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In this paper we introduce the stochastic Ricci flow (SRF) in two spatial dimensions.

The flow is symmetric with respect to a measure induced by Liouville conformal

field theory. Using the theory of Dirichlet forms, we construct a weak solution to the

associated equation of the area measure on a flat torus, in the full “L1 regime” σ < σL1 =
2
√

π where σ is the noise strength. We also describe the main necessary modifications

needed for the SRF on general compact surfaces and list some open questions.

1 Introduction

The Ricci flow, introduced by Hamilton [36], is an intrinsic evolution of a Riemannian

metric g = g(t) on a fixed smooth manifold:

∂tg = −2Rg

where Rg is the Ricci curvature of g. Assuming that the manifold is a closed (compact

oriented) Riemann surface, we will be interested in a normalized version of the flow:

∂tg = −2Rg − 2λg . (1.1)

The real number λ plays the role of a normalization constant: when λ is chosen to be

the minus average Gauss curvature, the flow preserves total area and converges to the

constant curvature metric as proved by [15, 36, 48].
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2 J. Dubédat and H. Shen

Up to normalization, the Ricci flow (1.1) is the only intrinsic parabolic (determin-

istic) evolution of the metric. Indeed, the coefficients −2 do not play any essential role;

a simple transform g̃(t) = g(at)ebt yields the same equation with generic coefficients.

Moreover, classical results in Riemannian geometry (e.g., [24]) show that, under mild

assumptions, the only “natural” tensors (i.e., that do not depend on coordinate or

other choices) are those generated by the metric and curvature tensor by taking

linear combinations, covariant derivatives, tensor products and contractions; in two

dimensions the only intrinsic terms are the metric and Ricci curvature. In the present

article, we are concerned with constructing intrinsic stochastic evolutions of the metric.

Recall the following facts. Let g0 be a metric on a closed Riemann surface.

We consider metrics obtained by Weyl scaling g = e2φg0, where the function φ is the

conformal factor. The Ricci curvature tensor Rg, the Gauss curvature Kg, the Laplacian

(In this article the Laplacian is just the trace of the Hessian on functions, without a

negative sign.) operator �g, and the area form ωg for g then satisfy

Rg = R0 − �0φ g0 , Kg = e−2φ(K0 − �0φ) , �g = e−2φ�0 , ωg = e2φω0 , (1.2)

where R0, �0, and ω0 are, respectively, the Ricci curvature, the Laplacian, and area form

for g0. Since the dimension is two, the scalar curvature (the trace of the Ricci tensor

w.r.t. the metric) equals twice the Gauss curvature, and one always has Rg = Kg g. An

important property of the 2-dimensional Ricci flow is that the metric evolves within a

conformal class, namely if the initial condition has the above form, then g(t) = e2φ(t)g0
for all t > 0, so that the equation (1.1) can be written in terms of the conformal factor in

the following equivalent forms:

∂tφ = −Kg − λ = �gφ − e−2φK0 − λ (1.3)

= e−2φ�0φ − e−2φK0 − λ .

To motivate our stochastic version of the two-dimensional Ricci flow, as well

as its connection to the Liouville conformal field theory (LCFT), we recall that the

string theory is concerned with surfaces with varying metrics g, and a central quantity

is the (“ζ -regularized”) determinant of Laplacian formally denoted by det′ �g. This a

spectral invariant, that is, can be computed from the spectrum of �g (which is discrete

and satisfies Weyl asymptotics). Osgood–Phillips–Sarnak [48] provided an important

perspective on the uniformization theorem: in [48, Theorem 1] they proved that among

all metrics in a given conformal class and of given area, the constant curvature metric
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Stochastic Ricci Flow on Compact Surfaces 3

(which exists and is unique up to isometry) has maximum determinant det′ �g. They

also showed that [48, Theorem 2.A] when the Euler characteristic is non-positive, the

Ricci flow can be realized as a gradient flow, as we now explain.

On the Riemann surface 
, the celebrated Polyakov [53] anomaly formula (see

e.g., Section 1 of [48]) for the variation of the quantity logdet′ �g under conformal change

g = e2φg0 reads

logdet′�g − log det′�0 = − 1

12π

∫



|∇g0φ|2ω0 − 1

6π

∫



K0φ ω0 + log
Vg

V0
(1.4)

where V0,Vg are areas of g0 and g, that is, Vg = ∫



ωg = ∫


e2φω0; and K0 is the Gauss

curvature of g0. Define a “potential” for λ ∈ R

V(g) = − log det′�g + logVg + λ

12π
Vg .

By (1.4) we see that 6π(V(g)−V(g0)) is essentially the (classical) Liouville action S(φ) up

to a constant

6π(V(g) − V(g0)) + λ

2
V0 (1.5)

= S(g0,φ) :=
∫




(1
2

|∇g0φ|2 + K0φ + λ

2
e2φ

)
ω0,

which gives a concrete formula for the action. By a simple change of variables—see

(1.17) in Section 1.2 below—this is exactly the same as the probabilists’ convention of

definition of the classical Liouville action, up to an overall constant πγ 2

2 .

The Ricci flow (1.3) turns out to be a gradient flow of S(g0,φ) (and thus 6πV(φ))

given in (1.5) with respect to the a formal Riemannian structure on the infinite-

dimensional space of metrics on 
 in a fixed conformal class, where the “tangent space”

at g is equipped with the intrinsic inner product L2(ωg) (rather than the “flat” inner

product L2(ω0)!). Here, the metric L2(ωg) is defined such that for a “tangent” vector δφ at

a Riemannian metric g,

‖δφ‖2L2(ωg)
=

∫



(δφ)2ωg . (1.6)

This metric is known as the Calabi metric, see [9] (in the context of Kähler metrics, viz.

for fixed volume, as well as complex structure). Consider a perturbation g + δg = e2δφg;
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4 J. Dubédat and H. Shen

then by (1.5) and (1.2)

δS(g0,φ) =
∫




(K0 − �0φ)δφ ω0 + λ

∫



δφ ωg =
〈
Kg + λ, δφ

〉
L2(ωg)

so that the gradient flow associated to S(g0,φ) = 6πV is indeed the Ricci flow (1.3).

In general, associated to, say, a compact Riemannian manifold (M, g) and a

potential V : M → R, one can consider a (deterministic) gradient flow on M:

dXt = −gradgV(Xt).

The Langevin flow is a natural stochastic perturbation of the gradient flow associated

to the same data (M, g,V); its generator reads

σ 2�g − gradgV(Xt) · gradg (1.7)

and its invariant measure is ∝ e−σ−2VdVolg.

Since the Ricci flow is realized as a gradient flow—where M is the (infinite-

dimensional) space of metrics in a conformal class, g is the Calabi metric (1.6), and

the potential is given by (1.5), a natural question is to construct the Langevin flow

associated to that data. Remark that the (formal !) volume form associated to the Calabi

metric is central to the treatment of 2-dimensional quantum gravity by David–Distler–

Kawai ([17, 20], see also Section 2.1 in [46]).

In view of this, the natural and intrinsic noise that we would like to add to

equation (1.3) should then be a noise that, in the spatial direction, is “white” with respect

to L2(ωg). In fact if ζ0 is a spatial white noise w.r.t. L2(ω0), and φ is a smooth conformal

factor, then ζg := e−φζ0 is white with respect to the metric L2(ωg), namely, by (1.2),

E
[
(

∫


f ζgωg)
2] = E

[
(

∫


f ζ0e
φω0)

2] =
∫



f 2e2φω0 =
∫



f 2ωg . (1.8)

In this paper we focus first on a flat two-dimensional torus 
 =  = C/(Z+τZ),


(τ ) > 0. We will briefly discuss the case of compact surfaces in Section 4.1, and we will

see there that while on the torus the stochastic Ricci flow (SRF) is the classical Ricci

flow (in terms of φ) plus a noise that is white with respect to the metric g, there are

complications when the reference is not flat.
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Stochastic Ricci Flow on Compact Surfaces 5

Let g0 be a flat metric on  such that K0 = 0. In the sequel we write �= �0. The

SRF we study in this paper is then formally given by

∂tg = −2Rg − 2λg + 2σξgg whereξg := e−φξ0 ,

or (again formally) in terms of the conformal factor

∂tφ = �gφ − λ + σξg (1.9)

= e−2φ�φ − λ + σe−φξ0 ,

where σ ∈ R and ξ0 is the space-timewhite noise w.r.t. the Euclidean metric g0. Equation

(1.9) is a nonlinear version of the stochastic heat equation (SHE)

∂tφ = �φ + σξ0 (1.10)

whose invariant measure is the Gaussian free field (GFF) with covariance operator
σ2

2 (−�)−1. In particular φ has negative regularity.

Remark 1.1. Let us point out that, beyond the usual “flat” SHE, one can consider a

SHE with respect to a fixed smooth metric ĝ = e2φ̂g0; it reads

∂tφ = �ĝφ + σξĝ = e−2φ̂�0φ + σe−φ̂ξ0 . (1.11)

For any fixed, smooth φ̂, the invariant measure is the same GFF. In view of this, it is

natural to expect that a solution of (1.9) has the (negative) regularity of a GFF, and thus

all nonlinearities have to be interpreted in a suitable regularized or renormalized way.

Note that in (1.9), setting σ = 0 recovers the Ricci flow (1.3); setting λ = 0,

φ̃ = σ−1φ, starting from φ0 ≡ 0, and formally taking σ ↘ 0 (i.e., perturbation around the

constant flat solution) gives the SHE.

By formally taking time derivative on ωg = e2φω0, the evolution for the area form

ωg(t) is (again formally) given by

∂tωg(t) = 2�φ(t) ω0 − 2λ ωg(t) + 2σξg ωg(t) . (1.12)

Note that the r.h.s. has φ explicitly showing up. Heuristically this is understood as the

conformal factor φ and the area form ωg = e2φω0 mutually determine each other. The

precise meaning of this mutual determination is discussed below, see the “inversion”

property of GMC (as proved by [4]) in Section 1.1.
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6 J. Dubédat and H. Shen

In this article we will mainly focus on the dynamic (1.12) and prove Theorem 1.2,

which provides a meaning of solution to (1.12). We provide some background on

Gaussian multiplicative chaos (GMC) and LCFT below before formulating this main

theorem. However, let us immediately point out here a key new feature of the stochastic

flow—for the deterministic flow (1.1), as mentioned above, the total area of the surface

can be preserved by choosing the normalization λ to be the minus average Gauss

curvature, which, on the torus and by Gauss–Bonnet, is zero. This is not the case for

the stochastic flow; in fact the noise ξg is a local random perturbation, which has

no guarantee to preserve the total area as a global quantity. As we will see below

Theorem 1.2, on the torus the total area A satisfies an SDE dA = 2σ
√
Adβt−2λAdtwhere

β is a one-dimensional Brownian motion, and the total area will almost surely vanish

in finite time. Note that this a.s. finite time vanishing is not in contradiction with the

fact that the SRF is a Langevin flow for the LCFT measure because, as we will discuss

in Section 1.2, the LCFT measure being considered here is only a σ -finite measure, not

a probability measure that is, not normalizable. We will also describe the evolution

and long-time asymptotic of the total surface area in Section 4 for general compact

surfaces and with insertions of vertex operators, and their relation with Seiberg bound

for finiteness of Liouville correlation function.

1.1 Gaussian multiplicative chaos

The previous discussion suggests that we consider a process of measures ωg(t) =
e2φ(t)ω0, where φ looks like a GFF. Such GMC or Liouville measures have been studied

extensively, going back to Høegh–Krohn [37], Kahane [40]; we refer to the survey [55]

and the references therein. We list below some basic properties we will need later. We

focus on the GFF context relevant to us, although most properties below hold in greater

generality (log-correlated fields). See, for example, [21] and the references therein for

general background on the GFF.

Existence and construction.

Let X denote a GFF with Dirichlet conditions in a domain D ⊂ C; it is a centered

Gaussian field with covariance given by the Dirichlet Green function:

E(X(z)X(w)) = 2π(−�D)−1(z,w) = − log |z − w| + R(z,w)

where R is smooth near the diagonal. It is a random distribution (in the sense of

Schwartz) and can be realized as a random element of a negative index Sobolev space

H−s
loc(D), s > 0, in the abstract Wiener space formalism.
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Stochastic Ricci Flow on Compact Surfaces 7

For ε > 0 (and away from the boundary), one can consider the circle average

process Xε(z) = ∫
X(z+εeiθ ) dθ

2π
. This can be realized as a continuous process, as is easily

seen by Kolmogorov’s continuity criterion; each Xε is measurable w.r.t. X. Then one can

consider a positive measure on D

Mε(X) = ε
γ2

2 exp(γXε(x))ω0(dx) (1.13)

where γ is a positive parameter and ω0 is the Lebesgue measure.

Then [22], if 0 < γ < 2, the sequence (Mε) converges almost surely in the topology

of weak convergence to a positive measure MX , as ε goes to zero along a suitable fixed

sequence. The random measure MX can thus naturally be thought of as a regularized

:eγXω0:. It is nonatomic and gives a.s. positive mass to any nonempty open set, and a.s.

finite mass to any compact K ⊂ D; it is thus a random element of the space M(D) of

Radon measures on D.

It can be shown that MX is a.s. supported on {z ∈ D : limε↘0
Xε(z)− log |ε| = γ } and

consequently is a.s. absolutely singular w.r.t. Lebesgue measure.

If γ ∈ (0,
√
2) and f is a test function,

∫
fdMX is a square integrable; this is the

so-called L2 regime and leads to simpler arguments; however, the results below hold in

the full range γ ∈ (0, 2).

Other natural approximation schemes (convolution of X with the heat kernel, or

a smooth compactly supported kernel) are possible and consistent [59].

Basic properties.

A few important properties follow immediately from the construction.

1. Locality. If U ⊂⊂ V ⊂⊂ D, then the restriction of MX to U is measurable w.r.t.

the restriction of X to V (this refines the measurability of X �→ MX ).

2. Equivariance. With the previous notation, the mapping X|V �→ (MX)|U does

not depend on D and is equivariant w.r.t. Euclidean isometries.

3. Shift. If f ∈ C1
c (V) is fixed, dMf+X = eγ f dMX a.s. (note under these

assumptions, the law of f + X and that of X are mutually absolutely

continuous).

Note that shift covariance is central to the approach of [59]; the condition f ∈ C1
c can

be relaxed to f ∈ H1, which is the Cameron–Martin space. An important additional

property is scale (more generally, conformal) covariance.

Inversion. We previously listed properties of the mapping X �→ MX , which is defined

a.e. on an abstract Wiener space. It will be convenient for our purposes to consider the
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8 J. Dubédat and H. Shen

a.e. defined inverse map MX �→ X, constructed by Berestycki–Sheffield–Sun in [4]. More

precisely, if (X,MX) ∈ H−s
loc(D) × M(D) are coupled as above, then X is measurable w.r.t.

MX . This shows the existence of an a.e. inverse mapping MX �→ X, which is a.e. defined

(with respect to the induced measure on the 2nd marginal M(D)).

From the explicit construction of [4], it is clear that this inverse mapping is also

local, equivariant, and compatible with shift. We will denote byM the mapping X �→ MX ,

and M−1 the mapping MX �→ X.

Conventions.

In our “geometer’s convention” (coming from the Ricci flow) we would like to

consider a GFF φ with covariance operator σ2

2 (−�)−1; in order to match with the above

standard conventions for Liouville measures, let

φ = γ

2
X and σ = √

πγ , (1.14)

so that

e2φ = eγX .

With our convention, Mε = e2φε−2E(φ2
ε )ω0 converges to the limit denoted by M =

Mφ = :e2φω0:. The a.e. correspondence φ ↔ Mφ is local and equivariant in the previous

sense; the compatibility with shift simply reads

dMf+φ = e2f dMφ (1.15)

for a.e. φ, where f is a fixed H1 function.

Remark that the locality of the correspondence shows that it also holds for a

field φ on a surface whose restriction to small balls is absolutely continuous w.r.t. a

GFF there; in particular for φ a GFF on a flat torus.

The “L2 regime” such that M(f ) for a smooth test function f has finite 2nd

moment as well the “L1 regime” all the way to which M obtained this way is nontrivial

are respectively

σ < σL2 = √
2π σ < σL1 = 2

√
π

(which corresponds to the well-known γ < γL2 = √
2 and γ < γL1 = 2).

1.2 Liouville conformal field theory

Closely related with GMC is the LCFT measure on the space of fields X over a Riemann

surface with a fixed smooth reference metric g0 and volume form ω0, which is given by
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Stochastic Ricci Flow on Compact Surfaces 9

Z−1e−S(X)DX where

S(X) = 1

4π

∫ (
|∇X|2 + 2QK0X + 4πμeγX

)
ω0

where Z is a normalization factor, K0 is the Gauss curvature of g0. The measure (with

suitable insertions of vertex operators, see below) has been rigorously constructed by

[18] (on the sphere, see [41] for a review), and [19] on the complex tori, and [32] (genus

≥ 2); see also [39] (on disk) and [54] (on annulus). The parameter μ > 0 is the analogue

of a “cosmological constant” in two-dimensional gravity and Q is a real parameter. For

the particular value Q = 2
γ
the action functional S is classically conformally covariant.

In the quantized theory Q has the renormalized value Q = 2
γ

+ γ
2 such that the random

measure :eγX : is invariant in law under change of reference measure (within a conformal

class). Note that if we focus on a torus  with flat metric g0 then the necessary

correction term 2QK0X is hidden.

We remark that when the genus g ≤ 1, the measure e−S(X)DX is not really

normalizable (i.e., Z is not well defined) since the integral will diverge as the value of X

tends to −∞, unless suitable vertex operators (see below) are inserted. However, in this

paper where we work with torus g = 1, we will not consider insertions and thus will

not normalize the measure. Rather, we will view it as a σ -finite measure, see (2.32) and

Lemma 2.5 below.

Conventions.

The action S(g0,φ) in (1.5) and the SRF (1.9) depends on two parameters (λ, σ),

and the standard conventions for the LCFT action S(X) in the probability literature

depend on two parameters (μ, γ ). To match the two conventions

(φ, λ, σ) ↔ (X,μ, γ )

besides the relations (1.14), we further set λ = πμγ 2, and we summarize all these

relations here:

φ = γ

2
X , σ = √

πγ , λ = πμγ 2 . (1.16)

In this way we have

πγ 2

2
· 1

4π

∫



(
|∇X|2 + 2K0QX + 4πμeγX

)
ω0 =

∫



(1
2

|∇φ|2 + K0φ + λ

2
e2φ

)
ω0 (1.17)

where Q = 2

γ
.
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10 J. Dubédat and H. Shen

Insertions and Seiberg bounds.

As mentioned above, of great interest in LCFT is the insertions of vertex

operators

Z−1
∫ n∏

i=1

:eαiX(xi): e−S(X)DX

for n fixed points xi on the Riemann surface and n real parameters αi satisfying the so-

called Seiberg bounds:
∑n

i=1 αi > 2Q and αi < Q for each i. The corresponding stochastic

dynamic—by a similar calculation as in the proof of Theorem 2.6 and similar argument

as in Remark 3.5—would be a formal equation of the following form

∂tg = −2Rg − 2λg + 2σξgg +
n∑

i=1

αiδxi ,

where each δxi is a Dirac mass at xi; or formally in terms of the area form

∂tωg(t) = 2�φ(t) ω0 − 2λ ωg(t) + 2σξg ωg(t) +
n∑

i=1

αiδxi . (1.18)

When σ = 0 (deterministic case) such equations appear in the context of metrics with

conical singularities (see for instance [52]); see Section 4.2 for further discussions.

Langevin dynamic/stochastic quantization.

The dynamic (1.9) is expected to be symmetric with respect to the measure

induced by LCFT (1.17), see Section 3.2, as consistent with our motivation that the

dynamic (1.9) is viewed as the Langevin dynamic (1.7) of the LCFT. As in our proof,

the symmetry of the dynamic (1.9) with respect to LCFT comes from the Dirichlet form

theory, and in particular, by [25,Eq. (4.7.5)–(4.7.6)] if one further has that the Dirichlet

form is conservative (namely the associated Markovian semigroup Tt has Tt1 = 1 a.e.)

then the dynamic (1.9) is stationary and has the LCFT as an invariant measure. We will

discuss in Section 3 and Section 4 if the process is conservative or absorbed to zero

under different conditions.

Constructing Langevin flows in the sense of (1.7) for quantum field theory

measures is also generally referred to as Parisi–Wu stochastic quantization [51] and

has drawn much attention in the recent years: see, for example, [10, 33, 42] for the �4
3

model, [13, 35] for sine-Gordon model, [7, 34] for the loop measure on manifolds, [11] for

2-dimensional Yang–Mills model, and many other references therein. In particular, we
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Stochastic Ricci Flow on Compact Surfaces 11

remark that [27] recently also studied a (different) Langevin flow for Liouville conformal

theory: note that the gradient flow of S(g0,φ) with respect to the “flat” metric L2(ω0)

would be

∂tφ = �φ − K0 − λe2φ , (1.19)

and a stochastic version of this equation (namely, this equation plus the space-time

white noise with respect to the flat metric) was studied in [27] and is called “dynamical

Liouville equation”; this is pursued later by [38, 47]. We also remark that the significance

of choosing a nontrivial metric (the g in (1.7)), which is used to determine the gradient

and the noise, is also observed in other contexts. For instance, in aforementioned [7,

34], one considers the space of all loops in a Riemannian manifold M, and at each given

loop u : S1 → M, an inner product on the “tangent space” at u is defined in terms of the

Riemannian metric of M at all the points u(x), see for example, [34,Sec. 1.1], and that

yields a particular case of the Eells–Sampson Laplacian [23] appearing in the study of

harmonic mappings in geometry (except loops are one-dimensional while in geometry

harmonic mappings are of more interest in higher dimensions), and a noise compatible

with this metric. Similarly in Yang–Mills model [11], the gradient and noise need to

respect the inner product one chooses on the Lie algebra.

1.3 Main result

Our main result is a construction of weak solution to the equation (1.12) for the area

measure ω. First, we need to formulate a notion of weak solution. By the calculation

(1.8), we expect that given a suitable test function f , one should have the following one-

dimensional projected stochastic equation

d
∫



f ωg = 2
(∫



f�φω0 − λ

∫


f ωg

)
dt + 2σ

(∫


f 2ωg

) 1
2

dβt . (1.20)

Here (βt) is a one-dimensional standard Brownian motion.

To formulate our result, letM1() be the space of Borel probability measures on

 andM() be the space of finite positive Borel measures, equipped with the metrizable

topology of weak (vague) convergence. Let

X := M() \ {0} .

For A ∈ X and a function f on  we write by A(f ) the integral of f with respect

to the measure A. We write A() = A(1). Note that X is locally compact and X is

homeomorphic toM1()× (0,∞) via A �→ (A/V,V), where V = A() is the total measure
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12 J. Dubédat and H. Shen

of the torus  under the measure A ∈ X . For an area form ω we view it as a measure and

write ω(f ) := ∫
fω.

With X as our state space, we write X∂ = X ∪ {∂} (where the extra point ∂ is the

“cemetery” state); and we call a quadruple {�,F , (At)t≥0, (Pz)z∈X } a Markov process on

X with time parameter [0,∞) if {�,F , (At)t≥0, (Pz)z∈X } is a Markov process with state

space X∂ for each x ∈ X∂ , Px(At ∈ E) is measurable in x ∈ X for every t ≥ 0 and every

Borel set E ⊂ X , P∂ (Xt = ∂) = 1 for all t ≥ 0 and finally Px(X0 = x) = 1 for all x ∈ X .

Theorem 1.2. For σ < σL1 = 2
√

π , there exists a Markov diffusion process A =
{�,F , (At)t≥0, (Pz)z∈X } on the space X , such that for any smooth function f and quasi-

every z ∈ X , At(f ) satisfies the following SDE:

dAt(f ) = 2
(
ω0(f�φt) − λAt(f )

)
dt + 2σ

(
At(f

2)
) 1

2
dβ

f
t , A0(f ) = z(f ) , (1.21)

where ∀t > 0, φt = M−1At a.s. and βf is a one-dimensional standard Brownian motion.

In the theorem, quasi-everywhere refers to the Dirichlet form and in particular

implies m-almost everywhere, where m is the law of a GMC (a measure on X ). Moreover

for t > 0 and q.e. z the law of At under Pz is absolutely continuous w.r.t. m (see

Section 3.2). Remark that φt only appears through

At(f ) − A0(f ) = 2
∫ t

0

∫


f�φtω0dt + · · ·

in (1.21) (written here in integral form), so that it is enough to have it defined for

(Lebesgue) almost every t (see the discussion at the end of the proof of Lemma 3.14).

We say that a Markov process A = {�,F , (At)t≥0, (Pz)z∈X } on the space X is a

weak solution to the equation (1.12) if for any smooth function f and quasi-every z ∈ X ,

At(f ) satisfies the SDE (1.21). Theorem 1.2 thus states the existence of a weak solution

to (1.12).

An immediate consequence of the theorem is that the total area At(1) satisfies a

stochastic ordinary differential equation:

dAt(1) = 2σ
√
At(1)dβt − 2λAt(1)dt

and therefore (see Corollary 3.15 below) the process At(1) is a.s. absorbed at 0 in finite

time.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab015/6231720 by U

niversity of W
isconsin-M

adison Libraries user on 15 M
ay 2022



Stochastic Ricci Flow on Compact Surfaces 13

Remark 1.3. A next goal would be to construct a (coupled) process (φt,At) where

the component φ takes values in the space of Schwartz distributions H−ε() and the

component A takes values in the space of Borel measures, such that for each t > 0, φt is

absolutely continuous w.r.t. the GFF, and the process (At) is such that At = :e2φtω0: with

the one-dimensional projection (1.20). See Section 5 for further discussions.

We will construct a weak solution using the theory of infinite-dimensional

Dirichlet forms. This is a general machinery to construct weak solutions of stochastic

equations, which have explicit invariant (or at least symmetrizing) measures. We will

frequently refer to the book [25] when implementing this formalism. Among many

applications of Dirichlet forms in constructing weak solutions of stochastic equations,

we mention several very recent ones that are to some extent related with our problem.

In the context of stochastic quantization, for the theory of Dirichlet forms is recently

applied to the �4 model in three space dimensions by [58, 61], see [62] for a survey of

these results (earlier result on this model in two space dimensions was obtained by [1]).

Another instance of stochastic version of a geometric flow by [14, 57] who considered

a manifold-valued SHEs (and the strong solution has been also constructed, by [7]). We

also remark that the theory of Dirichlet forms was also recently exploited in the study

of Liouville Brownian motions [28, 29, 45], which is closely related with the Liouville

measure we are concerned in this paper.

Remark 1.4. In our notation, ωg = e2φω0 refers to the area form if φ is smooth or the

“formal” area form if φ is rough. Mφ refers to the renormalized area form, that is, GMC.

Finally we will often denote a generic element in X by the notation A.

2 Integration by Parts

A key step of implementing the machinery of Dirichlet forms is a proof of an integration-

by-parts formula. At first glance the form of integration-by-parts formulas we will

provide below (with respect to both a GFF measure μ and an LCFT measure ν) is similar

to [2, Theorem 5.3]; we quickly summarize the setup in the latter case in Lemma 2.1

below. But the main difference comparing with our case is that the functional therein

is assumed to be “cylindrical” (or so-called “finite-dimensional base” therein), that is,

of the form G(φ) = q(
∫
f1φω0, . . . ,

∫
fkφω0). The Gaussian integration-by-parts formula

for such cylindrical functionals (see [2, Lemma 5.2 and (5.23)]) boils down to finite-

dimensional Gaussian integration by parts essentially because
∫
fiφω0 are Gaussian.

For our problem, however, we need to consider a different class of functionals (see

Definition 2.2 below), tailored to this specific situation. The proof of integration by
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14 J. Dubédat and H. Shen

parts is based on shift covariance of Liouville measure together with the Cameron–

Martin formula.

Denote by Hγ = Hγ ,2() the Sobolev Hilbert space. In the sequel we write � :=
H−ε where ε is a fixed, small positive real number. A general element φ ∈ � can be

uniquely decomposed as φ = m+φ0, with φ0 zero mean andm ∈ R. We have the measure

on �

dμ̂(φ) = dm ⊗ dμ(φ0)

where dm is the Lebesgue measure on R and μ = μσ is the GFF probability measure

on zero-mean fields, for the covariance operator σ2

2 (−�)−1 (where (−�)−1 denotes the

zero-mean Green kernel); σ < 2
√

π is fixed. The σ -finite measure dm ⊗ dμ(φ0) is (up to

multiplicative constant) the natural interpretation of the path integral measure

e−σ−2 ∫
 |∇φ|2ω0Dφ . (2.20)

Denote by H = H1() the Cameron–Martin space. For any A ∈ X , we denote by

L2(A) the L2 space with underlying measure A on . Recall that smooth functions are

dense in L2(A), which is separable.

Recall that for any vector space �, a function G on (generally an open set of) �,

and elements φ,h ∈ �, we call DhG(φ) the Fréchet derivative (Also called the Gateaux

directional derivative.) of G in the direction h at φ if the limit DhG(φ) = limt→0
1
t (G(φ +

th) − G(φ)) exists. Here, we have implicitly identified the tangent space of the domain

of G at φ with the vector space � itself (they share the same linear structure so that we

can simply add φ with a “tangent vector” th); however, as we discuss gradients of G, an

inner product needs to be specified on the tangent space at each φ. Given such an inner

product 〈 , 〉 at each point φ, the 〈 , 〉-gradient DG(φ) is then defined by the element in �

such that 〈DG(φ),h〉 = DhG(φ), as long as such an element exists. As we will see below,

the particular choice of this inner product will play an important role.

We start by recalling the classical results on gradients of test functionals and

integration by parts for the GFF as in [2] for the sake of comparison, without proof.

Lemma 2.1. (The “classical” case.) Let G(φ) = q(
∫
f1φω0, . . . ,

∫
fkφω0) where q : Rk → R

is a compactly supported C2 function and the fi’s are inH−1. ThenG has bounded Fréchet

derivative in Cameron-Martin directions and one has

DhG(φ) =
k∑

i=1

∂iq
( ∫

f1φω0, . . . ,
∫

fkφω0

)
·
∫

(fih)ω0 (2.21)
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Stochastic Ricci Flow on Compact Surfaces 15

for any Cameron–Martin direction h ∈ H. The L2(ω0)-gradient of G is characterized by

〈DG(φ),h〉L2(ω0)
= DhG(φ) for all h ∈ H1 a.s. and is given by

DG(φ) =
k∑

i=1

∂iq
( ∫

f1φω0, . . . ,
∫

fkφω0

)
fi. (2.22)

For such functionals G, we have the following Gaussian integration by parts:

σ 2

2

∫
DhG(φ)μ̂(dφ) =

∫
G(φ)〈∇h,∇φ〉μ̂(dφ) (2.23)

where dμ̂(φ) = dm ⊗ dμ(φ0) as defined above.

As usual, 〈∇h,∇φ〉 is defined everywhere if h ∈ H2+ε and a.e. (via Paley–Wiener)

if h ∈ H1.

2.1 Test functionals

We now define a class C of test functionals on � suitable for our purposes. To this end

we recall the GMC mapping

� −→ X

φ �−→ Mφ = :e2φω0:

which is defined μ̂-almost everywhere, see Section 1.1.

Definition 2.2. Let C̃ be the space of functionals on � of the form

G(φ) = q(Mφ(f0),Mφ(f1), . . . ,Mφ(fk)) forφ ∈ � (2.24)

such that q : Rk+1 → R is a C2 function and fi are smooth functions with f0 ≡ 1.

Let C ⊂ C̃ be the space of functionals G ∈ C̃ on � such that there exists a

compactly supported q : Rk+1 → R that is,

Supp(q) ⊂ (ε, ε−1) × Q (for someε ∈ (0, 1) andQ ⊂ R
k compact) (2.25)

so that G is of the form (2.25). In particular, elements of C are bounded.

We now compute Fréchet derivatives and gradient of functionals in C̃. Denote by

C0() the space of continuous functions on .

Lemma 2.3. Let G ∈ C̃ be of the form (2.25). Then G has the Fréchet derivative

DhG(φ) = 2
k∑

i=0

∂iq(Mφ(f0), . . . ,Mφ(fk)) · Mφ(fih) (2.26)

for any h ∈ C0() ∩ H. In particular DhMφ(f ) = 2Mφ(fh).
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16 J. Dubédat and H. Shen

The L2(Mφ)-gradient of G is characterized by

〈DG(φ),h〉L2(Mφ) = DhG(φ) (2.27)

μ̂-a.e. for any h ∈ C0() ∩ H and is given by

DG(φ) = 2
k∑

i=0

∂iq(Mφ(f0), . . . ,Mφ(fk)) fi. (2.28)

Finally, if we further have G ∈ C, then the Fréchet derivative DhG is bounded for all

φ ∈ �.

Proof. We first remark that for a fixed φ, Mφ(fih) < ∞ so that the right-hand side of

(2.26) is well defined. This is because fi and h are continuous on  thus bounded, and

Mφ is finite.

By the shift property (1.15),

Mφ+th(f ) = (
e2t·hMφ

)
(f ) =

∫


f (x)e2t·h(x)Mφ(dx) a.e.

for any h ∈ H. One then has

G(φ + th) − G(φ) = q
((
e2t·hMφ

)
(f1), . . . ,

(
e2t·hMφ

)
(fk)

)
− q(Mφ(f1), . . . ,Mφ(fk))

=
k∑

i=1

q
(
Mφ(f1), . . . ,Mφ(fi−1),

(
e2t·hMφ

)
(fi), . . . ,

(
e2t·hMφ

)
(fk)

)

− q
(
Mφ(f1), . . . ,Mφ(fi),

(
e2t·hMφ

)
(fi+1), . . . ,

(
e2t·hMφ

)
(fk)

)

= t ·
k∑

i=1

∂iq
(
Mφ(f1), . . . ,Mφ(fi−1),

(
e2t�·hMφ

)
(fi), . . . ,

(
e2t·hMφ

)
(fk)

)

· d

dt

∣∣∣
t=t�

∫


fi(x)e2t·h(x)Mφ(dx)

for some t� ∈ [0, t]. By the aforementioned boundedness of h we can bound e2t·h(x) by a

constant, and thus by dominated convergence theorem one has that d
dt

∣∣∣
t=0

G(φ + th) is

equal to the right-hand side of (2.26).

Once we have the Fréchet derivatives DhG, the gradient DG then exists and is

unique by Riesz representation theorem, since the space C0() ∩ H is dense in L2(Mφ).
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Stochastic Ricci Flow on Compact Surfaces 17

Indeed, the GMC measure Mφ is a Radon measure that is inner and outer regular, so

for any Borel set A ⊂  there exist an open set U and a compact set K such that

K ⊂ A ⊂ U and Mφ(U\K) is arbitrarily small, then by Urysohn’s lemma one obtains a

continuous function that is supported on U and equal to 1 on K, thus approximates the

characteristic function of A in the L2(Mφ) topology. The simple functions, namely linear

combinations of the characteristic functions, are then dense in L2(Mφ) by construction

of integrals with respect to the GMC Mφ .

Regarding the identity (2.28), with DG in (2.28) one can immediately check that

Mφ(h · DG) = DhG ,

namely (2.27) holds.

If G ∈ C, DhG is bounded. In fact, since fi,h are continuous, |Mφ(fih)| ≤ CMφ(1);

and by the fact that ∂iq = 0 when Mφ(1) /∈ (ε, ε−1), one obtains the boundedness of

∂iq(Mφ(1),Mφ(f1), . . . ,Mφ(fk))Mφ(1) .

�

Obviously, DhG and DG do not depend on the representation (2.24), namely if

G(φ) is equal to q̃(Mφ(f̃0), · · · ,Mφ(f̃�)) for some other functions q̃ and {f̃1, · · · , f̃�} and � ≥
0, then the right-hand side of (2.26) or (2.28) with q and {f1, · · · , fk} replaced by q̃ and

{f̃1, · · · , f̃�} remains identical. Indeed we showed that DhG = limt↘0
G(φ+th)−G(φ)

t a.e., and

DG is characterized by the DhG’s.

We also note that the Leibniz rule holds:

Dh(GH) = (DhG)H + G(DhH) ∀ G,H ∈ C̃ . (2.29)

Indeed, for G(φ) = q(Mφ(f1), · · · ,Mφ(fk)) and H(φ) = p(Mφ(g1), · · · ,Mφ(g�)), we

have (GH)(φ) = r(Mφ(f1), · · · ,Mφ(fk),Mφ(g1), · · · ,Mφ(g�)) where r(x1, · · · , y�) equals

q(x1, · · · , xk)p(y1, · · · , y�). So by the formula (2.26) we have that Dh(GH)(φ) equals

2
∑k

i=1 ∂xir · Mφ(fih) + 2
∑�

j=1 ∂yjr · Mφ(gjh), which is equal to the right-hand side of

(2.29).

2.2 Proof of integration by parts

Lemma 2.4. Let μ be the law of a mean zero GFF φ0 on , with covariance operator
σ2

2 (−�)−1, φ = φ0 + m, and dμ̂(φ) = dm ⊗ dμ(φ0). Then we have the following Gaussian
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18 J. Dubédat and H. Shen

integration by parts:

σ 2

2

∫
DhG(φ)μ̂(dφ) =

∫
G(φ)〈∇h,∇φ〉μ̂(dφ) , ∀G ∈ C (2.30)

and Dh is the Fréchet derivative in the Cameron–Martin direction h ∈ C0() ∩ H.

Proof. By boundedness of DhG from Lemma 2.3 and boundedness of G by definition,

both sides of (2.30) are welldefined. Recall that H = H1 is the Cameron–Martin Hilbert

space, endowed with 〈·, ·〉H . For h ∈ H with mean zero and t ∈ R, one has the Cameron–

Martin formula

dTth∗ μ

dμ
= exp

(
t〈φ0,h〉H − t2

2
‖h‖2H

)

where Tth∗ μ denotes the push-forward measure of μ in the direction th. Let G be as

assumed above. One then has

∫
R

∫
G(m + φ0 + th)μ(dφ0)dm (2.31)

=
∫
R

∫
G(m + φ0) exp

( 2

σ 2 t〈φ0,h〉H − t2

σ 2 ‖h‖2H
)
μ(dφ0)dm .

Since 〈φ0,h〉H = ∫ ∇h · ∇φ0 = 〈φ,h〉H , it remains to differentiate the above identity in t at

t = 0 using dominated convergence theorem.

Again since G has bounded Fréchet derivative by Lemma 2.3, we have that

differentiating the l.h.s. of (2.31) w.r.t. t at t = 0 using dominated convergence yields

l.h.s. of (2.30).

For the r.h.s. of (2.31), for sufficiently small t > 0 one has

∣∣∣ d
dt

exp
(
t〈φ0,h〉H − t2

2
‖h‖2H

)∣∣∣ =
∣∣∣〈φ0,h〉H − t‖h‖2H

∣∣∣ exp (
t〈φ0,h〉H − t2

2
‖h‖2H

)
≤ C exp

(
a
∣∣∣〈φ0,h〉H

∣∣∣)

for some constants a,C > 0.

By (2.34) in Lemma 2.5 and boundedness of G, one has that

G(m + φ0) · exp
(
a
∣∣∣〈φ0,h〉H

∣∣∣)
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Stochastic Ricci Flow on Compact Surfaces 19

is μ̂ (namely m ⊗ μ)-integrable over fields such that Mφ() ∈ [ε, ε−1], where ε is the

constant arising from the specification of the support in the 1st coordinate of G,

see (2.25). For Mφ() /∈ [ε, ε−1], G(m + φ0) simply vanishes by assumption. Therefore

dominated convergence applies and the derivative of the r.h.s. of (2.31) w.r.t. t at t = 0 is

∫
R

∫
G(φ0 + m)〈∇h,∇φ0〉μ(dφ0)dm .

This is the r.h.s. of (2.30). We thus showed that (2.30) holds if h has mean zero. If h is

constant, both sides of (2.30) are zero (by translation invariance of dm); this concludes

by linearity. �

Let ν be the LCFT measure on H−ε given by (recall the conventions about the

parameters (1.16))

dν(φ) = exp
(

− λ

σ 2Mφ()
)
dm ⊗ dμ(φ0) (2.32)

where φ = m + φ0. The LCFT measure ν has been rigorously constructed by [19,

32] with suitable insertions of vertex operators. Without insertions on the torus ν

is not normalizable because the integral of ν would diverge as φ → −∞ (so that

Mφ() → 0). Here we do not consider insertions but instead we verify that ν is σ -finite,

see Lemma 2.5.

We start with a basic integrability result. Recall that ν depends on the parame-

ters σ < σL1 and λ > 0.

Lemma 2.5. ν is σ -finite; more precisely, for any ε ∈ (0, 1),

ν({φ : ε < Mφ() < ε−1}) < ∞ .

Moreover, for f ∈ H,

φ �→ 〈f ,�φ〉1[ε,ε−1](Mφ()) (2.33)

is in Lp(μ̂) and Lp(ν) for all p ∈ [1,∞), and for a > 0

φ �→ exp
(
a
∣∣〈φ0, f 〉H

∣∣)1[ε,ε−1](Mφ()) (2.34)

is integrable with respect to μ̂ and ν.
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20 J. Dubédat and H. Shen

Proof. Note that the Gaussian measure μ on zero-mean fields {φ0} on the torus is a

probability measure. By the shift property of the GMC, we have∫ ∞

−∞

∫
�

1ε<Mφ()<ε−1dμ(φ0)dm =
∫ ∞

−∞

∫
�

1εe−2m<Mφ0 ()<ε−1e−2mdμ(φ0)dm

≤
∞∑

k=−∞

∫ (k+1)| log ε|

k| log ε|
μ

(
{ε2k+3 < Mφ0

() < ε2k−1}
)
dm

≤ C′
∞∑

k=−∞
μ

(
{ε4k+3 < Mφ0

() < ε4k−1}
)

≤ C < ∞

where the constants C′,C depend on ε. Here note that for the intervals (ε2k+3, ε2k−1) ⊂
(0,∞) in the 2nd line only two adjacent intervals overlap, and in the last step the

intervals (ε4k+3, ε4k−1) ⊂ (0,∞) are non-overlapping so that we can make use of the

fact that μ is a finite measure. This shows that

μ̂({φ : ε < Mφ() < ε−1}) ≤ C .

Together with exp
(

− λ
σ2Mφ()

)
≤ 1 this gives the 1st claim.

From Proposition 3.5 and 3.6 in [56] we have the following positive and negative

moment estimates for the total mass of a GMC:

∫
�

(Mφ0
())pdμ(φ0) < ∞

for all p < 0 and for some p = p(σ ) > 1. In particular, by Markov’s inequality, for x large,

μ({Mφ0
() ≥ x}) = O(x−1), μ({Mφ0

() ≤ x−1}) = O(x−1) .

For f ∈ H, 〈f ,�φ〉 = 〈f ,�φ0〉 is Gaussian and hence has moments of all orders (under μ).

Then

∫ ∞

−∞

∫
�

|〈f ,�φ〉|p1[ε,ε−1](Mφ())dmdμ(φ0) (2.35)

≤
∞∑

k=−∞

∫ (k+1)| log ε|

k| log ε|

∫
�

|〈f ,�φ〉|p1[ε3+2k,ε2k−1](Mφ0
())dmdμ(φ0)

≤ C
∞∑

k=−∞

∥∥|〈f ,�φ0〉|p
∥∥
L2(μ)

(
μ{ε3+2k < Mφ0

() < ε2k−1}
)1/2

< ∞
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Stochastic Ricci Flow on Compact Surfaces 21

by Cauchy–Schwarz and the previous estimate.

The last statement (2.34) is proved in the same way given that 〈φ0, f 〉H is centered

Gaussian random variable with variance ‖f ‖2H , so that

‖ea|〈φ0,f 〉H |‖L2(μ) ≤ ‖ea〈φ0,f 〉H‖L2(μ) + ‖e−a〈φ0,f 〉H‖L2(μ) = 2ea
2‖f ‖2H < ∞ .

The estimate (2.35) with
∥∥|〈f ,�φ0〉|p

∥∥
L2(μ)

replaced by ‖ea|〈φ0,f 〉H |‖L2(μ) then shows that

ea|〈φ0,f 〉H |1[ε,ε−1](Mφ()) is integrable for a > 0 with respect to the Gaussian measure μ̂

and thus also ν. �

Theorem 2.6. (Integration by parts for LCFT ν) For any G ∈ C and h ∈ C0() ∩ H∫
G(φ)〈∇φ,∇h〉dν(φ) =

∫ (
σ 2

2
DhG(φ) − λG(φ)Mφ(h)

)
dν(φ) . (2.36)

Proof. We first remark that all the three terms in (2.36) are ν-integrable. Indeed, the

left-hand side of (2.36) is finite, since by the assumption (2.25) one can bound G by a

constant times 1[ε,ε−1](Mφ(1)), and then we apply the integrability of (2.33) in Lemma 2.5.

Regarding the right-hand side of (2.36), by the formula (2.26) and the assumption (2.25)

we can bound DhG by Cε−11[ε,ε−1](Mφ(1)) for some constant C > 0, which is again inte-

grable by Lemma 2.5. The same bound holds for λG(φ)Mφ(h) and thus is integrable too.

To prove (2.36), note that the left-hand side of (2.36) equals

∫
G(φ)〈∇φ,∇h〉e− λ

σ2
Mφ(1)dμ̂(φ) = σ 2

2

∫
Dh

(
G(φ)e− λ

σ2
Mφ(1)

)
dμ̂(φ) (2.37)

where we applied Lemma 2.4 to the functional G(φ)e− λ

σ2
Mφ(1) ∈ C.

By Lemma 2.3

Dhe
− λ

σ2
Mφ(1) = −2λ

σ 2Mφ(h)e− λ

σ2
Mφ(1) . (2.38)

Invoking this in (2.37) and applying (2.29) we obtain the right-hand side of (2.36). �

3 Solution via Dirichlet forms

The theory of Dirichlet forms is a general framework for constructing solutions to

stochastic differential equations. For convenience of readers from different back-

grounds, we briefly recall the key notions in this theory. In general, given a real Hilbert

space (H, 〈 , 〉H), which we always think of as a space of the form L2(X,m) for some σ -

finite measure space (X,m), a non-negative definite symmetric bilinear form E defined

on a dense set D[E ] of H is called a symmetric form on H. An inner product can be
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defined on the domain D[E ] so that D[E ] becomes a pre-Hilbert space: indeed, for each

α > 0, Eα(u,v) := E(u,v) + α〈u,v〉H defined on D[E ] is again a symmetric form, and this

gives a metric (which is equivalent for different α > 0) (We note that in general, D[E ] is
not even a pre-Hilbert space with respect to E i.e., Eα with α = 0).).

A symmetric form is called closed if D[E ] is complete with respect to this metric

(i.e., Cauchy sequences converge in D[E ] under this metric), namely, D[E ] is actually

Hilbert. A Dirichlet form, by definition, is then a symmetric form that is Markovian

and closed. We often call (E ,D[E ]) a “Dirichlet space.”

Given a symmetric form E , and “extension” of E is just another symmetric form

whose domain contains D[E ], and restricting to D[E ] the two symmetric forms are

identical. A symmetric form E having a closed extension is equivalent with saying that

E is closable. We refer to [25, Section 1.1] for more discussion of these notions.

In a nutshell, the link connecting the theory of Dirichlet forms with Markov

processes is that there is a one-to-one correspondence between the family of closed

symmetric forms on H and the family of non-positive definite self-adjoint operators A

(serving as generators of the processes) on H, given by E(u,v) = 〈√−Au,
√−Av〉H . The

standard notions in stochastic processes, such as the family of strongly continuous

semigroups, and the family of strongly continuous resolvents, are then also in one-to-

one correspondences with this family of generators. Markovian property of forms is

shown to be equivalent to the Markovian properties of the associated semigroups and

resolvents.

The main result in the theory of Dirichlet forms states that as long as a given

Dirichlet form E is “regular” (namely it has a “core” that is by definition a subset C of

D[E ]∩C(X) such that C is dense inD[E ] with norm Eα and dense in the space of continuous

functions C(X) with uniform norm), then there exists an m-symmetric Markov process

on X whose associated Dirichlet form (in the sense of the above correspondence) is E ; in
particular it is a stationary process with respect to m. Of course, a Markov process

associated with E would not be very interesting unless it has certain sample paths

regularity; in this context, the process given by the theory will be a “Hunt process,”

which is strong Markov, right-continuous, and quasi-left continuous. An introduction to

Hunt processes is given in the appendix of [25]. Finally, to view this process as a solution

to the given stochastic differential equation, one needs a type of semi-martingale

decomposition, in this context called Fukushima decomposition, which identifies the

drift term and martingale/noise term in the given equation.

This concludes a brief sketch of the theory, and we will provide more precise

references when using the above results. To summarize, the construction of the weak
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solution via Dirichlet forms consists of three steps. 1. Showing closability of the

Dirichlet form (Here are below, we sometimes slightly abuse the terminology by saying

“closability of the Dirichlet form” for “closability of the symmetric form whose closed

extension is thus a Dirichlet form”.); 2. Proving existence of Hunt process associated to

the Dirichlet form; 3. Proving the process solves the equation in certain sense.

Recall from Section 1.1 that there is an a.e. correspondence φ ↔ Mφ . We denote

by m the image measure of the LCFT measure ν by the measurable map M

� → X (3.1)

φ �→ M(φ) = Mφ .

Then m = M∗ν is a Radon measure on X , see Lemma 2.5. We denote by L2(X ,m) the

Hilbert space of square integrable m-measurable functions on X . We denote by M−1 an

a.e. inverse measurable map to M. The spaces L2(X ,m) and L2(�, ν) are isometric under

the pull back map M∗ = (M−1)∗.
Recall that X is locally compact while � is merely Polish.

We will first introduce a form on �, and then, induce a form on X . To this end

we define the following class of test functions CX on X : CX consists of test functionals

F : X → R such that F(A) = q(
∫
f0dA, . . . ,

∫
fkdA) for some smooth functions f0, . . . , fk ∈

C∞() and some function q as in Definition 2.2 and satisfying (2.25).

Let C0(X ) be the space of compactly supported continuous functions on X with

uniform norm.

Lemma 3.1. CX is dense in C0(X ), and is dense in L2(X ,m). The space C is dense in

L2(�, ν).

Proof. To prove that CX is dense in C0(X ), by the Stone–Weierstrass theorem for locally

compact spaces, it suffices to prove that CX is an algebra of functions, which separates

points in X and vanishes nowhere. CX is clearly an algebra and it vanishes nowhere:

indeed for any M ∈ X , recalling that X � M1() × (0,∞) one has M(1) = M() ∈ (0,∞)

so F(M) := q(M(1)) ∈ CX is not equal to 0 for any function q that does not vanish at

M(1). It is also clear that CX separates points in X : indeed, for M1 �= M2 ∈ X , there

must exist f smooth such that M1(f ) �= M2(f ), thus F(M) := q(M(1),M(f )) ∈ CX with

this function f separates M1 and M2 for any choice of function q which takes different

values at (M1(1),M1(f )) and (M2(1),M2(f )).

Since m is a Radon measure on X , by the same argument as in the proof of

Lemma 2.3, namely using inner and outer regularities of m with Urysohn’s lemma, one

has that C0(X ) is dense in L2(X ,m).
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24 J. Dubédat and H. Shen

The fact that C is dense in L2(�, ν) follows immediately due to the aforemen-

tioned isometry. �

Clearly CX ⊂ Lp(m) for all p < ∞ by Lemma 2.5. Moreover, if F ∈ CX , then

F̃ = F ◦ M is in C.

3.1 Closability of the Dirichlet form

Definition 3.2. For F(φ) = q(Mφ(f1), . . . ,Mφ(fk)) ∈ C =: D(L), we define

LF(φ) := 2
k∑

i=1

∂iq ·
(
〈fi,�φ〉 − λMφ(fi)

)
+ 2σ 2

k∑
i,j=1

∂2ijq · Mφ(fifj) (3.2)

where ∂iq and ∂2ijq are evaluated at (Mφ(f1), . . . ,Mφ(fk)).

Here LF is defined μ- (equivalently, ν-) almost everywhere. Recall that φ �→
〈f ,�φ〉 = 〈�f ,φ〉 is continuous on the abstract Wiener space if f is regular enough (e.g.,

if f is C3).

Definition 3.3. For F,G ∈ C we define a bilinear form

E(F,G) :=
∫

F(φ)(−LG(φ))dν(φ) . (3.3)

Lemma 3.4. We have

E(F,G) = 1

2

∫
〈DF(φ),DG(φ)〉L2(Mφ)dν(φ) . (3.4)

In particular, E is symmetric and positive semidefinite on D(L)2.

Remark 3.5. Taking F ≡ 1 in (3.3) we have DF = 0, and by Lemma 3.4 one has∫
LG(φ)dν(φ) = 0 for any G ∈ C.

Remark 3.6. Lemma 2.3 and Lemma 3.4 together implies that E(F,G) defined in (3.3)

does not depend on the representation of F,G in the form (2.24). Moreover, since C is

dense in L2(ν) by Lemma 3.1, it follows that LF = LF̃ ν-a.e. if F = F̃ ν-a.e., that is, LF
uniquely depends on F and not on any particular choice of q, f1, . . . , fk. Also, note that L
is linear on the domain D(L). Indeed, for

F(φ) = p(Mφ(f1), . . . ,Mφ(fk)) and G(φ) = q(Mφ(fk+1), . . . ,Mφ(fn)),
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a linear combination has the form (aF + bG)(φ) = r(Mφ(f1), . . . ,Mφ(fn)) where ∂2ijr = 0

unless {i, j} ⊂ {1, · · · , k} or {i, j} ⊂ {k + 1, · · · ,n}; this together with the independence of

LF on the representation of F implies linearity of L.

Remark 3.7. Note that the E in (3.4) has a novel form, in the sense that the L2 product

in (3.4), as well as the notion of gradient (2.27), depend on the GMC measure Mφ . To

compare with the earlier work, for instance [1], one usually has a fixed Hilbert space

(H, 〈, 〉H) and consider forms such as 1
2

∫ 〈A(φ)DF(φ),DG(φ)〉Hdν(φ) where A(φ) is some

bounded linear operator on H. In our case since Mφ does not have a density with respect

to a fixed measure (such as Lebesgue meaure), our form E does not fit into the scope of

[1]. Our “tangent spaces” of � do depend on φ ∈ � in a nontrivial way (see Eq. (1.6) for this

heuristic). It also worth noting at this point that a simpler form 1
2

∫ 〈DF(φ),DG(φ)〉Hdν(φ)

with H = L2(,d2x), which is called a “classical” Dirichlet form in [1] corresponds

to the equation studied by [27], which is formally given by (via a simple change of

parameters) ([27] proved that when γ ∈ [0, 2
√
2 − √

6) one can define a local solution for

the suitably renormalized equation, and obtained convergence of the mollified solutions

to the limiting solution; when γ ∈ [2
√
2 − √

6, 2
√
2 − 2), there is still a notion of local

solution but with no convergence result.)

∂tφ = 1

4π
φ − eγφ + ξ

where ξ is the space-time white noise with respect to the Euclidean metric. The

framework of [1] constructs a diffusion w.r.t. this “classical” Dirichlet form. ([1, Section

7.II.a)] focuses on the P(�)2 case but it is remarked that the Høegh–Krohn case on R
2

with a space cutoff can be treated similarly.) The integration-by-parts formula required

in their setting can be found in [2], as we recorded above in the beginning of Section 2,

which has the same form as our integration by parts formula but is w.r.t cylindrical test

functionals.

Proof of Lemma 3.4 Letting F = p(Mφ(f1), · · · ,Mφ(fm)) and G = q(Mφ(g1), · · · ,
Mφ(gn)), by definition (3.2) of the generator L one has that the right-hand side of (3.3) is

equal to

−2
n∑

i=1

∫
p ∂iq · 〈gi,�φ〉dν(φ) + 2λ

∫
p

n∑
i=1

∂iq · Mφ(gi)dν(φ) (3.5)

− 2σ 2
∫

p
n∑

i,j=1

∂i∂jq · Mφ(gigj)dν(φ)
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26 J. Dubédat and H. Shen

where we omitted the arguments of p,q. We remark that every term here is indeed

integrable, as shown in the proof of Lemma 2.6. For each fixed i ∈ {1, · · · ,n}, we apply

integration by parts (Theorem 2.6) to the functional 2p ∂iq in the 1st term of (3.5) with

Cameron–Martin direction gi (which is smooth) and get

−2
n∑

i=1

∫
p ∂iq · 〈gi,�φ〉dν(φ) = 2

n∑
i=1

∫
p ∂iq · 〈∇gi,∇φ〉dν(φ)

=
n∑

i=1

∫ (
σ 2Dgi(p ∂iq) − 2λp ∂iqMφ(gi)

)
dν(φ)

=
n∑

i=1

∫ (
2σ 2p

n∑
j=1

∂i∂jq · Mφ(gigj) + 2σ 2
m∑
j=1

∂jp∂iq · Mφ(gifj) − 2λp ∂iqMφ(gi)
)
dν(φ)

where in the last step we computed Dgi using (2.26) of Lemma 2.3. Note that the 1st and

the 3rd terms in the last line here cancel the 2nd and the 3rd terms in (3.5). Therefore

the above calculation shows that the right-hand side of (3.3) is equal to

n∑
i=1

∫ (
2σ 2

m∑
j=1

∂jp∂iq · Mφ(gifj)
)
dν(φ) . (3.6)

This expression, using (2.28), is equal to the right-hand side of (3.4). �

We will now induce a bilinear form on X . Define a form on L2(X ,m) by

EX (F,G) := E(F ◦ M,G ◦ M) (3.7)

for F,G ∈ CX . It is clearly symmetric and positive semi-definite by Lemma 3.4. CX is

dense in L2(X ,m) by Lemma 3.1.

Lemma 3.8. The form EX is closable for every σ < σL1 = 2
√

π .

Proof. By [25, Eq. (1.1.3)], a sufficient condition for the symmetric form EX to be

closable is: for any sequence Fn ∈ CX with ‖Fn‖L2(X ,m) → 0 as n → ∞ one always

has

lim
n→∞ EX (Fn,G) → 0, ∀G ∈ CX . (3.8)

Indeed, with these Fn,G ∈ CX , denoting F̃n = F ◦ M, G̃ = G ◦ M, with F̃n, G̃ ∈ C, we have

|EX (Fn,G)| =
∣∣∣ ∫ F̃n(−LG̃)dν

∣∣∣ ≤ ‖Fn‖L2(X ,m)‖LG̃‖L2(ν) .
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Recall that CX ⊂ Lp(m) for all p < ∞. By the expression of LG̃ (3.2) and Lemma 2.5, it

follows that LG̃ is in Lp(ν) for all p < ∞, which concludes. �

We also denote by EX the smallest closed extension.

Proposition 3.9. EX is a Dirichlet form which is regular on L2(X ,m).

Proof. Recall from [25, Section 1.1] (or beginning of Section 3) that for EX to be regular

we need to prove that EX possesses a core. For this we need that CX is dense in C0(X )—

the space of compactly supported continuous functions on X with uniform norm. This

is the content of Lemma 3.1.

Clearly, it is also a standard core, namely CX is a dense linear subspace of C0(X );

and for any ε > 0, a cutoff function φε(t) with

1) φε(t) = t for t ∈ [0, 1]

2) φε(t) ∈ [−ε, 1 + ε] for all t ∈ R and

3) φε(t
′) − φε(t) ∈ [0, t′ − t] for t < t′,

and F(A) = q(A(f1), . . . ,A(fk)), we have that φε(F) ∈ CX since φε ◦ q satisfies the

requirements in Definition 2.2.

We also need to check that EX is Markovian. Indeed, taking a cutoff function φε

as above, which is further assumed to be differentiable, one has that for each F(A) as

above

D(φε ◦ F)(A) = 2
k∑

i=1

(φ′
ε ◦ q)(A(f1), . . . ,A(fk)) · ∂iq(A(f1), . . . ,A(fk)) · fi (3.9)

so that (using the calculation (3.6) and the equivalence (3.7))

EX (φε ◦ F,φε ◦ F) = 1

2

∫
(φ′

ε ◦ q)2(A(f1), . . . ,A(fk))〈DF(φ),DG(φ)〉L2(Mφ)dν(φ) .

Since φ′
ε ∈ (0, 1] and 〈DF(φ),DG(φ)〉L2(Mφ) ≥ 0, one has EX (φε ◦F,φε ◦F) ≤ EX (F, F), namely

EX is Markovian. �

3.2 Existence of diffusion process

Proposition 3.10. There exists a unique m-symmetric diffusion A = (�,F , (At), (Pz))

on X associated to EX .

Here the diffusion is calledm-symmetric if its associated semigroup Tt satisfies∫
fTtgdm = ∫

gTtf dm for any non-negative measurable functions f , g and t > 0. If one
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28 J. Dubédat and H. Shen

further has Tt1 = 1 for any t > 0, then taking f = 1 one has
∫
Ttgdm = ∫

gdm so the

measure is invariant.

Here the uniqueness of m-symmetric Hunt process is up to equivalence in the

sense of [25, Section 4.2]. Recall from [25, Section 4.5] that a Hunt process is called a

diffusion if

Pz(t �→ At is defined and continuous for all t ∈ (0, ζ )) = 1 (3.10)

for every z ∈ X , where ζ is the lifetime of A in the sense of [25, Appendix A.2]; also

recall that by [25, Theorem 4.5.1], there exists an m-symmetric diffusion on X , which is

equivalent with A if and only if A is of continuous paths for quasi-every starting point,

that is, there exists a properly exceptional set N such that (3.10) holds for every z ∈ X \N.

Here N being properly exceptional set means that N is nearly Borel measurable (see [25,

Appendix A.2]), m(N) = 0 and X \N is A-invariant, see [25, Section 4.1].

Proof. Since EX is regular, by [25, Theorem 7.2.1], there exists an m-symmetric Hunt

process associated to EX . By [25, Theorem 7.2.2 or Theorem 4.5.1], for this Hunt process

to be a diffusion we need to show locality of EX .

To prove locality, let F,G in CX with disjoint (compact) support. We want to show

EX (F,G) = 0. Take (ek) a sequence of smooth functions dense in C0() and let

dn(A,A′) =
n∑

k=0

2−k (∣∣A(ek) − A′(ek)
∣∣ ∧ 1

)

and d = limdn; then d metrizes X . Then

inf{d(A,A′) : A ∈ Supp(F),A′ ∈ Supp(G)} > 0

hence there is n such that

inf{dn(A,A′) : A ∈ Supp(F),A′ ∈ Supp(G)} > 0

that is, the images of Supp(F) and Supp(G) under A �→ Ln(A) := (A(e0), . . . ,A(en))

are disjoint compact sets in R
n+1. We can find f , g ∈ C∞

c (Rn+1), which have disjoint

supports, (Note that the function f here shouldn’t be confused with the notation

f0, · · · , fk; they are different objects.) such that f = 1 on Ln(F) and g = 1 on Ln(G),

and thus write

F = F × (f ◦ Ln), G = G × (g ◦ Ln)
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Stochastic Ricci Flow on Compact Surfaces 29

where × is just pointwise multiplication. Therefore for F = q(A(f0), · · · ,A(fk))

DF = 2
∑
i≤k

∂i(qf )(A(e0), · · · ,A(fk),A(e0), · · · ,A(en)) fi

+ 2
∑
i>k

∂i(qf )(A(e0), · · · ,A(fk),A(e0), · · · ,A(en)) ei

and similarly for DG. By direct inspection of (3.4) and (2.28), and the fact that ∂αf ∂βg =
0 for any α,β ∈ {0, 1}, it follows that EX (F,G) = 0, that is, EX is local (and so is its

extension, see Theorem 3.1.2 in [25]).

We also check strong locality. Let F ∈ CX with compact support K ⊂ X , and

G ∈ CX which is a constant say G ∈ R on a neighborhood U of K. Since the topology of X
is generated by the maps A �→ A(fn), there is n ≥ 0 and a neighborhood V of Ln(K) such

that V ⊂ Ln(U). So

G = g ◦ Ln + (G − g ◦ Ln)

where g is constant G on V, and the 2nd summand vanishes on a neighborhood of K.

By the previous argument and again by direct inspection of (3.4), (2.28), it follows that

EX (F,G) = 0, that is, EX is strongly local (and so is its extension, see Exercise 3.1.1 in

[25]). Strong locality expresses the absence of killing, see Theorem 4.5.3 in [25].

A similar argument shows that CX is a special standard core (see I.1 in [25]).

Namely, for any compact set K ⊂ X and a relatively compact open set U with K ⊂ U,

one can construct an element F ∈ CX such that F ≥ 0, F = 1 on K and F = 0 on X \U by

pulling back such a function on R
n+1 using the map Ln. �

3.3 Fukushima decomposition and weak solution

We prove Theorem 1.2 in this subsection.

Remark 3.11. Formulating weak solution to be the process having one-dimensional

projections given by (1.21) is typical and analogous formulations exist for other SPDEs,

see for example, [1, (0.8)]. This is the usual formulation even for some linear SPDEs,

which do not require Dirichlet forms to provide solutions; for instance, for the SHE with

multiplicative noise (i.e., Cole–Hopf transformed KPZ) ∂tφ = �φ + φξ0, a weak solution

with initial condition φ0 is defined by a probability space and filtration together with

a process φ such that Mf (t) := 〈φt, f 〉 − 〈φ0, f 〉 − ∫ t
0 〈φs,�f 〉ds is a martingale for any
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30 J. Dubédat and H. Shen

smooth test function f , and the quadratic variation of Mf is given by
∫ t
0 〈φ2, f 2〉ds, see [5,

Def.4.10] or [16, Section 4.3]; here 〈, 〉 denotes the L2 inner product. In other words (by

Lévy characterization) φ(f ) satisfies d〈φ, f 〉 = 〈φ,�f 〉dt + 〈φ2, f 2〉1/2dβt.

Recall that we eventually want to have the one-dimensional projection to satisfy

(1.20) or (1.21), namely

d
∫



f ωg = 2
( ∫



f�φω0 − λ

∫


f ωg

)
dt + 2σ

∫


feφξ0ω0 . (3.11)

(In (1.20) we identified the martingale term
∫
feφξ0ω0 as

(∫
f 2ωg

) 1
2
dβ

f
t . For two test

functions fi, fj the time derivative of the covariation of
∫
fie

φξ0ω0 and
∫
fje

φξ0ω0 is∫
fifjωg.)

For F = q(
∫
f0ωg, . . . ,

∫
fkωg) we can use this one-dimensional projection, Itô’s

formula and definition of L in (3.2) to formally derive

dF

dt
=

∑
i

2∂iq ·
( ∫

fi�φω0 − λ

∫
fiωg + σ

∫
fie

φξ0ω0

)
+ 2σ 2

∑
i,j

∂2ijq
∫

fifjωg

= LF(φ) + 2σ
∑
i

∂iq
∫

fie
φξ0ω0 .

In view of this, if an X -valued process At is a weak solution to (1.12), then for any

F(A) = q(A(f0), . . . ,A(fk)) ∈ CX we have that Mt := F(At) − F(A0) − ∫ t
0 LF(As)ds is a

martingale whose quadratic variation is

〈M〉t = 4σ 2
k∑

i,j=0

∫ t

0
∂iq ∂jq · As(fifj)ds . (3.12)

With the diffusion A = (�,F , (At), (Pz)) obtained above in Proposition 3.10, we will prove

that this At is a weak solution.

Recall that for such an F ∈ CX , the gradient is given by

DF(A) =
k∑

i=1

∂iq(A(f0), . . . ,A(fk))fi (3.13)

so that DF ∈ CX ⊗ C∞().

Below we write AF for “additive functional.”
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Let F ∈ CX , (At)t≥0 the process in X associated to E . We consider the continuous

AF ([25, Section 5.2])

Y [F]
t = F(At) − F(A0) .

By [25, Theorem 5.2.2], Y [F] admits a unique Fukushima decomposition

Y [F] = M [F] + N[F] (3.14)

where M [F] is a martingale AF of finite energy and N[F] is a zero-energy continuous AF.

Namely, M [F] is a finite càdlàg AF such that for each t > 0, Ez(M
2
t ) < ∞, and

Ez(Mt) = 0 for quasi-every z ∈ X where Ez is the expectation for the measure Pz, with

energy

e(M [F]) := lim
t→0

1

2t
Em[(M [F]

t )2]

being finite; and N[F] is a finite continuous AF, with e(N[F]) = 0 and Ez[|N[F]
t |] < ∞ for

quasi-every z ∈ X for each t > 0.

In particular M [F] admits a quadratic variation 〈M [F]〉, which is a positive

continuous AF such that Ez[〈M [F]〉t] = Ez[(M
[F]
t )2] for quasi-every z ∈ X and t > 0. For

the quadratic variation 〈M [F]〉 we have the following lemma.

Lemma 3.12. Let F ∈ CX and M [F] be the martingale AF in (3.14). We have

〈M [F]〉t = σ 2
∫ t

0
‖DF(As)‖2L2(As)

ds . (3.15)

Proof. The quadratic variation 〈M [F]〉 is a positive AF, which is associated with a Revuz

measure μ〈M〉 via the Revuz correspondence ([25, Section 5]). By [25, Theorem 5.2.3], this

Revuz measure has μ〈M〉(G) = 2EX (F ·G,F) − EX (F2,G). From (3.13) we readily check that

the Leibniz rule D(FG) = F · DG + G · DF holds, which implies

dμ〈M〉(A) = σ 2‖DF(A)‖2L2(A)
dm(A) . (3.16)
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Remark that with F = q(
∫
f1dA, . . . ,

∫
fkdA), the functional

A �→‖DF(A)‖2L2(A)

=
k∑

i,j=1

∂iq
(
A(f1), . . . ,A(fk)

)
∂jq

(
A(f1), . . . ,A(fk)

)
A(fifj)

is also in CX , and in particular continuous on X . It is then standard (for instance

following the same lines as the proof of [1, Proposition 4.5]) to show that the Revuz

measure corresponding to the right-hand side of (3.14) is also (3.16), thus the lemma

follows. �

To identify the diffusion as the weak solution we have the following more

concrete representations (as required by (3.12)).

Lemma 3.13. For F ∈ CX with F(A) = q(A(f1), · · · ,A(fk)) we have

〈M [F]〉t = 4σ 2
∫ t

0

∑
i,j

∂iq∂jq · As(fifj)ds . (3.17)

In particular, for F(A) = A(f ) one has

〈M [F]〉t = 4σ 2
∫ t

0
As(f

2)ds , (3.18)

and M [F]
t = 2σ

∫ t
0 (As(f

2))
1
2 dβ

f
s for a one-dimensional Brownian motion βf as required in

(1.20).

Moreover, for F = A(f ) and G = A(g) one has

〈M [F],M [G]〉t = 4σ 2
∫ t

0
As(fg)ds . (3.19)

Proof. By the calculation of DF from (3.13) and Lemma 3.12 the claims (3.17) and (3.18)

follow. Remark that F(A) = A(f ) is not in CX (not compactly supported); one obtains

the desired result by standard truncation/localization arguments. The statement on

identification ofM [F] follows from the continuity of the AF Y [F], which implies continuity

of M [F] together with martingale representation theorem. �
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Lemma 3.14. Let F ∈ CX and N[F] be the zero energy continuous AF in (3.14). We have

N[F]
t =

∫ t

0
LF(As)ds .

In particular, for F = A(f ) one has N[F]
t = 2

∫ t
0

(
ω0(f�φs) − λAs(f )

)
ds with φs = M−1As.

Proof. We have by integration by parts:

E(F,G) =
∫

GdνF

where dνF(A) = LF(A)dm(A); here νF has a locally integrable density with respect

to m (actually integrable, see Lemma 2.5). By [25, Corollary 5.4.1], N is an AF

with Revuz measure νF (i.e., N = N+ − N− where N± is a positive AF with Revuz

measure ν±
F ).

Since LF is measurable on X locally compact, it can be approximated in Lp(m)

by continuous functions. t �→ LF(At) is an Lp limit of continuous adapted processes,

hence is progressively measurable. In particular t �→ ∫ t
0 LF(As)ds is well defined as a

process and one can identify (arguing as in Example 5.1.1 of [25]).

Nt =
∫ t

0
LF(As)ds . �

In particular remark that for F ∈ CX , N[F] has bounded variation, so that Y [F] is

a continuous semimartingale, and (3.14) is simply its semimartingale decomposition.

Proof of Theorem 1.2 The claim of the theorem now immediately follows from Lemma

3.13 and Lemma 3.14. �

Absorption. Let At(1) = ∫

At(dx) be the total volume of the torus . By applying these

results we have the following:

Corollary 3.15. The process (At(1))t≥0 is a.s. absorbed at 0 in finite time.

Proof. Consider the function f ≡ 1; one then obtains a simple autonomous SDE

satisfied by At(1)

dAt(1) = 2
(∫

φt(�1)dA0 − λAt(1)

)
dt + 2σ

√
At(1)dβt

= 2σ
√
At(1)dβt − 2λAt(1)dt
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where β is a one-dimensional Brownian motion. One recognizes the evolution of a

continuous-state branching process, which is also continuous in time (see e.g., [43, 44]).

A solution for λ ≥ 0 is stochastically dominated by a solution for λ = 0. Setting λ = 0,

one further recognizes the SDE satisfied by a square Bessel process of dimension 0

(BESQ(0), also known as the Feller diffusion). That process is a.s. absorbed at 0 in finite

time. �

Consequently, recalling that we have defined X := M() \ {0}, the lifetime ζ in

(3.10) is a.e. finite; the process evolves continuously in X until it is absorbed at 0, which

occurs in finite time. Alternatively we can consider M() itself as the state space, and

then 0 is an absorbing state.

4 Extensions

In the case of the torus, we started from a heuristic derivation of the generator and

arrived at the Dirichlet form (3.4). Since the formal dynamic of the SRF is defined in

terms of intrinsic, local quantities, it is natural to expect it can be defined on surfaces

of general topology. However, it will appear momentarily that the use of a reference f lat

metric on the torus played a subtle role in these heuristics, and in the general case one

needs to properly account for the curvature of the reference metric, in order to obtain

processes defined invariantly. For that purpose it will be convenient to reverse the logic

leading from (3.3) to (3.4) and use the natural generalization of (3.4) as a starting point

instead.

In Section 4.1, we address the case of general compact surfaces. The key (and

only substantial) difference with the case of the torus lies in the use of reference metric

with curvature. We explain the needed modifications and the rest of the argument

follows as in the torus case mutatis mutandis (in particular, the implementation of

Dirichlet forms in Section 3 is unchanged). In Section 4.2, we explain the additional

arguments needed to accommodate vertex insertions.

4.1 Compact surfaces

Considering the SRF on more general surfaces involves two key difficulties: curvature

of the reference metric, and the potential presence of boundary components. For clarity

we explain separately the arguments involved in incorporating these two elements.

Closed surfaces. We turn to consider a general closed Riemannian surface 
 with a

reference metric g0. According to the discussion in Section 1 (in particular below (1.5)),
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it would seem to be natural to try to construct a SRF of the form

∂tφ
??= −Kg − λ + σξg = e−2φ(�φ − K0) − λ + σξg , (4.1)

so that for A = :e2φω0: we expect the following one-dimensional projection (compare

with (1.21))

dAt(f )
??= 2

(
ω0(f�φt) − ω0(fK0) − λAt(f )

)
dt + 2σ

(
At(f

2)
) 1

2
dβ

f
t . (4.2)

With this “naive” guess, for F = q(A(f1), . . . ,A(fn)) we have (compare with (3.2))

LF(φ)
??=

∑
i

2∂iq ·
(
ω0(fi�φ) − ω0(fiK0) − λA(fi)

)
+ 2σ 2

∑
i,j

∂2ijq · A(fifj) .

However, this formal derivation—as we have put questions marks on the above

identities—turns out to fail to correctly account for the “quantum” correction in LCFT,

see Remark 4.1; we will explain about this momentarily.

Here we follow closely [32], which we refer to for a detailed treatment. Recall

the convention comparison (φ, λ, σ) ↔ (X,μ, γ ) of (1.16), and in this section we turn

to the “probabilists’ convention” for easier referencing to [32]. With a surface 
 and a

reference metric g0 we consider the action (see [32, (2.2)]) (Note that [32] uses the letter K

for scalar curvature, which equals twice the Gauss curvature, whereas we use the letter

K for Gauss curvature; and [32] uses the letter ϕ for the field instead of X as here.)

SL(g0,X) = 1

4π

∫



(|∇X|2 + 2QK0X + 4πμeγX) ω0 (4.3)

where

Q = 2

γ
+ γ

2
. (4.4)

This induces the measure on fields (see [32, (3.1)])

dνg0(X) = exp
(−SL(g0,X)

)
DX = e− 1

4π

∫

(2QK0X+4πμeγX ) ω0

(
e− 1

4π

∫

 |∇X|2 ω0DX

)

where DX is the formal flat measure on fields. The last bracket is interpreted as a σ -

finite measure on paths as in (2.20), viz. as the sum of a zero-mean GFF and a “Lebesgue-

distributed” constant; the rest of the action is then an almost everywhere defined
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36 J. Dubédat and H. Shen

Radon–Nikodým derivative. The quadratic part is characterized, up to multiplicative

constant, by the Cameron–Martin formula:

e− 1
4π

∫ |∇(X+h)|2 ω0D(X + h) = e− 1
2π

∫ ∇X·∇hω0− 1
4π

∫ |∇h|2 ω0
(
e− 1

4π

∫ |∇X|2ω0DX
)

(4.5)

for h ∈ H1(
), as in Lemma 2.4 (in particular (2.31)).

Indeed, remark that, from the local nature of the Liouville measure, there is no

difficulty in constructing it on surfaces along the following lines: cover 
 by finitely

many complex disks (Ui)1≤i≤n; for any V ⊂⊂ Ui, the restriction of the zero-mean GFF to

V is absolutely continuous w.r.t. to the zero-boundary GFF on Ui. Then one can define

the Liouville measure on each Ui and patch them together. Moreover one can assume

that each Ui carries isothermal coordinates. Alternatively one can retrace the steps of

the planar construction and check that it carries over to surfaces. One also has the basic

moment estimates used in Lemma 2.5.

Let ĝ0 = e2ψ0g0 be another reference metric with volume form ω̂0. Then the GMC

regularization introduces the following anomalous scaling (see [32, (3.12)]):

:eγX ω̂0:ĝ0 = e(2+γ 2/2)ψ0 :eγXω0:g0 (4.6)

that is, :eγ X̂ ω̂0:ĝ0 = :eγXω0:g0 if X̂ = X − Qψ0 (here : :g0 denotes the limit of an ε-

regularization scheme such as (1.13) where ε is measured in g0). Moreover, we have

the conformal anomaly (see [32, Proposition 4.2])

∫
F(X)dνĝ0(X) ∝

∫
F(X − Qψ0)dνg0(X) (4.7)

and consequently the pushforward of νg0 by X �→ MX
def= :eγXω0:g0 (a σ -finite measure

on X := M(
) \ {0}) does not depend (up to multiplicative constant) on the choice of

reference metric g0, just on the Riemann surface structure of 
. This justifies the choice

of (4.4) in the definition of the action (4.3). Let us denote that measure by m.

We have the integration-by-parts formula:

4π

∫
DhF(X)dνg0(X) =

∫
F(X)

(
2ω0

(
∇0h · ∇0X + QK0h

)
+ 4πμγMX(h)

)
dνg0(X) (4.8)

derived from (4.5) along the same lines as Theorem 2.6.

Similarly to Definition 2.2 and Lemma 2.3, one can define test functionals and

evaluate their Fréchet derivatives as follows: if MX = :eγXω0:g0 and F is a test functional
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of the form

F(X) = q(MX(f0), . . . ,MX(fk))

where the fi’s are smooth on 
 and q : Rk+1 → R is C2, the Fréchet derivative of F in the

smooth direction h is

DhF(X) = γ
∑
i

∂iq(MX(f0), . . . ,MX(fk))MX(hfi) . (4.9)

Similarly to (2.28), the gradient DF of F w.r.t. to the Liouville L2 norm is thus given by

DF(X) = γ
∑
i

∂iq(MX(f0), . . . ,MX(fk))fi . (4.10)

From the study of the torus case in Section 3.1, it is at this stage natural to take

as starting point the following Dirichlet form:

E(F, F) =
∫

‖DF‖2L2(MX )
dνg0 ,

which depends on the choice of reference metric g0 only through a multiplicative

constant. Running the computation of Lemma 3.4 in reverse order, we have (write

ν = νg0 )

E(F, F) =
∫

‖DF(X)‖2L2(MX )
dν(X)

(4.10)= γ 2
∫ ∑

i,j

∂iq ∂jqMX(fifj)dν(X)

(4.9)=
∫ (

γ
∑
i

Dfi(q∂iq) − γ 2
∑
i,j

q∂2ijqMX(fifj)
)
dν(X)

(4.8)= −
∫

q
( ∑

i

∂iq ·
( γ

2π
ω0(fi�X) − Qγ

2π
ω0(fiK0) − μγ 2MX(fi)

)

+ γ 2
∑
i,j

∂2ijqMX(fifj)
)
dν(X)

=
∫

F(−LF)dν(X)

where

LF = γ 2
∑
i,j

∂2ijqMX(fifj) +
∑
i

∂iq
(

γ

2π
ω0(fi�X) − Qγ

2π
ω0(fiK0) − μγ 2MX(fi)

)
. (4.11)
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More generally, we have

E(F,G) =
∫

〈DF(X),DG(X)〉L2(MX )dν(X) =
∫

F(−LG)dν(X) .

This corresponds to the formal dynamics

∂tAt = γ

2π
�Xω0 − Qγ

2π
K0ω0 − μγ 2At + γ

√
2ξgAt (4.12)

or the one-dimensional dynamics

dAt(f ) =
(

γ

2π
ω0(f�X) − Qγ

2π
ω0(fK0) − μγ 2At(f )

)
dt + √

2γ

√
At(f

2)dβ
f
t (4.13)

for f a smooth function on 
.

Remark 4.1. Up to replacing γX (LQFT convention) with 2φ (earlier convention),

matching parameters by (1.16), and a time change t �→ 2πt, the equation (4.13) can be

written as

dAt(f ) = 2
(

ω0(f�φ) −
(
Qγ

2

)
· ω0(fK0) − λAt(f )

)
dt + 2σ

√
At(f

2)dβ
f
t ,

which differs from the naïve guess (4.2) by a factor Qγ /2 (in front of the curvature term),

which would be equal to 1 in the “classical” case Q = 2/γ , but is actually equal to

1 + γ 2/4 = 1 + σ 2/(4π) for the “quantum” value of Q (4.4).

The right dynamic for the conformal factor should be (compare with the naïve

guess (4.1)):

∂tφ = e−2φ
(
�φ −

(Qγ

2

)
K0

)
− λ + σξg .

The discrepancy can explained as follows: the formal derivation of (4.2) interprets the

Liouville measure as a 2-form, but it actually transforms as a Qγ -form (see (4.6)).

The Fukushima decomposition follows in the same way as Section 3.3.

Bordered surfaces.

Here we consider the case of bordered surfaces: 
 is an open surface, and its

boundary ∂
 consists of finitely many (possibly zero) circles. For simplicity (to avoid

introducing geodesic curvature), we fix a reference metric g0 such that the neighborhood

of each boundary component is isometric to a flat half-cylinder (R/�Z)× [0, ε) (ε > 0 and

� is the length of the boundary circle); in particular boundary components are geodesic.
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Stochastic Ricci Flow on Compact Surfaces 39

We consider a GFF on 
 with covariance operator σ2

2 (−�)−1 and Neumann

boundary condition (b.c.), and again sum over zero modes to obtain a σ -finite measure

μ̂ on fields. It satisfies a Cameron–Martin formula

∫
G(φ + th)dμ̂(φ) =

∫
G(φ) exp

(
2t

σ 2 〈φ,h〉H − t2

σ 2 ‖h‖2H
)
dμ̂(φ)

where h is smooth on 
̄ with Neumann b.c. and

〈φ,h〉H =
∫




(∇0φ · ∇0h)ω0 =
∫




h(−�0)φω0 =
∫




φ(−�0)hω0

where gradient, Laplacian, and area measure are defined in terms of g0, and the meaning

of the Green’s formula on 
 (with φ a GFF) is apparent, for example, from expanding φ

and g in eigenfunctions of the Laplacian with Neumann b.c..

We define C as in Definition 2.2, except that f0, . . . , fk are now smooth functions

on 
 with Neumann b.c.. Then Lemma 2.4 holds with these generalized definitions of μ̂,

C and for simplicity we take h smooth with Neumann b.c..

We proceed to define νg0 as above, except that the GFF base measure is now

understood as a Neumann GFF. Then the integration-by-parts (4.8) holds verbatim.

If ĝ0 = e2ψ0g0 is another metric satisfying the same conditions near the

boundary, note that necessarily ψ0 has Neumann b.c. (see (1.14) in [48]). The same

conformal anomaly formula (4.7) relating νĝ0 to νg0 holds. Once again we use as starting

point the Dirichlet form (writing ν = νg0 )

E(F, F) =
∫

‖DF‖2L2(MX )
dν =

∫
F(−LF)dν(X)

where the expression for L is exactly as in (4.11).

Then we define X = M(
) \ {0}. Remark that 
 is compact, and the class of test

functions

{f ∈ C∞(
) : ∂nf = 0on∂
}

used in the definition of C is dense in C0(
), so that Lemma 3.1 also holds in the present

set-up.

In conclusion we have the following:
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Theorem 4.2. Let (
, g0) be a bordered Riemannian surface. For γ < γL1 = 2, there

exists a Markov diffusion process A = {�,F , (At)t≥0, (Pz)z∈X } on the space X , such that

for any smooth function f and quasi-every z ∈ X , At(f ) satisfies the SDE (4.13) with

A0(f ) = z(f ), where ∀t > 0, φt = M−1At a.s. and βf is a one-dimensional standard

Brownian motion.

In particular for f ≡ 1 (taking into account Gauss–Bonnet:
∫


K0ω0 = 2πχ , where

χ is the Euler characteristics of 
), we see that the total volume At(1) evolves as

dAt(1) = γ
√
2
√
At(1)dβt − μγ 2At(1)dt − Qγχdt , (4.14)

where β is a one-dimensional Brownian motion. We will discuss long-term behavior in

the more general set-up of Section 4.2.

4.2 Insertions

In the context of LCFT, it is natural to consider insertions of “vertex operators.” Here we

highlight the modifications needed to incorporate insertions in the SRF framework.

As before, 
 is a (bordered) Riemann surface; additionally, we assign real

weights α1, . . . ,αk to marked points x1, . . . , xk in the bulk (i.e., in the interior; one could

also consider boundary vertex insertions, which we refrain from for brevity). Associated

to these data, we consider the formal dynamics (which is (4.12) with an additional term)

∂tAt = γ

2π
�Xω0 − Qγ

2π
K0ω0 − μγ 2At + γ

k∑
i=1

αiδxi + γ
√
2ξgAt (4.15)

and the corresponding one-dimensional dynamics for f a smooth function on 
:

dAt(f ) =
(

γ

2π
ω0(f�X) − Qγ

2π
ω0(fK0) − μγ 2At(f )

)
dt (4.16)

+ γ

k∑
i=1

αif (xi)dt + γ
√
2

(
At(f

2)
)1/2

dβ
f
t .

For a reference metric g0 on 
, consider the measure on fields, written for now

formally as

dνα
g0(X) =

(
k∏

i=1

:eαiX(xi):g0

)
dνg0(X) .
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Note that the term in brackets is not a Radon–Nikodým derivative. Admit for now the

conformal anomaly formula∫
F(X)dνα

ĝ0
(X) ∝

∫
F(X − Qψ0)dνα

g0(X)

(here ĝ0 = e2ψ0g0; the coefficient of proportionality depends on the αi’s), and the

integration-by-parts formula∫
DhF(X)dνα

g0(X) (4.17)

=
∫

F(X)

(
1

2π
〈∇0h,∇0X〉g0 + Q

2π
ω0(K0h) + μγMX(h) −

∑
i

αih(xi)
)
dνα

g0(X) .

Given this, one can consider the Dirichlet form

E(F, F) =
∫

‖DF‖2L2(A)
dνα

g0 =
∫

F(−LF)dνα
g0(X)

where

LF = γ 2
∑
i,j

∂2ijqA(fifj)

+
∑
i

∂iq
(

γ

2π
ω0(fi�X) − Qγ

2π
ω0(fiK0) − μγ 2A(fi) + γ

∑
j

αjfi(xj)
)
,

which realizes the desired dynamics (4.15).

We refer to [32] for a construction of να
g0 with the desired properties (viz. anomaly

and integration by parts); concretely, it can be realized as a vague limit of measures

absolutely continuous w.r.t. νg0 :

dνα
g0(X) = lim

ε↘0

( ∏
i

ε
α2i
2 eαiXε(xi)

)
dνg0(X)

where Xε denotes a mollification of X on scale ε and νg0 is defined as in Section 4.1. This

requires the following local Seiberg bound:

αi < Q

for i = 1, . . . , k (remark that here we are not concerned with finiteness of να
g0 ).

Therefore, we have all the ingredients as input to the theory of Dirichlet forms.

By repeating the same arguments as in Section 3 and Section 4.1, we have the following:
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Theorem 4.3. Let (
, g0) be a bordered Riemannian surface with marked points

x1, . . . , xk in the bulk and weights α1, . . . ,αk < Q. For γ < γL1 = 2, there exists a Markov

diffusion process A = {�,F , (At)t≥0, (Pz)z∈X } on the space X , such that for any smooth

function f and quasi-every z ∈ X , At(f ) satisfies the SDE (4.16) with A0(f ) = z(f ), where

∀t > 0, φt = M−1At a.s. and βf is a one-dimensional standard Brownian motion.

The total mass (At(1)) satisfies an SDE with generator

γ 2x∂xx − μγ 2x∂x + γ (ᾱ − Qχ)∂x

where ᾱ = ∑
i αi. We now briefly explain how to analyze the long-time behavior of that

process, a problem in classical one-dimensional diffusions.

The term with μ does not change qualitatively the behavior at 0, by change of

measure. Setting μ = 0, the generator is proportional to that of a BESQ(δ), viz. 2x∂xx+δ∂x,

where

δ = 2

γ
(ᾱ − Qχ) .

If δ ≥ 2, the process (At(1)) does not hit 0 (but can be started from 0). If δ ∈ (0, 2), the

process (At(1)) hits 0, but can be continued. If δ ≤ 0, 0 is absorbing.

Recall that the global Seiberg bound is ᾱ − Qχ > 0, which is precisely

δ > 0; together with the local Seiberg bounds (αi < Q), it ensures finiteness of να,

see [32]. Since 0 /∈ X by definition, the SRF is by construction absorbed at 0. The

problem of continuation of the SRF (At) past its 1st hitting time of zero dominates the

corresponding problem for the one-dimensional total mass process (At(1)). However, it

seems plaudible that the condition is the same, that is, that if δ ∈ (0, 2), the SRF can be

extended to a process on X ∪ {0}, with infinite lifetime (i.e., conservative), see Questions

5–6 below.

5 Questions and Open Problems

Regularity. In the 2-dimensional SHE ∂tφt = �φt + ξ , the solution can be realized as an

element of C([0,T],H−s) for any s > 0, that is, t �→ φt is a.s. continuous w.r.t. a Banach

space topology.

For an SRF (φt,At), we know that the 2nd marginal t �→ At evolves a.s.

continuously w.r.t. to the weak topology on X .

Question 1. Strengthen the regularity of the 2nd marginal, for example, show that

t �→ At is continuous a.s. in a Besov space topology. Note that [29] has proved a Hölder

continuity result for the GMCMγ with γ ∈ [0, 2) on the torus: for any ε > 0, almost surely
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there is a (random) constant C depending on ε and the GFF, such thatMγ (B(x, r)) ≤ Crα−ε

with α = 2(1 − γ
2 )2 for any ball B(x, r). We also note that the space-time regularity (with

respect to a parabolic distance) of the GMC Mφ when the field φ evolves according to

SHE is obtained in [27].

Question 2. Is the 1st marginal a.s. continuous w.r.t. an abstract Wiener space topology

? (e.g., H−s for some s)

Feller property.

The Dirichlet form formalism provides a family of probability measures on

path space (Pz)z∈X indexed by starting state z ∈ X ; this family is uniquely defined

except possibly on an exceptional set of starting states (see Theorem 4.2.7 in [25]). This

exceptional set is in particular m-negligible.

Question 3. Define Pz unambiguously for all z ∈ X .

This can be thought of as an entrance problem. Concretely, if (Un) is a sequence

of shrinking neighborhoods of z ∈ X , one would expect (Pm(·|Un))n to converge weakly as

n → ∞ (w.r.t. to the Skorohod space topology on C([0,∞),X ∪ {0})).
Question 4. Is the SRF strong Feller ? (w.r.t. to a topology on A or (φ,A))

Here it may be useful to have more explicit control on the map M−1 (see (3.1)).

Entrance and reflection.

It follows from strong locality (proof of Proposition 3.10) that, on the event that

the lifetime ζ is finite, the total mass (At(1)) goes to 0 or ∞ as t ↗ ζ . The latter is ruled

out by the autonomous SDE satisfied by the mass (see (4.14)), and the former happens

a.s. iff δ = 2
γ
(ᾱ − Qχ) < 2 (see the discussion at the end of Section 4.2). By construction

(i.e., the choice of state space and core), the process is absorbed at 0 (and hence not

conservative if it hits zero in finite time). The symmetrizing measure m is invariant for

the semigroup if the semigroup is conservative. By comparison of the total mass process

with BESQ(δ), it is natural to ask:

Question 5. In the case δ ≥ 2, is 0 an entrance boundary ? viz., can the SRF be extended

to a Feller process on X ∪ {0}, that a.s. never returns to 0 ?

Question 6. In the case δ ∈ (0, 2), can the SRF be extended to a process reflected at 0 ?

that is, a conservative process such {t : At(1) = 0} has a.s. zero Lebesgue measure.

If one starts with X̄ := X ∪ {0} as state space, the difficulty is to define a core

CX̄ dense in C0(X̄ ), such that integration by parts (3.4) still holds.

Approximation schemes.

Fix two small parameters δ, ε. Based on (1.11), it is natural to consider the

following scheme: on the time interval t = [kδ, (k+1)δ), solve the linear SHE with smooth
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coefficients (here in the torus case)

∂tφt = εαe−2φε
kδ�0φt + σεβe−φε

kδ ξ0.

Here φε denotes an ε-mollification of φ. Remark that, if φ0 is absolutely continuous w.r.t.

to the GFF (2.20), then for all t, φt is also absolutely continuous w.r.t. the same GFF. This

is a natural analogue of frozen coefficients approximations for SDEs.

Question 7. Does this scheme converge to SRF as (δ, ε) → (0, 0) in some way, for suitable

renormalization exponents (α,β) ?

Showing directly the convergence of such a scheme could provide an alternative

proof of existence and shed some light on the previous regularity questions.

Question 8. Find a Wong–Zakai approximation for small σ .

Here one considers ξε, a space-time ε-mollification of the white noise ξ ; then one

solves classically

∂tφ
ε = εαe−2φε

�φ − λ + εβσe−φε

ξ ε + (counterterms)

and attempts to take a limit in probability as ε ↘ 0, for suitable normalization

exponents (α,β) and—possibly—counterterms.

Another direction would be to consider scaling limits of natural dynamics on

discretizations of LQG, such as random maps. In that case, dynamics such as triangle

flipping in random triangulations have been proposed. However, a feature of the SRF is

that the complex structure is preserved, and it is unclear which discrete dynamics can

be expected to have this property, even in the limit.

Strong solutions. It is not immediately apparent how to phrase a notion of

strong solutions for SRF. The previous approximation schemes (for fixed ε > 0) are

measurable with respect to a fixed white noise ξ0.

Question 9. Show almost sure convergence of an approximation scheme, for a fixed

realization of ξ0.

Formally, the SRF in terms of φ (1.9) is a quasilinear singular stochastic PDE.

Strong solution theories for such quasilinear stochastic PDEs are under rapid progress.

In [50], strong solutions to equations of the form (up to technical subtleties such as

a mean-zero component projection therein) ∂tu = a(u)∂2xu + σ(u)f for random forcing

f ∈ Cα−2 with α > 2
3 are constructed using controlled rough paths theory. Here Cα is

a space-time Hölder regularity defined with respect to a parabolic distance, see [50,

Section 2]. The solution lies in the space Cα and is the limit of a sequence of suitably

renormalized equations driven by smooth mollified noises (that is, f convolved with
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smooth mollifiers). Note that α = 1 is the borderline where the products a(u) · ∂2xu and

σ(u) · f fail to have a classical meaning.

The key idea that allows [50] to generalize the strong solution theories such as

[33] that was originally applied to study semilinear equations is a parametric ansatz;

one builds solution to a family of linear equations ∂tv = a0∂
2
xv + f parametrized by

constants a0, as well as higher order terms vf and v∂2xv. The input (v, vf , v∂2xv), once

constructed by stochastic methods, is sufficient to render a PDE theory as long as α > 2
3 ,

because the “error” of replacing a(u) or σ(u) by v is order 2α and 2α + (α − 2) > 0 is the

key condition for PDE estimates. Similar results have been obtained by [3, 26] also for

α > 2
3 , but using the para-controlled approach (originally developed in [31]).

The work by [30] then generalized the above results by building a framework

for construction of local renormalized solutions to general quasilinear stochastic PDEs

within the theory of regularity structures. It exploited a series of existing results

developed for the semilinear case such as [6, 8, 12] so that it only requires a small

number of additional arguments to extend to the quasilinear setting. As applications an

equation of the form ∂tu = a(u)∂2xu + F(u)(∂xu)2 + σ(u)f is considered where f ∈ Cα−2

with α > 1
2 . There is also [49] under a twisted version of regularity structure framework

which works for α > 1
2 . With extra work, one may expect to push the regularity down

to α > 2
5 by building more “perturbative” information so that 4α + (α − 2) > 0. But this

would eventually cease to work at α = 0 and the SRF should be as singular as the 2-

dimensional GFF, that is, α < 0. Note that spatial dimension is two for SRF here, but the

obstacle here is regularity rather than dimension (some of the aforementioned papers

work or can be adapted to more than one dimension.)

Alternatively, one can attempt to construct a solution as a small noise expansion

(e.g., in powers of σ ); the terms in the expansion are then measurable with respect to a

standard white noise ξ0.

Note that Takhtajan [60] defines LCFT via perturbative expansion (in Planck

constant) around the classical solution φcl to the Liouville equation. It is not clear to us

how to “translate” his works to the dynamic setting. However, here are some thoughts.

Consider again (1.9). We can try to write the solution φ as a series in σ :

φ =
∞∑
i=0

σ iφi .

We can show that each φi satisfies an equation that is linear in φi, and only depending

on the φj (j < i). In particular,

∂tφ0 = e−2φ0�φ0 − λ, (5.1)
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which is the classical Ricci flow, and a stationary solution (set ∂tφ0 = 0) is the solution

to the classical Liouville equation. Also,

∂tφ1 = e−2φ0�φ1 − 2e−2φ0φ1�φ0 + e−φ0ξ0

∂tφ2 = e−2φ0�φ2 + 2e−2φ0(φ2
1 − φ2)�φ0 − 2e−2φ0φ1�φ1 − e−φ0φ1ξ .

Note that the 2nd-order operator in each of the equations is ∂t−e−2φ0�. This seems close

to the spirit of Takhtajan [60] who takes (e−2φcl� +m2)−1 as the “free propagator” in his

Feynman diagram expansion.

Question 10. Can one define a series solution via small noise expansions?
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