds that for every k € 72,
O (0 S NV2(1+ 1k) ™7,

forevery 0 <k < %, where the proportional constant is independent of N and k.



192 SHEN, SMITH, ZHU AND ZHU
PROOF. We use translation invariance property to write the Fourier transform of Q]]v as
ély(—k) :/Q{Vek(x —z)dzzc[ Q{Vek(x —27)dxdz
=cE[((m — A7 (: 0107 ) - (m — A) Dy - eg], e—t)],

which by Lemma A.3 can be bounded by

N
(1+ |k|)‘“E[H (m—A)~! ((Y1 +Z))Y (Y2 +2YiZi+: 2} :))
i=1

Cl(
< m = &) [ + ZDe ] M,

where we used ||ex|| B < (1+ |k])™*, which can be checked by direct calculation. By Besov
embedding Lemma A.1 and elliptic Schauder estimate (see, e.g., [67], Theorem 6.5), we

know that for % > s > 3k > 0 small enough

625) [ m =D e SUF Nz A AT F pres AT AL llemsera-

(6.25) implies that the above term could be controlled by E[A3A]]|ek || c«/2, which by Lemma
6.6 can be bounded by N2 (1 + [k])~</2. O

LEMMA 6.9. For every k € 72,

10N (0| SNV2(1+ 1K) "2, |RN ()| S NV2(1+ [kI)2,

for0 <k < %, where the proportional constant is independent of N and k.

PROOF. We write the Fourier transform of szv as

0¥ (= [ Qs —dr=c [ Ot~ ) dxdz

c N 2 N
= NE< <Z(m — A)—lcblcbf) ,ek><; LD ,ek>,

i=1
which can be bounded by
2

lle—k ”Bl—'lf

N
%E[H (m—A)~! ((Y1 +Z))Y (Y2 +2YiZi+: 2} :))
CK

o

Using (6.25) for the first line and Lemma A.3 for the second line and ||ex ”Bf'f S (14D,

X

<(§:(yf +2Y; Zi+: Z? :)), e_k>

i=1

the above term can be estimated by %E[A%Az](lkl + 1) ||€—k||B§ fors >3k, 65 +5 <1,
X

which by Lemma 6.6 can be bounded by N% (k| + 1)_%.
Similarly, we write

N ¢ Al -1 22 al 2
R (k):mE Dm— D)7 ) (Y ) ek ),
i=1

i=1
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which by Lemma A.3 can be bounded by
2

Az,
cx

c(1+ k2

N
N2 EH m—n)~" ((Yl +Z)Y (Y2 +2YiZi+: 2} :))

i=1

for s > 3k > 0 and 65 + % < 1. By (6.25), we know that the above term could be controlled
by #E[A%Ag](l + |k|)%, which by Lemma 6.6 can be bounded by N-2 (1+ |k|)%. O

APPENDIX A: NOTATION AND BESOV SPACES

We use (A;);>—1 to denote the Littlewood—Paley blocks for a dyadic partition of unity.
Besov spaces on the torus with general indices @ € R, p, g € [1, oo] are defined as the com-
pletion of C*° with respect to the norm

; 1/q
lulng, = (X @1auf,) .
j=-1
and the Holder-Besov space C“ is given by C* = BY, . We will often write || - | ce instead
of Il Iz, .-

Set A =(1— A)%. For s > 0, p € [1, +00], we use H; to denote the subspace of L7,
consisting of all f, which can be written in the form f = A™¢, ¢ € L? and the H), norm of
f is defined to be the L” norm of g, that is, I f e = IA* fllLr. Fors <0, p € (1,00), H),
is the dual space of H_* with % + é =1.Set H® := Hj.

The following embedding results will be frequently used (e.g., [66]).

LEMMA A.1. () Letl <pij<py<ocand 1 <q <q <00, and let « € R. Then

BS . C B!V (¢f [33], Lemma A.2).
(ii) Let s € R, 1 < p < 00, € > 0. Then Hy = BS ,, and B;,l CH,CBj C B;,_f (cf.
[66], Theorem 4.6.1).
(iii) Let 1 < p1 < p» < oo and leta € R. Then H), C

Here, C means continuous and dense embedding.

a—d(1/p1—1/p2)
Hp, ! 2,

We recall the following interpolation inequality and multiplicative inequality for the ele-
ments in H,.

LEMMA A.2. (i) Suppose that s € (0, 1) and p € (1, 00). Then for f € H,

1— .
[NAIFES ||f||LpS||f||},;

(cf. [66], Theorem 4.3.1).
(1) Suppose that s > 0 and p € [1, 00). It holds that

(A1) IA*CF o S Nee | A g Loy + Nglees [ A° £l pss
with p; € (1,00],i =1, ...,4 such that
1 1 1 1 1

p P P2 Pz P4
(cf. see [29], Theorem 1).
(iii) (Gagliardo—Nirenberg inequality) For s € [0,1), 2 € (0,1),r > 1,
(A.2) lull g < Nl ol 1

with 3 =5 +a(y — )+ 5%

r
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LEMMA A.3. (i) Let o, B € R and p, p1, p2,q € [1,00] be such that % = % + é.
The bilinear map (u, v) — uv extends to a continuous map from By . x B,’ivq to Bg,/;ﬁ if
o+ B >0 (cf. [53], Corollary 2).

(ii) (Duality.) Let o« € (0, 1), p,q € [1, 00], p" and q' be their conjugate exponents, respec-
tively. Then the mapping (u, v) — (u, v) = [uvdx extends to a continuous bilinear form on
B;‘j’q X B;,‘f‘q/, and one has |{u, v)| < ||u||3g,q ||v||3;,aq/ (cf. [53], Proposition 7).

We recall the following smoothing effect of the heat flow S, = &' A=m) >0 (e.g., [33],
Lemma A.7, [53], Proposition 5).

LEMMA A.4. Let u € B , for some a € R, p,q € [1,00]. Then for every é = 0 and
1e[0,T],

—8/2

ISiull s S 172wl g,

where the proportionality constant is independent of t.

LEMMA A.5. Fors e (0,1),
(g, A S (IVellf IlglliTs +llglp) Il f llie-s-

PROOF. This follows from Lemma A.3, which states that (g, f) is a continuous bi-
linear form on B} ; x C™*, together with [53], Proposition 8, which states that ||g|| B, <

IVl gl + gl O

We also recall the following comparison test result, which has been proved in [68], Lemma
3.8.

LEMMA A.6. Let f:[0,T]— [0, c0) differentiable such that for every t € [0, T],
df

7 2 -
dr +c1f<co.

(2o ()"

We recall the following result for sum from [72], Lemma 3.10.

Then fort > 0,

LEMMA A.7. LetO<l,r <d,l+r —d > 0. Then it holds

S U+ lkal) O+ k—kal) ™ S (1 R
k]EZd

APPENDIX B: PROOF OF LEMMA 2.2

PROOF. For initial value y; € CA(T?), B e (1,2), we could use a similar argument as in
[53], Theorem 6.1, to obtain global solutions (¥;) to (2.3) with each ¥; € C 7CP. In fact, we
use mild solutions and a fixed-point argument to obtain unique local solutions. Furthermore,
for fixed N we obtain a global in time L”-estimate, p > 1, which gives the required global
solutions.
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Moreover, for general initial data y; € L?, we consider smooth approximation (7)) to
initial data y;. For (y{), we construct solutions Y/ € CrCP by the above argument. For Ye,
we could do the uniform estimate as in Lemma 2.3 and obtain

1 N

1 2
— su E Y5l +— ) IVYs + Yf
N tG[OPT | ||L2 ;H ||L2(0 T;L?) N ;( i )

2
S C!
L2(0.T:L%)

where C is independent of €. By standard compactness argument, we deduce that there exist
a sequence {e;} and Y; € LC;OL2 N L%H1 N L‘}L4 such that Yf" — Y in LZTH‘S NCrH™ !,
8 < 1. Furthermore, by a similar argument as in the proof of [55], Theorem 4.3, we obtain
YieCr L*N L‘}L4 N L%H ! For the uniqueness part, we could do similar estimate as / IN and
12N for the difference v; in Section 4. From the estimates (4.8), (4.13) and (4.18) in Section 4
the regularity for Y; is enough for the uniqueness. [J

APPENDIX C: CONSEQUENCES OF DYSON-SCHWINGER EQUATIONS

Dyson—Schwinger equations are relations between correlation functions of different or-
ders. Here, we derive the identities (6.23) and (6.24) using Dyson—-Schwinger equations;
these are essentially in [45] (equations (7), (8) therein), but since we are in a slightly different
setting, we give some details here to be self-contained. They are consequences of integration
by parts formula (e.g., [32], Theorem 6.7, for the &* model) In the case of the N-component
®* model (i.e., linear sigma model), for a fixed N, ® ~ vV and writing ®> = &f N, @?as
shorthand, it is easy to derive the following integration by parts formula:

2
E(Dy; F(®)) = 2E({®1. (m — Ax)pf}F (@) + L E(F(@)[:®y @2, p°)),

where D, : F (®) denotes the Fréchet derivative along ,of . &ef (0%,0,...,0) (namely varying

only & in the direction p%). In terms of Green’s function C(x — y) = 2(m A)” T — ),
we can also write it as

/C(x —z)E(DpiZF(@))dz
C.1)
—E((®1, 05)F (D)) + /C(x—z)E(F(CD)( &0, pf)) dz.

Here, we apply (C.1) to prove (6.23). Taking F (®P) = ( : D, b2 p%), one has

hm—/C(x—z)E(( 0%, pf) 1Dy ®%, pf)) dz

e—0

N +

= lim |:/ TC(X — Z)E(( :(1)2: p;, pﬁ)) dz — E((Cbl, ,Oi)( Zq)l(I)2: s ,()i))j|
1

= — lim | (®2)*:, p°)

using the definition of Wick products and the symmetry (i.e., exchangeability of (®;);) and
taking limit in C™<. 8

8For instance, in the first step, recalling the precise definition of :&® 1<I>2' the derivative D ot _F(®) gives
3: d>% s+ ZN 5 <I>2 pZ which by exchangeability can be rewritten as N +2 2 p¢ inside expectation. The
last step follows 51m11arly or it could be viewed as an N dimensional generahzation of the well-known relation

Hy 1 (x) =xHy(x) — H,/, (x) for Hermite polynomials H,.
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Next, taking F' = ( - p2: P D D% , P%), one has
hm—/C(x—m)E(( (@2 7)1y %, pf ) 10 @2, ) dzy
. N+2
zglg)r(l)T C(x —z)E((:®% | pf)(:@% | pf pf)) dz
+ hm[ /C(x —zl)E(<<I>1,ozl PN : 9% , p5)) dz
~E(01pf 0% ) 10107t |
—1i N+2 _ .H2- e\l . H2. e\l _ 15 . 2, e\l . 2. e
= lim ——C(x —DE[[:@%, pi)(: %, p7]] - Hm E((: @197 , py)( :219% , p7),

where the limit is understood in C™* and we again used symmetry under expectation. From
the above two correlation identities, we cancel out the sixth-order correlation term and then
obtain (6.23). Note that we also use Fourier transform to have

N
2E[( @7, pf)| 1 ®*: ,pi)]dz = Z
kez?

N +2 2
i = w06 b,

lim
e—0

Next, take F(®) = [ C(x — y)(:®1®% , p&)(:®%: , pf)dy. We have, by (C.1),

2
N/C(x —yDC & — y)E((: @197, pf | :@1®%: , pf ) : @7, pf)) dy1 dys

= 2By, Copt) 017, CO) + ST TR( %) 9% (C)P)

_ / Clx — PE((@1, p5){ : 0197 , i) :9% | pf)) dy,

with C(+) def (C * p3)(x — -). Note that as & — 0, the limit of the left-hand side is precisely

Q2 and the limit of the first term on the right-hand side is just — QN . The limit of the Fourier
transform of the second term on the right-hand side equals

(N +2)C2Gy.

To deal with the last term above, taking F (®) = (P, pf)( 02, p%) and applying (C.1), one
has

2/ C(x — )E((®1, pi) D P2 ,,oi)( P2 , p))dy
= N/C(x — Vp%, p§)dyE(: @, pf) + ZN/C(X — 2DE((®1, p5)(®1, 07, p7)) dz1
— NE[(®, pi 0% )]
Letting ¢ — 0, we deduce the limit of the Fourier transform of the right-hand side is
~NGy +2NCCy.

We then obtain (6.24).
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APPENDIX D: PROOF OF STEP 7 IN THE PROOF OF THEOREM 4.1
We write IV as Y°7_, IV:

_ 1 g

v d;f_ﬁ Yo Y7 i) +2(Y Vi, v)],
i,j=1

of 1 o

NE -V > 2, :ZiNZj-V: —:ZiZj: ),
i,j=I

-y def 1 al N2 2

= -V Zl(Yivi, 20T =25 ),
J:

-y def 1 al N N2 2

L= Y Zl<vi, Z; Zj’ A At ).
ij

In the following, we estimate each term and show that for § > 0 small,

I 5(2 IVvill7: + — Z 1Y v; Ile> +Z lvi 17

i=1 l] 1
D.1)
N ) | , _
+ (Z ||ui||Loo> (ﬁ ) ||Y,~||L2) + Ry,
i=1 j=1
with
e N N2 2.2
Ryv=+ D BAVASEERV VA P
i,j=1
1 N s 1 N l—s_
( ZHY ||H.> 3N+3N+<NZ||YZ-||§11> (NZMY,-niz) 3N,
j=1 i=1 i=1
with 3 y and 3y introduced in (D.2) below.
For I IN , we use Young’s inequality to have
[N |<5— / 20} +— /Y?u%
l] 1 l] 1
2.2 1 2 y 2
<o 5 JRGTE NZHY,-HLZ > il ).
l] 1 j=1 i=1
which glves the first contribution to (D.1).
For I3 we use Lemma A.3, Lemma A.2 and Young’s inequality to have
PN 1 ¢ N N2 2
|1 ‘SN Yo Mvillges| 1225 =2 Zi 25 | o
i,j=1
<82||Vvl||Lz+Z||v,||Lz+— ZH ZN 2V 223 o,

i=l i=1 z]l

which gives the second contribution to (D.1).
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For 1‘21\]/0 we set

N
(D2) 3n d_ef— Z |:zN¥zV: —zizp e, W E Z —:Z% |

z]l

We use Lemma A.5 and Holder’s inequality to have

_ 1 X . B
DY < ~ Y (V@ | vl 7 + 1Y jvill )| 2N 2N =22z | o
i,j=1
6( Zuv,Y lle) + 3N
j=l1

N 200 N ) 5/2 s U
+<Z||vi||iz) (NZHVY,-HLZ) < Zulean) N
j=1

i=1 i,j=1

N s/2 1 N s/2 I%S
1/2
+<Z||Vvi||iz) (NZIIYJ-H%Z) ( Zulean) 307
i=1 j=I1

i,j=1

which by Young’s inequality gives

N
|1%\58< Z v Y; ||L2>+6(Z||Vv,-||iz>
i=1

i,j=1

N N Ky
1
+ (Z ||vl~||iz) + (N > ||Y,-||§,1) 3y +3n.
i=1 j=1

Similarly, we deduce

N
s Z (VoD [ lYewi 17 + W¥vill o) | 2% = 223 [ o

/_\

N _ 1 N
Z |vi||iz) +3N(NZ ||Y,-||iz>
i=1 i=1
N N 201 N s s
(levzlle> ( vanniz) (NZnYiniz) 3y
=1 =1 i=1

N
N N 12 / N L n
(Z |VU,||L2> ( Znnniz) (anniz) 3N
=1 =1 i=1

which implies
7 Y 2 N 2 1 N > s 1 N 2 l—s_
\Iﬁlsa(ZuwiuLz)+<Z||v,-||Lz>+<NZ||Y,-||H1) (NZHY,-HLZ) 3.
i=1 i=1 i=1 i=1

Thus we deduce (D.1). By Assumption 4.1 and Lemma 2.1, it is easy to find % | Ry ||L1T -0
in L' (). The result follows by similar argument as Step 5 and Step 6.
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