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1 Introduction and motivation

Suppose we are interested in a pair of unknown objects h?,x? 2 CK and are given a

collection of m nonlinear measurements taking the following form

yj = bHj h
?x?Haj + ⇠j, 1  j  m. (1)

Here, zH denotes the conjugate transpose of a vector z, {⇠j} stands for the additive noise,

whereas {aj} and {bj} are design vectors (or sampling vectors). The aim is to faithfully

reconstruct both h? and x? from the above set of bilinear measurements.1

This problem of solving bilinear systems of equations spans multiple domains in science

and engineering, including but not limited to astronomy, medical imaging, optics, and

communication engineering [Campisi and Egiazarian, 2016, Je↵eries and Christou, 1993,

Wang and Poor, 1998, Wunder et al., 2015, Tong et al., 1994, Chan and Wong, 1998].

Particularly worth emphasizing is the application of blind deconvolution [Ahmed et al.,

2013, Kundur and Hatzinakos, 1996, Ling and Strohmer, 2015, Ma et al., 2018], which

involves recovering two unknown signals from their circular convolution. As has been made

apparent in the seminal work Ahmed et al. [2013], deconvolving two signals can be reduced

to solving bilinear equations, provided that the unknown signals lie within some a priori

known subspaces; the interested reader is referred to Ahmed et al. [2013] for details. A

variety of approaches have since been put forward for blind deconvolution, most notable

of which are convex relaxation and nonconvex optimization [Ahmed et al., 2013, Ling

and Strohmer, 2017, Li et al., 2019, Ma et al., 2018, Huang and Hand, 2018, Ling and

1This formulation is reminiscent of the problem of phase retrieval (or solving quadratic systems of

equations). But the two problems turn out to be quite di↵erent due to the common assumptions imposed

on the design vectors, as we shall elucidate in Section 3.
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Strohmer, 2019]. Despite a large body of prior work tackling this problem, however, where

these algorithms stand vis-à-vis random noise remains unsettled, which we seek to address

in the current paper.

1.1 Convex and nonconvex algorithms

Among various algorithms that have been proposed for blind deconvolution, two paradigms

have received much attention: (1) convex relaxation and (2) nonconvex optimization, both

of which can be explained rather simply. The starting point for both paradigms is a natural

least-squares formulation

minimize
h,x2CK

mX

j=1

��bHj hxHaj � yj

��2 , (2)

which is, unfortunately, highly nonconvex due to the bilinear structure of the sampling

mechanism. It then boils down to how to guarantee a reliable solution despite the intrinsic

nonconvexity.

Convex relaxation. In order to tame nonconvexity, a popular strategy is to lift the

problem into higher dimension followed by convex relaxation (namely, representing hxH by

a matrix variable Z and then dropping the rank-1 constraint) [Ahmed et al., 2013, Ling

and Strohmer, 2015, 2017]. More concretely, we consider the following convex program:2

minimize
Z2CK⇥K

g (Z) =
mX

j=1

��bHj Zaj � yj

��2 + 2� kZk⇤ , (3)

where � > 0 denotes the regularization parameter, and kZk⇤ is the nuclear norm of Z

(i.e. the sum of singular values of Z) and is known to be the convex surrogate for the rank

2As we shall see shortly, we keep a factor 2 here so as to better connect the convex and nonconvex

algorithms; it does not a↵ect our main theoretical guarantees at all.
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function. The rationale is rather simple: given that we seek to recover a rank-1 matrix

Z? = h?x?H, it is common to enforce nuclear norm penalization to encourage the rank-1

structure. In truth, this comes down to solving a nuclear-norm regularized least squares

problem in the matrix domain CK⇥K .

Nonconvex optimization. Another popular paradigm maintains all iterates in the

original vector space (i.e. CK) and attempts solving the above nonconvex formulation or

its variants directly. The crucial ingredient is to ensure fast and reliable convergence in

spite of nonconvexity. While multiple variants of the nonconvex formulation (2) have been

studied in the literature (e.g. Li et al. [2019], Ma et al. [2018], Charisopoulos et al. [2019,

2021], Huang and Hand [2018]), the present paper focuses attention on the following ridge-

regularized least-squares problem:

minimize
h,x2CK

f (h,x) =
mX

j=1

��bHj hxHaj � yj

��2 + � khk22 + � kxk22 , (4)

with � > 0 the regularization parameter. This choice of objective function is crucial to the

establishment of our main theorems as can be seen later. Owing to the nonconvexity of (4),

one needs to also specify which algorithm to employ in attempt to solve this nonconvex

problem. Our focal point is a two-stage optimization algorithm: it starts with a rough initial

guess (h0
,x0) computed by means of a spectral method, followed by Wirtinger gradient

descent (GD) that iteratively refines the estimates (to be made precise in (6a)). At the end

of each gradient iteration, we further rescale the sizes of the two iterates ht and xt, so as

to ensure that they have identical `2 norm (see (6b)). In truth, this balancing step helps

stabilize the algorithm, while facilitating analysis. The whole algorithm is summarized in

Algorithm 1.
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Algorithm 1 Nonconvex gradient descent with spectral initialization
Input: {yj}1jm, {aj}1jm and {bj}1jm.

Spectral initialization: let �1 (M ), ȟ0 and x̌0 denote respectively the leading singular

value, the leading left and the right singular vectors of

M :=
mX

j=1

yjbja
H

j . (5)

Set h0 =
p

�1 (M ) ȟ0 and x0 =
p

�1 (M ) x̌0.

Gradient updates: for t = 0, 1, . . . , t0 � 1 do

2

4 ht+1/2

xt+1/2

3

5 =

2

4 ht

xt

3

5� ⌘

2

4 rhf (ht
,xt)

rxf (ht
,xt)

3

5 , (6a)

2

4 ht+1

xt+1

3

5 =

2

664

r
kxt+1/2k

2

kht+1/2k
2

ht+1/2

r
kht+1/2k

2

kxt+1/2k
2

xt+1/2

3

775 , (6b)

where rhf(·) and rxf(·) represent the Wirtinger gradient (see Li et al. [2019, Section

3.3] and Section A.2.1 of supplementary materials) of f(·) w.r.t. h and x, respectively.

1.2 Inadequacy of prior theory

The aforementioned two algorithms have found solid theoretical support under certain

randomized sampling mechanisms. Informally, imagine that the aj’s and the bj’s follow

standard Gaussian and partial Fourier designs, respectively, and that each noise component

⇠j is a zero-mean sub-Gaussian random variable with variance at most �
2 (more precise

descriptions are deferred to Assumption 1). Table 1 summarizes the performance guarantees

established in prior theory.
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Table 1: Comparison of our theoretical guarantees of blind deconvolution under Fourier

design to prior theory, where we hide all logarithmic factors. Here, the Euclidean estimation

error refers to kZcvx � h?x?HkF for the convex case and khncvxxH

ncvx
� h?x?HkF for the

nonconvex case, respectively.

Sample
Algorithm

Euclidean error Computational

complexity in the noisy case complexity

Ahmed et al. [2013] µ2K convex relaxation �
p
Km —

Ling and Strohmer [2017] µ2K convex relaxation �
p
Km —

This paper µ2K convex relaxation �
p
K —

Li et al. [2019] µ2K nonconvex regularized GD �
p
K mK2

Huang and Hand [2018] µ2K Riemannian steepest descent �
p
K mK2

Ma et al. [2018] µ2K nonconvex vanilla GD — mK (noiseless)

This paper µ2K
nonconvex GD

�
p
K mK

(with balancing operations)

• Convex relaxation is guaranteed to return an estimate of h?x?H with an Euclidean

estimation error bounded by �
p
Km (modulo some log factor) [Ahmed et al., 2013,

Ling and Strohmer, 2017]. This, however, exceeds the minimax lower bound (to be

presented in Theorem 5) by at least a factor of
p
m.

• In comparison, nonconvex algorithms are capable of achieving nearly minimax optimal

statistical accuracy, with a computational complexity on the order of mK
2 (up to some

log factor) [Li et al., 2019, Huang and Hand, 2018]. Here, the computational complexity

encompasses the cost of spectral initialization in Algorithm 1 if implemented by power

methods [Golub and Van Loan, 2013]. This computational cost, however, could be an
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order of K times larger than the cost taken to read the data.

See Table 1 for a more complete summary of existing theoretical results for this scenario.

These prior results, while o↵ering rigorous theoretical underpinnings for the two popular

algorithms, lead to several natural questions:

1. (Improving statistical guarantees) Is the statistical accuracy of convex relaxation inherently

suboptimal when coping with random noise?

2. (Improving computational complexity) Is it possible to further accelerate the nonconvex

algorithm without compromising statistical accuracy?

The present paper is devoted to addressing these two questions. Informally, we aim to

demonstrate that (1) convex relaxation achieves minimax-optimal statistical accuracy in

the face of random noise, and (2) nonconvex optimization converges to a nearly minimax-

optimal solution in time proportional to that taken to read the data.

1.3 Paper organization and notation

The outline of the paper is as follows. Section 2 gives the formal statement of the model

assumptions and presents our main results for two di↵erent designs. Section 3 reviews

previous literature on blind deconvolution. Section 4 presents numerical experiments that

corroborate our theoretical results. We conclude the paper in Section 5 by pointing out

several future directions. All the proof details are deferred to the supplementary materials.

Throughout the paper, we shall often use the vector notation y := [y1, · · · , ym]> and

⇠ := [⇠1, · · · , ⇠m]> 2 Cm. For any vector v and any matrix M , we denote by vH and

MH their conjugate transpose, respectively. The notation kvk2 represents the `2 norm
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of an vector v, and we let kMk, kMkF and kMk⇤ represent the spectral norm, the

Frobenius norm and the nuclear norm of M , respectively. For a function f(h,x), we

use rhf(h,x) (resp. rxf(h,x)) to denote its Wirtinger gradient (see Li et al. [2019,

Section 3.3] for detailed introduction) of f(·) with respect to h (resp. x). Further, we

define rf(h,x) = [rhf(h,x)>,rxf(h,x)>]>. For any subspace T , we use T
? to denote

its orthogonal complement, and PT (M ) the Euclidean projection of a matrix M onto T .

Moreover, we adopt f1(m,K) . f2(m,K) or f1(m,K) = O(f2(m,K)) to indicate that there

exists some constant C1 > 0 such that f1(m,K)  Cf2(m,K) holds for all (m,K) that are

su�ciently large, and use f1(m,K) & f2(m,K) to indicate that f1(m,K) � C2f2(m,K)

holds for some constant C > 0 whenever (m,K) are su�ciently large. The notation

f1(m,K) ⇣ f2(m,K) means that f1(m,K) . f2(m,K) and f1(m,K) & f2(m,K) hold

simultaneously. In our proof, C serves as a universal constant whose value might change

from line to line.

2 Main results

In this section, we present our theoretical guarantees for the above two algorithms for two

types of random designs commonly studied in the blind deconvolution literature.

2.1 Blind deconvolution under random Fourier designs

Model and assumptions. We start by introducing a sort of random Fourier designs

motivated by practical engineering applications (see Ahmed et al. [2013], Li et al. [2019]).

Assumption 1. Let A := [a1,a2, · · · ,am]
H 2 Cm⇥K and B := [b1, b2, · · · , bm]H 2 Cm⇥K.
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• The entries of A are independently drawn from standard complex Gaussian distributions,

namely, aj
i.i.d.⇠ N

�
0,

1
2IK

�
+ iN

�
0,

1
2IK

�
with i the imaginary unit;

• The design matrix B consists of the first K columns of the unitary discrete Fourier

transform (DFT) matrix F 2 Cm⇥m obeying FF H = Im;

• The noise components {⇠i} are independent zero-mean sub-Gaussian random variables

with sub-Gaussian norm obeying k⇠ik 2  � (1  i  m). See Vershynin [2010,

Definition 5.7] for the definition of k · k 2.

Remark 1. It is easy to show that kbjk2 =
p

K/m (1  j  m) under this model.

It is worth noting that the Fourier design is largely motivated by the duality relation

between convolution in the time domain and multiplication in the frequency domain, which

is closely related to practical scenarios; see Ahmed et al. [2013] for details. In fact, the

model described in Assumption 1 has been the focus of a number of recent papers including

Ahmed et al. [2013], Li et al. [2019], Ma et al. [2018], Huang and Hand [2018], Ling and

Strohmer [2019, 2016, 2017], to name a few.

In addition, as pointed out by prior works Ahmed et al. [2013], Li et al. [2019], Ma

et al. [2018], the following incoherence condition — which captures the interplay between

the truth and the measurement mechanism — plays a crucial role in enabling tractable

estimation schemes.

Definition 1 (Incoherence). Define the incoherence parameter µ as the smallest number

obeying
��bHj h?

��  µp
K

kbjk2 kh
?k2 =

µp
m

kh?k2 , 1  j  m. (7)
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Remark 2. Comparing the Cauchy-Schwarz inequality
��bHj h?

��  kbjk2 kh?k2 with (7)

reveals that µ 
p
K. It is noteworthy that our theory does not require µ to be small

constant; in fact, all of our theoretical findings allow µ to grow with the problem dimension.

Informally, a small incoherence parameter indicates that the truth is not quite aligned

with the sampling basis. As a concrete example, when h? is randomly generated (i.e. h? ⇠

N (0, IK)), it can be easily verified that the incoherence parameter µ is, with high probability,

at most O(
p
logm). In fact, this type of condition is widely proposed in statistical literature

on various problem besides blind deconvolution, such as Candès and Recht [2009], Ma et al.

[2018], Chen et al. [2020b] on matrix completion and Candès et al. [2011], Chandrasekaran

et al. [2011], Chen et al. [2020c] on robust principal component analysis. The important

role of this incoherence parameter will also be confirmed by our numerical simulations

momentarily (cf. Figure 3).

Main theory. We are now positioned to state our main theory for this setting, followed

by discussing the implications of our theory. Towards this end, we begin with the statistical

guarantees for the convex formulation. Denote the minimizer of (3) byZcvx. Then our result

is this:

Theorem 1 (Convex relaxation). Set � = C��
p
K logm for some large enough constant

C� > 0. Assume

m � Cµ
2
K log9 m and �

q
K log5 m  c

��h?x?H
��
F

(8)

for some su�ciently large (resp. small) constant C > 0 (resp. c > 0). Then under

Assumption 1 and the incoherence condition (7), one has with probability exceeding 1 �
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O
�
m

�3 +me
�K

�
that

��Zcvx � h?x?H
�� 

��Zcvx � h?x?H
��
F
. �

p
K logm. (9)

In addition, the bounds in (9) continue to hold if Zcvx is replaced by

Zcvx,1 := arg min
Z:rank(Z)1

kZ �ZcvxkF

i.e. the best rank-1 approximation of Zcvx.

Remark 3. In (8), log9 m and log5 m appear due to our decoupling arguments. We believe

it would be di�cult to get rid of the logarithmic factors completely using the current analyis

framework, although it might be possible to reduce the power of the logarithmic factors

slightly by means of more refined analysis.

Our proof for this theorem, whose details are postponed to Section B.1 of supplementary

materials, is largely inspired by the idea of connecting convex and nonconvecx optimization

as proposed by Chen et al. [2020b,c] for noisy matrix completion and robust principal

component analysis respectively. Note, however, that implementing this high-level idea

requires drastically di↵erent analysis from Chen et al. [2020b,c], primarily due to the

absence of randomness in the highly structured Fourier design matrix B. For instance,

in contrast to prior works that were built upon a “leave-one-out” analysis framework to

decouple statistical dependency, simply “leaving out” one row ofB in the blind deconvolution

analysis does not lead to immediate statistical benefits due to the deterministic nature of

B. Consequently, considerably more delicate analyses are needed in order to enable fine-

grained statistical analysis.

Next, we turn to theoretical guarantees for the nonconvex algorithm described in
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Algorithm 1. For notational convenience, we define

zt :=

2

4 ht

xt

3

5 and z? :=

2

4 h?

x?

3

5 (10)

throughout this paper. Before presenting the results, we make note of an unavoidable

scaling ambiguity issue underlying this model. Given that h? and x? are only identifiable

up to global scaling (meaning that one cannot hope to distinguish (↵h?, 1
↵x

?) from (h?,x?)

given only bilinear measurements), we shall measure the discrepancy between z? and any

point z :=

"
h

x

#
through the following metric:

dist (z, z?) := min
↵2C

s����
1

↵
h� h?

����
2

2

+ k↵x� x?k22. (11)

In words, this metric is an extension of the `2 distance modulo global scaling. Our result

is this:

Theorem 2 (Nonconvex optimization). Set � = C��
p
K logm for some large enough

constant C� > 0. Take ⌘ = c⌘ for some su�ciently small constant c⌘ > 0. Suppose

that Assumption 1, the incoherence condition (7) and the condition (8) hold. Then with

probability at least 1�O
�
m

�5 +me
�K

�
, the iterates {ht

,xt}0tt0
of the spectrally initialized

nonconvex algorithm (see Algorithm 1) obey

dist
�
z0
, z?

�
.
r

µ2K logm

m
kz?k2 +

�
p
K logm

kh?x?Hk1/2F

, (12a)

dist
�
zt
, z?

�
 ⇢

tdist
�
z0
, z?

�
+

C1

�
�+ �

p
K logm

�

c⇢ kh?x?Hk1/2F

, (12b)

��ht
�
xt
�H � h?x?H

��
F
 2⇢tdist

�
z0
, z?

�
kz?k2 +

2C1

�
�+ �

p
K logm

�

c⇢
, (12c)
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simultaneously for all 0  t  t0  m
20. Here, we take C1 > 0 to be some su�ciently large

constant and 0 < ⇢ = 1� c⇢⌘ < 1 for some su�ciently small constant c⇢ > 0.

Remark 4. It is noteworthy that the quantitym�5 in the probability term 1�O
�
m

�5 +me
�K

�

in this theorem can actually be replaced by m
�C for any positive integer C.

Informally, this theorem guarantees that the estimation error of the iterates {ht
,xt}0tt0

generated by Algorithm 1 decays geometrically fast until some error floor is hit. As we shall

demonstrate momentarily in Theorem 5, this error floor matches the minimax-optimal

statistical error up to some logarithmic term.

Compared with one of the most relevant papers to us — Ma et al. [2018] — on blind

deconvolution under Fourier designs, this theorem generalizes the noiseless case studied in

Ma et al. [2018] to the noisy case. This generalization needs a lot of e↵orts since it calls

for delicate and careful control of the noise e↵ect, as detailed in the proof in Section A of

supplementary materials.

2.2 Blind deconvolution under Gaussian designs

In addition to the above-mentioned random Fourier design, our results also extend to the

scenario under Gaussian design, as formalized in the assumption below.

Assumption 2. • The entries of A and B are independently drawn from standard complex

Gaussian distributions, namely, aj, bj
i.i.d.⇠ N

�
0,

1
2IK

�
+ iN

�
0,

1
2IK

�
;

• The noise components {⇠i} are independent zero-mean sub-Gaussian random variables

with sub-Gaussian norm obeying k⇠ik 2  � (1  i  m).

Akin to Theorems 1 and 2, we consider the loss functions (3) and (4). The main results

under the Gaussian design are summarized in the following theorems.
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Theorem 3 (Convex relaxation). Let � = C��
p
mK logm for some su�ciently large

constant C� > 0. Assume the sample complexity and the noise level satisfy

m � CK log6 m and �

s
K log5 m

m
 c

��h?x?H
��
F

(13)

for some su�ciently large (resp. small) constant C > 0 (resp. c > 0). Then

��Zcvx � h?x?H
�� 

��Zcvx � h?x?H
��
F
. �

r
K logm

m
(14)

holds with probability at least 1 � O(m�5 + m exp(�c1K)) for some constant c1 > 0. In

addition, the bounds in (14) continue to hold if Zcvx is replaced by

Zcvx,1 := arg min
Z:rank(Z)1

kZ �ZcvxkF ,

i.e. the best rank-1 approximation of Zcvx.

This theorem, which is in parallel to Theorem 1 for Fourier designs, confirms the

appealing statistical guarantees of convex relaxation under Gaussian designs. The minimax

optimality of this result will be discussed in Section 2.3 in detail.

Theorem 4 (Nonconvex optimization). Set � = C��
p
mK logm for some large enough

constant C� > 0. Take ⌘ = c⌘/m for some su�ciently small constant c⌘ > 0. Suppose that

Assumption 2 and Condition (13) hold. Then with probability at least 1�O
�
m

�5 +me
�K

�
,

the iterates {ht
,xt}0tt0

of Algorithm 1 obey

dist
�
z0
, z?

�
.

s
K log2 m

m
kz?k2 + �

s
K logm

m kh?x?HkF
, (15a)

dist
�
zt
, z?

�
 ⇢

tdist
�
z0
, z?

�
+

C11

�
�+ �

p
mK logm

�

c⇢m kh?x?Hk1/2F

(15b)

��ht
�
xt
�H � h?x?H

��
F
 2⇢tdist

�
z0
, z?

�
kz?k2 +

2C11

�
�+ �

p
mK logm

�

c⇢m
(15c)
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simultaneously for all 0  t  t0  m
20. Here, we take C11 > 0 to be some su�ciently

large constant and 0 < ⇢ = 1� c⇢c⌘ < 1 for some su�ciently small constant c⇢ > 0.

Similar to the Fourier designs studied in Section 2.1, our theory asserts that the

estimation error of {ht
,xt}0tt0

produced by Algorithm 1 decreases geometrically fast

before reaching an error floor on the order of the minimax-optimal statistical limit modulo

some logarithmic factor (cf. Theorem 5).

2.3 Insights

The above theorems strengthen our understanding about the performance of both convex

and nonconvex algorithms in the presence of random noise. In what follows, we elaborate

on the tightness of our results as well as other important algorithmic implications.

• Minimax optimality of both convex relaxation and nonconvex optimization. Theorems

1-2 (resp. Theorems 3-4) reveal that both convex and nonconvex optimization estimate

h?x?H to within an Euclidean error at most �
p
K (resp. �

p
K/m) up to some log factor

for random Fourier design (resp. Gaussian design), provided that the regularization

parameter is taken to be � ⇣ �
p
K logm (resp. � ⇣ �

p
mK logm). This closes the gap

between the statistical guarantees for convex and nonconvex optimization, confirming

that convex relaxation is no less statistically e�cient than nonconvex optimization.

Further, in order to assess the statistical optimality of our results, it is instrumental

to understand the statistical limit one can hope for. This is provided in the following

claim, whose proof is postponed to Section E of supplementary materials.

Theorem 5. Suppose that the noise components obey ⇠j
i.i.d.⇠ N (0, �2

/2)+ iN (0, �2
/2).
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Define

M? :=
�
Z = hxH

��h,x 2 CK
 
.

Then under Assumption 1, there exists some universal constant c(1)
lb

> 0 such that, with

probability exceeding 1�O(K�10),

inf
bZ

sup
Z?2M?

E
h�� bZ �Z?

��2
F
| A

i
� c

(1)
lb

�
2
K

logm
, (16)

where the infimum is taken over all estimator bZ. Furthermore, under Assumption 2,

there exists another universal constant c(2)
lb

> 0 such that

inf
bZ

sup
Z?2M?

E
h�� bZ �Z?

��2
F
| A,B

i
� c

(2)
lb

�
2
K

m logm
(17)

holds with probability exceeding 1�O(K�10).

Encouragingly, the minimax lower bound (16) (resp. (17)) matches the statistical error

bounds in Theorems 1-2 (resp. Theorems 3-4) up to some logarithmic factor, thus

confirming the near minimaxity of both convex relaxation and nonconvex optimization

for blind deconvolution under both designs.

• Fast convergence of nonconvex algorithms. From the computational perspective, Theorem

2 guarantees linear convergence (or geometric convergence) of the nonconvex algorithm

with a contraction rate ⇢. Given that 1� ⇢ is a constant bounded away from 1 (as long

as the stepsize is taken to be a su�ciently small constant), the iteration complexity of

the algorithm scales at most logarithmically with the model parameters. As a result,

the total computational complexity is proportional to the per-iteration cost O(mK)

(up to some log factor), which scales nearly linearly with the time taken to read the

data. Compared with past work on nonconvex algorithms [Li et al., 2019, Huang and
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Hand, 2018], our theory reveals considerably faster convergence and hence improved

computational cost, without compromising statistical e�ciency. A key enabler of the

improved theory lies in fine-grained understanding of the part of optimization lanscape

visited by the nonconvex algorithm, thus allowing for the use of more aggressive constant

step sizes instead of diminishing step sizes. See Table 1 for details.

The careful reader might immediately remark that the validity of the above results requires

the assumptions (8) on both the sample size and the noise level. Fortunately, a closer

inspection of these conditions reveals the broad applicability of these conditions.

• Sample complexity. The sample size requirement in our theory of blind deconvolution

under Fourier design (resp. Gaussian design), as stated in Condition (8) (resp. Condition

(13)), scales as

m & Kpoly log(m),

which matches the information-theoretical lower limit even in the absence of noise

(modulo some logarithmic factor) as proved in Kech and Krahmer [2017] (resp. Cai

et al. [2015]).

• Signal-to-noise ratio (SNR). The noise level required for our theory to work under

Fourier design (see Condition (8)) is given by �

p
K log5 m .

��h?x?H
��
F
. If we define

the sample-wise signal-to-noise ratio as follows

SNR :=
1
m

Pm
k=1 E

⇥��bHkh?x?Ha
��2⇤

�2
, (18)

then our noise requirement can be equivalently phrased as

SNR =
kh?k22kx?k22

m�2
& K log5 m

m
,
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where the right-hand side of the above relation is vanishingly small in light of our sample

complexity constraint m & µ
2
K log9 m. In other words, our theory works even in the

low-SNR regime. Furthermore, for the Gaussian design, the noise level required in our

theory is �
q

K log5 m/m .
��h?x?H

��
F
. We can introduce the following SNR that allows

us to rewrite this requirement as

SNR =
1
m

Pm
k=1 E

⇥��bHkh?x?Ha
��2⇤

�2
=

kh?k22kx?k22
�2

& K log5 m

m
,

which resembles the one for Fourier designs.

3 Prior art

Before embarking on our discussion on the prior art for blind deconvolution, it is noteworthy

that the model (1) might remind readers of the famous problem of phase retrieval [Candes

et al., 2013, Shechtman et al., 2015, Chi et al., 2019], which is concerned with solving

random quadratic systems of equations and clearly related to the problem of solving bilinear

systems. Despite the similarity between these two problems at first glance, the majority

of prior phase retrieval theory focuses on either i.i.d. Gaussian designs or randomized

coded di↵raction patterns, which are drastically di↵erent from the kind of random Fourier

designs commonly assumed in blind deconvolution. In fact, the presence of Fourier designs

in blind deconvolution is a consequence of the duality relation between convolution in the

time domain and multiplication in the frequency domain [Ahmed et al., 2013, Li et al.,

2019]. The deterministic nature of the Fourier design matrix B under the Fourier model,

however, presents a substantial challenge in the analysis of both convex and nonconvex

optimization algorithms; in contrast, the Gaussian design matrix in prior phase retrieval

theory is assumed to be highly random, which remarkably simplifies analysis.
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We now turn attention to the blind deconvolution literature. As mentioned previously,

recent years have witnessed much progress towards understanding convex and nonconvex

optimization for solving bilinear systems of equations. First, we give a brief review on

previous literature of blind deconvolution under Fourier design. Regarding the convex

programming approach, Ahmed et al. [2013] was the first to apply the lifting idea to

transform bilinear system of equations into linear measurements about a rank-one matrix

— an idea that has proved e↵ective in a number of nonconvex problems [Candes et al., 2013,

Waldspurger et al., 2015, Chen and Chi, 2014, Tang et al., 2013, Chi, 2016, Chen et al., 2014,

Goemans and Williamson, 1994, Shechtman et al., 2014, Oymak et al., 2015]. Focusing on

convex relaxing in the lifted domain, Ahmed et al. [2013] showed that exact recovery is

possible from a near-optimal number of measurements in the noiseless case, and developed

the first statistical guarantees for the noisy case (which are, as alluded to previously,

highly suboptimal). Several other works have also been devoted to understanding convex

relaxation under possibly di↵erent assumptions. Another paper Aghasi et al. [2019] proposed

an e↵ective convex algorithm for bilinear inversion, assuming that the signs of the signals

are known a priori. Moving beyond blind deconvolution, the convex approach has been

extended to accommodate the blind demixing problem [Ling and Strohmer, 2017, Jung

et al., 2017], which is more general than blind deconvolution.

minimize
Z2CK⇥K

kZk⇤ subject to y = A (Z) .

Another line of works has focused on the development of fast nonconvex algorithms [Li

et al., 2019, Lee et al., 2018, Ma et al., 2018, Huang and Hand, 2018, Ling and Strohmer,

2019, Charisopoulos et al., 2019, 2021], which was largely motivated by recent advances in

e�cient nonconvex optimization for tackling statistical estimation problems [Candes et al.,

2015, Chen and Candès, 2017, Charisopoulos et al., 2021, Keshavan et al., 2009, Jain et al.,
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2013, Zhang et al., 2016, Chen and Wainwright, 2015, Sun and Luo, 2016, Zheng and

La↵erty, 2016, Wang et al., 2017a, Cai et al., 2021b, Wang et al., 2017b, Qu et al., 2017,

Duchi and Ruan, 2019, Ma et al., 2019] (see Chi et al. [2019] for an overview). Li et al.

[2019] proposed a feasible nonconvex recipe by attempting to optimize a regularized squared

loss (which includes extra penalty term to promote incoherence), and showed that in

conjunction with proper initialization, nonconvex gradient descent converges to the ground

truth in the absence of noise. Another work Huang and Hand [2018] proposed a Riemannian

steepest descent method by exploiting the quotient structure, which is also guaranteed to

work in the noise-free setting with nearly minimal sample complexity. Further, Ling and

Strohmer [2019], Dong and Shi [2018] extended the nonconvex paradigm to accommodate

the blind demixing problem, which subsumes blind deconvolution a special case.

Going beyond algorithm designs, the past works Li et al. [2016, 2015], Kech and Krahmer

[2017] investigated how many samples are needed to ensure the identifiability of blind

deconvolution under the subspace model. Furthermore, it is worth noting that another line

of recent works Wang and Chi [2016], Lee et al. [2016], Zhang et al. [2017, 2019, 2020], Li and

Bresler [2019], Shi and Chi [2021], Qu et al. [2019] studied a di↵erent yet fundamentally

important model of blind deconvolution, assuming that one of the two signals is sparse

instead of lying within a known subspace. These are, however, beyond the scope of the

current paper.

In addition, as far as we know, previous works on blind deconvolution under Gaussian

design is not as extensive as the case with Fourier designs, the latter of which is closer

to practical blind deconvolution applications. Among the most relevant works: Cai et al.

[2015] proposed a constrained convex optimization problem under the same setting as

Assumption 2 and establishes that the estimation error is bounded by �min{K
p
logm/m+
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p
K/m, 1}, which is on the same order (up to logarithmic factors) as our bound in Theorem

3 when m � K logm and matches the minimax optimal estimation error lower bound;

Zhong et al. [2015] studied the noiseless case in terms of both convex and nonconvex

formulations; Charisopoulos et al. [2019] analyzed the nonsmooth nonconvex formulation of

the problem for bilinear measurements with corruption frequency less than 1/2, and proved

that the subgradient algorithms proposed there converges linearly, while the specific prox-

linear method converges quadratically albeit with higher per-iteration cost. Compared

with these works, our paper studies the unconstrained version of convex relaxation and

establishes an estimation error upper bound that nearly matches the minimax lower bound.

When it comes to nonconvex formulation, the current paper is, as far as we know, the first

to justify the optimality of its estimation accuracy in the noisy setting.

At the technical level, the pivotal idea of our paper lies in bridging convex and nonconvex

estimators, which is motivated by prior works Chen et al. [2020b, 2019c, 2020c] on matrix

completion and robust principal component analysis. Such crucial connections have been

established with the assistance of the leave-one-out analysis framework, which has already

proved e↵ective in analyzing a variety of nonconvex statistical problems [El Karoui, 2018,

Chen et al., 2019a,b, Ding and Chen, 2020, Cai et al., 2020, Dong and Shi, 2018, Xu et al.,

2019, Cai et al., 2021a, Chen et al., 2020a, Zhong and Boumal, 2018].

4 Numerical experiments

In this subsection, we carry out a series of numerical experiments to confirm the validity of

our theory. Throughout the experiments, the signals of interest h?, x? 2 CK are drawn from

N
�
0,

1
2KIK

�
+ iN

�
0,

1
2KIK

�
(so that they have approximately unit `2 norm). Under the
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Assumption 1 (resp. Assumption 2), the stepsize ⌘ is set to be 0.05 (resp. 0.05/m), whereas

the regularization parameter is taken to be � = 5�
p
K logm (resp. � = 5�

p
mK logm).

The convex problem is solved by means of the proximal gradient method [Parikh and Boyd,

2014].

In the first series of experiments, we report the statistical estimation errors of both

convex and nonconvex approaches as the noise level � varies from 10�6 to 10�3 for blind

deconvolution under Fourier design, while the noise level for blind deconvolution under

Gaussian design is from 10�5 to 10�2; here, we set K = 100 and m = 10K. Let Zncvx =

hncvxxH

ncvx
be the nonconvex solution and Zcvx be the convex solution. Figure 1 depicts the

relative Euclidean estimation errors (kZncvx �Z?kF / kZ?kF and kZcvx �Z?kF / kZ?kF)

vs. the noise level, where the results are averaged from 20 independent trials. Clearly,

both approaches enjoy almost identical statistical accuracy, thus confirming the optimality

of convex relaxation as well. Another interesting observation revealed by Figure 1 is the

closeness of the solutions of these two approaches, which, as we shall elucidate momentarily,

forms the basis of our analysis idea.

In the second series of experiments, we report the numerical convergence of gradient

descent (cf. Algorithm 1). We choose K 2 {30, 100, 300, 1000} and let m = 10K, with

the noise level fixed at � = 10�4. Figure 2 plots the relative Euclidean estimation

error
��htxtH � h?x?H

��
F
/
��h?x?H

��
F

vs. the iteration count. As can be seen from the

plots, the nonconvex gradient algorithm studied here converges linearly (in fact, within

around 200-300 iterations) before it hits an error floor. In addition, the relative error of

blind deconvolution under Fourier design increases as the dimension K increases, which is

consistent with Theorem 2. While the relative error of blind deconvolution under Gaussian

design remains generally the same across di↵erent choices of K, this can be explained by
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Figure 1: Left: blind deconvolution under Fourier design. Right: blind deconvolution under

Gaussian design. Relative estimation errors of both Zcvx and Zncvx and the relative distance

between them vs. the noise level �. The results are averaged over 20 independent trials.

Theorem 4 since the ratio between m and K is kept to be 10.

In the last series of experiments, we examine the necessity of the incoherence condition

(7) empirically. The experiments are conducted with µ
2 taking on 10 equidistant values

from 3 to 30. For each choice of µ, h? is generated by first setting the first µ
2 entries

to be 1 and the others 0 , and then normalizing it to have unit norm; x? is generated

randomly from Gaussian distribution N (0, IK) and then normalized to have unit norm.

This way we guarantee that max1jm |bHj h?| = µ/
p
m. We fix K = 100 and the noise

level � = 10�4 throughout. For each µ
2 and m, 20 random trials are conducted. In each

trial, we run convex and nonconvex algorithms until convergence or the maximum number

of iterations is reached, and then report the relative Euclidean error khtxtH � h?x?H
��
F
.

If the relative error is less than 0.1, the trial is declared as successful. The proportion

of successful recovery for convex and nonconvex problems are plotted in Figure 3, which

suggests that sample complexity m does scale linearly with µ
2 for both problems and hence
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Figure 2: Left: blind deconvolution. Right: Gaussian design. Relative Euclidean error
��htxtH � h?x?H

��
F
vs. iteration count.

corroborates the theoretical results provided in Theorems 1 and 2.

5 Discussion

This paper has investigated the e↵ectiveness of both convex relaxation and nonconvex

optimization in solving bilinear systems of equations in the presence of random noise.

We have demonstrated that a simple two-stage nonconvex algorithm solves the problem

to optimal statistical accuracy within nearly linear time. Further, by establishing an

intimate connection between convex programming and nonconvex optimization, we have

established — for the first time — optimal statistical guarantees of convex relaxation when

applied to blind deconvolution. Our results are established for two di↵erent types of design

mechanisms: the random Fourier design and the Gaussian design. Our results considerably

improve upon the state-of-the-art theory for blind deconvolution, and contribute towards

demystifying the e�cacy of optimization-based methods in solving this fundamental nonconvex

problem.
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Figure 3: Left: nonconvex problem. Right: convex problem. Sample size m vs. squared

incoherence µ
2. The scaled colormap represents the proportion of successful recovery out

of 20 random trials.

Moving forward, the findings of this paper suggest multiple directions that merit further

investigations. For instance, while the current paper adopts a balancing operation in

each iteration of the nonconvex algorithm (cf. Algorithm 1), it might not be necessary

in practice; in fact, numerical experiments suggest that the size of the scaling parameter

|↵t| stays close to 1 even without proper balancing. It would be interesting to investigate

whether vanilla GD without rescaling is able to achieve comparable performance. In

addition, the estimation guarantees provided in this paper might serve as a starting point

for conducting uncertainty quantification for noisy blind deconvolution — namely, how to

use it to construct valid and short confidence intervals for the unknowns. Going beyond

blind deconvolution, it would be of interest to extend the current analysis to handle blind

demixing — a problem that can be viewed as an extension of blind deconvolution beyond the

rank-one setting [Ling and Strohmer, 2017, 2019, Dong and Shi, 2018]. As can be expected,

existing statistical guarantees for convex programming remain highly suboptimal for noisy
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blind demixing, and the analysis developed in the current paper suggests a feasible path

towards closing the gap.
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Appendix structure
Appendix A and B analyze the Fourier designs. In Appendix A, we present the analysis of the nonconvex
gradient method and the proof of Theorem 2. Appendix B gives the complete proof of Theorem 1. In addition,
Appendix C and D and provide proofs for the Gaussian designs, while Appendix C proves Theorem 4 and
Appendix D proves Theorem 3. Appendix E justifies two minimax lower bounds in Theorem 5. Appendix
F lists several useful lemmas and their proofs.

A Analysis: Nonconvex gradient method under Fourier design
Since the proof of Theorem 1 is built upon Theorem 2, we shall first present the proof of the nonconvex part.
Without loss of generality, we assume that

kh?k2 = kx?k2 = 1 (A.1)

throughout the proof. For the sake of notational convenience, for each iterate (ht
,x

t) we define the following
alignment parameters

↵
t := argmin

↵2C

n�� 1
↵h

t � h
?
��2
2
+
��↵xt � x

?
��2
2

o
, (A.2a)

↵
t+1/2 := argmin

↵2C

⇢��� 1
↵h

t+1/2 � h
?
���
2

2
+
��↵xt+1/2 � x

?
��2
2

�
, (A.2b)

which lead to the following simple relations

↵
t+1 =

s��xt+1/2
��
2��ht+1/2
��
2

↵
t+1/2 and dist

�
z
t+1/2

, z
?
�
= dist

�
z
t+1

, z
?
�
. (A.3)
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With these in place, attention should be directed to the properly rescaled iterate

ezt+1/2 =
�eht+1/2

, ext+1/2
�
:=

�
1

↵t+1/2
h
t+1/2

,↵
t+1/2

x
t+1/2

�
, (A.4a)

ezt =
�eht

, ext
�
:=

�
1
↵t
h
t
,↵

t
x
t
�
. (A.4b)

Additionally, we shall also define

bzt+1/2 = (bht+1/2
, bxt+1/2) :=

�
1
↵t
h
t+1/2

,↵
t
x
t+1/2

�
(A.5a)

bzt+1 = (bht+1
, bxt+1) :=

�
1
↵t
h
t+1

,↵
t
x
t+1

�
(A.5b)

that are rescaled in a different way, which will appear often in the analysis.

A.1 Induction hypotheses
Our analysis is inductive in nature; more concretely, we aim to justify the following set of hypotheses by
induction:

dist
�
z
t
, z
?
�

��bzt�1/2 � z

?
��
2
 ⇢dist

�
z
t�1

, z
?
�
+ C1⌘

⇣
�+ �

p
K logm

⌘
, (A.6a)

max
1lm

��aH

l

�
ext � x

?
���  C3

0

@

s
µ2K log2 m

m
+
p
logm

⇣
�+ �

p
K logm

⌘
1

A , (A.6b)

max
1lm

��bHl eht
��  C4

✓
µ log2 mp

m
+ �

◆
, (A.6c)

where ⇢ = 1�⌘/16 and C1, C3, C4 > 0 are some universal constants. Here, the hypothesis (A.6a) is made for
all 0 < t  t0, while the hypotheses (A.6b) and (A.6c) are made for all 0  t  t0. Clearly, if the hypotheses
(A.6a) can be established, then simple recursion yields

dist
�
z
t
, z
?
�
. ⇢

tdist
�
z
0
, z
?
�
+

C1⌘
�
�+ �

p
K logm

�

1� ⇢

= ⇢
tdist

�
z
0
, z
?
�
+

C1

�
�+ �

p
K logm

�

c⇢
, 0  t  t0 (A.6d)

as claimed. Moreover, one might naturally wonder why we are in need of the additional hypotheses (A.6b)
and (A.6c) that might seem irrelevant at first glance. As it turns out, these two hypotheses — which
characterize certain incoherence conditions of the iterates w.r.t. the design vectors — play a pivotal role in
the analysis, as they enable some sort of “restricted strong convexity” that proves crucial for guaranteeing
linear convergence.

In addition, the analysis also relies upon the following important properties of the initialization, which
we shall establish momentarily:

dist
�
z
0
, z
?
�
.
r

µ2K logm

m
+ �

p
K logm, (A.6e)

max
1jm

��aH

j

�
ex0 � x

?
��� .

s
µ2K log2 m

m
+ �

p
K logm, (A.6f)

max
1lm

��bHl eh0
�� . µ log2 mp

m
+ �, (A.6g)

��|↵0|� 1
��  1/4. (A.6h)

A.2 Preliminaries
Before proceeding to the proof, we gather several preliminary facts that will be useful throughout.

3



A.2.1 Wirtinger calculus and notation

Given that this problem concerns complex-valued vectors/matrices, we find it convenient to work with
Wirtinger calculus; see Candes et al. [2015, Section 6] and Ma et al. [2018, Section D.3.1] for a brief intro-
duction. Here, we shall simply record below the expressions for the Wirtinger gradient and the Wirtinger
Hessian w.r.t. the objective function f(·) defined in (4):

rhf (h,x) =
mX

j=1

�
b
H

j hx
H
aj � yj

�
bja

H

j x+ �h, (A.7a)

rxf (h,x) =
mX

j=1

�
b
H

j hx
Haj � yj

�
ajb

H

j h+ �x, (A.7b)

r2
f (h,x) =


A B

B
H

A

�
, (A.7c)

where

A :=

" Pm
j=1

��aH

j x
�� 2bjbHj + �

Pm
j=1

�
b
H

j hx
H
aj � yj

�
bja

H

jPm
j=1

⇥�
b
H

j hx
H
aj � yj

�
bja

H

j

⇤H Pm
j=1

��bHj h
�� 2aja

H

j + �

#
2 C2K⇥2K

,

B :=

"
0

Pm
j=1 bjb

H

j h
�
aja

H

j x
�H

Pm
j=1 aja

H

j x
�
bjb

H

j h
�H

0

#
2 C2K⇥2K

.

Throughout this paper, we shall often use f (h,x) and f (z) interchangeably for any z =
h

h
x

i
, whenever

it is clear from the context.
Before proceeding, we present two useful properties of the operator A and the design vectors {bj}mj=1.

Lemma 1. For A defined in (B.3), with probability at least 1�m
�� ,

kAk 
p

2K logK + � logm.

Proof. See Li et al. [2019, Lemma 5.12].

Lemma 2. For any m � 3 and any 1  l  m, we have
mX

j=1

��bHl bj
��  4 logm.

Proof. See Ma et al. [2018, Lemma 48].

A.2.2 Leave-one-out auxiliary sequences

The key to establishing the incoherence hypotheses (A.6b) and (A.6c) is to introduce a collection of auxiliary
leave-one-out sequences — an approach first introduced by Ma et al. [2018]. Specifically, for each 1  l  m,
define the leave-one-out loss function as follows

f
(l) (h,x) :=

X

j:j 6=l

��bHj hxH
aj � yj

��2 + � khk22 + � kxk22 ,

which is obtained by discarding the lth sample. We then generate the auxiliary sequence {h(t),l
,x

(t),l}t�0

by running the same nonconvex algorithm w.r.t. f (l)(·, ·), as summarized in Algorithm 1. In a nutshell, the
resulting leave-one-out sequence {h(t),l

,x
(t),l}t�0 is statistically independent from the design vector al and

is expected to stay exceedingly close to the original sequence (given that only a single sample is dropped),
which in turn facilitate the analysis of the correlation of al and x

t as claimed in (A.6b). In the mean time,
this strategy also proves useful in controlling the correlation of bl and h

t as in (A.6c), albeit with more
delicate arguments.
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Algorithm 1 The lth leave-one-out sequence for nonconvex blind deconvolution
Input: {aj}1jm,j 6=l, {bj}1jm,j 6=l and {yj}1jm,j 6=l.
Spectral initialization: let �1

�
M

(l)
�
, ȟ0,(l) and x̌

0,(l) be the leading singular value, the leading left and
right singular vectors of

M
(l) :=

X

j:j 6=l

yjbja
H

j , (A.8)

respectively. Set h
0,(l) =

q
�1

�
M (l)

�
ȟ
0,(l) and x

0,(l) =
q
�1

�
M (l)

�
x̌
0,(l).

Gradient updates: for t = 0, 1, . . . , t0 � 1 do


h
t+1/2,(l)

x
t+1/2,(l)

�
=


h
t,(l)

x
t,(l)

�
� ⌘


rhf

(l) (ht
,x

t)
rxf

(l) (ht
,x

t)

�
,


h
t+1,(l)

x
t+1,(l)

�
=

2

664

r
kxt+1/2,(l)k

2

kht+1/2,(l)k
2

h
t+1/2,(l)

r
kht+1/2,(l)k

2

kxt+1/2,(l)k
2

x
t+1/2,(l)

3

775 .

(A.9a)

Similar to the notation adopted for the original sequence, we shall define the alignment parameter for
the leave-one-out sequence as follows

↵
t,(l) := argmin

↵2C

⇢��� 1
↵h

t,(l) � h
?
���
2

2
+
��↵xt,(l) � x

?
��2
2

�
, (A.10a)

↵
t+1/2,(l) := argmin

↵2C

⇢��� 1
↵h

t+1/2,(l) � h
?
���
2

2
+
��↵xt+1/2,(l) � x

?
��2
2

�
, (A.10b)

along with the properly rescaled iterates

ezt,(l) =

 eht,(l)

ext,(l)

�
:=

"
1

↵t,(l)
h
t,(l)

↵
t,(l)

x
t,(l)

#
, (A.11a)

ezt+1/2,(l) =

 eht+1/2,(l)

ext+1/2,(l)

�
:=

"
1

↵t+1/2,(l)
h
t+1/2,(l)

↵
t+1/2,(l)

x
t+1/2,(l)

#
. (A.11b)

Further we define the alignment parameter between z
t,(l) and ezt as

↵
t,(l)
mutual := argmin

↵2C

⇢��� 1
↵h

t,(l) � 1
↵t
h
t
���
2

2
+
���↵xt,(l) � ↵

t
x
t
���
2

2

�
, (A.12a)

↵
t+1/2,(l)
mutual := argmin

↵2C

⇢��� 1
↵h

t+1/2,(l) � 1

↵t+1/2
h
t+1/2

���
2

2
+
���↵xt+1/2,(l) � ↵

t+1/2
x
t+1/2

���
2

2

�
. (A.12b)

Hereafter, we shall also denote

bzt,(l) :=

 bht,(l)

bxt,(l)

�
=

" 1

↵t,(l)
mutual

h
t,(l)

↵
t,(l)
mutualx

t,(l)

#
, (A.13a)

bzt+1/2,(l) :=

 bht+1/2,(l)

bxt+1/2,(l)

�
=

" 1

↵t+1/2,(l)
mutual

h
t+1/2,(l)

↵
t+1/2,(l)
mutual x

t+1/2,(l)

#
. (A.13b)

A.2.3 Additional induction hypotheses

In addition to the set of induction hypotheses already listed in (A.6), we find it convenient to include the
following hypotheses concerning the leave-one-out sequences. Specifically, for any 0 < t  t0 and any
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1  l  m, the hypotheses claim that

dist
�
z
t,(l)

, ezt
�
 C2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A (A.14a)

��ezt,(l) � ezt
��
2
. C2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A (A.14b)

dist
�
z
0,(l)

, z
?
�
.
r

µ2K logm

m
+ �

p
K logm (A.14c)

dist
�
z
0,(l)

, ez0
�
. µp

m

s
µ2K log5 m

m
+

�

log2 m
(A.14d)

for some constant C2 � C
2
4 . Furthermore, there are several immediate consequences of the hypotheses (A.6)

and (A.14) that are also useful in the analysis, which we gather as follows. Note that the notation (eht
, ext),

(bht
, bxt), (bht,(l)

, bxt,(l)) and ↵
t has been defined in (A.4b), (A.5b), (A.13a) and (A.2a), respectively.

Lemma 3. Instate the notation and assumptions in Theorem 2. For t � 0, suppose that the hypotheses
(A.6) and (A.14) hold in the first t iterations. Then there exist some constants C1, C > 0 such that for any
1  l  m,

dist
�
z
t
, z
?
�
 C1

 r
µ2K logm

m
+ �+ �

p
K logm

!
, (A.15a)

���ht
�
x
t
�H � h

?
x
?H
���  C

 r
µ2K logm

m
+ �+ �

p
K logm

!
, (A.15b)

��ezt,(l) � z
?
��
2
 2C1

 r
µ2K logm

m
+ �+ �

p
K logm

!
, (A.15c)

1

2

��ext

��
2
 3

2
,

1

2

��eht

��
2
 3

2
, (A.15d)

1

2

��ext,(l)

��
2
 3

2
,

1

2

��eht,(l)

��
2
 3

2
, (A.15e)

1

2

��bxt,(l)

��
2
 3

2
,

1

2

��bht,(l)

��
2
 3

2
. (A.15f)

In addition, if t > 0, then one also has

��bzt�1/2 � z
?
��
2
 C

 r
µ2K logm

m
+ �+ �

p
K logm

!
. (A.15g)

Proof. See Appendix A.4.

A.3 Inductive analysis
In this subsection, we carry out the analysis by induction.

A.3.1 Step 1: Characterizing local geometry

Similar to Ma et al. [2018, Lemma 14], local linear convergence is made possible when some sort of restricted
strong convexity and smoothness are present simultaneously. To be specific, define the following squared
loss that excludes the regularization term

freg-free (z) = freg-free (h,x) :=
mX

j=1

��bHj hxH
aj � yj

��2. (A.16)
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Our result is this:

Lemma 4. Let � := c/ log2 m for some sufficiently small constant c > 0. Suppose that m � Cµ
2
K log9 m

for some sufficiently large constant C > 0 and that �

p
K log5 m  c1 for some sufficiently small constant

c1 > 0. Then with probability 1�O
�
m

�10 + e
�K logm

�
, one has

u
H
⇥
Dr2

f (z) +r2
f (z)D

⇤
u � kuk22 /8 and

��r2
f (z)

��  4

simultaneously for all points

z =


h

x

�
, u =

2

664

h1 � h2

x1 � x2

h1 � h2

x1 � x2

3

775 and D =

2

664

�1IK

�2IK

�1IK

�2IK

3

775

obeying the following properties:

• z satisfies

max {kh� h
?k2 , kx� x

?k2}  �,

max
1jm

��aH

j (x� x
?)
��  2C3

1
log3/2 m

,

max
1jm

��bHj h
��  2C4

⇣
µ log2 mp

m
+ �

⌘
;

• z1 := (h1,x1) is aligned with z2 := (h2,x2) in the sense that kz1 � z2k2 = dist(z1, z2); in addition, they
satisfy

max {kh1 � h
?k2 , kh2 � h

?k2 , kx1 � x
?k2 , kx2 � x

?k2}  �;

• �1, �2 2 R and obey
max {|�1 � 1| , |�2 � 1|}  �.

Proof. See Appendix A.6.

In words, the function f(·) resembles a strongly convex and smooth function when we restrict attention
to (i) a highly restricted set of points z and (ii) a highly special set of directions u.

A.3.2 Step 2: `2 error contraction

Next, we demonstrate that under the hypotheses (A.6) for the tth iteration, the next iterate will undergo
`2 error contraction, as long as the stepsize is properly chosen. The proof is largely based on the restricted
strong convexity and smoothness established in Lemma 4.

Lemma 5. Set � = C��
p
K logm for some large constant C� > 0. The stepsize parameter ⌘ > 0 in

Algorithm 1 is taken to be some sufficiently small constant. There exists some constant C > 0 such that with
probability at least 1�O

�
m

�100 + e
�CK logm

�
, if the hypotheses (A.6) hold true at the tth iteration, then

dist
�
z
t+1

, z
?
�

��bzt+1/2 � z

?
��
2
 ⇢dist

�
z
t
, z
?
�
+ C1⌘

⇣
�+ �

p
K logm

⌘
(A.17)

for some constants ⇢ = 1� ⌘/16 and C1 > 0.

Proof. See Appendix A.7.

To establish this lemma and many other results, we need to ensure that the alignment parameters and
the sizes of the iterates do not change much, as stated below.
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Corollary 1. Instate the notation and assumptions in Theorem 2. For an integer t > 0, suppose that the
hypotheses (A.6) and (A.14) hold in the first t � 1 iterations. Then there exists some constant C > 0 such
that for any 1  l  m, one has

����↵t
��� 1

�� . dist
�
ezt
, z
?
�
.
r

µ2K logm

m
+ �+ �

p
K logm, (A.18a)

����
↵
t�1/2

↵t�1
� 1

���� . ⌘

 r
µ2K logm

m
+ �+ �

p
K logm

!
, (A.18b)

���
���↵t,(l)

mutual

���� 1
��� .

��bzt,(l) � z
?
��
2
.
r

µ2K logm

m
+ �+ �

p
K logm, (A.18c)

1

2

��xt

��
2
 3

2
,

1

2

��ht

��
2
 3

2
, (A.18d)

1

2

��xt,(l)

��
2
 3

2
,

1

2

��ht,(l)

��
2
 3

2
(A.18e)

with probability at least 1�O
�
m

�100 + e
�CK logm

�
.

Proof. See Appendix A.5.

A.3.3 Step 3: Leave-one-out proximity

We then move on to justifying the close proximity of the leave-one-out sequences and the original sequences,
as stated in the hypothesis (A.14a).

Lemma 6. Suppose the sample complexity obeys m � Cµ
2
K log9 m for some sufficiently large constant

C > 0. If the hypotheses (A.6a)-(A.6c) hold for the tth iteration, then with probability at least 1 �
O
�
m

�100 +me
�cK

�
for some constant c > 0, one has

max
1lm

dist
�
z
t+1,(l)

, ezt+1
�
 C2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A (A.19a)

and max
1lm

��ezt+1,(l) � ezt+1
��
2
. C2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A , (A.19b)

provided that the stepsize ⌘ > 0 is some sufficiently small constant.

Proof. See Appendix A.8.

A.3.4 Step 4: Establishing incoherence

The next step is to establish the hypotheses concerning incoherence, namely, (A.6b) and (A.6c) for the
(t+ 1)-th iteration.

We start with the incoherence of al and x
t+1, which is much easier to handle. The standard Gaussian

concentration inequality gives

max
1lm

���aH

l

�
ext+1,(l) � x

?
����  20

p
logm max

1lm

��ext+1,(l) � x
?
��
2

(A.20)

with probability exceeding 1�O
�
m

�100
�
. Then the triangle inequality and Cauchy-Schwarz inequality yield

��aH

l

�
ext+1 � x

?
��� 

���aH

l

�
ext+1 � ext+1,(l)

����+
���aH

l

�
ext+1,(l) � x

?
����

 kalk2
��ext+1 � ext+1,(l)

��
2
+
���aH

l

�
ext+1,(l) � x

?
����

8



 10
p
KC2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A

+ 20
p
logm · 2C1

 r
µ2K logm

m
+ �+ �

p
K logm

!

 C3

0

@

s
µ2K log2 m

m
+ �+ �

p
K logm

1

A , (A.21)

where C3 � C1, the penultimate inequality follows from (F.2), (A.19b), (A.20) and (A.15c). This establishes
the hypothesis (A.6b) for the (t+ 1)-th iteration.

Regarding the incoherence of bl and h
t+1 (as stated in the hypothesis (A.6c)), we have the following

lemma.

Lemma 7. Suppose the sample complexity obeys m � Cµ
2
K log9 m for some sufficiently large constant

C > 0 and � = C��
p
K logm for some absolute constant C� > 0. If the hypotheses (A.6a)-(A.6c) hold for

the tth iteration, then with probability exceeding 1�O
�
m

�100 +me
�CK

�
for some constant C > 0, one has

max
1lm

��bHl eht+1
��  C4

✓
µp
m

log2 m+ �

◆
,

as long as C4 > 0 is some sufficiently large constant and ⌘ > 0 is taken to be some sufficiently small constant.

Proof. See Appendix A.9.

A.3.5 The base case: Spectral initialization

To finish the induction analysis, it remains to justify the induction hypotheses for the base case. Recall that
� (M) , ȟ0 and x̌

0 denote respectively the leading singular value, the left and the right singular vectors of

M :=
mX

j=1

yjbja
H

j .

The spectral initialization procedure sets h
0 =

p
�1 (M)ȟ0 and x

0 =
p
�1 (M)x̌0.

To begin with, the following lemma guarantees that
�
h
0
,x

0
�

satisfies the desired conditions (A.6e) and
(A.6h).

Lemma 8. Suppose the sample size obeys m � Cµ
2
K log4 m for some sufficiently large constant C > 0.

Then with probability at least 1�O
�
m

�100
�
, we have

min
↵2C,|↵|=1

���↵h0 � h
?
��
2
+
��↵x0 � x

?
��
2

 
.
r

µ2K logm

m
+ �

p
K logm

and
����↵0

��� 1
��  1/4.

In view of the definition of dist (·, ·), we can invoke Lemma 8 to reach

dist
�
z
0
, z
?
�
= min

↵2C

q�� 1
↵h

0 � h?
��2
2
+ k↵x0 � x?k22  min

↵2C

��� 1
↵h

0 � h
?
��
2
+
��↵x0 � x

?
��
2

 

 min
↵2C,|↵|=1

���↵h0 � h
?
��
2
+
��↵x0 � x

?
��
2

 
 C1

 r
µ2K logm

m
+ �

p
K logm

!
. (A.22)

Repeating the same arguments yields that, with probability exceeding 1�O(m�20),

dist
�
z
0,(l)

, z
?
�
 C1

 r
µ2K logm

m
+ �

p
K logm

!
, 1  l  m, (A.23)

and
����↵0,(l)

��� 1
��  1/4, as asserted in the hypothesis (A.14c).

The following lemma justifies (A.14d) as well as (A.6c) for the base case.
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Lemma 9. Suppose the sample size obeys m � Cµ
2
K log9 m for some sufficiently large constant C > 0 and

the noise satisfies �
p
K logm  c/ log2 m for some sufficiently small constant c > 0. Let ⌧ = C⌧ log

4
m

for some sufficiently large constant C⌧ > 0 such that ⌧ is an integer. Then with probability at least 1 �
O
�
m

�100 +me
�cK

�
for some constant c > 0, we have

max
1lm

dist
�
z
0,(l)

, ez0
�
. µp

m

s
µ2K log5 m

m
+

�

log2 m
, (A.24a)

max
1lm

���bHl eh0
��� . µ log2 mp

m
+ �, (A.24b)

max
1j⌧

���bj � b1

�Heh0
�� . µp

m

1

logm
+

�

logm
. (A.24c)

Finally, we establish the hypothesis (A.6b) for the base case, which concerns the incoherence of x0 with
respect to the design vectors {al}.

Lemma 10. Suppose the sample size obeys m � Cµ
2
K log6 m for some sufficiently large constant C > 0

and �

p
K log5 m  c for some small constant c > 0. Then with probability at least 1�O

�
m

�100+
me

�c2K
�

for some constant c2 > 0, we have

max
1jm

��aH

j

�
ex0 � x

?
��� .

s
µ2K log2 m

m
+ �

p
K logm.

The proof of these three lemmas can be easily obtained via straightforward modifications to Ma et al.
[2018, Lemmas 19,20,21]; we omit the details here for the sake of brevity.

A.3.6 Proof of Theorem 2

With the above results in place, it is straightforward to prove Theorem 2. The first two claims follows
respectively from (A.22) and (A.6d). Regarding (12c), it follows that

���ht
�
x
t
�H � h

?
x
?H
���
F

���ht

�
x
t
�H � h

?
�
x
t
�H���

F
+
���h?

�
x
t
�H � h

?
x
?H
���
F


��ht � h

?
��
2

��xt
��
2
+ kh?k2

��xt � x
?
��
2

 2 kz?k2

 
⇢
tdist

�
z
0
, z
?
�
+

C1

�
�+ �

p
K logm

�

c⇢ kz?k2

!

where the last inequality follows from (A.6d) and the fact that

��xt
��
2
 kx?k2 +

��xt � x
?
��
2
 kz?k2 + ⇢

tdist
�
z
0
, z
?
�
+

C1

�
�+ �

p
K logm

�

c⇢ kz?k2
 2 kz?k2 .

This concludes the proof.

A.4 Proof of Lemma 3
1. Condition (A.15a) follows directly from the `2 contraction (A.6a) and the bound (A.6e) for the base case.

2. (A.15b) is direct consequence of (A.15a) and triangle inequality. We have
��ht

x
tH � h

?
x
?H
��

F =
���ehtextH � h

?
x
?H
���

F


���ehtextH � eht

x
?H
���

F
+
���eht

x
?H � h

?
x
?H
���

F


���eht

���
2

��ext � x
?
��
2
+
���eht � h

?
���
2
kx?k2

10




�
1 + dist

�
z
t
, z
?
��

dist
�
z
t
, z
?
�
+ dist

�
z
t
, z
?
�

 C

 r
µ2K logm

m
+ �+ �

p
K logm

!
,

where the first equality follows from the definitions of eht and ext (cf. (A.4b)) and C > 0 is some sufficiently
large constant.

3. Regarding (A.15c), it follows from the triangle inequality that

max
1lm

��ezt,(l) � z
?
��
2
 max

1lm

n��ezt,(l) � ezt
��
2
+
��ezt � z

?
��
2

o

 eCC2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A+ C1

 r
µ2K logm

m
+ �+ �

p
K logm

!

 2C1

 r
µ2K logm

m
+ �+ �

p
K logm

!

for t > 0. Here, the penultimate inequality follows from the distance bounds (A.14b) and (A.15a), while
the last inequality holds as long as m � Cµ

2 log8 m for some sufficiently large constant C > 0. The base
case follows from (A.14c).

4. Condition (A.15d) immediately results from (A.15a), the assumption kx?k2 = kh?k2 = 1, the definition
of dist (·, ·), and the triangle inequality.

5. With regards to (A.15e) and (A.15f), we shall only provide the proof for the result concerning h; the
result concerning x can be derived analogously. In terms of (A.15f), one has

��bht,(l)
��
2

��eht

��
2
+
��bht,(l) � eht

��
2
=
��eht

��
2
+ dist

�
h
t,(l)

, eht
�

. 1 + C2

0

@

s
µ4K log9 m

m2
+

�

log2 m

1

A ⇣ 1.

Here, the first line comes from triangle inequality as well as the definitions of bht,(l) and eht, whereas the
last inequality comes from (A.14a). A lower bound can be derived in a similar manner:

��bht,(l)
��
2
�
��eht

��
2
�
��bht,(l) � eht

��
2
& 1� C2

0

@

s
µ4K log9 m

m2
+

�

log2 m

1

A ⇣ 1.

Regarding (A.15e), apply (A.14b) and (A.15d) to obtain

��eht,(l)
��
2

��eht,(l) � eht

��
2
+
��eht

��
2
. C2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A+ 1 ⇣ 1

and, similarly,

��eht,(l)
��
2
�
��eht

��
2
�
��eht,(l) � eht

��
2
& 1� C2

0

@ µp
m

s
µ2K log9 m

m
+

�

log2 m

1

A ⇣ 1.

The base case follows from similar deduction using (A.14d), (A.15d) and triangle inequality.

6. When it comes to Condition (A.15g), it is seen from (A.6a) and the choice ⇢ = 1� c⇢⌘ that
���bzt�1/2 � z

?
���
2
 ⇢

tdist
�
z
0
, z
?
�
+

C1

1� ⇢
⌘

⇣
�+ �

p
K logm

⌘
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= ⇢
tdist

�
z
0
, z
?
�
+

C1

c⇢

⇣
�+ �

p
K logm

⌘
.

Combining this with (A.6e) guarantees the existence of some sufficiently large constant eC > 0 such that

���bzt�1/2 � z
?
���
2
 ⇢

t · eC
 r

µ2K logm

m
+ �

p
K logm

!
+

C1

c⇢

⇣
�+ �

p
K logm

⌘

 C

 r
µ2K logm

m
+ �+ �

p
K logm

!
,

provided that the constant C > 0 is large enough.

A.5 Proof of Corollary 1
1. To establish (A.18a), we recall that the balancing operation (6b) guarantees khtk2 = kxtk2. Hence, in

view of the definitions of eht and ext in (A.4b), we have

0 =
��ht

��2
2
�
��xt

��2
2
=
��↵t

��2 ��eht
��2
2
� 1

|↵t|2
��ext

��2
2
.

It then follows from the triangle inequality and the assumption kx?k2 = kh?k2 that

0 =
��↵t

��2 ��eht
��2
2
� 1

|↵t|2
��ext

��2
2

��↵t

��2
⇣
1 +

��eht � h
?
��
2

⌘2
�

(1� kext � x
?k2)

2

|↵t|2
;

0 =
��↵t

��2 ��eht
��2
2
� 1

|↵t|2
��ext

��2
2
�
��↵t

��2
⇣
1�

��eht � h
?
��
2

⌘2
�

(1 + kext � x
?k2)

2

|↵t|2
.

Rearranging terms, we are left with
s

1� kext � x?k2
1 +

��eht � h?
��
2


��↵t

�� 
s

1 + kext � x?k2
1�

��eht � h?
��
2

.

Combining this with (A.15a), we arrive at

����↵t
��� 1

�� .
��ext � x

?
��
2
+
��eht � h

?
��
2
. dist

�
ezt
, z
?
�
 C1

 r
µ2K logm

m
+ �+ �

p
K logm

!
.

2. Regarding (A.18a), take x1 = ↵
t�1

x
t�1/2, h1 = h

t�1/2
/↵t�1, x2 = ↵

t�1
x
t�1 and h2 = h

t�1
/↵t�1.

Then we check that these vectors satisfy the conditions of Ma et al. [2018, Lemma 54]. Towards this,
observe that

max {kx1 � x
?k2 , kh1 � h

?k2 , kx2 � x
?k2 , kh2 � h

?k2}

 max
n���bzt�1/2 � z

?
���
2
, dist

�
z
t�1

, z
?
�o

.
r

µ2K logm

m
+ �+ �

p
K logm

holds with probability over 1�O(m�100+e
�CK logm) for some constant C > 0. Here, the first inequality

comes from the definitions of bzt�1/2 (cf. (A.5a)), and the last inequality follows from (A.15a) and (A.17).
Hence, the condition of Ma et al. [2018, Lemma 54] is satisfied. Note that the statement of Ma et al.
[2018, Lemma 54] involves two quantities ↵1 and ↵2, which in our case are given by ↵1 = ↵

t�1/2
/↵

t�1

and ↵2 = 1. Ma et al. [2018, Lemma 54] tells us that

|↵1 � ↵2| =
����
↵
t�1/2

↵t�1
� 1

���� .
���↵t�1

x
t�1/2 � ↵

t�1
x
t�1

���
2
+

����
h
t�1/2

↵t�1
� h

t�1

↵t�1

����
2

.
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Additionally, the gradient update rule (6a) reveals that
�����

"
ht�1/2

↵t�1
� ht�1

↵t�1

↵
t�1

x
t�1/2 � ↵

t�1
x
t�1

#�����
2

=

�����

"
� ⌘

|↵t�1|2rhfreg-free
�
ezt�1

�
� ⌘�eht�1

�⌘
��↵t�1

��2 rxfreg-free
�
ezt�1

�
� ⌘�ext�1

#�����
2

=

�����

"
� ⌘

|↵t�1|2
�
rhfreg-free

�
ezt�1

�
�rhfreg-free (z?)

�
� ⌘�eht�1 � ⌘

|↵t�1|2rhfreg-free (z?)

�⌘
��↵t�1

��2 �rxfreg-free
�
ezt�1

�
�rxfreg-free (z?)

�
� ⌘�ext�1 � ⌘

��↵t�1
��2 rxfreg-free (z?)

#�����
2



�����

"
⌘

|↵t�1|2
�
rhfreg-free

�
ezt�1

�
�rhfreg-free (z?)

�

⌘
��↵t�1

��2 �rxfreg-free
�
ezt�1

�
�rxfreg-free (z?)

�

#�����
2

+

����


⌘�eht�1

⌘�ext�1

�����
2

+

�����

"
⌘

|↵t�1|2rhfreg-free (z?)

⌘
��↵t�1

��2 rxfreg-free (z?)

#�����
2

 4⌘
��rfreg�free

�
ezt�1

�
�rfreg�free (z

?)
��
2
+ ⌘�

��ezt�1
��
2
+ 4⌘ krfreg�free (z

?)k2 ,

where the last inequality utilizes the consequence of (A.18a) that

1

2
 1�

����↵t�1
��� 1

�� 
��↵t�1

��  1 +
����↵t�1

��� 1
��  2.

Then, one has


rfreg-free
�
ezt�1

�
�rfreg-free (z?)

rfreg-free (ezt�1)�rfreg-free (z?)

�
=

Z 1

0
r2

freg-free (z (s)) ds


ezt � z

?

ezt � z?

�
,

where z (s) = z
? + s (ezt � z

?). Therefore, for all 0  s  1 we have

max {kh (s)� h
?k2 , kx (s)� x

?k2}  c

log2 m
,

max
1jm

��aH

j (x (s)� x
?)
��  2C3

1
log3/2 m

,

max
1jm

��bHj h (s)
��  2C4

⇣
µ log2 mp

m
+ �

⌘
,

which are guaranteed by the induction hypotheses (A.6). The conditions of Lemma (4) are satisfied,
allowing us to obtain

����
Z 1

0
r2

freg-free (z (s)) ds

���� 
����
Z 1

0
r2

f (z (s)) ds

����+ �  4 + �  5.

Consequently, it follows that
�����

"
ht�1/2

↵t�1
� ht�1

↵t�1

↵
t�1

x
t�1/2 � ↵

t�1
x
t�1

#�����
2

 20⌘
��ezt�1 � z

?
��
2
+ ⌘�

��ezt�1
��
2
+ 4⌘ krfreg-free (z

?)k2

 C⌘

 r
µ2K logm

m
+ �+ �

p
K logm

!
,

where the last inequality results from (A.15a), (A.15d), and (A.31). Hence, we arrive at
����
↵
t�1/2

↵t�1
� 1

���� . ⌘

 r
µ2K logm

m
+ �+ �

p
K logm

!
.
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3. Similarly, the balancing step (A.9a) implies
��ht,(l)

��2
2

=
��xt,(l)

��2
2
. From the definitions of ↵

t,(l)
mutual

(cf. (A.12a)), bht,(l) and bxt,(l) (cf. (A.13a)), we have

0 =
��ht,(l)

��2
2
�
��xt,(l)

��2
2
=
��↵t,(l)

mutual
��2��bht,(l)

��2
2
�
��↵t,(l)

mutual
���2��bxt,(l)

��2
2
.

Then the triangle inequality together with the assumption kx?k2 = kh?k2 gives

0 =
��↵t,(l)

mutual
��2��bht,(l)

��2
2
� 1
��↵t,(l)

mutual
��2
��bxt,(l)

��2
2

��↵t,(l)

mutual
��2
⇣
1 +

��bht,(l) � h
?
��
2

⌘2
�
�
1�

��bxt,(l) � x
?
��
2

�2
��↵t,(l)

mutual
��2

,

0 =
��↵t,(l)

mutual
��2��bht,(l)

��2
2
� 1
��↵t,(l)

mutual
��2
��bxt,(l)

��2
2
�
��↵t,(l)

mutual
��2
⇣
1�

��bht,(l) � h
?
��
2

⌘2
�
�
1 +

��bxt,(l) � x
?
��
2

�2
��↵t,(l)

mutual
��2

,

which in turn lead to
vuut1�

��bxt,(l) � x?
��
2

1 +
��bht,(l) � h?

��
2


��↵t,(l)

mutual
�� 

vuut1 +
��bxt,(l) � x?

��
2

1�
��bht,(l) � h?

��
2

.

Taking this together with (A.14a) and (A.15a), we reach
���
��↵t,(l)

mutual
��� 1

��� .
��bzt,(l) � z

?
��
2

��bzt,(l) � ezt

��
2
+
��ezt � z

?
��
2

 C2

0

@

s
µ4K log9 m

m2
+

�

log2 m

1

A+ C1

 r
µ2K logm

m
+ �+ �

p
K logm

!

 (C1 + C2)

 r
µ2K logm

m
+ �+ �

p
K logm

!
,

where the second line follows from the distance bounds (A.14a) and (A.15a), and the last line holds with
the proviso that m � µ

2
K log8 m. This establishes the claim (A.18c).

4. Finally, (A.18d) and (A.18e) are direct consequences of (A.18a), (A.18c) as well as the fact that kh?k2 =
kx?k2 = 1. We omit the details for the sake of brevity.

A.6 Proof of Lemma 4
Define another loss function as follows

fclean (z) :=
mX

j=1

��bHj hxH
aj � b

H

j h
?
x
?H
aj

��2,

which excludes both the noise ⇠ and the regularization term from consideration when compared with the
original loss f(·). By virtue of (A.7), it is easily seen that

r2
freg-free (z) = r2

fclean (z)+


M 0
0 M

�
, (A.25)

where

M :=

"
0 �

Pm
j=1 ⇠jbja

H

j

�
⇣Pm

j=1 ⇠jbja
H

j

⌘H

0

#
2 C2K⇥2K

.

By setting

u =

2

664

h1 � h2

x1 � x2

h1 � h2

x1 � x2

3

775 =:

2

664

uh

ux

uh

ux

3

775
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and recalling the definitions of D, �1, �2 in the statement of Lemma 4, we arrive at

u
H
⇥
Dr2

freg-free (z) +r2
freg-free (z)D

⇤
u

= u
H
⇥
Dr2

fclean (z) +r2
fclean (z)D

⇤
u� 2 (�1 + �2)Re

0

@u
H

h

mX

j=1

⇠jbja
H

j ux

1

A

� 2 (�1 + �2)Re

0

@uh
H

mX

j=1

⇠jbja
H

j ux

1

A

= u
H
⇥
Dr2

fclean (z) +r2
fclean (z)D

⇤
u� 4 (�1 + �2)Re

0

@u
H

h

mX

j=1

⇠jbja
H

j ux

1

A .

Consequently, with high probability one has
��uH

⇥
Dr2

freg-free (z) +r2
freg-free (z)D

⇤
u� u

H
⇥
Dr2

fclean (z) +r2
fclean (z)D

⇤
u
��

 4 (�1 + �2)

������
Re

0

@u
H

h

mX

j=1

⇠jbja
H

j ux

1

A

������
 4 (�1 + �2)

������

mX

j=1

⇠jbja
H

j

������
kuk22

. �

p
K logm kuk22 =: Eres (A.26)

for any vector u, where the last inequality follows from Lemma 38 as well as the assumptions �1, �2 ⇣ 1.
The above bound allows us to turn attention to r2

fclean, which has been studied in Ma et al. [2018]. In
particular, it has been shown in Ma et al. [2018] that

u
H
⇥
Dr2

fclean (z) +r2
fclean (z)D

⇤
u � (1/4) · kuk22 and

��r2
fclean (z)

��  3

under the assumptions stated in the lemma. These bounds together with (A.26) yield

u
H
⇥
Dr2

freg-free (z) +r2
freg-free (z)D

⇤
u � (1/4) · kuk22 � Eres � (1/8) · kuk22 , (A.27a)

and
��r2

freg-free (z)
�� 

��r2
fclean (z)

��+ sup
u 6=0

Eres
kuk22

 7/2, (A.27b)

provided that �
p
K logm  0.5. To finish up, we recall that

r2
f (z) = r2

freg-free (z) + �I,

which combined with (A.27) and the assumption �  C��
p
K logm  C�c1/ log

2
m ⌧ 1 yields

u
H
⇥
Dr2

f (z) +r2
f (z)D

⇤
u = u

H
⇥
Dr2

freg-free (z) +r2
freg-free (z)D

⇤
u+ 2�uH

Du

� u
H
⇥
Dr2

freg-free (z) +r2
freg-free (z)D

⇤
u

� kuk22 /8

and
��r2

f (z)
�� 

��r2
freg-free (z)

��+ �  4.

A.7 Proof of Lemma 5
Recognizing that

freg-free (h,x) = freg-free

✓
1

↵
h,↵x

◆
and rfreg-free (h,x) =


1
↵rhfreg-free

�
1
↵h,↵x

�

↵rxfreg-free
�
1
↵h,↵x

�
�
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and recalling the definitions of
�eht

, ext
�
:=

�
1
↵t
h
t
,↵

t
x
t
�
, we can deduce that

dist
�
z
t+1

, z
?
�
= dist

�
z
t+1/2

, z
?
�

����

 1
↵t
h
t+1/2 � h

?

↵
t
x
t+1/2 � x

?

�����
2

(A.28)

=

������

2

4
eht � ⌘

|↵t|2rhfreg-free
�
ezt
�
� ⌘�eht �

⇣
h
? � ⌘

|↵t|2rhfreg-free (z?)
⌘
� ⌘

|↵t|2rhfreg-free (z?)

ext � ⌘ |↵t|2 rxfreg-free
�
ezt
�
� ⌘�ext �

⇣
x
? � ⌘ |↵t|2 rxfreg-free (z?)

⌘
� ⌘ |↵t|2 rxfreg-free (z?)

3

5

������
2



������

2

4
eht � ⌘

|↵t|2rhfreg-free
�
ezt
�
�
⇣
h
? � ⌘

|↵t|2rhfreg-free (z?)
⌘

ext � ⌘ |↵t|2 rxfreg-free
�
ezt
�
�
⇣
x
? � ⌘ |↵t|2 rxfreg-free (z?)

⌘

3

5

������
2| {z }

=:�1

+

�����

"
⌘

|↵t|2rhfreg-free (z?)

⌘ |↵t|2 rxfreg-free (z?)

#�����
2| {z }

=:�2

+ ⌘�

����

 eht

ext

�����
2| {z }

=:�3

. (A.29)

Using an argument similar to the proof idea of Ma et al. [2018, Equation (210)], we can obtain

�
2
1 =

�����
eht � ⌘

|↵t|2
rhfreg-free

�
ezt
�
�
 
h
? � ⌘

|↵t|2
rhfreg-free (z

?)

!�����

2

2

+
���ext � ⌘

��↵t
��2 rxfreg-free

�
ezt
�
�
⇣
x
? � ⌘

��↵t
��2 rxfreg-free (z

?)
⌘���

2

2


⇣
1� ⌘

8

⌘��ezt � z
?
��2
2
. (A.30)

Regarding �2, we first invoke Lemma 14 and the fact rfclean (z?) = 0 to derive

krfreg-free (z
?)k2  krfclean (z

?) k2 + kA⇤ (⇠)k kh?k2 + kA⇤ (⇠)k kx?k2
. �

p
K logm. (A.31)

A little algebra then yields

�
2
2 =

����
⌘

|↵t|2rhfreg-free (z
?)

����
2

2

+
���⌘

��↵t
��2 rxfreg-free (z

?)
���
2

2


⇣

⌘
2

|↵t|4
+ ⌘

2
��↵t

��4
⌘
krfreg-free (z

?)k22

. ⌘
2
⇣
�

p
K logm

⌘2
,

which relies on the observation that |↵t| ⇣ 1 (see Corollary 1). Finally, when it comes to �3, we have

�
2
3 = ⌘

2
�
2
��eht

��2
2
+ ⌘

2
�
2
��ext

��2
2
 8⌘2�2

,

using the fact that
��ext

��
2
⇣
��eht

��
2
⇣ 1 (see Lemma 3).

As a result, as long as ⌘ > 0 is taken to be some constant small enough, combining (A.29) and the above
bounds on �1,�2 gives

dist
�
z
t+1

, z
?
�

���bzt+1/2 � z

?
���
2

2

p

(1� ⌘/8)
��ezt � z

?
��
2
+ C1⌘

⇣
�+ �

p
K logm

⌘
,

which together with the elementary fact
p
1� x  1� x/2 leads to

dist
�
z
t+1

, z
?
�

���bzt+1/2 � z

?
���
2
 (1� ⌘/16)

��ezt � z
?
��
2
+ C1⌘

⇣
�+ �

p
K logm

⌘

= (1� ⌘/16) dist
�
z
t
, z
?
�
+ C1⌘

⇣
�+ �

p
K logm

⌘
.

The advertised claim then follows, provided that C1 is large enough.
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A.8 Proof of Lemma 6
The lemma can be established in a similar manner as Ma et al. [2018, Lemma 17]. We have

dist
�
z
t+1,(l)

, ezt+1
�
= dist

�
z
t+1/2,(l)

, ezt+1/2
�
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⇢����
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���� ,
����

↵
t

↵t+1/2

����

� �����

" 1
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h
t+1/2

↵
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t
x
t+1/2

#�����
2

, (A.32)

where the second line comes from the same calculation as Ma et al. [2018, Eqn. (212)]. Repeating the analysis
in Ma et al. [2018, Appendix C.3] and using the gradient update rule, we obtain
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In what follows, we shall look at ⌫1, ⌫2, ⌫3 and ⌫4 separately.

• It has been shown in Ma et al. [2018, Lemma 17] that
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• Regarding ⌫3, we have
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, (A.35a)

where the first inequality comes from the elementary inequality
p
a+ b 

p
a+

p
b for a, b � 0, and the

second inequality follows from the triangle inequality. The bounds of ⌫31 and ⌫32 follow from the same
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derivation as Ma et al. [2018, Equation (217)] and are thus omitted here for simplicity. The quantity ⌫31

can be upper bounded by
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where the penultimate inequality follows from the fact that kblk2 =
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K/m and (F.1), and the last line

makes use of (A.15f). Regarding ⌫32, one has
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where the second line follows from (F.2), triangle inequality and the fact that kblk2 =
p
K/m; the

penultimate inequality follows from (A.14a) and (A.6c); the last line holds as long as m � µ
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where the second line follows from the fact that kblk2 =
p
K/m; the penultimate inequality follows from

(A.14a), (A.6c) and (7); the last line holds as long as m � µ
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K log3 m. Therefore,
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where the second inequality follows from triangle inequality and (F.1); the penultimate inequality follows
from (A.35d), (A.14a), (A.15a) and (F.1); the last line holds as long as m � µ

2
K logm. Substituting

(A.35e) into (A.35b) and (A.35c), we reach

⌫31 + ⌫32 .
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as long as m � µ
2
K log9 m. Regarding ⌫33 and ⌫34, it is seen that
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where (i) holds by the property of sub-Gaussian variables (cf. Vershynin [2018, Proposition 2.5.2]) and
the independence between ⇠l,al and bxt,(l), (ii) holds by (A.15f), (iii) is due to Lemma (38), the triangle
inequality and (7), and (iv) follows from (A.35d) and (7). Consequently, by (A.35f)-(A.35h) we have
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• Finally, in terms of ⌫4 one has
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With the above bounds in place, we can demonstrate that
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provided that ⌘ > 0 is some sufficiently small constant and C2 � C
2
4 . To see why (i) holds, we observe that
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In addition, (ii) follows from (A.34), (A.36) and (A.37), whereas the last inequality of (A.38) relies on the
hypothesis (A.14a).

Next, we turn to the second inequality claimed in the lemma. In view of (A.15a) in Lemma 3, we have
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In other words, both ezt+1 and bzt+1,(l) are sufficiently close to the truth z
?. Consequently, we are ready to

invoke Ma et al. [2018, Lemma 55]. Taking h1 = eht+1, x1 = ext+1, h2 = bht+1,(l) and x2 = bxt+1,(l) in Ma
et al. [2018, Lemma 55] yields
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where the last inequality follows from (A.39).

A.9 Proof of Lemma 7
Recall from Corollary 1 that there exist some constant C > 0 such that
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with � ⌧ 1, thus indicating that
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(A.42)

The first three terms can be controlled via the same arguments as Ma et al. [2018, Appendix C.4], which are
built upon the induction hypotheses (A.6a)-(A.6c) at the tth iteration as well as the following claim (which
is the counterpart of Ma et al. [2018, Claim 224]).
Claim 1. Suppose that m � ⌧K log4 m. For some sufficiently small constant c > 0, it holds that

max
1j⌧

���(bj � b1)
H eht

���  cC4

✓
µp
m

logm+
�

logm

◆
.

The corresponding bounds obtained from Ma et al. [2018, Appendix C.4] are listed below:
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When it comes to the last term of (A.42) concerning ⌫4, it is seen that
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leaving us with two terms to control.

• With regards to &1, we have
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where the second inequality follows from Ma et al. [2018, Lemma 48] and standard sub-Gaussian concen-
tration inequalities.
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where k · k 1 and k · k 2 denote the sub-exponential norm and the sub-Gaussian norm, respectively. In
view of the Bernstein inequality Vershynin [2018, Theorem 2.8.2], we have
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for any ⌧ > 0. Recognizing that
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where the penultimate inequality follows from the hypothesis (A.6b), and the last line holds as long as
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Combining the bounds (A.43) with (A.42) and (A.45), we arrive at
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as long as m � µ
2
K log9 m for some large enough constant C4 � C3. Here, the last inequality invokes the

induction hypotheses (A.6) at the tth iteration, Claim 1, as well as the fact |↵t| ⇣ 1 (cf. Corollary 1).
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A.9.1 Proof of Claim 1
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Except �3, the bounds of the other terms can be obtained by the same arguments as in Ma et al. [2018,
Appendix C.4.3]; we thus omit the detailed proof but only list the results below:
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triangle inequality yields
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where the second inequality follows from Ma et al. [2018, Lemma 50] and standard sub-Gaussian concen-
tration inequalities.
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• For !2, similar to (A.44), we can invoke the Bernstein inequality Vershynin [2018, Theorem 2.8.2] to
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for any ⌧ � 0. In addition, observe that
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Putting together the above results, we demonstrate that
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if ⌘ > 0 is sufficiently small, where the last inequality utilizes kext�1k2 ⇣ 1 and |↵t| ⇣ 1 in Lemma 3.

B Analysis under Fourier design: connections between convex and
nonconvex solutions

B.1 Proof outline for Theorem 1
As the empirical evidence (cf. Figure 1) suggests, an approximate nonconvex optimizer produced by a simple
gradient-type algorithm is exceedingly close to the convex minimizer of (3). In what follows, we shall start
by introducing an auxiliary nonconvex gradient method, and formalize its connection to the convex program.
Without loss of generality, we assume that kh?k2 = kx?k2 = 1 throughout the proof.
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An auxiliary nonconvex algorithm. Let us consider the iterates obtained by running a variant of
(Wirtinger) gradient descent, as summarized in Algorithm 2. A crucial difference from Algorithm 1 lies
in the initialization stage — namely, Algorithm 2 initializes the algorithm from the ground truth (h?,x?)
rather than a spectral estimate as adopted in Algorithm 1. While initialization at the truth is not practically
implementable, it is introduced here solely for analytical purpose, namely, it creates a sequence of ancillary
random variables that approximate our estimators and are close to the ground truth. This is how we establish
the convergence rate of our estimators.

Algorithm 2 Auxiliary gradient descent for blind deconvolution (for analysis purpose only)
Input: {aj}1jm, {bj}1jm, {yj}1jm, h? and x

?.
Initialization: h

0 = h
? and x

0 = x
?.

Gradient updates: for t = 0, 1, . . . , t0 � 1 do


h
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x
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where rhf(·) and rxf(·) represent the Wirtinger gradient (see [Li et al., 2019, Section 3.3] and Ap-
pendix A.2.1) of f(·) w.r.t. h and x, respectively.

Properties of the auxiliary nonconvex algorithm. The trajectory of this auxiliary nonconvex algo-
rithm enjoys several important properties. In the following lemma, the results are stated for the properly
rescaled iterate
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⇣
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Lemma 11. Take � = C��
p
K logm for some large enough constant C� > 0. Assume the number of
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K log9 m for some sufficiently large constant C > 0, and the noise satisfies
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for any 0 < t  t0, where ⇢ = 1� c⇢⌘ 2 (0, 1) for some small constant c⇢ > 0, and we take t0 = m
20. Here,

C5, . . ., C9 are constants obeying C7 � C5. In addition, we have
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Most of the inequalities of this lemma (as well as their proofs) resemble the ones derived for Algorithm 1 in
Appendix A. It is worth emphasizing, however, that the establishment of the inequality (B.2d) relies heavily
on the idealized initialization (h0

,x
0) = (h?,x?), and the current proof does not work if the algorithm is

spectrally initialized. The proof of this lemma is deferred to Appendix B.3.

Connection between the approximate nonconvex minimizer and the convex solution. As it
turns out, the above type of features of the nonconvex iterates together with the first-order optimality of the
convex program allows us to control the proximity of the convex minimizer and the approximate nonconvex
optimizer. Before proceeding to develop this idea formally, we first introduce the following operators for
notational convenience. For any z = [zj ]1jm and any Z 2 CK⇥K , we define

A (Z) :=
�
b
H

j Zaj

 m

j=1
, A⇤ (z) =

mX

j=1

zjbja
H

j ,

T (Z) := A⇤A (Z) =
mX

j=1

bjb
H

j Zaja
H

j . (B.3)

Below are several key conditions on these operators concerned with the interplay between the noise size, the
estimation accuracy of the nonconvex estimate (h,x) and the regularization parameters �.
Condition 1. The regularization parameter � satisfies

1. kT
�
hx

H � h
?
x
?H
�
�
�
hx

H � h
?
x
?H
�
k < �/8.

2. kA⇤ (⇠)k = k
Pm

j=1 ⇠jbja
H

j k  c�, for some small constant c > 0.

Condition 1 requires that the regularization parameter � dominate the norm of the deviation of T (hxH�
h
?
x
?H) from its mean hx

H � h
?
x
?H, and also the norm of the noise operated on by A⇤. As can be seen

shortly, these two conditions can be met with high probability when (h,x) is sufficiently close to (h?,x?).
Another critical condition is the following injectivity condition on A.

Condition 2. Let T be the tangent space of hxH. Then for all Z 2 T , one has

kA (Z)k22 � 1

16
kZk2F .

When these two conditions hold, the aforementioned intimate connection between approximate nonconvex
minimizer and the convex solution can be formalized in the following crucial lemma.

Lemma 12. Suppose that (h,x) obeys

krf (h,x)k2  C
�

m10
, (B.4a)

for some constants C > 0. Then under Conditions 1 and 2, any minimizer Zcvx of the convex problem (3)
satisfies ��hxH �Zcvx

��
F
. krf (h,x)k2 .

Proof. See Appendix B.4.

In words, if we can find a point (h,x) that has vanishingly small gradient (cf. (B.4a)) and that satisfies
the additional Conditions 1 and 2, then the matrix hx

H is guaranteed to be exceedingly close to the solution
of the convex program. Encouragingly, Lemma 11 hints at the existence of a point along the trajectory of
Algorithm (2) satisfying these conditions (B.5); if this were true, then one could transfer the properties of
the approximate nonconvex optimizer to the convex solution, as a means to certify the statistical efficiency of
convex programming. As we will see soon, this is indeed the case that with Assumption 1, we can prove that
under some mild sample size and noise level conditions, Conditions 1 and 2 would hold with high probability.
To begin with, the following lemma corresponds to the first point in Condition 1.
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Lemma 13. Suppose that the sample complexity satisfies m � Cµ
2
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for some constants C5, C7, C9 > 0.

Proof. See Appendix B.5.

Recall the definition of operator T in (B.3). The lemma above states that for all (h,x) sufficiently close
to (h?,x?), the matrix T

�
hx

H � h
?
x
?H
�

is close to the expectation hx
H � h

?
x
?H.

Next we turn to the second point in Condition 1.

Lemma 14. Suppose that Asumption 1 holds and m & K log3 m. With probability at least 1 � O
�
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�100
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,

one has
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K logm.

Proof. See Appendix B.6.

Regarding Condition 2, we have the following lemma.

Lemma 15. Suppose that the sample complexity satisfies m � Cµ
2
K logm for some sufficiently large

constant C > 0. Then with probability at least 1�O
�
m

�10
�
,

kA (Z)k22 � 1

16
kZk2F , 8Z 2 T

holds simultaneously for all T for which the associated point (h,x) obeys (B.5a) and (B.5b). Here, T denotes
the tangent space of hxH.

Proof. See Appendix B.7.

Basically, this lemma reveals that when (h,x) is sufficiently close to (h?,x?), the operator A(·) —
restricted to the tangent space T of hxH — is injective.

Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Armed with this result and the properties about the nonconvex trajectory, we are
ready to establish Theorem 1 as follows. Let t := argmin0tt0 krf (ht

,x
t)kF, and take (hncvx,xncvx) =⇣

1

↵t
h
t
,↵

t
x
t
⌘
. By virtue of Lemma 11, we see that (hncvx,xncvx) satisfies — with high probability — the

small gradient property (B.2e) as well as all conditions required to invoke Lemma 12. As a consequence,
invoke Lemma 12 to obtain
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Further, it is seen that
���hncvx

�
xncvx

�H � h
?
x
?H
���
F

���hncvx

�
xncvx

�H � h
?
�
xncvx

�H���
F
+
���h?

�
xncvx

�H � h
?
x
?H
���
F

27
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where the penultimate line follows from (B.8a) and the inequality
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Taking (B.6) and (B.7) collectively yields
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This together with the elementary bound
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F concludes the proof, as long
as the above key lemmas can be justified.

To prove the results also holds for Zcvx,1, we recall that Zcvx,1 is the best rank-1 approximation of Zcvx

and this implies that,

kZcvx �Zcvx,1kF 
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H
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��
F . �

m10
.

Hence, repeating the above calculations for Zcvx,1 reveals that (14) continues to holds if Zcvx is replaced by
Zcvx,1.

In what follows, we establish the key lemmas stated above.

B.2 Preliminary facts
Before proceeding, there are a couple of immediate consequences of Lemma 11 that will prove useful, which
we summarize as follows.

Lemma 16. Instate the notation and assumptions in Theorem 2. For t � 0, suppose that the hypotheses
(B.9) hold in the first t iterations. Then there exist some constants C5 > 0 such that for any 1  l  m,
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In addition, for an integer t > 0, suppose that the hypotheses (B.9) hold in the first t � 1 iterations. Then
there exists some constant C > 0 such that with probability at least 1�O
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Proof. The proof follows from the same argument as in the proof of Lemma 3 and Corollary 1, and is thus
omitted here for brevity.

B.3 Proof of Lemma 11
After the introduction of the proof idea in Appendix A, we state a more complete version of Lemma 11 here.
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for any 0 < t  t0, where ⇢ = 1� c⇢⌘ 2 (0, 1) for some small constant c⇢ > 0, and we take t0 = m
20. Here,
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The claims (B.9a)-(B.9e) are direct consequences of Lemma 5, Lemma 6, the relation (A.21), and Lemma
7. As a result, the remaining steps lie in proving (B.2d) and (B.2e).

B.3.1 Proof of the claim (B.2d)

Recall the definition eht := h
t
/↵t. We aim to prove inductively that
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holds for some constant C9 > 0, provided that the algorithm is initialized at the truth.
It is self-evident that (B.10) holds for the base case (i.e. t = 0) when h

0 = h
?. Assume for the moment
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where (i) comes from the gradient update rule (B.1) and (ii) is due to the expression (A.7).

• Applying a similar argument as for Ma et al. [2018, Equation (219)] yields
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The first inequality can be derived via a similar argument as in Ma et al. [2018, Equation (221)] (the
detailed proof is omitted here for the sake of simplicity), whereas the second inequality results from the
following claim.

Claim 2. For some constant C11 � C7, we have
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Proof. See Appendix B.3.3.

• When it comes to the term ⌫3, we observe that
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Here, the penultimate inequality follows from the incoherence condition (B.9d) and Lemma 2, whereas
the last inequality follows from the induction hypothesis (B.9d).

• Finally, we turn to the term ⌫4. Clearly, it is of the same form as ⌫4 in (A.42); therefore, via the same
line of analysis, one can deduce the following bound (similar to (A.45))
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for some constant C > 0 and sufficiently small constant c > 0. Here (i) uses triangle inequality and (B.8l)
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where C > 0 is some constant and the last inequality holds since c is sufficiently small.
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B.3.2 Proof of the claim (B.2e)

To prove (B.2e), we need to show that the objective value decreases as the algorithm progresses.
Claim 3. If the iterates satisfy the induction hypotheses (B.9a)-(B.9e) in the tth iteration, then with prob-
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Proof. See Appendix B.3.4.

When summed over t, the inequality in Lemma 3 leads to the following telescopic sum
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where we have assumed that z
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The last inequality in the above formula invokes Lemma 4, whose assumptions are verified in the proof of
Claim 3 (see Appendix (B.3.4)). Further, the relations (B.24) and (B.18) in the proof of Claim 3 lead to
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It then follows from (B.13) and (B.14) that
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B.3.3 Proof of Claim 2

We aim to prove by induction that there exists some constant C11 > 0 such that
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Apparently, (B.15) holds when t = 0 given that h0 = h
?. In what follows, we shall assume that (B.15) holds

true at the tth iteration, and examine this condition for the (t+ 1)th iteration.
Similar to the derivation of (B.11), we have the following decomposition
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where the second inequality follows from Ma et al. [2018, Lemma 50] and the last inequality utilizes the
following consequence of (B.9d) and Lemma 38:
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where the second inequality applies Ma et al. [2018, Lemma 50] and (7), and the last inequality results
from (B.9d) and (F.1).
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where C > 0 is some constant. Here, the last inequality holds as long as c is sufficiently small.

B.3.4 Proof of Claim 3
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Another fact of use is that
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where the first inequality is due to (B.16), and the second inequality comes from the simple fact that �t
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where bz is a point lying between z
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t. Here, (i) resorts to the gradient update rule (B.1);

(ii) utilizes the relation (B.16); (iii) comes from the mean value theorem Ma et al. [2018, Appendix D.3.1];
(iv) follows from Lemma 4 (which we shall verify shortly); (v) holds true for sufficiently small ⌘ > 0; and the
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where the last inequality comes from (B.8a) and (B.8h). Further,
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where the last inequality follows from (B.8h), (B.9d) and Lemma 38. Similarly, one has
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where the last inequality comes from (B.9e). Given that z
t satisfies the conditions in Lemma 4, we can

invoke Lemma 4 to demonstrate that
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• Next, we move on to show that z
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We observe that
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Taking (B.24), (B.22), (B.18) and (B.23) collectively, one arrives at
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where the last inequality follows from (B.19) for some constant C > 0, (B.22) and Lemma 38. Further,
it is self-evident that ezt,(l) satisfies the conditions of Lemma 4, so that we have
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where the second inequality invokes Lemma 4 and (B.24). This together with (B.25) and (B.9) gives
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For the other incoherence condition w.r.t. bj , we can invoke similar argument to show that
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Here, the last inequality utilizes the fact kbjk2 =
p
K/m and (B.8h). The quantity ⌧ can be controlled

by using the same analysis as Appendix A.9. Specifically,
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where {⌫i}4i=1 are defined in (A.42), and the last inequality is a direct consequence of Appendix A.9.
Finally, continue the bound (B.26) to demonstrate that
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where the penultimate inequality is due to (B.8h), (B.9e) and (B.2d).

B.4 Proof of Lemma 12
Before proceeding, let us introduce some additional convenient notation. Define

Z := hx
H
, (B.27)

and denote by T the tangent space of Z, namely,
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�
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H + ux
H
,v 2 CK
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. (B.28)

Further, define two associated projection operators as follows
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PT? (X) :=

✓
I � 1

khk22
hh

H

◆
X

✓
I � 1

kxk22
xx

H

◆
. (B.29b)

We further introduce a key lemma below. It proves useful in connecting the first order optimality
conditions of convex and nonconvex formulation.

Lemma 18. Under the assumptions of Lemma 12, one has

T
�
hx
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?
x
?H
�
�A⇤ (⇠) = � �

khk2 kxk2
hx

H +R,

where R 2 CK⇥K is some residual matrix satisfying

kPT (R)kF  2 krf (h,x)k2 and kPT? (R)k �/2.

Proof. See Appendix B.4.1.

With these supporting lemmas in hand, we are ready to prove Lemma 12. Suppose Zcvx is the minimizer
of (3).
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1. Let � := Zcvx � hx
H. The optimality of Zcvx yields that
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By simple calculation, it leads to
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where we denote by p := h/ khk2 and q := x/ kxk2. We choose W such that hW ,�i = kPT? (�)k⇤.
Then, combining the above two equations gives rise to
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where R in (i) is defined in Lemma 18. Hence,
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where the second inequality invokes Lemma 18. We then arrive at

kPT? (�)kF  kPT? (�)k⇤  C
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2. Next, we return to (B.30) to deduce that
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where (i) and (ii) come from Lemma 18.
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3. For the final step, we turn to lower bound kA (�)kF. One has
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where the last inequality comes from Lemma 15 and Lemma 1. Since (B.31) gives
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as long as m � K, (B.35) yields
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Combining (B.33) and (B.36), we have

1
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k�k2F  kA (�)k22  2 krf (h,x)k2 k�kF ,

and therefore
k�kF . krf (h,x)k2 .

B.4.1 Proof of Lemma 18

Recall the definition of T debias in (B.3). Letting
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and rearranging terms, we can write
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for some matrix R. In addition, in view of the small gradient assumption (B.4a), one has
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for some vectors r1, r2 2 CK obeying
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In what follows, we make of these properties to control the size of R.
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1. We start by upper bounding kPT (R)kF as follows
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where p and q are unit vectors defined in (B.37). Recognizing that khk2 = kxk2 (cf. (B.5a)), we can use
(B.38) and (B.39) to obtain
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2. We them move on to control PT? (R). Continue the relation (B.38) to derive
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where we have used the assumption khk2 / kxk2 = 1 (cf. (B.5a)). Combine this with Lemma 13, Lemma
14 and (B.41) to derive

��T debias
�
h
?
x
?H � hx

H
�
+A⇤ (⇠)� PT (R)

�� 
��T debias

�
h
?
x
?H � hx

H
���+ kA⇤ (⇠)k+ kPT (R)kF

 �

8
+

�

8
+ 2C

�

m10

<
�

2
,

where the last inequality invokes the assumption (B.2e). Invoking (B.42) and Weyl’s inequality give
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for K � i � 2. Additionally, when i = 1, we have
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This indicates that at least K � 1 singular values of p (khk2 kxk2 + � khk2 / kxk2) qH + PT? (R) are no
larger than �/2, and these singular values cannot correspond to the direction of pqH. As a consequence,
we conclude that

kPT? (R)k  �/2.

B.5 Proof of Lemma 13
For notational convenience, we define T debias by subtracting the expectation from T as follows:
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which together with the triangle inequality gives
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In what follows, we shall upper bound �1, �2 and �3 separately.
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• The term !2 can be controlled by Cauchy-Schwarz as follows
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where the last line is due to the property of Gaussian distributions. In addition, (iii) is a consequence
of the elementary inequality |ab|  (|a|2 + |b|2)/2, (iv) comes from the incoherence condition (7) andPm
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uniformly for any x 2 Nx, u,v 2 N0. Here, the penultimate inequality comes from (B.43) and (B.45).
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with probability exceeding 1�O
�
m

�10 +me
�CK

�
.

44
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where (i) follows from Cauchy-Schwarz inequality, (ii) comes from the property of sub-Gaussian
variable
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Invoking a similar covering argument, we know that with probability exceeding 1�O
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where the penultimate inequality comes from (B.49) and (B.50). Next, let us define
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holds uniformly over h 2 Bh (C1r), where the last inequality is due to the choices "1 = r/ (m logm),
"2 = 1/ (m logm) and r = �+ �
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3. Finally, we turn attention to �3. Observe that for any fixed h and x, one has
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where (i) follows from Cauchy-Schwarz inequality, (ii) comes from the property of sub-Gaussian
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for any t � 0. Setting t = Cµr
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where the last inequality arises from (B.66). This further leads to
���uHT debias

⇣
(h� h

?) (x� x
?)H

⌘
v

���

=

������

mX

j=1

⇣
u
H
bjb

H

j (h� h
?) (x� x

?)H aja
H

j v 1{|�H
xaj |C4r

p
logm}�u

H
bjb

H

j (h� h
?) (x� x

?)H v

⌘
������

= |r (h,x,u,v)� r (h0,x0,u0,v0)|+ |r (h0,x0,u0,v0)|

 (2K logK + 10 logm+ 1)
⇣
2 ("1)

2 + 2C1r"2

⌘
+

�

100

 �

50
,

where the last inequality follows from (B.54) and (B.55). As a consequence, for any point (h,x)
satisfying (B.5), we have, with probability exceeding 1�O
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To finish up, combining the bounds obtained in (B.47), (B.52) and (B.56), we arrive at
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B.6 Proof of Lemma 14
We intend to invoke Koltchinskii et al. [2011, Proposition 2] to bound the spectral norm of the random
matrix of interest. Set Zi = ⇠ibia

H

i . Letting k · k 1 (resp. k · k 2) denoting the sub-exponential norm of a
random variable Vershynin [2018, Chapter 2], we have
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p
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K (cf. Vershynin [2018, Theorem 3.1.1]). In addition, simple calculation yields
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which rely on the facts that E
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we can apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive
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with probability exceeding 1�O(m�20), where the last inequality holds as long as m & K log3 m.

B.7 Proof of Lemma 15
By the definition of T (cf. (B.28)), any Z 2 T takes the following form

Z = hu
H + vx

H

for some u,v 2 CK . Since this is an underdetermined system of equations, there might exist more than one
possibilities of (h,x) that enable and are compatible with this decomposition. Here, we shall take a specific
choice among them as follows
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2
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2
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As can be straightforwardly verified, this special choice enjoys the following property

h
H
v = u

H
x,

which plays a crucial role in the proof.
The proof consists of two steps: (1) showing that
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⌘
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The first claim (B.59) can be justified in the same way as Chen et al. [2020, Equation (81)]; we thus omit
this part here for brevity.

It then boils down to justifying the second claim (B.60), towards which we first decompose

kA (Z)k22 = kA (Z)k22 � kZk22| {z }
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By repeating the same argument as in Chen et al. [2020, Appendix C.3.1, 2(a)], we can lower bound ↵2 by
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We then turn attention to controlling ↵1. Letting �h = h� h
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thereby motivating us to cope with these terms separately.
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where the last inequality is obtained by invoking Li et al. [2019, Lemma 5.12].
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where the (i) and (ii) follow from the Cauchy-Schwarz inequality and (B.5a) that
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where (i) holds for the same reason as Step (ii) in (B.62); (ii) arises due to the identity
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holds uniformly for any u.

Proof. See Appendix B.7.1.

3. The next term we shall control is
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By virtue of the Bernstein inequality Vershynin [2018, Theorem 2.8.2], we have
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Additionally, define r := �+�
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holds uniformly for all (h,u) 2 Nh ⇥N0. As a result, for any (h,u) 2 Nh ⇥N0, there holds
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Combining the above results, we can continue the relation (B.61) to conclude that

kA (Z)k22 = ↵2 + ↵1

�
��h?uH

��2
F +

��vx?H
��2

F � 1

50

⇣
kuk22 + kvk22

⌘
� |�1|�

1

100

⇣
kuk22 + kvk22

⌘
� 1

25

⇣
kuk22 + kvk22

⌘

� 1

2

⇣
kuk22 + kvk22

⌘

as claimed.

53



B.7.1 Proof of Claim 4
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⌘ :=
mX

j=1

��bHj h?
��2
⇣��aH

j u
��2 � kuk22

⌘
,

which is the sum of sub-exponential variables with zero mean E
h��aH

j u
��2 � kuk22

i
= 0.
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Union bound. Next, define N0 to be an ✏0-net of the unit sphere SK�1 :=
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Approximation. Our goal is then to extend the above concentration result to cover all h 2 Bh, u 2 SK�1

simultaneously, towards which we invoke the standard epsilon-net argument. For any u 2 SK�1, let u0 2 N0
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which holds with probability at least 1 � O
�
m

�10
�

according to Lemma 1. Letting ✏0 = r/ (m logm) with
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Putting all this together. Therefore, we conclude that: with probability at least 1�O
�
m
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�
, one has
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uniformly for all h 2 Bh and u 2 SK�1, with the proviso that m � Cµ
2
K logm. Here, the second inequality

arises from (7).

C Analysis: Nonconvex formulation under Gaussian design
We consider the loss function

minimize
Z2CK⇥K

f (h,x) =
mX

j=1

��bHj hxH
aj � yj

��2 + � khk22 + � kxk22 . (C.1)

The main idea similar to the one presented in Appendix A, although the proof for Gaussian design is easier
due to the presence of more randomness. We shall also assume kh?k2 = kx?k2 = 1 for the sake of simplicity
and adopt the same notation as (A.2a)-(A.5b). The main part of the analysis lies in demonstrating the
following set of hypotheses by induction:
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for some constants C11, C12, C13 > 0. Additionally, to complete the induction argument for the base case,
we are in need of the following results of initialization:
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C.1 Induction analysis
Before embarking on the analysis, we state below a useful lemma which is direct consequence of the hypotheses
(C.2) and (C.3).

Lemma 19. Instate the notation and assumptions in Theorem 3. For t � 0, suppose that the hypotheses
(C.2) and (A.14) hold in the first t iterations. Then there exist some constants C,C

0
> 0 such that for any

1  l  m,
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In addition, if t > 0, then one also has
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This lemma can be proved in the same manner as Lemma 3 and hence we omit the proof here for brevity.

C.1.1 Characterizing local geometry

Similar to the nonconvex analysis of blind deconvolution, our first step is to establish some kind of restricted
strong convexity and smoothness as described in the following lemma. The proof can be found in Appendix
C.2.

Lemma 20. Let � := c/ log2 m for some sufficiently small constant c > 0. Suppose that m � CK log6 m for

some sufficiently large constant C > 0 and that �

q
K log3 m/m  c1 for some sufficiently small constant
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simultaneously for all points
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obeying the following properties:

• z satisfies
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• z1 := (h1,x1) is aligned with z2 := (h2,x2) in the sense that kz1 � z2k2 = dist(z1, z2); in addition, they
satisfy

max {kh1 � h
?k2 , kh2 � h

?k2 , kx1 � x
?k2 , kx2 � x

?k2}  �;

• �1, �2 2 R and obey
max {|�1 � 1| , |�2 � 1|}  �.

C.1.2 `2 error contraction

Next, by employing the established restricted strong convexity and smoothness in Lemma 20, we can prove
the hypothesis (C.2a) holds inductively. Our result is this:

Lemma 21. Set � = C��
p
mK logm for some sufficiently large constant C� > 0 and the stepsize ⌘ = c⌘/m

for some sufficiently small constant c⌘ > 0. Suppose the sample complexity satisfies m � CK log3 m for
some sufficiently large constant C > 0. Then if the hypotheses (C.2) hold true at tth iteration, we have for
some constant C11 > 0,
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holds with probability exceeding 1�O(m�100).

Proof. The proof is the same as the analysis for Lemma 5 with the help of Lemma 20 and thus omitted here
for simplicity.

Before moving on to the next step, we provide a corollary to guarantee that the alignment parameters
does not change much between adjacent iterates.

Corollary 2. Instate the notation and assumptions in Theorem 3. For an integer t > 0, suppose that the
hypotheses (A.6) and (A.14) hold in the first t � 1 iterations. Then there exists some constant C > 0 such
that for any 1  l  m, one has
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with probability at least 1�O
�
m

�100 + e
�CK logm

�
.

This corollary can be proved in the same way as Corollary 1 and hence we omit it here for simplicity.
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C.1.3 Leave-one-out proximity

The next step is to control the discrepancy between the leave-one-out sequence and the original sequence.
The formal statement is given in the lemma below.

Lemma 22. Suppose the sample size obeys m � CK log3 m for some large enough constant C > 0. If the
hypotheses (C.2) hold true for the tth iteration, then with probability exceeding 1�O(m�10), we have
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The proof can be found in Appendix C.3.

C.1.4 Establishing incoherence

Then we proceed to prove the incoherence hypotheses, i.e. (C.2c) and (C.2d). They are much easier to
handle than the Fourier designs. We actually only need to prove the incoherence of al and x

t+1. Then the
other follows immediately by the symmetry between {aj}mj=1 and {bj}mj=1 under Assumption 2. Similar to
(A.21), the triangle inequality and Cauchy-Schwarz inequality yield
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where the penultimate inequality follows from (F.1), (F.2) and (C.8). This establishes the hypothesis (C.2c)
for the (t+ 1)-th iteration.

The incoherence of bl and h
t+1 (as stated in the hypothesis (C.2d)) follows from the symmetry between

{aj}mj=1 and {bj}mj=1. We summarize the results in the following lemma.

Lemma 23. Suppose the sample complexity obeys m � CK logm for some sufficiently large constant C > 0
and � = C��

p
mK logm for some absolute constant C� > 0. If the hypotheses (C.2a)-(C.2d) hold for the
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as long as C13 > 0 is some sufficiently large constant and ⌘ > 0 is taken to be some sufficiently small
constant.
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C.1.5 The base case: Spectral initialization

The last step of the proof is to establish the induction hypotheses for the base case. The following three
lemmas justify (C.3a)-(C.3d) respectively.

Lemma 24. Suppose the sample size satisfies m � CK log5 m for some large enough constant C > 0. Then
with probability exceeding 1�O(m�10), one has
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and ||↵0|� 1|  1/4.

Proof. With the aid of Lemma 40, the proof is essentially identical to Ma et al. [2018, Eqn (94)] and thus
omitted here for brevity.

Lemma 25. Suppose m � CK log5 m for some sufficiently large constant C12 > 0. Then with probability at
least 1�O(m�1), one has
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Proof. The proof of this lemma is deferred to Appendix C.4.

Lemma 26. Suppose that m � CK log6 m for some large enough constant C > 0. Then with probability at
least 1�O(m�1), we have
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Proof. The first inequality can be established by the same derivation as for Ma et al. [2018, Lemma 21],
which is omitted here for brevity. The second inequality follows immediately since {aj}mj=1 and {bj}mj=1 have
the same distributions.

C.2 Proof of Lemma 20
To begin with, we decompose r2

f(z) as follows
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The following two lemmas allow us to control the two terms on the right-hand side of the above identity
separately.

Lemma 27. Instate the notation and conditions of Lemma 20. One has
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Proof. Note that the expression of E[r2
freg-free(z?)]/m is the same as that of r2

F (z?) in Ma et al. [2018,
Lemma 26]. Hence the proof there can be straightforwardly adapted to our case and thus omitted here.
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Lemma 28. Suppose the sample size obeys m � CK log3 m for some large enough constant C > 0. Then
with probability at least 1�O(m�10), one has
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4
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holds uniformly for all z satisfying (C.5).

Proof. See Appendix C.2.1.

With these two lemmas in hand, we have, for any (h,x) obeying (C.5), that
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Furthermore, it is readily seen that
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where (i) is due to Lemma 27 and the fact that u
H
Du � (1� �)kuk22; (ii) relies on the bound kDk  1 + �

and Lemma 28; and (iii) holds as long as �  1/4. We have thus finished the proof for the desired smoothness
and restricted strong convexity conditions.

C.2.1 Proof of Lemma 28

The idea of the proof is similar to that of Ma et al. [2018, Lemma 27] except that the design of {bj}mj=1 is
different. By triangle inequality, we can upper bound the quantity of interest as
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We will control these four terms separately as follows.
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Controlling ↵1. In terms of ↵1, by the triangle inequality, one has
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It is first seen that
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We intend to invoke the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to control
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=
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we are ready to apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive
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with high probability. Substitution of (C.13) into (C.12) yields
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as long as m � K logm. Plugging this inequality into (C.11) gives
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2. The second term �2 can be further decomposed as follows
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The second term on the right-hand side of (C.16) has already been considered in (C.13). We are therefore
left to control the first term. Let
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Regarding the second term of (C.17), due to (F.2) we have
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holds with probability over 1�O(m�100). For the first term of (C.17), one can derive
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where the first inequality holds due to the triangle inequality. Invoking the Cauchy-Schwartz inequality
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We can then invoke the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to control
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we can apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive
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with high probability, where the last inequality holds as long as m � K log5 m. Plugging (C.18) and
(C.19) into (C.17) gives ������
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Substitution of (C.13) and (C.20) into (C.16) yields
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As a consequence, taking (C.15) and (C.21) collectively yields
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Controlling ↵2. Regarding ↵2, since the roles played by {aj}mj=1 and {bj}mj=1 are symmetric in this
problem, it is easily seen that ↵2 admits the same bound as that of ↵1.

Controlling ↵3. When it comes to the third term ↵3, one makes the observation that
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The second term on the right-hand side of this relation has already been bounded by Lemma 36. Regarding
the first term on the right-hand side of (C.23), one can further decompose
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To bound the last three terms of (C.24), we resort to the following two lemmas, whose proofs can be found
in Appendix C.2.2 and Appendix C.2.3.

Lemma 29. With probability at least 1�O(m�100 +me
�CK) for some constant C > 0, one has
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holds uniformly for any x satisfying (C.5).

Lemma 30. With probability at least 1� 2 exp(�CK logm) for some constant C > 0, one has
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holds uniformly for any (h,x) obeying (C.5) for some sufficiently large constant C 0
> 0.

By the symmetry between {aj}mj=1 and {bj}mj=1 and Lemma 29, one arrives at
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with probability over 1� 2 exp(�CK logm). Plugging (C.25), (C.26) and (C.27) into (C.24) yields
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Substitution of (C.28) and (D.3) into (C.23) thus gives
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for some large enough constant C > 0.

Controlling ↵4. With regards to the last term ↵4, we have
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These two terms have already been bounded by (C.28) and (F.9) respectively. Combining this inequality
with (C.28) gives
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Putting all this together. Finally, by plugging (C.22), (C.29) and (C.30) into (C.10), we arrive at
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holds with probability exceeding 1�O(m�10).

C.2.2 Proof of Lemma 29

Consider the event
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(F.1) and (F.2) suggest that event E holds with probability at least 1 � O(m�100 + me
�CK). The proof

thereafter will be developed on this event.
Due to the assumptions (C.5), we have — for any given unit vectors u, v 2 CK — that
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In what follows, we shall first establish concentration inequalities for this quantity for a given point (u,v),
and then establish uniform concentration that holds for simultaneously for all points of interest.

Concentration. Consider any fixed unit vectors u and v). We seek to invoke the Bernstein inequality
Vershynin [2018, Theorem 2.8.2] to control
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where the first inequality comes from the fact that kX � E[X]k 1  CkXk 1 (cf. Vershynin [2018, Section
2.7]) and the last inequality is due to the event E . Hence, the Bernstein inequality Vershynin [2018, Theorem
2.8.2] reveals that
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with probability exceeding 1� 2 exp(�cC
2
t K logm).

Union bound over epsilon-nets. Next, we intend to show that (C.32) holds uniformly for any unit
vectors u and v. Define Nx to be an ✏1-net of Bx(�) := {x : kx � x

?k2  �} and N0 an ✏2-net of the unit
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Approximation. We then turn to the following quantity
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For any x satisfying the assumptions (C.5) and any u, v 2 SK�1, one can choose x0 2 Nx, u0 2 N0 and
v0 2 N0 satisfying kx � x0k2  ✏1 and max{ku � u0k2, kv � v0k2}  ✏2. Set ✏1 = �/K and ✏2 = 1/4. The
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To simplify the second term above, we notice that on event E (cf. (C.31)),
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As a result, one has the following identity
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It then follows that
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Plugging (C.37) into (C.33) yields
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Next, we look at g(u0,v0,x0), and notice that (C.32) holds for
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Putting all this together. Let us define
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Taking (C.38) and (C.39) collectively gives rise to
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A key observation is that x
0 := 5(x� x0) + x

? 2 S by kx� x0k2  ✏1 and (C.35). Hence, the last term
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where the first equality comes from (C.34). Plugging this inequality into (C.40), taking the maximum over
u and v on the left-hand side of (C.40) and rearranging terms yield
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as long as m � K log4 m.

C.2.3 Proof of Lemma 30

Similar to proof of Lemma 29, we consider the event
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which holds with probability at least 1 � O(m�100 + me
�CK). The proof thereafter will be developed on

this event. For any fixed unit vectors u, v 2 CK and (h,x) obeying the assumptions (C.5), one has
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Concentration. Consider any fixed vectors u, v and (h,x). We seek to invoke the Bernstein inequality
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Pm
j=1 Wj . We observe that

kWj � E [Wj ]k 1
 C kWjk 1

 C

�����b
H

j (h� h
?) (x� x

?)H aj 1⇢
max{|bH

j (h�h?)|,|(x�x?)Haj|}20C13
1

log3/2 m

�

�����
��uH

bj

��
 2

��aH

j v
��
 2

= C

�����b
H

j (h� h
?) (x� x

?)H aj 1⇢
max{|bH

j (h�h?)|,|(x�x?)Haj|}20C13
1

log3/2 m

�

�����

 400CC
2
13

1

log3 m
,

where the first inequality comes from the fact that kX � E[X]k 1  CkXk 1 (cf. Vershynin [2018, Section
2.7]), the second one is due to Vershynin [2018, Lemma 2.7.7] and the last inequality is due to the event E .
Hence, the Bernstein inequality Vershynin [2018, Theorem 2.8.2] reveals that
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Letting t = Ct

p
mK for some large enough constant Ct > 0, we obtain that
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holds with probability exceeding 1� 2 exp(�cC
2
t K logm).

Union bound. Next, we define Nz to be an ✏1-net of Bz(�) := {(h,x) : max{kh� h
?k2, kx� x

?k2}  �}
and N0 an ✏2-net of the unit sphere SK�1. In view of Vershynin [2018, Corollary 4.2.13], we have

|Nz| 
✓
1 +

2�

✏1

◆4K

and |N0| 
✓
1 +

2

✏2

◆2K

.

Taking this collectively with the union bound yields that (C.42) holds uniformly for any (h,x) 2 Nz and u,
v 2 N0 with probability over
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Approximation. Define
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For any (h,x) satisfying the assumptions (C.5) and any u, v 2 SK�1, one can choose (h0,x0) 2 Nz, u0 2 N0

and v0 2 N0 satisfying max{kh� h0k2, kx� x0k2}  ✏1 and max{ku� u0k2, kv � v0k2}  ✏2. Let

g (u,v,h,x) :=
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u
H
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?) (x� x
?)H .

Set ✏1 = �/K and ✏2 = 1/4. In view of the triangle inequality, one has
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To simplify the last two terms, we observe that
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and furthermore,
���(x0 � x

?)H aj

��� 
���(x� x

?)H aj

���+
���(x� x0)

H
aj

���


���(x� x

?)H aj

���+ C13
1

log3/2 m

 3C13
1

log3/2 m
.
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Then, we can bound the last two term in (C.43) as follows
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where the first inequality is due to triangle inequality; the second comes from (C.42) and the last is because
of (C.46).

Putting all this together. Let

S 0 :=

⇢
(h,x) : max

n���(x� x
?)H aj

��� ,
���(h� h

?)H bj

���
o
 20C13

1

log3/2 m
,max {kh� h

?k2 , kx� x
?k2}  �

�
.

It is easy to check that (h, 5(x� x0) + x
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Hence, combining the above two inequalities with (C.43) and (C.47) reveals that
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Taking the maximum over u and v on the left-hand side of the above inequality and rearranging terms yield
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and then rearranging terms yields
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and that the set of all (h,x) obeying (C.5) is a subset of S 0, we have established the desired result.

C.3 Proof of Lemma 22
The proof is very much the same as that of Lemma 6, except that the contraction coefficient in the expression
⌫1 in (A.34) is (1� c⌘) rather than (1� ⌘) and the bound on ⌫3 is different. In what follows, we shall only
describe how to bound ⌫3 here, for the sake of brevity.

The proof proceeds by bounding ⌫3 via the four terms as indicated by (A.35a), which we discuss as
follows.

1. For the first term ⌫31, one has
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where the penultimate inequality follows from (F.1) and (F.2); the last inequality is due to (C.4f).
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where the second line follows from (F.1) and (F.2); the last inequality is due to (C.4f). Further for some
sufficiently large constant C > 0, there holds
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where the last inequality comes from (C.2b) and (C.4a). Similarly we can see this bound also holds for
|(bxt,(l) � x

?)Hal|. Therefore,
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where the penultimate inequality follows from (F.1) and (C.50). Substituting (C.52) into (C.48) and
(C.49), we reach
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3. Regarding ⌫33 and ⌫34, it can be seen that
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where (i) holds by (F.1), (F.2) and the independence between ⇠l,al, bl and bxt,(l).
Consequently, by (C.48) and (C.53a)-(C.53c) we have
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as long as m � K log2 m. Then the proof follows the same line of idea as Appendix A.8, resulting in a
similar inequality as (A.38) as follows:
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,

provided that ⌘ = c⌘/m with c⌘ > 0 being some sufficiently small constant. The proof for (C.8) follows
from the same argument leading to (A.40) and is thus omitted here for simplicity.

C.4 Proof of Lemma 25
Recall the definition of M and M

(l) under the Gaussian design:

M :=
1
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yjbja
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j , and M
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Applying Wedin’s sin⇥ theorem Dopico [2000, Theorem 2.1] gives that for some universal constant C
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���ȟ0,(l)H

⇣
M �M

(l)
⌘���

2

⌘
.

(C.55)
We are left with bounding the two terms on the right-hand side of (C.55).

• Regarding the first term on the right-hand side of (C.55), we have
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where the second inequality is due to the triangle inequality; the penultimate inequality comes from (F.1),
(F.2) and the fact that with probability exceeding 1�O(m�100),
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due to the independence between x̌
0,(l) and al.

• The second term on the right-hand side of (C.55) can be bounded in a similar fashion as follows
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where the penultimate inequality comes from (F.1), (F.2) and the fact that
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holds with probability exceeding 1�O(m�100) (due to the independence between ȟ
0,(l) and bl).

Plugging the above two bounds into (C.55) leads to
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for some universal constant eC > 0. To convert this bound into the desired version, we can employ the same
argument connecting Ma et al. [2018, Eqn (240)] to Ma et al. [2018, Eqn (245)]. The details are omitted
here for brevity.

D Analysis under Gaussian design: connections between convex
and nonconvex solutions

D.1 Preliminaries
Here, we state below a few elementary technical lemmas that prove useful in the proof. To begin with, we
show that the operator A is well-controlled in this case, whose counterpart in the Fourier design is Lemma
1.

Lemma 31. For the operator A defined under the Gaussian setting, we have, with probability at least
1�O(m�10), that
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We can rewrite A in matrix form as follows
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with probability at least 1�O(m�100).

Next, the following lemma corresponds to Lemma 39 under the Fourier design. Its proof is deferred to
Appendix D.3.

Lemma 32. Suppose that T is the tangent space of hx
H with khk2 = kxk2 = 1 and m � CK log2 m for

some sufficiently large constant C > 0. Then there exists some sufficiently large constant C 0
> 0 such that
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mK logm

with probability exceeding 1�O(m�10).

75



D.2 Proof of Theorem 3
In this section, we proceed to prove Theorem 3 by connecting the convex minimizer with nonconvex iterates,
in the same vein as in the Fourier design case (cf. Appendix B). To begin with, a lemma stating the results
of Algorithm 2 under the Gaussian design is listed below.

Lemma 33. Take � = C��
p
mK logm for some sufficiently large constant C� > 0. Suppose that Assumption

2 holds. Assume the number of measurements obeys m � CK log6 m for some sufficiently large constant
C > 0 and the noise satisfies �

q
K log5 /m  c for some sufficiently small constant c > 0. Let stepsize ⌘

be c⌘/m for some sufficiently small constant c⌘ > 0. Then, with probability at least 1�O
�
m

�100 +me
�K

�
,

the iterates {ht
,x

t}0<tt0
of Algorithm 2 satisfy

dist
�
z
t
, z
?
�
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�
z
t�1

, z
?
�
+ C11⌘

⇣
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p
mK logm

⌘
, (D.1a)
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z
t,(l)

, ezt
�
 C12

�

p
K log2 m

m
, (D.1b)

max
1lm

���ezt,(l) � ezt
���
2
. C12

�

p
K log2 m

m
, (D.1c)

max
1lm

��aH

l

�
ext � x

?
���  C13

�

p
mK log2 m

m
, (D.1d)

max
1lm

��bHl
⇣
eht � h

?
⌘ ��  C13

�

p
mK log2 m

m
(D.1e)

for any 0 < t  t0, where ⇢ = 1 � c⇢c⌘ for some small constant c⇢ > 0, and we take t0 = m
20. Here, C11,

C12 and C13 are positive constants. Additionally, one has

min
0tt0

��rf
�
h
t
,x

t
���

2
 �

m10
. (D.1f)

(D.1a)-(D.1e) can be seen as direct consequences from our analysis in Appendix C, while (D.1f) can be
derived by following the proof in Appendix B.3.2. Hence, we do not repeat the proof here for brevity.

Similar to Conditions 1 and 2, we single out two critical conditions on the operators under Assumption
2. The first condition below requires the regularization parameter � to be large enough, so as to dominate
a certain form of noise and the deviation of T

�
hx

H � h
?
x
?H
�

from its mean m
�
hx

H � h
?
x
?H
�
.

Condition 3. The regularization parameter � satisfies

1.
��T

�
hx

H � h
?
x
?H
�
�m

�
hx

H � h
?
x
?H
��� < �/8.

2. kA⇤ (⇠)k  c� for some small constant c > 0.

The second condition is concerned with the injectivity property of A.
Condition 4. Let T be the tangent space of hxH. Then for all Z 2 T , one has

kA (Z)k22 � m

16
kZk2F .

Armed with these two conditions, the following lemma reveals how an approximate nonconvex optimizer
can serve as a proxy of the convex minimizer. The proof of this lemma can be developed in the same manner
as in Appendix A.8; the details are omitted here for brevity.

Lemma 34. Suppose that (h,x) obeys

krf (h,x)k2  C
�

m10
(D.2a)

for some constants C > 0. Then under Conditions 3 and 4, any minimizer Zcvx of the convex problem (3)
satisfies ��hxH �Zcvx

��
F
. krf (h,x)k2 .
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Consequently, the conclusions in Theorem 3 can be easily derived from Lemma 34 by similar calculations
as proof of Theorem 1 in Appendix B.1, and thus omitted here for brevity.

It remains to demonstrate that Conditions 3 and 4 hold with high probability under the sample size and
noise level conditions (13). We start with the first point in Condition 3. Its proof can be directly adaptated
from the proof in Appendix B.5, and thus omitted here for simplicity.

Lemma 35. Suppose that the sample complexity satisfies m � CK log4 m for some sufficiently large constant
C > 0. Take � = C��

p
mK logm for some large enough constant C� > 0. Then with probability at least

1�O
�
m

�10 +me
�CK

�
, we have

��T
�
hx

H � h
?
x
?H
�
�m

�
hx

H � h
?
x
?H
��� < �/8

simultaneously for any (h,x) obeying (B.5a) and (B.5b).

The next lemma corresponds to the second point in Condition 3.

Lemma 36. Suppose that Assumption 2 holds and m � CK log5 m for some sufficiently large constant
C > 0. Then one has

kA⇤ (⇠)k . �

p
mK logm (D.3)

holds with probability exceeding 1�O(m�10).

Proof. See Appendix F.1.

Turning attention to Condition 4, we have the following lemma.

Lemma 37. Suppose that the sample complexity satisfies m � CK logm for some sufficiently large constant
C > 0. Then with probability at least 1�O

�
m

�10
�
,

kA (Z)k22 � m

16
kZk2F , 8Z 2 T

holds simultaneously for all T for which the associated point (h,x) obeys (B.5a) and (B.5b). Here, T denotes
the tangent space of hxH.

The proof is a direct adaptation from Appendix B.7 and thus omitted for brevity.

D.3 Proof of Lemma 32
The framework and notation adopted here are similar to Ahmed et al. [2013, Section 5.2]. To facilitate the
proof, we introduce an operator for x1,x2,y1,y2 2 CK as follows:

x1y
H

1 ⌦ x2y
H

2 :=
�
y1iy1kx1x

H

2

 
i,k

2 CK2⇥K2

.

Denote by vj = hh, bjiaj and uj = hx,aji
�
IK � hh

H
�
bj . Then we can rewrite the operator PTA⇤APT :

CK⇥K ! CK⇥K as the following matrix

Q :=
mX

j=1

�
hv

H

j ⌦ hv
H

j + hv
H

j ⌦ ujx
H + ujx

H ⌦ hv
H

j + ujx
H ⌦ ujx

H
�
2 CK2⇥K2

,

which satisfies
vec (PTA⇤APT (X)) = Qvec (X)

for any X 2 CK⇥K . This implies that

kPTA⇤APT �mPT k
= kPTA⇤APT � E [PTA⇤APT ]k = kQ� E [Q]k
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(D.4)

In the sequel, we consider the four terms on the right-hand side of (D.4) separately.

Controlling �1. Regarding the first term �1, we denote

Zj := hv
H

j ⌦ hv
H

j � E
⇥
hv

H

j ⌦ hv
H

j

⇤
.

Then one has
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where (i) is due to the fact that khhHk = khk22 = 1; (ii) uses (F.1) and
��kbjk2

��
 2

.
p
K (cf. Vershynin

[2018, Theorem 3.1.1]). To compute the variance term E[ZH

j Zj ] and E[ZjZ
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j ], we express the operation of
Zj on a matrix X as
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and hence

Z
H

j Zj (X) = |hh, bji|4 khk22 kajk22 hh
H
Xaja

H

j � 2 |hh, bji|2 khk42 hh
H
Xaja

H

j + khk62 hh
H
X.
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By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2], one has
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with high probability.
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Controlling �2. When it comes to the second term �2, we first set

Hj := hv
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which satisfies
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Controlling �3. When being written in matrix form, one has ujx
H⌦hv

H

j �E[ujx
H⌦hv

H

j ] is the conjugate
transpose of hvH

j ⌦ ujx
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H], so that their norms are the same and (D.6) holds for ujx
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j ] as well.

79



Controlling �4. For the last term �4, we denote
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Here, (i) is due to the triangle inequality, and (ii) applies khk2 = kxk2 = 1 and the fact that kIK�hh
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It then follows that
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calculate the variance term, one observes that
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Putting all this together. Plugging (D.5), (D.6) and (D.7) into (D.4) yields that with probability at
least 1�O(m�10),

kPTA⇤APT �mPT k  C

p
mK logm

holds for some large enough constant C > 0.
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E Proof of Theorem 5
The proof of this lower bound is rather standard, and hence we only provide a proof sketch here. First of
all, it suffices to consider the case where h,x 2 RK . We assume that h? ⇠ N (0, IK) and suppose that there
is an oracle informing us of h?, which reduces the problem to estimating x

? from linear measurements

y = eAx
? + ⇠,

where eA := [ea1, ea2, · · · , eam]H with eaj = b
H

j h
?aj . Denoting by eAre and eAim the real and the imaginary

part of eA, respectively, the standard minimax risk results for linear regression (e.g. Candes and Plan [2011,
Lemma 3.11]) gives

inf
bx

sup
x?2CK

E
h
kbx� x

?k22
��A

i
=

1

2
�
2
⇣
tr
h� eA>

re
eAre

��1
i
+ tr

h� eA>
im
eAim

��1
i⌘

� K�
2
/max

n�� eAre

��2,
�� eAim

��2
o
, (E.1)

where the infimum is over all estimator bx. It is known from standard Gaussian concentration results that,
with high probability,
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which together with (E.1) gives
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In turn, this oracle lower bound implies that, with high probability,

inf
bZ

sup
Z?2M?

E
h�� bZ �Z

?
��2
F
| A

i
& inf

bx
sup

x?2CK

E
h��h?bxH � h

?
x
?H
��2
F
| A

i
⇣ inf

bx
sup

x?2CK

E
h
kbx� x

?k22 kh
?k22 | A

i

& �
2
K/ logm.

Similarly, for the second case, we assume that h
? is a unit vector and there is an oracle informing us of h?.

Then we again relates the problem to estimating x
? from linear measurements

y = Ǎx
? + ⇠,

where Ǎ := [ǎ1, ǎ2, · · · , ǎm]H with ǎj = b
H

j h
?aj . Denoting by Ǎre and Ǎim the real and the imaginary part

of Ǎ, respectively. Similar to (E.1), one has
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by the standard minimax risk results for linear regression (e.g. Candes and Plan [2011, Lemma 3.11]). From
standard Gaussian concentration, we have, with high probability,
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Hence, this oracle lower bound implies that,
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with high probability.

F Auxiliary lemmas
In this section, we collect several auxiliary lemmas that are useful for the proofs of our main theorems.

Lemma 38. Consider any fixed vector x independent of {al}1lm. Then with probability at least 1 �
O
�
m

�100
�
, we have
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1lm
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l x
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logm kxk2 . (F.1)

Additionally, there exists some constant C > 0 such that with probability at least 1�O
�
me

�CK
�
, we have

max
1lm

kalk2  10
p
K. (F.2)

Proof. The first result follows from standard Gaussian concentration inequalities as well as the union bound.
The second claim results from Vershynin [2018, Theorem 3.1.1].

Lemma 39. Fix an arbitrarily small constant ✏ > 0. Suppose that Assumption 1 holds and m � Cµ
2
K log2 m/✏

2

for some sufficiently large constant C > 0. Then one has

kPTA⇤APT � PT k  ✏,

with probability exceeding 1�O(m�10).

Proof. This has been established in Ahmed et al. [2013, Section 5.2].

Lemma 40. Under Assumption 2, one has
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,

holds with probability over 1�O(m�10), as long as m > CK log5 m for some large enough constant C > 0.

Proof. See Appendix F.2.

F.1 Proof of Lemma 36
By the definition of A⇤, we have
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,

for sufficiently large constant C > 0, we have with probability exceeding 1�O(m�10), that
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To bound k
Pm

j=1 Xjk, we proceed by applying the matrix Bernstein inequality Koltchinskii et al. [2011,
Proposition 2]. One has
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K (cf. Vershynin [2018, Theorem 3.1.1]). Next, we turn to control the variance term. One
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Since {aj}mj=1 have the same distribution as {bj}mj=1, k
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as above. Then, we have
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Now we are ready to invoke Koltchinskii et al. [2011, Proposition 2] to derive that with probability over
1�O(m�20), there holds
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where the last inequality holds as long as m � K log5 m. Taking (F.4) collectively with (F.3), one has
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holds with probability exceeding 1�O(m�10).

F.2 Proof of Lemma 40
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The second term can be bounded by Lemma 36. We are left to control the first term.
In view of (F.2), one has
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holds with probability over 1�O(m�100).

Concentration. For any fixed unit vectors u and v, define
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Then we invoke the Bernstein inequality Vershynin [2018, Theorem 2.8.2] to control k
Pm

j=1(Zj � E[Zj ])k.
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Here, we have used kX � E[X]k 1  C kXk 1
(cf. Vershynin [2018, Section 2.7]). Then the Bernstein

inequality Vershynin [2018, Theorem 2.8.2] allows us to derive that
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Letting t = Ct

p
mK logm for some large enough constant Ct > 0, we obtain that
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holds with probability exceeding 1� 2 exp(�cC
2
t K).

Union bound. Next, we define N0 an ✏-net of the unit sphere SK�1. In view of Vershynin [2018, Corollary
4.2.13], we have
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Taking this collectively with the union bound yields that (F.7) holds uniformly for any x 2 Nx and u,
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Approximation. Then, for any u, v 2 SK�1, one can choose u0 2 N0 and v0 2 N0 satisfying max{ku�
u0k2, kv � v0k2}  ✏2. Let
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Set ✏ = 1/4. By triangle inequality, one has

|g (u,v)� g (u0,v0)|  |g (u,v)� g (u0,v)|+ |g (u0,v)� g (u0,v0)|
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Hence we have
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Putting all this together. It then follows that
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Taking maximum over u and v on the left side yields that
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Rearranging terms and recalling ✏ = 1/4 give rise to
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Taking (F.6) with (F.8) collectively yields that
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holds with probability at least 1�O(exp(�CK logm) +m
�100). Plugging (F.9) and (D.3) into (F.5) gives

the desired conclusion.
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