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Abstract

When the data are stored in a distributed manner, direct applications of tra-
ditional statistical inference procedures are often prohibitive due to communication
costs and privacy concerns. This paper develops and investigates two Communication-
E�cient Accurate Statistical Estimators (CEASE), implemented through iterative
algorithms for distributed optimization. In each iteration, node machines carry out
computation in parallel and communicate with the central processor, which then
broadcasts aggregated information to node machines for new updates. The algo-
rithms adapt to the similarity among loss functions on node machines, and converge
rapidly when each node machine has large enough sample size. Moreover, they do
not require good initialization and enjoy linear converge guarantees under general
conditions. The contraction rate of optimization errors is presented explicitly, with
dependence on the local sample size unveiled. In addition, the improved statistical
accuracy per iteration is derived. By regarding the proposed method as a multi-step
statistical estimator, we show that statistical e�ciency can be achieved in finite steps
in typical statistical applications. In addition, we give the conditions under which the
one-step CEASE estimator is statistically e�cient. Extensive numerical experiments
on both synthetic and real data validate the theoretical results and demonstrate the
superior performance of our algorithms.
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1 Introduction

Statistical inference in modern era faces tremendous challenge on computation and storage.

The exceedingly large size of data often makes it impossible to store all of them on a single

machine. Moreover, many applications have individual agents (e.g. local governments,

research labs, hospitals, smart phones) collecting data independently. Communication

is prohibitively expensive due to the limited bandwidth, and direct data sharing raises

concerns in privacy and loss of ownership. These constraints make it necessary to develop

methodologies for distributed systems, solving statistical problems with divide-and-conquer

procedures and communicating only certain summary statistics.

Distributed statistical inference has received considerable attention recently, covering a

wide spectrum of topics including M -estimation (Zhang et al., 2013; Chen and Xie, 2014;

Shamir et al., 2014; Rosenblatt and Nadler, 2016; Wang et al., 2017a; Lee et al., 2017b;

Battey et al., 2018; Wang et al., 2018; Shi et al., 2018; Banerjee et al., 2019), principal com-

ponent analysis (Fan et al., 2019; Garber et al., 2017), nonparametric regression (Shang

and Cheng, 2017; Szabó and Van Zanten, 2019; Han et al., 2018), quantile regression (Vol-

gushev et al., 2019; Chen et al., 2021), bootstrap (Kleiner et al., 2014), confidence intervals

(Jordan et al., 2019; Chen et al., 2021), Bayesian methods (Wang and Dunson, 2013; Jor-

dan et al., 2019), etc. In the commonly-used setting, the overall dataset is partitioned and

stored on m node machines connected to a central processor. Most of the approaches only

require one round of communication: the node machines work in parallel and send their

results to the central processor, which then aggregates the information to get a final re-

sult. As typical examples, Zhang et al. (2013) average the M -estimators on node machines;

Battey et al. (2018) average debiased estimators; and Fan et al. (2019) average subspaces

via eigen-decomposition. While these one-shot methods are communication-e�cient, they
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only work with a small number of node machines (e.g. m = o(
p
N), where N is the total

sample size) and require large sample on each, as their theories heavily rely on asymptotic

expansions of estimators. Such conditions are easily violated in practice.

Multi-round procedures come as a remedy, which alternate between local computa-

tions and global aggregations. It is possible to achieve optimal statistical precision after a

few rounds of communications, under broader settings than those for one-shot procedures.

Shamir et al. (2014) propose a Distributed Approximate NEwton (DANE) algorithm where,

in each iteration, each node machine minimizes a modified loss function based on its own

samples and the gradient information from all other machines obtained through commu-

nication. However, for non-quadratic losses, the analysis in Shamir et al. (2014) does not

imply any advantage of DANE in terms of communication over distributed implementation

of gradient descent. Other approximate Newton algorithms include Zhang and Xiao (2015),

Wang et al. (2018), Chen et al. (2021) and Crane and Roosta (2019). Jordan et al. (2019)

develop a Communication-e�cient Surrogate Likelihood (CSL) framework for estimation

and inference in regular parametric models, penalized regression, and Bayesian statistics.

A similar method also appears in Wang et al. (2017a). These methods no longer have

restrictions on the number of machines such as m = o(
p
N).

Due to the nature of Newton-type methods, existing theories for these algorithms heav-

ily rely on good initialization or even self-concordance assumption on loss functions. They

essentially focus on improving an initial estimator that is already consistent but not ef-

ficient, whose ideas coincide with the classical one-step estimator (Bickel, 1975). Such

initialization itself needs additional e↵orts and assumptions. Moreover, current results still

require each machine to have su�ciently many samples so that loss functions on di↵erent

machines are similar to each other. These all make the proposed methods unreliable in
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practice.

Aside from distributed statistical inference, there has also been a vast literature in

distributed optimization. The ADMM (Boyd et al., 2011) is a celebrated example among

the numerous algorithms that handle deterministic optimization problems with minimum

structural assumption. Yet, the convergence can be quite slow and it cannot fully utilize

the similarity among loss functions on node machines.

In this paper, we develop and study two Communication-E�cient Accurate Statistical

Estimators (CEASE) based on multi-round algorithms for distributed statistical estima-

tion. Our new algorithms extend the DANE algorithm (Shamir et al., 2014) to regularized

empirical risk minimization. Moreover, we provide sharp convergence guarantees for general

scenarios, even if the local loss functions are dissimilar and regularization is nonsmooth.

We assume that all the m node machines have the same sample size n. Each has a

regularized empirical risk function fk + g defined by the samples stored there, and the

goal is to compute the minimizer of the overall regularized risk function 1
m

Pm
k=1 fk + g to

statistical precision. When n is su�ciently large, their rates of convergence are better than

or comparable to existing methods designed for this large-sample regime. For moderate

or small n, they are still guaranteed to converge linearly even without good initialization,

while other statistical methods fail. In addition, our algorithms take advantage of the simi-

larity among {fk}mk=1 and thus improve over general-purpose algorithms like ADMM. They

interpolate between distributed algorithms for statistical estimation and general determin-

istic problems. Theoretical findings are verified by extensive numerical experiments. From

a technical point of view, our algorithms use the proximal point algorithm (Rockafellar,

1976) as the backbone and obtain inexact updates in a distributed manner. This turns

out to be crucial for proving convergence under general conditions. Our techniques are
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potentially useful for studying other distributed algorithms.

The rest of this paper is organized as follows. Section 2 introduces the algorithms.

Section 3 presents deterministic convergence results. Section 4 provides guarantees in

statistical problems. Section 5 shows numerical results on both synthetic and real data.

Section 6 concludes the paper and discusses possible future directions.

Here we list the notations used throughout the paper. We denote by [n] the set

{1, 2, · · · , n}. We write an = O(bn) or an . bn if there exists a constant C > 0 such that

an  Cbn holds for su�ciently large n; and an ⇣ bn if an = O(bn) and bn = O(an). Given

x,y 2 Rk and r > 0, we define B(x, r) = {z 2 Rk : kz� xk2  r} and hx,yi =
Pk

j=1 xjyj.

For a convex function h on Rk, we let @h(x) be its sub-di↵erential set at x 2 Rk, and

argminx2Rkh(x) be the set of its minimizers if infx2Rk h(x) > �1. We use k · k2 to

denote the `2 norm of a vector or operator norm of a matrix. For two sequences of ran-

dom variables {Xn}1n=1 and {Yn}1n=1 where Yn � 0, we write Xn = OP(Yn) if for any

" > 0 there exists C > 0 such that P(|Xn| � CYn)  " for su�ciently large n. We use

kXk 2 = supp�1
1p
pE

1/p|X|p to refer to the sub-Gaussian norm of random variable X, and

kXk 2 = supkuk2=1 khu,Xik 2 to denote the sub-Gaussian norm of random vector X.

2 The CEASE algorithm

2.1 Problem setup

Let P be an unknown probability distribution over some sample space X . For any pa-

rameter ✓ 2 Rp, define its population risk F (✓) = EX⇠P`(✓;X) based on a loss function

` : Rp ⇥ X ! R. In parametric inference problems, ` is often chosen as the negative

log-likelihood function of some parametric family. Under mild conditions, F is well-defined
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and has a unique minimizer ✓⇤. A ubiquitous problem in statistics and machine learning

is to estimate ✓⇤ given i.i.d. samples {Xi}Ni=1 from P , and the minimizer of the empirical

risk f(✓) = 1
N

PN
i=1 `(✓;Xi) becomes a natural candidate. To achieve desirable precision

in high-dimensional problems, it is often necessary to incorporate prior knowledge of ✓⇤.

A principled approach is the regularized empirical risk minimization

min
✓2Rp

{f(✓) + g(✓)} , (2.1)

where g(✓) is a deterministic penalty function. Common choices for g(✓) include the `2

penalty �k✓k22 (Hoerl and Kennard, 1970), the `1 penalty �k✓k1 (Tibshirani, 1996), and a

family of folded concave penalty functions kp�(|✓|)k1 such as SCAD (Fan and Li, 2001) and

MCP (Zhang, 2010), where � > 0 is a regularization parameter. Throughout the paper,

we assume that both ` and g are convex in ✓, and ` is twice continuously di↵erentiable in

✓. We allow g to be non-smooth (e.g. the `1 penalty).

Consider the distributed setting where the N samples are stored on m machines con-

nected to a central processor. Denote by Ik the index set of samples on the kth machine

and fk(✓) =
1

|Ik|
P

i2Ik `(✓;Xi). For simplicity, we assume that {Ik}mk=1 are disjoint, N is

a multiple of m, and |Ik| = n = N/m for all k 2 [m]. Then (2.1) can be rewritten as

min
✓2Rp

{f(✓) + g(✓)} , f(✓) =
1

m

mX

k=1

fk(✓). (2.2)

Each machine k only has access to its local data and hence local loss function fk and the

penalty g. We aim to solve (2.2) in a distributed manner with both statistical e�ciency

and communication-e�ciency.
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2.2 Adaptive gradient enhancements and distributed algorithms

in large-sample regimes

In the large-sample regime, we drop the regularization term for now and consider the empir-

ical risk minimization problem min✓2Rp f(✓) for estimating ✓⇤ = argmin✓2RpF (✓). In some

problems, direct minimization of f is costly, while it is easy to obtain some rough estimate

✓̄ that is close to ✓⇤ but not as accurate as the global minimimizer b✓ = argmin✓2Rpf(✓).

Bickel (1975) proposes the one-step estimator based on the local quadratic approximation

and shows that it is as e�cient as b✓ if the initial estimator ✓̄ is accurate enough. Iterating

this further results in multiple-step estimators that improve the optimization error and

hence statistical errors when the initial estimator is not good enough (Robinson, 1988).

This inspires us to refine an existing estimator using some proxy of f .

In the distributed environment, starting from an initial estimator ✓̄, the gradient vec-

tor rf(✓̄) can easily be communicated. Construct a linear function f
(1)(✓) = f(✓̄) +

hrf(✓̄),✓ � ✓̄i, the first-order Taylor expansion of f around ✓̄. The object function to be

minimized can be written as

f(✓) = f
(1)(✓) +R(✓), where R(✓) = f(✓)� f

(1)(✓).

Since the linear function f
(1)(✓) can easily be communicated to each node machine whereas

R(·) can not, the latter is naturally replaced by its subsampled version at node k:

Rk(✓) = fk(✓)� [fk(✓̄) + hrfk(✓̄),✓ � ✓̄i],

where fk(✓) is the loss function based on the data at node k. With this replacement, the
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Algorithm 1 CSL (Jordan et al., 2019)
Input: Initial value ✓0, number of iterations T .
For t = 0, 1, 2, · · · , T � 1:

• Each machine evaluates rfk(✓t) and sends to the 1st machine;

• The 1st machine computes rf(✓t) =
1
m

Pm
k=1 rfk(✓t) and

✓t+1 = argmin✓ {f1(✓) + g(✓)� hrf1(✓t)�rf(✓t),✓i}

and broadcasts to other machines.

Output: ✓T .

target of optimization at node k becomes f (1)(✓) +Rk(✓), which equals to

fk(✓)� hrfk(✓̄)�rf(✓̄),✓i

up to an additive constant. This function will be called gradient-enhanced loss function,

in which the gradient at point ✓̄ based on the local data is replaced by the global one.

This function has one very nice fixed point at the global minimum b✓: the minimizer of

the adaptive gradient-enhanced function at ✓̄ = b✓ is still b✓. This can easily be seen by

verifying that the gradient at the point b✓ is zero.

The idea of using such an adaptive gradient-enhanced function has been proposed in

Shamir et al. (2014) and Jordan et al. (2019), though the motivations are di↵erent. Jordan

et al. (2019) develop a Commmunication-e�cient Surrogate Likelihood (CSL) method using

the gradient-enhanced loss function f1(✓)�hrf1(✓̄)�rf(✓̄),✓i on the first machine, uses

the minimizer on that machine as a new estimate, and iterates these steps until convergence.

In the presence of a regularizer g in (2.1), one simply adds g to the gradient-enhanced loss;

see the Algorithm 1 below.

Note that in Algorithm 1, only the first machine solves optimization problems and

others just evaluate gradients. These machines are idling while the first one is working
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Algorithm 2 Distributed estimation using gradient-enhanced loss
Input: Initial value ✓0, number of iterations T .
For t = 0, 1, 2, · · · , T � 1:

• Each machine evaluates rfk(✓t) and sends to the central processor;

• The central processor computes rf(✓t) =
1
m

Pm
k=1 rfk(✓t) and broadcasts to ma-

chines;

• Each machine computes

✓t,k = argmin✓ {fk(✓) + g(✓)� hrfk(✓t)�rf(✓t),✓i}

and sends to the central processor;

• The central processor computes ✓t+1 =
1
m

Pm
k=1 ✓t,k and broadcasts to machines.

Output: ✓T .

hard. To fully utilize the computing power of machines and accelerate convergence, all

the machines can optimize their corresponding gradient-enhanced loss functions in parallel

and the central processor then aggregates the results. This is motivated by the Distributed

Approximate NEwton (DANE) algorithm (Shamir et al., 2014). Algorithm 2 describes the

procedure in detail. Intuitively, the averaging step requires little computation but helps

reduce the variance of estimators on node machines and enhance the accuracy.

We now illustrate Algorithm 2 in the context of linear regression. Given samples

{(xi, yi)}i2[N ], the kth machine defines a quadratic loss function

fk(✓) =
1

2n

X

i2Ik

(yi � x
>
i ✓)

2 =
1

2
✓> b⌃k✓ � bw>

k ✓ +
1

2n

X

i2Ik

y
2
i .

Here, b⌃k = 1
n

P
i2Ik xix

>
i and bwk = 1

n

P
i2Ik xiyi. The overall loss function is f(✓) =

1
m

Pm
k=1 fk(✓) = 1

2✓
> b⌃✓ � bw>✓, where b⌃ = 1

m

Pm
k=1

b⌃k, bw = 1
m

Pm
k=1 bwk. Then the
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update of Algorithm 2 in one iteration is

✓t+1,k = (I� b⌃
�1

k
b⌃)✓t + b⌃

�1

k bw, (2.3)

✓t+1 =

✓
I� 1

m

mX

k=1

b⌃
�1

k
b⌃
◆
✓t +

1

m

mX

k=1

b⌃
�1

k bw. (2.4)

Intuitively, this is a form of contraction towards the global minimizer b✓. As for the logistic

regression, we can also write out the corresponding enhanced losses and minimize them

using Newton’s method. Due to space limitations, we refer to Appendix C for details.

2.3 The CEASE Algorithm in general regimes

Algorithms 1 and 2 are built upon large-sample regimes, with su�ciently strong convexity

of {fk + g}mk=1 and small discrepancy between them. This requires the local sample size

n to be large enough, which may not be the case in practice. Even worse, the required

local sample size depends on structural parameters, making such a condition unverifiable.

In fact, our numerical experiments confirm the instability of Algorithms 1 and 2 even for

moderate n. A naive method of remedy is to add strict convex quadratic regularization

q(✓). While this remedy can make the algorithm converge rapidly, the nonadaptive nature

of q(✓) will lead to a wrong target. Instead of using a fixed q, we will adjust it according to

current solutions. The idea stems from the proximal point algorithm (Rockafellar, 1976).

Definition 2.1. For any convex function h : Rp ! R, define the proximal mapping

proxh : Rp ! Rp
, x 7! argminy2Rp{h(y) + ky � xk22/2}.

For a given ↵ > 0, the proximal point algorithm for minimizing h iteratively computes

xt+1 = prox↵�1h(xt) = argminx2Rp{h(x) + (↵/2)kx� xtk22}, 8t � 0,
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starting from some initial value x0. It is a strongly convex optimization, shrinking to-

wards the current value xt. Under mild conditions, {xt}1t=0 converges linearly to some

bx 2 argminRph(x) (Rockafellar, 1976).

Now we take h = f + g and write the proximal point iteration for our problem (2.2):

✓t+1 = prox↵�1(f+g)(✓t) = argmin✓2Rp

n
f(✓) + g(✓) +

↵

2
k✓ � ✓tk22

o
. (2.5)

Each iteration (2.5) is a distributed optimization problem, whose object function is not

available to node machines. But it can be solved by Algorithms 1 and 2. Specifically,

suppose we have already obtained ✓t and aim for ✓t+1 in (2.5). Letting g̃(✓) = g(✓) +

(↵/2)k✓ � ✓tk22, Algorithm 2 starting from ✓̃0 = ✓t produces iterations over s = 0, 1, · · ·

✓̃s,k = argmin✓2Rp

n
fk(✓) + g̃(✓) + hrfk(✓̃s)�rf(✓̃s),✓i

o
, k 2 [m],

✓̃s+1 =
1

m

mX

k=1

✓̃s,k.

When ↵ + ⇢0 > �, {✓̃s}1s=0 converges Q-linearly ∗ to ✓t+1. On the other hand, there is

no need to solve (2.5) exactly, as prox↵�1(f+g)(✓t) is merely an intermediate quantity for

computing b✓. We therefore only run one iteration of Algorithm 2 and use the resulting

approximate solution as ✓t+1. This considerably simplifies the algorithm, reducing double

loops to a single loop, and enhances statistical interpretation of the method as a multi-step

estimator. However, it makes technical analysis more challenging. Similarly, we may also

use one step of Algorithm 1 to compute the inexact proximal update.

The above discussions lead us to propose two Communication-E�cient Accurate Statis-

tical Estimators (CEASE) in Algorithms 3 and 4, which use the proximal point algorithm

∗According to Nocedal and Wright (2006), a sequence {xn}1n=1 in Rp is said to converge Q-linearly to
x⇤ 2 Rp if there exists r 2 (0, 1) such that kxn+1 � x⇤k2  rkxn � x⇤k2 for n su�ciently large.
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Algorithm 3 Communication-E�cient Accurate Statistical Estimators (CEASE)
Input: Initial value ✓0, regularizer ↵ � 0, number of iterations T .
For t = 0, 1, 2, · · · , T � 1:

• Each machine evaluates rfk(✓t) and sends to the 1st machine;

• The 1st machine computes rf(✓t) =
1
m

Pm
k=1 rfk(✓t) and

✓t+1 = argmin✓

n
f1(✓) + g(✓)� hrfk(✓t)�rf(✓t),✓i+

↵

2
k✓ � ✓tk22

o
,

and broadcasts to other machines.

Output: ✓T .

Algorithm 4 CEASE with averaging
Input: Initial value ✓0, regularizer ↵ � 0, number of iterations T .
For t = 0, 1, 2, · · · , T � 1:

• Each machine evaluates rfk(✓t) and sends to the central processor;

• The central processor computes rf(✓t) =
1
m

Pm
k=1 rfk(✓t) and broadcasts to ma-

chines;

• Each machine computes

✓t,k = argmin✓

n
fk(✓) + g(✓)� hrfk(✓t)�rf(✓t),✓i+

↵

2
k✓ � ✓tk22

o

and sends to the central processor;

• The central processor computes ✓t+1 =
1
m

Pm
k=1 ✓t,k and broadcasts to machines.

Output: ✓T .

as the backbone and obtain inexact updates in a distributed manner. They are regularized

versions of Algorithms 1 and 2, with an additional proximal term in the objective functions.

That term reduces relative di↵erences of the local loss functions on individual machines,

and is crucial for convergence when {fk}mk=1 are not similar enough. In Appendix A we

introduce a variant of Algorithm 4 which also stablizes Algorithm 2.

In each iteration, Algorithm 3 has one round of communication and one optimization

problem to solve. Although Algorithm 4 has two rounds of communication per iteration,

only one round involves parallel optimization and the other is simply averaging. We will
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compare their theoretical guarantees as well as practical performances in the sequel.

Algorithm 4 is an extension of the DANE algorithm in Shamir et al. (2014) to regular-

ized empirical risk minimization. While DANE is originally motivated by mirror descent,

we view it as a distributed implementation of the proximal point algorithm. The new per-

spective helps us obtain stronger convergence guarantees. Ideas from the proximal point

algorithm have appeared in the literature of distributed stochastic optimization for di↵er-

ent purposes such as accelerating first-order algorithms (Lee et al., 2017a) and regularizing

sizes of updates (Wang et al., 2017b).

3 Deterministic analysis

We first present in Section 3.1 the deterministic (almost sure) results for Algorithms 3 and

4 based on high-level structural assumptions. As special cases of these algorithms with

↵ = 0, Algorithms 1 and 2 will be analyzed in Section 3.2.

3.1 Deterministic analysis of the CEASE algorithm

Definition 3.1. Let h : Rp ! R be a convex function, ⌦ ✓ Rp
be a convex set, and ⇢ � 0.

h is ⇢-strongly convex in ⌦ if h(y) � h(x)+hg,y�xi+ ⇢
2ky�xk22, 8x,y 2 ⌦ and g 2 @h(x).

Assumption 3.1 (Strong convexity). f + g has a unique minimizer b✓ 2 Rp
, and is ⇢-

strongly convex in B(b✓, R) for some R > 0 and ⇢ > 0.

Assumption 3.2 (Homogeneity). kr2
fk(✓)�r2

f(✓)k2  �, 8k 2 [m],✓ 2 B(b✓, R).

We will refer to � as a homogeneity parameter. Based on both assumptions, we define

⇢0 = sup
n
c 2 [0, ⇢] : {fk + g}mk=1 are c-strongly convex in B(b✓, R)

o
. (3.1)
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A simple but useful fact is max{⇢ � �, 0}  ⇢0  ⇢. In most interesting problems, the

population risk F is smooth and strongly convex on any compact set. When {Xi}Ni=1 are

i.i.d. and the total sample size N is large, the empirical risk f concentrates around F and

inherits nice properties from the latter, making Assumption 3.1 hold easily.

On the other hand, since the empirical risk functions {fk}mk=1 are i.i.d. stochastic

approximations of the population risk F , they should not be too far away from their average

f provided that n is not too small. Assumption 3.2 is a natural way of characterizing this

similarity. It is a generalization of the concept “�-related functions” for quadratic losses in

Arjevani and Shamir (2015). With high probability, it holds with reasonably small � and

large R under general conditions. Large n implies small homogeneity parameter � and thus

similar {fk}mk=1. Assumption 3.2 always holds with � = maxk2[m]{sup✓2B(b✓,R) kr2
fk(✓) �

Er2
fk(✓)k2 + sup✓2B(b✓,R) kr2

f(✓)� Er2
fk(✓)k2}.

The following additional assumption on smoothness of the Hessian matrix of f+g is not

necessary for contraction, but it helps us obtain a much stronger result on the contraction

rate of Algorithm 2, justifying the power of the simple averaging step.

Assumption 3.3 (Smoothness of Hessian). g 2 C
2(Rp), and there exists M � 0 such that

k[r2
f(✓0) +r2

g(✓0)]� [r2
f(✓00) +r2

g(✓00)]k2  Mk✓0 � ✓00k2, 8✓0
,✓00 2 B(b✓, R).

Theorem 3.1 gives contraction guarantees for Algorithms 3 and 4. It is deterministic

and non-asymptotic by nature.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Consider the multi-step estimators

{✓t}Tt=0 generated by Algorithm 3 or 4. Suppose that ✓0 2 B(b✓, R/2) and [�/(⇢0 + ↵)]2 <

⇢/(⇢+ 2↵).
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(a) For both Algorithms 3 and 4, we have

k✓t+1 � b✓k2  k✓t � b✓k2 ·
�

⇢0+↵

p
⇢2 + 2↵⇢+ ↵

⇢+ ↵
, 0  t  T � 1; (3.2)

(b) If Assumption 3.3 also holds, then for Algorithm 4 we have

k✓t+1 � b✓k2  k✓t � b✓k2 ·
�t

p
⇢2 + 2↵⇢+ ↵

⇢+ ↵
, 0  t  T � 1, (3.3)

where we define �t =
�

⇢0+↵
·min{1, �

⇢+↵(1 +
M

⇢0+↵
k✓t � b✓k2)};

(c) Both multiplicative factors in (3.2) and (3.3) are strictly less than 1.

In the contraction factor in (3.2), the two summands
�
p
⇢2+2↵⇢

(⇢0+↵)2
and ↵

⇢+↵ come from

bounding the inexact proximal update k✓t+1�prox↵�1(f+g)(✓t)k2 and the residual kprox↵�1(f+g)(✓t)�

b✓k2, respectively. Similar results hold for (3.3). The condition [�/(⇢0 + ↵)]2 < ⇢/(⇢ + 2↵)

ensures that both contraction factors are less than 1. Note that (3.3) requires Assumption

3.3, which forces g to be smooth.

Theorem 3.1 shows the Q-linear convergence of the sequence {✓t}1t=0 generated by both

Algorithms 3 and 4 under quite general settings. The contraction rate depends explicitly

on the structural parameters and the choice of ↵. The local loss functions {fk}mk=1 just

need to be convex and smooth, and the convex penalty g is allowed to be non-smooth, e.g.

the `1 norm. On the contrary, most algorithms for distributed statistical estimation are

only designed for smooth problems, and many of them are only rigorously studied when

the loss functions are quadratic or self-concordant (Shamir et al., 2014; Zhang and Xiao,

2015; Wang et al., 2017b). This is another important aspect of our contributions.

We immediately see from Theorem 3.1 that Algorithms 3 and 4 converge linearly as

long as [�/(⇢0+↵)]2 < ⇢/(⇢+2↵), which is guaranteed to hold by choosing su�ciently large
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↵. By contrast, however, we’ll show in Section 3.2 that Algorithms 1 and 2 (corresponding

to ↵ = 0) hinges on the homogeneity assumption ⇢0 > � in Theorem 3.2, i.e. the functions

{fk}mk=1 must be similar enough. In the statistical setting, this requires the local sample

size n to be large. Therefore, proper regularization provides a safety net for the algorithms

under general regimes with potentially insu�cient local sample size. Corollary 3.1 below

gives a guideline for choosing ↵ to make Algorithms 3 and 4 converge in general.

Corollary 3.1. Let Assumptions 3.1 and 3.2 hold, ✓0 2 B(b✓, R/2), and {✓t}Tt=0 be the

iterates of Algorithm 3 or 4. With any ↵ � 4�2/⇢, both algorithms converge with contraction

factors in (3.2) and (3.3) bounded by (1� ⇢
10(↵+⇢)).

On the other hand, consider the case where the local loss functions have small relative

di↵erence �/⇢. In this case, Theorem 3.2 states that the contraction factors for unregu-

larized versions (↵ = 0) of Algorithms 3 and 4 are in the same order of �/⇢ and (�/⇢)2,

respectively, which are smaller than the contracting factors with ↵ > 0. The following

corollary characterizes the upper bound for ↵ so that the contraction factors remain at

these small orders.

Corollary 3.2. Let Assumptions 3.1 and 3.2 hold, ✓0 2 B(b✓, R/2), and suppose ↵  C�
2
/⇢

for some constant C. There exist constants C1 and C2 such that the followings hold when

�/⇢ is su�ciently small:

(a) Algorithms 3 and 4 have the contraction property

k✓t+1 � b✓k2  C1(�/⇢)k✓t � b✓k2, 0  t  T � 1;
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(b) If Assumption 3.3 also holds and k✓t � b✓k2  ⇢/M , then for Algorithm 4

k✓t+1 � b✓k2  C2(�/⇢)
2k✓t � b✓k2.

Note that the second result above only holds given Assumption 3.3, which requires a

smooth regularization g. Corollary 3.2 reveals that by choosing ↵ ⇣ �
2
/⇢, the contraction

factors are essentially the same as those of the unregularized (↵ = 0) algorithms when �/⇢

is small. By combining Corollaries 3.1 and 3.2, we use ↵ ⇣ �
2
/⇢ as a default choice for

Algorithms 3 and 4 to become both fast and robust. They are reliable in general cases

(Corollary 3.1) and e�cient in nice cases (Corolary 3.2 and Theorem 3.1 with ↵ = 0)

Algorithms 3 and 4 attain communication e�ciency by utilizing similarity among local

loss functions: The contraction factors in Corollary 3.2 go to zero if �/⇢ does. In fact, both

algorithms achieve "-accuracy within O(max{1, (�/⇢)2} log(k✓0�b✓k2
" )) rounds of communica-

tion. In contrast, the distributed accelerated gradient descent requires O(
p
0 log(

k✓0�b✓k2
" ))

rounds of communication to achieve "-accuracy (Shamir et al., 2014), with 0 being the

condition number of (f + g), which does not take advantage of sample size n. As long as

�/⇢ ⌧ 
1/4
0 , Algorithms 3 and 4 communicate less than the distributed accelerated gradient

descent. And again, our general results for Algorithms 3 and 4 also apply to the case with

nonsmooth penalty functions while those for distributed accelerated gradient descent do

not.

Moreover, if (f + g) is smooth and ✓t is reasonably close to b✓, Corollary 3.2 shows

that each iteration of Algorithm 4 is roughly equivalent to two iterations of Algorithm 3,

although the former only has one round of optimization. The averaging step in Algorithm

4 reduces the error as much as the optimization step, while taking much less time. In this

case, Algorithm 4 is preferable, and our numerical experiments also confirm this.
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For unregularized empirical risk minimization, i.e. g = 0 in (2.2), Algorithm 4 reduces

to an extension or a useful case of the DANE algorithm (Shamir et al., 2014). In this

case, Theorem 3.1 and its corollaries refine the analysis of DANE (Shamir et al., 2014) in

several aspects. On the one hand, our analysis handle both smooth and nonsmooth prob-

lems, while in Shamir et al. (2014), the theoretical analysis beyond quadratic loss requires

extremal choice of tuning parameters and does not show any advantage over distributed

implementation of the gradient descent. On the other hand, as mentioned in Section 2, we

derive Algorithm 4 from the proximal point algorithm with a new prospective, which leads

to sharp convergence analysis along with suggestions on choosing the tuning parameter ↵.

As a by-product, we close a gap in the theory of DANE in non-quadratic settings. Our

analysis techniques are potentially useful for other distributed optimization algorithms,

especially when the loss is not quadratic.

3.2 Deterministic analysis in large-sample regimes

In this section, we restrict ourselves to large-sample regimes where the local sample size n

is su�ciently large such that ⇢0 > � � 0, where ⇢0 is the strong convexity parameter in

(3.1). The following theorem gives deterministic results for Algorithms 1 and 2.

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold, and ⇢0 > � � 0. Consider the iterates

{✓t}1t=0 produced by Algorithm 1 or 2, with ✓0 2 B(b✓, R). Then

k✓t+1 � b✓k2  (�/⇢0)k✓t � b✓k2, 8t � 0.
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In addition, if Assumption 3.3 also holds, then for Algorithm 2 we have

k✓t+1 � b✓k2 
�

⇢0
k✓t � b✓k2 ·min

⇢
1,

�

⇢

✓
1 +

M

⇢0
k✓t � b✓k2

◆�
, 8t � 0.

Note that the last inequality requires Assumption 3.3 and thus a smooth regularization

g. The first part of Theorem 3.2 is a refinement of the analysis in Jordan et al. (2019),

since we allow the initial estimator to be inaccurate and we have more explicit rates of

contraction of optimization errors. This will be further demonstrated in Section 4.2.

The second part points out benefits of the averaging step, which is a novel result. Similar

to the results on Algorithm 4, Theorem 3.2 shows that when ✓t is close to b✓, with an addi-

tional standard assumption on Hessian smoothness, the averaging step alone in Algorithm

2 is almost as powerful as an optimization step in terms of contraction: The contracting

constant will eventually be �
⇢0
�
⇢ . With negligible computational cost, averaging significantly

improves upon individual solutions {✓t,k}mk=1 by doubling the speed of convergence.

4 Statistical analysis

We further analyze the statistical properties of the above algorithms under a generalized

linear model. Essentially, both the CSL methods and the CEASE algorithm are T -step

estimators, starting from the initial estimator ✓0. The question here is the e↵ect of itera-

tions in the multiple step estimators and the role of the initial estimator. We start with

statistical analysis of Algorithms 3 and 4 in Section 4.1, and then study Algorithms 1 and

2 in Section 4.2. In Section 4.3, we provide practical guidance when implementing the

CEASE algorithm based on these analysis.
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4.1 Multi-step estimators in general regimes

The deterministic analysis in Section 3.2 applies to a wide range of statistical models. Here

we consider the generalized linear model with canonical link, where our samples are i.i.d.

pairs {(xi, yi)}Ni=1 of covariates and responses and the conditional density of yi given xi is

given by

h(yi;xi,✓
⇤) = c(xi, yi) exp

�
yi(x

>
i ✓

⇤)� b(x>
i ✓

⇤)
�
.

For simplicity, we let the dispersion parameter to be 1 as we do not consider the issue of

over-dispersion; b(·) is some known convex function, and c is a known function such that h

is a valid probability density function. The negative log-likelihood of the whole data is an

a�ne transformation of f(✓) = 1
m

Pm
k=1 fk(✓) with

fk(✓) =
1

n

X

i2Ik

⇥
b(x>

i ✓)� yi(x
>
i ✓)
⇤
.

It is easy to verify that

rfk(✓) =
1

n

X

i2Ik

[b0(x>
i ✓)� yi]xi and r2

fk(✓) =
1

n

X

i2Ik

b
00(x>

i ✓)xix
>
i .

Assume that xi = (1,u>
i )

> 2 Rp, where {ui}Ni=1 ✓ Rp�1 are i.i.d. random covariate

vectors with zero mean and covariance matrix ⌃. Suppose there exist universal positive

constants A1, A2 and A3 such that A1  k⌃k2  A2p
A3 . Let ⌃⇤ = E(xix

>
i ) =

0

B@
1 0

0 ⌃

1

CA,

g be a deterministic penalty function, and F (✓) = Ef(✓) be the population risk function.

Below we impose some standard regularity assumptions.

Assumption 4.1. • {⌃�1/2
ui}Ni=1 are i.i.d. sub-Gaussian random vectors.
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• For all x 2 R, |b00(x)| and |b000(x)| are bounded by some constant.

• k✓⇤k2 is bounded by some constant.

As in Assumptions 3.1 and 3.3, the following general assumptions are also needed for

our analysis. Here R is some positive quantity that satisfies R < A4p
A5 for some universal

constants A4 and A5.

Assumption 4.2. There exists a universal constant ⇢ > 0 such that (F + g) is ⇢-strongly

convex in B(✓⇤
, 2R).

The following smoothness assumption is only needed for a part of our theory; it is used

to show that the averaging step in Algorithm 4 can significantly enhance the accuracy.

Assumption 4.3. g 2 C
2(Rp), and there exists a universal constant M � 0 such that

k[r2
F (✓0) +r2

g(✓0)]� [r2
F (✓00) +r2

g(✓00)]k2  Mk✓0 � ✓00k2, 8✓0
,✓00 2 B(✓⇤

, 2R).

Under the model assumptions above, we can explicitly determine the rate of � in As-

sumption 3.2. In particular, we will show in Lemma E.5 in Appendix E that

max
k2[m]

max
✓2B(b✓,R)

kr2
fk(✓)�r2

f(✓)k2 = OP

 
k⌃k2

r
p(log p+ logN)

n

!
,

provided that n � cp for an arbitrary positive constant c. Therefore, with high probability,

� ⇣ k⌃k2
p

p(log p+ logN)/n. Omitting the logarithmic terms, we see that the contraction

factor is approximately 
p

p/n, where  , k⌃k2/⇢ can be viewed as a condition number.

This rate is more explicit on p and  than that in Jordan et al. (2019), where finite p and

 are assumed. In addition, with a smooth regularization, Algorithm 4 benefits from the

averaging step in that it improves the contraction rate to approximately 
2
p/n.
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Let ✓t be the t-th iterate of one of the proposed algorithms. It is clear that the statistical

error of the estimator ✓t is bounded by its optimization error and the statistical error of b✓:

k✓t � ✓⇤k2  k✓t � b✓k2 + kb✓ � ✓⇤k2.

The second term is well-studied in statistics, which is of order OP(
p
p/N) under mild

conditions. In the following theorem, we show that for the first term (i.e. the optimization

error), with proper choice of ↵, each iteration of Algorithm 3 or 4 makes ✓t closer to the

global minimum b✓ by some order depending on local sample size. Thus, through finite

steps, the optimization errors are eventually negligible in comparison with statistical errors

(assuming N is of order (n/p)a for a finite a in typical applications), and the distributed

multi-step estimator will work as well as the global minimum as if the data were aggregated

in the central server.

Theorem 4.1. Suppose that Assumptions 4.1 and 4.2 hold, and with high probability the

initial value ✓0 2 B(b✓, R/2). Let ⌘ = 
2(logN)p/n and  = k⌃k2/⇢. For any c1, c2 > 0,

there exists C > 0 such that the followings hold with high probability:

(a) If n � c1p and ↵ � C⇢⌘, then both Algorithms 3 and 4 have linear convergence

k✓t � b✓k2 

1� ⇢

10(↵ + ⇢)

�t
k✓0 � b✓k2, 8t � 0;

(b) If ⌘ is su�ciently small and ↵  c2⇢⌘, then for both algorithms

k✓t � b✓k2 = OP(⌘
t/2k✓0 � b✓k2), 8t � 0;

23



in addition, if Assumption 4.3 also holds, then for Algorithm 4 we have

k✓t � b✓k2 = OP(⌘
t�t0k✓t0 � b✓k2), 8t � t0,

where t0 = d2 log(CMR/⇢)
log(1/⌘) e.

In contrast to a fixed contraction derived by Shamir et al. (2014), Theorem 4.1 explains

the significant benefits of large local sample size even in the presence of a non-smooth

penalty: the optimization error shrinks by a factor that converges to zero explicitly in n.

As a brief illustration, let us consider the case with smooth loss functions, su�cient local

sample size and no regularization. Let ✓0 be the average of individual estimators on node

machines. By Corollary 2 in Zhang et al. (2013), this simple divide-and-conquer estimator

has accuracy k✓0 � ✓⇤k2 = OP(max{
p

p
N ,

p
n ,


p
p log p
n }). Using the explicit expression of ⌘,

we can easily deduce from Theorem 4.1 (b) that the one-step estimator ✓1 obtained by

Algorithm 3 behaves the same as the global minimizer b✓ if the local sample size satisfies

n
3 � N(2

p logN)(p + 
2 log p). In this case, the local optimization in Algorithm 3 can

further be replaced by using the explicit one-step estimator as in Bickel (1975) and Jordan

et al. (2019), since the initial estimator is in a consistent neighborhood. More generally, the

t-step estimator ✓t has negligible optimization error under even weaker local sample size

requirement: nt+2 � N(2
p logN)t(p+ 

2 log p). A similar remark applies to Algorithm 4.

Similar to the deterministic results, the averaging step is about as e↵ective as the

optimization step when g is smooth and ✓t is su�ciently close to b✓ in that after a finite t0

iterations. See a simplified example in Section 4.2 with ↵ = 0.

As for the initialization, the condition ✓0 2 B(b✓, R/2) is mild, since b✓ is usually a

consistent estimate and k✓⇤k2 is bounded (Assumption 4.1). In contrast with Jordan et al.

(2019), we allow inaccurate initial value such as ✓0 = 0 and give more explicit rates of
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contraction even when p and  diverge. On the other hand, the accuracy of the initial

estimator ✓0 does help reduce the number of iterations.

Combining the results to be presented in Theorem 4.2, we’ll see that by choosing ↵ ⇣ ⇢⌘,

Algorithms 3 and 4 inherit all the merits of Algorithms 1 and 2 in the large-n regime – fast

linear contraction of rate
p
⌘ = 

p
p(logN)/n, and for Algorithm 4, a even faster rate of

⌘ = 
2
p(logN)/n to b✓ when the loss and the penalty functions are smooth. These facts also

guarantee that Algorithms 3 and 4 reach the statistical e�ciency in O( logk✓0�b✓k2+log(N/p)
log(1/⌘) )

iterations. On the other hand, compared to Algorithms 1 and 2, Algorithms 3 and 4

overcome the di�culties with a small local sample size n in that as long as n/p is bounded

away from some small constant (which is reasonable for many big-data problems of interest),

shrinkage of optimization error is guaranteed. Moreover, while it is hard to check whether

n is su�ciently large in practice, proper choice of ↵ always guarantees linear convergence,

and the contraction rates adapt to the sample size n. In this way, Algorithms 3 and 4

perfectly resolve the main issue of their vanilla versions.

We can get stronger results in the specific case of distributed linear regression, where

the contraction rate has nearly no dependence on the conditional number . Due to space

constraints, we put all the details in Appendix B.

4.2 Multi-step estimators in large-sample regimes

We now present the contraction of optimization error of Algorithms 1 and 2.

Theorem 4.2. Suppose that Assumptions 4.1 and 4.2 hold, and with probability tending

to one, ✓0 2 B(b✓, R) for some R > kb✓ � ✓⇤k2. For Algorithms 1 and 2, we have

k✓t � b✓k2 = OP(⌘
t/2k✓0 � b✓k2), 8t � 0,
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where ⌘ = 
2
p(logN)/n. In addition, let Assumption 4.3 also hold. There exists some

constant C such that for Algorithm 2 we have

k✓t � b✓k2 = OP(⌘
t�t0k✓t0 � b✓k2), 8t � t0, (4.1)

where t0 = d2 log(CMR/⇢)
log(1/⌘) e.

The strengthened result (4.1) requires Assumption 4.3 and thus smooth g. Theorem 4.2

shows that when n is su�ciently large, Algorithms 1 and 2 behave similarly as Algorithms

3 and 4 – faster convergence with the larger n, mild restrictions on initialization, and

averaging speeds up contraction given smooth loss. However, there is no convergence

guarantee in general regimes. Section 5 further shows that with insu�cient local sample

size, the practical performance Algorithms 1 and 2 is less satisfactory.

Finally, to see how the averaging step reduces the statistical error (i.e. the distance

between the estimator and ✓⇤), we continue to look at the linear regression example men-

tioned at the end of Section 2.2. For simplicity, assume {xi}i2[N ] are i.i.d. standard normal

random vectors. (2.3) and (2.4) can be expressed as

b⌃
1/2

(✓t+1,k � b✓) =
⇣
I� b⌃

1/2 b⌃
�1

k
b⌃

1/2
⌘
· b⌃

1/2
(✓t � b✓),

b⌃
1/2

(✓t+1 � b✓) =
"
I� b⌃

1/2
✓

1

m

mX

k=1

b⌃
�1

k

◆
b⌃

1/2

#
· b⌃

1/2
(✓t � b✓).

If further n � p, then the two contraction factors satisfy

kI� b⌃
1/2 b⌃

�1

k
b⌃

1/2
k2 = OP(

p
p/n), (4.2)

����I� b⌃
1/2
✓

1

m

mX

k=1

b⌃
�1

k

◆
b⌃

1/2
����
2

= OP(p/n). (4.3)
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When the Algorithm 1 applies to this problem, the expression changes slightly to

b⌃
1/2

(✓t+1,1 � b✓) =
⇣
I� b⌃

1/2 b⌃
�1

1
b⌃

1/2
⌘
· b⌃

1/2
(✓t,1 � b✓).

The smaller magnitude in (4.3) is due to the averaging.

Suppose that we initialize the algorithm using the one-shot average ✓0 = 1
m

Pm
k=1
b✓k,

where b✓k is the least squares solution on the kth machine. When n = O(
p
Np), we have

p
p/N = O(p/n). Zhang et al. (2013) assert that kb✓�✓⇤k2 = OP(

p
p
N ), k✓0�b✓k2 = OP(

p
n).

Thus, the initial statistical error is k✓0 � ✓⇤k2 = OP(max{
p

p
N ,

p
n}) = OP(

p
n). By the

contraction properties in (4.2) and (4.3), the optimization errors are

k✓1,k � b✓k2 = OP(
p

p/n)k✓0 � b✓k2 = OP(p
3/2

/n
3/2),

k✓1 � b✓k2 = OP(p/n)k✓0 � b✓k2 = OP(p
2
/n

2).

We can see that when p
2
/n

2 ⌧
p

p/N ⌧ p
3/2

/n
3/2 (or equivalently, p3/4N1/4 ⌧ n ⌧

p
3/2

N
1/3), the optimization error is negligible for ✓1, but is not negligible for ✓1,k. When n

is smaller, even more iterations are needed. A refined analysis of distributed least squares

is in Appendix B.

4.3 Guidance on practice

We now provide some general guidance on how to implement the CEASE algorithm in

practice. First, we recommend choosing an initialization depending on the magnitude of

the local sample size n. In particular, when n is not very large compared to the dimension

p, a zero initialization would be more robust. On the other hand, given a moderate or large

n, the one-shot average estimator will lead to extremely fast convergence.
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Second, according to Theorem 4.1, it su�ces to take ↵ of the order of ⇢2
p logN/n. In

practice, setting ↵ to be a small multiple of p/n seems suitable in many occasions.

Finally, as is already shown, both Algorithm 3 and 4 reach statistical e�ciency in

O( logk✓0�b✓k2+log(N/p)
log(1/⌘) ) iterations. In both our simulations and real data examples, the

CEASE algorithms with a properly chosen ↵ converge to the centralized estimator within

10 iterations. With a moderate n, a warm start further boosts the convergence speed.

5 Numerical experiments

5.1 Synthetic data

We first conduct distributed logistic regression to illustrate the e↵ect of local sample size

and initialization on convergence. We keep the total sample size N = 10000 and the

dimensionality p = 101 fixed, and generate the i.i.d. data {(xi, yi)}Ni=1 as follows: xi =

(1,u>
i )

> with ui ⇠ N(0p�1,⌃) and ⌃ = diag(10, 5, 2, 1 · · · 1) 2 R(p�1)⇥(p�1); P(yi = 1) =

1 � P(yi = 0) = 1/(1 + e
�x>

i ✓⇤
) where ✓⇤ 2 Rp is a random vector with norm 3 whose

direction is chosen uniformly at random from the sphere. We use the natural logarithm

of the estimation error k✓t � ✓⇤k2 to measure the performance of di↵erent algorithms,

including multiple versions of the CEASE algorithms, GIANT (Wang et al., 2018), ADMM

(Boyd et al., 2011) and accelerated gradient descent (Nesterov, 1983).

Figure 1 shows how the estimation errors evolve with iterations. The curves show the

average values over 100 independent runs; the error bands correspond to one standard de-

viation. The regimes “large n”, “moderate n” and “small n” refer to (n,m) = (2000, 5),

(1000, 10) and (250, 40); “zero initialization” and “good initialization” refer to ✓0 = 0 (bot-

tom panel) and ✓̄ (top panel), respectively. Here ✓̄ is the one-shot distributed estimator
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(Zhang et al., 2013) that averages the individual estimators on node machines. According

to Figure 1, the standard deviation of each iterate is around 0.1. For the “large n, good

initialization” regime, all of the iterates are unsurprisingly very close to the optimal solu-

tion. Their error bands will cover up the curves. So we omit the bands in that case for the

sake of clarity.

With proper regularization, the two CEASE algorithms are the only ones that converge

rapidly in all scenarios. The purely deterministic methods ADMM (Boyd et al., 2011) and

accelerated gradient descent (Nesterov, 1983) are also reliable but slow. Other distributed

algorithms like unregularized CEASE and GIANT (Wang et al., 2018) easily fail when the

local sample size is small or the initialization is uninformative. In addition, the CEASE

with averaging (Algorithm 4) is superior to the one without averaging (Algorithm 3). For

example, when (n,m) = (1000, 10), the averaged CEASE with ↵ = 0 converges while the

one without averaging does not. Hence the averaging step leads to better performance.

We also test the e�cacy of our algorithms in the distributed `1-regularized logistic

regression, where the penalty g is nonsmooth (See Appendix D for details). To summarize,

our simulations demonstrate several important properties of the CEASE Algorithms:

• In all scenarios, the CEASE Algorithms converge rapidly, usually within several steps,

which is consistent with our theory;

• The CEASE Algorithms e�ciently utilize statistical structures and similarities among

local losses, and benefit from the averaging step with smooth loss functions;

• The CEASE Algorithms are also able to handle the most general situations (e.g.

small local sample size, uninformative initialization) with convergence guarantees.
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Figure 1: Impacts of local sample size and initialization on convergence. The x-axis and y-
axis are the number of iterations and log k✓t�✓⇤k2. The dashed lines show the error of the
minimizer of the overall loss function. The top and bottom panels use ✓̄ and 0 for initial-
ization, respectively. CEASE(a) and CEASE(0) refer to Algorithm 4 with ↵ = 0.15p/n and
0; CEASE-single(a) and CEASE-single(0) refer to Algorithm 3 with ↵ = 0.15p/n and 0,
respectively. In particular, CEASE-single(0) is equivalent to the CSL algorithm in Jordan
et al. (2019).

5.2 Real data

As a real data example, we choose the Fashion-MNIST dataset (Xiao et al., 2017) as

a testbed for comparison of algorithms. The whole dataset consists of 70000 grayscale

images of fashion products in 10 classes, each of which has 6000 training samples and

1000 testing samples. We choose the 7th and 9th classes (Sneakers and Ankle boots) and

the goal is to train a classifier that distinguishes them. Each image has 28 ⇥ 28 = 784

pixels, represented by a feature vector in [0, 1]784. The number of training (or testing)

samples is 6000 ⇥ 2 = 12000 (or 1000 ⇥ 2 = 2000). We randomly partition the training

set and conduct logistic regression in a distributed manner. The performance metric is

the classification error on the testing set. Figure 2 shows the average performance of the

CEASE algorithms, ADMM, GIANT and AGD based on 100 independent runs, together
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with error bars showing one standard deviation. Here “large n”, “moderate n” and “small

n” refer to (n,m) = (1200, 10), (480, 25) and (240, 50), respectively. All of the iterations

are initialized with the one-shot average (Zhang et al., 2013). The experiments on this real

data example also support our theoretical findings.

Figure 2: Fashion-MNIST dataset. The x-axis and y-axis are the number of iterations
and the testing error. The dashed lines show the error of the classifier based on all of
the training samples. All of the iterations are initialized with the one-shot average ✓̄.
CEASE(a) and CEASE(0) refer to Algorithm 4 with ↵ = 0.15p/n and 0; CEASE-single(a)
and CEASE-single(0) refer to Algorithm 3 with ↵ = 0.15p/n and 0, respectively. In
particular, CEASE-single(0) is equivalent to the CSL algorithm in Jordan et al. (2019).
GIANT and CEASE-single(0) do not converge to the optimal solution.

6 Discussions

We have developed two CEASE distributed estimators (Algorithms 3 and 4) for statistical

estimation, with theoretical guarantees and superior performance on real data. Several new

directions are worth exploring. First, while we assumed exact computation for simplicity,

finer analysis should allow for inexact updates in practice. Second, we hope to extend

the algorithms to decentralized and asynchronous settings. Third, distributed versions of

confidence regions and hypothesis tests are of great importance, and our point estimation

strategies may serve as a starting point. Finally, it will be interesting to explore non-convex

statistical optimization problems such as mixture models and deep learning. We believe

that the idea of gradient-enhanced loss function still plays an important role.
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SUPPLEMENTARY MATERIAL

Supplementary material: The file “supplementary.pdf” contains more details and proofs

of the results in this paper.
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Section A introduces a variant of Algorithm 4. Section B outlines the deferred results

for distributed linear regression. Section C shows the CEASE iterates for distributed lo-

gistic regression. Section D presents the numerical results on the distributed `1-regularized

logistic regression. Section E presents the proofs of the main results. Section F lists a few

technical lemmas that are used throughout the proofs.

A A variant of Algorithm 4

As mentioned in the main text, Algorithm 2 is unstable when the local sample size n

is not su�ciently large. The proximal gradient method Algorithm A.1 was introduced to
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Algorithm A.1 Distributed estimation using gradient-enhanced loss (small step-sizes)

1: Input: Initial value ✓0, number of iterations T , step-sizes {↵t}T�1
t=0 .

2: For t = 0, 1, 2, · · · , T � 1:

• Each machine evaluates rfk(✓t) and sends to the central processor;

• The central processor computes rf(✓t) = 1
m

Pm
k=1 rfk(✓t) and broadcasts to

machines;

• Each machine computes

✓t,k = argmin✓ {fk(✓) + g(✓)� hrfk(✓t)�rf(✓t),✓i}

and sends to the central processor;

• The central processor computes ✓t+1 = (1� ↵t)✓t +
↵t
m

Pm
k=1 ✓t,k and broadcasts

to machines.

3: Output: ✓T .

stabilize the solution path by shrinking towards the solution in the previous step. A variant

of CEASE that stablizes Algorithm 2 is to take smaller step-sizes, which we now present.

The idea is applicable to stabilize Algorithm 1 too, resulting a variant to Algorithm 3.

The only di↵erence between Algorithms 2 and A.1 lies in the aggregation step. From ✓t

the former directly jumps to the average of new individual estimators {✓t,k}mk=1, while the

latter proceeds more cautiously in that direction. Algorithm 2 is a special case of Algorithm

A.1 with ↵t = 1 for all t. Choosing ↵t 2 (0, 1) helps stablize the iterates especially when n

is small.

Algorithm A.1 is conceptually simple and easy to implement. To see its performance, we

conduct distributed logistic regression on the first set of synthetic data in Section 5.1. The

numerical results there show that Algorithm 2 fails to converge when (n,m) = (250, 40).

We run Algorithm A.1 with constant step-size ↵0 = ↵1 = · · · under this setting, where

↵0 2 {1, 1/2, 1/4, 1/8}. We also run CEASE for comparison. Figure 1 summarizes all

the results. Again, the curves show the average values over 100 independent runs; the
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error bands correspond to one standard deviation. In this experiment, the performance

of Algorithm A.1 with ↵t = 1/4 is similar to that of CEASE; ↵t = 1/2 leads to even

faster convergence; and ↵t = 1/8 slows it down. For simplicity, we take the step-size to be

constant over time. It would be interesting to explore decaying schemes such as ↵t ⇣ t
��

for some � > 0.

Figure 1: Impacts of step-size ↵t on convergence. The x-axis and y-axis are the number
of iterations and log k✓t � ✓⇤k2. The dashed lines show the error of the minimizer of the
overall loss function. The left and right plots use ✓̄ and 0 for initialization. ↵t = 1, 1/2, 1/4
and 1/8 refer to Algorithm A.1 with the corresponding step-sizes. In particular, ↵t = 1 is
equivalent to Algorithm 2. CEASE refers to Algorithm 4 with ↵ = 0.15p/n.

The new algorithm also has some drawbacks. For instance, it implicitly assumes that

the local sample size is large enough so that each local machine can solve its optimiza-

tion problems reliably. Consider the example of the distributed logistic regression with

N samples and p variables in total. When m is large so that n = N/m < p, the loss

functions {fk}mk=1 on local machines are no longer strongly convex and thus do not have

unique minima. Then Algorithm A.1 needs to be modified because

✓t,k = argmin✓ {fk(✓) + g(✓)� hrfk(✓t)�rf(✓t),✓i}

is not uniquely defined. We need some pivoting rule to choose one optimal solution, such

as the one with the minimum Euclidean norm. That complicates the algorithm and it is
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not clear how to establish theoretical guarantees then. In contrast, the quadratic prox-

imity term in CEASE always make the objective function strongly convex. It ensures the

uniqueness of {✓t,k}mk=1 and facilitates computation.

B Distributed linear regression

In distributed linear regression, recall that the kth machine defines a quadratic loss function

1

2n

X

i2Ik

(yi � x>
i ✓)

2 =
1

2
✓> b⌃k✓ � bw>

k ✓ +
1

2n

X

i2Ik

y
2
i ,

where b⌃k = 1
n

P
i2Ik xix>

i and bwk = 1
n

P
i2Ik xiyi. Let f(✓) = 1

2✓
> b⌃✓ � bw>✓. Without

loss of geneality we write xi = (1,u>
i )

> 2 Rp.

Assumption B.1. • Eui = 0 and E(uiu>
i ) = ⌃ � 0. {⌃�1/2ui}Ni=1 are i.i.d. sub-

Gaussian random vectors with bounded k⌃�1/2uik 2.

• The minimum eigenvalue �min(⌃) is bounded away from zero.

• N/Tr(⌃) � C > 0 and n/ logm � c > 0 where C and c are constants.

For the least-squares, Algorithm 3 admits a close-form:

✓t+1 = [I� (b⌃1 + ↵I)�1 b⌃]✓t + (b⌃1 + ↵I)�1 bw,

and so does Algorithm 4:

✓t+1,k = [I� (b⌃k + ↵I)�1 b⌃]✓t + (b⌃k + ↵I)�1 bw,

✓t+1 =

 
I� 1

m

mX

k=1

(b⌃k + ↵I)�1 b⌃
!
✓t +

1

m

mX

k=1

(b⌃k + ↵I)�1 bw.
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Intuitively, the averaging step in Algorithm 4 reduces variance and accelerates convergence.

Below we study Algorithm 4 with the help of these analytical expressions. In the large

sample regime, we achieve a contraction factor of O(p/n) without any condition number;

in the general regime, linear convergence is still guaranteed.

Theorem B.1. Suppose Assumption B.1 holds and n/p is bounded away from zero. Then,

there exist positive constants C1, C2 and C3 such that when (i) n � C1p and ↵ � 0 or (ii)

↵ � C1Tr(⌃)/n, with probability tending to 1,

k✓t � b✓k2  2
p
 ⌘

tk✓0 � b✓k2, 8t � 0, (B.1)

where  = �max(⌃)/�min(⌃) and ⌘ = 1� 1�min{1/2,C2p/n}
1+C3↵

.

Theorem B.1 reveals the following remarkable facts about Algorithm 4: No matter what

relationship n and p have, proper regularization always guarantees linear convergence, and

the rate exhibits a smooth transition as p/n grows. Hence we can handle the distributed

statistical estimation problem without assuming large enough n, overcoming the di�culty

of other algorithms in literature (Zhang et al., 2013; Battey et al., 2018; Jordan et al.,

2019).

If n/p is large enough, the regularization is not necessary, but choosing ↵ ⇣ p/n does

not hurt much. This is because we can control the contraction factor as:

1� 1� C2p/n

1 + C3↵
=

C3↵ + C2p/n

1 + C3↵
= O(p/n).

When n/p is not that large, most distributed statistical estimation procedures fail. By

choosing ↵ = C̃Tr(⌃)/n for C̃ > C1 (see Condition (ii) of Theorem B.1) we still have
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linear convergence with contraction factor at most

1� 1� 1/2

1 + C3↵
= 1� 1

2 + 2C3C̃Tr(⌃)/n
< 1.

In most situations of interest we have Tr(⌃) ⇣ p (even for pervasive factor models). There-

fore we see that ↵ ⇣ p/n is a universal and adaptive choice of regularization over all the

possible relation between n and p.

Another benefit of the Algorithms is that the condition number  has only logarithmic

e↵ect on the iteration complexity, and the contraction factor in Theorem B.1 does not

depend on  at all. This is in stark contrast to the analysis under the same setting in

Shamir et al. (2014), and helps relax the commonly used boundedness assumption on the

condition number in Zhang et al. (2013), Battey et al. (2018), Jordan et al. (2019), among

others. It is worth mentioning that Wang et al. (2018) derive similar results for distributed

linear regression when the local sample size n is su�ciently large.

C Distributed logistic regression

In this section, we demonstrate the iterates of CEASE in distributed logistic regression.

For illustration purposes, we use Newton’s method on each local machine to solve the

optimization problem. It is worth pointing out that Newton’s method is not the only

choice. First-order methods such gradient descent can also e�ciently do the job.

Given samples {(xi, yi)}i2[N ], the loss on the kth machine is

fk(✓) =
1

n

X

i2Ik


log(1 + e

✓>xi)� yi(✓
>xi)

�
.
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Thus for Algorithm 4, we have for each iteration

✓t,k = argmin✓

⇢
fk(✓)� hrfk(✓t)�rf(✓t),✓i+

↵

2
k✓ � ✓tk22

�

= argmin✓

⇢
1

n

X

i2Ik

log(1 + e
✓>xi)� hbwk + ⌘t,k + ↵✓t,✓i+

↵

2
k✓k22

�
.

Here bwk = 1
m

P
i2Ik yixi, ⌘t,k = rfk(✓t) � rf(✓t). Assume that we start with ✓(0)

t,k = ✓t.

Then one Newton iteration of the above minimization problem is

✓(j+1)
t,k = ✓(j)

t,k �
✓
1

n
X>

k W
(j)
k Xk + ↵I

◆�1
X>

k (p
(j)
k �Yk)� ⌘t,k + ↵(✓(j)

t,k � ✓t)

�
.

Here, Xk 2 Rn⇥p is a matrix with rows consisting of {xi}i2Ik , Yk 2 Rn denotes the vector

of {yi}i2Ik , p
(j)
k 2 Rn is the vector of fitted probabilities with entry i equal to e

(✓
(j)
t,k)

>xi/(1+

e
(✓

(j)
t,k)

>xi), andW(j)
k 2 Rn⇥n is a diagonal matrix with entries {e(✓

(j)
t,k)

>xi/(1+e
(✓

(j)
t,k)

>xi)2}i2Ik .

Running one-step or multi-step Newton’s iteration will result in some ✓(j)
t,k su�ciently close

to ✓t,k. After that, we simply average them across all the machines and obtain ✓t+1.

For Algorithm 2, in each iteration, we simply set ↵ = 0 in the above procedure. For

Algorithm 3 and Algorithm 1, we simply omit the averaging step in Algorithm 4 and

Algorithm 2 respectively.

D Numerical results on distributed `1-regularized lo-

gistic regression

In this section, we present the performance of our algorithms in the distributed `1-regularized

logistic regression problem where nonsmooth penalty is present. We fix the total sample

size N = 5000 and the dimensionality p = 1001, and generate the i.i.d. data {(xi, yi)}Ni=1

7



as follows: xi = (1,u>
i )

> with ui ⇠ N(0p�1, Ip�1); P(yi = 1) = 1 � P(yi = 0) = ex
>
i ✓⇤

1+ex
>
i ✓⇤

where ✓⇤ = (1>
10,0

>
991)

>
/
p
2 2 Rp. We define the penalty function g(✓) = �k✓k1 with

� = 0.5
q

log p
N , such that the regularized MLE over the whole dataset recovers the nonzeros

of ✓⇤ accurately. Figure 2 shows the performance of CEASE algorithms and ADMM, where

“large n”, “moderate n” and “small n” refer to (n,m) = (1000, 5), (500, 10) and (250, 20),

and “zero initialization” and “good initialization” refer to ✓0 = 0 and ✓̄, respectivley.

Again, ✓̄ is the one-shot distributed estimator (Zhang et al., 2013). All the results are

average values of 100 independent runs.

Similar to the distributed logistic regression case, the CEASE algorithms with proper

regularization (Algorithms 3 and 4) work well in general; without regularization, the

CEASE algorithm fails to converge when the local sample size n is small and the initializa-

tion in uninformative. For this nonsmooth problem, the CEASE algorithm with averaging

(Algorithm 4) does not seem to have advantage over the single version (Algorithm 3). The

ADMM converges quickly to a region near the minimizer but then proceeds quite slowly,

which appears to be a common phenomenon in many distributed optimization problems

(Boyd et al., 2011).
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Figure 2: Nonsmooth minimization. The x-axis and y-axis are the number of iterations and
log k✓t � ✓⇤k2. The dashed lines show the error of the minimizer of the overall regularized
loss function. The top and bottom panels use ✓̄ and 0 for initialization, respectively.
CEASE(a) and CEASE(0) refer to Algorithm 4 with ↵ = 0.05p/n and 0; CEASE-single(a)
and CEASE-single(0) refer to Algorithm 3 with ↵ = 0.05p/n and 0, respectively. In
particular, CEASE-single(0) is equivalent to the CSL algorithm in (Jordan et al., 2019).

E Proofs

E.1 Proof of Theorem 3.1

Lemma E.1. Let Assumptions 3.1 and 3.2 hold. Consider the iterates {✓t}Tt=0 generated

by Algorithm 4. Define

�t =

8
>>><

>>>:

�
⇢0+↵

·min{1, �
⇢+↵(1 +

M
⇢0+↵

k✓t � b✓k2)} , if Assumption 3.3 holds

�
⇢0+↵

, otherwise

, 0  t  T � 1.

If 0 < k✓t � b✓k2 < R/2, � < ⇢0 + ↵ and �
2
t < ⇢/(⇢+ 2↵), then

k✓t+1 � b✓k2
k✓t � b✓k2

 �t

p
⇢2 + 2↵⇢+ ↵

⇢+ ↵
< 1.
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Theorem 3.1 directly follows from Lemma E.1 and induction. Below we only prove

Lemma E.1 with Assumption 3.3. The other part in Lemma E.1 without Assumption 3.3

can be derived by slightly modifying this proof.

Proof of Lemma E.1 with Assumption 3.3. Let ✓+
t = prox↵�1(f+g)(✓t). By the tri-

angle inequality,

k✓t+1 � b✓k2  k✓t+1 � ✓+
t k2 + k✓+

t � b✓k2. (E.1)

We first invoke Theorem 3.2 to bound the first term k✓t+1 � ✓+
t k2 in (E.1). Define

g̃(✓) = g(✓) + (↵/2)k✓ � ✓tk22 for ✓ 2 Rp. Then ✓t+1 is the first iterate of Algorithm 2

initialized at ✓t for computing ✓+
t = argmin✓2Rp{ 1

m

Pm
k=1 fk(✓) + g̃(✓)}.

From b✓ = prox↵�1(f+g)(b✓) and Lemma F.3 we obtain that k✓+
t �b✓k2  k✓t�b✓k2. Then

the condition k✓t � b✓k2 < R/2 leads to B(✓+
t , R/2) ✓ B(b✓, R). By Assumptions 3.1 and

3.2,

• in B(✓+
t , R/2), {fk+ g̃}mk=1 are (⇢0+↵)-strongly convex and (f+ g̃) is (⇢+↵)-strongly

convex;

• kr2
fk(✓)�r2

f(✓)k2  � holds for all k 2 [m] and ✓ 2 B(✓+
t , R/2).

Furthermore, Lemma F.3 also yields

k✓t � ✓+
t k22  k✓t � b✓k22 � k✓+

t � b✓k22 = k✓t � b✓k22
⇣
1� k✓+

t � b✓k22/k✓t � b✓k22
⌘
. (E.2)

Then k✓t � ✓+
t k2  k✓t � b✓k2 < R/2 and ✓̃0 2 B(✓+

t , R/2). Based on these conditions and
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↵ + ⇢0 > �, we use Theorem 3.2 to get

k✓t+1 � ✓+
t k2  �tk✓t � ✓+

t k2.

From here, (E.1) and (E.2) we obtain that

k✓t+1 � b✓k2  �tk✓t � ✓+
t k2 + k✓+

t � b✓k2

 �tk✓t � b✓k2
⇣
1� k✓+

t � b✓k22/k✓t � b✓k22
⌘1/2

+ k✓+
t � b✓k2

= k✓t � b✓k2 · h(k✓+
t � b✓k2/k✓t � b✓k2),

where h(x) = �t

p
1� x2 + x, 8x 2 [0, 1]. From h

0(x) = 1� �tx/
p
1� x2 we see that h0 � 0

on [0, 1/
p

1 + �2
t ].

On the one hand, Lemma F.3 asserts that k✓+ � b✓k2/k✓t � b✓k2  ↵/(⇢ + ↵). On the

other hand, the assumption �
2
t < ⇢/(⇢+ 2↵) forces

1p
1 + �2

t

>
1p

1 + ⇢/(⇢+ 2↵)
=

p
⇢/2 + ↵p
⇢+ ↵

� ⇢/2 + ↵

⇢+ ↵
� ↵/(⇢+ ↵).

The proof is completed by computation:

k✓t+1 � b✓k2
k✓t � b✓k2

 h

 
k✓+

t � b✓k2
k✓t � b✓k2

!
 h

✓
↵

⇢+ ↵

◆
= �t

"
1�

✓
↵

⇢+ ↵

◆2
#1/2

+
↵

⇢+ ↵

=
�t

p
⇢2 + 2⇢↵ + ↵

⇢+ ↵
<

p
[⇢/(⇢+ 2↵)] · (⇢2 + 2⇢↵) + ↵

⇢+ ↵
= 1,

where we used the assumption �
2
t < ⇢/(⇢+ 2↵) again.
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E.2 Proof of Corollary 3.1

We claim that ( �
⇢0+↵

)2  7
9 ·

⇢
⇢+2↵ . Given this, Corollary 3.1 follows from Theorem 3.1 and

�
⇢0+↵

p
⇢2 + 2↵⇢+ ↵

⇢+ ↵


q
7
9 ·

⇢
⇢+2↵ · ⇢(⇢+ 2↵) + ↵

⇢+ ↵
= 1�

(1�
p

7/9)⇢

⇢+ ↵
 1� ⇢/10

⇢+ ↵
.

The claim trivially holds if � = 0. When � > 0, let us first assume 0 < �  ⇢ and define

b = ↵⇢/�
2. Then ↵ = b�

2
/⇢, b � 4 and ⇢0 � max{⇢� �, 0} force

⇢0 + ↵ � ⇢� � + b�
2
/⇢ = (⇢/� + b�/⇢� 1)� � (2

p
(⇢/�) · (b�/⇢)� 1)� = (2

p
b� 1)� > �.

and [�/(⇢0+↵)]2  [�/(⇢0+↵)]2  1/h1(�/⇢), where h1(x) = (bx+x
�1�1)2. On the other

hand, ⇢/(⇢+ 2↵) = 1/(1 + 2↵/⇢) = 1/h2(�/⇢), where h2(x) = 1 + 2bx2.

We are going to show h2(x)  7h1(x)/9, 8x 2 (0, 1], which leads to the desired result

under 0 < �  ⇢. If 0 < x 
p
3/2, then h1(x) � (2

p
b� 1)2 � (2

p
b�

p
b/2)2 � 9b/4 and

h2(x)  1 + 2b · (3/4)  (b/4) + (6b/4) = 7b/4  7h1(x)/9.

If
p
3/2 < x  1, then h1(x) � b

2
x
2 � 3b2/4, h2(x)  1 + 2b  (b/4) + 2b = 9b/4, and

h2(x)/h1(x) = 3/b  3/4  7/9.

Suppose now that � > ⇢, and define b = ↵⇢/�
2. Then

✓
�

⇢0 + ↵

◆2


✓
�

↵

◆2

=

✓
1

b�/⇢

◆2

=
1

b2(�/⇢)2
,

⇢

⇢+ 2↵
=

1

1 + 2↵/⇢
=

1

1 + 2b(�/⇢)2
.

12



From b � 4 and �/⇢ > 1 we get ( �
⇢0+↵

)2  7
9 ·

⇢
⇢+2↵ from

b
2(�/⇢)2 � 9

7
[1 + 2b(�/⇢)2] = (�/⇢)2b(b� 18/7)� 9/7

� 1 · 4 · (41 � 18/7)� 9/7 = 31/7 > 0.

E.3 Proof of Corollary 3.2

Throughout the proof we assume that �/⇢ is su�ciently small. The regularity conditions

in Theorem 3.1 are easily verified as ✓0 2 B(b✓, R/2) and [�/(⇢0 + ↵)]2 < ⇢/(⇢+ 2↵). Here

we used the fact ⇢0 � ⇢� �.

From ⇢0 � ⇢� � we get ⇢0 + ↵ � ⇢0 � ⇢/2 and �/(⇢0 + ↵)  2�/⇢. Also,
p

⇢2 + 2↵⇢ 

⇢
p

1 + 2C(�/⇢)2 . ⇢. We control the contraction factor in (3.2):

�
⇢0+↵

p
⇢2 + 2↵⇢+ ↵

⇢+ ↵
. (2�/⇢)⇢+ C�

2
/⇢

⇢
=

2�

⇢
+

C

4

✓
2�

⇢

◆2

. �

⇢
.

Recall that �t =
�

⇢0+↵
· min{1, �

⇢+↵(1 +
M

⇢0+↵
k✓t � b✓k2)} in Theorem 3.1. When �/⇢ is

small and k✓t � b✓k2  ⇢/M , we have ⇢0 + ↵ � ⇢/2, M
⇢0+↵

k✓t � b✓k2  2, and �t  (2�/⇢)2.

This help bound the contraction factor in (3.2):

�t ·
p

⇢2 + 2↵⇢+ ↵

⇢+ ↵
. (2�/⇢)2⇢+ C�

2
/⇢

⇢
.
✓
�

⇢

◆2

.

E.4 Proof of Theorem 3.2

Theorem 3.2 is a direct summary of the following two lemmas.

Lemma E.2 (Contraction). Let Assumptions 3.1 and 3.2 hold, with ⇢0 > � � 0. Then

k'k(✓)� b✓k2  (�/⇢0)k✓ � b✓k2, 8✓ 2 B(b✓, R), 8k 2 [m].

13



Proof. Fix ✓ 2 B(b✓, R). By the first order condition of 'k(✓), we have that

rfk(✓)�rf(✓) 2 @{fk['k(✓)] + g['k(✓)]}. (E.3)

Using the fixed point property 'k(b✓) = b✓, we have rfk(b✓)�rf(b✓) 2 @[fk(b✓) + g(b✓)]. By

the Taylor expansion and Assumption 3.2,

k[rfk(✓)�rf(✓)]� [rfk(b✓)�rf(b✓)]k2

=

����
Z 1

0

⇣
r2

fk[(1� t)b✓ + t✓]�r2
f [(1� t)b✓ + t✓]

⌘
(✓ � b✓)dt

����
2

 sup
⇣2B(b✓,R)

kr2
fk(⇣)�r2

f(⇣)k2 · k✓ � b✓k2

�k✓ � b✓k2 < ⇢0R.

From this, (E.3) and Lemma F.2, we obtain that k'k(✓)� b✓k2  (�/⇢0)k✓ � b✓k2.

Lemma E.3 (Averaging). Let Assumptions 3.1, 3.2 and 3.3 hold, with ⇢0 > � � 0. We

have

�����
1

m

mX

k=1

'k(✓)� b✓

�����
2

 �
2

⇢0⇢
(1 +M⇢

�1
0 k✓ � b✓k2)k✓ � b✓k2, 8✓ 2 B(b✓, R).

Proof. Define Lk(✓) = fk(✓) + g(✓) and L(✓) = f(✓) + g(✓) for ✓ 2 Rp. Then b✓ =

argmin⇠2RpL(⇠) and 'k(✓) = argmin⇠2Rp{Lk(⇠)�hrLk(✓)�rL(✓), ⇠i}. By the optimality

conditions,

rLk['k(✓)]�rLk(✓) +rL(✓) = 0 = rL(b✓).
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After subtracting rLk(b✓) from both sides and rearranging terms, we get

rLk['k(✓)]�rLk(b✓) = [rLk(✓)�rLk(b✓)]� [rL(✓)�rL(b✓)].

Note that the average of the right hand side over k 2 [m] is 0.

Define Hk =
R 1

0 r2
Lk[(1� t)b✓ + t'k(✓)]dt for k 2 [m] and bH = r2

L(b✓). Then

rLk['k(✓)]�rLk(b✓) = Hk('k(✓)� b✓) = bH('k(✓)� b✓) + (Hk � bH)('k(✓)� b✓),

0 =
1

m

mX

k=1

⇣
rLk['k(✓)]�rLk(b✓)

⌘
= bH['̄(✓)� b✓] + 1

m

mX

k=1

(Hk � bH)('k(✓)� b✓),

where we let '̄(✓) = 1
m

Pm
k=1 'k(✓). As a result,

k'̄(✓)� b✓k2 =

�����
1

m

mX

k=1

bH�1(Hk � bH)('k(✓)� b✓)

�����
2

 kbH�1k2 max
k2[m]

kHk � bHk2 · max
k2[m]

k'k(✓)� b✓k2.

Lemma E.2 forces maxk2[m] k'k(✓) � b✓k2  (�/⇢0)k✓ � b✓k2, and Assumption 3.1 yields

bH ⌫ ⇢I and kbHk2  1/⇢. Furthermore, we use Assumptions 3.2 and 3.3 to get

kHk � bHk2 
����
Z 1

0

⇣
r2

Lk[(1� t)b✓ + t'k(✓)]�r2
L[(1� t)b✓ + t'k(✓)]

⌘
dt

����
2

+

����
Z 1

0

⇣
r2

L[(1� t)b✓ + t'k(✓)]�r2
L(b✓)

⌘
dt

����
2

 � +Mk'k(✓)� b✓k2  � +M(�/⇢0)k✓ � b✓k2.

The proof is finished by combining all the estimates above.
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E.5 Proof of Theorem 4.1

The proof is implied by combining proof of Corollary 3.2 with the results of the following

two lemmas, the first of which is a direct counterpart of Theorem 3.1 in the stochastic

setting, given an additional condition on similarity between local Hessians. The second

lemma below specifies the order of Hessian di↵erence in the generalized linear model, hence

providing a contraction rate and guiding the choice of ↵.

Lemma E.4. Let Assumption 4.2 hold. Denote

b� := 2 sup
k2[m]

sup
✓2B(b✓,R)

kr2
fk(✓)�r2

F (✓)k2.

Consider the iterates {✓t}Tt=0 generated by Algorithm 3 or Algorithm 4. Suppose that ✓0 2

B(b✓, R/2) and [b�/(⇢0 + ↵)]2 < ⇢/(⇢+ 2↵).

• For both Algorithms 3 and 4, we have

k✓t+1 � b✓k2  k✓t � b✓k2 ·
b�

⇢0+↵
·
p

⇢2 + 2↵⇢+ ↵

⇢+ ↵
, 0  t  T � 1; (E.4)

• If in addition, Assumption 4.3 also holds, then for Algorithm 4 we have

k✓t+1 � b✓k2  k✓t � b✓k2 ·
�t

p
⇢2 + 2↵⇢+ ↵

⇢+ ↵
, 0  t  T � 1, (E.5)

where we define �t =
b�

⇢0+↵
·min{1, b�

⇢+↵(1 +
M

⇢0+↵
k✓t � b✓k2)};

• Both multiplicative factors in (E.4) and (E.5) are strictly less than 1.

Proof of Lemma E.4. We first assume that ⇢0 > b� and analyze the vanilla DANE al-

gorithm under the new assumptions. Let Assumption 4.2 hold, and {✓t}1t=0 be the iter-
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ates with ✓0 2 B(b✓, R). For any ✓ 2 B(b✓, R), kr2
f(✓) � r2

F (✓)k2  b�/2 and thus

kr2
fk(✓) � r2

f(✓)k2  b� for k 2 [m]. Hence it implies Assumption 3.2 with � = b�, and

Lemma E.2 continues to hold. We can also get the result in Lemma E.3 under Assumption

4.3, by replacing bH = r2
f(b✓) in the proof of Lemma E.3 by r2

F (b✓) + r2
g(✓). Then

we drop the assumption ⇢0 > b� can reproduce the results in Theorem 3.1 under the new

setting, by following its original proof.

Lemma E.5. Under Assumption 4.1, for an arbitrarily small positive constant c, there

exist universal positive constants C1, C2 and C3 depending only on c such that as long as

n � cp, with probability at least 1� 2e�C2n �Ne
�C3p,

sup
k2[m]

sup
✓2B(b✓,R)

kr2
fk(✓)�r2

F (✓)k2  C1k⌃k2

r
pmax{1, log(Np1/2k⌃k2R)}

n
.

Proof of Lemma E.5. Let x̃i = (⌃⇤)�1/2xi, ✓̃ = (⌃⇤)1/2✓, and define a new loss function

l̃(✓̃, x̃i) = b(x̃>
i ✓̃)� yi(x̃>

i ✓̃). Let bRk(✓̃) =
1
n

P
i2Ik l̃(✓̃, x̃i) for k 2 [m]. Then we have that

r2 bRk(✓̃) = 1
n

P
i2Ik b

00(✓̃
>
x̃i)x̃ix̃>

i and r2
fk(✓) = (⌃⇤)1/2r2 bRk(✓̃)(⌃

⇤)1/2. Similarly we

have r2
F (✓) = (⌃⇤)1/2Er2 bRk(✓̃)(⌃

⇤)1/2.

Therefore

max
k2[m]

max
✓2B(b✓,R)

kr2
fk(✓)�r2

F (✓)k2  k⌃⇤k2 max
k2[m]

max
✓̃2B((⌃⇤)1/2b✓,R̃)

kr2 bRk(✓̃)�r2E bRk(✓̃)k2

(E.6)

and we only need to control the quantity on the right hand side. Here R̃ = k⌃⇤k1/22 R.

Define �0 = maxk2[m] max✓̃2B((⌃⇤)1/2b✓,R̃) kr2 bRk(✓̃)�r2E bRk(✓̃)k2 and

�k(✓̃) = k 1
n

X

i2Ik

b
00(x̃>

i ✓̃)x̃ix̃
>
i � Eb00(X̃>✓̃)X̃X̃>k2.
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Here X̃ shares the distribution with x̃i. Firstly we bound �k(✓̃) for any fixed ✓̃ 2 B(✓̃
⇤
, 2R̃),

where ✓̃
⇤
:= (⌃⇤)1/2b✓. For any k 2 [m], under Assumption 4.1, there exist constants c1, c2

such that for any ✏ � 0

P(�k(✓̃) � ✏)  2ec1p�c2 min {✏,✏2}n
. (E.7)

To see this, notice that �k(✓̃) = supu2Sp�1 gk(u), where gk(u) = u>{ 1
n

P
i2Ik b

00(x̃>
i ✓̃)x̃ix̃>

i �

Eb00(X̃>✓̃)X̃X̃>}u. LetN be a 1
4 -covering of S

p�1, and |N |  9p. Denote bu = argmaxu gk(u).

Find ũ 2 N such that kbu� ũk2  1
4 . Then

|gk(ũ)� gk(bu)| = |(ũ+ bu)>
(
1

n

X

i2Ik

b
00(x̃>

i ✓̃)x̃ix̃
>
i � Eb00(X̃>✓̃)X̃X̃>

)
(ũ� bu)|  1

2
gk(bu),

and thus

sup
u2Sp�1

gk(u)  2 sup
u2N

gk(u).

On the other hand from Bernstein’s inequality we see that there exists a constant c2 such

that for any u 2 N , ✏ � 0, P(gk(u) � ✏
2)  2e�c2 min{✏,✏2}n. Therefore

P(�k(✓̃) � ✏) = P( sup
u2Sp�1

gk(u) � ✏)  P(sup
u2N

gk(u) �
✏

2
)  |N |·2e�c2 min{✏,✏2}n  2ec1p�c2 min {✏,✏2}n

where c1 = log 9.

Now for t � 1, define the event Et ,
n
maxNi=1kx̃ik32 < (8t)3/2EkX̃k32

o
. Then by Theorem

2.1 in Hsu et al. (2012), P(Ec
t ) = P(maxNi=1kx̃ik22 � 8t[EkX̃k32]2/3)  P(maxNi=1kx̃ik22 �

8tEkX̃k22)  NP(kX̃k22 � 8tEkX̃k22)  Ne
�tp. Under the event Et, for ✓̃1, ✓̃2 2 B(✓̃

⇤
, 2R̃),
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we have

|�k(✓̃1)� �k(✓̃2)|  k 1
n

X

i2Ik

[b00(x̃>
i ✓̃1)� b

00(x̃>
i ✓̃2)]x̃ix̃

>
i k2 + kEb00(X̃>✓̃1)X̃X̃> � Eb00(X̃T ✓̃2)X̃X̃>k2

 B3k✓̃1 � ✓̃2k2 · (EkX̃k32 +
1

n

nX

i=1

kx̃kik32)

 (9t)3/2B3 · EkUk32 · k✓̃1 � ✓̃2k2

 c3(pt)
3/2k✓̃1 � ✓̃2k2

for some constant c3 depending only on B3.

Now let N� be a �-covering of B(✓̃
⇤
, 2R̃), where � = ✏

c3(tp)3/2
. We can also assume that

|N�|  (6R̃� )
p. Therefore for any k 2 [m],

P
 
Et \

(
sup

✓̃2B(✓̃
⇤
,2R̃)

�k(✓̃) � 2✏

)!
 P

 
Et \

(
sup
✓̃2N�

�k(✓̃) � ✏

)!

 |N�| · 2ec1p�c2 min{✏,✏2}n = 2ec4p+c3p log
(tp)3/2R̃

✏ �c2 min{✏,✏2}n
.

Thus

P(�0 � 2✏)  P
 
[k2[m]

(
sup

✓̃2B(✓̃
⇤
,R̃)

�k(✓̃) � 2✏

)!

P(Ec
t ) +

mX

k=1

P
 
Et \

(
sup

✓̃2B(✓̃
⇤
,R̃)

�k(✓̃) � 2✏

)!

Ne
�tp + 2me

c4p+c3p log
(tp)3/2R̃

✏ �c2 min{✏,✏2}n
.
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It is easily seen that the last expression is no more than Ne
�tp + 2e�C2p when

8
>>><

>>>:

min{✏, ✏2} � C
0
1
max{p,p log(t3/2R),logm}

n ,

✏ � 1 or ✏2

log 1
✏

� C
0
2 · p

n ,

which is satisfied if t is chosen as a suitable constant depending on c, and that

✏ = C

s
logm+ pmax{1, log(np1/2R̃)}

n
. (E.8)

Here C
0
i and C is a constant depending only on c.

Finally, note that

⌃⇤ = cov(xi) =

0

B@
1

⌃

1

CA

and that k⌃k2 � A1 for a universal A1 > 0, we have k⌃⇤k2  max{1, 1/A1}k⌃k2. Thus

combining (E.8) and (E.6) completes the proof.

E.6 Proof of Theorem 4.2

Theorem 4.2 is a special of Theorem 4.1 by taking ↵ = 0.

E.7 Proof of Theorem B.1

We first present three lemmas, based on which we build the proof of the main theorem.

Lemma E.6. Suppose that b⌃ is positive-definite, i.e. �min(b⌃) > 0. Define "t = b⌃
1/2

(✓t �

b⌃
�1
bw) for t � 0 and

�k = (b⌃+ ↵I)�1/2(b⌃k � b⌃)(b⌃+ ↵I)�1/2
, 8k 2 [m].
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If ↵ � 0 is appropriately chosen such that � = max
k2[m]

k�kk2  1/2. Then

k"t+1k2 
2�2 + ↵/�min(b⌃)

1 + ↵/�min(b⌃)
k"tk2, 8t � 0,

which guarantees linear convergence of {"t}1t=0.

Proof of Lemma E.6. Define "t,k = b⌃
1/2

(✓t,k � b⌃
�1
bw). Then

"t+1,k = b⌃
1/2

(✓t+1,k � b⌃
�1
bw)

= b⌃
1/2

[I� (b⌃k + ↵I)�1 b⌃]✓t + b⌃
1/2

(b⌃k + ↵I)�1 bw � b⌃
�1/2

bw

= [I� b⌃
1/2

(b⌃k + ↵I)�1 b⌃
1/2

]"t.

Define e⌃
(1)

k = b⌃
�1/2 b⌃k

b⌃
�1/2

for k 2 [m]. The fact

b⌃k + ↵I = b⌃
1/2

(b⌃
�1/2 b⌃k

b⌃
�1/2

+ ↵b⌃
�1
)b⌃

1/2
= b⌃

1/2
(e⌃

(1)

k + ↵b⌃
�1
)b⌃

1/2

gives b⌃
1/2

(b⌃k + ↵I)�1 b⌃
1/2

= (e⌃
(1)

k + ↵b⌃
�1
)�1 and "t+1,k = [I� (e⌃

(1)

k + ↵b⌃
�1
)�1]"t.

Define bD = (I+ ↵b⌃
�1
)�1 and e⌃k = bD1/2 e⌃

(1)

k
bD1/2. From

(e⌃
(1)

k + ↵b⌃
�1
)�1 =[bD�1 + (e⌃

(1)

k � I)]�1 = bD1/2[I+ (e⌃k � bD)]�1 bD1/2

and

e⌃k � bD = bD1/2(e⌃
(1)

k � I)bD1/2 = (I+ ↵b⌃
�1
)�1/2 b⌃

�1/2
(b⌃k � b⌃)b⌃

�1/2
(I+ ↵b⌃

�1
)�1/2

= (b⌃+ ↵I)�1/2(b⌃k � b⌃)(b⌃+ ↵I)�1/2 = �k,
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we get

"t+1,k = (I� bD1/2Ck
bD1/2)"t and "t+1 = (I� bD1/2CbD1/2)"t,

where Ck = (I + �k)�1 and C = 1
m

Pm
k=1 Ck. Let Rk = Ck � (I � �k) and R =

1
m

Pm
k=1 Rk = C � I. We have kI � bD1/2CbD1/2k2 = kI � bD1/2(I + R)bD1/2k2. Below we

control the right-hand side.

By � = max
k2[m]

k�kk2  1/2 and Lemma F.4, we obtain that kCkk2  1
1��  2 and

kRkk2  2�2. Consequently, kCk2  2 and kRk2  2�2  1/2. Then we obtain that

(1� 2�2)I � I+R � (1 + 2�2)I,

(1� 2�2)bD � bD1/2(I+R)bD1/2 � (1 + 2�2)bD,

I� (1 + 2�2)bD � I� bD1/2(I+R)bD1/2 � I� (1� 2�2)bD.

Consequently,

kI� bD1/2(I+R)bD1/2k2  max
n
kI� (1� 2�2)bDk2, kI� (1 + 2�2)bDk2

o
.

Let {b�j}pj=1 be the eigenvalues of b⌃ sorted in descending order. Since bD has eigenvalues

{(1 + ↵/b�j)�1}pj=1 ✓ (0, 1], the eigenvalues of I� (1± 2�2)bD are
n
1� 1±2�2

1+↵/b�j

op

j=1
. Then

kI� (1± 2�2)bDk2 = max

(�����1�
1± 2�2

1 + ↵/b�1

����� ,

�����1�
1± 2�2

1 + ↵/b�p

�����

)
.

22



By elementary calculation and the fact 2�2  1/2 < 1 we get

�����1�
1 + 2�2

1 + ↵/b�1

����� =

���↵/b�1 � 2�2
���

1 + ↵/b�1

 max{↵/b�1, 2�2}
1 + ↵/b�1

 max

(
↵/b�p

1 + ↵/b�p

, 2�2

)
,

�����1�
1 + 2�2

1 + ↵/b�p

����� =

���↵/b�p � 2�2
���

1 + ↵/b�p

 2�2 + ↵/b�p

1 + ↵/b�p

,

0  1� 1� 2�2

1 + ↵/b�1

 1� 1� 2�2

1 + ↵/b�p

=
2�2 + ↵/b�p

1 + ↵/b�p

.

Therefore,

kI� bD1/2CbD1/2k2  max

(
2�2 + ↵/b�p

1 + ↵/b�p

, 2�2

)
=

2�2 + ↵/b�p

1 + ↵/b�p

< 1.

Lemma E.7. Suppose Assumption B.1 hold. Then there exists a constant C determined

by kuik 2, such that P(�  1/2) � 1� 2me
�n/C

holds under either of the two conditions:

(i) n � Cp and ↵ � 0; (ii) ↵ � CTr(⌃)/n.

Proof of Lemma E.7. Define bSk = 1
n

P
i2Ik uiu>

i and ū(k) = 1
n

P
2Ik ui for k 2 [m].

Then we have b⌃k = 1
n

P
i2Ik xix>

i =

0

B@
1 ū>

(k)

ū(k)
bSk

1

CA. Let ⌃⇤ = Eb⌃k =

0

B@
1 0

0 ⌃

1

CA and

observe that

�k = (b⌃+ ↵I)�1/2(b⌃k �⌃⇤)(b⌃+ ↵I)�1/2 � (b⌃+ ↵I)�1/2(b⌃�⌃⇤)(b⌃+ ↵I)�1/2
.

Let Bk = (b⌃+ ↵I)�1/2(b⌃k �⌃⇤)(b⌃+ ↵I)�1/2. Since

max
k2[m]

k�kk2 = max
k2[m]

kBk �
1

m

mX

`=1

B`k2  2max
k2[m]

kBkk2, (E.9)
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it boils down to bound kBkk2. To do this, we let A0 = (⌃⇤ +↵I)1/2(b⌃+↵I)�1/2 and write

kBkk2 = kA>
0 (⌃

⇤ + ↵I)�1/2(b⌃k �⌃⇤)(⌃⇤ + ↵I)�1/2A0k2

 kA0k22k(⌃⇤ + ↵I)�1/2(b⌃k �⌃⇤)(⌃⇤ + ↵I)�1/2k2.

Define D = (I+ ↵(⌃⇤)�1)�1 and b⌃
(1)

k = (⌃⇤ + ↵I)�1/2 b⌃k(⌃
⇤ + ↵I)�1/2. On the one hand,

(⌃⇤ + ↵I)�1/2(b⌃k �⌃⇤)(⌃⇤ + ↵I)�1/2 = b⌃
(1)

k �D.

On the other hand,

kA0k22 = kA0A
>
0 k2 = k(⌃⇤ + ↵I)1/2(b⌃+ ↵I)�1(⌃⇤ + ↵I)1/2k2

= k(⌃⇤ + ↵I)1/2[(b⌃�⌃⇤) + (⌃⇤ + ↵I)]�1(⌃⇤ + ↵I)1/2k2

 k[(⌃⇤ + ↵I)�1/2(b⌃�⌃⇤)(⌃⇤ + ↵I)�1/2 + I]�1k2 = k[I+ 1

m

mX

k=1

(b⌃
(1)

k �D)]�1k2

 1

1� k 1
m

Pm
k=1(

b⌃
(1)

k �D)k2
 1

1�maxk2[m] kb⌃
(1)

k �Dk2
,

where we used Lemma F.4. Based on these, we have

max
k2[m]

kBkk2 
maxk2[m] kb⌃

(1)

k �Dk2
1�maxk2[m] kb⌃

(1)

k �Dk2
, (E.10)

and it su�ces to prove under the given conditions that

P
✓
max
k2[m]

kb⌃
(1)

k �Dk2  1/5

◆
� 1� 2me

�n/C (E.11)

holds for some constant C.
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By definition, we have

b⌃
(1)

k �D =

0

B@
(1 + ↵)�1/2 0

0 (⌃+ ↵I)�1/2

1

CA

0

B@
0 ū>

(k)

ū(k)
bSk �⌃

1

CA

0

B@
(1 + ↵)�1/2 0

0 (⌃+ ↵I)�1/2

1

CA

=

0

B@
0 (1 + ↵)�1/2[(⌃+ ↵I)�1/2ū(k)]>

(1 + ↵)�1/2(⌃+ ↵I)�1/2ū(k) (⌃+ ↵I)�1/2(bSk �⌃)(⌃+ ↵I)�1/2

1

CA

and as a result,

kb⌃
(1)

k �Dk2  (1 + ↵)�1/2k(⌃+ ↵I)�1/2ū(k)k2 + k(⌃+ ↵I)�1/2(bSk �⌃)(⌃+ ↵I)�1/2k2.

(E.12)

Here we used a simple fact that

�������

0

B@
0 A>

A 0

1

CA

�������
2

= kAk2 for any matrix A.

Observe that vi = (⌃+↵I)�1/2ui is a sub-gaussian random variable with zero mean and

covariance matrix (1 + ↵⌃�1)�1. On the other hand, (⌃+ ↵I)�1/2(bSk �⌃)(⌃+ ↵I)�1/2 =

1
n

P
i2Ik viv>

i � (1 + ↵⌃�1)�1. Lemma F.5 forces

P
�
k(⌃+ ↵I)�1/2ū(k)k2 > 1/10

�
 e

�n/C
,

P
⇣
k(⌃+ ↵I)�1/2(bSk �⌃)(⌃+ ↵I)�1/2k2 > 1/10

⌘
 e

�n/C
,

where C is the constant therein. These estimates and (E.12) lead to (E.11).

Following the similar idea in the proof above, we get the following results.

Lemma E.8. Suppose Assumption B.1 holds with C being the constant in Lemma E.7.

Then
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• P(k(⌃⇤)�1/2(b⌃�⌃⇤)(⌃⇤)�1/2k2  1/2) � 1� 2me
�N/C

;

• P(�  C
0
2

p
p/n) � 1� 2e�C0

1p holds for some constants C
0
1 and C

0
2.

Now we come back to the main proof. We will use the three lemmas above to show

that with high probability, �max(b⌃)/�min(b⌃)  3 and

���b⌃
1/2
⇣
✓t+1 � b✓

⌘���
2

✓
1� 1�min{1/2, C2p/n}

1 + C3↵

◆���b⌃
1/2
⇣
✓t � b✓

⌘���
2
, 8t � 0.

(E.13)

Then we conclude the proof by induction and some simple linear algebra.

First, Lemma E.8 asserts that with high probability, k(⌃⇤)�1/2(b⌃ � ⌃⇤)(⌃⇤)�1/2k2 

1/2. On this event, we have �1
2⌃

⇤ � b⌃�⌃⇤ � 1
2⌃

⇤ and thus 1
2⌃

⇤ � b⌃ � 3
2⌃

⇤. Hence

1

2
�min(⌃

⇤)  �min(b⌃)  �max(b⌃)  3

2
�max(⌃

⇤)

and �max(b⌃)/�min(b⌃)  3�max(⌃
⇤)/�min(⌃

⇤) = 3.

Second, Lemma E.6 forces

���b⌃
1/2
⇣
✓t+1 � b✓

⌘���
2
 2�2 + ↵/�min(b⌃)

1 + ↵/�min(b⌃)

���b⌃
1/2
⇣
✓t � b✓

⌘���
2
, 8t � 0. (E.14)

Lemmas E.7 and E.8 imply that �  1/2, �  C̃
p

p/n, and �min(b⌃) � 1 hold simultane-

ously with high probability, where C̃ is some constant. On this event, we have

2�2 + ↵/�min(b⌃)

1 + ↵/�min(b⌃)
= 1� 1� 2�2

1 + ↵/�min(b⌃)
 1� 1�min{1/2, C2p/n}

1 + C3↵

for some constants C2 and C3. Then we get (E.13) from the estimates above and complete

the proof.
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F Technical lemmas

The following lemma lists basic properties of strongly convex functions, which can be found

in standard textbooks on convex optimization (Nesterov, 2013).

Lemma F.1. Suppose f is a convex function defined on some convex open set ⌦ ✓ Rp
,

and @f(x) denotes its subdi↵erential set at x 2 ⌦. The followings are equivalent:

• f is ⇢-strongly convex in ⌦;

• f [(1� t)x+ ty]  (1� t)f(x)+ tf(y)� (⇢/2)t(1� t)ky�xk22, 8x,y 2 ⌦ and t 2 [0, 1];

• hh� g,y � xi � ⇢ky � xk22, 8x,y 2 ⌦, g 2 @f(x) and h 2 @f(y).

If any of the above holds, f is said to be ⇢-strongly convex.

Lemma F.2. Let f : Rp ! R be a convex function. Suppose there exists x 2 Rp
and r > 0

such that f is ⇢-strongly convex in B(x, r). If kh�gk2 < ⇢r holds for some g 2 @f(x) and

h 2 @f(y), then ky � xk2  kh� gk2/⇢  r.

Proof. If we know a priori that ky � xk2  r, then we use the strong convexity of f in

B(x, r) and Cauchy-Schwarz inequality to obtain

⇢ky � xk22  hh� g,y � xi  kh� gk2ky � xk2,

and get the desired result. Suppose on the contrary that ky � xk2 > r, and define ȳ =

x + r(y � x)/ky � xk2. Then kȳ � xk2 = r. The strong convexity of f in B(x, r) and

Lemma F.1 yield

hs� g, ȳ � xi � ⇢kȳ � xk22, 8s 2 @f(ȳ).
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By the convexity of f , we always have

hh� s, ȳ � xi = r

ky � xk2 � r
hh� s,y � ȳi � 0, 8s 2 @f(ȳ).

Summing up the two inequalities above, we get

⇢kȳ � xk22  hh� g, ȳ � xi  kh� gk2kȳ � xk2,

where we also used the Cauchy-Schwarz inequality. Then kh�gk2 � ⇢kȳ�xk2 = ⇢r leads

to contradiction. Hence, we must have only the case ky � xk2  r.

Lemma F.3. Let f : Rp ! R be a convex function. For any x,y 2 Rp
, we have

kproxf (x)� proxf (y)k22  hx� y, proxf (x)� proxf (y)i.

If infx2Rp f(x) > �1, then kproxf (x)� x⇤k2  kx� x⇤k2 and

kproxf (x)� xk22  kx� x⇤k22 � kproxf (x)� x⇤k22

hold for any x⇤ 2 argminx2Rpf(x).

If f is ⇢-strongly convex in B(x⇤
, r) for some r > 0 and x⇤ = argminx2Rpf(x), then

kprox↵�1f (x)� x⇤k2  ↵
↵+⇢kx� x⇤k2, 8x 2 B(x⇤

, r) and ↵ > 0.

Proof of Lemma F.3. The first claim is the well-known “firm non-expansiveness” prop-

erty of the proximal mapping (Parikh and Boyd, 2014).

If infx2Rp f(x) > �1, then any x⇤ 2 argminx2Rpf(x) is a fixed point of proxf . The
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firm non-expansiveness with y = x⇤ yields

kproxf (x)� x⇤k22  hx� x⇤
, proxf (x)� x⇤i (F.1)

and then kproxf (x)� x⇤k2  kx� x⇤k2. The next claim is proved by

kproxf (x)� xk22 = k[proxf (x)� x⇤]� (x� x⇤)k22

= kproxf (x)� x⇤k22 + kx� x⇤k22 � 2hproxf (x)� x⇤
,x� x⇤i

 kproxf (x)� x⇤k22 + kx� x⇤k22 � 2kproxf (x)� x⇤k22

= kx� x⇤k22 � kproxf (x)� x⇤k22,

where the inequality follows from (F.1).

For the last claim, we fix any ↵ > 0 and x 2 B(x⇤
, r) and define x+ = prox↵�1f (x).

Then kx+�x⇤k2  kx�x⇤k2 < r. The optimality conditions for x⇤ = argminy2Rpf(y) and

x+ = argminy2Rp{f(y)+(↵/2)ky�xk22} imply that 0 2 @f(x⇤) and �↵(x+�x) 2 @f(x+).

Since f is ⇢-strongly convex in B(x⇤
, r), Lemma F.1 forces

⇢kx+ � x⇤k22  h�↵(x+ � x)� 0,x+ � x⇤i = �↵kx+ � x⇤k22 � ↵hx⇤ � x,x+ � x⇤i

 �↵kx+ � x⇤k22 + ↵kx⇤ � xk2kx+ � x⇤k2

and thus kx+ � x⇤k2  ↵
↵+⇢kx� x⇤k2.

Lemma F.4 (Neumann expansion). Let k ·kbe a submultiplicative matrix norm with kIk =

1. When kMk < 1, we have (I�M)�1 =
P1

j=0 M
j = I+M+M(I�M)�1M, kI�Mk 

1/(1� kMk) and k(I�M)�1 � (I+M)k  kMk2/(1� kMk).

Lemma F.5. Let S � 0 and ↵ � 0 be deterministic, A = (I + ↵S�1)�1
, {ui}ni=1 ✓ Rd

be
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i.i.d. sub-gaussian random vectors with zero mean and covariance matrix A, ū = 1
n

Pn
i=1 ui

and bA = 1
n

Pn
i=1 uiuT

i . Then the following hold:

1. There exists some positive constant C that only depends on ku1k 2, such that P(kūk2 >

1/10)  e
�n/C

and P(kbA�Ak2 > 1/10)  e
�n/C

hold under any one of the two con-

ditions holds: (i) n � Cd; (ii) ↵ � CTr(S)/n.

2. Suppose that n � cd for some constant c > 0. There exist positive constants C
0
1 and

C
0
2 such that P(max{kūk2, kbA�Ak2} � C

0
2

p
d/n)  2e�C0

1d.

Proof of Lemma F.5. Let �1 > · · · > �d > 0 be the eigenvalues of S, and C > 0 be

some constant to be determined. When n � Cd, the fact kAk2 = 1/(1+↵/�1)  1 implies

n � CTr(A). Also, if ↵ � CTr(S)/n, then the crude estimate

Tr(A) =
dX

j=1

1

1 + ↵/�j


dX

j=1

1

↵/�j
=

dX

j=1

�j

↵
=

Tr(S)

↵
 n

C0

also leads to n � CTr(A). Hence it su�ces to find some proper C and show the desired

results given n � CTr(A).

Now we prove the first statement. We first study concentration of the sample mean

vector ū. Since ū is a sub-gaussian random vector with covariance matrix n
�1A, Theorem

2.1 in Hsu et al. (2012) asserts the existence of a constant c1 > 0 such that

P
h
kūk22  c1n

�1
⇣
Tr(A) + 2

p
Tr(A2)t+ 2kAk2t

⌘i
� 1� e

�t
, 8t > 0. (F.2)

Choose any constant C1 � 500c1. Let t = n/C1, and suppose that n � C1Tr(A). Using

30



kAk2  1 and Tr(A2)  Tr(A)kAk2  Tr(A), we get

c1n
�1
⇣
Tr(A) + 2

p
Tr(A2)t+ 2kAk2t

⌘
 c1

C1
+

2c1
p
Tr(A)t

n
+

2c1t

n

=
c1

C1
+

2c1
p

Tr(A)n/C1

n
+

2c1(n/C1)

n
=

3c1
C1

+ 2c1

s
Tr(A)

C1n
 5c1

C1
 1

102
.

Hence P (kūk2 > 1/10) � e
�n/C1 .

Now we come to concentration of the sample covariance matrix bA. Let r(A) =

Tr(A)/kAk2. According to Theorem 9 in Koltchinskii et al. (2017), there exists a con-

stant c2 � 1 such that the following holds: for any t � 1, with probability at least 1� e
�t

we have

kbA�Ak2  c2kAk2 max

(r
r(A)

n
,
r(A)

n
,

r
t

n
,
t

n

)
. (F.3)

Note that the upper bound above can be rewritten as

c2 max

(r
kAk2Tr(A)

n
,
Tr(A)

n
, kAk2

r
t

n
, kAk2

t

n

)
 c2 max

(r
Tr(A)

n
,
Tr(A)

n
,

r
t

n
,
t

n

)
.

(F.4)

Let C2 = 100c22. When n � C2Tr(A), by taking t = n/C2 we get P(kbA �Ak2 > 1/10) 

e
�n/C2 . The proof of the first statement is then finished by taking C = max{C1, C2}.

We proceed to prove the second statement. Let t = C
0
1d for some constant C

0
1. Note

that d � Tr(A) and t � C
0
1Tr(A). According to (F.2), (F.3) and (F.4), we obtain that

with probability at least 1�2e�C0
1d, kūk2  C̃

p
d/n and kbA�Ak2  C̃max

np
d/n, d/n

o

hold with some constant C̃. Since n � cd, we have

max
np

d/n, d/n

o
 max{1, 1/

p
c}
p
d/n.
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By combining the inequalities above, we obtain that

P(max{kūk2, kbA�Ak2} � C
0
2

p
d/n)  2e�C0

1d

with C
0
2 = C̃max{1, 1/

p
c}.

References

Battey, H., Fan, J., Liu, H., Lu, J., and Zhu, Z. (2018). Distributed testing and estimation

under sparse high dimensional models. The Annals of Statistics, 46(3):1352–1382.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations

and Trends® in Machine learning, 3(1):1–122.

Hsu, D., Kakade, S., and Zhang, T. (2012). A tail inequality for quadratic forms of sub-

gaussian random vectors. Electronic Communications in Probability, 17.

Jordan, M. I., Lee, J. D., and Yang, Y. (2019). Communication-e�cient distributed statis-

tical inference. Journal of the American Statistical Association, 114(526):668–681.

Koltchinskii, V., Lounici, K., et al. (2017). Concentration inequalities and moment bounds

for sample covariance operators. Bernoulli, 23(1):110–133.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, vol-

ume 87. Springer Science & Business Media.

Parikh, N. and Boyd, S. (2014). Proximal algorithms. Foundations and Trends® in

Optimization, 1(3):127–239.

32



Shamir, O., Srebro, N., and Zhang, T. (2014). Communication-e�cient distributed opti-

mization using an approximate Newton-type method. In International Conference on

Machine Learning, pages 1000–1008.

Wang, S., Roosta-Khorasani, F., Xu, P., and Mahoney, M. W. (2018). Giant: Globally

improved approximate newton method for distributed optimization. In Advances in

Neural Information Processing Systems, pages 2338–2348.

Zhang, Y., Duchi, J. C., and Wainwright, M. J. (2013). Communication-e�cient algorithms

for statistical optimization. The Journal of Machine Learning Research, 14:3321–3363.

33


	Introduction
	The CEASE algorithm
	Problem setup
	Adaptive gradient enhancements and distributed algorithms in large-sample regimes
	The CEASE Algorithm in general regimes

	Deterministic analysis
	Deterministic analysis of the CEASE algorithm
	Deterministic analysis in large-sample regimes

	Statistical analysis
	Multi-step estimators in general regimes
	Multi-step estimators in large-sample regimes
	Guidance on practice

	Numerical experiments
	Synthetic data
	Real data

	Discussions

