
The Annals of Probability
2022, Vol. 50, No. 1, 131–202
https://doi.org/10.1214/21-AOP1531
© Institute of Mathematical Statistics, 2022

LARGE N LIMIT OF THE O(N) LINEAR SIGMA MODEL VIA
STOCHASTIC QUANTIZATION

BY HAO SHEN1, SCOTT A. SMITH2,*, RONGCHAN ZHU3 AND XIANGCHAN ZHU2,†

1Department of Mathematics, University of Wisconsin, pkushenhao@gmail.com
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, *ssmith@amss.ac.cn;

†zhuxiangchan@126.com
3Department of Mathematics, Beijing Institute of Technology, zhurongchan@126.com

This article studies large N limits of a coupled system of N interacting
�4 equations posed over Td for d = 2, known as the O(N) linear sigma
model. Uniform in N bounds on the dynamics are established, allowing us
to show convergence to a mean-field singular SPDE, also proved to be glob-
ally well posed. Moreover, we show tightness of the invariant measures in
the large N limit. For large enough mass, they converge to the (massive)
Gaussian free field, the unique invariant measure of the mean-field dynamics,
at a rate of order 1/

√
N with respect to the Wasserstein distance. We also

consider fluctuations and obtain tightness results for certain O(N) invariant
observables, along with an exact description of the limiting correlations.
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1. Introduction. In this paper, we consider the following system of equations on the
d-dimensional torus Td for d = 2:

(1.1) L �i = − 1

N

N∑
j=1

�2
j�i + ξi, �i(0) = φi,

where L = ∂t − � + m with m ≥ 0, N ∈ N, and i ∈ {1, . . . ,N}. The collection (ξi)
N
i=1

consists of N independent space-time white noises on a stochastic basis, that is, (�,F,P)

with a filtration, and (φi)
N
i=1 are random initial datum independent of (ξi)

N
i=1. In d = 2, the

system (1.1) requires renormalization, and the formal product �2
j�i will be interpreted as

the Wick product :�2
j�i: whose definition is postponed to Section 2.

This system arises as the stochastic quantization of the following N -component general-
ization of the �4

d model, given by the (formal) measure

(1.2) dνN(�)
def= 1

CN

exp

(
−
∫
Td

N∑
j=1

|∇�j |2 + m

N∑
j=1

�2
j + 1

2N

(
N∑

j=1

�2
j

)2

dx

)
D�

over RN valued fields � = (�1,�2, . . . ,�N) and CN is a normalization constant. In d = 2,
the interaction should be Wick renormalized :(∑N

j=1 �2
j )

2: for the measure to make sense.
This is also referred to as the O(N) linear sigma model, since this formal measure is invariant
under a rotation of the N components of �. 1 This symmetry will play an important role
throughout the paper.

Our focus in this article is on the asymptotic behavior as N → ∞ of the system (1.1) and
its invariant measures (1.2) as well as observables which preserve the O(N) symmetry. Note
that a factor 1/N has been introduced in front of the nonlinearity (resp., the quartic term
in the measure), and heuristically, this compensates the sum of N terms so that one could
hope to obtain an interesting limit as N → ∞. The study of physically meaningful quantities
associated with a quantum field theory model such as (1.2) as N → ∞ is generally referred
to as a large N problem; see Section 1.1 where we introduce more background, references
in physics and mathematics, and different approaches to this problem. To the best of our
knowledge, the present article provides the first rigorous results on large N problems in the
formulation of stochastic quantization.

In Theorem 1.1 below, we study the N → ∞ limit of each component in the Wick renor-
malized version of (1.1) in d = 2 (cf. (2.1) below), and show that a suitable mean-field sin-
gular SPDE governs the limiting dynamics. Before giving the statement, let us first comment
on the notion of solution used. Recall that the well posedness of (1.1) in the case N = 1 and
d = 2 (i.e., the dynamical �4

2 model) is now well developed: two classical works being [2]
where martingale solutions are constructed and [20] where strong solutions are addressed,
as well as the more recent approach to global well posedness in [53]. These results can be
generalized to the vector case (with fixed N > 1) without much extra effort. As in [20] and
[53], the solutions are defined by the decomposition �i = Zi + Yi , where

L Zi = ξi,(1.3)

L Yi = − 1

N

N∑
j=1

(
Y 2

j Yi + Y 2
j Zi + 2YjYiZj + 2Yj :ZiZj : + :Z2

j : Yi+ :ZiZ
2
j :

)
(1.4)

1The word “linear” here only means that the target space RN is a linear space. “Nonlinear” sigma models on the
other hand refers to similar models where the target space is subject to certain nonlinear constraints, for example,
� takes value in a sphere in RN or more generally in a manifold.



LARGE N LIMIT OF THE O(N) LINEAR SIGMA MODEL 133

and :ZiZj : , :ZiZ
2
j : are Wick renormalized products (see Section 2). For the uninitiated

reader, note that (1.4) arises by inserting the decomposition of �i into (1.1) and reinterpreting
the ill-defined products ZiZj and ZiZ

2
j that appear.

The mean-field SPDE formally associated to (1.1) takes the form

(1.5) L 	i = −E
[
	2

i

]
	i + ξi, 	i(0) = ψi.

On the formal level this equation arises naturally: assuming the initial conditions {φi}Ni=1
are exchangeable,2 the components {�i}Ni=1 will have identical laws, so that replacing the
empirical average 1

N

∑N
j=1 �2

j in (1.1) by its mean and relabeling � as 	 leads us to (1.5).
In two space dimensions, (1.5) is a singular SPDE where the ill-defined nonlinearity depends
on the law of the solution and similar to (1.1), it also requires a renormalization. Postponing
for the moment a more complete discussion of this point, we now state our first main result.

THEOREM 1.1 (Large N limit of the dynamics for d = 2). Let {(φN
i ,ψi)}Ni=1 be random

initial datum with components in C−κ for some small κ > 0 and all moments finite, where
C−κ denotes the Besov space introduced in Section A. Assume that for each i ∈ N, φN

i con-
verges to ψi in Lp(�;C−κ) for all p > 1, 1

N

∑N
i=1 ‖φN

i − ψi‖p

C−κ →P 0 and (ψi)i are i.i.d.
Here, →P 0 means the convergence in probability.

Then for each component i and all T > 0, the solution �N
i defined by (1.3)–(1.4) with

initial datum φN
i converges in probability to 	i in C([0, T ],C−1(T2)) as N → ∞, where 	i

is the unique solution to the mean-field SPDE formally described by

(1.6) L 	i = −E
[
	2

i − Z2
i

]
	i + ξi, 	i(0) = ψi,

and Zi is the stationary solution to (1.3). Furthermore, under the additional hypothesis that
(φN

i ,ψi)
N
i=1 are exchangeable, for each t > 0 it holds that

(1.7) lim
N→∞E

∥∥�N
i (t) − 	i(t)

∥∥2
L2(T2) = 0.

In Section 4, we actually prove this convergence result under more general conditions for
initial data (see Assumption 4.1). Along the way to Theorem 1.1, we prove new uniform in
N bounds through suitable energy estimates on the remainder equation (1.4). We are inspired
in part by the approach in [53], but subtleties arise as we track carefully the dependence of
the bounds on N . Indeed, the natural approach (e.g., [53] for dynamical �4

2 model) to obtain
global in time bounds for fixed N is to exploit the damping effect from Y 2

j Yi . However, the
extra factor 1/N before the nonlinear terms makes this effect weaker as N becomes large.
In fact, the moral is that we cannot exploit the strong damping effect at the level of a fixed
component Yi , rather we are forced to consider aggregate quantities, and ultimately we focus
on the empirical average of the L2-norm (squared) instead of the Lp-norm, p > 2; cf. Lemma
2.3 and Remark 2.6. This is natural on one hand due to the coupling of the components, but
also for the slightly more subtle point that we ought to respect the structure of the mean-field
SPDE (1.6), for which the damping effect seems to hold only in the mean square sense, not
at the path-by-path level.

In this direction, we now discuss a bit more the solution theory for the mean-field SPDE
(1.6). While the notion of solution we use is again via the Da-Prato–Debussche trick, the
well-posedness theory for (1.5) requires more care than for �4

2 since we cannot proceed by

2This means that the sequence of random variables (φ1, . . . , φN ) has the same joint probability distribution as
(φπ(1), . . . , φπ(N)) for any permutation π .
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pathwise arguments alone. In fact, similar to (1.3)–(1.4), we understand (1.6) via the decom-
position 	i = Zi + Xi with Xi satisfying

L Xi = −(
E
[
X2

j

]
Xi +E

[
X2

j

]
Zi + 2E[XjZj ]Xi + 2E[XjZj ]Zi

)
.(1.8)

Here, we actually introduce an independent copy (Xj ,Zj ) of (Xi,Zi), which turns out to
be useful for both the local and global well-posedness of (1.6). Indeed, one point is that the
term E[XjZj ]Zi in (1.8) cannot be understood in a classical sense; however, we can view
it as a conditional expectation E[XjZjZi |Zi] and use properties of the Wick product ZiZj

to give a meaning to this; cf. Lemma 3.1. Furthermore, to obtain global bounds, using this
independent copy allows us to approach the a priori estimates for (1.8) much like the uniform
in N bounds for (1.4). Indeed, after taking expectation, E[X2

j ]Xi in (1.8) also plays the role
of the damping mechanism, which helps us to obtain uniform bounds on the mean-squared
L2-norm of Xi ; cf. Lemma 3.3.

Theorem 1.1 can be viewed as a mean-field limit result in the context of singular SPDE
systems. Our proof is indeed inspired by certain mean-field limit techniques, and we combine
them with a priori estimates that are specific to our model; see the discussion above Theo-
rem 4.1 for a more detailed discussion on this strategy. We will provide more background
discussion on mean-field limits below in Section 1.2. By a classical coupling argument, this
result also yields a propagation of chaos type statement: if the initial condition is asymp-
totically chaotic (i.e., independent components as N → ∞), then although the �-system is
interacting, as N → ∞ the limiting system becomes decoupled ([41], Definition 3, Defini-
tion 5).

The second part of this paper (Section 5) is concerned with equilibrium theories, namely
stationary solutions, invariant measures and large N convergence. For N = 1, the long-time
behavior of the solutions was investigated in [56] and [68]. In the vector valued setting, by
lattice approximation (see [32, 37, 73]), strong Feller property in [38] and irreducibility in
[40], it can be shown that νN is the unique invariant measure to (1.1) and the law of �i(t)

converges to νN as t → ∞. Our goal then is to study the large N limit of the O(N) linear
sigma model νN . Our second main result yields the convergence of the unique invariant
measure νN of (1.1) to the invariant measure of (1.6), provided the mass is sufficiently large.

To state the result, consider the projection onto the ith component,

(1.9) 
i : S ′(Td)N → S ′(Td), 
i(�)
def= �i.

Noting that νN is a measure on S ′(Td)N , we define the marginal law νN,i def= νN ◦ 
−1
i .

Furthermore, consider

(1.10) 
(k) : S ′(Td)N → S ′(Td)k, 
(k)(�) = (�i)1≤i≤k

and define the marginal law of the first k components by νN
k

def= νN ◦ (
(k))−1.

THEOREM 1.2 (Large N limit of the invariant measures). There exists m0 > 0 such that
the following results hold:

• For m ≥ 0, the Gaussian free field ν
def= N (0, 1

2(m − �)−1) is an invariant measure for
(1.6).

• For m ≥ 0, the sequence of probability measures (νN,i)N≥1 are tight on C−κ for κ > 0.
• For m ≥ m0, the Gaussian free fieldN (0, 1

2(m−�)−1) is the unique invariant measure to
equation (1.6).

• For m ≥ m0, νN,i converges to ν and νN
k converges to ν × · · · × ν, as N → ∞. Further-

more, W2(ν
N,i, ν)�N− 1

2 .
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These statements will follow from Theorem 5.9, Theorem 5.4 and Theorem 5.11. Here,
W2(ν1, ν2) is the C−κ -Wasserstein distance defined in (5.12) before Theorem 5.11. The
Gaussian free field limit is expected (at a heuristic level) by physicists, for example, [70]
and also in mathematical physics [45].3 Our result, Theorem 1.2, provides a precise justifi-

cation provided m ≥ m0, with the convergence rate N− 1
2 (which is expected to be optimal;

see, for instance, [42], Remark 4) in terms of Wasserstein distance. The large m assumption
could also be formulated as a small nonlinearity assumption; see Remark 5.12.

Note that the study of ergodicity properties of the dynamic (1.6) is nontrivial. In fact,
the dynamic for 	 depends on the law of 	 itself, so the associated semigroup is generally
nonlinear (see Section 5.1). As a result, the general ergodic theory for Markov process (see,
e.g., [21], [39], [38]) could not be directly applied here. Instead, we prove the solutions to
(1.6) converge to the limit directly as time goes to infinity, which requires m ≥ m0.

We now comment on our approach to the fourth part of Theorem 1.2. It would be natural
to try and use Theorem 1.1 together with the tightness result from the second part of Theorem
1.2 to derive the convergence of νN,i to ν directly (see, e.g., [37]). However, it is not clear to
the authors how to implement this strategy in the present setting. Indeed, to apply Theorem
1.1, it is important that each component ψi of the initial data is independent of each other.
However, we are not able to deduce that an arbitrary limit point ν∗ has this property. If we
use P ∗

t ν∗ to denote the marginal distribution of the solution to (1.6) starting from the initial
distribution ν∗, we cannot write P ∗

t ν∗ as
∫
(P ∗

t δψ)ν∗(dψ) due to the lack of linearity, which
makes it difficult to overcome the assumption of independence. Alternatively, we follow the
idea in [32] and construct a jointly stationary process (�,	) whose components satisfy (1.1)
and (1.6), respectively. In this case 	 = Z, since the Gaussian free field gives the unique
invariant measure to (1.6). We then establish the convergence of νN,i to ν by deriving suitable
uniform estimates on the stationary process.

Our next result is concerned with observables in the stationary setting. In QFT models with
continuous symmetries, physically interesting quantities involve more than just a component
of the field itself but also quantities composed by the fields, which preserve the symmetries,
called invariant observables. These acquire the same interest in SPDE (a natural example
being the gauge invariant observables, e.g., [58], Section 2.4). In the present setting of (1.1),
a natural quantity that is invariant under O(N)-rotation is the “length” of �; another being the
quartic interaction in (1.2). We thus consider the following two O(N) invariant observables:
for �� νN ,

(1.11)
1√
N

N∑
i=1

:�2
i : ,

1

N
:
(

N∑
i=1

�2
i

)2

: .

Here, the precise definition is given in Section 6.1. One could consider more general renor-
malized polynomials of

∑
i �

2
i but we choose to focus on the above two in this article. We

establish the large N tightness of these observables as random fields in suitable Besov spaces
by using iteration to derive improved uniform estimates in the stationary case.

Note that the physics literature usually considers integrated quantities, that is, partition
function of correlations of these observables. Our SPDE approach allows us to study these
observables as random fields with precise regularity as N → ∞, which is new.

Moreover, we investigate the nontrivial statistics of the large N limit of the O(N) in-
variant observables. We show that although for large enough m the invariant measure of �i

3In [70], it was written that “If one now looks at vacuum expectation values of individual � fields, all diagrams
vanish like 1/N (at least), except for the free-field terms.” In the Introduction of [45], it was mentioned that “the
1/N expansion predicts that the theory is close to Gaussian as N becomes large enough,” but this reference did
not intend to prove this statement (see Section 1.1 below).
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converges as N → ∞ to the invariant measure of Zi that is, Gaussian free field, the limits of
the observables (1.11) have different laws than those if �i in (1.11) were replaced by Zi :

(1.12)
1√
N

N∑
i=1

:Z2
i : ,

1

N
:
(

N∑
i=1

Z2
i

)2

: .

THEOREM 1.3. Suppose that � � νN . For m large enough, the following result holds
for any κ > 0:

• 1√
N

∑N
i=1 :�2

i : is tight in B−2κ
2,2 .

• 1
N

:(∑N
i=1 �2

i )
2: is tight in B−3κ

1,1 .

• The Fourier transform of the two point correlation function of 1√
N

∑N
i=1 :�2

i : in the limit

as N → ∞ is given by the explicit formula 2Ĉ2/(1+2Ĉ2), where C = 1
2(m−�)−1 and Ĉ

is the Fourier transform; moreover, E 1
N

:(∑N
i=1 �2

i )
2: converges as N → ∞ to the explicit

formula given by −4
∑

k∈Z2 Ĉ2(k)2/(1 + 2Ĉ2(k)). (In particular, the limiting laws of the
observables (1.11) are different from those of (1.12)).

These results are proved in Theorem 6.3 and Theorem 6.5. The last statement on correla-
tion formulas of the observables are known—first heuristically by physicists who expressed
these formulas in terms of the sum of “bubble” diagrams, and then derived in [45], equa-
tion (15), using constructive field theory techniques such as “chessboard estimates.” Our new
proofs of these correlation formulas using PDE methods are quite simple and straightforward
once all the a priori estimates are available. We expect that these methods can be applied to
study more O(N) invariant observables and higher order correlations; we will pursue these
in future work. We also mention that all the results in Theorem 1.1-Theorem 1.3 hold for
d = 1 (see [59] for more details.)

Let us also mention the three-dimensional construction of local solutions [11, 33, 35],
global solutions [1, 31, 50, 52], as well as a priori bounds in fractional dimension d < 4
by [13], though we focus on d = 2 in this paper. It would also be interesting to see if our
methodology could be used to study limits of other singular SPDE systems as dimensionality
of the target space tends to infinity, such as coupled dynamical �4

3,4 coupled KPZ systems
[26], random loops in N dimensional manifolds [9, 16, 36, 54] and the Yang–Mills model
[12] with N− dimensional Lie groups (or abelian case [58] with Higgs field generalized to
value in CN ). These are, of course, left to further work.

1.1. Large N problem in QFT: Background and motivation. Large N methods (or “1/N

expansions”) in theoretical physics are ubiquitous and are generally applied to models where
dimensionality of the target space is large. It was first used in [62] for spin models, and
then developed in quantum field theories (QFT), which was pioneered by [70] (�4 type and
Fermionic models), [30] (Fermionic models), [65] (Yang–Mills model), and the idea was
soon popularized and extended to many other systems; see [8] for an edited comprehensive
collection of articles on large N as applied to a wide spectrum of problems in quantum field
theory and statistical mechanics; see also the review articles [71], [18], Chapter 8, and [51] for
summaries of the progress. Loosely speaking, in terms of our model (1.2), the ordinary QFT
perturbative calculation of for instance a two-point correlation of �i is given by sum of Feyn-
man graphs with two external legs and degree-4 internal vertices, each vertex carrying two

4In fact, we have obtained some partial results for coupled dynamical �4
3, such as convergence of invariant

measures to the Gaussian free field.
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distinct summation variables and a factor 1/N that represents the interaction 1
N

∑
i,j �2

i �
2
j ,

such as (a), (b) below:

(a)
i i

j j (b) i ij
j

i
(c)

i

i

j

j

x y

Heuristically, graph (a) is of order 1
N

∑
j ≈ O(1) and graph (b) is of order 1

N2

∑
j ≈ O( 1

N
).

The philosophy of [70] is that graphs with “self-loops” such as (a) get canceled by Wick
renormalization, and all other graphs with internal vertices including (b) are at least of order
O(1/N), and thus vanish, so the theory would be asymptotically Gaussian free field, which
is what we prove in Theorem 1.2. On the other hand, for observables such as 1√

N

∑N
i=1 :�2

i : ,

two-point correlation at x, y may have O(1) contributions as shown in graph (c),5 which is
the heuristic behind the existence of a nontrivial correlation structure for such observables
as in Theorem 1.3. The “1/N expansion” is a reorganization of the series in the parameter
1/N , with each term typically being a (formal) sum of infinitely many orders of the ordinary
perturbation theory. Besides directly examining the perturbation theory, alternative (and more
systematic) methodologies of analyzing such expansion were discovered in physics, for in-
stance, a method via “dual” field [19], [51], Section 2, via Schwinger–Dyson equations [63],
or via stochastic quantization (with references below).

Rigorous study of large N in mathematical physics was initiated by Kupiainen [44–46].
The literature most related to the present article is [45], which studied the QFT in continuum
in d = 2 given by (1.2), and proved that the 1/N expansion of the pressure (i.e., vacuum
energy or log of partition per area) is asymptotic, and each order in this expansion can be
described by sums of infinitely many Feynman diagrams of certain types. Borel summability
of 1/N expansion of Schwinger functions for this model was discussed in [7].

In [46], Kupiainen also proved that on the lattice with fixed lattice spacing, the large N

expansion of correlation functions of the N-component nonlinear sigma model (which sim-
plifies to “spherical model” as N → ∞) is asymptotic above the spherical model criticality;
asymptoticity was later extended to Borel summability by [25]. Large N limit and expansion
for the Yang–Mills model has also been rigorously studied; see [48] (also [5]) for conver-
gence of Wilson loop observables to master field in the continuum plane, and [14] (resp.,
[15]) for computation of correlations of the Wilson loops in the large N limit (resp., 1/N

expansion), which relates to string theory.
Large N problems in the stochastic quantization formalism have also been discussed in

the physics literature, for instance, [3, 4], [22], Section 8. [51], Section 5.1, is close to our
setting; it makes an “ansatz” that 1

N

∑N
j=1 �2

j in (1.1) would self-average in the large N

limit to a constant; our present paper justifies this ansatz and in the nonequilibrium setting
generalizes it.

In summary, the study of large N problems in QFT is motivated by the following properties
(among others). The first property is simplification or solvability as N → ∞. This is the
motivation ever since the earliest literature [62] as aforementioned: the model studied therein
becomes a simplified, solvable model as N → ∞ known as the Berlin–Kac spherical model.
In our setting, this simplification or solvability heuristics are reflected by the Gaussian free
field asymptotic as well as the rigorous derivation of exact formula (which would not be
possible for finite N ) for certain correlation of observables in Theorem 1.2 and Theorem 1.3.
Another property is that when N is large, 1/N serves as a natural perturbation parameter
in QFT models, as already discussed above. Of course, this went much farther than just
simplifying things later when applied to more sophisticated models like gauge theory, for

5but there are infinitely many O(1) graphs
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which 1/N expansions led to the discovery of so-called gauge-string duality as mentioned
above.

1.2. Mean-field limits. As mentioned above, the proof of our main theorems borrows
some ingredients from mean-field limit theory (MFT). To the best of our knowledge, the
study of mean-field problems originated from McKean [49]. Typically, a mean-field problem
is concerned with a system of N particles interacting with each other, which is often modeled
by a system of stochastic ordinary differential equations, for instance, driven by independent
Brownian motions. A prototype of such systems has the form dXi = 1

N

∑
j f (Xi,Xj )dt +

dBi (see, for instance, the classical reference by Sznitman [64], Section I(1)), and in the
N → ∞ limit one could obtain decoupled SDEs each interacting with the law of itself: dYi =∫

f (Yi, y)μ(dy)dt + dBi where μ(dy) is the law of Yi . So just as in QFT the motivation of
MFT is also a simplification of an N -body system to a one-body equation, which interacts
with itself, that is, the system is factorized.

In simple situations, the interaction f is assumed to be “nice,” for instance, globally Lips-
chitz ([49]); much of the literature aims to prove such limits under more general assumptions
on the interaction; see [64] for a survey.6 Our Theorem 1.1 can be viewed as a result of this
flavor, in an SPDE setting, and in fact the starting point of our proof is indeed close in spirit
to [64], Section I(1), where one subtracts Xi from Yi to cancel the noise and then bound a
suitable norm of the difference.

We note that mean-field limits are studied under much broader frameworks or scopes of
applications, such as mean-field limit in the context of rough paths (e.g., [6, 10, 17]), mean-
field games (e.g., survey [47]), quantum dynamics (e.g., [24] and references therein). We do
not intend to have a comprehensive list, but rather refer to survey articles [28, 41] and the
book [61] besides [64], Chapter 8.

The study of mean-field limit for SPDE systems also has precursors; see, for instance,
the book [43], Chapter 9, or [23]. However, these results make strong assumptions on the
interactions of the SPDE systems such as linear growth and globally Lipschitz drift, and
certainly do not cover the singular regime where renormalization is required as in our case.

1.3. Structure of the paper. This paper is organized as follows. Sections 2–4 are devoted
to the proof of Theorem 1.1. First, in Section 2.1 we recall the definition of the renormaliza-
tion for Zi , which satisfies the linear equation (1.3). Then a uniform in N estimate for the
average of the L2-norm of Yi , the solutions to equation (1.4), is derived in Section 2.2. Local
well-posedness to equation (1.6) is proved in Section 3.1. Global well-posedness to equation
(1.6) is proved in Section 3.2 by combining a uniform Lp-estimate with Schauder theory. The
difference estimate for �i − 	i is given in Section 4, which gives the proof of Theorem 1.1.

Section 5 is concerned with the proof of Theorem 1.2. In Section 5.1, uniqueness of invari-
ant measures to (1.6) for large m is proved. The convergence of invariant measures from νN,i

to the Gaussian free field ν is shown in Section 5.2 by comparing the stationary solutions
(�i,Zi).

Section 6 mainly concentrates on the observables and the nontriviality of the statistics of
the observables. Section 6.1 is devoted to the study of the observables and the proof of first
two parts of Theorem 1.3. We derive an Lp-estimate of Yi in Section 6.2 and prove the third
part of Theorem 1.3 in Section 6.3.

6In the context of SDE systems, one also considers the empirical measures of the particle configurations, and
aims to show their convergence as N → ∞ to the McKean–Vlasov PDEs, which are typically deterministic.
Note that in this paper we do not consider the “analogue” of McKean–Vlasov PDE (which would be infinite
dimensional) in the context of our model.
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Finally, in Appendix A, we collect the notation and useful lemmas used throughout the
paper. In Appendix B, we give the proof of global well-posedness of equation (1.4). In Ap-
pendix C, the application of Dyson–Schwinger equations has been derived, which is useful
in studying the limiting law of the observables. In Appendix D, we give the proof of Step 7
in the proof of Theorem 4.1.

Notation. Throughout the paper, we use the notation a � b if there exists a constant c > 0
such that a ≤ cb, and we write a � b if a � b and b � a. Given a Banach space E with a
norm ‖ · ‖E and T > 0, we write CT E = C([0, T ];E) for the space of continuous functions
from [0, T ] to E, equipped with the supremum norm ‖f ‖CT E = supt∈[0,T ] ‖f (t)‖E . For
p ∈ [1,∞], we write L

p
T E = Lp([0, T ];E) for the space of Lp-integrable functions from

[0, T ] to E, equipped with the usual Lp-norm. Let S ′ be the space of distributions on Td .

2. Uniform in N bounds on the dynamical linear sigma model. In this section, we
obtain new estimates on the Wick renormalized version of (1.1), given by

(2.1) L �i = − 1

N

N∑
j=1

:�2
j�i: + ξi, �i(0) = φi.

The notion of solution to (2.1) is the same as in [20] and [53], where the case N = 1 is treated.
For a fixed N , these well-posedness results are easy to generalize to the present setting, so we
only give the statement here and refer the reader to Appendix B for the proof. Our primary
goal in this section is rather to obtain bounds, which are stable with respect to the number of
components N , which we will send to infinity in Section 4.

As is well known, it is natural to consider initial datum to (2.1) belonging to a negative
Hölder space with exponent just below zero. We will be slightly more general and consider
random initial datum of the form φi = zi +yi satisfying E‖zi‖p

C−κ � 1 for κ > 0 small enough
and every p > 1, and E‖yi‖2

L2 � 1, where the implicit constants are independent of i, N .

The notion of solution to (2.1) is based on the now classical trick of Da-Prato and De-
bussche; cf. [20]. Namely, we say that �i is a solution to (2.1) provided the decomposition
�i = Zi + Yi holds, where Zi is a solution to the linear SPDE,

(2.2) L Zi = ξi, Zi(0) = zi,

and Yi is a weak solution to the remainder equation

(2.3)
L Yi = − 1

N

N∑
j=1

(
Y 2

j Yi + Y 2
j Zi + 2YjYiZj + 2Yj :ZiZj : + :Z2

j : Yi+ :ZiZ
2
j :

)
,

Yi(0) = yi.

The notation :ZiZj : , :Z2
j : and :ZiZ

2
j : denotes a renormalized product of Wick type,

which will be defined in Section 2.1 below.

2.1. Renormalization. To define the renormalized products appearing in (2.3), it is con-
venient to make a further splitting of Zi relative to the corresponding stationary solution to
(2.2), which we will denote by Z̃i . For Z̃i , these products have a canonical definition that we
now recall. Namely, let ξi,ε be a space-time mollification of ξi defined on R×T2 and let Z̃i,ε

be the stationary solution to L Z̃i,ε = ξi,ε . For convenience, we assume that all the noises are
mollified with a common bump function. In particular, Z̃i,ε are i.i.d. mean zero Gaussian. For
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k ≥ 1 and i1, . . . , ik ∈ {1, . . . ,N}, we then write :Z̃i1 · · · Z̃ik : as the limit of :Z̃i1,ε · · · Z̃ik,ε:
as ε → 0. Here, :Z̃i1,ε · · · Z̃ik,ε: is the canonical Wick product, which in particular is mean
zero. More precisely,

:Z̃iZ̃j : =
⎧⎨⎩ lim

ε→0

(
Z̃2

i,ε − aε

)
(i = j),

lim
ε→0

Z̃i,εZ̃j,ε (i �= j),

:Z̃iZ̃
2
j : =

⎧⎨⎩ lim
ε→0

(
Z̃3

i,ε − 3aεZ̃i,ε

)
(i = j),

lim
ε→0

(
Z̃i,εZ̃

2
j,ε − aεZ̃i,ε

)
(i �= j),

(2.4)

where aε = E[Z̃2
i,ε(0,0)] is a diverging constant independent of i and the limits are under-

stood in CT C−κ for κ > 0. (see [53], Section 5, for more details).
We now define the Wick products for Zi by combining the above with the smoothing

properties of the heat semigroup St associated with L . Defining z̃i
def= zi − Z̃i(0), we have

the decomposition

Zi = Z̃i + St z̃i .

We then overload notation and define the Wick products of Zi by the binomial formula7

namely

:Z2
j : = :Z̃2

j : + 2St z̃j Z̃j + (St z̃j )
2,

:Z3
j : = :Z̃3

j : + 3St z̃j :Z̃2
j : + 3(St z̃j )

2Z̃j + (St z̃j )
3,

and for i �= j

:ZiZj : = :Z̃iZ̃j : + St z̃iZ̃j + St z̃j Z̃i + St z̃iSt z̃j ,

:ZiZ
2
j : = :Z̃iZ̃

2
j : + St z̃i :Z̃2

j : + 2St z̃j :Z̃iZ̃j : + 2St z̃iSt z̃j Z̃j + (St z̃j )
2Z̃i + St z̃i(St z̃j )

2.

We caution the reader that this definition is noncanonical, in the sense that these renormalized
products are not necessarily mean zero. By the calculation in [53], Corollary 3, (see also [57],
Lemma 3.5), we have the following estimate.

LEMMA 2.1. For each κ ′ > κ > 0 and all p ≥ 1, we have the following bounds:

E‖Z̃i‖p

CT C−κ +E‖Zi‖p

CT C−κ � 1,

E‖ :Z̃iZ̃j : ‖p

CT C−κ +E
∥∥ :Z̃iZ̃

2
j :

∥∥p

CT C−κ � 1,

E
(

sup
t∈[0,T ]

tκ
′‖ :ZiZj : ‖C−κ

)p +E
(

sup
t∈[0,T ]

t2κ ′∥∥ :ZiZ
2
j :

∥∥
C−κ

)p
� 1.

Furthermore, the proportional constants in the inequalities are independent of i, j,N .

By Lemma 2.1, there exists a measurable �0 ⊂ � with P(�0) = 1 such that for ω ∈ �0
and every i, j ,

‖Zi‖CT C−κ + sup
t∈[0,T ]

tκ
′‖ :ZiZj : ‖C−κ + sup

t∈[0,T ]
t2κ ′∥∥ :ZiZ

2
j :

∥∥
C−κ < ∞.

7This definition is in line with [53], (5.42), which first considers a linear solution with 0 initial condition rather
than a stationary solution as here.
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In the following, we always consider ω ∈ �0. With the above choice of renormalization, clas-
sical arguments from [20] can be used to obtain local existence and uniqueness to equation
(2.3) by a pathwise fixed-point argument. This solution can also be shown to be global, as a
simple consequence of a much stronger result, Lemma 2.3, which will be established in detail
below. Since the well-posedness arguments for solving equation (2.3) with a fixed number of
components is essentially known, we relegate the proof to Appendix B and only state the
result here.

LEMMA 2.2. For each N , there exist unique global solutions (Yi) to equation (2.3) such
that for 1 ≤ i ≤ N , Yi ∈ CT L2 ∩ L4

T L4 ∩ L2
T H 1.

2.2. Uniform in N estimate. We now turn to our uniform in N bounds on equation (2.3)
and note that Yi itself depends on N , but we omit this throughout. In the following lemma, we
show that the empirical averages of the L2 norms of Yi can be controlled pathwise in terms
of averages of the CT C−κ norms of Zi , :ZiZj : and :Z2

i Zj : discussed in Lemma 2.1.

LEMMA 2.3. Let s ∈ [2κ, 1
4). There exists a universal constant C such that

1

N
sup

t∈[0,T ]

N∑
j=1

‖Yj‖2
L2 + 1

N

N∑
j=1

‖∇Yj‖2
L2

T L2 +
∥∥∥∥∥ 1

N

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2
T L2

≤ C

∫ T

0
RN dt + 1

N

N∑
j=1

‖yj‖2
L2,

(2.5)

where

(2.6)

RN := 1 +
(

1

N

N∑
j=1

‖Zj‖2
C−s

) 2
1−s

+
(

1

N

N∑
j=1

∥∥ :Z2
j :

∥∥
C−s

) 4
2−s

+
(

1

N2

N∑
i,j=1

‖ :ZjZi: ‖2
C−s

) 2
2−s

+
(

1

N2

N∑
i,j=1

∥∥ :Z2
jZi:

∥∥2
C−s

)
.

PROOF. The proof is based on an energy estimate. In Step 1, we establish the energy
identity (2.9), which identifies the coercive quantities and involves three types of terms on
the right-hand side. These are labeled I 1

N , I 2
N and I 3

N , which are respectively linear, quadratic
and cubic in Y . In Steps 2–4, we estimate each of these quantities, proceeding in order of
difficulty, in terms of the coercive terms and the quantities Ri

N for i = 1,2,3 defined below.
The main ingredient is Lemma A.5, restated here: for s ∈ (0,1),

(2.7)
∣∣〈g,f 〉∣∣� (‖∇g‖s

L1‖g‖1−s

L1 + ‖g‖L1
)‖f ‖C−s .

The final output of Steps 1–4 is that for some universal constant C it holds

1

N

N∑
i=1

d

dt
‖Yi‖2

L2 + 1

N

N∑
i=1

‖∇Yi‖2
L2 + 1

N2

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

+ m

N

N∑
j=1

‖Yj‖2
L2

≤ C
R1

N

N
+ C

(
R2

N + R3
N

) 1

N

N∑
i=1

‖Yi‖2
L2,

(2.8)
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where Ri
N for i = 1,2,3 are defined in (2.11), (2.14), (2.18) below. Noting that by Hölder’s

inequality

1

N

N∑
i=1

‖Yi‖2
L2 = 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
L1

≤ 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
L2

,

the estimate (2.5) follows from Young’s inequality with exponents (2,2) and an integra-
tion over [0, T ]. The condition s ∈ [2κ, 1

4) ensures that RN is integrable near the origin; cf.
Lemma 2.1.

STEP 1 (Energy balance)
In this step, we justify the energy identity

1

2

N∑
i=1

d

dt
‖Yi‖2

L2 +
N∑

i=1

‖∇Yi‖2
L2 + m

N∑
i=1

‖Yi‖2
L2 +

∥∥∥∥∥ 1√
N

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2

= I 1
N + I 2

N + I 3
N,

(2.9)

where the quantities I i
N for i = 1,2,3 are defined by

I 1
N

def= − 1

N

N∑
i,j=1

〈
Yi, :Z2

jZi: 〉,
I 2
N

def= − 1

N

N∑
i,j=1

2〈YiYj , :ZjZi: 〉 + 〈
Y 2

i , :Z2
j :

〉
,

I 3
N

def= − 1

N

N∑
i,j=1

3
〈
Y 2

i Yj ,Zj

〉
.

Notice that I 1
N , I 2

N and I 3
N are linear, quadratic and cubic in Y , respectively. Formally,

the identity (2.9) follows from testing (2.3) by Yi , integrating by parts, summing over
i = 1, . . . ,N , and using symmetry with respect i and j . Since Yi is not sufficiently smooth in
the time variable, some care is required to make this fully rigorous, and we direct the reader
to [53], Proposition 6.8, for more details.

STEP 2 (Estimates for I 1
N )

In this step, we show there is a universal constant C such that

I 1
N ≤ 1

4

N∑
i=1

‖∇Yi‖2
L2 +

N∑
i=1

‖Yi‖2
L2 + CR1

N,(2.10)

where

(2.11) R1
N

def=
N∑

i=1

∥∥∥∥∥ 1

N

N∑
j=1

:Z2
jZi:

∥∥∥∥∥
2

C−s

.

To establish (2.10), we apply (2.7) with Yi playing the role of g and 1
N

∑N
j=1 :Z2

jZi: playing
the role of f to find

I 1
N �

N∑
i=1

(‖Yi‖1−s

L1 ‖∇Yi‖s
L1 + ‖Yi‖L1

)∥∥∥∥∥ 1

N

N∑
j=1

:Z2
jZi:

∥∥∥∥∥
C−s

.(2.12)

We now use Young’s inequality with exponents ( 2
1−s

, 2
s
,2) for the first term and (2,2) for the

second term and the embedding of L2 into L1 to obtain (2.10).
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STEP 3 (Estimates for I 2
N )

In this step, we show there is a universal constant C such that

I 2
N ≤ 1

4

N∑
i=1

‖∇Yi‖2
L2 + C

(
1 + R2

N

)( N∑
i=1

‖Yi‖2
L2

)
,(2.13)

where

R2
N

def=
(

1

N2

N∑
i,j=1

‖ :ZjZi: ‖2
C−s

) 1
2−s

+
∥∥∥∥∥ 1

N

N∑
j=1

:Z2
j :

∥∥∥∥∥
2

2−s

C−s

def= (
R̃2

N

) 1
2−s + (

R2
N

) 2
2−s .

(2.14)

Applying (2.7) with YiYj playing the role of g and :ZjZi: playing the role of f followed
by Hölder’s inequality in L2, the product rule and symmetry with respect to i, j we find

1

N

N∑
i,j=1

〈YiYj , :ZjZi: 〉

� 1

N

N∑
i,j=1

(‖YiYj‖1−s

L1

∥∥∇(YiYj )
∥∥s
L1 + ‖YiYj‖L1

)‖ :ZjZi: ‖C−s

� 1

N

N∑
i,j=1

(‖Yj‖L2‖Yi‖1−s

L2 ‖∇Yi‖s
L2 + ‖Yi‖L2‖Yj‖L2

)‖ :ZjZi: ‖C−s

�
(

N∑
j=1

‖Yj‖2
L2

) 1
2
(

N∑
i=1

‖Yi‖2(1−s)

L2 ‖∇Yi‖2s
L2

) 1
2 (

R̃2
N

) 1
2 +

(
N∑

i=1

‖Yi‖2
L2

)(
R̃2

N

) 1
2

�
(

N∑
j=1

‖Yj‖2
L2

)1− s
2
(

N∑
i=1

‖∇Yi‖2
L2

) s
2 (

R̃2
N

) 1
2 +

(
N∑

i=1

‖Yi‖2
L2

)(
R̃2

N

) 1
2 ,

(2.15)

where we used Hölder’s inequality for the summation in i, j with exponents (2,2) followed
by Hölder’s inequality for the summation in i with exponents ( 1

1−s
, 1

s
). Finally, applying (2.7)

with Y 2
i playing the role of g and 1

N

∑N
j=1 :Z2

j : playing the role of f , we find

1

N

N∑
i,j=1

〈
Y 2

i , :Z2
j :

〉
�

N∑
i=1

(∥∥Y 2
i

∥∥1−s

L1 ‖Yi∇Yi‖s
L1 + ∥∥Y 2

i

∥∥
L1

)
R2

N

�
N∑

i=1

(‖Yi‖2−s

L2 ‖∇Yi‖s
L2 + ‖Yi‖2

L2

)
R2

N(2.16)

�
[(

N∑
i=1

‖Yi‖2
L2

)1− s
2
(

N∑
i=1

‖∇Yi‖2
L2

) s
2

+
N∑

i=1

‖Yi‖2
L2

]
R2

N,

where we used Hölder’s inequality for the summation in i with exponents ( 2
2−s

, 2
s
). The

inequality (2.13) now follows from (2.15)–(2.16) by Young’s inequality with exponents
( 2

2−s
, 2

s
).
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STEP 4 (Estimates for I 3
N : cubic terms in Y )

In this step, we show there exists a universal constant C such that

(2.17) I 3
N ≤ 1

4

(
N∑

i=1

‖∇Yi‖2
L2 +

∥∥∥∥∥ 1√
N

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2

)
+ C

(
1 + R3

N

)( N∑
i=1

‖Yi‖2
L2

)
,

where

(2.18) R3
N

def=
(

1

N

N∑
j=1

‖Zj‖2
C−s

) 1
1−s

=
(

1

N
ZN

) 1
1−s

with ZN
def=

N∑
j=1

‖Zj‖2
C−s .

Appealing again to (2.7), we find

I 3
N � 1

N

N∑
j=1

(∥∥∥∥∥
N∑

i=1

Y 2
i Yj

∥∥∥∥∥
1−s

L1

∥∥∥∥∥∇
(

N∑
i=1

Y 2
i Yj

)∥∥∥∥∥
s

L1

+
∥∥∥∥∥

N∑
i=1

Y 2
i Yj

∥∥∥∥∥
L1

)
‖Zj‖C−s

� 1

N

(
N∑

j=1

∥∥∥∥∥
N∑

i=1

Y 2
i Yj

∥∥∥∥∥
2(1−s)

L1

∥∥∥∥∥∇
(

N∑
i=1

Y 2
i Yj

)∥∥∥∥∥
2s

L1

) 1
2

Z
1
2

N

+ 1

N

(
N∑

j=1

∥∥∥∥∥
N∑

i=1

Y 2
i Yj

∥∥∥∥∥
2

L1

) 1
2

Z
1
2

N .

(2.19)

By Hölder’s inequality, it holds that

(2.20)

∥∥∥∥∥
N∑

i=1

Y 2
i Yj

∥∥∥∥∥
L1

�
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
L2

‖Yj‖L2 .

Furthermore, we find that∥∥∥∥∥∇
(

N∑
i=1

Y 2
i Yj

)∥∥∥∥∥
L1

�
∥∥∥∥∥

N∑
i=1

Y 2
i ∇Yj

∥∥∥∥∥
L1

+
∥∥∥∥∥

N∑
i=1

∇YiYiYj

∥∥∥∥∥
L1

(2.21)

�
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
L2

‖∇Yj‖L2 +
(

N∑
i=1

‖∇Yi‖2
L2

)1/2∥∥∥∥∥
N∑

i=1

Y 2
i Y 2

j

∥∥∥∥∥
1/2

L1

.

Hence, we find that
N∑

j=1

∥∥∥∥∥
N∑

i=1

Y 2
i Yj

∥∥∥∥∥
2(1−s)

L1

∥∥∥∥∥∇
(

N∑
i=1

Y 2
i Yj

)∥∥∥∥∥
2s

L1

�
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2

(
N∑

j=1

‖Yj‖2(1−s)

L2 ‖∇Yj‖2s
L2

)

+
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
2(1−s)

L2

(
N∑

i=1

‖∇Yi‖2
L2

)s( N∑
j=1

∥∥∥∥∥
N∑

i=1

Y 2
i Y 2

j

∥∥∥∥∥
s

L1

‖Yj‖2(1−s)

L2

)

�
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2

(
N∑

j=1

‖Yj‖2
L2

)1−s( N∑
j=1

‖∇Yj‖2
L2

)s

+
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
2(1−s)

L2

(
N∑

i=1

‖∇Yi‖2
L2

)s( N∑
j=1

∥∥∥∥∥
N∑

i=1

Y 2
i Y 2

j

∥∥∥∥∥
L1

)s( N∑
j=1

‖Yj‖2
L2

)1−s
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�
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2

(
N∑

j=1

‖Yj‖2
L2

)1−s( N∑
j=1

‖∇Yj‖2
L2

)s

.

Inserting this into (2.19), taking the square root and using (2.20) we find

I 3
N � 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
L2

(
N∑

j=1

‖Yj‖2
L2

) 1−s
2
(

N∑
j=1

‖∇Yj‖2
L2

) s
2

Z
1
2

N

+ 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
L2

(
N∑

j=1

‖Yj‖2
L2

) 1
2

Z
1
2

N .

(2.22)

Applying Young’s inequality with exponent (2, 2
1−s

, 2
s
) we arrive at (2.17). �

COROLLARY 2.4. Let q ≥ 1, s ∈ [2κ, 2
q+1). There exists a universal constant C such

that

sup
t∈[0,T ]

(
1

N

N∑
j=1

‖Yj‖2
L2

)q

+
∫ T

0

(
1

N

N∑
j=1

‖Yj‖2
L2

)q−1[
1

N

N∑
j=1

‖∇Yj‖2
L2 +

∥∥∥∥∥ 1

N

N∑
i=1

Y 2
i

∥∥∥∥∥
2

L2

]
dt

≤ C

∫ T

0
R

q+1
2

N dt +
(

1

N

N∑
j=1

‖yj‖2
L2

)q

,

with RN introduced in Lemma 2.3.

PROOF. Set V = 1
N

∑N
i=1 ‖Yi‖2

L2 and G = 1
N

∑N
j=1 ‖∇Yj‖2

L2 + ‖ 1
N

∑N
i=1 Y 2

i ‖2
L2 . By

(2.8) in the proof of Lemma 2.3, we deduce for q ≥ 1,
d

dt
V q + GV q−1 ≤ CRNV q−1 ≤ CR

q+1
2

N + 1

2
V q+1.

Note that G ≥ V 2 since ‖∑N
i=1 Y 2

i ‖L1 = ∑N
i=1 ‖Yi‖2

L2 , which implies the result. �

LEMMA 2.5. Let s ∈ [2κ,1/4). There exists a universal constant C such that

sup
t∈[0,T ]

N∑
j=1

‖Yj‖2
L2 +

N∑
j=1

‖∇Yj‖2
L2

T L2 + 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2
T L2

≤ C

(∥∥R0
N

∥∥
L1

T
+

N∑
j=1

‖yj‖2
L2

)
exp

{∫ T

0

(
1 + R2

N + R3
N

)
dt

}
,

(2.23)

where R2
N , R3

N given in the proof of Lemma 2.3 and

(2.24) R0
N = 1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

�−s( :Z2
jZi: )

∥∥∥∥∥
2

L2

.

PROOF. The proof is almost the same as Lemma 2.3. We appeal to Steps 1, 3 and 4 of
Lemma 2.3 and only modify Step 2. To estimate I 1

N , we write

I 1
N ≤ 1

N

N∑
i=1

∥∥�sYi

∥∥
L2

∥∥∥∥∥
N∑

j=1

�−s( :Z2
jZi: )

∥∥∥∥∥
L2

≤ 1

8

N∑
i=1

‖Yi‖2
L2 + 1

8

N∑
i=1

‖∇Yi‖2
L2 + C

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

�−s( :Z2
jZi: )

∥∥∥∥∥
2

L2

,

(2.25)
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where, in the last step, we applied Young’s inequality for products, and then interpolation.
Combining (2.13), and (2.17) (2.16) with (2.25) and inserting these inequalities into the en-
ergy identity (2.9), we obtain

N∑
j=1

d

dt
‖Yj‖2

L2 +
N∑

j=1

‖∇Yj‖2
L2 + 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

+ m

N∑
j=1

‖Yj‖2
L2

≤ CR0
N +

N∑
j=1

‖Yj‖2
L2C

(
1 + R2

N + R3
N

)
.

(2.26)

The estimate (2.23) now follows from Gronwall’s inequality. �

REMARK 2.6. For the estimate of 1
N

∑N
i=1 ‖Yi‖2

L2 in Lemma 2.3, the dissipation term

‖ 1
N

∑N
i=1 Y 2

i ‖2
L2 could be used to avoid Gronwall’s lemma. However, for

∑N
i=1 ‖Yi‖2

L2 or
1
N

∑N
i=1 ‖Yi‖p

Lp for p > 2 it is less clear how to exploit the corresponding dissipation term
and we need to use Gronwall’s inequality to derive a uniform estimate. Since the R2

N , R3
N

appear in the exponential, this makes it unclear how to obtain moment estimates directly.

3. Global solvability of the mean-field SPDE. In this section, we develop a solution
theory for the mean-field SPDE (1.6), the renormalized version of the formal equation (1.5).
In two dimensions, this is a singular SPDE where the ill-defined nonlinearity depends on the
law of the solution. As a result, we cannot proceed via pathwise arguments alone as in [20]
and [53] and we need to develop a few new tricks for both the local and global well-posedness.

We begin by explaining our assumptions on the initial data and our notion of solution to
(1.6). The initial datum ψi decompose as ψi = zi + ηi , where E‖zi‖p

C−κ � 1 for κ > 0 and
every p > 1, and E‖ηi‖4

L4 < ∞ (except for Lemma 3.4 which is an Lp estimate). We define
	i to be a solution to the renormalized, mean-field SPDE (1.6) starting from ψi provided that
	i = Zi + Xi holds, where Zi is the solution to (2.2) with Zi(0) = zi as in Section 2 and Xi

is a random process satisfying

(3.1) L Xi = −μXi
(Xi + Zi), Xi(0) = ηi.

Here, μXi
depends on the law of Xi and is defined as

μXi

def= E
[
X2

i

]+ 2E[XiZi] +E
[ :Z2

i :
]
.

In the following, we write μ for μXi
for simplicity.

We now comment on the meaning of the nonlinearity in equation (3.1). Recall from Sec-
tion 2.1 that Zi ∈ C−κ (Lemma 2.1), while E[ :Z2

i : ] = E[(St z̃i)
2] with z̃i = zi − Z̃i(0), so

by Schauder theory we expect that Xi is Hölder continuous. Hence, we anticipate that E[X2
i ]

is a well-defined function, while E[XiZi] is a distribution satisfying for t > 0 and β > κ ,∥∥E[XiZi](t)
∥∥
C−κ � E

[∥∥Xi(t)
∥∥
Cβ

∥∥Zi(t)
∥∥
C−κ

]
.

We immediately find that all terms in μ(Xi + Zi) are classically defined in the sense of
distributions except for E[XiZi]Zi , which requires more care and a suitable probabilistic
argument. The idea used to overcome this difficulty, which is repeated in different ways
throughout the section, is to view the expectation μ as coming from a suitable independent
copy of (Xi,Zi). To avoid notational confusion, we now comment further on our convention
throughout this section. We consider equation (1.6) for a fixed i and when we write (ηj , zj )

for j �= i we mean an independent copy of (ηi, zi), and we then write (Zj ,Xj ) for the solu-
tion driven by white noise ξj , which is independent of ξi , from initial data (zj , ηj ).
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3.1. Local well-posedness.

LEMMA 3.1. For p ∈ [1,∞] and 0 < κ < s, it holds

(3.2)
∥∥ZiE[ZiXi]

∥∥
B−κ

p,∞ �
(
E‖Xi‖2

Bs
p,∞

) 1
2
(
E
[‖ :ZiZj : ‖2

C−κ | Zi

]) 1
2 .

Here, the conditional expectation is on the σ -algebra generated by the stochastic process Zi .

PROOF. Letting (Xj ,Zj ) be an independent copy of (Xi,Zi) we have

ZiE[ZiXi] = ZiE[ZjXj ] = E[ :ZiZj : Xj | Zi].
We then use Jensen’s inequality to find∥∥ZiE[ZjXj ]

∥∥
B−κ

p,∞ ≤ E
[‖ :ZiZj : Xj‖B−κ

p,∞ | Zi

] ≤ E
[‖ :ZiZj : ‖C−κ ‖Xj‖Bs

p,∞ | Zi

]
,

where we used Lemma A.3 in the last line. The claim now follows from conditional Hölder’s
inequality and the independence of Xj from Zi . �

We now apply the above result to obtain a local well-posedness result for (3.1), which
yields in turn a local well-posedness result for (1.6).

LEMMA 3.2. There exists T ∗ > 0 small enough such that (3.1) has a unique mild so-
lution Xi ∈ L2(�;CT ∗L4 ∩ C((0, T ∗];Cβ)) and for β > 3κ small enough, γ = β + 1

2 , one
has

E
[

sup
t∈[0,T ∗]

tγ ‖Xi‖2
Cβ

]
≤ 1.

PROOF. For T > 0, define the ball

BT
def=

{
Xi ∈ L2(�,C

((
0, T ];Cβ)) | E

[
sup

t∈[0,T ]
tγ ‖Xi‖2

Cβ

]
≤ 1, Xi(0) = ηi

}
.

Here, we endow the space C((0, T ];Cβ) with norm (supt∈[0,T ] tγ ‖f (t)‖2
Cβ )1/2.

For Xi ∈ BT , define MT Xi : (0, T ] �→Cβ via

MT Xi(t) :=
∫ t

0
St−sE

[
X2

i + 2XiZi+ :Z2
i :

]
(Xi + Zi)ds + Stηi.

Using Lemma A.4 and Lemma A.3 noting β > κ , we find that∥∥MT Xi(t) − Stηi

∥∥
Cβ

�
∫ t

0
(t − s)−

β+κ
2
∥∥E[XiZi]Zi

∥∥
C−κ ds

+
∫ t

0

(∥∥EX2
i

∥∥
Cβ + ∥∥E :Z2

i :
∥∥
Cβ + (t − s)−

β+κ
2
∥∥E[XiZi]

∥∥
C−κ

)‖Xi‖Cβ ds

+
∫ t

0
(t − s)−

β+κ
2
(∥∥EX2

i

∥∥
Cβ + ∥∥E :Z2

i :
∥∥
Cβ

)‖Zi‖C−κ ds
def=

3∑
i=1

Ji(t).

We start by applying Lemma 3.1 to obtain the pathwise bound

J1(t) �
∫ t

0
(t − s)−

β+κ
2
(
E‖Xi‖2

Cβ

) 1
2
(
E
[‖ :ZiZj : ‖2

C−κ | Zi

]) 1
2 ds

�
(
E
[

sup
r∈[0,t]

(
rκ ′∥∥ :ZiZj : (r)

∥∥
C−κ

)2 | Zi

]) 1
2
∫ t

0
(t − s)−

β+κ
2 s− γ+2κ′

2 ds,
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for κ ′ > κ > 0, which is integrable provided β < 2 − κ and γ < 2 − 2κ ′. We may now apply
Lemma 2.1 to find that

E
∣∣J1(t)

∣∣2 � E
[

sup
r∈[0,t]

(
rκ ′∥∥ :ZiZj : (r)

∥∥
C−κ

)2
]
t2−(β+κ+2κ ′+γ ) � t2−(β+κ+2κ ′+γ ).

Before estimating J2(t) and J3(t), we make three observations. First, note that by Jensen’s
inequality and Lemma A.3 it holds∥∥EX2

i

∥∥
Cβ � E

[‖Xi‖2
Cβ

]
� s−γ .

Furthermore, using again Lemma A.4 we find∥∥E :Z2
i :

∥∥
Cβ ≤ E

∥∥(St z̃i)
2∥∥

Cβ ≤ E‖St z̃i‖2
Cβ � s−(β+κ).

Finally, note that by Lemma A.3∥∥E[XiZi]
∥∥
C−κ � E

[‖Xi‖Cβ ‖Zi‖C−κ

]
�

(
E
[‖Xi‖2

Cβ

]) 1
2
(
E
[‖Zi‖2

C−κ

]) 1
2 � s− γ

2 .

Inserting these three bounds, we find the inequalities

J2(t) �
∫ t

0

(
s−γ + s−(β+κ) + (t − s)−

β+κ
2 s− γ

2
)‖Xi‖Cβ ds,

J3(t) �
∫ t

0
(t − s)−

β+κ
2
(
s−γ + s−(β+κ))‖Zi‖C−κ ds.

Squaring and taking expectation, we find

E
∣∣J2(t)

∣∣2 � t−γ (t2−2γ + t2−2(β+κ) + t2−(β+κ+γ )),
E
∣∣J3(t)

∣∣2 � (
t2−(β+κ+2γ ) + t2−3(β+κ)).

Under our assumption on β these are all bounded by t−γ . Finally, note that by Lemma A.4

and the embedding L4 ⊂ C− 1
2 , we obtain

‖Stη‖Cβ � t−
1+2β

4 ‖η‖L4 .(3.3)

Combining the above estimates, we can find T ∗ small enough to have

E
[

sup
t∈[0,T ∗]

tγ
∥∥MT ∗X(t)

∥∥2
Cβ

]
≤ 1,

which implies that for T ∗ small enough MT ∗ maps BT ∗ into itself. The contraction property
follows similarly. Now the local existence and uniqueness in L2(�;C((0, T ],Cβ)) follows.
Furthermore, we know

∫ t
0 St−sμ(X(s)+ Z(s))ds is continuous in Cβ and Stηi ∈ CT L4. The

result follows. �

3.2. Global well-posedness. We now extend our local solution to a global solution
through a series of a priori bounds, starting with a uniform in time on the L2(�;L2) norm of
Xi together with an L2(�;L2

T H 1) bound.

LEMMA 3.3. There exists a universal constant C such that

sup
t∈[0,T ]

E‖Xi‖2
L2 +E‖∇Xi‖2

L2
T L2 + ∥∥EX2

i

∥∥2
L2

T L2 + mE‖Xi‖2
L2

T L2

≤ C

∫ T

0
R dt +E‖ηi‖2

L2,

(3.4)

where, for i �= j we define

R
def= 1 + (

E‖Zi‖2
C−s

) 2
1−s +E

∥∥ :Z2
jZi:

∥∥2
C−s + C

(
E‖ :ZjZi: ‖2

C−s

)2 + C
(
E
∥∥ :Z2

i :
∥∥
C−s

)4
.
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PROOF. The proof is similar in spirit to the proof of Lemma 2.3, proceeding by energy
estimates.

STEP 1 (Expected energy balance)
In this step, we establish the following identity:

1

2

d

dt
E‖Xi‖2

L2 +E‖∇Xi‖2
L2 + ∥∥EX2

i

∥∥2
L2 + mE‖Xi‖2

L2 = I 1 + I 2 + I 3,(3.5)

where

I 1 def= E
〈
Xi, :ZiZ

2
j :

〉
,

I 2 def= E
〈
X2

i , :Z2
j :

〉+ 2E〈XiXj ,ZiZj 〉,
I 3 def= 3E

〈
X2

i Xj ,Zj

〉
.

(3.6)

Testing (3.1) with Xi , integrating by parts and using that Xi , XiZi and :Z2
i : are respectively

equal in law to Xj , XjZj and :Z2
j : we find

1

2

d

dt
‖Xi‖2

L2 + ‖∇Xi‖2
L2 + m‖Xi‖2

L2 + ∥∥X2
i EX2

i

∥∥
L1

= −〈
Xi,ZiE

( :Z2
j :

)〉− 〈
X2

i ,E
( :Z2

j :
)〉− 2

〈
Xi,ZiE(XjZj )

〉
− 2

〈
X2

i ,E(XjZj )
〉− 〈

XiE
(
X2

j

)
,Zi

〉
.

Taking expectation on both sides, using independence, and the fact that X2
i XjZj has the

same law as X2
jXiZi we obtain (3.5).

STEP 2 (Estimates for I 1)
In this step, we show there is a universal constant C such that

(3.7) I 1 ≤ 1

4

(∥∥EX2
i

∥∥2
L2 +E‖∇Xi‖2

L2

)+ C
(
1 +E

∥∥ :ZiZ
2
j :

∥∥2
C−s

)
.

To prove the claim, we apply (2.7) to have

I 1 � E
[(‖Xi‖1−s

L1 ‖∇Xi‖s
L1 + ‖Xi‖L1

)∥∥ :Z2
jZi:

∥∥
C−s

]
.

Hence, (3.7) follows from the inequality E‖Xi‖2
L1 ≤ ‖EX2

i ‖L2 and Young’s inequality with

exponents ( 2
1−s

, 2
s
,2) and (2,2).

STEP 3 (Estimates for I 2)
In this step, we show that there is a universal constant C such that

I 2 ≤ 1

4

(
E‖∇Xi‖2

L2 + ∥∥EX2
i

∥∥2
L2

)+ C + C
(
E‖ :ZjZi: ‖2

C−s

)2

+ C
(
E
∥∥ :Z2

j :
∥∥
C−s

)4
.

(3.8)

Using again (2.7), Young’s inequality, Hölder’s inequality and the independence of Xi and
Xj we obtain

E〈XiXj , :ZjZi: 〉 � E
(‖XiXj‖L1 + ‖∇XiXj‖L1 + ‖Xi∇Xj‖L1

)‖ :ZjZi: ‖C−s

� E
(‖Xi‖L2‖Xj‖L2 + ‖∇Xi‖L2‖Xj‖L2

)‖ :ZjZi: ‖C−s

(3.9)
�

(
E‖Xi‖2

L2E‖Xj‖2
L2 +E‖∇Xi‖2

L2E‖Xj‖2
L2

)1/2(E‖ :ZjZi: ‖2
C−s

)1/2

�
(∥∥EX2

i

∥∥2
L1 +E‖∇Xi‖2

L2

∥∥EX2
j

∥∥
L1

)1/2(E‖ :ZjZi: ‖2
C−s

)1/2
.
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Similarly, using this time independence of X2
i and :Z2

j : we obtain

E
〈
X2

i , :Z2
j :

〉
� E

(∥∥X2
i

∥∥
L1 + ‖∇Xi‖L2‖Xi‖L2

)∥∥ :Z2
j :

∥∥
C−s

= (∥∥EX2
i

∥∥
L1 +E‖∇Xi‖L2‖Xi‖L2

)
E
∥∥ :Z2

j :
∥∥
C−s(3.10)

�
(∥∥EX2

i

∥∥
L1 + (

E‖∇Xi‖2
L2

)1/2∥∥EX2
i

∥∥1/2
L1

)
E
∥∥ :Z2

j :
∥∥
C−s .

To obtain (3.8), we use Young’s inequality with exponents (2,2) and (2,4,4) for both (3.9)
(3.10).

STEP 4 (Estimates for I 3)
In this step, we show there is a universal constant C such that

I 3 ≤ 1

4

(
E‖∇Xi‖2

L2 + ∥∥EX2
i

∥∥2
L2

)+ C
((
E‖Zj‖2

C−s

) 2
1−s + 1

)
.(3.11)

To this end, we write

I 3 � E
(∥∥X2

i Xj

∥∥1−s

L1

∥∥∇(
X2

i Xj

)∥∥s
L1 + ∥∥X2

i Xj

∥∥
L1

)‖Zj‖C−s

�
(
E
∥∥X2

i Xj

∥∥
L1‖Zj‖C−s

)1−s(E∥∥∇(
X2

i Xj

)∥∥
L1‖Zj‖C−s

)s +E
∥∥X2

i Xj

∥∥
L1‖Zj‖C−s .

By independence and Hölder’s inequality, it holds that

E
∥∥X2

i Xj

∥∥
L1‖Zj‖C−s �

∥∥EX2
i E

[|Xj |‖Zj‖C−s

]∥∥
L1

�
∥∥EX2

i

∥∥
L2

∥∥(EX2
j

)1/2(E‖Zj‖2
C−s

)1/2∥∥
L2(3.12)

�
∥∥EX2

i

∥∥
L2

(
E‖Xj‖2

L2

) 1
2
(
E‖Zj‖2

C−s

)1/2
,

where we used that ‖(EX2
j )

1/2‖L2 = ‖EX2
j‖

1
2
L1 = (E‖Xj‖2

L2)
1
2 . Furthermore,

E
∥∥X2

i ∇Xj

∥∥
L1‖Zj‖C−s = ∥∥EX2

i E
(|∇Xj |‖Zj‖C−s

)∥∥
L1

≤ ∥∥EX2
i

∥∥
L2

∥∥E(|∇Xj |‖Zj‖C−s

)∥∥
L2

≤ ∥∥EX2
i

∥∥
L2

∥∥(E|∇Xj |2) 1
2
(
E‖Zj‖2

C−s

) 1
2
∥∥
L2

�
∥∥EX2

i

∥∥
L2

(
E‖∇Xj‖2

L2

)1/2(E‖Zj‖2
C−s

) 1
2 .

(3.13)

Similarly, note that

E‖XiXj∇Xi‖L1‖Zj‖C−s � E‖XiXj‖L2
(‖∇Xi‖L2‖Zj‖C−s

)
�

(
E‖XiXj‖2

L2

)1/2(E‖∇Xi‖2
L2E‖Zj‖2

C−s

)1/2(3.14)

�
∥∥EX2

i

∥∥
L2

(
E‖∇Xi‖2

L2

)1/2(E‖Zj‖2
C−s

)1/2
.

Combining the above estimate, we arrive at

I 3 �
∥∥EX2

i

∥∥
L2

(
E‖∇Xi‖2

L2

) s
2
(
E‖Xi‖2

L2

) 1−s
2
(
E‖Zj‖2

C−s

) 1
2

+ ∥∥EX2
i

∥∥
L2

(
E‖Xj‖2

L2

) 1
2
(
E‖Zj‖2

C−s

) 1
2(3.15)

�
∥∥EX2

i

∥∥ 3−s
2

L2

(
E‖∇Xi‖2

L2

) s
2
(
E‖Zj‖2

C−s

) 1
2 + ∥∥EX2

i

∥∥ 3
2
L2

(
E‖Zj‖2

C−s

) 1
2 .

Applying Young’s inequality with exponents ( 4
3−s

, 2
s
, 4

1−s
), we arrive at (3.11). �
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In Section 4, we will study the large N limit of (2.1) by comparing the dynamics of each
component to the corresponding mean-field evolution. To control the equation for the differ-
ence, we will need a stronger control on Xi than the L2 type bound obtained above. In the
following lemma, we show that Lp bounds can be propagated in time, which will turn out to
be a necessary ingredient in Section 4.

LEMMA 3.4. Let p > 2 and assume that E‖ηi‖p
Lp � 1. Then we have

sup
t∈[0,T ]

E‖Xi‖p
Lp +E

∥∥|Xi |p−2
2 ∇Xi

∥∥2
L2

T L2 + ∥∥E|Xi |pEX2
i

∥∥
L1

T L1 � 1,

where the implicit constant is independent of i.

PROOF. Given p > 2, we fix s > 0 sufficiently small such that sp < 1
2 and 2

p
+ s < 1.

We will perform an Lp estimate: integrating (3.1) against |Xi |p−2Xi we get

1

p

d

dt
E‖Xi‖p

Lp + (p − 1)E
∥∥|Xi |p−2|∇Xi |2

∥∥
L1 +E

∥∥|Xi |pX2
j

∥∥
L1 + mE‖Xi‖p

Lp

= −2E
〈
E[XjZj ], |Xi |p〉−E

〈
E
[
X2

j

]|Xi |p−2Xi,Zi

〉− 2E
〈
E[XjZj ]Zi, |Xi |p−2Xi

〉
(3.16)

+E
〈
E
[ :Z2

j :
]
, |Xi |p〉+E

〈
E
[ :Z2

j :
]
Xi |Xi |p−2,Zi

〉 =:
5∑

k=1

Ik.

Set D
def= ‖Xp−2

i |∇Xi |2‖L1 and A
def= ‖Xp

i X2
j‖L1 . We claim that there is some R so that

Ik ≤ 1

10
EA + 1

10
ED + (

E
[∥∥Xp

i

∥∥
L1

]+ C
)
R, with

∫ T

0
R � 1.(3.17)

STEP 1 (Estimate of I1)
Using Lemma A.5, we have

I1 � E
[∥∥XjX

p
i

∥∥1−s

L1

∥∥∇(
Xj |Xi |p)∥∥s

L1‖Zj‖C−s

]+E
[∥∥XjX

p
i

∥∥
L1‖Zj‖C−s

] =: I (1)
1 + I

(2)
1 .

Using

(3.18)
∥∥XjX

p
i

∥∥
L1 �A1/2∥∥Xp

i

∥∥1/2
L1

and independence, one has

I
(2)
1 ≤ E

[
A1/2∥∥Xp

i

∥∥1/2
L1 ‖Zj‖C−s

] ≤ 1

10
EA + CE

∥∥Xp
i

∥∥
L1E‖Zj‖2

C−s .

Regarding I
(1)
1 , using Hölder inequality and then Gagliardo–Nirenberg with (s, q, r, α) =

(0,4,2, 1
2),∥∥∇(

Xj |Xi |p)∥∥L1 ≤ ‖∇Xj‖L2
∥∥|Xi |p

2
∥∥2
L4 + 2

∥∥|Xi |p
2 Xj

∥∥
L2

∥∥∇|Xi |p
2
∥∥
L2

�
∥∥|Xi |p

2
∥∥
H 1

∥∥|Xi |p
2
∥∥
L2‖Xj‖H 1 + √

AD.

Since ‖|Xi |p
2 ‖H 1 �D

1
2 + ‖|Xi |p

2 ‖L2 , together with (3.18) one has

I
(1)
1 � E

[
A

1−s
2
∥∥Xp

i

∥∥ 1−s
2

L1

(
D

s
2
∥∥Xp

i

∥∥ s
2
L1‖Xj‖s

H 1 + ∥∥Xp
i

∥∥s
L1‖Xj‖s

H 1 + A
s
2 D

s
2
)‖Zj‖C−s

]
≤ 1

10
EA + 1

10
ED + CE

∥∥Xp
i

∥∥
L1

(
E‖Xj‖2s

H 1‖Zj‖2
C−s

+E‖Xj‖
2s

1+s

H 1 ‖Zj‖
2

1+s

C−s +E‖Zj‖2/(1−s)

C−s

)
,



152 SHEN, SMITH, ZHU AND ZHU

where in the last inequality we used independence and Young’s inequality for products with
exponents ( 2

1−s
,2, 2

s
) for the first and third term, and exponents ( 2

1−s
, 2

1+s
) for the second

term. Therefore, invoking Lemma 3.3 to deduce∫ T

0

(
E‖Xj‖2s

H 1‖Zj‖2
C−s +E‖Xj‖

2s
1+s

H 1 ‖Zj‖
2

1+s

C−s

)
ds � 1,

which implies a bound of the form (3.17).

STEP 2 (Estimates for I2)
For the second term on the right-hand side of (3.16), we use Lemma A.2 to have

I2 = E
〈
�s(X2

jXi |Xi |p−2),�−sZi

〉
� E

[∥∥�s(X2
j

)∥∥
Lp

∥∥Xp−1
i

∥∥
L

p
p−1

∥∥�−sZi

∥∥
L∞

]
+E

[∥∥X2
j

∥∥
Lp

∥∥�s(Xi |Xi |p−2)∥∥
L

p
p−1

∥∥�−sZi

∥∥
L∞

]
=: I (1)

2 + I
(2)
2 .

Using independence, ‖�s(X2
j )‖Lp � ‖�sXj‖L2p‖Xj‖L2p by (A.1), and Lemma A.1(iii) with

sp < 1,

I
(1)
2 � E

[‖Xi‖p−1
Lp

∥∥�−sZi

∥∥
L∞

]
E
[∥∥�s(X2

j

)∥∥
Lp

]
�

(
E
[‖Xi‖p

Lp

]+ 1
)
E
[‖Xj‖2

H 1

]
.

Regarding I
(2)
2 , by the interpolation Lemma A.2 followed by Hölder’s inequality,∥∥�s(Xi |Xi |p−2)∥∥

L
p

p−1
�

∥∥∇(
Xi |Xi |p−2)∥∥s

L
p

p−1

∥∥Xp−1
i

∥∥1−s

L
p

p−1
+ ∥∥Xp−1

i

∥∥
L

p
p−1

�Ds/2∥∥Xp
i

∥∥(1−s)
p−1
p

+ s(p−2)
2p

L1 + ∥∥Xp
i

∥∥p−1
p

L1 .

(3.19)

By (A.2) with (q, s, α, r) = (2p,0, β,2) with β
def= 1 − 1

p
, and then Hölder inequality

E
∥∥X2

j

∥∥
Lp � E

[‖Xj‖2β

H 1‖Xj‖2(1−β)

L2

]
�

(
E‖Xj‖2

H 1

)β(E‖Xj‖2
L2

)1−β
.(3.20)

Recall from Lemma 3.3 that E[‖Xj‖2
L2] � 1. With (3.19)–(3.20), using again independence,

and Hölder’s inequality with exponents (2
s
, 2

2−s
), together with Lemma 2.1, we obtain

I
(2)
2 �

(
E‖Xj‖2

H 1

)β
(ED)

s
2E

[∥∥Xp
i

∥∥η

L1

∥∥�−sZi

∥∥ 2
2−s

L∞
]1− s

2

+E
[‖Xj‖2

H 1

]β(E∥∥Xp
i

∥∥
L1E‖Xj‖2

L2 + 1
)
,

where η
def= (1 − 1

p
− s

2) 2
2−s

and clearly η < 1. The first term on the right-hand side can

be bounded by, using Young’s inequality with exponents (2
s
, 2

2−s
) and then with exponents

( 1
η
, 1

1−η
),

1

10
E[D] + CE

[∥∥Xp
i

∥∥η

L1

∥∥�−sZi

∥∥ 2
2−s

L∞
]
E
[‖Xj‖2

H 1

] 2β
2−s

≤ 1

10
E[D] + C

(
E
∥∥Xp

i

∥∥
L1 +E

∥∥�−sZi

∥∥ 2
2−s

1
1−η

L∞
)
E
[‖Xj‖2

H 1

] 2β
2−s .

By Lemma A.1 and Lemma 2.1, we easily find E‖�−sZi‖q
L∞ � 1 for every q ≥ 1. Using

Lemma 2.1, and Lemma 3.3 noting that 2β/(2 − s) < 1 by our smallness assumption on
s > 0, we obtain a bound of the form (3.17) for I2.
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STEP 3 (Estimate of I3-I5)
Using Lemma A.2, we obtain

I3 = E
〈
�s(XjXi |Xi |p−2),�−s( :ZiZj : )

〉
� E

[∥∥�−s( :ZiZj : )
∥∥
L∞

∥∥�sXj

∥∥
Lp

∥∥Xp
i

∥∥p−1
p

L1

]
+E

[∥∥�−s( :ZiZj : )
∥∥
L∞‖Xj‖Lp

∥∥�s(Xi |Xi |p−2)∥∥
L

p
p−1

] =: I (1)
3 + I

(2)
3 .

For I
(1)
3 , we use Sobolev embedding H 1 ⊂ Hs

p and Young’s inequality and independence to
have

I
(1)
3 � E

[∥∥�−s( :ZiZj : )
∥∥p
L∞

]+E
[‖Xj‖

p
p−1

H 1

]
E
[∥∥Xp

i

∥∥
L1

]
.

For I
(2)
3 , we plug in (3.19):

I
(2)
3 � E

[(
Ds/2∥∥Xp

i

∥∥(2p−2−sp)/(2p)

L1 + ∥∥Xp
i

∥∥p−1
p

L1

)‖Xj‖Lp

∥∥�−s( :ZiZj : )
∥∥
L∞

]
.

Using Young’s inequality with (2
s
,

2p
2p−2−sp

,p) and (
p

p−1 ,p), and Sobolev embedding,

I
(2)
3 ≤ 1

10
ED + CE

∥∥Xp
i

∥∥
L1E‖Xj‖

2p
2p−2−sp

H 1 +E‖Xj‖
p

p−1

H 1 E
∥∥Xp

i

∥∥
L1 + CE

∥∥�−s( :ZiZj : )
∥∥p
L∞ .

For s > 0 small enough 2
p

+ s < 1 so that 2p
2p−2−sp

< 2, so Lemma 3.3 applies.
By (3.19), we have for ε > 0 small enough

I4 + I5

�
∥∥E[ :Z2

j :
]∥∥

L∞E
[‖Xi‖p

Lp

]+ ∥∥E[ :Z2
j :

]∥∥
Cs+εE

[∥∥�s(Xi |Xi |p−2)∥∥
L1

∥∥�−sZi

∥∥
L∞

]
�

∥∥E[ :Z2
j :

]∥∥
L∞E

[‖Xi‖p
Lp

]+ ∥∥E[ :Z2
j :

]∥∥
Cs+εE

[
Ds/2∥∥Xp

i

∥∥(1−s)
p−1
p

+ s(p−2)
2p

L1

∥∥�−sZi

∥∥
L∞

]
+ ∥∥E[ :Z2

j :
]∥∥

Cs+εE
[∥∥Xp

i

∥∥p−1
p

L1

∥∥�−sZi

∥∥
L∞

]
� E[D]s/2E

[∥∥Xp
i

∥∥η

L1

∥∥�−sZi

∥∥ 2
2−s

L∞
]1−s/2∥∥E[ :Z2

j :
]∥∥

Cs+ε

+ ∥∥E[ :Z2
j :

]∥∥
Cs+ε

(
E
[‖Xi‖p

Lp

]+ 1
)

≤ 1

10
E[D] + CE

[∥∥Xp
i

∥∥
L1

]+ C
∥∥E[ :Z2

j :
]∥∥ 2q

2−s

Cs+εE
[∥∥�−sZi

∥∥ 2q
2−s

L∞
]

+ C
∥∥E[ :Z2

j :
]∥∥

Cs+ε

(
E
[‖Xi‖p

Lp

]+ 1
)
,

for q = 1/(1 − η). Combining all the above estimates and using Gronwall’s inequality, we
obtain the claimed bound. �

We now conclude this section by combining our energy estimates with Schauder theory to
obtain a global Hölder bound on Xi .

LEMMA 3.5. Assume that E‖ηi‖4
L4 � 1. For β > κ sufficiently small, γ = β + 1

2 , we
have

E
[

sup
t∈[0,T ]

tγ ‖Xi‖2
Cβ

]
� 1.
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PROOF. Recall that Xi satisfies the mild formulation of (3.1), which we write using our
independent copy (Xj ,Zj ) as

Xi(t) = Stηi +
∫ t

0
St−sE

[
X2

j + 2XjZj+ :Z2
j :

]
(Xi + Zi)ds.

We start by applying the Schauder estimate, Lemma A.4, with δ playing the role β +1, β +κ

and β + κ + 2
3 , respectively, to bound∥∥Xi(t) − Stηi

∥∥
Cβ

�
∫ t

0
(t − s)−

β+1
2
∥∥E[X2

j

]
Xi

∥∥
C−1 ds

+
∫ t

0
(t − s)−

β+κ
2
∥∥E[ :Z2

j :
]
(Xi + Zi)

∥∥
C−κ ds

+
∫ t

0
(t − s)−

β+2/3+κ
2

∥∥E[XjZj ]Zi

∥∥
C−κ− 2

3
ds

+
∫ t

0
(t − s)−

β+2/3+κ
2

(∥∥E[XjZj ]Xi

∥∥
C−κ− 2

3
+ ∥∥E[X2

j

]
Zi

∥∥
C−κ− 2

3

)
ds

def=
4∑

i=1

Ji.

To estimate J1, first recall Lemma 3.4 implies that

(3.21) sup
t∈[0,T ]

∥∥EX2
j

∥∥2
L2 = sup

t∈[0,T ]
∥∥EX2

i

∥∥2
L2 � sup

t∈[0,T ]
E‖Xi‖4

L4 � 1,

which can be combined with the Sobolev embedding L2 ↪→ C−1 in d = 2 corresponding to
Lemma A.1 with α = 0, p1 = q1 = 2 and p2 = q2 = ∞ to find

J1 �
∫ t

0
(t − s)−

β+1
2
∥∥E[X2

j

]∥∥
L2‖Xi‖Cβ ds �

∫ t

0
(t − s)−

β+1
2 ‖Xi‖Cβ ds.

We now turn to J2 and apply Lemma A.3 to find for β > κ and κ ′ > κ

J2 �
∫ t

0
(t − s)−

β+κ
2 [∥∥E[ :Z2

j :
]∥∥

C−κ ‖Xi‖Cβ + ∥∥E[ :Z2
j :

]∥∥
C2κ ‖Zi‖C−κ ds

�
∫ t

0
(t − s)−

β+κ
2 s− κ′

2 ‖Xi‖Cβ ds + ‖Zi‖CT C−κ .

We now turn to J3 and J4 and use the Besov embedding B−κ
3,∞ ↪→C−κ− 2

3 in d = 2 in Lemma
A.1. Let us begin with J3, which is simpler. Using Lemma 3.4 and Lemma A.1 and Lemma
A.2, we have∫ T

0

∥∥E[X2
i

]∥∥2
B2κ

3,∞
ds �

∫ T

0

[
E
∥∥X2

i

∥∥
B2κ

3,∞
]2 ds �

∫ T

0

[
E
∥∥�2κ(X2

i

)∥∥
L3

]2 ds

�
∫ T

0

[
E
∥∥�(

X2
i

)∥∥
L4/3

]2 ds

�
∫ T

0

[
E‖Xi‖H 1‖Xi‖L4

]2 ds

�
∫ T

0
E
[‖Xi‖2

H 1

]
E
[‖Xi‖2

L4

]
ds � 1,

(3.22)

where we used (A.1) in the fourth inequality and Hölder inequality in the fifth inequality.
Note that by Hölder’s inequality in time which exponents (3

2 ,3) and taking into account that
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3
4(β + 2

3 + κ) < 1 for β small enough and using Lemma A.3 we find

J3 �
∫ T

0

∥∥E[XjZj ]Zi

∥∥3
B−κ

3,∞
ds

�
∫ T

0

(
E
[‖Xj‖2

B2κ
3,∞

]) 3
2
(
E
[‖ :ZiZj : ‖2

C−κ | Zi

]) 3
2 ds(3.23)

� 1 +
∫ T

0

(
E
[‖ :ZiZj : ‖2

C−κ | Zi

])6 ds.

Here, we used Lemma 3.1 and (3.22). Finally, we turn to J4. By Lemma A.3 and Lemma
A.2, we deduce

‖Xi‖B2κ
3,∞

� ‖Xi‖B2κ
4

1+2κ
,∞

� ‖Xi‖2κ

B1
2,∞

‖Xi‖1−2κ

B0
4,∞

� ‖Xi‖2κ
H 1‖Xi‖1−2κ

L4 ,

which implies that∫ T

0

∥∥E(XiZi)
∥∥3
B−κ

3,∞
ds �

∫ T

0
E
[‖Xi‖3

B2κ
3,∞

‖Zi‖3
C−κ

]
�

∫ T

0
E
[‖Xi‖6κ

H 1‖Xi‖3(1−2κ)

L4 ‖Zi‖3
C−κ

]
(3.24)

�
∫ T

0
E
[‖Xi‖2

H 1

]+
∫ T

0
E
[‖Xi‖4

L4

]+
∫ T

0
E
[‖Zi‖l

C−κ

]
� 1,

for some l > 1. This combined with (3.22) and Lemma A.3 implies that

J4 �
∫ t

0
(t − s)−

β+2/3+κ
2

(∥∥E[XjZj ]
∥∥
B−κ

3,∞
‖Xi‖Cβ + ∥∥E[X2

j

]∥∥
B2κ

3,∞
‖Zi‖C−κ

)
ds

�
∫ t

0
(t − s)−

β+2/3+κ
2

∥∥E[XjZj ]
∥∥
B−κ

3,∞
‖Xi‖Cβ ds + ‖Zi‖CT C−κ

For Stηi , we use (3.3) to have the desired bound. Combining the above estimates, using
(3.24), Hölder’s inequality and Gronwall’s inequality, the result follows. �

Combining the local well-posedness result and the uniform estimate Lemma 3.5 we con-
clude the following result.

THEOREM 3.6. For given Zi as the solution to (2.2) and E‖ηi‖4
L4 � 1, there exists a

unique solution Xi ∈ L2(�;C((0, T ];Cβ) ∩ CT L4) to (3.1) such that

E
[

sup
t∈[0,T ]

tγ ‖Xi‖2
Cβ

]
+ sup

t∈[0,T ]
E‖Xi‖4

L4 +E‖Xi‖2
L2

T H 1 � 1.

In particular, for every ψi ∈ C−κ with E‖ψi‖p

C−κ � 1, p > 1, there exists a unique solution
	i ∈ L2(�;CT C−κ) to (1.6) such that

E
[

sup
t∈[0,T ]

tγ ‖	i − Zi‖2
Cβ

]
� 1,

for β > 3κ > 0 small enough and γ = 1
2 + β .
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4. Large N limit of the dynamics. In this section, we study the large N behavior of a
fixed component �N

i satisfying (2.1) with initial condition φN
i = yN

i + zN
i . Namely, under

suitable assumptions on the initial conditions, we show that as N → ∞, the component con-
verges to the corresponding solution 	i to (1.6) with initial condition ψi = ηi + zi . Recall
that by definition, �N

i = YN
i + ZN

i , where YN
i satisfies (2.3) and ZN

i satisfies (2.2) with ini-
tial conditions yN

i and zN
i , respectively. Similarly, 	i = Xi +Zi , where Xi satisfies (3.1) and

Zi satisfies (2.2) with initial conditions yi and ηi , respectively. We now define

vN
i

def= YN
i − Xi.

For future reference, we note that in light of the decomposition (cf. Section 2.1 for the defi-
nition of Z̃i),

ZN
i = Z̃i + St

(
zN
i − Z̃i(0)

)
, Zi = Z̃i + St

(
zi − Z̃i(0)

)
,

it follows that

�N
i − 	i = YN

i − Xi + ZN
i − Zi = vN

i + St

(
zN
i − zi

)
.

Hence, our main task is to study vN
i and this will occupy the bulk of the proof. We now give

our assumptions on the initial conditions.

ASSUMPTION 4.1. Suppose the following assumptions:

• The random variables {(zi, ηi)}Ni=1 are i.i.d.
• For every p > 1, and every i,

E
[∥∥zN

i − zi

∥∥p

C−κ

] → 0, E
[∥∥yN

i − ηi

∥∥2
L2

] → 0, as N → ∞,

1

N

N∑
i=1

∥∥zN
i − zi

∥∥p

C−κ →P 0,
1

N

N∑
i=1

∥∥yN
i − ηi

∥∥2
L2 →P 0, as N → ∞,

where →P means the convergence in probability.
• For some q > 1, p0 > 4/(1 − 4κ), and every p > 1,

E
[∥∥zN

i

∥∥p

C−κ + ‖zi‖p

C−κ

]
� 1, E‖ηi‖p0

Lp0 � 1, E

[
1

N

N∑
i=1

∥∥yN
i

∥∥2
L2

]q

� 1,

where the implicit constant is independent of i, N .

The following theorem is our main convergence result, which in particular implies The-
orem 1.1. The proof is inspired by mean-field theory for SDE systems such as Sznitman’s
article [64], which as the general philosophy starts by directly subtracting the two dynamics
and thereby canceling the white noises, and then controls the difference. To this end, we es-
tablish energy estimates for the difference vN

i below; cf. (4.5) from Step 1. The key to the
proof is that for the terms collected in IN

1 , IN
2 below we interpolate with C−s and Bs

1,1 spaces
and leverage various a priori estimates obtained in the previous sections; but for terms col-
lected in IN

3 , which are suitably centered, we interpolate with Hilbert spaces and invoke the
following fact (4.1), which in certain sense gives us a crucial “factor of 1/N”:

Recall that for mean-zero independent random variables U1, . . . ,UN taking values in a
Hilbert space H , we have

(4.1) E

∥∥∥∥∥
N∑

i=1

Ui

∥∥∥∥∥
2

H

= E
N∑

i=1

‖Ui‖2
H .
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This simple fact is important for us since the square of the sum on the left-hand side of (4.1)
appears to have “N2 terms” but under expectation it’s only a sum of N terms, in certain sense
giving us a “factor of 1/N .”

THEOREM 4.1. If the initial datum (zN
i , yN

i , zi, ηi)i satisfy Assumption 4.1, then for
every i and every T > 0, ‖vN

i ‖CT L2 converges to zero in probability, as N → ∞. Moreover,
under the additional hypothesis that (zN

i , yN
i , zi, ηi)

N
i=1 are exchangeable, for all t > 0 it

holds

(4.2) lim
N→∞E

∥∥�N
i (t) − 	i(t)

∥∥2
L2 = 0.

PROOF. The proof has a similar flavor to the Lemma 2.3, and in fact we will continue
to use the notation Ri

N for i = 1,2,3 for the same quantities. One additional ingredient re-
quired is the following instance of the Gagliardo–Nirenberg inequality (a special case of
Lemma A.2):

(4.3) ‖g‖L4 ≤ C‖g‖1/2
H 1 ‖g‖1/2

L2 .

In the proof, we omit the superscript N and simply write vi for vN
i throughout. Furthermore,

in Steps 1–5 we work under the simplifying assumption that zN
i = zi , so that also ZN

i = Zi .
In Step 7, we sketch the argument in the more general case.

STEP 1 (Energy balance)
In this step, we justify the following energy identity:

1

2

d

dt

N∑
i=1

‖vi‖2
L2 +

N∑
i=1

‖∇vi‖2
L2 + m

N∑
i=1

‖vi‖2
L2

(4.4)

+ 1

N

N∑
i,j=1

‖Yjvi‖2
L2 + 1

N

∥∥∥∥∥
N∑

j=1

Xjvj

∥∥∥∥∥
2

L2

=
3∑

k=1

IN
k ,

where

IN
1

def= − 1

N

N∑
i,j=1

(
2〈vivj , :ZjZi: 〉 + 〈

v2
i , :Z2

j :
〉+ 2

〈
v2
i Yj ,Zj

〉)
,

IN
2

def= − 1

N

N∑
i,j=1

〈
vivj ,

(
XiYj + (3Xj + Yj )Zi

)〉
,

IN
3

def= − 1

N

N∑
i,j=1

〈[ :Z2
j : −E :Z2

j : + Xj(Xj + 2Zj)

−EXj(Xj + 2Zj)
]
(Xi + Zi), vi

〉
.

(4.5)

In the definition of IN
3 , to have a compact formula, we slightly abuse notation for the contri-

bution of the diagonal part i = j , where we understand ZiZj to be :Z2
i : and :Z2

j : Zi to be

:Z3
i : .
We now turn the justification of this identity, and for the convenience of the reader, we

write the equations for Yi and Xi side-by-side as

L Yi = − 1

N

N∑
j=1

(
Y 2

j Yi + Y 2
j Zi + 2YjZjYi + 2Yj :ZiZj : + Yi :Z2

j : + :ZiZ
2
j :

)
,(4.6)
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L Xi = − 1

N

N∑
j=1

(
E
(
X2

j

)
Xi +E

(
X2

j

)
Zi + 2E(XjZj )Xi + 2E(XjZj )Zi + XiE :Z2

j :
(4.7)

+ ZiE :Z2
j :

)
,

where we used that Xj and Xi are equal in law. We now compare each of the first 4 terms in
(4.6) to the corresponding terms in (4.7). Note first that

Y 2
j Yi −E

(
X2

j

)
Xi = Y 2

j Yi − X2
jXi + (

X2
j −E

(
X2

j

))
Xi

= Y 2
j vi + vj (Yj + Xj)Xi + (

X2
j −E

(
X2

j

))
Xi.

Similarly, we find (
Y 2

j −E
(
X2

j

))
Zi = vj (Yj + Xj)Zi + (

X2
j −E

(
X2

j

))
Zi,

2YjZjYi − 2E(XjZj )Xi = 2(viYj + vjXi)Zj + 2
(
XjZj −E(XjZj )

)
Xi,

2Yj :ZiZj : − 2E(XjZj )Zi = 2vj :ZiZj : + 2
(
Xj :ZiZj : −E(XjZj )Zi

)
,

Yi :Z2
j : = vi :Z2

j : + Xi :Z2
j : .

Taking the difference of (4.6) and (4.7), using the identities above, multiplying by vi , inte-
grating by parts, and summing over i leads to (4.5). Indeed, notice that each equality gives a
sum of two pieces, one with a factor of v and one without any factor of v, but with a recen-
tering. The terms which have a factor of v lead to IN

1 and IN
2 , except for Y 2

j vi and vjXjXi ,
which lead to the two coercive quantities on the left-hand side of (4.5). The terms which have
been recentered lead to IN

3 .
STEP 2 (Estimates for IN

1 )
In this step, we show there is a universal constant C such that

IN
1 ≤ 1

8

(
N∑

i=1

‖∇vi‖2
L2 + 1

N

N∑
i,j=1

‖Yjvi‖2
L2

)
(4.8)

+ C
(
1 + R2

N + R3
N + R5

N

) N∑
i=1

‖vi‖2
L2,

where R2
N and R3

N are defined in terms of Z in the same way as in (2.14) and (2.18) and

R5
N

def=
(

1 + 1

N

N∑
j=1

‖∇Yj‖2
L2

)s(
1

N

N∑
i=1

‖Zi‖2
C−s

)
,

with 1 > s ≥ 2κ and s small enough. Indeed, (4.8) follows from arguments identical to the
ones leading to (2.13) and (2.17) in Lemma 2.3, but with a different labelling of the inte-
grands, which we now explain. There are three contributions to IN

1 and each can be treated
separately. For the contribution of vivj :ZjZi: we argue exactly as for (2.15) but with vivj

in place of YiYj . For the contribution of v2
i :Z2

j : , we argue exactly as in (2.16), but with v2
i

in place of Y 2
i . This leads to the inequality

1

N

N∑
i,j=1

(
2〈vivj , :ZiZj : 〉 + 〈

v2
i , :Z2

j :
〉)

(4.9)

≤ 1

16

(
N∑

i=1

‖∇vi‖2
L2

)
+ C

(
1 + R2

N

) N∑
i=1

‖vi‖2
L2 .
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Finally, for the contribution of v2
i YjZj the argument is similar as for (2.17). This leads to the

estimate

− 1

N

N∑
j=1

〈
N∑

i=1

v2
i Yj ,Zj

〉

� 1

N

N∑
j=1

(∥∥∥∥∥
N∑

i=1

v2
i Yj

∥∥∥∥∥
1−s

L1

∥∥∥∥∥∇
(

N∑
i=1

v2
i Yj

)∥∥∥∥∥
s

L1

+
∥∥∥∥∥

N∑
i=1

v2
i Yj

∥∥∥∥∥
L1

)
‖Zj‖C−s

� 1

N

(
N∑

j=1

∥∥∥∥∥
N∑

i=1

v2
i Yj

∥∥∥∥∥
2(1−s)

L1

∥∥∥∥∥∇
(

N∑
i=1

v2
i Yj

)∥∥∥∥∥
2s

L1

)1/2

Z
1
2

N

+ 1

N

(
N∑

j=1

∥∥∥∥∥
N∑

i=1

v2
i Yj

∥∥∥∥∥
2

L1

)1/2

Z
1
2

N ,

(4.10)

where ZN
def= ∑N

j=1 ‖Zj‖2
C−s as in (2.18). By Hölder’s inequality, it holds that

(4.11)

∥∥∥∥∥
N∑

i=1

v2
i Yj

∥∥∥∥∥
L1

�
(

N∑
i=1

‖viYj‖2
L2

)1/2( N∑
i=1

‖vi‖2
L2

)1/2

.

Furthermore, we find that

∥∥∥∥∥∇
(

N∑
i=1

v2
i Yj

)∥∥∥∥∥
L1

�
∥∥∥∥∥

N∑
i=1

v2
i ∇Yj

∥∥∥∥∥
L1

+
∥∥∥∥∥

N∑
i=1

∇viviYj

∥∥∥∥∥
L1

�
N∑

i=1

‖vi‖2
L4‖∇Yj‖L2 +

(
N∑

i=1

‖∇vi‖2
L2

)1/2( N∑
i=1

‖viYj‖2
L2

)1/2

�
(

N∑
i=1

‖vi‖2
H 1

)1/2( N∑
i=1

‖vi‖2
L2

)1/2

‖∇Yj‖L2

+
(

N∑
i=1

‖∇vi‖2
L2

)1/2( N∑
i=1

‖viYj‖2
L2

)1/2

,

where we used (4.3) in the last step. Hence, we find that

N∑
j=1

∥∥∥∥∥
N∑

i=1

v2
i Yj

∥∥∥∥∥
2(1−s)

L1

∥∥∥∥∥∇
(

N∑
i=1

v2
i Yj

)∥∥∥∥∥
2s

L1

�
(

N∑
i,j=1

‖viYj‖2
L2

)1−s( N∑
i=1

‖vi‖2
H 1

)s( N∑
i=1

‖vi‖2
L2

)(
N∑

j=1

‖∇Yj‖2
L2

)s

+
(

N∑
i=1

‖∇vi‖2
L2

)s( N∑
i=1

‖vi‖2
L2

)1−s( N∑
i,j=1

‖viYj‖2
L2

)
.
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Inserting this into (4.10), taking the square root and using (4.11) and Young’s inequality with
exponent ( 2

1−s
, 2

s
,2), we arrive at

− 1

N

N∑
i,j=1

〈
2v2

i Yj ,Zj

〉 ≤ 1

16

(
N∑

i=1

‖∇vi‖2
L2 + 1

N

N∑
i,j=1

‖Yjvi‖2
L2

)

+ C
(
1 + R3

N + R5
N

) N∑
i=1

‖vi‖2
L2 .

(4.12)

Combining (4.9) and (4.12) and recalling the definition of IN
1 we obtain (4.8).

STEP 3 (Estimates for IN
2 )

In this step, we show there is a universal constant C such that

IN
2 ≤ 1

4

(
N∑

i=1

‖∇vi‖2
L2 + 1

N

N∑
i,j=1

‖viYj‖2
L2 +

∥∥∥∥∥ 1√
N

N∑
j=1

vjXj

∥∥∥∥∥
2

L2

)

+ C

(
1 + R3

N + R4
N + R5

N + R6
N +

(
1

N

N∑
i=1

‖Xi‖2
L4

)2)( N∑
i=1

‖vi‖2
L2

)
,

(4.13)

where R3
N is defined as in (2.18) and R4

N and R6
N are defined by

R4
N

def=
(

1 + 1

N

N∑
j=1

‖Xj‖2
L4

) 2s
2−s

(
1

N

N∑
i=1

‖Zi‖2
C−s

) 2
2−s

+
(

1

N

N∑
j=1

‖∇Xj‖2
L2

)s(
1

N

N∑
i=1

‖Zi‖2
C−s

)
,

R6
N

def=
(

1

N

N∑
j=1

‖Yj‖2
L4

) s
1−s

R3
N.

We break IN
2 into the separate contributions where vivj multiplies XiYj , XjZi and YjZi ,

respectively. For the first contribution, Cauchy–Schwarz’s inequality yields

1

N

N∑
i,j=1

∫
vivjXiYj dx

≤ 1

8

1

N

N∑
i,j=1

∫
v2
i Y

2
j dx + C

1

N

N∑
i,j=1

∫
v2
jX

2
i dx

≤ 1

8

1

N

N∑
i,j=1

∫
v2
i Y

2
j dx + C

(
N∑

i=1

‖vi‖2
L4

)(
1

N

N∑
i=1

‖Xi‖2
L4

)

≤ 1

8

1

N

N∑
i,j=1

‖viYj‖2
L2 + C

(
N∑

i=1

‖vi‖2
H 1

)1/2( N∑
i=1

‖vi‖2
L2

)1/2(
1

N

N∑
i=1

‖Xi‖2
L4

)
,

where we used (4.3). Using Young’s inequality with exponents (2,2) leads to the last contri-
bution to (4.13). The remaining contributions to IN

2 are more involved to estimate. Our next
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claim is that

3

N

N∑
i=1

〈
vi

N∑
j=1

vjXj ,Zi

〉
≤ 1

8

(
N∑

i=1

‖∇vi‖2
L2 +

∥∥∥∥∥ 1√
N

N∑
j=1

vjXj

∥∥∥∥∥
2

L2

)

+ C
(
1 + R3

N + R4
N

) N∑
i=1

‖vi‖2
L2 .

(4.14)

The basic setup is the same as the bound leading to (2.19) via the inequality (2.7) with
vi

∑N
j=1 vjXj playing the role of g and Zi playing the role of f , followed by an application

of the Cauchy–Schwarz inequality for the summation in i. The left-hand side of (4.14) is then
bounded by

∑
s′∈{s,0}

1√
N

(
N∑

i=1

∥∥∥∥∥vi

N∑
j=1

vjXj

∥∥∥∥∥
2(1−s′)

L1

∥∥∥∥∥∇
(
vi

N∑
j=1

vjXj

)∥∥∥∥∥
2s′

L1

) 1
2( 1

N
ZN

) 1
2
.(4.15)

Using Hölder’s inequality in the form ‖vi

∑N
j=1 vjXj‖L1 ≤ ‖vi‖L2‖∑N

j=1 vjXj‖L2 together
with ∥∥∥∥∥∇

(
vi

N∑
j=1

vjXj

)∥∥∥∥∥
L1

≤ ‖∇vi‖L2

∥∥∥∥∥
N∑

j=1

vjXj

∥∥∥∥∥
L2

+ ‖vi‖1/2
L2 ‖vi‖1/2

H 1

(
N∑

j=1

‖∇vj‖2
L2

) 1
2
(

N∑
j=1

‖Xj‖2
L4

) 1
2

+ ‖vi‖1/2
L2 ‖vi‖1/2

H 1

(
N∑

j=1

‖vj‖2
L2

)1/4( N∑
j=1

‖vj‖2
H 1

)1/4( N∑
j=1

‖∇Xj‖2
L2

)1/2

,

where we used (4.3), and inserting this into (4.15) and applying Hölder’s inequality for the
summation in i together with(

N∑
i=1

‖vi‖2(1−s)

L2 ‖vi‖s
L2‖vi‖s

H 1

) 1
2

≤
(

N∑
i=1

‖vi‖2
L2

) 2−s
4
(

N∑
i=1

‖vi‖2
H 1

) s
4

,

we obtain a majorization by∥∥∥∥∥ 1√
N

N∑
j=1

vjXj

∥∥∥∥∥
L2

(
N∑

i=1

‖vi‖2
L2

) 1−s
2
(

N∑
i=1

‖vi‖2
H 1

) s
2( 1

N
ZN

)1/2

+
∥∥∥∥∥ 1√

N

N∑
j=1

vjXj

∥∥∥∥∥
1−s

L2

(
N∑

i=1

‖vi‖2
L2

) 1
2 − s

4
(

N∑
i=1

‖vi‖2
H 1

) 3s
4
(

1

N

N∑
j=1

‖Xj‖2
L4

) s
2( 1

N
ZN

)1/2

+
∥∥∥∥∥ 1√

N

N∑
j=1

vjXj

∥∥∥∥∥
1−s

L2

(
N∑

i=1

‖vi‖2
L2

) 1
2
(

N∑
i=1

‖vi‖2
H 1

) s
2
(

1

N

N∑
j=1

‖∇Xj‖2
L2

) s
2( 1

N
ZN

)1/2
.

Finally, we apply Young’s inequality with exponents (2, 2
1−s

, 2
s
) for the first term, ( 2

1−s
, 4

2−s
,

4
3s

) for the second term, and ( 2
1−s

,2, 2
s
) for the third term, which leads to (4.14).
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Similar to (4.14), we now claim that

1

N

N∑
i=1

〈
N∑

j=1

vivjYj ,Zi

〉
≤ 1

8

(
N∑

i=1

‖∇vi‖2
L2 + 1

N

N∑
i,j=1

‖viYj‖2
L2

)

+ C

(
1 + ∑

k∈{3,5,6}
Rk

N

) N∑
i=1

‖vi‖2
L2 .

(4.16)

The basic setup is again similar to the bound leading to (2.19) via the inequality (2.7) with∑N
j=1 vivjYj playing the role of g and Zi playing the role of f , followed by an application

of the Cauchy–Schwarz inequality for the summation in i. The left-hand side of (4.16) is then
bounded by

∑
s′∈{s,0}

1√
N

(
N∑

i=1

∥∥∥∥∥
N∑

j=1

vivjYj

∥∥∥∥∥
2(1−s′)

L1

∥∥∥∥∥
N∑

j=1

∇(vivjYj )

∥∥∥∥∥
2s′

L1

) 1
2( 1

N
ZN

) 1
2
.(4.17)

By Hölder’s inequality and the Cauchy–Schwarz inequality, we find∥∥∥∥∥
N∑

j=1

vivjYj

∥∥∥∥∥
L1

≤
(

N∑
j=1

‖viYj‖2
L2

)1/2( N∑
j=1

‖vj‖2
L2

)1/2

,

together with (4.3) to have∥∥∥∥∥
N∑

j=1

∇(vivjYj )

∥∥∥∥∥
L1

≤
(

N∑
j=1

‖viYj‖2
L2

)1/2( N∑
j=1

‖∇vj‖2
L2

)1/2

+ ‖∇vi‖L2

(
N∑

j=1

‖vj‖2
L4

)1/2( N∑
j=1

‖Yj‖2
L4

)1/2

+ ‖vi‖L4

(
N∑

j=1

‖vj‖2
L4

)1/2( N∑
j=1

‖∇Yj‖2
L2

)1/2

.

Inserting this into (4.17) and applying Hölder’s inequality for the summation in i with expo-
nents ( 1

1−s
, 1

s
) leads to a majorization by(
1

N

N∑
i,j=1

‖viYj‖2
L2

) 1
2
(

N∑
i=1

‖vi‖2
L2

) 1−s
2
(

N∑
i=1

‖∇vi‖2
L2

) s
2( 1

N
ZN

)1/2

+
(

1

N

N∑
i,j=1

‖viYj‖2
L2

) 1−s
2
(

N∑
j=1

‖vj‖2
L2

) 1−s
2
(

N∑
j=1

‖vj‖2
L4

) s
2

×
(

N∑
i=1

‖∇vi‖2
L2

) s
2
(

1

N

N∑
j=1

‖Yj‖2
L4

) s
2( 1

N
ZN

) 1
2

+
(

1

N

N∑
i,j=1

‖viYj‖2
L2

) 1−s
2
(

N∑
i=1

‖vi‖2
H 1

) s
2
(

N∑
j=1

‖vj‖2
L2

) 1
2

×
(

1

N

N∑
j=1

‖∇Yj‖2
L2

) s
2( 1

N
ZN

)1/2
.
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Note that for the third term, we also took advantage of (4.3). We now apply Young’s inequal-
ity with exponents (2, 2

1−s
, 2

s
) for the first term, ( 2

1−s
, 2

1−s
, 2

s
, 2

s
) for the second term, and

( 2
1−s

, 2
s
,2) for the third term, which leads to (4.16). Finally, combining (4.14) and (4.16) we

obtain (4.13).
STEP 4 (Law of large numbers type bounds: estimates for IN

3 )
For IN

3 , we obtain a bound in expectation in the spirit of the law of large numbers in a
Hilbert space to generate cancellations. To this end, we define

Gj
def= (

X2
j −EX2

j

)+ 2(XjZj −EXjZj ) + ( :Z2
j : −E :Z2

j :
) def= G

(1)
j + G

(2)
j + G

(3)
j .

We show there is a universal constant C such that

IN
3 ≤ C

(
R̄N + R̄′

N

)+ 1

8

1

N

∥∥∥∥∥
N∑

i=1

Xivi

∥∥∥∥∥
2

L2

+ 1

4

N∑
i=1

‖vi‖2
H 1

+ C

(
N∑

i=1

‖vi‖2
L2

)[
R7

N + 1 + 1

N

N∑
i=1

(‖Xi‖4/(1−2s)

L4 + ∥∥�sXi

∥∥4
L4

)]
,

(4.18)

with

R̄N
def= 1

N

∥∥∥∥∥
N∑

j=1

G
(1)
j

∥∥∥∥∥
2

Hs

+ ∑
k∈{2,3}

1

N

∥∥∥∥∥
N∑

j=1

G
(k)
j

∥∥∥∥∥
2

H−s

,

R̄′
N

def= ∑
k∈{2,3}

1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

G
(k)
j Zi

∥∥∥∥∥
2

H−s

,

R7
N

def=
(

1

N

N∑
i=1

∥∥�−sZi

∥∥2
L∞

) 1
1−s

.

We write IN
3 = ∑3

k=1(I
N
3,k + JN

3,k) with

IN
3,k

def= 1

N

N∑
i=1

〈
N∑

j=1

G
(k)
j Xi, vi

〉
, JN

3,k
def= 1

N

N∑
i=1

〈
N∑

j=1

G
(k)
j Zi, vi

〉
.

We consider each term separately: For IN
3,1, we have the following:

IN
3,1 ≤ 1

N

∥∥∥∥∥
N∑

j=1

G
(1)
j

∥∥∥∥∥
L2

∥∥∥∥∥
N∑

i=1

Xivi

∥∥∥∥∥
L2

≤ C
1

N

∥∥∥∥∥
N∑

j=1

G
(1)
j

∥∥∥∥∥
2

L2

+ 1

8

1

N

∥∥∥∥∥
N∑

i=1

Xivi

∥∥∥∥∥
2

L2

.

For JN
3,1, we use (A.1), the interpolation Lemma A.2 and Young’s inequality to obtain

JN
3,1 = 1

N

N∑
i=1

〈
�s

(
N∑

j=1

G
(1)
j vi

)
,�−sZi

〉

≤ 1

N

N∑
i=1

[∥∥∥∥∥�s
N∑

j=1

G
(1)
j

∥∥∥∥∥
L2

‖vi‖L2 +
∥∥∥∥∥

N∑
j=1

G
(1)
j

∥∥∥∥∥
L2

∥∥�svi

∥∥
L2

]∥∥�−sZi

∥∥
L∞

≤ C

N

∥∥∥∥∥
N∑

j=1

G
(1)
j

∥∥∥∥∥
2

Hs

+ 1

20

N∑
i=1

‖vi‖2
H 1 + C

∑
s′∈{0,s}

(
N∑

i=1

‖vi‖2
L2

)(
1

N

N∑
i=1

∥∥�−sZi

∥∥2
L∞

) 1
1−s′

.
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For IN
3,2, we have

IN
3,2 = 1

N

N∑
i=1

〈
�−s

N∑
j=1

G
(2)
j ,�s(Xivi)

〉

≤ C

N

∥∥∥∥∥
N∑

j=1

G
(2)
j

∥∥∥∥∥
2

H−s

+ C

N

(
N∑

i=1

∥∥�s(Xivi)
∥∥
L2

)2

≤ C

N

∥∥∥∥∥
N∑

j=1

G
(2)
j

∥∥∥∥∥
2

H−s

+ 1

20

N∑
i=1

‖vi‖2
H 1

+ C

(
N∑

i=1

‖vi‖2
L2

)(
1

N

N∑
i=1

(‖Xi‖4/(1−2s)

L4 + ∥∥�sXi

∥∥4
L4

))
,

where we used (A.1), (4.3) to have

(4.19)

1

N

(
N∑

i=1

∥∥�s(Xivi)
∥∥
L2

)2

� 1

N

(
N∑

i=1

∥∥�sXi

∥∥
L4‖vi‖L4 + ∥∥�svi

∥∥
L4‖Xi‖L4

)2

� 1

N

(
N∑

i=1

‖vi‖1/2
H 1 ‖vi‖1/2

L2

∥∥�sXi

∥∥
L4 +

N∑
i=1

‖vi‖
1
2 +s

H 1 ‖vi‖
1
2 −s

L2 ‖Xi‖L4

)2

,

followed by Hölder inequality with exponents (4,4,2), ( 4
1+2s

, 4
1−2s

,2), Young’s inequality

and finally Jensen’s inequalities for the terms with Xi in the last inequality. For JN
3,2, we have

JN
3,2 �

1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

G
(2)
j Zi

∥∥∥∥∥
2

H−1

+ 1

20

N∑
i=1

‖vi‖2
H 1 .

For IN
3,3, we have

IN
3,3 �

1

N

∥∥∥∥∥
N∑

j=1

G
(3)
j

∥∥∥∥∥
2

H−s

+ 1

N

(
N∑

i=1

∥∥�s(Xivi)
∥∥
L2

)2

� 1

N

∥∥∥∥∥
N∑

j=1

G
(3)
j

∥∥∥∥∥
2

H−s

+ 1

20

N∑
i=1

‖vi‖2
H 1

+
(

N∑
i=1

‖vi‖2
L2

)(
1

N

N∑
i=1

(‖Xi‖4/(1−2s)

L4 + ∥∥�sXi

∥∥4
L4

))
,

where we used (4.19) in the last inequality. For the last term, we have

JN
3,3 �

1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

G
(3)
j Zi

∥∥∥∥∥
2

H−1

+ 1

20

N∑
i=1

‖vi‖2
H 1 .

Combining all the estimates for IN
3,k and JN

3,k , we arrive at (4.18). In the following, we cal-
culate E‖R̄N‖L1

T
+E‖R̄′

N‖L1
T

. To this end, we recall the general fact (4.1) for centered inde-
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pendent Hilbert space-valued random variables. Applying (4.1), we obtain

E‖R̄N‖L1
T
� E

∥∥G(1)
1

∥∥2
L2

T Hs +E
∥∥G(2)

1

∥∥2
L2

T H−s +E
∥∥G(3)

1

∥∥2
L2

T H−s .

It is obvious that E‖G(3)
1 ‖2

L2
T H−s � 1. By Lemma 3.4, we know

E
∥∥G(1)

1

∥∥2
L2

T Hs �
∫ T

0
E
(‖X1∇X1‖2

L2 + ‖X1‖4
L4

)
dt � 1,

E
∥∥G(2)

1

∥∥2
L2

T H−s �
∫ T

0
E
[‖Z1‖2

C−s/2‖X1‖2
Hs

]
dt

�
∫ T

0

(
E
[‖X1‖2

H 1 + ‖X1‖4
L4

]+ 1
)

dt � 1,

(4.20)

where we used Lemma A.2 and Lemma A.3. Therefore, E‖R̄N‖L1
T
� 1. For R̄′

N , we have

E
1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

G
(2)
j Zi

∥∥∥∥∥
2

H−s

= 1

N2

N∑
i,j,�=1

E
〈
G

(2)
j Zi,G

(2)
� Zi

〉
H−s

= 1

N2

[ ∑
i=j=�

+2
∑

i=j �=�

+ ∑
�=j �=i

]

� E
∥∥X1 :Z2

1:
∥∥2
H−s +E‖X1 :Z1Z2: ‖2

H−s ,

where we used independence to have
∑

i �=j �=� = 0. Similarly, we have

E
1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

G
(3)
j Zi

∥∥∥∥∥
2

H−s

� E
∥∥ :Z3

1:
∥∥2
H−s +E

∥∥ :Z2
1Z2:

∥∥2
H−s .

Combining the above two estimates and using Lemma 2.1 and the same argument as in (4.20)
with Z1 replaced by :Z1Z2: and :Z2

1: , we obtain E‖R̄′
N‖L1

T
� 1.

STEP 5 (Convergence of vi to zero in L2(�))
We now combine our estimates and conclude the proof of (4.2). Namely, we insert the

estimates (4.8) and (4.13) into (4.5) and also appeal to our bounds from Step 4 to obtain

d

dt

N∑
i=1

‖vi‖2
L2

≤ C
(
R̄N + R̄′

N

)
+ C

(
1 +

7∑
i=2

Ri
N + 1

N

N∑
i=1

(‖Xi‖4/(1−2s)

L4 + ∥∥�sXi

∥∥4
L4

)) N∑
i=1

‖vi‖2
L2,

(4.21)

where R̄N + R̄′
N is uniformly bounded in L1(� × [0, T ]). Furthermore, by Lemma 2.1,

Lemma 2.3, Lemma 3.4 and (4.3), we deduce also that Ri
N is uniformly bounded in

L1(�×[0, T ]) for each i = 2, . . . ,7. By the Gagliardo–Nirenberg inequality in Lemma A.2,
we have for s ≥ 2κ , r > 4, 1

4 = s
2 + 1−s

r
, ‖�sXi‖4

L4 � ‖Xi‖4s
H 1‖Xi‖4(1−s)

Lr , which combined
with Lemma 3.4 implies that

E
∫ T

0

1

N

N∑
i=1

(‖Xi‖
4

1−2s

L4 + ∥∥�sXi

∥∥4
L4

)
dt � E

∫ T

0

1

N

N∑
i=1

(‖Xi‖2
H 1 + ‖Xi‖

4
1−2s

L
4

1−2s

+ 1
)

dt < ∞.
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We now divide (4.21) by N and use the above observations together with Gronwall’s inequal-
ity. Note that in light of Assumption 4.1, it holds that

(4.22)
1

N

N∑
i=1

∥∥vi(0)
∥∥2
L2 →P 0.

It now follows that

sup
t∈[0,T ]

1

N

N∑
i=1

‖vi‖2
L2 + 1

N

N∑
i=1

‖vi‖2
L2

T H 1

+ 1

N2

N∑
i,j=1

‖Yjvi‖2
L2

T L2 + 1

N2

∥∥∥∥∑
j

Xjvj

∥∥∥∥2

L2
T L2

(4.23)

converges to zero in probability by Lemma 4.2 below. We now upgrade this from conver-
gence in probability to convergence in L1(�) by bounding higher moments and applying
Vitali’s convergence theorem. Only in this part we use the condition that the initial condi-
tions (zN

i , yN
i , zi, ηi)

N
i=1 are exchangeable, which implies that the law of vi(t) and vj (t),

i �= j are the same.
Indeed, first note that supt∈[0,T ] 1

N

∑N
i=1 ‖Yi‖2

L2 is uniformly bounded in Lq(�) for q in
Assumption 4.1 by Lemma 2.3. Additionally, by Lemma 3.4, Jensen’s inequality and the
fact that Xi and Xj are identically distributed (which follows from the i.i.d. hypothesis in
Assumption 4.1), it holds

sup
N≥1

sup
t∈[0,T ]

E

(
1

N

N∑
i=1

∥∥Xi(t)
∥∥2
L2

)2

≤ sup
t∈[0,T ]

E
∥∥X1(t)

∥∥4
L2 < ∞.

Notice that at this stage we are appealing to the assumption E‖ηi‖p0
Lp0 � 1 in order to meet the

hypotheses of Lemma 3.4 and deduce the final step above. Hence, by the triangle inequality
we find that

sup
N≥1

sup
t∈[0,T ]

E

(
1

N

N∑
i=1

∥∥vi(t)
∥∥2
L2

)q

< ∞,

which implies the following convergence upgrade: 1
N

∑N
i=1 ‖vi(t)‖2

L2 converges to zero in
L1(�) for each t ∈ [0, T ]. Finally, we appeal once more to the first bullet point in Assumption
4.1, which is designed to ensure that vi and vj have the same law. As a consequence, we can
now pass from empirical averages to components in light of

(4.24) E
∥∥vi(t)

∥∥2
L2 = 1

N

N∑
i=1

E
∥∥vi(t)

∥∥2
L2 → 0.

STEP 6 (Convergence as a stochastic process)
The proof is largely the same as above, except that we do not estimate vi by an average

over i as in (4.24), since a supremum over time would not commute with a sum over i. Instead
we deduce the following bound:

d

dt
‖vi‖2

L2 + 1

2
‖vi‖2

H 1

(4.25)

≤ C

(
R̄N

N
+ ˜̄R′

N

)
+ 1

N

N∑
i=1

‖vi‖2
H 1 + 1

N2

∥∥∥∥∑
j

Xjvj

∥∥∥∥2

L2
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+ C

(
1 + R̃21

N + ∑
k∈{3,5}

Rk
N + ∑

k∈{3,4,7}
R̃k

N + 1

N

N∑
j=1

‖Xj‖4
L4

+ (‖Xi‖4/(1−2s)

L4 + ∥∥�sXi

∥∥4
L4

))‖vi‖2
L2

+ C
(
1 + R̃22

N + R̃3
N + R̃5

N + R̃6
N + ‖Xi‖4

L4

) 1

N

N∑
j=1

‖vj‖2
L2,(4.26)

where all the “tilde R-terms” are defined analogously to their “untilde” counterparts with
slight tweaks:

˜̄R′
N

def= 1

N2

∥∥∥∥∥
N∑

j=1

G2
jZi

∥∥∥∥∥
2

H−s

+ 1

N2

∥∥∥∥∥
N∑

j=1

G3
jZi

∥∥∥∥∥
2

H−s

,

R̃21
N

def= 1

N

N∑
j=1

∥∥ :Z2
j :

∥∥2/(2−s)

C−s , R̃22
N

def= 1

N

N∑
j=1

‖ :ZiZj : ‖2
C−s ,

R̃3
N

def= ‖Zi‖2/(1−s)

C−s , R̃5
N

def=
(

1 + 1

N

N∑
j=1

‖∇Yj‖2
L2

) s
1−s

‖Zi‖
2

1−s

C−s ,

R̃4
N

def=
(

1 + 1

N

N∑
j=1

‖Xj‖2
H 1

) 2s
2−s (‖Zi‖

4
2−s

C−s + 1
)

+
(

1

N
ZN

) 2
2−s ‖Xi‖

4s
2−s

H 1 +
(

1

N
ZN

)2
‖Xi‖2

L4,

R̃6
N

def=
(

1

N

N∑
j=1

‖Yj‖2
L4

) s
1−s

‖Zi‖
2

1−s

C−s , R̃7
N

def= ∥∥�−sZi

∥∥2/(1−s)
L∞ ,

where ZN is as in (2.18). In fact, all of the terms are similar as above except the following
two terms:

− 1

N

N∑
j=1

∫
XiXjvjvi dx − 2

N

N∑
j=1

〈Xivjvi,Zj 〉 := J1 + J2.

The term J1 is treated differently than above, since without the sum over i we could not move
it to the left-hand side as a coercive quantity. We have

J1 ≤ 1

N

N∑
j=1

∫
v2
jX

2
i dx + 1

N

N∑
j=1

∫
v2
i X

2
j dx

≤ C

(
1

N

N∑
j=1

‖vj‖2
L4

)
‖Xi‖2

L4 + C‖vi‖2
L4

1

N

N∑
j=1

‖Xj‖2
L4

≤ C

(
1

N

N∑
j=1

‖vj‖2
H 1

)1/2(
1

N

N∑
j=1

‖vj‖2
L2

)1/2

‖Xi‖2
L4

+ 1

8
‖vi‖2

H 1 + C‖vi‖2
L2

(
1

N

N∑
j=1

‖Xj‖2
L4

)2

,
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which by Young’s inequality deduce one contribution to (4.26). For the second term, we have

J2 �
∑

s′∈{0,s}

(
1

N

N∑
j=1

‖vivjXi‖2(1−s′)
L1

∥∥∇(vivjXi)
∥∥2s′
L1

) 1
2( 1

N
ZN

) 1
2
.(4.27)

Using Hölder’s inequality in the form ‖vivjXi‖L1 ≤ ‖vi‖L2‖vjXi‖L2 together with the
bound for the first term in J1, we obtain the estimate for s′ = 0 in J2, which corresponds
to the last term in R̃4

N . Moreover, we have∥∥∇(vivjXi)
∥∥
L1 ≤ ‖∇vi‖L2‖vjXi‖L2 + ‖vi‖1/2

L2 ‖vi‖1/2
H 1 ‖∇vj‖L2‖Xi‖L4

+ ‖vi‖1/2
L2 ‖vi‖1/2

H 1 ‖vj‖1/2
L2 ‖vj‖1/2

H 1 ‖∇Xi‖L2,

and inserting this into the term s′ = s in (4.27) and applying Hölder’s inequality for the
summation in j leads to the following:(

1

N

N∑
j=1

‖vjXi‖2
L2

)1/2

‖vi‖1−s

L2 ‖vi‖s
H 1

(
1

N
ZN

)1/2

+
(

1

N

N∑
j=1

‖vjXi‖2(1−s)

L2 ‖vj‖2s
H 1

)1/2

‖vi‖1−s/2
L2 ‖vi‖s/2

H 1 ‖Xi‖s
L4

(
1

N
ZN

)1/2

+
(

1

N

N∑
j=1

‖vjXi‖2(1−s)

L2 ‖vj‖s
H 1‖vj‖s

L2

)1/2

‖∇Xi‖s
L2‖vi‖1− s

2
L2 ‖vi‖

s
2
H 1

(
1

N
ZN

)1/2
.

Finally, we apply Young’s inequality and obtain the contribution of R̃4
N in the estimate (4.26).

Using the fact that (4.23) converges to zero in probability, we deduce the L1(0, T ) norm of
(4.26) and the right-hand side of (4.25) converges to zero in probability. Then by Gronwall’s
inequality and Lemma 4.2 imply supt∈[0,T ] ‖vi(t)‖2

L2 → 0 in probability, as N → ∞. In this

step, we see that we do not use the condition that the initial conditions (zN
i , yN

i , zi, ηi)
N
i=1 are

exchangeable.

STEP 7 (General initial datum) To this end, define ui
def= St (z

N
i − zi) and note that we have

the following extra terms:

Ī N := − 1

N

N∑
i,j=1

[〈
Y 2

j , viui

〉+ 2〈YjYiuj , vi〉 + 2
〈
Yjvi, :ZN

i ZN
j : − :ZiZj : 〉

+ 〈
Yivi, :ZN,2

j : − :Z2
j :

〉+ 〈
vi, :ZN

i Z
N,2
j : − :ZiZ

2
j :

〉]
.

These terms could also be estimated similarly as that for IN
1 and IN

2 by using ‖ui‖Cs �
t−(s+κ)/2‖zN

i − zi‖C−κ . Since the proof follows a similar line of argument as in Steps 2–3,
we place the details in Appendix D. �

We recall the following result from probability theory, used in Steps 4 and 6 of the above
lemma, which can be deduced with elementary arguments.

LEMMA 4.2. Let {UN }∞N=1 be a nonnegative sequence of 1d random variables converg-
ing to zero in probability. Let {VN }∞N=1 be a nonnegative sequence of random variables with
tight laws. Then the sequence {UNVN }∞N=1 converges to zero in probability.
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5. Invariant measure and observables. We now study the invariant measure for the
equation

(5.1) L 	 = −E
[
	2 − Z2]	 + ξ,

with E[	2 − Z2] = E[X2] + 2E[XZ] for X = 	 − Z and ξ space-time white noise. Here,
since we are only interested in the stationary setting in this section, we overload the notation
in the previous sections and simply write Z for the stationary solution to the linear equation

(5.2) L Z = ξ,

and we consider the decomposition (slightly different from Section 3) X
def= 	 − Z, so that

(5.3) L X = −E
[
X2 + 2XZ

]
(X + Z), X(0) = 	(0) − Z(0).

For the case that m = 0, we restrict the solutions 	 and Z satisfying 〈	,1〉 = 〈Z,1〉 = 0.
By Theorem 3.6, for every initial data

	(0) = ψ ∈ C−κ

with E‖ψ‖p

C−κ � 1 there exists a unique global solution 	 to (5.1). We immediately find that
Z is a stationary solution to (5.1). This follows since the unique solution to (5.3) starting
from zero is identically zero. Furthermore, we define a semigroup P ∗

t ν to denote the law of
	(t) with the initial condition distributed according to a measure ν. By uniqueness of the
solutions to (5.1), we have P ∗

t = P ∗
t−sP

∗
s for t ≥ s ≥ 0. By direct probabilistic calculation,

we easily obtain the following result, which implies that the implicit constant in Lemma 2.1
is independent of m.

LEMMA 5.1. For κ ′ > κ > 0 and p ≥ 1, it holds that

sup
m≥0

E
[‖Zi‖p

CT C−κ

]+ sup
m≥0

E
[‖ :ZiZj : ‖p

CT C−κ

]+ sup
m≥0

E
[∥∥ :ZiZ

2
j :

∥∥p

CT C−κ

]
� 1,

where the proportional constants are independent of i, j , N .

PROOF. By a standard technique (cf. [34]), it is sufficient to calculate

E
∣∣�qZi(t)

∣∣2 � ∑
k∈Z2

∫ t

−∞
θ
(
2−qk

)2∣∣e−2(t−s)(|k|2+m)
∣∣ds �

∑
k∈Z2

2qκ 1

|k|κ(|k|2 + m)
,

where �q is a Littlewood–Paley block and θ is the Fourier multiplier associated with �q .
From here, we see the bound is independent of m. Other terms can be bounded in a similar
way. �

For R0
N defined in (2.24) with Zi stationary, we have the following result.

LEMMA 5.2. For every q ≥ 1, it holds that

E
[(

R0
N

)q]� 1.(5.4)

PROOF. Since we will have several similar calculations in the sequel, we first demon-
strate such calculation in the case q = 1. We have

E
1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

�−s( :Z2
jZi: )

∥∥∥∥∥
2

L2

= 1

N2

N∑
i,j1,j2=1

E
〈
�−s :Z2

j1
Zi: ,�−s :Z2

j2
Zi: 〉.
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We have 3 summation indices and a factor 1/N2. The contribution to the sum from the cases
j1 = i or j2 = i or j1 = j2 is bounded by a constant in light of Lemma 5.1. If i, j1, j2 are all
different, by independence and the fact that Wick products are mean zero, the terms are zero.

For general q ≥ 1, by Gaussian hypercontractivity and the fact that R0
N is a random vari-

able with finite Wiener chaos decomposition, we have

E
[(

R0
N

)q]� E
[(

R0
N

)2]q/2
.

For the case that q = 2, we write it as

1

N4

N∑
i1,i2,jk=1
k=1...4

E
〈
�−s :Z2

j1
Zi1: ,�−s :Z2

j2
Zi1:

〉〈
�−s :Z2

j3
Zi2: ,�−s :Z2

j4
Zi2:

〉
.

We have 6 indices i1, i2, jk, k = 1, . . . ,4 summing from 1 to N and an overall factor 1/N4.
Using again Lemma 5.1, we reduce the problem to the cases where five or six of the indices
are different. However, in these two cases, by independence the expectation is zero, so (5.4)
follows. �

5.1. Uniqueness of the invariant measures. We now turn to the question of uniqueness
for the invariant measure of (5.1). Since the nonlinearity in the SPDE (5.1) involves the law
of the solution, the associated semigroup P ∗

t is generally nonlinear, that is,

P ∗
t ν �=

∫ (
P ∗

t δψ

)
ν(dψ),

for a nontrivial distribution ν (see, e.g., [69]). As a result, its unclear if the general ergodic
theory for Markov processes (see, e.g., [21], [39]) can be applied directly in our setting.
Fortunately, (5.3) has a strong damping property in the mean-square sense, which comes to
our rescue and allows us to proceed directly by a priori estimates.

LEMMA 5.3. There exists C0 > 0 such that for all

m ≥ 2C0
(
E‖ :Z2Z1: ‖2

C−s + (
E‖Z1‖2

C−s

) 1
1−s + 1

) := m0,

there exists a universal C with the following property: for every solution 	 to (5.1) with
	(0) ∈ C−κ ,

(5.5) sup
t≥1

e
mt
2 E

∥∥	(t) − Z(t)
∥∥2
L2 ≤ C.

PROOF. The proof relies heavily on several computations performed in Lemma 3.3
where we used slightly different notation, so we will write Xi instead of X and Zi instead of
Z for the remainder of this proof. Revisiting the first step of Lemma 3.3 where we established
(3.5), we find that I 1 defined in (3.6) and the first contribution to I 2 defined in (3.6) vanishes
in light of E( :Z2

j : ) = 0. It follows that

1

2

d

dt
E‖Xi‖2

L2 +E‖∇Xi‖2
L2 + mE‖Xi‖2

L2 + ∥∥EX2
i

∥∥2
L2

= −2E〈XiXj ,ZiZj 〉 − 3E
〈
XiX

2
j ,Zi

〉
.

Furthermore, in light of (3.9) and (3.15), we obtain

E〈XiXj ,ZiZj 〉� (∥∥EX2
i

∥∥2
L1 +E‖∇Xi‖2

L2

∥∥EX2
j

∥∥
L1

)1/2(E‖ :ZjZi: ‖2
C−s

) 1
2

E
〈
XiX

2
j ,Zi

〉
�

∥∥EX2
i

∥∥
L2

(
E‖∇Xi‖2

L2

) s
2
(
E‖Xi‖2

L2

) 1−s
2
(
E‖Zi‖2

C−s

) 1
2

+ ∥∥EX2
i

∥∥
L2

(
E‖Xj‖2

L2

) 1
2
(
E‖Zi‖2

C−s

) 1
2 .
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We will use these estimates in two different ways. On one hand, using Young’s inequality
with respective exponents (2,2) and (2, 2

s
, 2

1−s
) followed by Lemma 5.1, we find that

(5.6)
1

2

d

dt
E‖Xi‖2

L2 + 1

2
E‖∇Xi‖2

L2 + mE‖Xi‖2
L2 + ∥∥EX2

i

∥∥2
L2 � 1.

As a consequence, noting that ‖EX2
i ‖2

L2 ≥ (E‖Xi‖2
L2)

2, applying Lemma A.6 it holds

sup
t>0

(t ∧ 1)E
[∥∥Xi(t)

∥∥2
L2

]
� 1,(5.7)

where the implicit constant is independent of the initial data. On the other hand, Young’s
inequality also yields

(5.8)
d

dt
E‖Xi‖2

L2 + mE‖Xi‖2
L2 ≤ C0

(
E‖ :Z2Z1: ‖2

C−s + (
E‖Z1‖2

C−s

) 1
1−s + 1

)
E‖Xi‖2

L2 .

Applying Gronwall’s inequality over [1, t] leads to

e(m−m0
2 )tE

∥∥Xi(t)
∥∥2
L2 � E

∥∥Xi(1)
∥∥2
L2,

so choosing m ≥ m0, using (5.7), and taking the supremum over t ≥ 1, we arrive at (5.5). �

We now apply the above result to show that for sufficiently large mass, the unique invariant
measure to (5.1) is Gaussian. To this end, define the C−1-Wasserstein distance

W′
p(ν1, ν2) := inf

π∈C (ν1,ν2)

(∫
‖φ − ψ‖p

C−1π(dφ, dψ)

)1/p

,

where C (ν1, ν2) denotes the collection of all couplings of ν1, ν2 satisfying
∫ ‖φ‖p

C−1νi(dφ) <

∞ for i = 1,2.

THEOREM 5.4. For m0 as in Lemma 5.3 and m ≥ m0 the unique invariant measure to
(5.1) supported on C−κ is N (0, 1

2(−� + m)−1), the law of the Gaussian free field.

PROOF. Recall that Z is a stationary solution to (5.1). Indeed, by definition, 	 = X +Z,
where X solves (5.3). However, since X(0) = 0, the identically zero process is the unique
solution to (5.3). Hence, the law of Z, which we now denote by ν, is invariant under P ∗

t . We
now claim that for m ≥ m0, this is the only invariant measure supported on C−κ . Indeed, let
ν1 be another such measure, then modifying the stochastic basis if needed, we may assume
there exists ψ ∈ C−κ on it such that ψ ∼ ν1. By similar arguments as in Theorem 3.6, we may
construct a solution 	 to (5.1) with 	(0) = ψ . By invariance of ν1 and ν and the embedding
L2 ↪→C−1 (cf. Lemma A.1), it follows that

W′
2(ν, ν1)

2 = W′
2
(
P ∗

t ν,P ∗
t ν1

)2 ≤ E
∥∥	(t) − Z(t)

∥∥2
C−1 � e−mt

2 ,

for t ≥ 1 by Lemma 5.3. Letting t → ∞, we obtain ν = ν1. �

REMARK 5.5. Note that for the limiting equation L 	 = −μ	 + ξ , if we assume that μ

is simply a constant, it has a Gaussian invariant measure N (0, 1
2(−�+m+μ)−1). Assuming

	 ∼ N (0, 1
2(−� + m + μ)−1) and Z ∼ N (0, 1

2(−� + m)−1), the self-consistent condition
E[	2 − Z2] = μ then yields

1

2

∑
k∈Z2

(
1

|k|2 + m + μ
− 1

|k|2 + m

)
= μ

and for μ+m ≥ 0 we only have one solution μ = 0, since the left-hand side is monotonically
decreasing in μ.
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REMARK 5.6. Changing the renormalization constant in (5.1) will alter the mass of the
Gaussian invariant measure. For instance, if we change the renormalization constant in (5.1)
to EZ2

i,ε(0,0) with Zi by the stationary solution to (∂t − (� − a))Zi = ξi with a > 0, one

invariant measure is Gaussian ν̄
def= N (0, 1

2(−� + m + μ0)
−1) with μ0 satisfying

1

2

∑
k∈Z2

(
1

|k|2 + m + μ0
− 1

|k|2 + a

)
= μ0.

Moreover, by the same proof of Lemma 5.3 and Theorem 5.4, for m + μ0 large enough, ν̄

is the unique invariant measure. Indeed, let 	 = X̄ + Z̄ with Z̄ the stationary solution to
L Z̄ = −μ0Z̄ + ξ , then X̄ satisfies the following equation:

L X̄ = −μ0X̄ −E
[
X̄2 + 2X̄Z̄

]
(X̄ + Z̄),

which is the same case as (3.1) with m replaced by m + μ0.

5.2. Convergence of the invariant measures. As a consequence of Lemma 2.2, the solu-
tions (�i)1≤i≤N to (2.1) form a Markov process on (C−κ)N , which by strong Feller property
in [38] and irreducibility in [40], will turn out to admit a unique invariant measure, hence-
forth denoted by νN . Our goal in this section is to study the large N behavior of νN and
show that for sufficiently large mass, as N → ∞, its marginals are simply products of the
Gaussian invariant measure for 	 identified in Theorem 5.4. For this, we rely heavily on the
computations from Section 2.2 for the remainder Y , but we leverage these estimates with
consequences of stationarity. To this end, it will be convenient to have a stationary coupling
of the linear and nonlinear dynamics (2.2) and (2.1), respectively, which is the focus of the
following lemma.

LEMMA 5.7. There exists a unique invariant measure νN on (C−κ)N to (2.1). Further-
more, there exists a stationary process (�N

i ,Zi)1≤i≤N such that the components �N
i , Zi are

stationary solutions to (2.1) and (2.2), respectively. Moreover, E‖�N
i (0)−Zi(0)‖2

H 1 � 1 and
for every q > 1,

E

(
1

N

N∑
i=1

∥∥�N
i (0) − Zi(0)

∥∥2
L2

)q

� 1.(5.9)

PROOF. In the proof, we fix N . Let �i and Zi be solutions to (2.1) and (2.2), respectively.
By the general results of [38], Section 2, it follows that (�i,Zi)1≤i≤N is a Markov process on
(C−κ)2N , and we denote by (P N

t )t≥0 the associated Markov semigroup. To derive the desired
structural properties about the limiting measure, we will follow the Krylov–Bogoliubov con-
struction with a specific choice of initial condition that allows to exploit Lemma 2.3. Namely,
we denote by �i the solution to (2.1) starting from the stationary solution Z̃i(0), so that the
process Yi = �i −Zi starts from the origin. Using Lemma 2.3 and Corollary 2.4 with yj = 0
together with Lemma 5.1 to obtain a uniform bound on ERN with RN defined in (2.6), we
find for every T ≥ 1, ∫ T

0
E

(
1

N

N∑
i=1

∥∥Yi(t)
∥∥2
H 1

)
dt � T ,(5.10)

E
∫ T

0

(
1

N

N∑
i=1

∥∥Yi(t)
∥∥2
L2

)q

dt � T ,(5.11)
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where the implicit constant is independent of T and for m = 0 we used the Poincaré inequal-
ity. By (5.10), we obtain∫ T

0
E

(
1

N

N∑
i=1

∥∥�i(t)
∥∥2
C−κ/2

)
+
∫ T

0
E

(
1

N

N∑
i=1

∥∥Zi(t)
∥∥2
C−κ/2

)
� T .

Defining RN
t := 1

t

∫ t
0 P N

r dr , the above estimates and the compactness of the embedding
C−κ/2 ↪→ C−κ imply the induced laws of {RN

t }t≥0 started from (Z̃(0), Z̃(0)) are tight on
(C−κ)2N . Furthermore, by the continuity with respect to initial data, it is easy to check
that (P N

t )t≥0 is Feller on (C−κ)2N . By the Krylov–Bogoliubov existence theorem (see [21],
Corollary 3.1.2), these laws converge weakly in (C−κ)2N along a subsequence tk → ∞ to an
invariant measure πN for (P N

t )t≥0. The desired stationary process (�N
i ,Zi)1≤i≤N is defined

to be the unique solution to (2.1) and (2.2) obtained by sampling the initial datum (φi, zi)i
from πN . By (5.10), we deduce

EπN
∥∥�i(0) − Zi(0)

∥∥2
H 1 = EπN sup

ϕ

〈
�i(0) − Zi(0), ϕ

〉2
= E sup

ϕ
lim

T →∞

[
1

T

∫ T

0

〈
Yi(t), ϕ

〉
dt

]2

≤ lim
T →∞

1

T

∫ T

0
E
∥∥Yi(t)

∥∥2
H 1 dt � 1,

where supϕ is over smooth functions ϕ with ‖ϕ‖H−1 ≤ 1. Similarly using (5.11), (5.9) fol-
lows. Finally, we project onto the first component and consider the map 
̄1 : S ′(T2)2N →
S ′(T2)N defined through 
̄1(�,Z) = �. Letting νN = πN ◦ 
̄−1

1 yields an invariant mea-
sure to (2.1), and uniqueness follows from the general results of strong Feller property in
[38], Theorem 3.2, and irreducibility in [40], Theorem 1.4. �

REMARK 5.8. Using a lattice approximation (see, e.g., [32], [37, 73]), one can show that
the measure νN(d�) indeed has the form (1.2) (with Wick renormalization).

The next step is to study tightness of the marginal laws of νN over S ′(T2)N . To this

end, consider the projection 
i : S ′(T2)N → S ′(T2) defined by 
i(�) = �i and let νN,i def=
νN ◦ 
−1

i be the marginal law of the ith component. Furthermore, for k ≤ N , define the map


(k) : S ′(T2)N → S ′(T2)k via 
(k)(�) = (�i)1≤i≤k and the let νN
k

def= νN ◦ (
(k))−1 be the
marginal law of the first k components. We have the following result.

THEOREM 5.9. {νN,i}N≥1 form a tight set of probability measures on C−κ for κ > 0.

PROOF. Let (�N
i ,Zi)1≤i≤N be the jointly stationary solutions to (2.1) and (2.2) con-

structed in Lemma 5.7. To prove the result, in light of the compact embedding of C−κ/2 ↪→
C−κ and the stationarity of �N

i , it suffices to show that the second moment of ‖�N
i (0)‖C−κ/2

is bounded uniformly in N . To this end, let YN
i = �N

i −Zi , which is also stationary and note
that

E
∥∥�N

i (0)
∥∥2
C−κ/2 = 2

T

∫ T

T/2
E
∥∥�N

i (s)
∥∥2
C−κ/2 ds

≤ 4

T

∫ T

T/2
E
∥∥Zi(s)

∥∥2
C−κ/2 ds + 4

T

∫ T

T/2
E
∥∥YN

i (s)
∥∥2
H 1 ds.
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The first term is controlled by Lemma 5.1. For the second term, symmetry yields YN
i and YN

j

are identical in law, which combined with Lemma 2.3 implies that

2

T

∫ T

T/2
E
∥∥YN

i (s)
∥∥2
H 1 ds = 2

T

∫ T

T/2

1

N

N∑
i=1

E
∥∥YN

i (s)
∥∥2
H 1 ds ≤ C

T
E
[∫ T

0
RN dt

]
≤ C,

where we used that by stationarity
∑N

i=1 E‖YN
i (T )‖2

L2 = ∑N
i=1 E‖YN

i (T /2)‖2
L2 , with both

being finite in view of Lemma 5.7. For m = 0, we also used the Poincaré inequality. �

REMARK 5.10. It is reasonable to expect that any limiting measure obtained in Theorem
5.9 is an invariant measure for (1.6) assuming only m ≥ 0. However, this cannot be directly
deduced from our main result in Section 4 because we do not know a priori that any limiting
measure of νN is a product measure. This is problematic because the initial conditions for
each component of 	i are assumed to be independent in Section 4. Nevertheless, we can
prove below that this is indeed true if m is large.

In the following, we prove the convergence of the measure to the unique invariant measure
by using the estimate in Lemma 2.5, which requires m large enough.

Define the C−κ -Wasserstein distance

W2(ν1, ν2) := inf
π∈C (ν1,ν2)

(∫
‖φ − ψ‖2

C−κ π(dφ, dψ)

)1/2
,(5.12)

where C (ν1, ν2) denotes the set of all couplings of ν1, ν2 satisfying
∫ ‖φ‖2

C−κ νi(dφ) < ∞
for i = 1,2.

THEOREM 5.11. Let ν = N (0, 1
2(m − �)−1). There exist C0 > 0 such that for all m ≥

m1 where

m1
def= C0

(
E‖Z1‖

2
2−s

C−s +E
∥∥ :Z2

1:
∥∥ 2

2−s

C−s + E‖ :Z2Z1: ‖2
C−s + 1

)
one has

(5.13) W2
(
νN,i, ν

)≤ CN− 1
2 .

Furthermore, νN
k converges to ν × · · · × ν, as N → ∞.

PROOF. By Lemma 5.7, we may construct a stationary coupling (�N
i ,Zi) of νN and ν

whose components satisfy (1.1) and (2.2), respectively. The stationarity of the joint law of
(�N

i ,Zi) implies that also YN
i = �N

i − Zi is stationary. In the following, we freely omit the
time argument of expectations of stationary quantities. We now claim that

(5.14) E
∥∥YN

i

∥∥2
H 1 ≤ CN−1,

which implies (5.13) by definition of the Wasserstein metric and the embedding H 1 ↪→ C−κ

in d = 2; cf. Lemma A.1. To ease notation, we write Yi = YN
i in the following. By (2.26)

combined with the stationarity of (Yj )j and (Zj )j , we find

N∑
j=1

E‖∇Yj‖2
L2 + m

N∑
j=1

E‖Yj‖2
L2 + 1

N
E

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

≤ CER0
N +E

(
N∑

j=1

‖Yj‖2
L2

(
DN + D1

N

))
,
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where R0
N is defined in (2.24) and

DN = C

(
1

N

N∑
j=1

‖Zj‖
2

2−s

C−s + 1

N

N∑
j=1

∥∥ :Z2
j :

∥∥ 2
2−s

C−s + 1

)
,(5.15)

D1
N = C

(
1

N2

N∑
i,j=1

‖ :ZjZi: ‖2
C−s

)
.(5.16)

Setting A
def= EDN and A1

def= E‖ :Z2Z1: ‖2
C−s we may recenter DN and D1

N above and
divide by N to obtain

1

N

N∑
j=1

E
∥∥∇Yj (t)

∥∥2
L2 + (m − A − A1)

1

N

N∑
j=1

E
∥∥Yj (t)

∥∥2
L2 + 1

N2E

∥∥∥∥∥
N∑

i=1

Y 2
i (t)

∥∥∥∥∥
2

L2

≤ C
1

N
ER0

N + 1

N
E

(
N∑

j=1

∥∥Yj (t)
∥∥2
L2

(|DN − A| + ∣∣D1
N − A1

∣∣))

≤ C
1

N
ER0

N + 1

2

1

N2E

(
N∑

j=1

‖Yj‖2
L2

)2

+E|DN − A|2 +E
∣∣D1

N − A1
∣∣2.

For m ≥ A + A1 + 1, using that Yi and Yj are equal in law, we obtain

E‖Yi‖2
H 1 ≤ 1

N

N∑
j=1

E
∥∥∇Yj (t)

∥∥2
L2 + (m − A − A1)

1

N

N∑
j=1

E‖Yj‖2
L2

≤ C
1

N
ER0

N +E|DN − A|2 +E
∣∣D1

N − A1
∣∣2.

(5.17)

Using independence, we find

(5.18) E
∣∣DN(t) − A

∣∣2 ≤ 1

N
Var

(‖Z1‖
2

2−s

C−s + ∥∥ :Z2
1:

∥∥ 2
2−s

C−s

) ≤ C

N
.

To estimate D1
N , we write Mi,j = ‖ :ZjZi: ‖2

C−s −A1 for i �= j and Mi,i = ‖ :Z2
i : ‖2

C−s −A1
and have

E

(
1

N2

N∑
i,j=1

Mi,j

)2

≤ E

(
1

N2

N∑
i=1

∑
j �=i

Mi,j + 1

N2

N∑
i=1

Mi,i

)2

≤ 2

N4

∑
i1 �=j1,i �=j

E(Mi,jMi1,j1) + 2

N2E
(
M2

1,1
)

� 1

N
+ 2

N2E
(
M2

1,1
)
� 1

N
,

where we used that for the case that (i, j, i1, j1) are different, E(Mi,jMi1,j1) = EMi,j ×
EMi1,j1 = 0.

Then we have

E
∣∣D1

N − A1
∣∣2 � 1

N
.(5.19)

Inserting the estimates (5.18), and (5.19) into (5.17) and using (5.4), we obtain (5.14), com-
pleting the proof. �
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REMARK 5.12. Instead of assuming m large, one could alternatively consider arbi-
trary m > 0 and assume small nonlinearity. Namely, we could consider a nonlinearity
− λ

N

∑N
j=1 :�2

j�i: instead of that of (2.1), and −λE[	2 − Z2]	 instead of that of (5.1),
for λ > 0. By tracing the proofs of Lemma 5.3 and Theorem 5.11, we can easily see that
given any m > 0, there exists a constant λ0 > 0, so that the statements of Lemma 5.3 and
Theorem 5.11 hold for any λ ∈ (0, λ0).

REMARK 5.13. Following Remark 5.6, with a change of renormalization constant
therein, we can write �i = Ȳi + Z̄i with Z̄i the stationary solution to L Z̄i = −μ0Z̄i + ξi .
Then Ȳi satisfies

L Ȳi = −μ0Ȳi − 1

N

N∑
j=1

(
Ȳ 2

j Ȳi + Ȳ 2
j Z̄i + 2Ȳj ȲiZ̄j + 2Ȳj :Z̄iZ̄j : + :Z̄2

j : Ȳi+ :Z̄iZ̄
2
j :

)
− 2μ0

N
(Ȳi + Z̄i),

which is the same case as (2.3) with m replaced by m + μ0 and an extra term 2μ0
N

(Ȳi + Z̄i).
Here, the Wick product of Z̄j is defined similarly as in Section 2.1. By the same proof of
Theorem 5.11, we know for m + μ0 large enough, νN,i (renormalized as in Remark 5.6)
converges to ν̄ and the other results in Theorem 5.11 also hold in this case.

6. Observables and their nontriviality.

6.1. Observables. In quantum field theories with symmetries, quantities that are invariant
under action of the symmetry group are of particular interest; examples of such quantities in
the SPDE setting include gauge invariant observables, for example, [58], Section 2.4. The
model we study here exhibits O(N) rotation symmetry and formally functions of the squared
“norm”

∑
i �

2
i are quantities that are O(N) invariant. Of course, such observables need to be

suitably renormalized to be well defined and suitably scaled by factors of N to have nontrivial
limit as N → ∞.

In this section, we study the following two observables:

(6.1)
1

N1/2

N∑
i=1

:�2
i : ,

1

N
:
(

N∑
i=1

�2
i

)2

: ,

with � = (�i)1≤i≤N ∼ νN for the invariant measure νN to (2.1) given in Lemma 5.7. In this
section, we omit the superscript N for simplicity. These are defined as follows. By Lemma
5.7, we decompose �i = Yi + Zi with (Yi,Zi) stationary. With this, we define

1√
N

N∑
i=1

:�2
i : def= 1√

N

N∑
i=1

(
Y 2

i + 2YiZi+ :Z2
i :

)
,(6.2)

1

N
:
(

N∑
i=1

�2
i

)2

: def= 1

N

N∑
i,j=1

(
Y 2

i Y 2
j + 4Y 2

i YjZj + 2Y 2
i :Z2

j :(6.3)

+ :Z2
i Z

2
j : + 4Yi :ZiZ

2
j : + 4YiYj :ZiZj : ).(6.4)

Here, the Wick products are canonically defined as in (2.4) with aε = E[Z2
i,ε(0,0)], in partic-

ular,

(6.5) :Z2
i Z

2
j : =

⎧⎨⎩ lim
ε→0

(
Z4

i,ε − 6aεZ
2
i,ε + 3a2

ε

)
(i = j),

lim
ε→0

(
Z2

i,ε − aε

)(
Z2

j,ε − aε

)
(i �= j).
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REMARK 6.1. One could also define (6.1) in Lp(νN) directly without using the decom-
position �i = Yi + Zi . In fact, by similar argument as in [27] or [60], Section 8.6, one can
show that νN is absolutely continuous with respect to the corresponding Gaussian free field
ν̃ with a density in Lp(ν̃) for p ∈ (1,∞). Since (6.1) with each �i replaced by Zi can be
defined via Lp(ν̃) limit of mollification, using argument along the line of [57], Lemma 3.6,
we know that (6.1) can be also defined as Lp(νN) limit of mollification (essentially Hölder
inequality), and they have the same law as the right-hand side of (6.2) and (6.3), (6.4).

In this section, we also consider Yi , Zi as stationary process with Zi as the stationary
solution of (5.2) and Yi as the solution of (2.3).

LEMMA 6.2. There exists an m0 such that for m ≥ m0 and q ≥ 1

E

[(
N∑

i=1

‖Yi‖2
L2

)q]
+E

[(
N∑

i=1

‖Yi‖2
L2 + 1

)q( N∑
i=1

‖∇Yi‖2
L2

)]
� 1,(6.6)

E

[(
N∑

i=1

‖Yi‖2
L2 + 1

)q∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

]
� 1,(6.7)

where the implicit constant is independent of N .

PROOF. First, we observe that (6.7) may be quickly deduced from (6.6) with the help of
the inequality

(6.8)

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

�
(

N∑
i=1

‖Yi‖2
H 1

)(
N∑

i=1

‖Yi‖2
L2

)
.

To obtain (6.8), note first that ∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

=
N∑

i,j=1

‖YiYj‖2
L2 .

Furthermore, by Hölder’s inequality, (4.3) and Young’s inequality,

‖YiYj‖2
L2 ≤ ‖Yi‖2

L4‖Yj‖2
L4 � ‖Yi‖H 1‖Yj‖L2‖Yj‖H 1‖Yi‖L2

� ‖Yi‖2
H 1‖Yj‖2

L2 + ‖Yi‖2
H 1‖Yj‖2

L2 .

Summing both sides over i, j and using symmetry with respect to the roles of i and j , we
obtain (6.8). The remainder of the proof is devoted to (6.6).

To shorten the expressions that follow, we introduce the quantities F
def= ∑N

i=1 ‖∇Yi‖2
L2 +

1
N

‖∑N
i=1 Y 2

i ‖2
L2 and U

def= ∑N
i=1 ‖Yi‖2

L2 . Note that F and U are stationary, so we will freely
omit the time argument below. Our starting point is the key inequality (2.26), which may be
recast in terms of U and F as

d

dt
U + F + mU ≤ CR0

N + C
(
DN + D1

N

)
U,

where DN and D1
N are introduced in (5.15) and (5.16). Muliplying the above by Uq−1 we

find that for q ≥ 1 it holds

1

q

d

dt
Uq + Uq−1F + mUq ≤ CR0

NUq−1 + C
(
DN + D1

N

)
Uq.
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As in the proof of Theorem 5.11, we now define A
def= E(DN) and A1

def= E‖ :Z1Z2: ‖2
C−s .

Subtract the mean from DN + D1
N and take expectation on both sides to find

E
[
Uq−1F

]+ (m − A − A1)E
[
Uq]

≤ CE
[
R0

NUq−1]+ CE
[(

DN + D1
N − A − A1

)
Uq].

≤ C
∥∥R0

N

∥∥
Lq(�)

(
EUq) q−1

q + C
∥∥DN − A + D1

N − A1
∥∥
Lq+1(�)

(
EUq+1) q

q+1

≤ C
(
EUq) q−1

q + CN− 1
2
(
EUq+1) q

q+1 ,

where we used EUq(t) = EUq(0) in the first inequality and we used a Gaussian hypercon-
tractivity upgrade of (5.18) and (5.19) in the last line. Using Young’s inequality, we may
absorb the first term to the left and obtain

(6.9) E
[
Uq−1F

]+ (m − A − A1 − 1)E
[
Uq] ≤ C + CN− 1

2
(
EUq+1) q

q+1 .

The strategy now is to first use the dissipative quantity on the left-hand side of (6.9) to obtain

E(Uq) ≤ CN
q−1

2 , and then use the massive term on the left-hand side of (6.9) to iteratively
decrease the power of N and eventually arrive at E(Uq) ≤ C. Once this is established, plug-
ging the bound back into (6.9) completes the proof.

Indeed, first observe that F ≥ N−1U2 so that E(Uq−1F) ≥ N−1E(Uq+1). Hence, Young’s

inequality with exponents (q + 1,
q+1
q

) leads to E(Uq) ≤ CN
q−1

2 . Defining Aq
def= EUq and

discarding the dissipative term, (6.9) implies

Aq �A

q
q+1
q+1N

−1/2 + 1.(6.10)

We have Aq � N
q−1

2 , which gives

Aq � N
q2

2(q+1)
− 1

2 + 1.

Substituting into (6.10) and use induction we have for n ≥ 1,

Aq �Nan,q + 1,(6.11)

with an,q = q(q+n−1)
2(q+n)

− q
2 (
∑n−1

k=1
1

q+k
) − 1

2 . Here,
∑0

k=1 = 0 and the proportional constant
may depend on n. In fact, we could check (6.11) by

Aq �
(
Nan,q+1

) q
q+1 N− 1

2 + 1 �Nan+1,q + 1.

For fixed q ≥ 1, we could always find n large enough such that an,q < 0, which implies that
Aq � 1 and the result follows. Here, we emphasize that even if the proportional constant
depends on n, which is a fixed constant for given q , the bound for Aq depends on q and is
independent of N as required. �

THEOREM 6.3. Let � = (�i)1≤i≤N ∼ νN and m be given as in Lemma 6.2, then the
laws of 1√

N

∑N
i=1 :�2

i : are tight on B−2κ
2,2 , and the laws of 1

N
:(∑N

i=1 �2
i )

2: are tight on

B−3κ
1,1 .

PROOF. Note that the first term 1√
N

∑N
i=1 Y 2

i on the right-hand side of (6.2) converges to

zero in L2(�;L2) as an immediate consequence of (6.7); so we can actually prove a stronger
result than stated, namely the subsequential limits can be identified with those of the last two
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terms in (6.2). We will now show that the other two quantities induce tight laws on B−3κ
2,2 ,

which implies the first part of the theorem. The second sum in (6.2) can be estimated using
Lemma A.3 and Lemma A.1 to find for s ∈ (κ,2κ),∥∥∥∥∥ 1√

N

N∑
i=1

YiZi

∥∥∥∥∥
B−s

2,2

� 1√
N

N∑
i=1

‖Yi‖Bs
2,2

‖Zi‖C−κ

�
N∑

i=1

‖Yi‖2
Bs

2,2
+ 1

N

N∑
i=1

‖Zi‖2
C−κ

�
N∑

i=1

‖Yi‖2s
H 1‖Yi‖2(1−s)

L2 + 1

N

N∑
i=1

‖Zi‖2
C−κ

�
N∑

i=1

‖Yi‖2
H 1 +

N∑
i=1

‖Yi‖2
L2 + 1

N

N∑
i=1

‖Zi‖2
C−κ ,

which is bounded in expectation by a constant using Lemma 6.2 for q = 1 and Lemma 5.1.
For the third sum in (6.2), we use independence to find for s ∈ (κ,2κ),

E

∥∥∥∥∥ 1√
N

N∑
i=1

:Z2
i :

∥∥∥∥∥
2

B−s
2,2

= E
1

N

〈
�−s

N∑
i=1

:Z2
i : ,�−s

N∑
i=1

:Z2
i :

〉
= E

∥∥ :Z2
i :

∥∥2
B−s

2,2
� 1.

By the triangle inequality and the embedding L2 ↪→ B−κ
2,2 we find that 1√

N

∑N
i=1 :�2

i : is

bounded in L1(�;B−s
2,2). In light of the compact embedding B−s

2,2 ⊂ B−2κ
2,2 , the tightness claim

follows.
For the second observable, we will also show a stronger result: the subsequential limits

can be identified with those of the last three terms in (6.4). We start with the first 3 terms in
(6.3), which will be shown to converge to zero in L1(�;B−2s

1,1 ) for s > κ . For the first term
of (6.3), we use Lemma 6.2 to obtain

E

∥∥∥∥∥ 1

N

N∑
i,j=1

Y 2
i Y 2

j

∥∥∥∥∥
L1

= 1

N
E

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

� 1

N
,

so this term converges to zero in L1(�;L1). For the second term of (6.3), using (2.22) of
Lemma 2.3 with ϕZj in place of Zj we obtain

sup
‖ϕ‖C2s ≤1

∣∣∣∣∣ 1

N

N∑
i,j=1

〈
Y 2

i YjZj ,ϕ
〉∣∣∣∣∣

� 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
L2

(
N∑

j=1

‖Yj‖2
L2

) 1−s
2
(

N∑
j=1

‖∇Yj‖2
L2

) s
2
(

N∑
j=1

‖Zj‖2
C−s

)1/2

+ 1

N

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
L2

(
N∑

j=1

‖Yj‖2
L2

) 1
2
(

N∑
j=1

‖Zj‖2
C−s

)1/2

.

Hence, using Young’s inequality we find for δ > 0 small enough∥∥∥∥∥ 1

N

N∑
i,j=1

Y 2
i YjZj

∥∥∥∥∥
B−2s

1,1

≤ N−δ

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2

L2

+ N−δ

(
N∑

j=1

‖∇Yj‖2
L2

)
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+ N−δ

(
N∑

j=1

‖Yj‖2
L2

)(
1

N

N∑
j=1

‖Zj‖2
C−s + 1

) 1
1−s

.

Both terms above converge to zero in L1(�) as a consequence of (6.6), (6.7) and Lemma 5.1.
For the third term in (6.3), a calculation similar to (2.16) using Lemma A.3 with Yi replaced
by ϕYi with ϕ ∈C2s yields

sup
‖ϕ‖C2s ≤1

∣∣∣∣∣ 1

N

N∑
i,j=1

〈
Y 2

i :Z2
j : , ϕ

〉∣∣∣∣∣
� 1

N

N∑
i=1

∥∥�s(Y 2
i

)∥∥
L2

∥∥∥∥∥
N∑

j=1

�−s( :Z2
j :

)∥∥∥∥∥
L2

�
(

N∑
i=1

‖∇Yi‖1+s

L2 ‖Yi‖1−s

L2 + ∥∥Y 2
i

∥∥
L2

)∥∥∥∥∥ 1

N

N∑
j=1

�−s( :Z2
j :

)∥∥∥∥∥
L2

�
(

N∑
i=1

‖Yi‖2
H 1

) 1+s
2
(

N∑
i=1

‖Yi‖2
L2

) 1−s
2
∥∥∥∥∥ 1

N

N∑
j=1

�−s( :Z2
j :

)∥∥∥∥∥
L2

,

(6.12)

where we used (A.1) and Lemma A.2 to have∥∥�s(Y 2
i

)∥∥
L2 �

∥∥�sYi

∥∥
L4‖Yi‖L4 � ‖∇Yi‖1+s

L2 ‖Yi‖1−s

L2 + ‖Yi‖2
L4 .

The first part of the product in (6.12) is bounded in L1(�) by (6.6). For the second part of
the product, we use independence to obtain

E

∥∥∥∥∥ 1

N

N∑
j=1

�−s( :Z2
j :

)∥∥∥∥∥
2

L2

� 1

N2

N∑
j=1

E
∥∥�−s( :Z2

j :
)∥∥2

L2 �
1

N
,

so together we find E‖ 1
N

∑
i,j Y 2

i :Z2
j : ‖

B−2s
1,1

converges to 0.

We now turn to terms in (6.4) and derive suitable moment bounds. For the first of these
terms, we have

E

∥∥∥∥∥ 1

N

N∑
i,j=1

:Z2
i Z

2
j :

∥∥∥∥∥
2

B−κ
2,2

= E
1

N2

〈
�−κ

N∑
i,j=1

:Z2
i Z

2
j : ,�−κ

N∑
i,j=1

:Z2
i Z

2
j :

〉

� E
∥∥ :Z2

1Z2
2:

∥∥2
B−κ

2,2
+ 1

N
E
∥∥ :Z4

1:
∥∥2
B−κ

2,2
� 1.

For the next term, using (2.25) with ϕYi in place of Yi we find

sup
‖ϕ‖C2s ≤1

∣∣∣∣∣ 1

N

N∑
i,j=1

〈
Yi :ZiZ

2
j : , ϕ

〉∣∣∣∣∣
�

(
N∑

i=1

∥∥�sYi

∥∥2
L2

)1/2(
1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

�−s( :Z2
jZi: )
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2

L2

)1/2

�
(

N∑
i=1

‖Yi‖2
H 1

)s/2( N∑
i=1

‖Yi‖2
L2

)(1−s)/2(
1

N2

N∑
i=1

∥∥∥∥∥
N∑

j=1

�−s( :Z2
jZi: )

∥∥∥∥∥
2

L2

)1/2

.
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Using (5.4) and Lemma 6.2, we deduce for some p satisfying sp < 2,

E

∥∥∥∥∥ 1

N

N∑
i,j=1

Yi, :ZiZ
2
j :

∥∥∥∥∥
p

B−2s
1,1

� 1.

For the last term, we argue similar to (2.13) but :ZiZj : replace by ϕ :ZiZj : for ϕ ∈ Cs to
deduce boundedness in L1(�;B−2s

1,1 ).
Combining the above observations with the triangle inequality, we find that the second

observable is uniformly bounded in probability as a B−2s
1,1 valued random variable. By com-

pactness of the embedding of B−2s
1,1 into B−2s−δ

1,1 for δ > 0, we obtain the result. �

6.2. Lp-estimate. In light of Lemma 6.2 and the Sobolev embedding theorem, it follows
that for each component i, E‖Yi‖2

Lp � 1, p > 1. Our goal now in this subsection is to upgrade
from the second moment to higher moments of the Lp norm. We do so by revisiting the
energy estimates for the PDE (2.3). Since we work with a fixed component rather than an
aggregate quantity, these bounds come with a price: the estimate is no longer uniform in
N . Nonetheless, the power of N that appears is ultimately small enough for a successful
application of the estimate in Lemma 6.6, en route to Theorem 6.5.

LEMMA 6.4. Let m as in Lemma 6.2 and p > 2. For each component i, it holds

E‖Yi‖p
Lp +E

∥∥Yp−2
i |∇Yi |2

∥∥
L1 + 1

N

N∑
j=1

E
∥∥Yp

i Y 2
j

∥∥
L1 �Np/2,

where the implicit constant is independent of N and i.

PROOF. Fix a component i. Given p > 2, let s > 0 be a small number to be selected
(depending on p) in the final step of the proof. We will perform an Lp estimate: integrating
(2.3) against |Yi |p−2Yi we obtain

1

p

d

dt
‖Yi‖p

Lp + (p − 1)
∥∥|Yi |p−2|∇Yi |2

∥∥
L1 + 1

N

N∑
j=1

∥∥|Yi |pY 2
j

∥∥
L1 + m‖Yi‖p

Lp

= −2

〈
1

N

N∑
j=1

YjZj , |Yi |p
〉

−
〈

1

N

N∑
j=1

Y 2
j |Yi |p−2Yi,Zi

〉

− 2

〈
1

N

N∑
j=1

Yj :ZjZi: , |Yi |p−2Yi

〉

+
〈

1

N

N∑
j=1

:Z2
j : , |Yi |p

〉
+
〈

1

N

N∑
j=1

:ZiZ
2
j : , Yi |Yi |p−2

〉
=:

5∑
k=1

Ik.

(6.13)

Define D
def= ‖Yp−2

i |∇Yi |2‖L1 and for each j , let Aj
def= ‖Yp

i Y 2
j ‖L1 .

STEP 1 (Estimate of I1) In this step, we show that

I1 ≤ 1

10

1

N

N∑
j=1

Aj + 1

10
D + C‖Yi‖p

LpF,(6.14)

where

F
def= 1

N

N∑
j=1

‖Yj‖2s
H 1‖Zj‖2

C−s + 1

N

N∑
j=1

‖Zj‖2/(1−s)

C−s + 1.
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In the following, we prove (6.14). By Lemma A.5, we have

I1 �
1

N

N∑
j=1

[∥∥Yj |Yi |p
∥∥
L1‖Zj‖C−s

]+ 1

N

N∑
j=1

[∥∥Yj |Yi |p
∥∥1−s

L1

∥∥∇(
Yj |Yi |p)∥∥s

L1‖Zj‖C−s

]
=: I (1)

1 + I
(2)
1 .

To estimate I
(1)
1 , notice that the Cauchy–Schwarz inequality yields

(6.15)
∥∥Yj |Yi |p

∥∥
L1 ≤ ∥∥Yj |Yi |p

2
∥∥
L2

∥∥|Yi |p
2
∥∥
L2 = A

1/2
j ‖Yi‖

p
2
Lp .

Combining this with Young’s inequality, we obtain

I
(1)
1 ≤ 1

N

N∑
j=1

[
A

1/2
j ‖Yi‖

p
2
Lp‖Zj‖C−s

] ≤ 1

10

1

N

N∑
j=1

Aj + C‖Yi‖p
Lp

1

N

N∑
j=1

‖Zj‖2
C−s .

To estimate I
(2)
1 , note first that ∇(Yj |Yi |p) = ∇Yj (|Yi |p

2 )2 + 2Yj |Yi |p
2 ∇|Yi |p

2 . Hence, us-
ing Hölder’s inequality followed by Gagliardo–Nirenberg (A.2) with (s, q, r, α) = (0,4,2,
1
2), ∥∥∇(

Yj |Yi |p)∥∥L1 ≤ ‖∇Yj‖L2
∥∥|Yi |p

2
∥∥2
L4 + 2

∥∥Yj |Yi |p
2
∥∥
L2
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2
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�
∥∥|Yi |p

2
∥∥
H 1

∥∥|Yi |p
2
∥∥
L2‖Yj‖H 1 +

√
AjD.

Since ‖|Yi |p
2 ‖H 1 � D

1
2 + ‖|Yi |p

2 ‖L2 , using (6.15) again and ‖|Yi |p
2 ‖L2 = ‖|Yi |p‖1/2

L1 yields

I
(2)
1 � 1

N

N∑
j=1
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A

1−s
2

j

∥∥|Yi |p
∥∥ 1−s

2
L1

(
D

s
2
∥∥|Yi |p

∥∥ s
2
L1‖Yj‖s

H 1 + ∥∥|Yi |p
∥∥s
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H 1 + A
s
2
j D

s
2
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]

≤ 1
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1

N

N∑
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Aj + 1

10
D + C‖Yi‖p

Lp

(
1

N

N∑
j=1

‖Yj‖2s
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+ 1

N
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1+s
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N
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‖Zj‖2/(1−s)

C−s

)

≤ 1

10

1

N

N∑
j=1

Aj + 1

10
D + C‖Yi‖p

LpF,

where the second inequality follows from three applications of Young’s inequality. We

view the summand in first term as A
1−s

2
j D

s
2 (‖Yi‖

p
2
Lp‖Yj‖s

H 1‖Zj‖C−s ) and use exponents

( 2
1−s

, 2
s
,2). We view the second summand as A

1−s
2

j (‖Yi‖
p(1+s)

2
Lp ‖Yj‖s

H 1‖Zj‖C−s ) and we use

exponents ( 2
1−s

, 2
1+s

). Finally, the third summand is viewed as A
1
2
j D

s
2 (‖Yi‖

p(1−s)
2

Lp ‖Zj‖C−s )

and we use exponents (2, 2
s
, 2

1−s
).

STEP 2 (Estimates for I2) In this step, we show that

I2 ≤ 1

10

∥∥∥∥∥ 1

N

N∑
j=1

Y 2
j Y

p
i

∥∥∥∥∥
L1

+ 1

10
D + C‖Yi‖p

Lp + CF1,(6.16)
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where

F1
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∥∥∥∥∥ 1

N
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Y 2
j
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1

N
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‖Zi‖
p

1−s
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To prove (6.16), by Lemma A.5 one has
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Using the triangle inequality, writing Y 2
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j |Yi |p)
p−1
p (Y 2

j )
1
p and using Hölder’s
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N

N∑
j=1

Y 2
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.

Another application of Hölder’s inequality gives∥∥∇(
Yi |Yi |p−2)∥∥

L
p
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For r > 2, using Hölder’s inequality and the Sobolev embedding H 1 ⊂ L
2r

r−2 we have∥∥∥∥∥ 1

N

N∑
j=1

∇(
Y 2

j Yi |Yi |p−2)∥∥∥∥∥
L1

� 1

N

N∑
j=1

∥∥∇(
Yi |Yi |p−2)∥∥

L
p

p−1

∥∥Y 2
j

∥∥
Lp + ‖∇Yj‖L2‖Yj‖

L
2r

r−2

∥∥Yi |Yi |p−2∥∥
Lr

� 1

N

N∑
j=1

D1/2∥∥|Yi |p
∥∥p−2

2p

L1

∥∥Y 2
j

∥∥
Lp + ∥∥|Yi |p

2
∥∥2(1− 1

p
)

H 1

1

N

N∑
j=1

‖Yj‖2
H 1

�
(

1

N

N∑
j=1

‖Yj‖2
H 1

)(∥∥|Yi |p/2∥∥2(1− 1
p
)

H 1 + D1/2∥∥|Yi |p
∥∥p−2

2p

L1

)
,

where in the second inequality we used that ‖Yi |Yi |p−2‖Lr = ‖|Yi |p
2 ‖2(1− 1

p
)

Lq for q = 2r(p−1)
p

and again the Sobolev embedding theorem. Combining the above estimates, we deduce
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× (∥∥|Yi |p
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where we applied Cauchy’s inequality with exponents (
p

p−1 ,p) for the first term and

(
p

(p−1)(1−s)
,

p
1−s

, 1
s
) for the second term.

STEP 3 (Estimate of I3-I5)
In this step, we show that

5∑
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D + 1
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N
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To prove (6.18), we apply Lemma A.5 to find
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where we used (6.17). Combining these observations and applying the Cauchy–Schwarz in-
equality for the summation we find
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To estimate I31, we use Young’s inequality with exponents (p,2,
2p

p−2) together with the

embedding Lp ↪→ Lp−2, and this leads to the 1 in F2 and first term in F3. To estimate I32,
we use Hölder’s inequality for the summation with exponents (2, 2
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where we used Young’s inequality with exponents (
p
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,
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s
, 2
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, 2
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) in the last step. The

estimate for I33 uses Hölder’s inequality with the same exponents, followed by the Sobolev
embedding theorem to yield
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where we used Young’s inequality with exponents (2
s
, 2

s
, 2

1−s
, 2

1−s
) in the last step. Combin-

ing the above estimates, (6.18) follows for I3 by Young’s inequality with exponents (
p
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p
2 ).
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We now turn to I4 and note that ‖∇|Yi |p‖L1 � ‖∇|Yi |p
2 ‖L2‖|Yi |p

2 ‖L2 � D1/2‖|Yi |p‖1/2
L1 ,

so that

I4 =
〈

1

N

N∑
j=1

:Z2
j : , |Yi |p

〉

�
∥∥∥∥∥ 1

N

N∑
j=1

:Z2
j :

∥∥∥∥∥
C−s

(∥∥|Yi |p
∥∥
L1 + ∥∥|Yi |p

∥∥1−s

L1

∥∥∇|Yi |p
∥∥s
L1

)

�
∥∥∥∥∥ 1

N

N∑
j=1

:Z2
j :

∥∥∥∥∥
C−s

(‖Yi‖p
Lp + ‖Yi‖p(1−s/2)

Lp Ds/2)

≤ 1

40
D + C

(∥∥∥∥∥ 1

N

N∑
j=1

:Z2
j :

∥∥∥∥∥
1

1−s/2

C−s

+ 1

)
‖Yi‖p

Lp,

by Young’s inequality with exponents (2
s
, 2

2−s
), which implies (6.18) for I4. Finally, we esti-

mate I5 and note

I5 =
〈

1

N

N∑
j=1

:ZiZ
2
j : , |Yi |p−2Yi

〉

�
∥∥∥∥∥ 1

N

N∑
j=1

:ZiZ
2
j :

∥∥∥∥∥
C−s

(∥∥|Yi |p−1∥∥
L1 + ∥∥|Yi |p−1∥∥1−s

L1

∥∥∇(|Yi |p−2Yi

)∥∥s
L1

)

�
∥∥∥∥∥ 1

N

N∑
j=1

:ZiZ
2
j :

∥∥∥∥∥
C−s

(‖Yi‖p−1
Lp−1 + ‖Yi‖(p−1)(1−s)

Lp−1 D
s
2 ‖Yi‖

(p−2)s
2

Lp−2

)
,

which gives (6.18) for I5 by Young’s inequality.
STEP 4 (Conclusion) We now insert the inequalities (6.14), (6.16) and (6.18) into the

right-hand side of (6.13) to obtain

1

p

d

dt
‖Yi‖p

Lp + 1

2

∥∥|Yi |p−2|∇Yi |2
∥∥
L1 + 1

2N

N∑
j=1

∥∥|Yi |pY 2
j

∥∥
L1 + m‖Yi‖p

Lp

≤ C(F + F2)‖Yi‖p
Lp + CF1 + CF3,

(6.19)

where F and F1, F2, F3 are introduced in (6.14) and (6.16), (6.18). First, note that by Hölder’s
inequality and Young’s inequality, it holds

‖Yi‖p
Lp(F + F2) ≤ ‖Yi‖p

Lp+2(F + F2)

≤ (
N

− p
p+2 ‖Yi‖p

Lp+2

)(
N

p
p+2 (F + F2)

)
(6.20)

≤ 1

4N
‖Yi‖p+2

Lp+2 + CN
p
2 (F + F2)

p+2
2 ,

and by choosing s sufficiently small depending on p, we may apply Lemma 6.2 and Lemma
2.1 to obtain

E(F + F2)
p+2

2 +E(F1 + F3)� 1.

By a similar argument as in the proof of Lemma 5.7, we first obtain E‖Yi(0)‖p
Lp � C(N).

In fact, we choose the solution �̃i to equation (2.1) starting from the stationary solution
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Z̃i(0), so that the process Ỹi = �̃i −Zi starts from the origin. Using (6.19) and (5.10), (5.11),
Lemma 2.1, we find for T ≥ 1, ∫ T

0
E
∥∥Ỹi(t)

∥∥p
Lp � T ,

which implies that E‖Yi(0)‖p
Lp � C(N) by similar argument as in the proof of Lemma 5.7.

Taking expectation on both sides of (6.19) and using stationarity of (Yj )j , we find

mE‖Yi‖p
Lp + 1

2
E
∥∥|Yi |p−2|∇Yi |2

∥∥
L1 + 1

4N

N∑
j=1

E
∥∥|Yi |pY 2

j

∥∥
L1

≤ N
p
2 E(F + F2)

p+2
2 + CE(F1 + F3),

which completes the proof. �

6.3. Correlations of observables. Now we turn to study the statistical property of the
limiting observable, namely, we show that the limiting observables have nontrivial laws, in
the sense that although �i converges to the (trivial) stationary solution Zi (and :�2

i : →
:Z2

i : as N → ∞ for each i), the observables do not converge to the ones with �i replaced
by Zi . We then write for shorthand

(6.21) �2 def=
N∑

i=1

�2
i , :�2: def=

N∑
i=1

:�2
i : , Z2 def=

N∑
i=1

Z2
i , :Z2: def=

N∑
i=1

:Z2
i :

The two observables in (6.1) can be then written as 1√
N

:�2: and 1
N

:(�2)2: . We are in the
same setting as in Section 6.1, that is, we decompose �i = Yi + Zi with (Yi,Zi) stationary
and we also consider Yi , Zi as stationary process with Zi as the stationary solution of (5.2)
and Yi as the solution of (2.3).

To state such “nontriviality” results, we consider the correlation function

GN(x − z) = E
[

1√
N

:�2: (x)
1√
N

:�2: (z)

]
.

This precisely means the following. For a smooth function g and a distribution F (such as

:�2: ), we write F(g)
def= 〈F,g〉. Then for a smooth test function f the above correlation

function GN is understood as

GN(f )
def= lim

ε→0

∫
E
[

1√
N

:�2: (ρε
x

) 1√
N

:�2: (ρε
z

)]
f (x − z)dz

for some mollifier ρ with ρε
x(z) = ε−2ρ(z−x

ε
) and ρε

x → δx as ε → 0. Here, by translation
invariance of νN , GN(f ) does not depend on x. We define the Fourier transform of GN as
ĜN(k) = GN(e−k) with k ∈ Z2, with {ek} the Fourier basis. For comparison, we first note
that

lim
ε→0

E
[

1√
N

:Z2: (ρε
x

) 1√
N

:Z2: (ρε
z

)] = 2C(x − z)2

for any N and x, z ∈ T2, where C = 1
2(m − �)−1, which follows from definition of :Z2:

and Wick’s theorem. Also, E :(Z2)2: = 0 for any N .
We denote f̂ the Fourier transform of a function f .
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THEOREM 6.5. Let m as in Lemma 6.2. It holds that

lim
N→∞ ĜN = 2Ĉ2/

(
1 + 2Ĉ2

)
,

lim
N→∞ lim

ε→0
E

1

N

〈 :(�2)2: , ρε
x

〉 = −4
∑
k∈Z2

Ĉ2(k)2/
(
1 + 2Ĉ2(k)

)
.

(6.22)

In particular, in view of the discussion above the theorem, as N → ∞ the limiting law of
1√
N

:�2: and 1
N

:(�2)2: are different from that of 1√
N

:Z2: and 1
N

:(Z2)2: .

PROOF. Integration by parts formula gives us the following identities (see Appendix C):

− 1

4N
lim
ε→0

E
〈 :(�2)2: , ρε

x

〉 = (N + 2)

2N

∑
k∈Z2

Ĉ2(k)ĜN(k) + RN,(6.23)

(
1

2
+ N + 2

N
Ĉ2

)
ĜN = ĈCN + Q̂N/N(6.24)

with

CN(f ) = lim
ε→0

∫
E
[
�1

(
ρε

x

)
�1

(
ρε

z

)]
f (x − z)dz,

RN = − 1

N2 lim
ε→0

∫
C(x − z1)C(x − z2)

×E
[ :�1�

2: (ρε
z1

) :�1�
2: (ρε

z2

) :�2: (ρε
x

)]
dz1 dz2,

QN = −2 lim
ε→0

∫
C(x − y)C(x − z)E

[ :�1�
2: (ρε

y

)
�1

(
ρε

z

)]
dy

+ lim
ε→0

2

N

∫
C(x − z1)C(x − z2)

×E
[ :�1�

2: (ρε
z1

) :�1�
2: (ρε

z2

) :�2: (ρε
z

)]
dz1 dz2

def= QN
1 + QN

2 .

We first use (6.24) and we know ĈN → Ĉ as N → ∞ by using Lemma 6.2 and

ĈN(k) = cE
∫

Y1(x)Y1(z)e−k(x − z)dz dx + cE
∫

Y1(x)
〈
Z1, e−k(x − ·)〉dx

+ cE
∫

Y1(z)
〈
Z1, e−k(· − z)

〉
dz + Ĉ(k),

for constant c. Since C is positive definite, Ĉ is a positive function, and so is Ĉ2; this allows
us to divide both sides by 1

2 + Ĉ2 in (6.24). In Lemmas 6.8 and 6.9 below, we show that
Q̂N(k)/N vanishes in the limit for every k. We therefore obtain (6.22).

By Lemma 6.9, RN converges weakly to 0 as N → ∞. However, RN is independent of x

as a consequence of spatial translation invariance, so we also obtain pointwise convergence
of RN to zero. By Lemma 6.7, ĈCN(k) is uniformly bounded by c(m + |k|2)−1+κ for c > 0
and small κ > 0. By the dominated convergence theorem, we have

(N + 2)

2N

∑
k∈Z2

Ĉ2(k)
ĈCN(k)

(1
2 + N+2

N
Ĉ2(k))

→ ∑
k∈Z2

Ĉ2(k) · Ĉ2(k)

1 + 2Ĉ2(k)
, as N → ∞.
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By Lemmas 6.8 and 6.9 and the dominated convergence theorem, we find

(N + 2)

2N

∑
k∈Z2

Ĉ2(k)
Q̂N(k)

N(1
2 + N+2

N
Ĉ2(k))

→ 0, as N → ∞,

which combined with Lemma 6.9 and (6.23), (6.24) implies that

lim
N→∞E

1

4N

〈 :(�2)2: , ρε
x

〉 = − ∑
k∈Z2

Ĉ2(k) · Ĉ2(k)/
(
1 + 2Ĉ2(k)

)
where the sum is over integers (i.e., Fourier variables). This is nonzero, showing that the
limiting law of 1

N
:(�2)2: is different from that of 1

N
:(Z2)2: . �

We will use Lemmas 6.2 and 6.4 to control the remainder terms from integration by parts
formula. In fact, all the remainder terms will be controlled by the following terms:

EA
�1
1 A

�2
2 A

�3
3 ,

with �i ≥ 0, where (for s > 3κ > 0 small enough)

A1 := ‖Y1‖L2 + ‖Z1‖C− κ
3
,

A2 :=
∥∥∥∥∥

N∑
i=1

Y 2
i

∥∥∥∥∥
L1

+
N∑

i=1

‖Yi‖Hκ ‖Zi‖C− κ
2

+
∥∥∥∥∥

N∑
i=1

:Z2
i :

∥∥∥∥∥
H

− κ
2

,

A3 :=
∥∥∥∥∥Y1

N∑
i=1

Y 2
i

∥∥∥∥∥
L1+s

+
∥∥∥∥∥�−s

(
Z1

N∑
i=1

Y 2
i

)∥∥∥∥∥
L1+s

+
∥∥∥∥∥�−s

(
Y1

N∑
i=1

YiZi

)∥∥∥∥∥
L1+s

+
∥∥∥∥∥�−s

(
Z1

N∑
i=1

YiZi

)∥∥∥∥∥
L1+s

+
∥∥∥∥∥�−s

(
Y1

N∑
i=1

:Z2
i :

)∥∥∥∥∥
L1+s

+
∥∥∥∥∥

N∑
i=1

:Z1Z
2
i :

∥∥∥∥∥
H−s

:=
6∑

i=1

Ā3i .

LEMMA 6.6. For m as in Lemma 6.2 and for each �i ≥ 0 with �2
κ
2 + 3�3s < 1, it holds

EA
�1
1 A

�2
2 A

�3
3 �N(�2+�3)/2,

where the implicit constant is independent of N .

PROOF. By Lemma 6.2 and Lemma 2.1, it follows that EA
�1
1 � 1 for every �1 ≥ 0. Using

the interpolation Lemma A.2 followed by Hölder’s inequality with exponents ( 2
κ
, 2

1−κ
,2), we

find

A2 �
N∑

i=1

‖Yi‖2
L2 +

(
N∑

i=1

‖Yi‖2
L2

) 1−κ
2
(

N∑
i=1

‖Yi‖2
H 1

) κ
2
(

N∑
i=1

‖Zi‖2
C− κ

2

) 1
2

+
∥∥∥∥∥

N∑
i=1

:Z2
i :

∥∥∥∥∥
H

− κ
2

:= A21 + A22 + A23.

By Lemma 6.2 and Lemma 2.1, it follows that for all �2 ≥ 0 with κ
2 �2 < 1,

EA
�2
21 � 1, EA

�2
22 +EA

�2
23 �N

�2
2 ,
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where we used (4.1) and Gaussian hypercontractivity for the bound of A23. It remains to con-
sider A3. Starting with Ā31, let p ∈ (1,2) and q > 1 satisfy 1

q
+ 1

p
= 1

1+s
, then use Hölder’s

inequality and interpolate to obtain

Ā31 � ‖Y1‖Lq

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
Lp

� ‖Y1‖Lq

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2− 2

p

L2

∥∥∥∥∥
N∑

i=1

Y 2
i

∥∥∥∥∥
2
p
−1

L1

:= A31.

Given �3 ≥ 0, choosing p close enough to 1 and q > �3 to ensure �3(2 − 2
p
)

q
q−�3

< 2, we
may use Lemma 6.4 and Lemma 6.2 and Hölder’s inequality to obtain the bound

EA
�3
31 �N

�3
2 .

The next three terms can be estimated by using Lemma A.3 and Lemma A.2. Specifically,
we use that for s ∈ (0,1) it holds∥∥�−s(fg)

∥∥
L1+s � ‖f ‖Bs

1+s,1
‖g‖C−s+κ �

(‖f ‖H 2s ∧ ∥∥�3sf
∥∥
L1

)‖g‖C−s+κ ,

for s > 3κ > 0 small enough.

Ā32 � ‖Z1‖C−s+κ

∥∥∥∥∥�3s
N∑

i=1

Y 2
i

∥∥∥∥∥
L1

� ‖Z1‖C−s

(
N∑

i=1

‖Yi‖2
H 1

)3s( N∑
i=1

‖Yi‖2
L2

)1−3s

:= A32,

Ā33 �
N∑

i=1

‖Zi‖C−s+κ ‖Yi‖H 3s‖Y1‖H 3s

�
(

N∑
i=1

‖Zi‖2
C−s+κ

)1/2

‖Y1‖3s
H 1‖Y1‖1−3s

L2

(
N∑

i=1

‖Yi‖2
H 1

)3s/2( N∑
i=1

‖Yi‖2
L2

) 1−3s
2

:= A33,

Ā34 �
N∑

i=1

‖ :Z1Zi: ‖C−s+κ ‖Yi‖H 2s

�
(

N∑
i=1

‖ :Z1Zi: ‖2
C−s+κ

)1/2( N∑
i=1

‖Yi‖2
H 1

)s( N∑
i=1

‖Yi‖2
L2

) 1−2s
2

:= A34,

and

Ā35 �
∥∥∥∥∥

N∑
i=1

:Z2
i : Y1

∥∥∥∥∥
B−s

1+s,1

�
∥∥∥∥∥

N∑
i=1

:Z2
i :

∥∥∥∥∥
H−s+κ

‖Y1‖H 3s

�
∥∥∥∥∥

N∑
i=1

:Z2
i :

∥∥∥∥∥
H−s+κ

‖Y1‖3s
H 1‖Y1‖1−3s

L2 := A35.

By Lemma 6.2, we deduce that for 3�3s < 1,

EA
�3
3i �N

�3
2 ,

with i = 2, . . . ,5. The last term is given as

A36 :=
∥∥∥∥∥

N∑
i=1

:Z1Z
2
i :

∥∥∥∥∥
H−s

,
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which by similar argument as in the proof of (5.4) implies that EA
�3
36 � N

�3
2 , Combining the

above estimates and Hölder’s inequality, we obtain

EA
�1
1 A

�2
2 A

�3
3 �

∑
(i1,i2,i3)

EA
�1
1i1

A
�2
2i2

A
�3
3i3

� N(�2+�3)/2.
�

In the following proof, we use c to denote positive constant, which may change from line
to line.

LEMMA 6.7. It holds that ∣∣ĈCN(k)
∣∣� (

1 + |k|2)−1+κ
,

for κ > 0, where the proportional constant is independent of k.

PROOF. By translation invariance, we know for some positive constant c > 0,

ĈCN(k) = lim
ε→0

E
∫

C(x − z)�1
(
ρε

x

)
�1

(
ρε

z

)
e−k(x − z)dz

= c lim
ε→0

E
∫

C(x − z)�1
(
ρε

x

)
�1

(
ρε

z

)
e−k(x − z)dz dx

= cE
〈
�1(m − �)−1(�1ek), ek

〉
= cE

∑
k1∈Z2

�̂1(k1)
(
m + |k − k1|2)−1

�̂1(−k1)

�
[
E
( ∑

k1∈Z2

∣∣�̂1(k1)
∣∣2(m + |k − k1|2)−1

)] 1
2

×
[
E
( ∑

k1∈Z2

∣∣�̂1(−k1)
∣∣2(m + |k − k1|2)−1

)] 1
2

def= I
1
2

1 I
1
2

2 .

I1 is bounded by

E
∑

k1∈Z2

∣∣Ŷ1(k1)
∣∣2(m + |k − k1|2)−1 +E

∑
k1∈Z2

∣∣Ẑ1(k1)
∣∣2(m + |k − k1|2)−1

.

Using Lemma 6.2, we know

E
∣∣Ŷ1(k1)

∣∣2 � (
1 + |k1|)−2E‖Y1‖2

H 1 �
(
1 + |k1|)−2

.

Using translation invariance, we find

E
∑

k1∈Z2

∣∣Ẑ1(k1)
∣∣2(m + |k − k1|2)−1 = cĈ2(k).

Now the desired bound for I1 follows from Lemma A.7. Similarly, we deduce the required
bound for I2 and the result follows. �

LEMMA 6.8. It holds that for every k ∈ Z2,∣∣Q̂N
1 (k)

∣∣�N1/2(1 + |k|)−κ/2
,

for every 0 < κ < 1
6 , where the proportional constant is independent of N and k.
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PROOF. We use translation invariance property to write the Fourier transform of QN
1 as

Q̂N
1 (−k) =

∫
QN

1 ek(x − z)dz = c

∫
QN

1 ek(x − z)dx dz

= cE
[〈
(m − �)−1( :�1�

2
i :

) · (m − �)−1[�1 · e−k], e−k

〉]
,

which by Lemma A.3 can be bounded by

(
1 + |k|)−κE

[∥∥∥∥∥(m − �)−1

(
(Y1 + Z1)

N∑
i=1

(
Y 2

i + 2YiZi+ : Z2
i :))∥∥∥∥∥

Cκ

× ∥∥(m − �)−1[(Y1 + Z1)e−k

]∥∥
Cκ

]
,

where we used ‖ek‖B−κ
1,1

� (1+|k|)−κ , which can be checked by direct calculation. By Besov

embedding Lemma A.1 and elliptic Schauder estimate (see, e.g., [67], Theorem 6.5), we
know that for 1

2 > s > 3κ > 0 small enough∥∥(m − �)−1f
∥∥
Cκ � ‖f ‖L1+s ∧ ∥∥�−sf

∥∥
L1+s ∧ ‖f ‖H−s ∧ ‖f ‖C−κ/3 .(6.25)

(6.25) implies that the above term could be controlled by E[A3A1]‖ek‖Cκ/2 , which by Lemma

6.6 can be bounded by N
1
2 (1 + |k|)−κ/2. �

LEMMA 6.9. For every k ∈ Z2,∣∣Q̂N
2 (k)

∣∣�N1/2(1 + |k|)− κ
2 ,

∣∣R̂N(k)
∣∣�N−1/2(1 + |k|) κ

2 ,

for 0 < κ < 2
37 , where the proportional constant is independent of N and k.

PROOF. We write the Fourier transform of QN
2 as

Q̂N
2 (−k) =

∫
QN

2 ek(x − z)dx = c

∫
QN

2 ek(x − z)dx dz

= c

N
E

〈(
N∑

i=1

(m − �)−1�1�
2
i

)2

, e−k

〉〈
N∑

i=1

:�2
i : , ek

〉
,

which can be bounded by

c

N
E

[∥∥∥∥∥(m − �)−1

(
(Y1 + Z1)

N∑
i=1

(
Y 2

i + 2YiZi+ : Z2
i :))∥∥∥∥∥

2

Cκ

‖e−k‖B−κ
1,1

×
∣∣∣∣∣
〈(

N∑
i=1

(
Y 2

i + 2YiZi+ : Z2
i :)), e−k

〉∣∣∣∣∣
]
.

Using (6.25) for the first line and Lemma A.3 for the second line and ‖ek‖B−κ
1,1

� (1 + |k|)−κ ,

the above term can be estimated by 1
N
E[A2

3A2](|k| + 1)−κ‖e−k‖
B

κ
2

2,1

for s > 3κ , 6s + κ
2 < 1,

which by Lemma 6.6 can be bounded by N
1
2 (|k| + 1)− κ

2 .
Similarly, we write

R̂N(k) = c

N2E

〈(
N∑

i=1

(m − �)−1�1�
2
i

)2( N∑
i=1

:�2
i :

)
, ek

〉
,
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which by Lemma A.3 can be bounded by

c(1 + |k|) κ
2

N2 E

∥∥∥∥∥(m − �)−1

(
(Y1 + Z1)

N∑
i=1

(
Y 2

i + 2YiZi+ : Z2
i :))∥∥∥∥∥

2

Cκ

A2,

for s > 3κ > 0 and 6s + κ
2 < 1. By (6.25), we know that the above term could be controlled

by 1
N2E[A2

3A2](1 + |k|) κ
2 , which by Lemma 6.6 can be bounded by N− 1

2 (1 + |k|) κ
2 . �

APPENDIX A: NOTATION AND BESOV SPACES

We use (�i)i≥−1 to denote the Littlewood–Paley blocks for a dyadic partition of unity.
Besov spaces on the torus with general indices α ∈ R, p,q ∈ [1,∞] are defined as the com-
pletion of C∞ with respect to the norm

‖u‖Bα
p,q

:=
( ∑

j≥−1

(
2jα‖�ju‖q

Lp

))1/q

,

and the Hölder–Besov space Cα is given by Cα = Bα∞,∞. We will often write ‖ · ‖Cα instead
of ‖ · ‖Bα∞,∞ .

Set � = (1 − �)
1
2 . For s ≥ 0, p ∈ [1,+∞], we use Hs

p to denote the subspace of Lp ,
consisting of all f , which can be written in the form f = �−sg, g ∈ Lp and the Hs

p norm of
f is defined to be the Lp norm of g, that is, ‖f ‖Hs

p
:= ‖�sf ‖Lp . For s < 0, p ∈ (1,∞), Hs

p

is the dual space of H−s
q with 1

p
+ 1

q
= 1. Set Hs := Hs

2 .
The following embedding results will be frequently used (e.g., [66]).

LEMMA A.1. (i) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then
Bα

p1,q1
⊂ B

α−d(1/p1−1/p2)
p2,q2 (cf. [33], Lemma A.2).

(ii) Let s ∈ R, 1 < p < ∞, ε > 0. Then Hs
2 = Bs

2,2, and Bs
p,1 ⊂ Hs

p ⊂ Bs
p,∞ ⊂ Bs−ε

p,1 (cf.
[66], Theorem 4.6.1).

(iii) Let 1 ≤ p1 ≤ p2 < ∞ and let α ∈ R. Then Hα
p1

⊂ H
α−d(1/p1−1/p2)
p2 .

Here, ⊂ means continuous and dense embedding.

We recall the following interpolation inequality and multiplicative inequality for the ele-
ments in Hs

p .

LEMMA A.2. (i) Suppose that s ∈ (0,1) and p ∈ (1,∞). Then for f ∈ H 1
p ,

‖f ‖Hs
p
� ‖f ‖1−s

Lp ‖f ‖s
H 1

p

(cf. [66], Theorem 4.3.1).
(ii) Suppose that s > 0 and p ∈ [1,∞). It holds that

(A.1)
∥∥�s(fg)

∥∥
Lp � ‖f ‖Lp1

∥∥�sg
∥∥
Lp2 + ‖g‖Lp3

∥∥�sf
∥∥
Lp4 ,

with pi ∈ (1,∞], i = 1, . . . ,4 such that

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4

(cf. see [29], Theorem 1).
(iii) (Gagliardo–Nirenberg inequality) For s ∈ [0,1), α ∈ (0,1), r ≥ 1,

(A.2) ‖u‖Hs
q
� ‖u‖α

H 1‖u‖1−α
Lr

with 1
q

= s
d

+ α(1
2 − 1

d
) + 1−α

r
.
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LEMMA A.3. (i) Let α,β ∈ R and p,p1,p2, q ∈ [1,∞] be such that 1
p

= 1
p1

+ 1
p2

.

The bilinear map (u, v) �→ uv extends to a continuous map from Bα
p1,q

× B
β
p2,q to B

α∧β
p,q if

α + β > 0 (cf. [53], Corollary 2).
(ii) (Duality.) Let α ∈ (0,1), p,q ∈ [1,∞], p′ and q ′ be their conjugate exponents, respec-

tively. Then the mapping (u, v) �→ 〈u, v〉 = ∫
uv dx extends to a continuous bilinear form on

Bα
p,q × B−α

p′,q ′ , and one has |〈u, v〉| � ‖u‖Bα
p,q

‖v‖B−α

p′,q′ (cf. [53], Proposition 7).

We recall the following smoothing effect of the heat flow St = et(�−m), m ≥ 0 (e.g., [33],
Lemma A.7, [53], Proposition 5).

LEMMA A.4. Let u ∈ Bα
p,q for some α ∈ R, p,q ∈ [1,∞]. Then for every δ ≥ 0 and

t ∈ [0, T ],
‖Stu‖

Bα+δ
p,q

� t−δ/2‖u‖Bα
p,q

,

where the proportionality constant is independent of t .

LEMMA A.5. For s ∈ (0,1),∣∣〈g,f 〉∣∣� (‖∇g‖s
L1‖g‖1−s

L1 + ‖g‖L1
)‖f ‖C−s .

PROOF. This follows from Lemma A.3, which states that 〈g,f 〉 is a continuous bi-
linear form on Bs

1,1 × C−s , together with [53], Proposition 8, which states that ‖g‖Bs
1,1

�
‖∇g‖s

L1‖g‖1−s

L1 + ‖g‖L1 . �

We also recall the following comparison test result, which has been proved in [68], Lemma
3.8.

LEMMA A.6. Let f : [0, T ] → [0,∞) differentiable such that for every t ∈ [0, T ],
df

dt
+ c1f

2 ≤ c2.

Then for t > 0,

f (t) ≤
(
t−1 2

c1

)
∨
(

2c2

c1

) 1
2
.

We recall the following result for sum from [72], Lemma 3.10.

LEMMA A.7. Let 0 < l, r < d , l + r − d > 0. Then it holds∑
k1∈Zd

(
1 + |k1|)−l(1 + |k − k1|)−r �

(
1 + |k|)d−l−r

.

APPENDIX B: PROOF OF LEMMA 2.2

PROOF. For initial value yi ∈ Cβ(T2), β ∈ (1,2), we could use a similar argument as in
[53], Theorem 6.1, to obtain global solutions (Yi) to (2.3) with each Yi ∈ CT Cβ . In fact, we
use mild solutions and a fixed-point argument to obtain unique local solutions. Furthermore,
for fixed N we obtain a global in time Lp-estimate, p > 1, which gives the required global
solutions.
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Moreover, for general initial data yi ∈ L2, we consider smooth approximation (yε
i ) to

initial data yi . For (yε
i ), we construct solutions Y ε

i ∈ CT Cβ by the above argument. For Y ε
i ,

we could do the uniform estimate as in Lemma 2.3 and obtain

1

N
sup

t∈[0,T ]

N∑
j=1

∥∥Y ε
j

∥∥2
L2 + 1

N

N∑
j=1

∥∥∇Y ε
j

∥∥2
L2(0,T ;L2) +

∥∥∥∥∥ 1

N

N∑
i=1

(
Y ε

i

)2

∥∥∥∥∥
2

L2(0,T ;L2)

≤ C,

where C is independent of ε. By standard compactness argument, we deduce that there exist
a sequence {εk} and Yi ∈ L∞

T L2 ∩ L2
T H 1 ∩ L4

T L4 such that Y
εk

i → Y in L2
T Hδ ∩ CT H−1,

δ < 1. Furthermore, by a similar argument as in the proof of [55], Theorem 4.3, we obtain
Yi ∈ CT L2 ∩L4

T L4 ∩L2
T H 1. For the uniqueness part, we could do similar estimate as IN

1 and
IN

2 for the difference vi in Section 4. From the estimates (4.8), (4.13) and (4.18) in Section 4
the regularity for Yi is enough for the uniqueness. �

APPENDIX C: CONSEQUENCES OF DYSON–SCHWINGER EQUATIONS

Dyson–Schwinger equations are relations between correlation functions of different or-
ders. Here, we derive the identities (6.23) and (6.24) using Dyson–Schwinger equations;
these are essentially in [45] (equations (7), (8) therein), but since we are in a slightly different
setting, we give some details here to be self-contained. They are consequences of integration
by parts formula (e.g., [32], Theorem 6.7, for the �4 model), In the case of the N-component

�4 model (i.e., linear sigma model), for a fixed N , � ∼ νN and writing �2 def= ∑N
i=1 �2

i as
shorthand, it is easy to derive the following integration by parts formula:

E
(
Dρε

1,x
F (�)

) = 2E
(〈
�1, (m − �x)ρ

ε
x

〉
F(�)

)+ 2

N
E
(
F(�)

〈 :�1�
2: , ρε

x

〉)
,

where Dρε
1,x

F (�) denotes the Fréchet derivative along ρε
1,x

def= (ρε
x,0, . . . ,0) (namely varying

only �1 in the direction ρε
x). In terms of Green’s function C(x − y) = 1

2(m − �)−1(x − y),
we can also write it as∫

C(x − z)E
(
Dρε

1,z
F (�)

)
dz

= E
(〈
�1, ρ

ε
x

〉
F(�)

)+ 2

N

∫
C(x − z)E

(
F(�)

〈 :�1�
2: , ρε

z

〉)
dz.

(C.1)

Here, we apply (C.1) to prove (6.23). Taking F(�) = 〈 :�1�
2: , ρε

x〉, one has

lim
ε→0

2

N

∫
C(x − z)E

(〈 :�1�
2: , ρε

x

〉〈 :�1�
2: , ρε

z

〉)
dz

= lim
ε→0

[∫
N + 2

N
C(x − z)E

(〈 :�2: ρε
z , ρ

ε
x

〉)
dz −E

(〈
�1, ρ

ε
x

〉〈 :�1�
2: , ρε

x

〉)]
= − lim

ε→0

1

N
E
〈 :(�2)2: , ρε

x

〉
using the definition of Wick products and the symmetry (i.e., exchangeability of (�i)i ) and
taking limit in C−κ . 8

8For instance, in the first step, recalling the precise definition of :�1�2: , the derivative Dρε
1,z

F (�) gives

3 :�2
1: ρε

z + ∑N
i=2 :�2

i : ρε
z which by exchangeability can be rewritten as N+2

N
:�2: ρε

z inside expectation. The
last step follows similarly; or it could be viewed as an N dimensional generalization of the well-known relation
Hn+1(x) = xHn(x) − H ′

n(x) for Hermite polynomials Hn.
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Next, taking F = 〈 :�2: , ρε
x〉〈 :�1�

2: , ρε
z 〉, one has

lim
ε→0

2

N

∫
C(x − z1)E

(〈 :�2: , ρε
x

〉〈 :�1�
2: , ρε

z1

〉〈 :�1�
2: , ρε

z

〉)
dz1

= lim
ε→0

N + 2

N

∫
C(x − z1)E

(〈 :�2: , ρε
x

〉〈 :�2: , ρε
z1

ρε
z

〉)
dz1

+ lim
ε→0

[
2
∫

C(x − z1)E
(〈
�1ρ

ε
z1

, ρε
x

〉〈 :�1�
2: , ρε

z

〉)
dz1

−E
(〈
�1, ρ

ε
x

〉〈 :�2: , ρε
x

〉〈 :�1�
2: , ρε

z

〉)]
= lim

ε→0

N + 2

N
C(x − z)E

[〈 :�2: , ρε
x

〉〈 :�2: , ρε
z

〉]− lim
ε→0

E
(〈 :�1�

2: , ρε
x

〉〈 :�1�
2: , ρε

z

〉)
,

where the limit is understood in C−κ and we again used symmetry under expectation. From
the above two correlation identities, we cancel out the sixth-order correlation term and then
obtain (6.23). Note that we also use Fourier transform to have

lim
ε→0

∫
N + 2

N2 C(x − z)2E
[〈 :�2: , ρε

x

〉〈 :�2: , ρε
z

〉]
dz = ∑

k∈Z2

N + 2

N
Ĉ2(k)ĜN(k).

Next, take F(�) = ∫
C(x − y)〈 :�1�

2: , ρε
y〉〈 :�2: , ρε

z 〉dy. We have, by (C.1),

2

N

∫
C(x − y1)C(x − y2)E

(〈 :�1�
2: , ρε

y1

〉〈 :�1�
2: , ρε

y2

〉〈 :�2: , ρε
z

〉)
dy1 dy2

= 2E
(〈
�1,C

ε
xρ

ε
z

〉〈 :�1�
2: ,Cε

x

〉)+ N + 2

N
E
(〈 :�2: , ρε

z

〉〈 :�2: ,
(
Cε

x

)2〉)
−
∫

C(x − y)E
(〈
�1, ρ

ε
x

〉〈 :�1�
2: , ρε

y

〉〈 :�2: , ρε
z

〉)
dy,

with Cε
x(·) def= (C ∗ ρε

0)(x − ·). Note that as ε → 0, the limit of the left-hand side is precisely
QN

2 and the limit of the first term on the right-hand side is just −QN
1 . The limit of the Fourier

transform of the second term on the right-hand side equals

(N + 2)Ĉ2ĜN .

To deal with the last term above, taking F(�) = 〈�1, ρ
ε
x〉〈 :�2: , ρε

z 〉 and applying (C.1), one
has

2
∫

C(x − y)E
(〈
�1, ρ

ε
x

〉〈 :�1�
2: , ρε

y

〉〈 :�2: , ρε
z

〉)
dy

= N

∫
C(x − y)

〈
ρε

x, ρ
ε
y

〉
dyE

〈 :�2: , ρε
z

〉+ 2N

∫
C(x − z1)E

(〈
�1, ρ

ε
x

〉〈
�1, ρ

ε
z1

ρε
z

〉)
dz1

− NE
[〈
�1, ρ

ε
x

〉2〈 :�2: , ρε
z

〉]
.

Letting ε → 0, we deduce the limit of the Fourier transform of the right-hand side is

−NĜN + 2NĈCN.

We then obtain (6.24).



LARGE N LIMIT OF THE O(N) LINEAR SIGMA MODEL 197

APPENDIX D: PROOF OF STEP 7 IN THE PROOF OF THEOREM 4.1

We write Ī N as
∑3

i=1 Ī N
i :

Ī N
1

def= − 1

N

N∑
i,j=1

[〈
Y 2

j , viui

〉+ 2〈YjYiuj , vi〉],
ĪN

21
def= − 1

N

N∑
i,j=1

2
〈
Yjvi, :ZN

i ZN
j : − :ZiZj : 〉,

ĪN
22

def= − 1

N

N∑
i,j=1

〈
Yivi, :ZN,2

j : − :Z2
j :

〉
,

ĪN
3

def= − 1

N

N∑
i,j=1

〈
vi, :ZN

i Z
N,2
j : − :ZiZ

2
j :

〉
.

In the following, we estimate each term and show that for δ > 0 small,

(D.1)

∣∣Ī N
∣∣� δ

(
N∑

i=1

‖∇vi‖2
L2 + 1

N

N∑
i,j=1

‖Yjvi‖2
L2

)
+

N∑
i=1

‖vi‖2
L2

+
(

N∑
i=1

‖ui‖2
L∞

)(
1

N

N∑
j=1

‖Yj‖2
L2

)
+ R̃N ,

with

R̃N
def= 1

N

N∑
i,j=1

∥∥ :ZN
i Z

N,2
j : − :ZiZ

2
j :

∥∥2
C−s

+
(

1

N

N∑
j=1

‖Yj‖2
H 1

)s

ZN + ZN +
(

1

N

N∑
i=1

‖Yi‖2
H 1

)s(
1

N

N∑
i=1

‖Yi‖2
L2

)1−s

Z̄N,

with Z̄N and ZN introduced in (D.2) below.
For Ī N

1 , we use Young’s inequality to have

∣∣Ī N
1

∣∣� δ
1

N

N∑
i,j=1

∫
Y 2

j v2
i + 1

N

N∑
i,j=1

∫
Y 2

j u2
i

� δ
1

N

N∑
i,j=1

∫
Y 2

j v2
i +

(
1

N

N∑
j=1

‖Yj‖2
L2

)(
N∑

i=1

‖ui‖2
L∞

)
,

which gives the first contribution to (D.1).
For Ī N

3 we use Lemma A.3, Lemma A.2 and Young’s inequality to have

∣∣Ī N
3

∣∣� 1

N

N∑
i,j=1

‖vi‖H 2s

∥∥ :ZN
i Z

N,2
j : − :ZiZ

2
j :

∥∥
C−s

� δ

N∑
i=1

‖∇vi‖2
L2 +

N∑
i=1

‖vi‖2
L2 + 1

N

N∑
i,j=1

∥∥ :ZN
i Z

N,2
j : − :ZiZ

2
j :

∥∥2
C−s ,

which gives the second contribution to (D.1).
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For Ī N
2k , we set

ZN
def= 1

N

N∑
i,j=1

∥∥ :ZN
i ZN

j : − :ZiZj :
∥∥2
C−s , Z̄N

def=
N∑

j=1

∥∥ :ZN,2
j : − :Z2

j :
∥∥2
C−s .(D.2)

We use Lemma A.5 and Hölder’s inequality to have

∣∣Ī N
21

∣∣� 1

N

N∑
i,j=1

(∥∥∇(Yjvi)
∥∥s
L1‖Yjvi‖1−s

L1 + ‖Yjvi‖L1
)∥∥ :ZN

i ZN
j : − :ZiZj :

∥∥
C−s

� δ

(
1

N

N∑
j=1

‖viYj‖2
L2

)
+ ZN

+
(

N∑
i=1

‖vi‖2
L2

)s/2(
1

N

N∑
j=1

‖∇Yj‖2
L2

)s/2(
1

N

N∑
i,j=1

‖viYj‖2
L2

) 1−s
2

Z
1/2
N

+
(

N∑
i=1

‖∇vi‖2
L2

)s/2(
1

N

N∑
j=1

‖Yj‖2
L2

)s/2(
1

N

N∑
i,j=1

‖viYj‖2
L2

) 1−s
2

Z
1/2
N ,

which by Young’s inequality gives

∣∣Ī N
21

∣∣� δ

(
1

N

N∑
i,j=1

‖viYj‖2
L2

)
+ δ

(
N∑

i=1

‖∇vi‖2
L2

)

+
(

N∑
i=1

‖vi‖2
L2

)
+
(

1

N

N∑
j=1

‖Yj‖2
H 1

)s

ZN + ZN.

Similarly, we deduce

∣∣Ī N
22

∣∣� 1

N

N∑
i,j=1

(∥∥∇(Yivi)
∥∥s
L1‖Yivi‖1−s

L1 + ‖Yivi‖L1
)∥∥ :ZN,2

j : − :Z2
j :

∥∥
C−s

�
(

N∑
i=1

‖vi‖2
L2

)
+ Z̄N

(
1

N

N∑
i=1

‖Yi‖2
L2

)

+
(

N∑
i=1

‖vi‖2
L2

)1/2(
1

N

N∑
i=1

‖∇Yi‖2
L2

)s/2(
1

N

N∑
i=1

‖Yi‖2
L2

) 1−s
2

Z̄
1/2
N

+
(

N∑
i=1

‖∇vi‖2
L2

)s/2(
1

N

N∑
i=1

‖Yi‖2
L2

)1/2( N∑
i=1

‖vi‖2
L2

) 1−s
2

Z̄
1/2
N ,

which implies

∣∣Ī N
22

∣∣� δ

(
N∑

i=1

‖∇vi‖2
L2

)
+
(

N∑
i=1

‖vi‖2
L2

)
+
(

1

N

N∑
i=1

‖Yi‖2
H 1

)s(
1

N

N∑
i=1

‖Yi‖2
L2

)1−s

Z̄N.

Thus we deduce (D.1). By Assumption 4.1 and Lemma 2.1, it is easy to find 1
N

‖R̃N‖L1
T

→ 0

in L1(�). The result follows by similar argument as Step 5 and Step 6.
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