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Abstract

We investigate the effectiveness of convex relaxation and nonconvex optimization
in solving bilinear systems of equations under two different designs (i.e. a sort of
random Fourier design and Gaussian design). Despite the wide applicability, the
theoretical understanding about these two paradigms remains largely inadequate
in the presence of random noise. The current paper makes two contributions by
demonstrating that: (1) a two-stage nonconvex algorithm attains minimax-optimal
accuracy within a logarithmic number of iterations, and (2) convex relaxation also
achieves minimax-optimal statistical accuracy vis-a-vis random noise. Both results
significantly improve upon the state-of-the-art theoretical guarantees.
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1 Introduction and motivation

Suppose we are interested in a pair of unknown objects h*, &* € CK and are given a

collection of m nonlinear measurements taking the following form
Yy; = b?h*a:*”aj + 6]', 1< <m. (1)

Here, 2" denotes the conjugate transpose of a vector z, {¢;} stands for the additive noise,
whereas {a;} and {b,} are design vectors (or sampling vectors). The aim is to faithfully
reconstruct both A* and &* from the above set of bilinear measurements/!]

This problem of solving bilinear systems of equations spans multiple domains in science

and engineering, including but not limited to astronomy, medical imaging, optics, and

communication engineering [Campisi and Egiazarian, 2016, |Jefferies and Christou, [1993,
‘Wang and Poor, (1998, Wunder et al., 2015, Tong et al., [1994, Chan and Wong, 1998].

Particularly worth emphasizing is the application of blind deconvolution |[Ahmed et al.
22013, [Kundur and Hatzinakos, [1996] [Ling and Strohmer] 2015, Ma et al., [2018], which

involves recovering two unknown signals from their circular convolution. As has been made

apparent in the seminal work Ahmed et al.| [2013], deconvolving two signals can be reduced

to solving bilinear equations, provided that the unknown signals lie within some a prior:

known subspaces; the interested reader is referred to |[Ahmed et al. [2013] for details. A

variety of approaches have since been put forward for blind deconvolution, most notable

of which are convex relaxation and nonconvex optimization [Ahmed et al., 2013, Ling

land Strohmer, 2017, [Li et all 2019, Ma et al.l 2018, [Huang and Hand, 2018, [Ling and

| !This formulation is reminiscent of the problem of phase retrieval (or solving quadratic systems oﬂ

lequations). But the two problems turn out to be quite different due to the common assumptions imposed|

|on the design vectors, as we shall elucidate in Section |




Strohmer, [2019]. Despite a large body of prior work tackling this problem, however, where
these algorithms stand vis-a-vis random noise remains unsettled, which we seek to address

in the current paper.

1.1 Convex and nonconvex algorithms

Among various algorithms that have been proposed for blind deconvolution, two paradigms
have received much attention: (1) convex relaxation and (2) nonconvex optimization, both
of which can be explained rather simply. The starting point for both paradigms is a natural

least-squares formulation

m
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minimize Zl bl haa; —y,|”, (2)
J:

which is, unfortunately, highly nonconvex due to the bilinear structure of the sampling

mechanism. It then boils down to how to guarantee a reliable solution despite the intrinsic

nonconvexity.

Convex relaxation. In order to tame nonconvexity, a popular strategy is to lift the
problem into higher dimension followed by convex relaxation (namely, representing ha' by
a matrix variable Z and then dropping the rank-1 constraint) [Ahmed et al.l 2013, Ling

and Strohmer, 2015, 2017]. More concretely, we consider the following convex program:

m
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where A > 0 denotes the regularization parameter, and || Z||. is the nuclear norm of Z

(i.e. the sum of singular values of Z) and is known to be the convex surrogate for the rank

2As we shall see shortly, we keep a factor 2 here so as to better connect the convex and nonconvex

algorithms; it does not affect our main theoretical guarantees at all.



function. The rationale is rather simple: given that we seek to recover a rank-1 matrix
Z* = h*z*" it is common to enforce nuclear norm penalization to encourage the rank-1
structure. In truth, this comes down to solving a nuclear-norm regularized least squares

problem in the matrix domain CK*¥,

Nonconvex optimization. Another popular paradigm maintains all iterates in the
original vector space (i.e. CX) and attempts solving the above nonconvex formulation or
its variants directly. The crucial ingredient is to ensure fast and reliable convergence in
spite of nonconvexity. While multiple variants of the nonconvex formulation have been
studied in the literature (e.g. [Li et al|[2019], [Ma et al.| [2018], |Charisopoulos et al. [2019,
2021], Huang and Hand| [2018]), the present paper focuses attention on the following ridge-

regularized least-squares problem:

m

e 2
minimize [ (h,@) = > [b'haa; — ;| + Akl + All2]3, (4)
»L ]:1

with A > 0 the regularization parameter. This choice of objective function is crucial to the
establishment of our main theorems as can be seen later. Owing to the nonconvexity of ,
one needs to also specify which algorithm to employ in attempt to solve this nonconvex
problem. Our focal point is a two-stage optimization algorithm: it starts with a rough initial
guess (h%, %) computed by means of a spectral method, followed by Wirtinger gradient
descent (GD) that iteratively refines the estimates (to be made precise in (6a)). At the end
of each gradient iteration, we further rescale the sizes of the two iterates h! and x!, so as
to ensure that they have identical ¢, norm (see ) In truth, this balancing step helps
stabilize the algorithm, while facilitating analysis. The whole algorithm is summarized in

Algorithm



Algorithm 1 Nonconvex gradient descent with spectral initialization
Input: {?Jj}gjgm’ {aj}1gjgm and {bj}1gjgm'

Spectral initialization: let oy (M), h? and &° denote respectively the leading singular

value, the leading left and the right singular vectors of
j=1

Set h° = /o, (M) h° and 2° = /o, (M) &°.

Gradient updates: for t =0,1,...,{5 — 1 do

ht+1/2 B ht - vhf (ht, mt) <6a>
wt+1/2 N xt " vwf (ht, :Bt) ’
_ [ ot +1/2
ht+1 hit1/2 2 ht+1/2
= 2 ) (6b)
pttl | nt+1/2 2 /2
_ pt+1/2
L 2

where V5, f(+) and V. f() represent the Wirtinger gradient (see [Li et al. [2019, Section
3.3] and Section A.2.1 of supplementary materials) of f(-) w.r.t. h and x, respectively.

1.2 Inadequacy of prior theory

The aforementioned two algorithms have found solid theoretical support under certain
randomized sampling mechanisms. Informally, imagine that the a;’s and the b;’s follow
standard Gaussian and partial Fourier designs, respectively, and that each noise component
¢; is a zero-mean sub-Gaussian random variable with variance at most o (more precise
descriptions are deferred to Assumption. Tablesummarizes the performance guarantees

established in prior theory.



Table 1: Comparison of our theoretical guarantees of blind deconvolution under Fourier

design to prior theory, where we hide all logarithmic factors. Here, the Euclidean estimation

error refers to ||Zex — h*x*H||p for the convex case and ||hpexxh, — h*xz*H||p for the

nonconvex case, respectively.

ncvx

Sample FEuclidean error | Computational
Algorithm
complexity in the noisy case complexity
Ahmed et al.| [2013] WK convex relaxation ovVEKm —
Ling and Strohmer| [2017| WK convex relaxation ovVKm —
This paper WK convex relaxation ovVK —
Li et al. [2019] WK nonconvex regularized GD ovVK mK?
Huang and Hand| [2018] WK Riemannian steepest descent VK mK?
Ma et al. [2018] WK nonconvex vanilla GD — mK (noiseless)
nonconvex GD
This paper WK VK mK
(with balancing operations)

e Convex relaxation is guaranteed to return an estimate of h*z*" with an Euclidean

estimation error bounded by ov Km (modulo some log factor) |[Ahmed et al., 2013,

Ling and Strohmer, [2017]. This, however, exceeds the minimax lower bound (to be

presented in Theorem [5) by at least a factor of \/m.

In comparison, nonconvex algorithms are capable of achieving nearly minimax optimal

statistical accuracy, with a computational complexity on the order of mK? (up to some

log factor) |Li et al.,[2019, Huang and Hand, 2018]. Here, the computational complexity

encompasses the cost of spectral initialization in Algorithm [1]if implemented by power

methods [Golub and Van Loan, [2013]. This computational cost, however, could be an



order of K times larger than the cost taken to read the data.

See Table [1| for a more complete summary of existing theoretical results for this scenario.
These prior results, while offering rigorous theoretical underpinnings for the two popular

algorithms, lead to several natural questions:

1. (Improving statistical guarantees) Is the statistical accuracy of convex relazation inherently

suboptimal when coping with random noise?

2. (Improving computational complexity) Is it possible to further accelerate the nonconvex

algorithm without compromising statistical accuracy?

The present paper is devoted to addressing these two questions. Informally, we aim to
demonstrate that (1) convex relaxation achieves minimax-optimal statistical accuracy in
the face of random noise, and (2) nonconvex optimization converges to a nearly minimax-

optimal solution in time proportional to that taken to read the data.

1.3 Paper organization and notation

The outline of the paper is as follows. Section [2| gives the formal statement of the model
assumptions and presents our main results for two different designs. Section [3| reviews
previous literature on blind deconvolution. Section 4| presents numerical experiments that
corroborate our theoretical results. We conclude the paper in Section [5| by pointing out
several future directions. All the proof details are deferred to the supplementary materials.

Throughout the paper, we shall often use the vector notation y := [yi, -+ ,ym]' and
€ :=1[&, -, &) € C™ For any vector v and any matrix M, we denote by v" and

M" their conjugate transpose, respectively. The notation ||v||, represents the £, norm



of an vector v, and we let ||M]||, ||M| and ||M]||, represent the spectral norm, the
Frobenius norm and the nuclear norm of M, respectively. For a function f(h,z), we
use Vi f(h,z) (resp. Vif(h,x)) to denote its Wirtinger gradient (see |Li et al. [2019,
Section 3.3] for detailed introduction) of f(-) with respect to h (resp. x). Further, we
define Vf(h,z) = [Vif(h,z)",Vyf(h,z)"]". For any subspace T, we use T+ to denote
its orthogonal complement, and Pr(M) the Euclidean projection of a matrix M onto T
Moreover, we adopt fi(m, K) < fa(m, K) or fi(m, K) = O(fa(m, K)) to indicate that there
exists some constant C7 > 0 such that fi(m, K) < C fa(m, K) holds for all (m, K) that are
sufficiently large, and use fi(m, K) 2 fo(m, K) to indicate that fi(m, K) > Cyfa(m, K)
holds for some constant C' > 0 whenever (m, K) are sufficiently large. The notation
film, K) < fo(m, K) means that fi(m,K) < fa(m, K) and fi(m, K) 2 fo(m, K) hold
simultaneously. In our proof, C serves as a universal constant whose value might change

from line to line.

2 Main results

In this section, we present our theoretical guarantees for the above two algorithms for two

types of random designs commonly studied in the blind deconvolution literature.

2.1 Blind deconvolution under random Fourier designs

Model and assumptions. We start by introducing a sort of random Fourier designs

motivated by practical engineering applications (see |Ahmed et al. [2013], |Li et al.| [2019]).

Assumption 1. Let A :=[a1,as,- -, an]" € CEK and B := [by, by, -, b,]" € C*K.



o The entries of A are independently drawn from standard compler Gaussian distributions,

namely, a; N (0,3Ix) +iN (0, 3Ix) with i the imaginary unit;

e The design matriz B consists of the first K columns of the unitary discrete Fourier

transform (DFT) matriz F € C™™ obeying FF" = I,,;

e The noise components {§;} are independent zero-mean sub-Gaussian random variables
with sub-Gaussian norm obeying ||&lly, < o (1 < i < m). See |Vershynin [2010,
Definition 5.7] for the definition of || - ||y, -

Remark 1. It is easy to show that ||b;||, = /K /m (1 < j < m) under this model.

It is worth noting that the Fourier design is largely motivated by the duality relation
between convolution in the time domain and multiplication in the frequency domain, which
is closely related to practical scenarios; see Ahmed et al. [2013] for details. In fact, the
model described in Assumption [1] has been the focus of a number of recent papers including
Ahmed et al.| [2013], Li et al.| [2019], Ma et al.| [2018], Huang and Hand| [2018], Ling and
Strohmer| 2019, [2016, [2017], to name a few.

In addition, as pointed out by prior works Ahmed et al.| [2013], [Li et al.| [2019], Ma,
et al. [2018], the following incoherence condition — which captures the interplay between
the truth and the measurement mechanism — plays a crucial role in enabling tractable

estimation schemes.

Definition 1 (Incoherence). Define the incoherence parameter p as the smallest number
obeying

Hiz % 1% * . 2 * .
[bj'h*| < NI 1Bl [[R7]], = N R, 1<j<m (7)



Remark 2. Comparing the Cauchy-Schwarz inequality }b?h*‘ < |Ibjll, [1R*]], with
reveals that y < K. It is noteworthy that our theory does not require p to be small

constant; in fact, all of our theoretical findings allow p to grow with the problem dimension.

Informally, a small incoherence parameter indicates that the truth is not quite aligned
with the sampling basis. As a concrete example, when h* is randomly generated (i.e. h* ~
N(0, I)), it can be easily verified that the incoherence parameter p is, with high probability,
at most O(y/logm). In fact, this type of condition is widely proposed in statistical literature
on various problem besides blind deconvolution, such as Candes and Recht| [2009], Ma et al.
[2018], |Chen et al.| [2020b] on matrix completion and |Candes et al. [2011], Chandrasekaran
et al. [2011], |Chen et al.| [2020c| on robust principal component analysis. The important
role of this incoherence parameter will also be confirmed by our numerical simulations

momentarily (cf. Figure (3)).

Main theory. We are now positioned to state our main theory for this setting, followed
by discussing the implications of our theory. Towards this end, we begin with the statistical
guarantees for the convex formulation. Denote the minimizer of (3)) by Z.,x. Then our result

is this:

Theorem 1 (Convex relaxation). Set A = Cyo+/K logm for some large enough constant

Cy\ > 0. Assume

m > CpK log” m and o/ Klog®m < ¢ Hh*sc*HHF (8)

for some sufficiently large (resp. small) constant C > 0 (resp. ¢ > 0). Then under

Assumption (1| and the incoherence condition (@, one has with probability exceeding 1 —

10



O (m*3 + me*K) that

| Zex — B2 || < || Zex — 2|, S 0/ K logm. (9)
In addition, the bounds in @ continue to hold if Z., is replaced by

chx,l ‘= arg Z:rarnrlii(er)Sl ”Z - ZCVXHF

i.e. the best rank-1 approximation of Zex.

Remark 3. In , log” m and log® m appear due to our decoupling arguments. We believe
it would be difficult to get rid of the logarithmic factors completely using the current analyis
framework, although it might be possible to reduce the power of the logarithmic factors

slightly by means of more refined analysis.

Our proof for this theorem, whose details are postponed to Section B.1 of supplementary
materials, is largely inspired by the idea of connecting convex and nonconvecx optimization
as proposed by [Chen et al. [2020bjc| for noisy matrix completion and robust principal
component analysis respectively. Note, however, that implementing this high-level idea
requires drastically different analysis from |Chen et al. [2020blc], primarily due to the
absence of randomness in the highly structured Fourier design matrix B. For instance,
in contrast to prior works that were built upon a “leave-one-out” analysis framework to
decouple statistical dependency, simply “leaving out” one row of B in the blind deconvolution
analysis does not lead to immediate statistical benefits due to the deterministic nature of
B. Consequently, considerably more delicate analyses are needed in order to enable fine-
grained statistical analysis.

Next, we turn to theoretical guarantees for the nonconvex algorithm described in

11



Algorithm [I} For notational convenience, we define
PARE and  z*:= (10)

throughout this paper. Before presenting the results, we make note of an unavoidable
scaling ambiguity issue underlying this model. Given that h* and x* are only identifiable
up to global scaling (meaning that one cannot hope to distinguish (ah*, 2*) from (h*, x*)

given only bilinear measurements), we shall measure the discrepancy between z* and any

h
point z := through the following metric:

2
2
— x*||5. 11
min 2—|—H0¢a: x*||; (11)

1
dist (z, 2*) := min \/th — h*

In words, this metric is an extension of the ¢, distance modulo global scaling. Our result

is this:

Theorem 2 (Nonconvex optimization). Set A = Cyo+/K logm for some large enough
constant Cy > 0. Take n = c, for some sufficiently small constant ¢, > 0. Suppose
that Assumption |1, the incoherence condition (@ and the condition (@ hold. Then with
probability at least 1—O (m*‘r’ + me*K) , the iterates {h', mt}OStSto of the spectrally initialized
nonconvex algorithm (see Algorithm (1)) obey

ov/Klogm

1> K logm

. 0 _* *
dist (Z , 2 ) S T ||Z H2 + W, (12&)
VK1
dist (2", 2%) < p'dist (2°,2%) + G+ ovR Bfm), (12b)
cp [|Pra*M|F
1B (@) — ha™|, < 2ptdist (=, 2°) 2], + 2C- O TV o g

p

12



simultaneously for all 0 <t <ty < m?°. Here, we take C; > 0 to be some sufficiently large

constant and 0 < p =1 —c,n < 1 for some sufficiently small constant c, > 0.

Remark 4. It is noteworthy that the quantity m~° in the probability term 1—O (m™° + me=X)

in this theorem can actually be replaced by m~¢ for any positive integer C'.

Informally, this theorem guarantees that the estimation error of the iterates {h*, '}, <t<to
generated by Algorithm 1] decays geometrically fast until some error floor is hit. As we shall
demonstrate momentarily in Theorem [5] this error floor matches the minimax-optimal
statistical error up to some logarithmic term.

Compared with one of the most relevant papers to us — |Ma et al. [2018] — on blind
deconvolution under Fourier designs, this theorem generalizes the noiseless case studied in
Ma et al. [2018] to the noisy case. This generalization needs a lot of efforts since it calls
for delicate and careful control of the noise effect, as detailed in the proof in Section A of

supplementary materials.

2.2 Blind deconvolution under Gaussian designs

In addition to the above-mentioned random Fourier design, our results also extend to the

scenario under Gaussian design, as formalized in the assumption below.

Assumption 2. e The entries of A and B are independently drawn from standard complex

iid. (0,2Ix) +iN (0, 3Ik);

Gaussian distributions, namely, a;, b; ~

e The noise components {&;} are independent zero-mean sub-Gaussian random variables
with sub-Gaussian norm obeying [|&lly, < o (1 <i<m).
Akin to Theorems [I]and [2| we consider the loss functions (3) and (4)). The main results

under the Gaussian design are summarized in the following theorems.

13



Theorem 3 (Convex relaxation). Let A = ChovmKlogm for some sufficiently large

constant C'y > 0. Assume the sample complexity and the noise level satisfy

/ 5
m > CK log®m and o Klog'm <c Hh*:c*HHF (13)
m

for some sufficiently large (resp. small) constant C > 0 (resp. ¢ > 0). Then

Klogm

|1 Zeo = B2 < || Zoo — B2 S 0 (14)

m
holds with probability at least 1 — O(m™® + mexp(—c;K)) for some constant ¢; > 0. In
addition, the bounds in continue to hold if Z., s replaced by

chx,l ‘= arg Z:rarnrl{i(er)gl HZ - ZCVXHF )

i.€. the best rank-1 approximation of Ze.y.

This theorem, which is in parallel to Theorem (1| for Fourier designs, confirms the
appealing statistical guarantees of convex relaxation under Gaussian designs. The minimax

optimality of this result will be discussed in Section [2.3]in detail.

Theorem 4 (Nonconvex optimization). Set A\ = Chov/mK logm for some large enough
constant Cy > 0. Take n = c,/m for some sufficiently small constant ¢, > 0. Suppose that
Assumption@ and Condition hold. Then with probability at least 1 —O (m*5 + me*K) ,
the iterates {h', @'} _,_, of Algom'thm obey

. Klog*m | Klogm
0 * *
dISt (Z ,Z ) S HZ H2+U Hh*ﬂf*HHF’ (153)

Ciy (/\ + ov/mK log m)

H t x t 1 0 _x*
dist (z 2 ) < p'dist (z 2 ) -+ o Hh*.’I}*HH;/Z (15b)
IR (@) = W] < 200dist (20, 2°) [ 2*], + o (A + ovmKTogm) (15¢)

Cpm
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simultaneously for all 0 < t < tg < m?°. Here, we take Ci; > 0 to be some sufficiently

large constant and 0 < p =1 — c,c,, < 1 for some sufficiently small constant c, > 0.

Similar to the Fourier designs studied in Section [2.1] our theory asserts that the
estimation error of {h', &'} _,_, produced by Algorithm (1| decreases geometrically fast
before reaching an error floor on the order of the minimax-optimal statistical limit modulo

some logarithmic factor (cf. Theorem [f]).

2.3 Insights

The above theorems strengthen our understanding about the performance of both convex
and nonconvex algorithms in the presence of random noise. In what follows, we elaborate

on the tightness of our results as well as other important algorithmic implications.

o Minimax optimality of both convex relaxation and nonconvex optimization. Theorems
(resp. Theorems reveal that both convex and nonconvex optimization estimate
h*x*H to within an Euclidean error at most o/ K (resp. o/ K/m) up to some log factor
for random Fourier design (resp. Gaussian design), provided that the regularization
parameter is taken to be A < o/K logm (resp. A < ov/mK logm). This closes the gap
between the statistical guarantees for convex and nonconvex optimization, confirming
that convex relaxation is no less statistically efficient than nonconvex optimization.
Further, in order to assess the statistical optimality of our results, it is instrumental
to understand the statistical limit one can hope for. This is provided in the following

claim, whose proof is postponed to Section E of supplementary materials.

Theorem 5. Suppose that the noise components obey &; N0, 02/2) +iN(0,02/2).

15



Define
M= {Z:ha:H|h,a: GCK}.

Then under Assumption there exists some universal constant cl(;) > 0 such that, with
probability exceeding 1 — O(K~10),

R 2
inf sup E [HZ - Z*Hi | A} = Cl(bl) g

Z Z*eM*

(16)

logm’

where the infimum is taken over all estimator Z. Furthermore, under Assumption @

there exists another universal constant cl(s) > 0 such that

o2’ K

it sup E[|Z - 27| 4.B] > o) S0

Z Z*eM*

(17)
holds with probability exceeding 1 — O(K10).

Encouragingly, the minimax lower bound (resp. ) matches the statistical error
bounds in Theorems (resp. Theorems [344) up to some logarithmic factor, thus
confirming the near minimaxity of both convex relaxation and nonconvex optimization

for blind deconvolution under both designs.

Fast convergence of nonconvex algorithms. From the computational perspective, Theorem
guarantees linear convergence (or geometric convergence) of the nonconvex algorithm
with a contraction rate p. Given that 1 — p is a constant bounded away from 1 (as long
as the stepsize is taken to be a sufficiently small constant), the iteration complexity of
the algorithm scales at most logarithmically with the model parameters. As a result,
the total computational complexity is proportional to the per-iteration cost O(mkK)
(up to some log factor), which scales nearly linearly with the time taken to read the

data. Compared with past work on nonconvex algorithms |Li et al., [2019, Huang and

16



Hand, [2018], our theory reveals considerably faster convergence and hence improved
computational cost, without compromising statistical efficiency. A key enabler of the
improved theory lies in fine-grained understanding of the part of optimization lanscape
visited by the nonconvex algorithm, thus allowing for the use of more aggressive constant

step sizes instead of diminishing step sizes. See Table (1| for details.

The careful reader might immediately remark that the validity of the above results requires
the assumptions on both the sample size and the noise level. Fortunately, a closer

inspection of these conditions reveals the broad applicability of these conditions.

e Sample complexity. The sample size requirement in our theory of blind deconvolution
under Fourier design (resp. Gaussian design), as stated in Condition ({8)) (resp. Condition
(13)), scales as

m 2 Kpolylog(m),

which matches the information-theoretical lower limit even in the absence of noise
(modulo some logarithmic factor) as proved in Kech and Krahmer [2017] (resp. Cai

et al. [2015]).

e Signal-to-noise ratio (SNR). The noise level required for our theory to work under
Fourier design (see Condition @) is given by o/ K log”m < Hh*w*HHF. If we define

the sample-wise signal-to-noise ratio as follows

R T Bl

: (18)

o2

then our noise requirement can be equivalently phrased as

SNR:|

[P*3ll2*3 o K log®m
~J Y

mao? m

17



where the right-hand side of the above relation is vanishingly small in light of our sample
complexity constraint m > 2K log” m. In other words, our theory works even in the
low-SNR regime. Furthermore, for the Gaussian design, the noise level required in our
theory is o4/ K log® m/m < Hh*a:*“ ||F We can introduce the following SNR that allows
us to rewrite this requirement as

2
a2 E[Jp R al] |3 23 N
a o2 n o2 ~ m

5
SNR Klog m’

which resembles the one for Fourier designs.

3 Prior art

Before embarking on our discussion on the prior art for blind deconvolution, it is noteworthy
that the model might remind readers of the famous problem of phase retrieval [Candes
et al., 2013, Shechtman et al., 2015, |Chi et al., 2019], which is concerned with solving
random quadratic systems of equations and clearly related to the problem of solving bilinear
systems. Despite the similarity between these two problems at first glance, the majority
of prior phase retrieval theory focuses on either i.i.d. Gaussian designs or randomized
coded diffraction patterns, which are drastically different from the kind of random Fourier
designs commonly assumed in blind deconvolution. In fact, the presence of Fourier designs
in blind deconvolution is a consequence of the duality relation between convolution in the
time domain and multiplication in the frequency domain [Ahmed et al.| [2013] [Li et al.,
2019]. The deterministic nature of the Fourier design matrix B under the Fourier model,
however, presents a substantial challenge in the analysis of both convex and nonconvex
optimization algorithms; in contrast, the Gaussian design matrix in prior phase retrieval

theory is assumed to be highly random, which remarkably simplifies analysis.

18



We now turn attention to the blind deconvolution literature. As mentioned previously,
recent, years have witnessed much progress towards understanding convex and nonconvex
optimization for solving bilinear systems of equations. First, we give a brief review on

previous literature of blind deconvolution under Fourier design. Regarding the convex

programming approach, |Ahmed et al. [2013] was the first to apply the lifting idea to

transform bilinear system of equations into linear measurements about a rank-one matrix

— an idea that has proved effective in a number of nonconvex problems [Candes et al., 2013,
‘Waldspurger et al., 2015, /Chen and Chi, 2014, Tang et al.,[2013,|Chi, 2016, /Chen et al.,[2014,
\Goemans and Williamson, (1994} [Shechtman et al., [2014, Oymak et al., 2015]. Focusing on

convex relaxing in the lifted domain, Ahmed et al.| [2013] showed that exact recovery is

possible from a near-optimal number of measurements in the noiseless case, and developed
the first statistical guarantees for the noisy case (which are, as alluded to previously,

highly suboptimal). Several other works have also been devoted to understanding convex

relaxation under possibly different assumptions. Another paper Aghasi et al. [2019] proposed

an effective convex algorithm for bilinear inversion, assuming that the signs of the signals

are known a priori. Moving beyond blind deconvolution, the convex approach has been

extended to accommodate the blind demixing problem [Ling and Strohmer, 2017, |Jung|
et al., [2017], which is more general than blind deconvolution.

inimi Z bject t =A(Z).
minimize [ Z],  subject to y = A(Z)

Another line of works has focused on the development of fast nonconvex algorithms

et al., 2019, [Lee et al., [2018], [Ma et al.l 2018 [Huang and Hand, [2018, [Ling and Strohmer,

2019, |Charisopoulos et al., 2019, 2021], which was largely motivated by recent advances in

efficient nonconvex optimization for tackling statistical estimation problems |Candes et al.,
2015, |Chen and Candes, [2017, |Charisopoulos et al., 2021, [Keshavan et al., 2009, [Jain et al.,
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2013, [Zhang et al., 2016, |Chen and Wainwright, 2015, [Sun and Luo, 2016, Zheng and|
Lafferty, 2016, [Wang et al., 2017a, |Cai et al., 2021b, [Wang et al., 2017b, [Qu et al., 2017,
Duchi and Ruan, 2019, Ma et al.| 2019] (see |Chi et al. [2019] for an overview). |Li et al.

12019] proposed a feasible nonconvex recipe by attempting to optimize a regularized squared
loss (which includes extra penalty term to promote incoherence), and showed that in

conjunction with proper initialization, nonconvex gradient descent converges to the ground

truth in the absence of noise. Another work Huang and Hand|[2018] proposed a Riemannian

steepest descent method by exploiting the quotient structure, which is also guaranteed to

work in the noise-free setting with nearly minimal sample complexity. Further, [Ling and

Strohmer| [2019], Dong and Shi [2018] extended the nonconvex paradigm to accommodate

the blind demixing problem, which subsumes blind deconvolution a special case.

Going beyond algorithm designs, the past works|Li et al. [2016,[2015],|Kech and Krahmer|

2017] investigated how many samples are needed to ensure the identifiability of blind
deconvolution under the subspace model. Furthermore, it is worth noting that another line
of recent works Wang and Chi|[2016], |Lee et al. [2016],|Zhang et al. [2017, 2019, 2020}, Li and
Bresler| [2019], Shi and Chi [2021], Qu et al.| [2019] studied a different yet fundamentally

important model of blind deconvolution, assuming that one of the two signals is sparse
instead of lying within a known subspace. These are, however, beyond the scope of the
current paper.

In addition, as far as we know, previous works on blind deconvolution under Gaussian
design is not as extensive as the case with Fourier designs, the latter of which is closer
to practical blind deconvolution applications. Among the most relevant works: (Cai et al.
proposed a constrained convex optimization problem under the same setting as
Assumption and establishes that the estimation error is bounded by o min{ K /logm/m-+
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\/m, 1}, which is on the same order (up to logarithmic factors) as our bound in Theorem
when m > Klogm and matches the minimax optimal estimation error lower bound;
Zhong et al.| [2015] studied the noiseless case in terms of both convex and nonconvex
formulations; |Charisopoulos et al. [2019] analyzed the nonsmooth nonconvex formulation of
the problem for bilinear measurements with corruption frequency less than 1/2, and proved
that the subgradient algorithms proposed there converges linearly, while the specific prox-
linear method converges quadratically albeit with higher per-iteration cost. Compared
with these works, our paper studies the unconstrained version of convex relaxation and
establishes an estimation error upper bound that nearly matches the minimax lower bound.
When it comes to nonconvex formulation, the current paper is, as far as we know, the first
to justify the optimality of its estimation accuracy in the noisy setting.

At the technical level, the pivotal idea of our paper lies in bridging convex and nonconvex
estimators, which is motivated by prior works (Chen et al. [2020b, [2019¢, 2020c| on matrix
completion and robust principal component analysis. Such crucial connections have been
established with the assistance of the leave-one-out analysis framework, which has already
proved effective in analyzing a variety of nonconvex statistical problems |El Karoui, 2018,
Chen et al.l [2019a,b, Ding and Chen, 2020, (Cai et al., [2020, |Dong and Shi, 2018, [ Xu et al.,
2019, |Cai et al.; [2021a) Chen et al., 2020a, Zhong and Boumal, 2018].

4 Numerical experiments

In this subsection, we carry out a series of numerical experiments to confirm the validity of
our theory. Throughout the experiments, the signals of interest h*, * € C¥ are drawn from
N (O AT K) +iN (O LT K) (so that they have approximately unit /5 norm). Under the

’ 2K 2K
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Assumption [I] (resp. Assumption [2), the stepsize 7 is set to be 0.05 (resp. 0.05/m), whereas
the regularization parameter is taken to be A = 5ov/K logm (resp. A = bov/mK logm).
The convex problem is solved by means of the proximal gradient method [Parikh and Boyd,
2014].

In the first series of experiments, we report the statistical estimation errors of both
convex and nonconvex approaches as the noise level ¢ varies from 1076 to 1072 for blind
deconvolution under Fourier design, while the noise level for blind deconvolution under
Gaussian design is from 1075 to 1072; here, we set K = 100 and m = 10K. Let Zpoy =
hm\,xaancvX be the nonconvex solution and Z, be the convex solution. Figure |l|depicts the
relative Euclidean estimation errors (||Znex — Z*||p /1 Z2*|p and || Zex — Z*||z /11 Z7|l3)
vs. the noise level, where the results are averaged from 20 independent trials. Clearly,
both approaches enjoy almost identical statistical accuracy, thus confirming the optimality
of convex relaxation as well. Another interesting observation revealed by Figure [1]is the
closeness of the solutions of these two approaches, which, as we shall elucidate momentarily,
forms the basis of our analysis idea.

In the second series of experiments, we report the numerical convergence of gradient
descent (cf. Algorithm [I)). We choose K € {30,100, 300,1000} and let m = 10K, with
the noise level fixed at ¢ = 107*. Figure [2| plots the relative Euclidean estimation
error Hht:ctH — h*w*HHF/ ||h*:n*H||F vs. the iteration count. As can be seen from the
plots, the nonconvex gradient algorithm studied here converges linearly (in fact, within
around 200-300 iterations) before it hits an error floor. In addition, the relative error of
blind deconvolution under Fourier design increases as the dimension K increases, which is
consistent with Theorem 2l While the relative error of blind deconvolution under Gaussian

design remains generally the same across different choices of K, this can be explained by
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Figure 1: Left: blind deconvolution under Fourier design. Right: blind deconvolution under
Gaussian design. Relative estimation errors of both Z,, and Z, .. and the relative distance

between them vs. the noise level 0. The results are averaged over 20 independent trials.

Theorem {4 since the ratio between m and K is kept to be 10.

In the last series of experiments, we examine the necessity of the incoherence condition
empirically. The experiments are conducted with p? taking on 10 equidistant values
from 3 to 30. For each choice of u, h* is generated by first setting the first p? entries
to be 1 and the others 0 , and then normalizing it to have unit norm; x* is generated
randomly from Gaussian distribution N (0, Ix) and then normalized to have unit norm.
This way we guarantee that maxi<j<, [bfh*| = p/y/m. We fix K = 100 and the noise
level 0 = 107* throughout. For each p? and m, 20 random trials are conducted. In each
trial, we run convex and nonconvex algorithms until convergence or the maximum number
of iterations is reached, and then report the relative Euclidean error [|h'z™ — h*a*H|| .
If the relative error is less than 0.1, the trial is declared as successful. The proportion
of successful recovery for convex and nonconvex problems are plotted in Figure [3| which

suggests that sample complexity m does scale linearly with ;2 for both problems and hence
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Figure 2: Left: blind deconvolution. Right: Gaussian design. Relative Euclidean error

Hhtw“" — h*x*H HF vs. iteration count.

corroborates the theoretical results provided in Theorems [I] and [2]

5 Discussion

This paper has investigated the effectiveness of both convex relaxation and nonconvex
optimization in solving bilinear systems of equations in the presence of random noise.
We have demonstrated that a simple two-stage nonconvex algorithm solves the problem
to optimal statistical accuracy within nearly linear time. Further, by establishing an
intimate connection between convex programming and nonconvex optimization, we have
established — for the first time — optimal statistical guarantees of convex relaxation when
applied to blind deconvolution. Our results are established for two different types of design
mechanisms: the random Fourier design and the Gaussian design. Our results considerably
improve upon the state-of-the-art theory for blind deconvolution, and contribute towards
demystifying the efficacy of optimization-based methods in solving this fundamental nonconvex

problem.
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Figure 3: Left: nonconvex problem. Right: convex problem. Sample size m vs. squared
incoherence 2. The scaled colormap represents the proportion of successful recovery out

of 20 random trials.

Moving forward, the findings of this paper suggest multiple directions that merit further
investigations. For instance, while the current paper adopts a balancing operation in
each iteration of the nonconvex algorithm (cf. Algorithm , it might not be necessary
in practice; in fact, numerical experiments suggest that the size of the scaling parameter
|a!| stays close to 1 even without proper balancing. It would be interesting to investigate
whether vanilla GD without rescaling is able to achieve comparable performance. In
addition, the estimation guarantees provided in this paper might serve as a starting point
for conducting uncertainty quantification for noisy blind deconvolution — namely, how to
use it to construct valid and short confidence intervals for the unknowns. Going beyond
blind deconvolution, it would be of interest to extend the current analysis to handle blind
demixing — a problem that can be viewed as an extension of blind deconvolution beyond the
rank-one setting [Ling and Strohmer, 2017, 2019, Dong and Shi, [2018]. As can be expected,

existing statistical guarantees for convex programming remain highly suboptimal for noisy
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blind demixing, and the analysis developed in the current paper suggests a feasible path

towards closing the gap.
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Appendix structure

Appendix A and B analyze the Fourier designs. In Appendix A, we present the analysis of the nonconvex
gradient method and the proof of Theorem 2. Appendix B gives the complete proof of Theorem 1. In addition,
Appendix C and D and provide proofs for the Gaussian designs, while Appendix C proves Theorem 4 and
Appendix D proves Theorem 3. Appendix E justifies two minimax lower bounds in Theorem 5. Appendix
F lists several useful lemmas and their proofs.

A Analysis: Nonconvex gradient method under Fourier design

Since the proof of Theorem 1 is built upon Theorem 2, we shall first present the proof of the nonconvex part.
Without loss of generality, we assume that
[h*lly = [z, =1 (A1)

throughout the proof. For the sake of notational convenience, for each iterate (h!, ') we define the following
alignment parameters

of = argmin { | 1h — B*[} + [|aa’ — 2" } . (A.22)
att2 — aremi 1pt+l/2 _ px 2 t+1/2 o x||? A.2b
= argmin § || 2 , + oz |, s (A.2b)
which lead to the following simple relations
= 7”mt+1/2”2at“/2 and  dist(271/2 2*) = dist(2'1, 2*) (A.3)
7] ’ =) '



With these in place, attention should be directed to the properly rescaled iterate

St+1/2 _ (Et+1/27£t+1/2) — (ﬁht+1/27at+l/2wt+l/2)7 (A.da)
2 = (B,&) = (LA, a'at). (A.4b)
Additionally, we shall also define
St+1/2 _ (;\Lt+1/27/m\t+1/2) — (%ht+1/2’atmt+l/2) (A.5a)
it = (IALtH,fitH) = (%ht“,atmt*l) (A.5b)

that are rescaled in a different way, which will appear often in the analysis.

A.1 Induction hypotheses

Our analysis is inductive in nature; more concretely, we aim to justify the following set of hypotheses by
induction:

dist (2%, 2%) < Hit_1/2 - z*H2 < pdist (zt_l, z*) 4+ Cin (/\ + U\/Klogm) , (A.6a)
f 2
max ‘a;" (@' —x*)| < Cs w2k log”m + +/logm ()\ + o/ K log m) , (A.6D)
1<i<m m
_ 2
max |btht‘ < Cy (,ulo\;%m + a) , (A.6c)

where p = 1—7/16 and C1, Cs, Cy > 0 are some universal constants. Here, the hypothesis (A.6a) is made for
all 0 < ¢ < tg, while the hypotheses (A.6b) and (A.Gc) are made for all 0 < ¢t < ty. Clearly, if the hypotheses
(A.6a) can be established, then simple recursion yields

Cin (/\—l—a\/Klogm)
1—p
Ch ()\—i—U\/Klogm)

= pdist (2%, 2*) + y , 0<t<ty (A.6d)
14

dist (2%, 2%) < p'dist (zo,z*) +

as claimed. Moreover, one might naturally wonder why we are in need of the additional hypotheses (A.Gb)
and (A.6c) that might seem irrelevant at first glance. As it turns out, these two hypotheses — which
characterize certain incoherence conditions of the iterates w.r.t. the design vectors — play a pivotal role in
the analysis, as they enable some sort of “restricted strong convexity” that proves crucial for guaranteeing
linear convergence.

In addition, the analysis also relies upon the following important properties of the initialization, which

we shall establish momentarily:
2K1
dist (2%,2%) <4/ w208, Klogm, (A.6e)
m

. | 1K log?
max ’a;' (" —x*)| S w208 ™y oV Klogm, (A.6f)
1<j<m m

~ log? m
max [pR0| < L8
1<i<m m

[[a®] = 1] < 1/4. (A.6h)

AN

+o0, (A.6g)

A.2 Preliminaries

Before proceeding to the proof, we gather several preliminary facts that will be useful throughout.



A.2.1 Wirtinger calculus and notation

Given that this problem concerns complex-valued vectors/matrices, we find it convenient to work with
Wirtinger calculus; see Candes et al. [2015, Section 6] and Ma et al. [2018, Section D.3.1] for a brief intro-
duction. Here, we shall simply record below the expressions for the Wirtinger gradient and the Wirtinger
Hessian w.r.t. the objective function f(-) defined in (4):

Vnf(h,x) =) (bha"a; —y;) bjalz + Ah, (A.7a)
j=1
Vaf (h,x) =) (bhaMa; — y;)a;b%h + Az, (A.7b)
j=1
A B
V2f(h,x)= [ H A } ) (A.7c)
where
A Sy et 2bbf + A ] Sty (b hata; —y;) bjal C 2K
it [(B'hata; — y;) bjal] >y [bl'h] 2a alf 4+ A 7
m H
B— [ 0 y >im1 b;b'h (a;al'z) € C2Kx2K
Yot ajalix (bblh) 0

Throughout this paper, we shall often use f (h,x) and f (z) interchangeably for any z = { Z }, whenever

it is clear from the context.
Before proceeding, we present two useful properties of the operator A and the design vectors {b; }77”:1

Lemma 1. For A defined in (B.3), with probability at least 1 — m™7,

| Al < /2K log K + ~logm.
Proof. See Li et al. [2019, Lemma 5.12]. O

Lemma 2. For any m > 3 and any 1 <1 < m, we have

m
> |bi'b;| < 4logm.

j=1

Proof. See Ma et al. [2018, Lemma 48]. O

A.2.2 Leave-one-out auxiliary sequences

The key to establishing the incoherence hypotheses (A.6b) and (A.6¢) is to introduce a collection of auxiliary
leave-one-out sequences — an approach first introduced by Ma et al. [2018]. Specifically, for each 1 <1 < m,
define the leave-one-out loss function as follows

2
FO (h,z) =Y [bhata; —y;|” + X|RIS + Mzl
Jig#l

which is obtained by discarding the Ith sample. We then generate the auxiliary sequence {h("): ("1},
by running the same nonconvex algorithm w.r.t. f (l)(~, -), as summarized in Algorithm 1. In a nutshell, the
resulting leave-one-out sequence {h(t)’l7 :c(t)’l}tzo is statistically independent from the design vector a; and
is expected to stay exceedingly close to the original sequence (given that only a single sample is dropped),
which in turn facilitate the analysis of the correlation of a; and ! as claimed in (A.6b). In the mean time,
this strategy also proves useful in controlling the correlation of b; and h! as in (A.6c), albeit with more
delicate arguments.



Algorithm 1 The /th leave-one-out sequence for nonconvex blind deconvolution

Input: {a;}, ;0 10ihi<iom o MY b <jam -
Spectral initialization: let o (M(l)), h%® and £%® be the leading singular value, the leading left and
right singular vectors of

J:j#l

respectively. Set h() = /oy (M®) R%® and 200 = | /oy (M®) 200,
Gradient updates: for t =0,1,...,tp — 1 do

RIHL/2(0 [ RO [ Vif® (Rt xt)
2tH/20 | T | gt | T I Vo f® (ht,zt) |’
2t+1/2,(1)
RiHLO) \/ hi+1/2,(0) 220 (4.9
_ 2
[ 2130 } - \/ Rt+1/2,(1) 2 pt+1/2,()
xt+1/2,(1)
2

Similar to the notation adopted for the original sequence, we shall define the alignment parameter for
the leave-one-out sequence as follows

2
at® = arg min {tht,(z) — ||+ [|azt® - m*”i} , (A.10a)
aeC « 2

2
att1/20) = argmei(rcl {H;htﬂ/“l) —h* , + ||amt+1/2’(l) = a:*”i} , (A.10b)
along with the properly rescaled iterates
s _ [ O] | Skt
20 = [ a0 | 7| sdgrw | (A-1la)
= 1 t+1/2,(1
sz _ [ B0 k2O (A.11D)
Ft+1/2,0) |- attl/2,0) pt+1/2,0) |- ’

Further we define the alignment parameter between z*() and z* as

2 t,(1 ot
+Ho¢a:’()fam
2

2
oD aremin { H Lpt) — Lpt } , (A.12a)
2

mutual * acC at
al 20 argmin{tht+1/z,(z) _ 1 ht+1/2H2 + Hawm/z(l) - at+1/2a;t+1/2H2}. (A.12b)
mutua. aeC o at+1/2 2 2
Hereafter, we shall also denote
~ 1 t,()
t,(1) ——h

2t7(l) = |: {l\ty(l) :| = atn;élllf;ual y (A13a)

r ar;lutualwt,(l)

~ 1 t+1/2,(1)
g2 | RO T ia“)h (A.13D)
: 2t+1/2,(1) t+172,(l)$t+1/2,(l) ’ ’
mutual

A.2.3 Additional induction hypotheses

In addition to the set of induction hypotheses already listed in (A.6), we find it convenient to include the
following hypotheses concerning the leave-one-out sequences. Specifically, for any 0 < ¢ < ¢y and any



1 <1 < m, the hypotheses claim that

dist(z"1,2") < Oy

2K log®
B njg m+1 ’ (A.14a)
og'm

12 K log? m
O, S0 | 4= g A.14b
[0 2, s 0 Loy [ e (11
2
dist(zo’(l)7 z¥) S/ @ + oy Klogm (A.14c)

(2K log”
dist (200, 30) < & LI (A.14d)
vm log®m
for some constant Cy > C%. Furthermore, there are several immediate consequences of the hypotheses (A.6)

and (A.14) that are also useful in the analysis, which we gather as follows. Note that the notation (Et, zh),
(ht,z"), (kD 25() and of has been defined in (A.4b), (A.5b), (A.13a) and (A.2a), respectively.

3

3

Lemma 3. Instate the notation and assumptions in Theorem 2. For t > 0, suppose that the hypotheses
(A.6) and (A.14) hold in the first t iterations. Then there exist some constants C1,C > 0 such that for any

1< <m,
) - 2K logm
dist (z , 2 ) <C ——— 4+ A+oy/Klogm |, (A.15a)
m

2
’<C<\/uKlogm+)\+0\/K10gm>, (A.15b)
m

Hht (wt)H R

) [1?K logm
1 , .
|z W2 |, <2C ( m—i—)\—i-a\/Klogm) (A.15c¢)
1 ~ 3 1 ~ 3
Lol Lepm, <l (A150)
1 3 1 ~ 3
3 <O, <5 <R, <3 (A-15¢)
1 - 3 1 3
s <llE0l <5 5= < [|at], < <5 (A.15f)

In addition, if t > 0, then one also has

2
Es 1/2 _ *H <C <W+)\+UW> ) (A.15g)

Proof. See Appendix A 4. O

A.3 Inductive analysis

In this subsection, we carry out the analysis by induction.

A.3.1 Step 1: Characterizing local geometry

Similar to Ma et al. [2018, Lemma 14], local linear convergence is made possible when some sort of restricted
strong convexity and smoothness are present simultaneously. To be specific, define the following squared
loss that excludes the regularization term

m

freg—free ( ) freg—free h .’1} Z |b;|thaj —Yj |2~ (AIG)



Our result is this:

Lemma 4. Let 6 := ¢/ log® m for some sufficiently small constant ¢ > 0. Suppose that m > Cu2K log” m

for some sufficiently large constant C > 0 and that ov/Klog” m < ¢ for some sufficiently small constant
c1 > 0. Then with probability 1 — O (m’lo +e Klog m), one has

u" [DV2f (2) + V2f (2) D] u > |[u]3 /8 and

V27 (2)] <4
simultaneously for all points
hy — hy vilk
ZZ[Z}’ u= % and D = el Ik
T — T2 Yolk

obeying the following properties:
e =z satisfies

max {[[h — h*[|,,[|& — a7} <4,

max |af (x —2*)| < 203ﬁ

1<j<m 2m?
H ulog®m .
max |[bih| <2C (74—0
1§j§m’ J ’ — 4 vm ’

o 2y := (hy,x) is aligned with zo := (ha, x3) in the sense that ||z1 — z2||2 = dist(z1, 22); in addition, they
satisfy
max {[|hy — h*[|y, [|h2 = B*[y, |1 — 27|y, [Jo2 — 27[|,} < 6;

® 71,72 € R and obey
max {|v1 — 1], |72 — 1[} < 4.

Proof. See Appendix A.6. O
In words, the function f(-) resembles a strongly convex and smooth function when we restrict attention
to (i) a highly restricted set of points z and (ii) a highly special set of directions u.

A.3.2 Step 2: /5 error contraction

Next, we demonstrate that under the hypotheses (A.6) for the tth iteration, the next iterate will undergo
{5 error contraction, as long as the stepsize is properly chosen. The proof is largely based on the restricted
strong convexity and smoothness established in Lemma 4.

Lemma 5. Set A = Cyhov/Klogm for some large constant C > 0. The stepsize parameter n > 0 in
Algorithm 1 is taken to be some sufficiently small constant. There exists some constant C > 0 such that with
probability at least 1 — O (mfloo +e “Klog m), if the hypotheses (A.6) hold true at the tth iteration, then

dist (zt“, z*) < HEHUQ — z*||2 < pdist (zt,z*) + C1n (/\ + Ux/Klogm) (A.17)

for some constants p =1—1n/16 and C; > 0.
Proof. See Appendix A.7. O

To establish this lemma and many other results, we need to ensure that the alignment parameters and
the sizes of the iterates do not change much, as stated below.



Corollary 1. Instate the notation and assumptions in Theorem 2. For an integer t > 0, suppose that the
hypotheses (A.6) and (A.14) hold in the first t — 1 iterations. Then there exists some constant C' > 0 such
that for any 1 <1 < m, one has

2
lJaf| — 1] < dist (2, 2*) SWJ”“”/W’ (A.18a)
(0%

t—1/2 2 K1
- 1’ <1 (w,un:gm + )\—&-G\/Klogm) : (A.18b)

o] = 1| £ 120 — 2, £ /B 3 4 o /K Togm, (A.15¢)
sl <5 S<Ipl, < (A184)
<=l <5 g <R, <3 (A18¢)
with probability at least 1 — O (m™'% + e~ logm).
Proof. See Appendix A.5. O

A.3.3 Step 3: Leave-one-out proximity

We then move on to justifying the close proximity of the leave-one-out sequences and the original sequences,
as stated in the hypothesis (A.14a).

Lemma 6. Suppose the sample complezity obeys m > Cp2Klog® m for some sufficiently large constant
C > 0. If the hypotheses (A.6a)-(A.6¢) hold for the tth iteration, then with probability at least 1 —

O (mfloo + me’CK) for some constant ¢ > 0, one has
2K log’
Jre=e 9 (A.19a)
m log®m
u2K 1
and max Hz +10 _ ZtHHQ < Oy LU o8’ L , (A.19b)
1<Ii<m vV log m

provided that the stepsize n > 0 is some sufficiently small constant.

max dist(zt“’(l),ZH'l) < (Cy
1<

<Il<m

E

3

Proof. See Appendix A.8. O

A.3.4 Step 4: Establishing incoherence

The next step is to establish the hypotheses concerning incoherence, namely, (A.6b) and (A.G6c) for the
(t + 1)-th iteration.

We start with the incoherence of a; and a*+!, which is much easier to handle. The standard Gaussian
concentration inequality gives

max a;—l( ~t+1,(1) ) ~t+1,(

1<i<m

logm :c*HQ (A.20)

with probability exceeding 1—O (m_loo). Then the triangle inequality and Cauchy-Schwarz inequality yield

]a}* @+ - a:*)] < ‘ar @+ - %t-&-l,(l))‘ n ‘ar <£t+1,(l) — )

< Jlall, ||~t+1 ~t+17(l)H2 n ’a? (5575+1,(l) _ w*)




2K log?
<WOVEC, | Loy /re2oem 9
Vvm m log”m

[u2K 1
+ 204/logm - 2C} < 'uogm+)\+0\/Klogm>
m

| 2K log?
< Cs ke T oVKlogm |, (A.21)
m

where C3 > C1, the penultimate inequality follows from (F.2), (A.19b), (A.20) and (A.15¢). This establishes
the hypothesis (A.6b) for the (¢ 4 1)-th iteration.

Regarding the incoherence of b; and h't! (as stated in the hypothesis (A.6¢)), we have the following
lemma.

Lemma 7. Suppose the sample complexity obeys m > C';LQKloggm for some sufficiently large constant
C >0 and A = Cho/Klogm for some absolute constant Cy > 0. If the hypotheses (A.6a)-(A.6¢) hold for
the tth iteration, then with probability exceeding 1 — O (m_loo + me_CK) for some constant C > 0, one has

HEt+1| K 2
lrgnl:gn|bl Rt < Cy <\/mlog m+a> ,

as long as Cyq > 0 is some sufficiently large constant and n > 0 is taken to be some sufficiently small constant.

Proof. See Appendix A.9. 0

A.3.5 The base case: Spectral initialization

To finish the induction analysis, it remains to justify the induction hypotheses for the base case. Recall that
o (M) ,h° and #° denote respectively the leading singular value, the left and the right singular vectors of

M = Zyjbja?.
7j=1

The spectral initialization procedure sets h® = \/o; (M)h° and z° = /oy (M)&°.
To begin with, the following lemma guarantees that (ho, a:o) satisfies the desired conditions (A.Ge) and
(A.6h).

Lemma 8. Suppose the sample size obeys m > Cu2K log* m for some sufficiently large constant C' > 0.
Then with probability at least 1 — O (m_loo), we have

. * * /LzKlOgm
aeg}m:l{nahofh ||2+ ||ag;0 -z ||2} < \/TJFJ\/Klogm
and Ha0| — 1| <1/4.

In view of the definition of dist (-, ), we can invoke Lemma 8 to reach

dis(=0, =%) = min [ 110 — B [[3 + a0 — @} < min {247 — b |, + [loa® ~ 27|}

aeC
. . [u2K logm
§a€g,1‘1(£1|=1{||ah0_h H2+||aw0_(g*“2} < ( m—}—a\/Klogm) . (A.22)

Repeating the same arguments yields that, with probability exceeding 1 — O(m~=29),

2K 1
dist(zo’(l),z*) < (\/ % +o Klogm) ) 1<1<m, (A.23)

and Hao*(l)| - 1‘ < 1/4, as asserted in the hypothesis (A.14c).
The following lemma justifies (A.14d) as well as (A.6¢) for the base case.



Lemma 9. Suppose the sample size obeys m > Cp2K log” m for some sufficiently large constant C > 0 and
the noise satisfies o/Klogm < ¢/ log?m for some sufficiently small constant ¢ > 0. Let 7 = Cylog*m
for some sufficiently large constant C. > 0 such that T is an integer. Then with probability at least 1 —
0] (mfloo + me’CK) for some constant ¢ > 0, we have

| u2K log®
ax dist(zov(l)720) < p R oe M 02 , (A.24a)
<i<m m log“m

o 1og2 m

3

HNO <
L H"’O < 7,” 1 9
11%1]'a<x‘r ’(b] bl) h ’ ~ fm logm logm (A24C)

Finally, we establish the hypothesis (A.6b) for the base case, which concerns the incoherence of ° with
respect to the design vectors {a;}.

Lemma 10. Suppose the sample size obeys m > Cp2K log® m for some sufficiently large constant C > 0
and o/ K log° m < ¢ for some small constant ¢ > 0. Then with probability at least 1 — O (m_100+me_c2K)
for some constant co > 0, we have

2 2
max ’a;’ (@° —2%)| < oK log”m + oVK logm.
1<) <m V' m

The proof of these three lemmas can be easily obtained via straightforward modifications to Ma et al.
[2018, Lemmas 19,20,21]; we omit the details here for the sake of brevity.
A.3.6 Proof of Theorem 2

With the above results in place, it is straightforward to prove Theorem 2. The first two claims follows
respectively from (A.22) and (A.6d). Regarding (12c), it follows that

ht (:ct)H _ praH

<]
F

ht(wt)H _ h*(xt>HHF + ‘ h*(:rt)H R
< [[R" =R, [l [[, + 1By [ — 2],

Ch (/\+a\/m)>

collz* |,

‘ F

<2z, <ptdist (2%, 2*) +

where the last inequality follows from (A.6d) and the fact that

C1 (A +ov/Klogm)

121,

&t < ll&*[l, + ||&* — 2*||, < 2%l + p'dist (2°, 2*) + <22,

This concludes the proof.

A.4 Proof of Lemma 3
1. Condition (A.15a) follows directly from the ¢2 contraction (A.6a) and the bound (A.6e) for the base case.

2. (A.15Db) is direct consequence of (A.15a) and triangle inequality. We have

Hhtth _ h*w*HHF _ H’ﬁtim R ’F
< ‘ Btath _ JtgH ‘ 4 ‘ Bte _ prgt ’
- F F
< |[B], 13 = 2l + [ = me] 1l

10



< (1 + dist (zt, z*)) dist (zt, z*) + dist (zt, z*)

2
<C<\/'uKlogm+>\+0\/Klogm>,
m

where the first equality follows from the definitions of k! and &' (cf. (A.4b)) and C > 0 is some sufficiently
large constant.

3. Regarding (A.15¢), it follows from the triangle inequality that

e |20 — 2|, < max {20 -2, + ||z - 2*||,}

~ w | p2Klog’m o 2K logm
<CCy | —= Ci |y —————+XA+0yKI
< 2 = m + log2 . + Cy m +A+o ogm

(2K 1
<2C; ( 'umOgm—F/\—Fox/Klogm>

for ¢ > 0. Here, the penultimate inequality follows from the distance bounds (A.14b) and (A.15a), while
the last inequality holds as long as m > Cu?log® m for some sufficiently large constant C' > 0. The base
case follows from (A.l4c).

4. Condition (A.15d) immediately results from (A.15a), the assumption ||x*||2 = ||h*||2 = 1, the definition
of dist (-, ), and the triangle inequality.

5. With regards to (A.15e) and (A.15f), we shall only provide the proof for the result concerning h; the
result concerning x can be derived analogously. In terms of (A.15f), one has

RO, < ||l + [BO = B, = [[B], + dist(h"®), h)

1K 1og” m o
piKlog"m

5 = 1.

S1+0,

m log? m

Here, the first line comes from triangle inequality as well as the definitions of ht® and ﬁt, whereas the
last inequality comes from (A.14a). A lower bound can be derived in a similar manner:

1K 1og” m o
piilog’m

[0, = R~ 0 - R, 2 - e (g
Regarding (A.15e), apply (A.14b) and (A.15d) to obtain
T4,(0) TH() Rt Tt K p2K log® m o o
RO, < [0 R, + e, 5 0 | PR )
and, similarly,
T T ER0) Rt 7 u | pPKlog’ m o -
Hh H2 = Hh ||2 Hh h H2 21-0C Jm m + 1og2m =1

The base case follows from similar deduction using (A.14d), (A.15d) and triangle inequality.
6. When it comes to Condition (A.15g), it is seen from (A.6a) and the choice p =1 — ¢,n that

‘ , S pldist (2", 2%) + 1C_Ip7] ()\ + a\/Klogm)

226—1/2 — *

11



= pdist (2%, 2*) + % ()\ + Ux/Klogm) .

P

Combining this with (A.6e) guarantees the existence of some sufficiently large constant C > 0 such that

_ 2
‘ 2§pt~C< W—&—U\/Klogm)—ki&()\—I—a\/Klogm)
7

2 K1
SC( 'ummgm—&-)\—&-U\/Klogm>,

provided that the constant C' > 0 is large enough.

st—1/2

z — 2z

A.5 Proof of Corollary 1

1. To establish (A.18a), we recall that the balancing operation (6b) guarantees |h*|, = ||z*|,. Hence, in
view of the definitions of h! and & in (A.4b), we have

1

|

0= [[p]z = lla*llz = la* " 111y = —= Il

Tt then follows from the triangle inequality and the assumption ||x*||2 = ||h*||2 that

. 1. a2 (A E -,
0:|at|2||ht||§ff|at|2 ||wt||§s|at|2(1+||htfhH2) - P 2
. 1. ~ a2 (A ]E -,
0=!at|2||htf|§—f|at|2 ||wt||§z|at|2(1—||ht—h||2) - P 2

Rearranging terms, we are left with
1—|z" — 2, ¢ 1+ 2" — ],
e A S

Combining this with (A.15a), we arrive at
ol| — 1| < || — 2|, + ||B' = h*]|, <dist(2, 2*) < Oy M—i—)\—l—a Klogm | .
2 2 m

2. Regarding (A.18a), take x; = o 'x?~Y/2 hy = h"Y2/at=1 xy = ol 'x!~! and hy = h'"!/al-1.
Then we check that these vectors satisfy the conditions of Ma et al. [2018, Lemma 54|. Towards this,
observe that

max {[|z1 — 2"|y, [h1 = h7[y, [®2 — 27|, [[h2 — h7[|,}

< max{H?‘/*l/z —2*|| ,dist (ztfl, z*)}
2

2K1
S22 Ao /Klogm
m

holds with probability over 1 —O(m ™19 4-e~C% log m) for some constant C' > 0. Here, the first inequality
comes from the definitions of 2¢=1/2 (cf. (A.5a)), and the last inequality follows from (A.15a) and (A.17).
Hence, the condition of Ma et al. [2018, Lemma 54] is satisfied. Note that the statement of Ma et al.
[2018, Lemma 54] involves two quantities «; and s, which in our case are given by a; = at’1/2/at’1
and s = 1. Ma et al. [2018, Lemma 54] tells us that

t—1/2 ht—1/2 ht—1

(0%
at—1

_45‘

at—lgpt—1/2 _ at—lwt—lH + ‘
2

o1 — | = T oI,
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Additionally, the gradient update rule (6a) reveals that

pt—1/2 _ hmt— 1
at—1 at—1
at—lgpt—1/2 _ qt—1pt—1 )

7ﬁvhfreg—free (gtil) - T])\?lt71 ‘|

L —7 ’at_1|2 Va freg-free (2t ) nATt~ L )

- ot l|2 (vh.freg free( ) o vhfreg—free (z*)) o TI)\ﬁt - lat— 1|2vhfreg free( *) ‘|
-n ’at 1| ( f”fmg free(~t 1) - v:l:freg free (Z* ) 77)\5 -1 ‘Ozt 1| vmfreg free ( )

- 2
< i [ot— 1‘2 (Vhfreg free(Nt 1) - Vhfreg_free Z*) H|: 77)\ht 1 :|
a L Y |at 1| ( mfreg free( z'- 1) mfreg free (Z* t !
+ [at— 1|2 vhfreg free ( ) ‘|
U}Oét 1| vmfreg free( *) 9

<dn varegffree (zt 1) - vfr'egffree (Z*)HQ +nA Hzt—lHZ +4n ||vfregffree (Z*)HQ )

where the last inequality utilizes the consequence of (A.18a) that

1 =1 t—1 t—1| _
LSt ot =1 o <14 ot 1] <2

Then, one has

oy () eyl | _ [ 222
V? fre ree ( = |,
vfreg—free( - vfreg—free Jreg-f z(s))ds

where z (s) = 2* + s (2" — 2*). Therefore, for all 0 < s <1 we have

max {[|h (s) = h*[|,, |2 (s) — 2", }Sl 5
og®m’

e laf! (@ (s) — x*)| < 203710g3/2ma

H < (;Llong )
1r<réag§n’b )’_204 S +o0),

which are guaranteed by the induction hypotheses (A.6). The conditions of Lemma (4) are satisfied,

allowing us to obtain

1 1

/ V2freg_free (z (s / Vif (z(s
0 0

Consequently, it follows that

pt-1/2  pi—1
at—1  ot—1
at—lgpt—1/2 _ qt—1pt—1

+A<4+ A <5

< 20n H:th_l — Z*H2 +nA Hgt_luz +4n ”Vfreg-free (Z*)HQ
2

2
<Cn (\/ K logm —l—)\—i—a\/Klogm) ,
m

where the last inequality results from (A.15a), (A.15d), and (A.31). Hence, we arrive at

ot—1/2

- [urK1
= 1‘57)( unfngr/\JrJ\/Klogm>.
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3. Similarly, the balancing step (A.9a) implies ||ht’(l)HZ = ||a:t*(l)H§. From the definitions of O‘fﬁ(jzual

(cf. (A.12a)), Rt and O (cf. (A.13a)), we have

2 2 —2) ~ 2
0 = ([ O1; — [l V13 = Jouidua| 12O — lanidua 125
Then the triangle inequality together with the assumption ||x*||2 = ||h*||2 gives
: 2050 (1) 112 1 ()12 ’ 2 = N | )2
0= lafmual 10"Cll; = (@Ol < et (1 11B0 — h)),) " - NUREEE—
Yutual mutual
-~ 1 . ~ a2 (L+ gt — g+ )2
0= ol IR OL: ~ o [0 2 ol (1 0 ) - =)
¥mutual | mutual
which in turn lead to
S0l o (. [E0 e
e R TR O

Taking this together with (A.14a) and (A.15a), we reach

o] ~ 1] £ 220 — 27|, < |20 — 21, + |2 — =7

mutual
1K 1og” 2K 1
<oy [T ) o [ oK logm
m2 log®m m

2K 1
< (C1+Cy) (\/Mnjgm +)\+J\/Klogm> ,

where the second line follows from the distance bounds (A.14a) and (A.15a), and the last line holds with
the proviso that m > 2K log® m. This establishes the claim (A.18c).

4. Finally, (A.18d) and (A.18e) are direct consequences of (A.18a), (A.18c) as well as the fact that |h*||, =
|x*]|, = 1. We omit the details for the sake of brevity.

A.6 Proof of Lemma 4

Define another loss function as follows

fclean Z‘thw a; — th*a:*Ha 2

j=1

)

which excludes both the noise £ and the regularization term from consideration when compared with the
original loss f(-). By virtue of (A.7), it is easily seen that

M 0
v2freg-free (z) = v2fclean (z)+ |: 0 M ] (A.25)
where
m H
M = 0 H —2jmgbiag 2K 2K
= - y € :
- (Zj:l fjbjaj> 0
By setting
hi — hy Up,
_ L1 — T2 . Uy
= hi—hy | | un
1 — T2 Ug

14



and recalling the definitions of D, 71, 2 in the statement of Lemma 4, we arrive at

U'H [szfreg—free (Z) + szreg—free (Z) D] u

= uH [DVchlean (Z) + szclean (z> D] u— 2 (’71 + '72) Re uilj, ijbja;'um
=1

—2(y1 +72) Re [ wn™) _ &bjaltug
j=1

=" [DV? faean (2) + V2 fetean (2) D] — 4 (71 + 72) Re [ uft > &;bjalMug,
Jj=1

Consequently, with high probability one has

’uH [Dv2freg—free (z) + Vereg—free (Z) D] u — UH [DVchlean (z) + v2fclean (Z) D] u‘

m m

2

<4(v1 +72)|Re | upf E gbjalug || <4 (1 +72) E &bjal|| [lull;
Jj=1 j=1

SovKlogm ||[ul3 =: Eres (A.26)

for any vector u, where the last inequality follows from Lemma 38 as well as the assumptions 1,72 =< 1.
The above bound allows us to turn attention to V? fejean, which has been studied in Ma et al. [2018]. In
particular, it has been shown in Ma et al. [2018] that

uH [DV ferean (2) + V2 fetean (2) D] w > (1/4) - 3 and  [|V2 ferean (2)]| <3

under the assumptions stated in the lemma. These bounds together with (A.26) yield

U [DV freg ree (2) + V2 fregree (2) D] u > (1/4) - [ull; = Ees > (1/8) - |lul (A.27a)
Eres

and HVereg—free (Z)H < ||v2fclean (z)H =+ sup 3 < 7/27 (A27b)
w0 [[ull3

provided that ov/K logm < 0.5. To finish up, we recall that
v2f (z) = vzfreg—free (z) + M,
which combined with (A.27) and the assumption A < Chov/Klogm < Cyey/ log? m < 1 yields

u" [DV2f (2) + V2 f (2) D] u = u" [DV? freg free (2) + V2 freg-free (2) D] u + 2Mu" Du
> UH [Dv2freg-free (Z) + v2fr'eg-free (Z) D} u
> [l /8

and

HVQf (Z)H < HVereg—free (Z)H + A < 4.

A.7 Proof of Lemma 5
Recognizing that

évhfreg—free (%h, aw))

1
freg-free (h> (L') = freg-free (aha aw) and Vfreg-free (h'u :E) = avm freg—free (Ehﬂ ax

15



and recalling the definitions of ( Tt = (; h',a'x'), we can deduce that

. t+1 - t+1/2 , Lhit1/2 — p*
dist (21, 2*) = dist(z 2 H[ attwt+1/2 i ] (A.28)
2
_ Et - ﬁvhfreg free( ) - 77>\ht (h* - ﬁvhfreg free ( *)) - ﬁvhfreg—free (z*)
{it -1 ‘at‘Z v:Bfreg—free (Z ) - 7])\:17 - (ZIJ -n |at| Vwfreg—free ( )) -n |Oét‘2 V:Efreg-free (Z*) 5
< Et Iatlz vhfreg free (zt) ‘at‘z vhfreg—free ( *)>
B L 55t - ‘O‘t‘ vmfreg—free(zt) —|z* - n |at| szreg—free( *)) 5
=1
=t Vi freg-free (2* ¢
o2, h freg e ) + AH[h’ } . (A.29)
n |Oé | v:Efreg—free (Z ) 9 .’13 2
—_———
=85 =03
Using an argument similar to the proof idea of Ma et al. [2018, Equation (210)|, we can obtain
2
ﬁ12 = — ?2 (gt) — (h* 7Z vhfreg—free (Z ))
|| jat? )
~t t|2 o~ * t|2 a1
+ ‘ T —1n |Oé | vmfreg—free(z ) - (:13 -1 |Oé | vmfreg-free (Z )) H2
UANIES 2
< (1= -=;- (A.30)

Regarding (o, we first invoke Lemma 14 and the fact V fejean (2*) = 0 to derive
[V freg-tree (2%)[lg < [V fetean (27) [l2 + [[A™ (E) [ [[R"[| + [[A" ()] [l
S oy Klogm. (A.31)

A little algebra then yields

2 2
2
+ Hn |Oét| va)freg—free (z*)HZ
2

H| 75‘2vh,fregfree( *

< (. t|4+77 o | IV Fegetre (=)
2
<n? (aVK]ogm) ,

which relies on the observation that |a?| < 1 (see Corollary 1). Finally, when it comes to 33, we have

5 = 3 P < e
using the fact that ||z*]|, < HhtH2 1 (see Lemma 3).

As a result, as long as n > 0 is taken to be some constant small enough, combining (A.29) and the above
bounds on Sy, B2 gives

2
dist (2", 2%) < ‘ ZtH/2 _ px

< V@ -n/8) |7 =2, + Cmn (A+ am) :
which together with the elementary fact /1 —x <1 — /2 leads to

< (1=n/16) |2 = 2|, + C1n (A + o/Klogm)
= (1 — p/16)dist (2", 2*) + Cin (A + a\/m) .

The advertised claim then follows, provided that C is large enough.

dist (z”l,z*) < ’

2t+1/2 _o*
2
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A.8 Proof of Lemma 6

The lemma can be established in a similar manner as Ma et al. [2018, Lemma 17]. We have

1

where the second line comes from the same calculation as Ma et al. [2018, Eqn. (212)]. Repeating the analysis
in Ma et al. [2018, Appendix C.3] and using the gradient update rule, we obtain

dist (2110, Z1)  disg(x+1/20 5041/2)

Oét

att1/2

t+1/2
a (A.32)

Rit+1/2,(0) _ L ht+1/2
<max\§ |———|, :nfxt)la ,
60 L) _ wt+1/2

mutual

ot

t (L)

mutlﬁal ( /
t+1, l tt+1/2

mutual —ar

[ ht+1/2 O _ %ht+1/2 ‘|

ﬁvhfreg—free (z 0 ’~7/t - *vhfreg—free (gt))

7t
Rt ot

mutual

)~
{B\t’(l) - n‘at7(l) |2vm freg—free( ) it - 77|a;(152ua1 | zvmfreg—free (2t))

mutual

mutual
=1
(% - ﬁ)vhfreg free( ) f (tht (l) gt (OH a; — yl) blarit}(l)
+ o] m\(Jt)\rll _ aml(lt)u'xl
K 12 t.() |2 ot (1) 12 (pHE (DAt (DH Hpt,(1)
|04 ‘ — | %nutual vwfreg—free (Z ) Q) tual (bl ht:(O gt (1) a; — yl)albl h"
ES %) =v3
ht:(D _ pt
+ A [ 00 _ gt ] . (A.33)
—_——
=V4
In what follows, we shall look at v, vo, v3 and v, separately.
e It has been shown in Ma et al. [2018, Lemma 17| that
i Ially S O350 = (A.34)

], < (1 —n/16) [|20@ —

e Regarding v3, we have

2
(bfih-03 My — g ) abfiRtO

1)
HVBHQ = o (l H (tht O gtOHg, — yl) bla’l zt:() H + |O‘fn(utua1
¥ hutual 9
< H (b;'ﬁt,(z)’m\t,(z)Hal - yl) bia!'z Z)H +lat® (b;'iflt,(l){ﬁt,(l)Hal _ yl)albrﬁt,a)
‘ mutual 2
< Hbr (’};t,(l){ﬁt,(l)H _ h*w*H) albla?£t7(l)“
| mutual 2
=iV31
bl B! (REOFOR — B ) arabliREO
2
=32
of (l H&bl ) H +’ mutual Hgazbﬁt’(” H ) (A.35a)
mutual _,—/ _,—/2
=iV34

=33
where the first inequality comes from the elementary inequality va + b < /a + v/b for a,b > 0, and the
second inequality follows from the triangle inequality. The bounds of v3; and 35 follow from the same
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derivation as Ma et al. [2018, Equation (217)] and are thus omitted here for simplicity. The quantity v3;
can be upper bounded by

T L e
7 K

< ‘brht,(l)i.\t,(z)Hal _ bth*w*Hal‘ ) \/> 20\/@. ’|:/B\t,(l)||2
m

< 404/ &mgm ‘b;"ﬁt’(l)fct*(l)Hal —bh* M,

where the penultimate inequality follows from the fact that ||b;||, = +/K/m and (F.1), and the last line
makes use of (A.15f). Regarding vz, one has

, (A.35b)

var < b RE O OHg, — bR 2 Ha, | [|ay|, ‘br?‘t’m‘

SO [K
< [ Rt Ozt O, — b 2 Ha, -10\/K~< 7‘
m

RO |+ \b;v;t()
2

IN

2 9
bR OG- OHa, — gt aHa,|  10VE - [y | Lo [ osm o
m vm m log®m

+ ‘b?ﬁ“(l):’c\t’u)”al - b;"h*w*Hal‘ 10VK - Cy L log?m + o
vm

VK -~ ~
< 20C4 (M\/» log®>m + oV K) ‘b}"ht’(l)wt’(l)Hal — bth*ac*Hal
m

where the second line follows from (F.2), triangle inequality and the fact that ||b;]|, = /K/m; the
penultimate inequality follows from (A.14a) and (A.6c); the last line holds as long as m > 2K log® m.
Further we have

bf! (A"~ p7)

) (A.35¢)

< [off (RO = R)| + [bfR| + [bi'h]

K 1~ ~ ~
B < | e
m 2

K p [p*Klog’m o ( T ) 1
</ =0y | 4= + +Cy [ “=log?m+o )+ =
V2 vm m log®m \Vm & vm
<20y (\/Mﬁ log® m + a) ) (A.35d)

where the second line follows from the fact that ||b;||, = /K /m; the penultimate inequality follows from
(A.14a), (A.6¢) and (7); the last line holds as long as m > p?K log® m. Therefore,

‘b;ﬁﬁt,(l)it,(l)Hal _ bth*w*Hal‘
<

b}"iAlt’(l) (:’Et’(l) — w*)H a;| + ‘b;" (?Lt’(l) — h*)a:*Hal‘

< (’br (flt,(z) — )

+ b)) - 20v/logm ||z~ & |+ &~ 2¥]|,) + [off (B0~ b7)

"iL'*Ha[’

T po [pPKlog®m o
<204 | —=log"m+ 0| -204/logm-Cy | — +
B 4( & ) & ? Vvm m log®m

20, ( = 1og? pwRlogm |\ K] Vi
+ 20y ﬁog m+o|-Cy TJr +o ogm | - 20y/logm
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+ 20y (\//% log? m + a) -204/logm

<Cy (\/ﬂﬁ log?® m + ov/log m) ) (A.35¢e)

where the second inequality follows from triangle inequality and (F.1); the penultimate inequality follows
from (A.35d), (A.14a), (A.15a) and (F.1); the last line holds as long as m > p?K logm. Substituting
(A.35¢) into (A.35b) and (A.35¢), we reach

[ K1 K
V31 + v S <40 ;)ngm + 20C4 <M\/\/17? logzm—&-ax/?)) Cy (\/Mmlog“m—&—m/logm)

w | p2Klogm o
ﬁ m +C log?m’ (A.351)

as long as m > ,uQKlog9 m. Regarding v33 and vsy, it is seen that

labiati@ O], < &l b, |af@ | <a\f &0, togm < 2a\f logm, (A.35g)

Gl O, < e ol [t 0] < oV (ol (310~ 1)

(:) VK (204 (flog m+0) + ﬁ)

2K log*
< Ci—ge— + Choy | 222 T (A.35h)
log*® m m

where (i) holds by the property of sub-Gaussian variables (cf. Vershynin [2018, Proposition 2.5.2]) and
the independence between &, a; and 21, (ii) holds by (A.15f), (iii) is due to Lemma (38), the triangle
inequality and (7), and (iv) follows from (A.35d) and (7). Consequently, by (A.35f)-(A.35h) we have

< (04)2

+ |bth*|)

9 I 2Klog9 m o
vsll, S (C +C . A.36
[vslly < (Ca) N TogZm (A.36)
e Finally, in terms of v, one has
ht ) _ ht
oall = || oo = (A37

With the above bounds in place, we can demonstrate that

t11)2 . 1 ptt/2.0) _ ht+1/2
dist(z' 10 21+ < max ait tal fn(l).n
« at+ /2 (‘ltz laz1t+1/2 O _ atxt+1/2
() 1-—n/32
T (eally + lvally + sl + llvall)
(i) 1—1n/32
st() ot _ 3t
< (1-n/32) |20 - I+ 3=, /16C" 2,
1—1n/32 o p | p2Klog”m o 1-n/32 |+
—L=0n | (Cy)° = C Azt - 2t

177]/32 177]/32 n ~t.(1 ~
<|(1-7n/32+ A+ cc 0
o ( n/ 1- 77/16” 1-n/16 1log2m Hz z H2
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w | p2Klog®m

1—’{]/32 2 g
o | () Ly [ B2
My RS m logm
2K log” m o
< (1- L) dist (20, 3t 007”7 cc
_( 6) ist ( ) +1C (Ca)” —= +1CC

2K log® m o
<0y [ Ly/E g Mm, 5
vm m log“m

(A.38)

provided that 7 > 0 is some sufficiently small constant and Cy > C?. To see why (i) holds, we observe that

at+1/2 Qt+1/2 12K log m
o (R

as shown in Corollary 1, which implies that

attl/2 14 /32 1-n/32
at | T 1-n/16 1-n/16

as long as m > p?Klogm and ov/K logm < 1; a similar argument also reveals that

1—mn/32
~1-n/16

O[t

at+t1/2

In addition, (ii) follows from (A.34), (A.36) and (A.37), whereas the last inequality of (A.38) relies on the
hypothesis (A.14a).
Next, we turn to the second inequality claimed in the lemma. In view of (A.15a) in Lemma 3, we have

2
12+ - 2|, < &y (w/‘”{;gm +)\+0\/7Klogm> ,

which together with the triangle inequality and (A.38) yields

z

p [p2Klog’m o [u2K logm
<Cy| —= C —— 4 A VK1
=2\ Vm m Jrlog2m e m o ATte s
2K1
S\/%—I—a\/Klogm—FA. (A.39)

In other words, both z!*! and 2!*1() are sufficiently close to the truth z*. Consequently, we are ready to
invoke Ma et al. [2018, Lemma 55|. Taking hy = hi*tl 2y = ! hy = h“r1 D and &y = 240 in Ma
et al. [2018, Lemma 55] yields

|

R R R

R o | p2Klog”m o
20 — 3| < |0 - 2| < ¢y NG - + o | (A.40)

where the last inequality follows from (A.39).

A.9 Proof of Lemma 7

Recall from Corollary 1 that there exist some constant C' > 0 such that

t+1/2 2K 1
a n 1’§C’n (\/Moganr/\JrU\/Klogm) =: 4, (A.41)
a m
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with § < 1, thus indicating that

1 at 1
max bf'—h“rl = max bf'iht“/2 < |——=| max bf':h“’l/2
1<i<m b+l 1<i<m at+1/2 ott1/2 | 1<i<m at
< (149) max bH h”l/2

The gradient update rule regarding h**! then leads to

1 ~ n " e ~ -~
— R = B o > (bihata; — y; ) bjalis — AR,
j=1

where we recall that h! = ht /at and ' = ofx!. Expanding terms further and using the assumption

ST, bibl =1 give

1 = N N~p H (Tt e sH H 7
:tht+1/2 = ht — |at|2 ijbj (htwt — h X ) a]a] -’Bt + | t|2 Zé‘] - n)\ht
j=1

(07
* H3t H, %2
_ (um—' e ||2> s b (e - e )

=g

=V
H 2 * |2 n H *Heg g
- tFbe B (jafa [ o ||2>+W2bb h*aMa;at xt+| t|2§:§j
J

wo =iv3 =vy

(A.42)

The first three terms can be controlled via the same arguments as Ma et al. [2018, Appendix C.4], which are
built upon the induction hypotheses (A.6a)-(A.6c) at the tth iteration as well as the following claim (which
is the counterpart of Ma et al. [2018, Claim 224]).

Claim 1. Suppose that m > 7K log* m. For some sufficiently small constant ¢ > 0, it holds that

max

max (b —b1) " h

o
< cCy \Flongr Togm

The corresponding bounds obtained from Ma et al. [2018, Appendix C.4] are listed below:

‘le/1| < 0.1 max ‘b ht| (A.43a)
1<j<m

bfv] <02 max [IA!] + max |(b; - b1) "Rt 10g m, (A.43D)

|bl vs| < ——l——log 3/2m max |aj (%t—:c*)’. (A.43c)

vm o /m 1<5<m

When it comes to the last term of (A.42) concerning vy, it is seen that

H H_. %
bbjai x|,

bitva| < | o ¢blibali(@ - a7)
j=1

=q1 =62
leaving us with two terms to control.

e With regards to ¢;, we have

<1<Z|blb| max |§j|~11<na<x |a z' — )|
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< (4logm) - o4/logm - max ’a?(%t —z*)|

1<j<m

- 1.5 H~t
= olog mlg}agnhj(m —x*)|,

where the second inequality follows from Ma et al. [2018, Lemma 48] and standard sub-Gaussian concen-
tration inequalities.

. . m .. . . . .
e Regarding ¢, since {a;'zc*}jil are i.i.d. Gaussian variables with variance ||&*||, = 1, we see that

<o

H,_ ~
Hfjajm ,

< ||€; alz*
L <lgl, o]

where || - |4, and || - ||y, denote the sub-exponential norm and the sub-Gaussian norm, respectively. In
view of the Bernstein inequality Vershynin [2018, Theorem 2.8.2], we have

m 2
P ijb;-'bja;':r,* >ty <2exp (—cmin ( T T >> (A.44)
j=1

o2 S, [bfte, | o maxi<j<m [bi'b;|

for any 7 > 0. Recognizing that

m m

K K
JZ:; ’brbj|2 _ blH(jZ: bjb;{)bl = and max |b'b;| < ax bl 110511, = —

1<j<m
1 VS

and setting 7 = C'oy/ % log m for some large enough constant C' > 0, one obtains

K fm1l
P{gg >Co mlogm} < 2exp (—cmin (C’2 logm, C' mngm>> <m0

provided that m > K logm.

e Combining the above two pieces implies that, with probability exceeding 1 — O (m’loo),

5 ~ K
|bf'vs| < olog'®m nax ‘a.;'(a:t — )|+ o/ p logm, (A.45)
| 12K log? /K
< olog'®m - Cy w—l— 1ogm()\—|—0\/Klogm) 4+ o4/ —logm
m m

< Cso. (A.46)
where the penultimate inequality follows from the hypothesis (A.6b), and the last line holds as long as
m > 2K log® m, o/ K log” m < 1.
Combining the bounds (A.43) with (A.42) and (A.45), we arrive at

bHht

n
max |b;

‘at‘Q 1<j<m

+(146)0.3

bRt < (1+9) (1 —m - —L ||w*||§> bi'h!

||

n KB 32 H(=t_ .*
+(1+5)|at|2xc<\/ﬁ+\/7n10g mlgzigxm|aj (@ m)|>

+(1+9) # Jpax (b; — by)" Et’ logm + (1+6)

e

o ol

< Cy (\/'umlog2m+o),

as long as m > 2K log® m for some large enough constant Cy > C3. Here, the last inequality invokes the
induction hypotheses (A.6) at the tth iteration, Claim 1, as well as the fact [a'| < 1 (cf. Corollary 1).
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A.9.1 Proof of Claim 1

To begin with, we make the observation that

. M1 o1 L 12
(bj —b1)" h :‘(bj—bl) h ’: =y ‘(bj—bl) =
ht71/2
<) |- o)
at—l

with § < 1 defined in (A.41). This inequality allows us to turn attention to % (b; — b)) h'=1/2 instead.
Use the gradient update rule with respect to h?, we obtain

1 — 1 t— - H t— t—1H * ., xH H,.t— — H, ., t— t—
th 1/2:at1<hf 1_77<Zblbz (R Yz — pre*™) qiaf' ! 1—Z§lblal RN L )

=1 =1

Therefore, one can decompose

o1 ~ HT o n o
(bj = b)) ==h'=|1-n\~ t2Htw2 (bj = b1) A"+ —5 (b; — by) Rz "z
o o] o]

=51

_ L2 (bj _ bl)H Zblb}—l ('}vltflitle N h*w*H) (ala;-l _ Ik) Ft—1

o] i

=:82

+| tl Zflbzal ol (A.47)

=3

Except (3, the bounds of the other terms can be obtained by the same arguments as in Ma et al. [2018,
Appendix C.4.3]; we thus omit the detailed proof but only list the results below:

I
<4—=
‘61| —= \/m
H7 ¢—1
1P| < logm <1<l<m bih ‘+ vm )

with ¢ some small constant ¢ > 0, as long as m > Klog8 m. When it comes to the remaining term (3, the
triangle inequality yields

1Bl < D& (b — b)) baf! (31 - 2t) |+ > &b - b)" biaf'z*
=1

1=1
=iwy =iws
e Regarding wy, we have
m
Z b —b))M | 1r§1§zxgxm &) - 1r<na<x {a (' — a:*)|
< oz m logm -1<In]a<xm|a T —x )|

< ——+— max ‘a. (' —z*)
]og m 1<5i<m

)

where the second inequality follows from Ma et al. [2018, Lemma 50] and standard sub-Gaussian concen-
tration inequalities.
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e For wy, similar to (A.44), we can invoke the Bernstein inequality Vershynin [2018, Theorem 2.8.2] to

reach

> & (b — b)) biaf'z*

=1

8

2

> T}
T T
m H 2’
0?1, |6 = b1)"
for any 7 > 0. In addition, observe that

m 2 m

H H H
> 1‘(bj—bl) bl‘ S{l%ixm (b; — by) bl‘}.E :1:’(bj—b1) bl‘
1= J=

K
§27 2 )
m  log®m

< 2exp | —cmin .
0 maxi<j<m ‘(b] — bl) bl’

(A.48)

where the last inequality follows from Ma et al. [2018, Lemma 48, 49]. Taking 7 = Coy/K log® m/m in

(A.48) for some large enough constant C' > 0, one arrives at

IF’{WQZCJ KIOgm}§2exp( cm1n<0210gm0 v/log ))

m

e The above bounds taken collectively imply that: with probability exceeding 1 — O (m~'0?)

~ Klogm
B3] < max |a';(a:t—w*)}+m/7g
1og m 1<j<m m
| 12K log? K1
< (s ;75 p72 08 m—|— logm()\—l—a\/Klogm) +o o8
log™”m m m

g

)

~ log®m’

Putting together the above results, we demonstrate that

(bj — b1)" !

i 1
) e
ot | logm 1<l<m

S CC4 <\;Lrnlogm + logm)

+c(1+9

bhtl‘ “}+1+6 n__9¢
‘ 1 \/ﬁ ( ) |at|2 logdm

if n > 0 is sufficiently small, where the last inequality utilizes ||Z!~1||; < 1 and |a?| < 1 in Lemma 3.

N at-12 . ht-1 =
§(1+5)<1—m—|at|2||m ||2>‘(b] b)"h ‘+4 1+5)|at|\/7n

(A.49)

B Analysis under Fourier design: connections between convex and

nonconvex solutions

B.1 Proof outline for Theorem 1

As the empirical evidence (cf. Figure 1) suggests, an approximate nonconvex optimizer produced by a simple
gradient-type algorithm is exceedingly close to the convex minimizer of (3). In what follows, we shall start
by introducing an auxiliary nonconvex gradient method, and formalize its connection to the convex program.

Without loss of generality, we assume that ||[h*||2 = ||&*||2 = 1 throughout the proof.
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An auxiliary nonconvex algorithm. Let us consider the iterates obtained by running a variant of
(Wirtinger) gradient descent, as summarized in Algorithm 2. A crucial difference from Algorithm 1 lies
in the initialization stage — namely, Algorithm 2 initializes the algorithm from the ground truth (h*,x*)
rather than a spectral estimate as adopted in Algorithm 1. While initialization at the truth is not practically
implementable, it is introduced here solely for analytical purpose, namely, it creates a sequence of ancillary
random variables that approximate our estimators and are close to the ground truth. This is how we establish
the convergence rate of our estimators.

Algorithm 2 Auxiliary gradient descent for blind deconvolution (for analysis purpose only)
Input: {aj}1§j§m7 {bj}lgjgm’ {yj}lgjgm’ h* and x*.
Initialization: h® = A* and =% = x*.
Gradient updates: for t =0,1,...,tp — 1 do

ht+1/2 [ Rt Vhf (ht,il:t)
[ ptH1/2 } = i xt ] _77[ Vaf (ht,zt) | (B.1a)
i pt+1/2
ht+1 \/ ht+1/2 2ht+1/2
|: 41 :| = t+1/2 . ) (B'lb)
T \/ h ' 2 pt+1/2
ot+1/2
L 2

where Vi f(+) and Vf(-) represent the Wirtinger gradient (see [Li et al., 2019, Section 3.3] and Ap-
pendix A.2.1) of f(-) w.r.t. h and @, respectively.

Properties of the auxiliary nonconvex algorithm. The trajectory of this auxiliary nonconvex algo-
rithm enjoys several important properties. In the following lemma, the results are stated for the properly

rescaled iterate )
zt = (Et,:ft> = (ht,oztzct> ,
of

with alignment parameter defined by

1
ol = argmin{Hht —h*
aeC «

2
+ Hawt—w*uz}.
2

Lemma 11. Take A = Cyhov/Klogm for some large enough constant C > 0. Assume the number of
measurements obeys m > Cu2K log” m for some sufficiently large constant C' > 0, and the noise satisfies
ovKlogm < ¢/ log?m for some sufficiently small constant ¢ > 0. Then, with probability at least 1 —
O (m™1%0 + me=°K) for some constant ¢ > 0, the iterates {h' 2"} 4cy, of Algorithm (2) satisfy

dist (zt7 z*) < pdist (zt—l’ z*) + Csn ()\ + U\/Klogm> (B.2a)
 ax ’a? (&' — a*)| < Cr/logm ()\ + ox/Klogm) (B.2b)
<j<m
= 1
ax, b?ht < Cs (ﬁ logm + O') (B.2¢)
max b (B! = )| < Coor (B.2d)

for any 0 < t < to, where p=1—c,n € (0,1) for some small constant c, > 0, and we take to = m?°. Here,
Cs, ..., Cg are constants obeying C7 > C5. In addition, we have

. A
min HVf (ht7wt)’|2 < 10

0<t<tg

(B.2e)
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Most of the inequalities of this lemma (as well as their proofs) resemble the ones derived for Algorithm 1 in
Appendix A. It is worth emphasizing, however, that the establishment of the inequality (B.2d) relies heavily
on the idealized initialization (h°, ") = (h*,z*), and the current proof does not work if the algorithm is
spectrally initialized. The proof of this lemma is deferred to Appendix B.3.

Connection between the approximate nonconvex minimizer and the convex solution. As it
turns out, the above type of features of the nonconvex iterates together with the first-order optimality of the
convex program allows us to control the proximity of the convex minimizer and the approximate nonconvex
optimizer. Before proceeding to develop this idea formally, we first introduce the following operators for
notational convenience. For any z = [z;]1<j<m and any Z € CE*E we define

m

A(Z) = {b?Zaj}jzl, A" (z) ZZ:zjbjag'7
j=1
T(Z)=A"A(Z) = ijb';Zaja?. (B.3)
j=1

Below are several key conditions on these operators concerned with the interplay between the noise size, the
estimation accuracy of the nonconvex estimate (h,x) and the regularization parameters \.

Condition 1. The regularization parameter \ satisfies
L || T (ha' — h*x*H) — (ha' — h*x*H) || < A/8.
2. AN = 112274, ¢;bjall]l < e, for some small constant ¢ > 0.

Condition 1 requires that the regularization parameter A dominate the norm of the deviation of 7 (ha" —
h*z*H) from its mean ha" — h*z*H, and also the norm of the noise operated on by A*. As can be seen
shortly, these two conditions can be met with high probability when (h, x) is sufficiently close to (h*,z*).

Another critical condition is the following injectivity condition on 4.

Condition 2. Let T be the tangent space of hx". Then for all Z € T, one has

1
2 2
A2z = = 1Z]]s-
16
When these two conditions hold, the aforementioned intimate connection between approximate nonconvex
minimizer and the convex solution can be formalized in the following crucial lemma.

Lemma 12. Suppose that (h,x) obeys

A
IVf(h,z)|, < CW, (B.4a)

for some constants C > 0. Then under Conditions 1 and 2, any minimizer Zey of the convex problem (3)
satisfies
||hmH - chxHF SV (h,.’B)HQ-

Proof. See Appendix B.4. O

In words, if we can find a point (h,x) that has vanishingly small gradient (cf. (B.4a)) and that satisfies
the additional Conditions 1 and 2, then the matrix ha" is guaranteed to be exceedingly close to the solution
of the convex program. Encouragingly, Lemma 11 hints at the existence of a point along the trajectory of
Algorithm (2) satisfying these conditions (B.5); if this were true, then one could transfer the properties of
the approximate nonconvex optimizer to the convex solution, as a means to certify the statistical efficiency of
convex programming. As we will see soon, this is indeed the case that with Assumption 1, we can prove that
under some mild sample size and noise level conditions, Conditions 1 and 2 would hold with high probability.
To begin with, the following lemma corresponds to the first point in Condition 1.
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Lemma 13. Suppose that the sample complexity satisfies m > Cu2K log*m for some sufficiently large
constant C' > 0. Take \ = C\ov/K logm for some large enough constant Cy > 0. Then with probability at
least 1 — O (m_lo + me_CK), we have

| T (hat — h*@*") — (ha" — h*z*™) || < A/8,

stmultaneously for any (h,x) obeying

n <A+0\/Klogm) ;e =y < 105

* C5
IBlly = llzlly, A=k, < 3—

n(A+Jv@ﬁiﬁa,

(B.5a)
max |b (h—h")| < Coo  and  max ‘a x —x*)| < C7y/logm ()\ +0\/Klogm) , (B.5b)
Sjsm <j<m
for some constants Cs5, C7,Cy > 0.
Proof. See Appendix B.5. O

Recall the definition of operator 7 in (B.3). The lemma above states that for all (h,x) sufficiently close
o (h*,x*), the matrix 7 (ha" — h*@*") is close to the expectation hat — h*z*H,
Next we turn to the second point in Condition 1.

Lemma 14. Suppose that Asumption 1 holds and m > K log®m. With probability at least 1 — O (m~100),
one has

A" (& ijbja;' <o/ Klogm.
Proof. See Appendix B.6. O

Regarding Condition 2, we have the following lemma.

Lemma 15. Suppose that the sample complexity satisfies m > Cu’Klogm for some sufficiently large
constant C' > 0. Then with probability at least 1 — O (m_lo),

14(2)]5 =

holds simultaneously for all T for which the associated point (h,x) obeys (B.5a) and (B.5b). Here, T denotes
the tangent space of haH.

Proof. See Appendix B.7. O

Basically, this lemma reveals that when (h,x) is sufficiently close to (h*,x*), the operator A(-) —
restricted to the tangent space T of ha — is injective.
Now we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Armed with this result and the properties about the nonconvex trajectory, we are
ready to establish Theorem 1 as follows. Let ¢t := argming<i<y, |V f (b, 2")|r, and take (Rnewx, Tncwx) =

( Lht b t). By virtue of Lemma 11, we see that (Rncx, Tnex) satisfies — with high probability — the

small gradient property (B.2e) as well as all conditions required to invoke Lemma 12. As a consequence,
invoke Lemma 12 to obtain

1 A

Hchx - hncvxancvaF ,S Cf ||Vf (hncvxa xncvx)”p f, (BG)
1nj

mio’
Further, it is seen that

thcvx (wncvx) ; - h*w*H

‘F < thcvx<wncvx)H —h* (wnCVX)HHF + Hh* (wncvx)H _ h*:B*H

;
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< [hnewx — h*HQ ||33HCV><||2 + ||h*||2 | Zncux — w*Hz

<2z, - __COn ()\—I—U\/Klogm)

(1=p) Iz
=26 ()\—i—U\/Klogm) (B.7)

Cp

where the penultimate line follows from (B.8a) and the inequality

* * * 0577 *
[Znewxlla < l27[ly + [Tncex — @[5 < [l27[l5 + 1—-p) =" ()‘ tov Klogm) <2|z",-
2
Taking (B.6) and (B.7) collectively yields

Hchx - h*w*H ||F S Hchx - hncvxaz:'CVXHF + thcvxm:lcvx - h*$*H ||F

A
< —+)\+U\/Klogm
<A+ oy Klogm.

This together with the elementary bound || Ze,x — h*a*" H < || Zex — h*aH HF concludes the proof, as long
as the above key lemmas can be justified.
To prove the results also holds for Z 1, we recall that Z., ; is the best rank-1 approximation of Z.x

and this implies that,
A

||chx — chx.,lHF < HZCVX - hncvxwrljcvaF S mlo’

Hence, repeating the above calculations for Z., 1 reveals that (14) continues to holds if Zy is replaced by
chx,l-
In what follows, we establish the key lemmas stated above.

B.2 Preliminary facts

Before proceeding, there are a couple of immediate consequences of Lemma 11 that will prove useful, which
we summarize as follows.

Lemma 16. Instate the notation and assumptions in Theorem 2. For t > 0, suppose that the hypotheses
(B.9) hold in the first t iterations. Then there exist some constants Cs > 0 such that for any 1 <1 <m,

dist (2%, 2*) < = ()\ + o/ K log m) ) (B.8a)

Cp
240 — 2*)l, < 2% (A4 0/Klogm) (B.8b)

14

1 3 1 3

< I@l<3 g<IRl<y (B8
< IE Ol <5 IRl <5 (B.5a)
< lE0l<5 S <IROL <5 (5.5
115 = s = I M = 272 27, = [ o (B.51)

In addition, for an integer t > 0, suppose that the hypotheses (B.9) hold in the first t — 1 iterations. Then
there exists some constant C > 0 such that with probability at least 1 — O (m’loo + e “Klog m), there holds

|2 - z"”2 < = ()\ + oVKlogm) , (B.8g)

Cp
Hoﬂ—l’ff%()ﬁ—aﬁ[(logm), (B.8h)
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at—1/2 O .

o 1[0 (3 oy ogm) (B.5)

‘at—1/2 B at—1’ < 77% A+ U\/ITgm) , (B.8j)
P

%_ % < g (B.8K)

% < ot < g (B.81)

Proof. The proof follows from the same argument as in the proof of Lemma 3 and Corollary 1, and is thus
omitted here for brevity. O

B.3 Proof of Lemma 11

After the introduction of the proof idea in Appendix A, we state a more complete version of Lemma 11 here.

Lemma 17. Take A = Cyhov/Klogm for some large enough constant Cy > 0. Assume the number of
measurements obeys m > Cu2K log” m for some sufficiently large constant C' > 0, and the noise satisfies
ovKlogm < ¢/ log®m for some sufficiently small constant ¢ > 0. Then, with probability at least 1 —
O (m™1%0 + me=°K) for some constant ¢ > 0, the iterates {h', x4y, of Algorithm (2) satisfy

dist (', 2") < pdist (2", 2) + Csn (A + o/K logm) (B.9a)

max dist(="0, ) < o 10g02m (B.9b)
ax |20 — 2|, < Co IOgC; - (B.9¢)
max |af(& —2%)| < Or/logm (A +oVElogm) (B.9d)
max ‘by'ﬁt‘ < Cs (\;% logm + a> (B.9e)

i B (R h7)| < Coo (B.9f)

for any 0 < t < ty, where p=1—c,n € (0,1) for some small constant ¢, > 0, and we take to = m*°. Here,
Cs, ..., Cg are constants obeying C7 > C5. In addition, we have

. A
min HVf (ht,:ct)H2 < e TR (B.9g)

0<t<tg

The claims (B.9a)-(B.9¢) are direct consequences of Lemma 5, Lemma 6, the relation (A.21), and Lemma
7. As a result, the remaining steps lie in proving (B.2d) and (B.2e).

B.3.1 Proof of the claim (B.2d)
Recall the definition h! := h! /E. We aim to prove inductively that

max 'b]H (Tlt — h*)

1<j<m

holds for some constant Cy > 0, provided that the algorithm is initialized at the truth.

It is self-evident that (B.10) holds for the base case (i.e. t = 0) when h® = h*. Assume for the moment
that (B.10) holds true at the tth iteration. In view of the simple relation between o!*' and a!+1/2 in (A.3)
and the balancing step (B.1), one has

HthmHz t4+1/2

[2*+272]]
MOZ s and 2 ht+1/2.

/2],

t+1 __

o —_ ht+1 _
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It then follows that htt!/at+1 = h!+1/2/at+1/2 and, therefore,

Qtt1/2 [ pt+l N Qt+1/2 [ ptt1/2 X
= (=) - (=)

W oftt/z /1 x

Q) —— (W =¥ f ('2)) —

att1/2

at
=h'- P VRS (&) —
at+l/2 * Tt * n - H (7 t~tH *xH HAt n S
L= =S i (1= (B fh)fwzbjbj (A&~ hra) el + 13 g
t+1/2 ~
<1n/\aa )h* (177;)\)(ht )7

2beHh* 5 fa:) aja zt +
TI/Q N m -
( SEIE |;Zf) r)- mﬁfzbjbz' () ()
j=1

=1
ZI2 i;bjb? (r* = 1) (|atia"|” - \|w*||§)

=V2

—

ii

=

=3 =iy

(B.11)
where (i) comes from the gradient update rule (B.1) and (ii) is due to the expression (A.7)

e Applying a similar argument as for Ma et al. [2018, Equation (219)] yields

’bl vi| 0.1 max ‘b;-'(ﬁt—h*) .

1<j<m

e The vy can be controlled as follows

|bl v <0.2 max ‘b?(ﬁt—h*)

+ C'logm max
1<j<m

o<I<m—7,1<j<r

+ (C IOg m) 0111

(bi+j — bi1)" (Bf — h*)

< 0.2 max ‘b? (?Lt - h*)

1<j<m

o
og®m

The first inequality can be derived via a similar argument as in Ma et al. [2018, Equation (221)] (the

detailed proof is omitted here for the sake of simplicity), whereas the second inequality results from the
following claim.

Claim 2. For some constant Cy1 > C7, we have

H 7t *
oglgn?li},(léjgr (bl+j B blH) (h —h ) = C’Hlog?’ m’
Proof. See Appendix B.3.3. O
e When it comes to the term v3, we observe that
‘le/3| < Zbl b; th* -z )Haja;' (" — x* Zbl b; th* z' w*)Haja;':c*
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m m
~ 2 ~
< > [bi'6;] max [67A%] max |a}f (& —2*)["+ D [bl'b;| [b'R*] max |a} (' - a*)| max |afe’]
j=1 == == j=1 == ==

2
<(4 logm)% <lr<r;a<xm |a;| (3" — z*) |> + (4 logm)% max |a;' (z* — )|  max |a;'m*‘

< 07% log? m ()\ + U\/Klogm> .

Here, the penultimate inequality follows from the incoherence condition (B.9d) and Lemma 2, whereas
the last inequality follows from the induction hypothesis (B.9d).

e Finally, we turn to the term vy4. Clearly, it is of the same form as vy in (A.42); therefore, via the same
line of analysis, one can deduce the following bound (similar to (A.45))

~ N K
|bf'va| < (olog'®m) max |a;'(a:t — )| + oy - logm
K
< ologh®m (Cm/logm (/\ + U\/Klogm)) + o4/ — logm,
m

where the last inequality invokes (B.9d).
With all the preceding results in place, we can combine them to demonstrate that

att1/2

at

e ] n e
< — - — Th* — — ) _ h*
< <1 M- ) max [bh*] + <1 ST 1%zlgxm’b] (h* - 1)

+ 7Z|2 (0.3 max [bff (R - )
«

max ‘b? (Etﬂ - h*)

1<j<m

+logm x Cqy 03 )

1<j<m log”m

n p nc 5 | K
+ \at|2007ﬁ log®m ()\ + U\/Klogm> + |at|2 (Ulog1 m (C’m/logm ()\ + ax/Klogm)) +0o o logm>
(i) 7']7 H (1t * 1% 40117]0’ 1% 2
< (1 — 40> @%Xm‘bj (h —h ) ) N + log? m +CC7ﬁlog m (A+0\/Klogm>

+4nC [alogwm <C7m ()\ + (f\/m)) + o4/ % logm]

7
< (1 — 77) Cyo + cno,

ot +1/2
+ <77>\+ ‘1 —

40

for some constant C' > 0 and sufficiently small constant ¢ > 0. Here (i) uses triangle inequality and (B.8])

and the proviso that m > u2K log® m and ov/K log* m < 1.
Finally, making use of (B.81) we obtain

(1—%) Coyo + cno < (1—%) Coo + cno
=T

max ‘bJH (ﬁ”l — h*)

1<j<m

<

at+1/2

at

(,Yt

t+1/2
o _ 1‘

- (1—I1) Cyo + cno
T 1- UCTSS ()\ + J\/Klogm)

§ 0907

where C' > 0 is some constant and the last inequality holds since c¢ is sufficiently small.
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B.3.2 Proof of the claim (B.2¢)

To prove (B.2¢), we need to show that the objective value decreases as the algorithm progresses.
Claim 3. If the iterates satisfy the induction hypotheses (B.9a)-(B.9¢) in the tth iteration, then with prob-

ability exceeding 1 — O (m’loo +e “Klog m) ,
(41,2 < 7 (1) - 2V (22 (B12)
Proof. See Appendix B.3.4. O

When summed over ¢, the inequality in Lemma 3 leads to the following telescopic sum

tol

(") < f(2°) Z V£ ()1l

This further gives

to—1 1/2 5 1/2
min | VF (2 !|2_{ > st !!2} At} e

0<t<to nto

where we have assumed that 2° = 2*.
We then proceed to control f (z*)— f (z'). From the mean value theorem (cf. Ma et al. [2018, Appendix
D.3.1]), we can write

J(=) =1 (“ O‘m)

alo/|ato|” ']

H- _ H _
Vf(z") Z0 — 2* L[z —2* 9, [ B —2*
_ * Sl R T
A [ Vf(z*) o [T | VIE |
for some z lying between (%7 %mto) and z*. Then one has

f(2%) = 1 (z%) < 2|V ()]s 2 — 2], + 4]z — =]

The last inequality in the above formula invokes Lemma 4, whose assumptions are verified in the proof of
Claim 3 (see Appendix (B.3.4)). Further, the relations (B.24) and (B.18) in the proof of Claim 3 lead to

£z~ £(22) £ (A4 oy/EKog m)z. (B.14)

It then follows from (B.13) and (B.14) that

[ 2 A
min HV ( t)||2§ %<)\+U\/Klogm) <—-

0<t<to mlio

B.3.3 Proof of Claim 2
We aim to prove by induction that there exists some constant C71 > 0 such that

(bry; — bisa)"” (ﬁt - h*)

max
0<l<m—71,1<5<7

<Chn (B.15)

og®m

Apparently, (B.15) holds when ¢ = 0 given that h® = h*. In what follows, we shall assume that (B.15) holds
true at the tth iteration, and examine this condition for the (¢ + 1)th iteration.
Similar to the derivation of (B.11), we have the following decomposition

attl/2 1 B pr) — att1/2 1 ht+1/2 o
ot attl at att+1/2
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S S IA Iy
7 ibjb;* (iﬁ _ h*) " (a;a" — I,) 3
j=1

=1

Zb bihr (2 —w )Hajay'it—&-‘ t|QZ£]b aflz!

\—,_/

=v3 =V3

ozt|

leaving us with several terms to control.

e For vy, we have that

(b — b)) ‘gZ‘bl b)) »’max

1<j<m

off (h* — 1) @™ (a;af! — 1) &'

max ‘b'j (INLt - h*)

log? m 1<i<m

< —5— max ‘b'; (fzt - h*)
log”m 1<j<m

< max ‘b]H (Et — h*) ,
logm 1<j<m

< max ’m ( ja;—'—Ik) 5t‘

1<j<m

~t112 ~+(12
max ([lafa; + &)

where the second inequality follows from Ma et al. [2018, Lemma 50| and the last inequality utilizes the
following consequence of (B.9d) and Lemma 38:

max ([laf@ [, + a]3) $ max (2[|af! @ o)} +2]|afe*|[; + 2];) S logm.

e With regards to vo, we invoke the induction hypothesis (B.9d) at the ¢th iteration to obtain

(it — w*)H ajaH:c

(b~ b) V2’<Z’bl b1)" b, | max [BR*| max ;

<j<m 1<5<m

t ‘

2
’ + max (it—m*)HaJ’ max |a T |)
1<j<m 1<j<m

¢ ~ H
< = t ok X
~ log®m v/m <11<I;a<)in (:c ¥ ) K

Nc8ﬁ (A‘i‘U\/@),

where the second inequality applies Ma et al. [2018, Lemma 50] and (7), and the last inequality results
from (B.9d) and (F.1).

e Finally, since (b, — bl)H vs is of the same form as the quantity S5 in (A.47), we can apply the analysis

leading to (A.49) to derive
- K log?
ST e (@@ — o) 1oy KLETT
]og m 1<j<m m

N log%m (07\/@(/\4—0\/@)) +U\/Kl(jnm

With the preceding results in hand, we have

(b —by)" s

att1/2
I max
0<i<m—1,1<j<1

(buy; — big1)" (”Vl”l - h*)

at
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t+1/2
<[1—nA— @

ot

2
+ (1 —nA—1 ||$t||2) o<i<mori<i<r

1O plogm (o /R logm) + 19 ( 2

at* vm

max
0<I<m—T1,1<j<t

2—"‘+(1—1)c11

(
00 | T (0o (v 0V Togm)) + 0

‘(lerj — b)) h*‘

(bryj — brpa)"” (Et - h*)

lat|? \logm+/m
2
C7+/logm </\+0\/Klogm>> +o W

16 log®m

A+ ox/Klogm) + 4nCCg (logn/ft\/ﬁ ()\—I—U\/Klogm)>

Klog®m
m

no

(i) (1 77) Cuo

16 log® m

log®m

(r+ov/KTogm)

for some constant C' > 0 and some sufficiently small constant ¢ > 0. Here, the relation (i) comes from the
triangle inequality, (B.8l), as well as the consequence of (B.8c) and (B.81)

lz*, o 1/2 1

lat] = 2 4

Il=*]l, =

the inequality (ii) invokes (B.8i) and holds with the proviso that m > p?K log® m and ov/K log” m < 1.

Finally, by (B.81) we obtain

(bt j

max
0<i<m—7,1<j<7

where C' > 0 is some constant. Here, the last inequality holds as long as c is sufficiently small.

B.3.4 Proof of Claim 3

Before proceeding, we note that

and

Another fact of use is that

V2f (h,x)

— _g no
(1 16)Clllog3m + Crog?

H (7¢t+1 * log® m
— b)) (R - h7)| < L
at
_ o 770'
(]‘ 16) Clllog3m t+c log m

1—

t+1/2
atty/z _ 1‘

(1 - 16) C(Hlog; m +Clog m

T 1- CC5 ()\ + ov/ K log m)

O'

<Ci

log3 m’

Vi(z)=

D[Rkt (L]

vfreg—free (z) + /\2,’7

= Vereg—free (h,x) + M4x.
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Letting

t o 7t 1pt —t tot
B:‘OM’ h:ﬁth, and T = p'xt,
we can write
B vhfre fr ( mt) h:t
it g-Tree )
Bt
HVf H v freg—free (h ’mt) + A tmt

B
Vhfre free h :13) ht
H{ wfrei—free ht xz?) } +)‘{ t ]

= [IVf (@), (B.17)
where the first inequality is due to (B.16), and the second inequality comes from the simple fact that 3?3 = 1
(by definition of 8%).
To begin with, we show that f (h‘*!, z**!) is upper bounded by f (h**1/2, !*1/2)  that is,

f(ht+1’xt+1 ‘tht+1 t+1) a; 7%‘ +/\Hht+1|| Jr/\H t+1H2

S

Ms HMS

‘tht+1/2 t+1/2) a; —y]‘ +2)\Hht+1”2Hmt+1H2

’tht-H/Q t+1/2) a; —y]’ —|—2)\Hht+1/2H H t+1/2H

\/\E'

u Mg i MS T

‘tht+1/2 t+1/2) a; —yg‘ +)\Hht+1/2H +)\|‘wt+l/2H

(ht+1/2 t+1/2>

where (i) and (ii) come from (B.8f), and (iii) is due to the elementary inequality 2ab < a® + b%. In order to
control f (R+1/2 t+1/2) one observes that
hi+1/2

ht+1/27 t+1/2) _ < t t+1/2>
§ (Rt ) = g (S

(i:) f (h - E (VhfrEg free ( t) + )\ht) 7Et - ﬂﬁt (waf’eg'ﬁee (zt) + )\wt))

Vhf(ﬁt,m) Vinf (b, @
Vaof (Et,it) Vef Et@t)
Vif I " Vif (h.®
r v./ (R Bt . Vaf Eht’ '
7 i) | | )
vas (F.#) s ()
() ot (5 s (5
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2

2w ()
Do) - s (7.
— f(h',2") — g V7 (")

z+2Hme (Eﬂf)

.
2 5t :
‘2_§vaf (h ,:c)

‘ 2

2

where Z is a point lying between z' — nV f (2') and 2. Here, (i) resorts to the gradient update rule (B.1);
(ii) utilizes the relation (B.16); (iii) comes from the mean value theorem Ma et al. [2018, Appendix D.3.1];
(iv) follows from Lemma 4 (which we shall verify shortly); (v) holds true for sufficiently small > 0; and the
last equality follows from the identity (B.17). Therefore, it only remains to verify the conditions required to
invoke Lemma 4 in Step (iv). In particular, we would need to justify that both z* and z* —nV f (Et) satisfy
the conditions of Lemma 4.

o We first show that z* satisfies the conditions of Lemma 4. Towards this, it is first seen that

— 2 ht
ht_h* =t % 2: - H
H 2—|—Ha} v ||2 | ozt/|ozt\ la t| - 2
t t 2
< L h — gt —alat +Hatmtw*H2>
offfaf] ot |, | t\ 2
h* ‘at|_1 o * ?
= ({laf] = 1f}a], + [ = e]) +( roml L e
2
S (SS ()\—l—U\/Klogm)) , (B.18)
o

where the last inequality comes from (B.8a) and (B.8h). Further,

t
H{ & ¢ t

o' -1

t + max |a (mt—m*)‘

max ’a (213
1<j<m

—x )| < max
1<j<m

1<j<m

max |a T |+ max |a (mtfa:*)‘
1<j<m 1<j<m

o]

o] = 1
W 1r<r;a<>§n|a (a: —x )|+11<na<x |a x ‘ +121Ja<xm|a (wtfm*)|

< ()\ +o0vK logm) Vlogm, (B.19)

where the last inequality follows from (B.8h), (B.9d) and Lemma 38. Similarly, one has

ht ht
| —— + ’b“ht
ot/ |at ol 1<J<m

—t
max ‘th ‘ < max

1<j<m 1<j<m
t Hh Hpt
<||a|—1| max |b;—=|+ max ‘b-h’
1<j<m at 1<j<m | 7
< 2 max ‘b;‘ht‘ (B.20)
1<j<m
logm + o, (B.21)

N \/7
where the last inequality comes from (B.9¢). Given that z' satisfies the conditions in Lemma 4, we can
invoke Lemma 4 to demonstrate that

[Vaf (Z) = Vnf(z9)|, <4z - 2", (B.22)
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e Next, we move on to show that 2! — nV f (Et) also satisfies the conditions of Lemma 4. To begin with,

2 =0Vt @) = 2l < 2 — 0 |95 &) -V IV ()

We observe that
IV (Z)lly IV fetean (27) ll2 + A" (§) R¥ ]Iy + A" (§) ™[Iy + AR5l + A2l
S A+ oy Klogm. (B.24)
Taking (B.24), (B.22), (B.18) and (B.23) collectively, one arrives at
12" =0V (Z') —2*||, S A+ o/ Klogm.

With regards to the incoherence condition w.r.t. a;, we have

max |a;' (T —nVaf (Z') - m*)|

1<j<m
H (=t H it
< max [af (@' —2")|+n max [af'Vef ()]
< Ho =t H (—t _ A«t,(l))’ H (%,(l))’
< 1gljagxm |aj (a: x )| +n <1251<>§n a; Vaf 2" — 2 + lgzagxm a; Vaf |z
< Cy/logm </\ + ax/Klogm) +4n (10\/? x 4 max ‘Zt - Zt*(l)Hz + 20«/logmlgla<x vaf (?*(l)) Hz) ,
<j<m <5<

(B.25)

where the last inequality follows from (B.19) for some constant C' > 0, (B.22) and Lemma 38. Further,
it is self-evident that 2() satisfies the conditions of Lemma 4, so that we have

[Vaf (220) |, < |Vof (240) = Vaf @), + 1921 )1,
,TC (A + a\/ITgm)
20 2| + |7 = =,) + ¢ (A+oV/KIogm),

where the second inequality invokes Lemma 4 and (B.24). This together with (B.25) and (B.9) gives

max |af (' —nVaf (2') —x*)| < Vlegm </\+a\/Klogm) .

1<j<m

<4 H?’(l) —z*

<4(

For the other incoherence condition w.r.t. b;, we can invoke similar argument to show that

max [bff (B~ nVaf (2') - b*)

1<j<m

< max |bY (Et — h*)

< max |b] +n max |57V f (2')]

b (Z (b}*ﬁt:’éthal - yl) bal'zT + Aht> ‘

+ 7 max
1<j<m

< max b'; (Et — h*)

T 1<i<m

ht ht ~
< max b? ——— — — ||+ max ‘b]H (ht - h*)
1<j<m at/lat| ot 1<j<m

t 71
+ | max

b;‘ (Z (b;—'ﬂtit’Hal — yl) bla;—'.’it> |

1 | Ala] max [ofh!

1<j<m 1<j<m "
=
< ||la*| = 1| max ‘bHEt + max |b (;Lt—h*) +7(2\ max [BR![+2r). (B.26)
1<j<m 1 1<j<m | 1<j<m |
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Here, the last inequality utilizes the fact [|b;||, = \//&/m and (B.8h). The quantity 7 can be controlled
by using the same analysis as Appendix A.9. Specifically,

T = 12‘2};@ |b|;vhfreg—free (%1) ’

< mac ([oli] + [oliva] + [Blis] + [bl] + 2* |57

< Llongra,

T Vm

where {v;}41 ;| are defined in (A.42), and the last inequality is a direct consequence of Appendix A.9.
Finally, continue the bound (B.26) to demonstrate that

max ‘b;' (Et —nVnf (z') - h*)

1<j<m

< Sj ()\JrJ\/Klogm) Cg <\/l%logm+o) + Cyo +n <2C’8)\ (\/urnlongrJ> +2 <\/l%log‘m+a)>

< Llongra,

NG

where the penultimate inequality is due to (B.8h), (B.9¢e) and (B.2d).

3

B.4 Proof of Lemma 12

Before proceeding, let us introduce some additional convenient notation. Define
Z := ha", (B.27)
and denote by T the tangent space of Z, namely,
T::{X:X:thJrua:H,vE(CK,ue(CK}. (B.28)

Further, define two associated projection operators as follows

1 1 1
Pr(X):= hh"X + Xzxah — ————hh" X 2" (B.29a)
1|13 (3 1RI3]23
1 1
Pri (X) = (I— - 2hh“) X (I — Qw:c”> . (B.29b)
[R]|3 |3

We further introduce a key lemma below. It proves useful in connecting the first order optimality
conditions of convex and nonconvex formulation.

Lemma 18. Under the assumptions of Lemma 12, one has

T (ha" — k) — A% (¢) = hz" + R,

Rl 1=l
where R € CEXE s some residual matriz satisfying

[Pr (R)llp <2|Vf(h,2)ll,  and  [[Pro (R)] <A/2.
Proof. See Appendix B.4.1. O

With these supporting lemmas in hand, we are ready to prove Lemma 12. Suppose Z. is the minimizer
of (3).
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1. Let A := Z.,, — ha". The optimality of Z. yields that

A (' + & = h*at) — g]|; + 24 [|hat + A, < |4 (ha" — hra™) — €]+ 2 [hat],
By simple calculation, it leads to

IA(A)5 < — (T (ha — h*a*) — A" (&), A) + 2\ |||, — 2\ ||ha + A, .
The convexity of the nuclear norm gives that for any W € T with [|[W/|| < 1, there holds

Iha™ + All, = [|pa"

|+ (pq" + W, A),

where we denote by p := h/||h||, and q := z/|x|,. We choose W such that (W,A) = ||Pr. (A)],.
Then, combining the above two equations gives rise to
0<AA); < — (T (ha" — h*z*™) — A" (&), A) — 2\ (pg" + W, A)
= —(T (ha" — R*x*™) — A" (¢),A) — 2X\ (pq", A) — 2)\||Pp. (A)],

1

—
=

— (R, A) =2\ [[Pr. (A)]l,

=—(Pr(R),A) = (Pr. (R),A) = 2X|[Pr. (A)] (B.30)

where R in (i) is defined in Lemma 18. Hence,

— 1Pz (R)||p [P (A)l[g = Pz (R)|[ [Pz (A)]l, + 2A [Pz (A)]
<(Pr(R),A)+ (Pr. (R),A) + 2\ [Pr. (A)], <0.

P

Lemma 18 gives ||Pr. (R)|| < A/2, then we have

3\
> 2

1Pz (B)ll [Pz (A)llp 2 = Pre (B)[Pr- (A)lL + 22 [[Pre (A)[], = 5

[Pz (A)]

* 9

and it immediately reveals that

1Pro ()], < 2 1Pr (R)le [Pr ()]l

4
< L IVF ()l [Pr (Al
4
3m10

<C 1Pz (A)llg

where the second inequality invokes Lemma 18. We then arrive at

4
1Pz (A)lle < 1P+ (A, < Coig [Pr (A)llp < Pr (A)]e- (B.31)

2. Next, we return to (B.30) to deduce that

(A < —(Pr (R),A) — (Prs (R),A) — 2| Prs (A),
|

<1Pr (B)llg 1Pz (A)llg + Pre (R)[[ 1P (A, = 2X[Pr- (A, (B.32)

2 [P B [Pr (Al — 2 [Prs (&)1,
<Pz (R)l [Pr (&) (B.33)

(if)
< 2|V (h )y | Al (B.34)

where (i) and (ii) come from Lemma 18.
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3. For the final step, we turn to lower bound ||A (A)||p. One has
A (Al = [A(Pr (A)) + A(Pr. (A))]
> AP (A)ly = A (P (A))ll,
> ||Pr (&)l /4= V2K log K + ylogm [Pr. (A)lg,

where the last inequality comes from Lemma 15 and Lemma 1. Since (B.31) gives

(B.35)

4 1
V2Klog K +ylogm [Pr. (A)lp < v2Klog K +ylogm x Co—p [Pr (A)llp < ¢ [Pr (A)]lg,

as long as m > K, (B.35) yields
A @A), 2 5 1Pz (&)
In addition, (B.31) implies
Al <[Pz (A)llg + [Pre (A)llp < 2[[Pr (A)]E -
Consequently,
A @A), > 5 IPr ()l > ¢ AT
Combining (B.33) and (B.36), we have

1
555 |1AIE < AR5 <2019/ (b2l Al

and therefore

[Allg S VS (R, )],
B.4.1 Proof of Lemma 18
Recall the definition of 79 in (B.3). Letting

1 1
= h and q= T
([l ([P

p

and rearranging terms, we can write
h* a4 790 (prgt — pgM) 4+ A (€) = ha' + Apg" + R
for some matrix R. In addition, in view of the small gradient assumption (B.4a), one has
[R*x*t 4 Tdebias (prgH — paM) 4 A% (€)] = haz + A\h —
[R*x*™ 4 Tt (prgt — paM) 4 A (€)] "h=axh"h + \a - T3

for some vectors r1, 7y € CX obeying
* _k * A
lrally = AR~ (T (R = ha'') + A* (©) al|, < [V f (b )], < O 5.
* _k * H )\
Irally = M@ = (7 (2™ — ha) + 4% (€)"h|| < 19f (), < 0.

In what follows, we make of these properties to control the size of R.
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1. We start by upper bounding ||Pr (R)|| as follows

IPr (R)|ly = ||pp" R (Ix — qq") + Rqq"||,
<|lpll [[p"R]|, || Ix — aq"|| + IRl 4,
< |Ip"R||, + | Ral,

where p and g are unit vectors defined in (B.37). Recognizing that |||, = |||, (cf. (B.5a)), we can use
(B.38) and (B.39) to obtain

ool bl r
RMp = — + A 2g — Ai—2q and Rq=———.
R S T e
These together with (B.40) yield
A
1P (R)p < [[p"R]|, + | Rall, < 2||Vf (R, z)|, < 20— (B.41)

2. We them move on to control Py. (R). Continue the relation (B.38) to derive

. h
h*m*H + Tdeblas (h*.’I}*H _ hmH) + A* (5) — Py (R) =p (||h||2 HmHQ + /\”sz

1]

) g +Pr.(R), (B.42)

where we have used the assumption ||k, /|||, = 1 (cf. (B.5a)). Combine this with Lemma 13, Lemma
14 and (B.41) to derive

|79 (h*a*H — ha') + A (¢ R)|| < [|T9 (h*@*™ — ha") || + | A* ()| + |Pr (R) |
A A A
<S35
e
<2

where the last inequality invokes the assumption (B.2e). Invoking (B.42) and Weyl’s inequality give

h .
o1 o (Il el + M2 ) a4 Pr ()] < 0y (h%a™) 4 T4 (1o — hat) + 4° (&) - Pr (R
2

< A/2,

for K > ¢ > 2. Additionally, when ¢ = 1, we have

h
o |p (Il el + At ) @] = Il e, + Aqie > /2

]| llly

This indicates that at least K — 1 singular values of p (|||, ||z|l, + AR, /I2],) ¢ + Pre (R) are no
larger than \/2, and these singular values cannot correspond to the direction of pg". As a consequence,
we conclude that

[Pro (R)|| < A/2.

B.5 Proof of Lemma 13

For notational convenience, we define 792 by subtracting the expectation from 7 as follows:

TR (Z2) =T (2) ~ Z = (A"A-T)(Z2) =Y bb}'Za;al - Z.

J

For any fixed vectors h and x, we make note of the following decomposition

ha'' — koM = (Ap + h*) (A, +2*)" — h* 2"
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=h* AN+ Apet + ALAY
which together with the triangle inequality gives

HTdebias (hiI)H _ h*CIZ‘*H) H S HTdebias (h*Ag) || + ||7—debias (AhCB*H) H + HTdebias (AhAg) || )
=0 =2 =:f3

In what follows, we shall upper bound 51, B2 and (3 separately.

1. For any fixed x, the quantity 5, is concerned with a matrix that can be written explicitly as follows

Tdeblas h*AH Zb th*AH ;I . IK) )
Consequently, for any fixed unit vectors u, v € CX one has

Hdebias h*AH i Hb th*AH ’U — ’u,Hb th*AH )

Jj=1

which is essentially a sum of independent variables. Letting r :== A40+/K logm and Cy := 10max {C", C5, 1},
we can deduce that

H Hpx AH H H Hpx A H
> <u bibl' R Afla;afv Lang <oy gy —u bib}R Amv>
j=1

Il
™
&

=3 (G -Elh+ Y (IE: [qujb;'h*A:aja';u ]l{m;ajlgcﬂm}} - u“bjb';h*Agv)

j=1 j=1
— Z (zj —E[z]) + Z (E [qujb';h*Agaja';v 1{\A;aj|§047'm}:| — [u b, th*AHaJa v])
j=1 j=1

H Hpx AH H
= Z (Zj -E [ZJ]) - Z]E [u bjbj h Amajaj v]l{|A;aj\>C47'\/logm}} :

<
I
-
<
I
-

=wi =iw2

e The term ws can be controlled by Cauchy-Schwarz as follows

Il
-

i) 9 9 12 C?r2logm
<3 lubiblfhc] | (2180 + 1Azl vl3) 2em | -2
zll2

<.
I
—

<3 a6 | /6| A2 exp (~501og m)

V6| Az,

< <|qu ‘ + ’th*| ) 925

(iv) zlly
Y (14 ) YOl

(B.43)
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<

) || Azl
m24

IN

Here, (i) follows from the Cauchy-Schwarz inequality, and (ii) comes from the property of sub-Gaussian
variable Atla; and
E|[utb;b'h* Allaalfo|| = [u"b0h*[*E [|Afa;aliv[]
N 2
= [uMbbhe| (2| Al]” + Al 0]3) (B.44)

where the last line is due to the property of Gaussian distributions. In addition, (iii) is a consequence
of the elementary inequality |ab| < (|a]? + |b|?)/2, (iv) comes from the incoherence condition (7) and

Z;“:l |quj|2 = ||u||§, whereas (v) holds true as long as m > u?.
Regarding w1, note that z; is a sub-Gaussian random variable obeying

wy/logm
vm

Therefore, by invoking Hoeffding’s inequality (cf. Vershynin {2018, Theorem 2.6.2]) we reach

2 = Elz]lly, S [Carv/logm (u'h;) (Bh*)| < €

T ‘quj| .

ct? 9 ct?
C2p2r2 logm Zm ) |quJ|2 = 2€Xp C2p2r2logm
]:

m m

P >t] <2exp

>z —E[z]
j=1

for any ¢ > 0. Setting ¢t = W% for some sufficiently large constant C' > 0 yields

S CurvKlogm

v i

< 2exp(—10Klogm). (B.45)

sz —E[z]

Next, we define M to be an €;-net of By (%nr) = {m e — x| <

the unit sphere SX 1 = {u € C¥ : |Ju||, = 1}, where we take e; = 1/ (mlogm) and e; = 1/ (mlogm).
In view of Vershynin [2018, Corollary 4.2.13], one can ensure that

20 2K 2 2K
Na| < (14 —21" and Nol< (1+=) .
(1—p)e; €2

1c_5p777'}, and Ny an ex-net of

This together with the union bound leads to

sz —E[z]

which holds uniformly for any € N, u,v € Ny and holds with probability at least

2Csmr K 2 " —10K logm —100
1—-({14 — 14+ — - 2e g 21—O(m )
(I-ple €2

CurvK logm
> - =
2 Jm

As a result, with probability exceeding 1 — O (m ™% + me~“%) there holds

H Hp+ AH H H Hpx AH
> (ubibihr Ala a1 ayg <o iy Ui bIRAY) |
j=1

m

<

(27 —E[z]) | +

Jj=1

Hp pHpx AH - H
SE [u b;b!'h Amajajvﬂ{m;ajlgcﬂm}} |
j=1

43



o CwrvElogm [ Asl,
= Jm m2a
<N
— 100
uniformly for any « € NV, u,v € Nj. Here, the penultimate inequality comes from (B.43) and (B.45).
For any @ obeying the assumption max; | (z — )" a;| < Csry/logm and any u, v € SX~1, we can
find @y € Ny, ug € Ny and vy € Nj satisfying ||z — o, < £1 and max {|ju — wo||, , [[v — vo|l,} < €.
Given that max; ||a;||, < 10K with probability 1 — me~“¥ for some constant C' > 0, this yields
that

(B.46)

|A20aj‘ < ‘A:aj’ +106,VEK < 2C3 ()x +a\/Klogm> Vlogm.
Recalling C4 > 10C3, we have
‘Agoaj‘ < (4 ()\ + U\/Klogm) Vlogm = Cyry/logm,

and hence 1{|Agoaj|gc4r\/@} =1, Vj. Therefore, if we let

m

f(z,u,v) = Z (qujb;'h* (x — x*)" a;a; v]l{|(m ) ay|<Caryiogm) ~U b, th* (x — x*)" v) ,

j=1

then we can demonstrate that
|f (z,u 'U) — [ (0, uo, vo)|

Hb th* (x — xp) a]a Hb th* :c—:co)H'v

+ (u — up)" bjb;-'h* (g — )Mo

7

m
H
E U — Uug) bjb;'h*(:co—w*) aja;»"v

1

J

ib; th* (g — x*)" ajaH (v—vy) |+ ugbjb;'h* (o — )™ (v — vy)

)

Il
-

j
< (||A|| 1) (I e — ol + o — 2 s — woll + llzo — @ o — voll)
< (2Klog K + 10logm + 1) (e1 + 2C1rea) ,

where the last inequality arises from (B.66). Consequently,
’uHTdebias <h* (m _ w*)H) ’U’

* «\H «\H
Z(qujb?h (x —x*)" aja; 'u]l{lm *)a;|<CaryTogm} ~U bb h* (x — x*) ’U)
j=1

< |f (z,u,v) — f (20, w0, v0)| + | f (20, w0, v0)|

N

(2K log K + 10logm + 1) (g1 + 2C1reg) +

A
< )
— 50

where the last inequality is due to the definitions r = A + ov/Klogm, e; = r/(mlogm), g2 =
1/ (mlogm) and m > K. Therefore, for any (h,x) satisfying (B.5), there holds

A
100

|7t (h* AH) | = ) vselg(,l Hdebias (h* (z — a:*)H> v < %/\ (B.47)

with probability exceeding 1 — O (mflo + me’CK).
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2. We now move on to (o, for which we have a similar decomposition as follows

uHTdebias (Ah$*H) v

s
S

)
_ Hp pH WHo H Hp pH H
—E (u"b;b Apz™ajalv — uMb;bl Apa o)
1

J

(qujb?Ahm*Haja?v ﬂ{|w*Ha_7\§20m} —-E [y]] >

=y;

.

1

J

m m
Z Hyp pH «H_ H Z Hp pH «H - H

- E |:’LL beJ Ah$ aJaj v ]l{|m*Haj|>20\/log7n}i| + u b7bj Ahil? a’.]aj v IL{\m*”a_7'|>20\/10g7n} .
j=1 Jj=1

=lw4

e For wy, similar to (B.43) we have

wa| =| > E [u“bjb?Ahw*Haja?”]1{\:0*Haj\>2o\/m}} ’
j=1
(1) &
< Z \/E [‘u”bjb';'Ahm*Haja;'vﬂ P <|w*Haj\ > 20\/logm>
j=1
(if)
< Z lu Hbjb';Ah| \/(2 lz*Ho|® + ||w*||§ HvHi) 2exp (—2001ogm)
j=1
< Z ’quﬂ'bHAh| 100
(iii) 4
< Z 1B, x Coo x —55 (B.48)
j=1
(1v) 4
< m — Xm X CQO' X W
A
<5 (B.49)

where (i) follows from Cauchy-Schwarz inequality, (ii) comes from the property of sub-Gaussian
variable |z*Ma;| and (B.44), (iii) is due to the assumption (B.5b), and (iv) comes from the fact

1bjlly = /K /m.

e Regarding the term wg = Z;”Zl (y; — Ely;]), we note that

A
Hqujb?Aha:*Haja?v 1{@*“@7‘\90\/@}"% < %bg2 m x 204/logm ‘quj‘ .

Hoeffding’s inequality Vershynin [2018, Theorem 2.6.3] tells us that

. ct? ct?
y >t <2exp|— poey =2exp | ——5
Z( ’ 400%log5m2j:1 |u"'bj|2 400%log5m

j=1
for any t > 0. Setting ¢t = % log® m for some sufficiently large constant C' > 0 yields

MWK
=

>C log®m | < 2exp (—10K logm). (B.50)

> -

Jj=1

P
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Invoking a similar covering argument, we know that with probability exceeding 1 — O (m_m),

VK
pA log3 m
A /m

I

(yj —Ely])| =C

1

J

holds uniformly for any h over the ei-net N of Bp (fi”pnr) = {h b —h*|y <

u, v over the eo-net Ny of the unit sphere SX~1. As a result, one has

fisp nr} and any

H *H H Hp 2H *H
Z (qujbj Apx ajaj”1{|m*'*aj|g20 Togm} —u bjbj Apx 'v) |

j=1
< Z(yj —Ely;]) |+ ZE [u“bjb;'Ah:c*Haja?”1{\m*Haj|>2om}} |
j=1 j=1
MWK |
<’ \/TTL IOg m + W
<A (B.51)
100
where the penultimate inequality comes from (B.49) and (B.50). Next, let us define
g(hu,v) =" (u”bjb;' (h—h*)aMa;all vl g <ooytsgmy —u bib) (h—h") m*Hv> .
j=1

Since we can always find some @¢ € N, ug, vo € Ny such that ||h — hg||, < &1 and max {||u — uo||,, [|[v — voll,} <
€2, this guarantees that

|g (h’ u, ’U) -9 (h07 UQ,'UO)|

< | D ubibl! (B — ho)2*Maafv L g <ooyisga) | + | D u'0ibY (b — ho) 2o
j=1 j=1
* H *
+ Z ((u — )" bjb;' (h—h )w*Haja?v ]l{lw*”aj\QOm} — (u — uyp) bjb;' (h—h )w*Hv) ’
j=1
i Z (ugbjb;' (h —h*)z™Ma;a! (v — vo) Lf|geta, <20 /Togm} —ufib;b" (h — h*) ™ (v — UO)) ‘
j=1

< (HAH2 + 1) (]l [ = holly + [(h = R7)[5 lw — wolly + [|h — R¥[|5 [[v — vol|,)

< (2K log K + 10logm + 1) (e1 + 2C17e2) ,
where the last inequality comes from (B.66). Since P (|*"a;| > 20y/logm) < O (m~1%) (in view of
(F.1)), we have, with probability exceeding 1 — O (m~'?), that

HTdebias (Ahm*H) H — sup

u,veSK-1

m
Hp zH *H_ _H . Hp pH *H

E (u bjbjAha: aJaj”]l{\:c*HaﬂQo\/@} u b]bjAh:c v)|

=1

IN

sup |g (h’a u,'U) -9 (hOaan 'UO)‘ + |g (h07u07v0)|

u,veSK-1

A
< (2K log K + 10logm + 1) (1 + 2C1re2) + o5
A
<
= 50

holds uniformly over h € By, (Cyr), where the last inequality is due to the choices 1 = r/ (mlogm),
g9 =1/ (mlogm) and r = A+ o+/K logm.

(B.52)

46



3. Finally, we turn attention to B3. Observe that for any fixed h and «, one has

Tdeblas Ap AH Zb AhAH ;—I _ IK) )

This indicates that for any fixed unit vectors u, v € CX we have

M Tdebias AhAH Z HbijAhAHaja v—-u Hbjb;'AhAgv)7

Jj=1

which is a sum of independent variables. Letting r :== A 4+ 0+/K logm and Cy := 10 max {C1,C3, 1}, we
can demonstrate that

Hp pH H H
> <u bib} AnALa;aiv L avg 1<cyryiogm) —U 0] AhAmv>
j=1

@
<

e BCRLITIEDY (B [u"b,6 AnAla;alo 1 aya ey | — w06 R ALv)

<
[
—
<.
Il
—

Hyp pH H_ _H
=Y (s ~E[s) - 3B TNy PN

=iws =iwe

Hyp pH H_ _H
E |:’U, beJ AhAwajaj v]l{\A;‘aj|>C4r\/logm}i|

®

2
< \/E [|qujb;|AhAgaja?v| ] P []1{|A;aj\>C4T\/logm}:|

- C?r2logm
< [ue b An| || (21A%] + 1 Aqll3 [0]3) 2exp ()

2
2[[Azl;

Z Hbjb?Ah} \/6 ||Am||§ exp (—501logm)

m Am
Z b ||2 |bHAh‘ f” ||2

S >\ ||Am AMAzl,

)

m24

where (i) follows from Cauchy-Schwarz inequality, (ii) comes from the property of sub-Gaussian
variable |Afa;| and (B.44), and (iii) is due to the fact ||b;[|, = v/K/m and the assumption (B.5b).

o Regarding ws, we note that s; is a sub-Gaussian random variable satisfying
u\/ log
s, —E[sjﬂ\w < C4r\/logm|(quj) (bHAh f <Cy |quj| .

Therefore, invoking Hoeffding’s inequality (cf. Vershynin {2018, Theorem 2.6.3]) reveals that

B[S s —Eis]>t] <2 ot 2 &
Z Sj [SJ] = S aCXp |~ C2u2r2log® m —m Hp. g | =4SP |~ C2pu2r2log® m
j=1 m Ej:l | .’l| P,
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for any t > 0. Setting ¢t = % for some sufficiently large constant C' > 0, we obtain

< 2exp(—10Klogm). (B.53)

“ CurvK log® m
P Z sj —Els;]| > ————————
Jj=1 vm

Let &1 = r/(mlogm) and e = 1/(mlogm), and set Np to be an e1-net of By, <1€5p77r) =

{h tjh =R, < f’i"’pnr}, Nz an g1-net of By (f’}pnr) = {az e — x|, < %nr}, and Nj an eo-

net of the unit sphere S¥~! = {u € C¥ : |Ju|, = 1}. In view of Vershynin [2018, Corollary 4.2.13],
these epsilon nets can be chosen to satisfy the following cardinality bounds

2C 2K 20 2K 9\ 2K
Wil < (1+ =21 NG < (14 =2 and NG| < (1+=) .
(I-p)er (I=p)es €2

By taking the union bound, we show that with probability at least

AK AK
- (1 N : 2Csnr ) (1 N 2) 1K Iog ™ > | ) (7100

l—p)é‘l 2

the following bound

NGD

holds uniformly for any h over A, any x over N, and any u, v over Ny. Consequently, with
probability exceeding 1 — O(m~1%), the inequality

Ui CurvK log®
S s~ Efs,] 5, CurvKlog’m
j=1

m

> | utbbfAnAlia;aliv L{| Atta, |<Carvisgm) ~ D05 An ALY (B.54)

j=1

=S8j

3
_ CurVElog'm | AAsl, _ A
Jm m?t 100

holds simultaneously for any h over N, any x over N, and any u, v over Ny. Additionally,
for any z obeying maxi<;<m ‘(:c—:c*)Haj‘ < Csry/logm and any u, v € S~ we can find
ho € Nn, ©g € Nz, up € Ny and vy € N satisfying max {||h — ho||y, ||z — zo||,} < e1 and
max {[[u — o[, , [v — voll,} < e2. Recognizing that ||a;||, < 10V/K with probability 1 — O (me~“¥)
for some constant C' > 0 (see (F.2)), we can guarantee that

|A20aj| < ‘Agaj’ + 10, VK < 205 ()\ -I—J\/Klogm) Vlogm.
Recalling that Cy > 10C3, we have

|Agoaj| < Cy ()\ + cr\/Klogm) \/logm = Cyry/logm,

and hence ]1{|A;0aj|gc4rm} =1 for all 1 < j < m. Therefore, if we take

m

r(h,z,u,v) = Z (qujb;' (h —h*) (x — m*)H aja?'u ]1{|A;aj\sc4rm} _'U;Hbjb? (h —h*) (x — m*)H 'u) ,

j=1
then it follows that

|r (h, &, u,v) — 7 (hg, xo, g, Vo)]
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m

Zqu bH (h — hg) (x — x*) Ha]aHv + Zqu bH (h — ho) (& — @) v

+ Zqu bH (ho — h*) (x — o)™ ajag"v + Z'U.:Hbjbl; (ho — h*) (& — @) v
j=1 j=1

n
NER

(= wo)" b8 (o — ™) (@0 — @) a;at'v — (u— o) ;! (ho — h*) (w0 — @) v)
1

<.
Il

+

NE

(b0 (ho — h*) (o — @) ajalf (v = wo) — ulfbsbl! (ho — B*) (20 — )" (v — wo))

1

2 2 *
< (A7 + 1) IR = holly llz = @oll, + (A% + 1) l1ho — B*lly & — o]l
2 2
(A2 + 1) llzo = @[l = woll, + (AN +1) g — @ [[o = woll

< (2K log K + 10logm + 1) (2 (e1)® + 201m-2) , (B.55)

<.
Il

where the last inequality arises from (B.66). This further leads to

‘uHTdebias ((h R (z— a:*)H> 'u‘

- Z( Mo (h — h*) (@ — )" 4,050 1 Ay <oy gy — U b (h = B) (@ = 27)! o)

= |T (h7wauvv) -r (hO’a:OvanvO)‘ + |7° (h0a$0au07v0)|

IN

(2K log K + 10logm + 1) (2 (1) + 2017«52) n
A

< =N’

~ 50
where the last inequality follows from (B.54) and (B.55). As a consequence, for any point (h,x)
satisfying (B.5), we have, with probability exceeding 1 — O (m*m + me’CK), that

A
100

HTdeblas ((h h*) (x — x* ) H = sup g debias ((h —h*) (x— :B*)H) v < %)\. (B.56)

u,veSK-1
To finish up, combining the bounds obtained in (B.47), (B.52) and (B.56), we arrive at
)\ AA )\

debias * . xH S A s _
HT ( —h'z )H — + 50 + 50 8"

B.6 Proof of Lemma 14

We intend to invoke Koltchinskii et al. [2011, Proposition 2] to bound the spectral norm of the random
matrix of interest. Set Z; = &;b;all. Letting | - ||y, (vesp. || - |y,) denoting the sub-exponential norm of a

random variable Vershynin [2018, Chapter 2], we have
| K K
, 2
HaJ”Qqug m "~ 0\/77L'

Here, we have used the assumption that ||;4, S o, as well as the simple facts that ||bj||2 = \/K/m and
HHaj”Qsz < VK (cf. Vershynin [2018, Theorem 3.1.1]). In addition, simple calculation yields

Bz = |lebsall], = [eteslelasls] <,

m

> E[Z;Z}]| = ZE{\fjl%ia?aibﬂ = ID_E&1PE la;|5] b8! || < Ko,
j=1 j=1

j=1
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S E[2Z5)| = |[DE[ 14 abfbsal || =[SO B[] 1613 Elajal] | < Ko?,
j=1 j=1

j=1

which rely on the facts that E[|¢;|?] =< o2, [|b;|l2 = VK /m, > b;b! = I} and E[a;al!] = I),. As aresult,

by setti
yoeTne m 1/2 m 1/2
oz :max{H§ Z| | Bz z) | }xa\/K,
iz

we can apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive

< Bz
ijbja? < ozy/logm + Bz log < ) logm < oy/Klogm (B.57)
j=1

with probability exceeding 1 — O(m~2°), where the last inequality holds as long as m > K log® m.

B.7 Proof of Lemma 15
By the definition of T' (cf. (B.28)), any Z € T takes the following form

Z = hu'' + vz"

for some u, v € CX. Since this is an underdetermined system of equations, there might exist more than one
possibilities of (h,x) that enable and are compatible with this decomposition. Here, we shall take a specific
choice among them as follows

(h,x) == arg (Ipln) { Hh”2 \~H2 | Z = hu" + v&" for some u and v} (B.58)
h&

As can be straightforwardly verified, this special choice enjoys the following property
hv = uMe,

which plays a crucial role in the proof.
The proof consists of two steps: (1) showing that

1215 <8 (Ihell3 + 1012 (B.59)

and (2) demonstrating that

14 (2)12 > 3 (el + 1ol2) (B.60)

The first claim (B.59) can be justified in the same way as Chen et al. [2020, Equation (81)]; we thus omit
this part here for brevity.
It then boils down to justifying the second claim (B.60), towards which we first decompose
2 2 2 2
A2z = |AD)I; - 1215+ ]| Z]l5 - (B.61)
——

=1 =ag

By repeating the same argument as in Chen et al. [2020, Appendix C.3.1, 2(a)], we can lower bound as by

HI2 2 1 2 2
@ > |||+ [loa 5 = o5 (Ialls + o)
We then turn attention to controlling «v;. Letting Ap = h — h* and A, = x — x*, we can write

hu' + vzt = (B + Ap)u + v (2" + AL)"
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= h*u" + Apu + ozt oAl

This implies that «; can be expanded as follows

ar = A (rru 4 oa) [ - [ o+ A (Aput +oAD) |, - || Anu oAl

=71 =2
+2(A (R u +vz™) | A (Apu +vAR)) — (AU + vz Apu +vAl),

=73
thereby motivating us to cope with these terms separately.

e Regarding 1, it is easily seen that

ol < [PrA APy — Pr| - [eu +va |2 < o (Il + lo]?)

where the last inequality is obtained by invoking Li et al. [2019, Lemma 5.12].

e When it comes to 3, we observe that

2
1> — | At oAl 2> o ((lul} + oll)
100
under our constraints on the sizes of A and Ag.

e The term 73 can be further decomposed into four terms, which we control separately.
1. First of all, observe that
(A (va™) A (vA) — (va™ vAl)
<[{A(va™), A(vA))| + (v, vAZ))
®) .
< [lA (o), A (vAg)
(11) m

- 1
< DB et | S [ Al + 5 (ol
Jj=1 j=1

111 1 2
< JIvl pmax fota - flol mx |Ala, +200 ol

< 204/logm - C\/logm ()\—i— ax/Klogm) o2 + = 200 w2

1

o+ llz* 1l [| AR, llv]3

(iv

where the (i) and (ii) follow from the Cauchy-Schwarz inequality and (B.5a) that ||AH|| s S A+
oyKlogm < 1/200; (iii) comes from the fact that Y 7", b;b}! = Ix and thus > ‘bH’U’
Z;":l vajb;"v = v"v = ||v||3; (iv) is due to Lemma 38 and (B.5b); and the last inequahty holds true

as long as o/ K log®m < 1.

2. Similarly, we can demonstrate that

’<A (h*uH) LA (’UA:)> — <h*uH,'UA2>‘

—

i) m
< |3 o] [ulay Z|bHv| |Aba,|” +200 [l 1]l
Jj=1

j=1
() | &
< Z‘b”h* |uHaJ| C’\/logm</\+a\/Klogm) lv]ly +

J=1

1
5o 1l ol
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1

< o= llull ol

where (i) holds for the same reason as Step (ii) in (B.62); (ii) arises due to the identity Z;nzl |bJHv’2 =
|v]|3 and (B.5b); and the last inequality relies on the following claim.
Claim 4. With probability exceeding 1 — O (m7100)’ the following inequality

= 2K 1
Z!b”h* [ua, " = flul] S /5= ul; (B.63)

holds uniformly for any w.
Proof. See Appendix B.7.1. O

. The next term we shall control is
(A(Rrut) A (Aput)) = (Buf, Agut) = 3 (0R7) (B An) ([aful* ~ ul}).
j=1

By virtue of the Bernstein inequality Vershynin [2018, Theorem 2.8.2|, we have

P (|(A (hu¥) A (Agu)) - (hu¥, A > 7 ul?)

72 T
<2 — —
< Zmax {exp( 4||BAh|ZO> 7€XP< 4||BAh||oo||Bh*|oo>}

for any 7 > 0. Let us choose 7 to be

7 =2|BAs|. 2K logm + 8 |BAy| . [|Bh*|| K logm.

In view of (B.5b) and (7), this quantity is bounded above by

1
< =
T S 204/ 2K logm + 80\/>K10gm < 00"
It then follows that
P <|<A (R*u"), A (Aput)) — (R*u", AhuH>| 2 ||u||2) <2exp(—2Klogm). (B.64)

Additionally, define r := A+0+/K log m, and let N, be an e1-net of By, (16;5p77r) = {h tlh = h*]|, < %nr}

and Ny an ez-net of the unit sphere S¥~1 = {u e C¥ : |ul, =1}. Let ey = r/(mlogm) and
go = 1/ (mlogm). In view of Vershynin [2018, Corollary 4.2.13], it is seen that

2 2K 2 2K
W] < (14 265 and Np| < (1+2) .
(1—p)51 €9

Taking the union bound indicates that with probability at least

9 2K L
L (1 N Csnr > (1 . > L9e—2Klogm 5 1 L O (100
(I=p)ex €2

the following inequality

1
‘<A (h*uH) JA (AhuH)> — <h*uH7Ahu >‘ > 100 ||u||2
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holds uniformly for all (h,u) € N, x Ny. As a result, for any (h,u) € N x Ny, there holds

(A () A (Ana) — (!, A = il

. Furthermore, if we let

with probability exceeding 1 — O (m™='%)

F(h,u) = <A (h*uH) ;A (AhuH)> - <h*uH, AhuH>,

then for any h € By ( 777“) and u € SK~1 we can find a point (hg,ug) € N x Ny satisfying

| — holl, < &1 and [Ju — uolf, < 5. Consequently, one can deduce that
IF () = F (o, o)
< [(A (P (w=u)") A (= B u") ) = (B (= ug)", (b~ h)ut)|
+ (A (R*ug) , A((h = ho)u')) = (h*ug, (h = ho) u")|
(At A ((h— ho) (= uo)") ) = (B*ull, (b — ho) (1 — uo)")|
< (1A + 1) 0 el e = wolly [ = [l + (AN + 1) 1B lfwly luolly |1 = Boll

+ (A + 1) Bl o]l llw = wolly [1h = Roll,

IN

(2K log K + 10logm + 1) (105 nreg + €1 + 6162)
—p

< —
< ool

as long as m > K, where the above bound on || A relies on Lemma 1. Hence, with probability
exceeding 1 — O (m*m) we have

(A (h*u) A (Apu)) — (h*u", AhuH>| < |F (h, u) —~ (ho,uo)l + |F(h0,u0)|
1

which holds uniformly over all h € By, ( ) and u € SE-1.

4. The bound on <A (v:c* ) JA (Ahu )> — <'v:c*H, AhuH> can be obtained in a similar manner; we thus
omit it here for simplicity.

5. The above bounds on four terms taken collectively demonstrate that

1 1 , 1 1 ) )
sl < o= 1013+ o el [0l + o5 el + 1o lally ol < o (Il + lolZ)

Combining the above results, we can continue the relation (B.61) to conclude that

IA(2)]5 = az + a
’h*HF_i_ w2 1 2 4 1pl2) — 1 2 2
[P a5 + [Joa[ = =5 (lullz + 0l3) = Inl - 100 lull3 + llvll3 2 Uz + vl

1 2 2
5 (lull3 + I10[1)

Y

Y

as claimed.
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B.7.1 Proof of Claim 4
We start by defining

m

2 2 2
ni= Y [oh ) (Jaful” — ul}).,
j=1
which is the sum of sub-exponential variables with zero mean E “a u| w5 ] 0.

Concentration. In view of the Bernstein inequality (cf. Vershynin [2018, Theorem 2.8.2]), we have

m
S L N (R T | =
j=1

S 2MaAX§ €XP | ——————5——5 | ,eXpP | — 2
4B ul? 1B Jull,

7= 4B |lull, v2K logm + 16 | BR* |2, |[ull, K logm,

for any 7 > 0. Set
then there holds

P> [pHRe| (‘a'ju’? - ||u||§) > 7 llul? | < 2exp(—4Klogm). (B.65)

Union bound. Next, define j to be an €y-net of the unit sphere S¥~! := {u € C¥ : ||u|, = 1}, which
can be chosen to obey VeI shynin [2018, Corollary 4.2.13]

2K
2

|N0| < (1 + ) .
€0

By taking the union bound over Ny, we reach
Z |6 | <|a ul” = [ul? ) > 4||Bh*|| /2K logm + 16 | Bh* ||, Klogm,  Yu € Nj

with probability at least

9 2K
_ (1 + ) e—4K10gm > 1—-0 (m—lo) .
€0

Approximation. Our goal is then to extend the above concentration result to cover all h € By, u € SK—1

simultaneously, towards which we invoke the standard epsilon-net argument. For any u € SE=1, let ug € N
be a point satisfying |[u — ugl|, < €o. Then straightforward calculation gives

>l (ol = i) | - S [plin (laftuol” = lluoll3)

j=1 j=1

) m m
OIS (o8 Re* |attul” = 1112 ull2 = 3 655 @l + [B* |2 uo| 2
.

= 14 () = (14 () [ + lluoll3 — 1l

(i)
< [l () [ = A () 1] + leo = wlly (uolly + )
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(iii)
< |(JA (R U], + A (R*ug) [[,) A (R*u") = A (R ug)||,] + e
S AN (R llally + 1B llaolly) [1R* 15 e — wolly + €

(iv)

< (4K log K +20logm + 1) €,

where (i) comes from Y7, b h*
the following bound

’2 = ||h*\|§; (i) and (iii) are due to triangle inequality; (iv) follows from

Al < V2K log K + 10logm, (B.66)

which holds with probability at least 1 — O (m~'°) according to Lemma 1. Letting ¢y = r/ (mlogm) with
r = A+ o/ K logm, we note it satisfies

9 2K
1— (1 + ) 674Klogm > 1—-0 (mfw) .
€0

Putting all this together. Therefore, we conclude that: with probability at least 1 — O (m*w), one has

In] < 4| Bh*|| /2K logm + 16 | BR*||>, K logm + (4K log K + 20logm + 1) ¢

< [u2K logm
~ m

uniformly for all h € By, and u € SK~1, with the proviso that m > Cu2K logm. Here, the second inequality
arises from (7).

C Analysis: Nonconvex formulation under Gaussian design

We consider the loss function

m
L. Hy H 2 2 2
minimize f(h,x)= 2:1 b haa; — ;| + AR5 + Az - (C.1)
j=
The main idea similar to the one presented in Appendix A, although the proof for Gaussian design is easier
due to the presence of more randomness. We shall also assume ||h*||2 = ||z*||2 = 1 for the sake of simplicity
and adopt the same notation as (A.2a)-(A.5b). The main part of the analysis lies in demonstrating the
following set of hypotheses by induction:

dist (zt, z*) < ||2t_1/2 — z*||2 < pdist (zt_l, z*) + Ci1m (/\ 4+ ov/mK logm) (C.2a)

3 2
dist(=+0), 3%) < C1 ( VEEm TV e m) (C.2b)
3 2
e |alH (it 7m*)| <Oy (\/mKlog m n ovmK log m) (C.2¢)
1<i<m m m
_ / 3 / 2
max b} (R’ — h*)] §013< mf g m | ovm g m) (C.2d)

for some constants C11,C12,C13 > 0. Additionally, to complete the induction argument for the base case,
we are in need of the following results of initialization:

< VmK log®m n ovmKlogm

~ )

m m

dist (2°, 2*) (C.3a)
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3 2
dist(zov(”,zo) < Cys (\/Klog m n o\/Klog m) 7 (C.3b)

m m
3 2
max ‘al @ —= )| < O (\/mKlog m o, ovmK log m) 7 (C.3¢)
1<Ii<m m m
3 2
Jmax [ (A~ *)| < Cus ( v mKn}LOg LA mf;log m) . (C.3d)

C.1 Induction analysis

Before embarking on the analysis, we state below a useful lemma which is direct consequence of the hypotheses
(C.2) and (C.3).

Lemma 19. Instate the notation and assumptions in Theorem 3. For t > 0, suppose that the hypotheses
(C.2) and (A.14) hold in the first t iterations. Then there exist some constants C,C’ > 0 such that for any
1<l <m,

dlst z - SC mKlog m )\+J\/7;11Klogm)’ (C.4a)
|n @) - ha *“]<c’<VmKlog n HJ”ZKlogm), (C.4b)
H?’(l) 90 < mKlog m )\+a\/nT:LKlogm> ’ (C.4c)
1 ~ 3 1 3

s<ll <5 5<Ipl <3 (C.4d)

1 3 1 ~ 3
s<@C, <5 5<[aO, <3 (C.4e)

1 ~ 3 1 ~ 3
<015 =IOl <3 (C.4f)

In addition, if t > 0, then one also has
/ 2

|22 - ||, < C ( mKniOg m A ”V?flogm) . (C.4g)

This lemma can be proved in the same manner as Lemma 3 and hence we omit the proof here for brevity.

C.1.1 Characterizing local geometry

Similar to the nonconvex analysis of blind deconvolution, our first step is to establish some kind of restricted
strong convexity and smoothness as described in the following lemma. The proof can be found in Appendix
C.2.

Lemma 20. Let 0 := ¢/ log® m for some sufficiently small constant ¢ > 0. Suppose that m > C'K log® m for

some sufficiently large constant C' > 0 and that o/ K log® m/m < ¢ for some sufficiently small constant
c1 > 0. Then with probability 1 — O (mflo +e Klog m), one has

"[DV?f () + V?f (z) D] u > T ul;  and
IV2f (2)] < 3m



simultaneously for all points

hy — hs NIk
[ h | L _ Yol x
z—[w}, u = hor — s and D = I
Ty — T2 Yol K
obeying the following properties:
e z satisfies
max {[|h — h*|l,, | —2"||,} <, (C.5a)

H o
1r£1;a£xm{’aj (x—a*)

) b;l (h - h*)’} < Cl3ma
o 2y := (hy, @) is aligned with zo := (ha, x3) in the sense that ||z1 — z2||2 = dist(21, 22); in addition, they
satisfy
max {[[h1 — h*[|y, [[h2 — h*|l, l&1 — 2[5, [[X2 — 2™} < 6;

® 71,72 € R and obey
max {[y1 — 1[, [y2 — 1]} < 4.
C.1.2 /5 error contraction

Next, by employing the established restricted strong convexity and smoothness in Lemma 20, we can prove
the hypothesis (C.2a) holds inductively. Our result is this:

Lemma 21. Set A = C\o/mK logm for some sufficiently large constant C > 0 and the stepsize n = ¢, /m
for some sufficiently small constant c;, > 0. Suppose the sample complexity satisfies m > CK log®m for
some sufficiently large constant C' > 0. Then if the hypotheses (C.2) hold true at tth iteration, we have for
some constant C1 > 0,

dist (2", 2%) < (1 — ¢, /16) dist (2", 2*) + C11n (A +oy/mK logm) ,
holds with probability exceeding 1 — O(m~1%9).

Proof. The proof is the same as the analysis for Lemma 5 with the help of Lemma 20 and thus omitted here
for simplicity. O

Before moving on to the next step, we provide a corollary to guarantee that the alignment parameters
does not change much between adjacent iterates.

Corollary 2. Instate the notation and assumptions in Theorem 3. For an integer t > 0, suppose that the
hypotheses (A.6) and (A.14) hold in the first t — 1 iterations. Then there exists some constant C' > 0 such
that for any 1 <1 < m, one has

2
laf] — 1] < dist (3¢, 27) < YK logm  oymETogm

) (CG&)
m m
atf—_li2 B 1‘ <e, (W n ovmKlog m) 7 (C.6b)
at m m
2
‘ a;(igual _ 1‘ < Hgt,(l) _ Z*H2 < \/mf(nlbm n m/mi(ilogm7 (C.66)
1 3 1 3
gﬁHfmﬁgv §§Hmm§§’ (C.6d)
1 3 1 3
sl =5 5= p O3 (C.6e)

with probability at least 1 — O (mfloo +e “Klog m).

This corollary can be proved in the same way as Corollary 1 and hence we omit it here for simplicity.
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C.1.3 Leave-one-out proximity

The next step is to control the discrepancy between the leave-one-out sequence and the original sequence.
The formal statement is given in the lemma below.

Lemma 22. Suppose the sample size obeys m > CK 1og3m for some large enough constant C' > 0. If the
hypotheses (C.2) hold true for the tth iteration, then with probability exceeding 1 — O(m™19), we have

VK log? VK1
max dist (Zt+1,(l)72/t+1) <Oy ( og"m n o ogm> ’ 1)
sStsm m m
/ 3 /
max ‘Ztﬂ’(l) — ZH’IH < Chz ( K log”m + Z Klogm) . (C.8)
1<i<m 2 ™ m m

The proof can be found in Appendix C.3.

C.1.4 Establishing incoherence

Then we proceed to prove the incoherence hypotheses, i.e. (C.2¢) and (C.2d). They are much easier to
handle than the Fourier designs. We actually only need to prove the incoherence of a; and x'*!'. Then the
other follows immediately by the symmetry between {a;}7"; and {b;}2; under Assumption 2. Similar to
(A.21), the triangle inequality and Cauchy-Schwarz inequality yield

laf' (" —2*)| < ’a{' (3! — 5t+1’<l>)‘ + ’azH (@0 g7

<l 341 - 310, + [ (@10 — o)

V K log® V K log?
g10\/ﬁcm< n:ngrU mog m)

K log? K1
m m

<Oy (\/mK log® m n ov/mK log? m) 7 (C.9)
m m
where the penultimate inequality follows from (F.1), (F.2) and (C.8). This establishes the hypothesis (C.2c)
for the (t 4 1)-th iteration.
The incoherence of b; and h'*! (as stated in the hypothesis (C.2d)) follows from the symmetry between
{a;}7L, and {b;}7";. We summarize the results in the following lemma.

Lemma 23. Suppose the sample complexity obeys m > CK logm for some sufficiently large constant C > 0
and A = Chov/mKlogm for some absolute constant Cy > 0. If the hypotheses (C.2a)-(C.2d) hold for the
tth iteration, then with probability exceeding 1 — O (m_loo) for some constant C13 > 0, one has

VmKlog®m L ov/mK log>m
m m ’

el (20 =) | < O

max ‘b?
1<I<m

~ 3 2
(ht+1 _ h*) ’ < Oy (\/mKnlLog m L o\/m[jnlog m) 7

as long as Cis > 0 is some sufficiently large constant and n > 0 is taken to be some sufficiently small
constant.

58



C.1.5 The base case: Spectral initialization

The last step of the proof is to establish the induction hypotheses for the base case. The following three
lemmas justify (C.3a)-(C.3d) respectively.

Lemma 24. Suppose the sample size satisfies m > CK log® m for some large enough constant C > 0. Then
with probability exceeding 1 — O(m™1Y), one has

dlst z - /Klog m /Klogm
dlst O(l * Klog m /Klogm 1 <l<m,

Proof. With the aid of Lemma 40, the proof is essentially identical to Ma et al. [2018, Eqn (94)] and thus
omitted here for brevity. O

and ||ag| — 1] < 1/4.

Lemma 25. Suppose m > CK log® m for some sufficiently large constant Cio > 0. Then with probability at
least 1 — O(m™1), one has

Ci2V K log?
s dise (00 30) < Coz/KlogTms

1<Ii<m m

Proof. The proof of this lemma is deferred to Appendix C.4. O

Lemma 26. Suppose that m > CK log® m for some large enough constant C > 0. Then with probability at
least 1 — O(m™1), we have

_ K log® K log?

max |a! (3 — 2*)| < Cis | || — 2 4oy | 2 T
1<j<m m m
/ 3 / 2

< Cu Klog m+a Klog®m
m m

Proof. The first inequality can be established by the same derivation as for Ma et al. [2018, Lemma 21],
which is omitted here for brevity. The second inequality follows immediately since {a;}72, and {b;}"2, have
the same distributions. O

mas o} (h—h*)

C.2 Proof of Lemma 20

To begin with, we decompose V2 f(z) as follows
sz (Z) = /\I4K +E [Vereg—free (Z*)} + (V2f (z) —-E [vzfreg—free (ZJ*)} - /\I4K) )

where

freg free Z ’thIE a; _y]‘ .

Jj=1
The following two lemmas allow us to control the two terms on the right-hand side of the above identity
separately.

Lemma 27. Instate the notation and conditions of Lemma 20. One has
[B[V2 egee ()] | =20 and  u™ [DE[V2 frgee (2)] + E [V freg e (57)] D] 0 > m [uf3
Proof. Note that the expression of E[V? fregfree(2*)]/m is the same as that of V2F(2*) in Ma et al. [2018,

Lemma 26]. Hence the proof there can be straightforwardly adapted to our case and thus omitted here. [
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Lemma 28. Suppose the sample size obeys m > CK log® m for some large enough constant C > 0. Then
with probability at least 1 — O(m~=1%), one has

V27 (=) —E[V2F ()] <

m

o~ =

holds uniformly for all z satisfying (C.5).
Proof. See Appendix C.2.1. O
With these two lemmas in hand, we have, for any (h,z) obeying (C.5), that
IV2f ()| < [|E[V2F ()] +[[V2S (2) = E [V2f ()]
< B [V2 fregeree (29)] | + A+ [ V3£ (2) —E[V2£ ()]
<2m4+ A+ 1m

4
< 3m.

Furthermore, it is readily seen that
u" [DV?f (2) + V*f(2) D] u
= uH {DE [v2freg—free (Z*)] +E [Vereg—free (Z*)] D} u -+ 2/\’U,HDU
+u"D {V2f (2)—E [sz (z*)] } u + uM {sz (z)—E [VQf (z*)] } Du
()
> mful; +2X\ (1= 06) [lu]; —2|D||||[V*f (2) = E [V*f ()] || [l

(i) 9 9 1 2
2 mllully +2A (1 =) Jully =21 +8) - Zm [lull;

where (i) is due to Lemma 27 and the fact that u"Du > (1 — §)|lu||%; (ii) relies on the bound | D| <1+ §
and Lemma 28; and (iii) holds as long as 6 < 1/4. We have thus finished the proof for the desired smoothness
and restricted strong convexity conditions.

C.2.1 Proof of Lemma 28

The idea of the proof is similar to that of Ma et al. [2018, Lemma 27| except that the design of {b;}7 is
different. By triangle inequality, we can upper bound the quantity of interest as

[V2£ (2) — E [V2f (2*)]|| < 201 + 20 + o + 4oy, (C.10)
where
a1 = Z’a?‘d bibj —mlIx||, Qg = Z‘byh‘ ajaf —mIk||,
Jj=1 j=1
a3 = Z (b;lh,xHaj — yj) bja;‘{ s oy = Z b]b;lh, (aja;{w)H _ mh,*m*H
Jj=1 j=1

We will control these four terms separately as follows.
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Controlling «;. In terms of oy, by the triangle inequality, one has

i (|a sr:| )b bH Z|aH:c*| blb?I —mIg

=M =72

1. Regarding 71, we have

IN

3 < |3 [lattal” ~[atiar

j=1

m
2 2
Slg%xm“a?w’ — |afz*| ’ X;bjb;'
]:
9 m
< max, (‘a;' (x—a*)| +2 ]a;' (x —x*)| ‘a;'ac*’) . Z:bjb? . (C.11)

It is first seen that

s (|at (@ — )" + 2]l (@ - )] afa*])

2
< (Clgﬁ) +2C13m20 logm
1

5013logm'

When it comes to || Z;nzl bjb';”, one has

m

Z b]b;_l Z - IK + m. (012)
j=1

We intend to invoke the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2| to control
1520 (bjbl! — Ik )||. Observe that
1}
P1

Here, we have used || Hijguw2 < VK (cf. Vershynin [2018, Theorem 3.1.1]). In addition, simple calcula-
tion yields

Bz i= [ [Josbff = I = | max {1115 - 1

< |11

2
+1<K.
P2

m m

SB[ (b6~ Iie) (b} ~ L) || = | SO E[ibfsb - 1] | = (5 + 1)m
j=1 j=1
and
> 8 { (00} — 1i)" (08~ 1) || = | B bt} — 1) (08~ )] = 5+ )
j=1 j=1

As a result, by setting

1/2 1/2
m m

0z = max Z]E[(bjb?*[}{) (bjb;'*IK)H] ) ZE[(bjij*IK)H (bjb;'*IK)]

J=1 Jj=1
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=V (K+1)m,

we are ready to apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2| to derive

" Bz/
Z(bjb?fIK) < oz+/logm + Bz log <Zm> logm < v/mK logm (C.13)
° 0z
Jj=1
with high probability. Substitution of (C.13) into (C.12) yields

> bbl | < 2m, (C.14)
j=1

as long as m > K logm. Plugging this inequality into (C.11) gives

Y1 5 0131 . (015)
ogm
. The second term ~» can be further decomposed as follows
72 < |30 (Jafar " = 1) bd|| + | S0 bsblf — e (C.16)
j=1 j=1

The second term on the right-hand side of (C.16) has already been considered in (C.13). We are therefore
left to control the first term. Let

o H x[2 H x2 H
Wj = <|aja: | Ly |atar| <20 viogm} ~E “aja: | ﬂ{|a?m*|g2om}D bjb;.
We make the observation that

m
> (Jabfa*[* ~ 1) b8y

j=1

m m
H,x|2 H H, |2 H
S Z (|aj T | ]1{|a;'m*|§2()v10gm} _1) bjbj + Z ’aj .’13*| ]l{‘u,;‘a:*|>20\/logm} bjbj . (017)
=1

Jj=1

Regarding the second term of (C.17), due to (F.2) we have

m

H,x|2 H
Z ’aj (L'*‘ ]l{la?m*‘>20\/logm} beJ =0
j=1

holds with probability over 1 — O(m=1%9). For the first term of (C.17), one can derive

m

2
) (’a?‘”*‘ L |atar | <20 Togm} _1) b;bj
j=1
<[Dowi|+ > (E Ua’?w*|2]l{|a;'m*|§20\/@}} - 1) b;bj}
j=1 j=1

IN
]
5

m

H, |2 H

+ e [ [labfe "€ o) ooty ] — 1] 22 0
g 2
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m m
H,.x |2 H
Z; Wj + 1<mja‘Xm]E |:|a'j T | ]1{|a';m*|>20w/logm}:| ’ ; bjbj 5

where the first inequality holds due to the triangle inequality. Invoking the Cauchy-Schwartz inequality
yields

E [|a;'x*}2ﬂ{|a?m*|>2om}} < \/IE [|a5‘az*|4] -P (|aJH:c*| > 20\/logm)

< o) (m—loo) ,
which taken collectively with (C.14) gives
2 < _ _
2 B e 1 g o] [0 0 ) am=0 (). (a9
§=

We can then invoke the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to control
1375, W To this end, note that

2 2
By = HHWJHHM < (20y/logm) - H”bﬂ'”Zsz < Klogm,

where we have used ||||b;||2 < VK (cf. Vershynin [2018, Theorem 3.1.1]). In addition, simple calcu-
J P2
lation yields

m m
STEW W = |3 Var (a2 | 1 g | csoymszmy ) E[bib800Y || <3 (K +2)m
j=1

j=1
and
iE[WJHWJ] = Zm:]E[W WH| <3(K+2)
Jj=1 j=1
As a result, by setting
. 1/2 . 1/2
oz =max{ | Y _EW,W/| | EW/'W,] <V3(E+2)m
j=1 j=1

we can apply the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2] to derive

m
ZW]' < oz+/logm + Bz log < \F) logm < v/mK logm (C.19)
j=1

with high probability, where the last inequality holds as long as m > K log” m. Plugging (C.18) and
(C.19) into (C.17) gives

i (|a?m*’2 - 1) bjb;' < v/mK logm. (C.20)

j=1
Substitution of (C.13) and (C.20) into (C.16) yields

Yo < y/mK logm. (C.21)

As a consequence, taking (C.15) and (C.21) collectively yields

< — —|— vmK logm. (C.22)
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Controlling a;. Regarding as, since the roles played by {a;}7, and {b;}7, are symmetric in this

problem, it is easily seen that «s admits the same bound as that of «;.

Controlling a3. When it comes to the third term ag, one makes the observation that

Zb b (ha' — hra*") Zé}

(C.23)

The second term on the right-hand side of this relation has already been bounded by Lemma 36. Regarding

the first term on the right-hand side of (C.23), one can further decompose

Z b; bH - h*m*H) aja;|

J

< Hm (hmH — h*m*H) H + ijb;' (hmH — h*m*H) ajaH -m (ha:H — h*az*H)

< |Im (ha™ — )| + Zb th* (z — x*)" aja;' — mh* (@ — z*)"

+ Z th h*) z*H aja m(h—h*)x

+ Zb bH (h— h™) (CIZ—SL’*)HCL]CL m(h —h*) (z — )"

(C.24)

To bound the last three terms of (C.24), we resort to the following two lemmas, whose proofs can be found

in Appendix C.2.2 and Appendix C.2.3.
Lemma 29. With probability at least 1 — O(m ™% + me=CK) for some constant C > 0, one has

H

Zb th* (x—=x )H ajaH < 26m

5 —mh* (z —x¥)

holds uniformly for any x satisfying (C.5).
Lemma 30. With probability at least 1 — 2 exp(—CK logm) for some constant C > 0, one has

Z b;bf (h — h*) (z — )" ajall —m(h—h*) (@ — o) < 8%m +4C'VmK
holds uniformly for any (h,x) obeying (C.5) for some sufficiently large constant C' > 0.

By the symmetry between {a;}7", and {b;}}]; and Lemma 29, one arrives at

m

sup || Y b (b — h*) z*Ma;al! —m (h— h*) 2| < 26m

mesjl

with probability over 1 — 2exp(—CK logm). Plugging (C.25), (C.26) and (C.27) into (C.24) yields

ijb;' (th — h*a:*H) a]a,'jTI < 6dm.
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Substitution of (C.28) and (D.3) into (C.23) thus gives

az < 66m + Coy/mKlogm (C.29)

for some large enough constant C' > 0.

Controlling a4. With regards to the last term a4, we have

Z b; bH — h*:c*H) aja?I + Z bjb;'h*az*HajaH mh*z*H

i~

=:04 =10y

These two terms have already been bounded by (C.28) and (F.9) respectively. Combining this inequality
with (C.28) gives
ay < 66m + 4C,vVmK logm. (C.30)

Putting all this together. Finally, by plugging (C.22), (C.29) and (C.30) into (C.10), we arrive at

m 1
||V2f( — V?F (2")|| S o/mK logm + Togm < m

holds with probability exceeding 1 — O(m™=19).

C.2.2 Proof of Lemma 29

Consider the event

= {lr<na<x |th*| < 20+/logm nax ||aj||2 < 10\ﬁ} (C.31)
J
(F.1) and (F.2) suggest that event € holds with probability at least 1 — O(m =% + me=“K). The proof
thereafter will be developed on this event.
Due to the assumptions (C.5), we have — for any given unit vectors u, v € CKX — that

H Hyz * H Hp % *H
Zu b b h (z -2 74 U_Zu bj b h ) A v]l{‘(w—a:*)Haj|§200131 573 }

::Xj

In what follows, we shall first establish concentration inequalities for this quantity for a given point (u,v),
and then establish uniform concentration that holds for simultaneously for all points of interest.

Concentration. Consider any fixed unit vectors u and v). We seek to invoke the Bernstein inequality
Vershynin {2018, Theorem 2.8.2] to control " (X, — E[X;]). We observe that

1X; —E[X

j]”% <C ||XjH¢1 <C

lu™®51],,, llaj'll,,

b;'h* (x — xz*)" a; ]l{‘

—_x*\a.l< 1

- Cloyn

H
z—x) a;l
( ) J {|(w7m*)Haj‘§2OC13m}

1
< 400CCh3 ,
logm
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where the first inequality comes from the fact that || X — E[X]||y, < C||X||y, (cf. Vershynin [2018, Section
2.7]) and the last inequality is due to the event £. Hence, the Bernstein inequality Vershynin [2018, Theorem
2.8.2] reveals that

t2log?
P Z(Xj—E[Xj]) >t S2€Xp<—cmin(c:im,tlogm>).

j=1

Letting t = Cyv/mK for some large enough constant C; > 0, we obtain
> (X, —E[X])| < CVmK, (C.32)
j=1

with probability exceeding 1 — 2 exp(—cC? K logm).

Union bound over epsilon-nets. Next, we intend to show that (C.32) holds uniformly for any unit
vectors u and v. Define N to be an e;-net of Bz (8) == {x : ||z — z*||» < §} and Ny an ez-net of the unit
sphere SX~1. In view of Vershynin [2018, Corollary 4.2.13], we can choose these nets to guarantee that

2K
N<< 25) and |N0|<<1+€2> .
2

Taking these collectively with the union bound reveals that (C.32) holds uniformly for all x € A, and wu,
v € Ny with probability exceeding

95\ 4K 9\ 4K
1- (1 + ) (1 + ) -2exp (—cC;fK logm) > 1—2exp (—CK logm).

€1 €2

Approximation. We then turn to the following quantity

‘(mfw*)Haj|§20C13

(u, v, x) Z[beHh*mm)Haja?]l{ }vmh*(mm*)H

1
log3/2 m

For any x satisfying the assumptions (C.5) and any u, v € SK~1, one can choose Ty € N, ug € N and
vy € N satisfying || — xol|2 < €1 and max{||u — g2, |[v — voll2} < €2. Set ¢ = §/K and €3 = 1/4. The
triangle inequality gives
|g ('LL,'U, :B) ) (an’UO?wO)‘
S |g (’Uq’U,QZ) ) (Uo,’l),(B)| + |g (’U,(),’U,w) - g(u07v07w)|

+ |g (UO,Uo, :E) -9 (u07v0,$0)‘

<2 Zb th* (x—x )Haja ]l{ }—mh*(w—m*)H €

|(@—a*)"a;[<20C15 —57m—
+ |9 (w0, vo, ) — g (w0, vo, ®o)| - (C.33)

To simplify the second term above, we notice that on event £ (cf. (C.31)),

)(IB — :BO)H aj‘ < max |la,ll, - [|& — 2o, < 10VEK - € <2043

1<5<m log®?m’ (C.34)

and hence

‘(:co fm*)Haj‘ < ‘(:cfa:*)H aj‘ + ‘(a:f:co)H a;

66



1

<4Ci3——sr—. C.35
=~ 13 10g3/2 m ( )
As a result, one has the following identity
{|(m—m0)Ha_j|§20013logsﬁ} {\(mo_m*)Ha_,»\gzoclsm} {|(m_m*)Haj|§20013ﬁ} ( )
It then follows that
|9 (w0, v0,®) — g (uo, vo, To)|
Z b]th* (x — )" aja 1 —mh* (z —x0)"||. (C.37)
{|(m7m0)Haj|S2()C13m}
Plugging (C.37) into (C.33) yields
|g ('U,, v, ZC) ) (’U'Oa Vo, .’BQ)‘
<2 beh*:I:—:v Ha.at1 —mh* (x — 2" e
Z )" aja; {‘(mftc*)Haj|§20013m} ( ) || €2
b;b7h* (x — x9) a0 1 —mh* (& — x)"| . C.38
Z1 jbi R ( 0) aja; {|(w7mD)Haj|gzoclgm} ( 0) ( )

Next, we look at g(ug,vo, o), and notice that (C.32) holds for

H
X; =ufb; b h* (xg — x*) a]aHvo ,
{|(w07w*)Haj|§20C137312 }
log /2 m

due to g € N, ug € Ny and vy € Ny. By virtue of the triangle inequality, one has

|g (UO,'l)o, $o)|

< i(Xj -E[X;]) i( — mullh* (:co—a:*)Hvo)

< CyvmK + ZE ugibjb;'h* (zo — z*)" a;a; v]l{

H 1
j=1 L |(wo—w*) aj|>20013 1Og3/2m}]

< CyWmK, (C.39)

where

E

H Hp % *\H
ugb;b; h* (xo — x*)" a;a; Hyo 1 y )
[(o—z*) aj|>20013m

which is a consequence of (C.36).
Putting all this together. Let us define
1
S = {:c : ’(a: — )" a;| <20C 3 ——5—, [lz —z"|, < 6} .
log 2m
Taking (C.38) and (C.39) collectively gives rise to

|g (’LL,’U,CC)‘ < |g (U07’Uo,m0)| + ‘g ('LL,'U,:L') - g(u07v05m0)|
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" ) —mh* (x — ") e
‘(mfz*) a].|§20C13m}

CivmK + 2 beHh*:c—;c)Haja?]l{

Z b;bi'h* (@ — xo)" ajal 1

m

H
—mh* (x —x . C.40
{‘(mfzg)Ha]WSQOCl;;W} ( 0) ( )

A key observation is that o’ := 5(x — x¢) + x* € S by ||z — zo||2 < €1 and (C.35). Hence, the last term
n (C.40) satisfies

Hp * H H * H
_ aF _ _
E b;bj'h (x — xp) aja; l{|( Fay| <2001, } mh* (x — xg)

1
log3/2 m

= % ib th* (' — sc*)H aja;' ]l{ } —mh* (z' — :L'O)H

H 1
|2/ —a.) aj\§2001310g3/2m

1
ggsup Zb )Hajag'll{|

meSjl

—mh* (z — )|,
(F—x*)Ma, |g20013l }

0g3/2m

where the first equality comes from (C.34). Plugging this inequality into (C.40), taking the maximum over
u and v on the left-hand side of (C.40) and rearranging terms yield

(1 —2e3) Zb th* (x—x )Haja?]l{ }—mh* (@ —2*)"

Ha . a1
|(m—m*) aj‘§2001310g3/2m

<2C:vm —&-fsup Zb th* (x—=x )Haja?IL

wES]1

o . —mh (& —z)"
{‘(m—m*) a,j|§20013m}

Further, taking the maximum over & € S on the left-hand side of the above inequality gives

1 H H
1— 24— = b;bl'h* z* 1 —mh* (x —x*)"|| < 20,VmK
( “ 5) acs Z ( ) a {|(:c m*)HaJ|<20013‘ 3}2 } " (w w) = 2Cvm 7

wES]l

and, consequently,

sup S b,8"R* (- 2*) " ajal 1
D Z R {waw*)”ajIS?OCwm}

xzeS i=1
su b; th* ) a;al
meg ]Zl ) I
<m ’ h* (x — w*)HH +4CVmK
< 20m,

as long as m > K10g4 m.

C.2.3 Proof of Lemma 30

Similar to proof of Lemma 29, we consider the event

E = {1r<na<x ’th*| < 20@ max |aJ||2 < 10\/>} (C.41)
Jjsm
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which holds with probability at least 1 — O(m ™% + me~CK). The proof thereafter will be developed on
this event. For any fixed unit vectors u, v € CK and (h, z) obeying the assumptions (C.5), one has

Zqu bH (h — h*) (x — z*)" aja]va

Hb;b" (b — h*) (z — 2*)" 1 .
2 S PRSP

:ZWj

Concentration. Consider any fixed vectors u, v and (h,x). We seek to invoke the Bernstein inequality
Vershynin {2018, Theorem 2.8.2] to control ZT:l W;. We observe that

W; =E W], <ClIWill,,
<ColH(h—h")(xz—z)a;1 Hp. H
< ]( ) (@ —x")" a; {max{|b;‘(h—h*), a1|}§2001310g31/2m} Hu JHW Ha]va
=Ccih-n)(z-2z)"a;1
a : re {max{lb,“«hhml@m*)“aj|}<2001w>zm}|
< 400CCT5—5—,
og'm

where the first inequality comes from the fact that || X — E[X]||y, < C||X||y, (cf. Vershynin [2018, Section
2.7]), the second one is due to Vershynin [2018, Lemma 2.7.7] and the last inequality is due to the event £.
Hence, the Bernstein inequality Vershynin [2018, Theorem 2.8.2] reveals that

S t?1og”
P Z(Wj—E[Wj]) >t §2exp(—cmin((;glm,tlog3m>).

Letting t = CyvmK for some large enough constant C; > 0, we obtain that

3 (W] *E[WJ]) S C’tva, (042)

j=1

holds with probability exceeding 1 — 2 exp(—cC?K logm).

Union bound. Next, we define NV, to be an e;-net of B, (d) = {(h,x) : max{||h — h*||2, |x — x*|2} <}
and Ny an ez-net of the unit sphere SK~1. In view of Vershynin [2018, Corollary 4.2.13], we have

95\ 4K 9\ 2K
Nz < (1 + ) and [No| < (1 + ) .
€1 €2

Taking this collectively with the union bound yields that (C.42) holds uniformly for any (h, ) € N, and wu,
v € Ny with probability over

95\ 4K 9\ 4K
1- (1 + ) (1 + > -2exp (—CKlogm) > 1 —2exp(—CK logm).
€1 €9

Approximation. Define

. — p.pH _px _\H_ _H
H; (h,z) = b;b" (h — h*) (x — 2*)" a;a 11{max{|b?(h_h*)|7|(m_m*m|}S20%mg3ﬁ}.
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For any (h, z) satisfying the assumptions (C.5) and any w, v € SK~1, one can choose (ho, z¢) € N, ug € Ny
and vy € N satisfying max{[|h — ho|2, [|£ — zo]|2} < &1 and max{|lu — wo|2, ||[v — voll2} < €2. Let

g(u,v,h,x) = ZuHHj (h,z)v —m(h—h*) (x —x*)".
j=1
Set e7 = §/K and ea = 1/4. In view of the triangle inequality, one has

|g (u,v,h,w) -9 ('U'OaUOthawO)‘
< |g (u,'u,h,m) -9 (u0av7h7x)| + ‘g ('Uz(),'l},h,.’]}) - g(u07'vOaham)‘
+ |g (’U;O7’U0,h,$) -9 ('U/O,’Uo,h07w)| + |g ('U;07'U07h0,$) -9 (UO,UQ,h0,$0)|

< 26 Zm:Hj (h,xz) —m(h — h*) (& — x*)"

+ |g (UJO’DOa h; m) —4g ('LL(), Vo, h0,$)| + |g (U'OaUOa h07 113) —g (Uo,’vo, hO; m0)| . (C43)

To simplify the last two terms, we observe that

1
H
‘(a: — ) aj‘ < max a,- @ = @oll, < 10vVKer < clglogng, (C.44)
and furthermore,
‘(azo —a")a;| < ‘(az —z")a,| + ‘(m —a0)a;
«\H
< ‘(:c — ") aJ} + 01310g3/2m
1
=
Similarly the same bounds also hold for |b§I (ho — h*)|. It follows that
1 -1 - —1, (C.45
{|(m7m0)Haj|§2ocmm} {\(mofm*)”aj\SQOCmWﬁ} {|(m7m*)Haj|S20013m} ( )
=1 (C.46)

{|b;‘(h—ho)|§20013log3ﬁ} {|by(ho_h*)|gzoclgm} {|b;‘(h—h*)|§20013w}
Then, we can bound the last two term in (C.43) as follows

|9 (w0, v, b, ®) — g (w0, vo, ho, x)| + |g (w0, vo, ho, T) — g (uo, vo, ho, To)|
< |3 _Hj(h—ho+h* z)—m(h—ho)(x —z*)"
j=1
+|Y_Hj (h,x — @y + x*) — m (ho — b (x — xo)"

j=1

Considering g(ug, vo, ho, o), one has
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CthK+ Z]E
j=1

H H * x\H H
b;b (ho — h — ja; vl
u”'b;b; (ho ) (o — )" a;ajv {max{|b';(h0h*),|(zOm*)Haj|}>2001310g3}2m}]

= Ct Vv mK7 (047)

where the first inequality is due to triangle inequality; the second comes from (C.42) and the last is because
of (C.46).

Putting all this together. Let

(h — h*)" bj‘} < 20013

8= { ha) s {[ (o~ 2" a . max ([~ 1l o - 2*],) <.

1
log?’/2 m’

It is easy to check that (h,5(x — xg) + *) € S by using the facts that || — xgl|2 < €; and (C.44). Hence,
we have

ZHj (h,x — @ + =) —m (h — h*) (x — xo)"

sup ZH (h,x) —m (h — h*) (x — z*)"
(h,x)eS’

O‘!\H

Jj=1

Similarly, one has (5(h — hg) + h*,x) € S and therefore,

> Hj(h—ho+h*,z) —m(h— ho)(z — z*)"

j=1

_1 sup ZH (h,x) —m (h — h*) (x — z*)"
S (ha)es' |57

Hence, combining the above two inequalities with (C.43) and (C.47) reveals that

‘g (U,, v, h’v ﬂ))| S |g (UO,Uo, h07m0)| + |g (u,'l), h,:E) -9 (UO,Uo, h0,$0)|

CivVmK + 2ey iHj (h,z) —m (h — h*) (x — z*)"

2 " H
+ - sup H;(h,z)—m(h—-h")(x—x*
5 0, Z j (ho) —m (h— ") (z — )

Taking the maximum over u and v on the left-hand side of the above inequality and rearranging terms yield

(1-26) || Hj (h,x) —m(h— k") (x —z*)"

j=1

Civm —i—f sup ZH h,x) —m(h — h*) (x — z*)"

5 (h,x)es’ =

Further taking the maximum over (h,x) on S’ gives

(1—262—§> sup ZHj(h,w)—m(h—h*)(q;—w*)H < CyWmK,

(h,z)eS’ =1
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and then rearranging terms yields

sup ZHj (h,z)|| < sup |lm(h—h") (a:—ac*)HH—i—élCt\/mK
=1

(h,x)eS’ = (h,z)eS’
< 8%m + 4C,VmK.

Recognizing that

sup ZHj(h,x) = sup ;
=1

(h,x)eS’ = (h,x)es’

bjb;-' (h — h*) (x — *)" ajaHH

and that the set of all (h,x) obeying (C.5) is a subset of §’, we have established the desired result.

C.3 Proof of Lemma 22

The proof is very much the same as that of Lemma 6, except that the contraction coefficient in the expression
vy in (A.34) is (1 — ¢,) rather than (1 — ) and the bound on w3 is different. In what follows, we shall only
describe how to bound v3 here, for the sake of brevity.

The proof proceeds by bounding v5 via the four terms as indicated by (A.35a), which we discuss as
follows.

1. For the first term r31, one has
vg1 < ‘b?ﬁt’(l)fﬁt’(”"’al - b?h*w*”al’ l|b]], ‘a}"&:\t7(l)‘
< |pfREOz Ma, — btz a,| - 10VE -20v/logm - [|# 0
< 400\/K logm ‘b?/ﬂt’(”:ﬁt’(l)Hal - b}*h*a:*”al( , (C.48)
where the penultimate inequality follows from (F.1) and (F.2); the last inequality is due to (C.4f).
2. Regarding v3o, one has
v3p < }brﬁt’(l):’it’(lwal - b'{'h*w*Hal‘ llai]l, ‘b?ﬁt’(l)‘
< ‘bf‘fzt’(”ﬁc\t’(lwal - bth*m*Hal‘ 10VE - 20\/@‘

< 400\/K logm ‘b;"?zt’(l)it’(””al — bRz,

|
2

: (C.49)

where the second line follows from (F.1) and (F.2); the last inequality is due to (C.4f). Further for some
sufficiently large constant C' > 0, there holds

< 20+/logm H?Lt’(l) —h*
< 204/logm (Hfzt’(l) — Rt

3 2
SO(\/mKlog m+a\/Klog m)7

m m

bl (A" — h7)

2

+ HEt _ h*
2

)

(C.50)

where the last inequality comes from (C.2b) and (C.4a). Similarly we can see this bound also holds for
|t — £*)"a|. Therefore,

b;—l’ﬁt,(l)at,(l)Hal _ bth*w*Hal’
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IN

b;—l’],;t,(l) (/x\t,(l) _ w*)H a;

+ ‘b?I (Rt — h*)az*Hal’

< (‘b;" (?Lt’(l) — h*) (it’(l) — w*) " a; . ’w*Hal’

+ |b}*h*|) :

o0 )

< (C’ (\/mKlog3m . a\/mK10g2m> +20\/@> 'C<\/mKlog3m L a\/Klog2m>
m m m m
K log® K log®
+C<\/m og’m , ov/Klog m) -201/logm (C.51)
m m
< \/mK10g4m+U\/mKlog3m7 (C.52)

m m

where the penultimate inequality follows from (F.1) and (C.50). Substituting (C.52) into (C.48) and
(C.49), we reach

vmKlo ‘m vVmK log®m
V31+V32§\/Klogm-< mg +U = &
< K+v/mlog’m L oK+/mlog*m

C.53
— - (C.53a)
3. Regarding v33 and vs4, it can be seen that
()
Va3 = Hglbla;*atv”)Hz <1&! bl ‘aratw‘ < oVE || O], logm < 20VE logm, (C.53b)
_ ~ ~ ® ~
vas = [Gabh 0| < &l ail, [oRO| < o VE [ O]|, logm < 20VE logm, (C.53¢)
where (i) holds by (F.1), (F.2) and the independence between &, a;, b; and 41,
Consequently, by (C.48) and (C.53a)-(C.53¢) we have
K+/mlog®
Ivslly § =25 4+ oV logm, (C.54)

as long as m > K log® m. Then the proof follows the same line of idea as Appendix A.8, resulting in a
similar inequality as (A.38) as follows:

K+/mlog”
dist (200 211 < (1 - ¢,) dist (291, 2!) + O (nznogm + aﬁlogm>

3 2
SC(\/Klog m+a\/Klog m)7

m m

provided that 1 = ¢,/m with ¢, > 0 being some sufficiently small constant. The proof for (C.8) follows
from the same argument leading to (A.40) and is thus omitted here for simplicity.

C.4 Proof of Lemma 25
Recall the definition of M and M® under the Gaussian design:

1 & 1
M:=—> ybjal, and MDY :=—" ybal
m m
j=1 J#l
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Applying Wedin’s sin® theorem Dopico [2000, Theorem 2.1] gives that for some universal constant C’ > 0,
there holds

20 } < o 1M - M) & (M - MD)||,
N

(w00 s
aeg}ﬂiﬁ:l{“a 2+ ar r g1 (M(l))70—2(M)

By invoking Weyl’s inequality, we obtain
o (M) — oy (M) 2 o1 (BE[MD)]) = [ MO ~E[MO]| - 02 ® M) - |M - E[M]]|

(i)
- HM(“ _E [M(l)] H M -E[M]| > -,

where (i) is due to the facts that

_1 3
o1 (IE [MU)D . <mmh*m*H> >5 and 02 (E[M]) =0 (W) =0,

and (ii) comes from Lemma 40. Hence, one has

pin_, (o = RO, + s =220} <207 ([ (31 - 2r0) 2O+ [520" (a1 = 2r0) ).
2 2 2 2

a€eC,|al=1
(C.55)
We are left with bounding the two terms on the right-hand side of (C.55).

e Regarding the first term on the right-hand side of (C.55), we have

1
H(M — M(l)> :EO’(Z)H2 — Hbl (bfh*:c*”al +§z) ario,(l)

2

IN

Hbleh*w*Ha anO (l

1
+ Hflbla}":ﬁo’(”
m

2

1 1
2l 1B R ‘ Hzo. (0| o L ‘ HVO,(Z)‘ b
—| il |BfR*| |2 | +lal|arz™ ] bl

E~10\/E~ (20\/log ) logm +% -200\/1ogm~20\/10gm~10\/E

\/Klog?’m n cr\/Klong
m m ’

IN

<

where the second inequality is due to the triangle inequality; the penultimate inequality comes from (F.1),
(F.2) and the fact that with probability exceeding 1 — O(m=190),

max H ) ’ < 20+/logm

1<i<m
due to the independence between #°(®) and a;.

e The second term on the right-hand side of (C.55) can be bounded in a similar fashion as follows

(00 0

< = HhO l)Hb th*w*Halal H + = H£ hO (l)Hbl H
1 . .
= E . ‘hO,(l Hbl’ |b;_|h | |a) Hal’ Hal H2 + E |£l| ‘hO, l)Hbl‘ ||a;—|||2
= % +20\/logm (20\/@) 10VE + % -200+/Tog m - 201/Tog m - 10VE

A

VK log®m . oV Klog’m
m m ’
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where the penultimate inequality comes from (F.1), (F.2) and the fact that

max ‘fzo’(l)Hbl’ < 20+/logm

1<i<m
holds with probability exceeding 1 — O(m~1%°) (due to the independence between h%®) and b;).
Plugging the above two bounds into (C.55) leads to

3 2
{Haho_ho,(l)H +Haio_io,(l)H }§5<VKIOg m , oV Klog m>’
2 2 m m

min
a€eC,|al=1

for some universal constant C' > 0. To convert this bound into the desired version, we can employ the same
argument connecting Ma et al. [2018, Eqn (240)] to Ma et al. [2018, Eqn (245)]. The details are omitted
here for brevity.

D Analysis under Gaussian design: connections between convex
and nonconvex solutions

D.1 Preliminaries

Here, we state below a few elementary technical lemmas that prove useful in the proof. To begin with, we
show that the operator A is well-controlled in this case, whose counterpart in the Fourier design is Lemma
1.

Lemma 31. For the operator A defined under the Gaussian setting, we have, with probability at least

1 —O(m™19), that
4| < 10v/mK logm.

Proof. Denote

aj by
: . K . . K
A=| @ | eCm™f, B:=| @ | eC™™.
an, b,

We can rewrite A in matrix form as follows

A(Z) = {b?Zaj};n:l = [ diag(A.1) B diag(A.2) B --- diag(A. x)B |vec(Z).
This allows one to express and obtain
1A = ||[ diag(A.1) B diag(A.»)B - diag(A.x)B ]|’
K
<|IB|*- > |diag (A.,)]*
i=1
<

1<i<K 1<j<m

ijb;' - K max max |A1;7j|2
j=1
<2m- K -20logm

with probability at least 1 — O(m~190). O

Next, the following lemma corresponds to Lemma 39 under the Fourier design. Its proof is deferred to
Appendix D.3.

Lemma 32. Suppose that T is the tangent space of ha® with ||h|ly = || = 1 and m > CK log*>m for
some sufficiently large constant C' > 0. Then there exists some sufficiently large constant C' > 0 such that

|PrA* APr — mPr| < C'\/mK logm

with probability exceeding 1 — O(m~19).
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D.2 Proof of Theorem 3

In this section, we proceed to prove Theorem 3 by connecting the convex minimizer with nonconvex iterates,
in the same vein as in the Fourier design case (cf. Appendix B). To begin with, a lemma stating the results
of Algorithm 2 under the Gaussian design is listed below.

Lemma 33. Take A = C\o/mK logm for some sufficiently large constant Cy > 0. Suppose that Assumption
2 holds. Assume the number of measurements obeys m > CK log®m for some sufficiently large constant

C > 0 and the noise satisfies o4/ K log® /m < ¢ for some sufficiently small constant ¢ > 0. Let stepsize 1

be ¢, /m for some sufficiently small constant c,, > 0. Then, with probability at least 1 — O (mfloo + me’K),
the iterates {h*,x'},_, ., of Algorithm 2 satisfy

dist (2", 2%) < pdist (271, 2*) + Cuin ()\ +oymK logm) , (D.1a)
oV Klog®m

dist(2"1, 2') < Clp———"—, (D.1b)
m
2
max ng(l) gt” < 0y, 2V R logmm (D.1c)
<l<m m
~ . ov/mK log?m
max. ‘alH (2" — )| < Clng7 (D.1d)

(D.1e)

~ vVmK log®

max |b;-| (ht o h*) { S Clgw

1<i<m m

or any 0 < t < tg, where p =1 — c,c, for some small constant c, > 0, and we take to = m?°. Here, C11,
pCn P

C12 and Ci3 are positive constants. Additionally, one has

A

min va (ht,wt)H2 S m

D.1f
0<t<to ( )

(D.1a)-(D.1le) can be seen as direct consequences from our analysis in Appendix C, while (D.1f) can be
derived by following the proof in Appendix B.3.2. Hence, we do not repeat the proof here for brevity.

Similar to Conditions 1 and 2, we single out two critical conditions on the operators under Assumption
2. The first condition below requires the regularization parameter A to be large enough, so as to dominate
a certain form of noise and the deviation of T (h:l:H — h*az*H) from its mean m (ha:H — h*:c*H).

Condition 3. The regularization parameter A satisfies
L ||T (ha™ — k@) —m (hat — b)) || < /8.
2. || A* (&)|| < ¢ for some small constant ¢ > 0.

The second condition is concerned with the injectivity property of A.
Condition 4. Let T be the tangent space of hx". Then for all Z € T, one has
m
16

Armed with these two conditions, the following lemma reveals how an approximate nonconvex optimizer
can serve as a proxy of the convex minimizer. The proof of this lemma can be developed in the same manner
as in Appendix A.8; the details are omitted here for brevity.

IA(Z)]5> —1Z]%-

Lemma 34. Suppose that (h,x) obeys

A
IVf (h,2)ll, < C 55 (D.2a)
for some constants C > 0. Then under Conditions 3 and 4, any minimizer Zey of the convex problem (3)

satisfies
||h$H — chx”F S va (h)m)H2 :
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Consequently, the conclusions in Theorem 3 can be easily derived from Lemma 34 by similar calculations
as proof of Theorem 1 in Appendix B.1, and thus omitted here for brevity.

It remains to demonstrate that Conditions 3 and 4 hold with high probability under the sample size and
noise level conditions (13). We start with the first point in Condition 3. Its proof can be directly adaptated
from the proof in Appendix B.5, and thus omitted here for simplicity.

Lemma 35. Suppose that the sample complexity satisfies m > C'K log* m for some sufficiently large constant
C > 0. Take A = Chxo/mK logm for some large enough constant Cy > 0. Then with probability at least
1-0 (m_lo + me_CK), we have

|7 (hz" — h*z*") —m (ha" — h*z*)|| < \/8
simultaneously for any (h,x) obeying (B.5a) and (B.5D).

The next lemma corresponds to the second point in Condition 3.

Lemma 36. Suppose that Assumption 2 holds and m > CKlog® m for some sufficiently large constant
C > 0. Then one has

A" (€)]] S ov/mK logm (D.3)
holds with probability exceeding 1 — O(m~19).
Proof. See Appendix F.1. O

Turning attention to Condition 4, we have the following lemma.

Lemma 37. Suppose that the sample complezity satisfies m > CK logm for some sufficiently large constant
C > 0. Then with probability at least 1 — O (m_m),

2. m 2
M)z 2 15 12ls, VZeT
holds simultaneously for all T' for which the associated point (h,x) obeys (B.5a) and (B.5b). Here, T denotes
the tangent space of haH.

The proof is a direct adaptation from Appendix B.7 and thus omitted for brevity.

D.3 Proof of Lemma 32

The framework and notation adopted here are similar to Ahmed et al. [2013, Section 5.2]. To facilitate the
proof, we introduce an operator for 1, 2, ¥y1,y2 € CK as follows:

H H._ (— H K*xK*?
Ty © zoyh = {Yriyinzi 2} }Zk € ChH™xR7

Denote by v; = (h,b;) a; and u; = (x,a;) (IK — hhH) b;. Then we can rewrite the operator PrA*APr :
CEXE _ CKXK a5 the following matrix

Q= Z (fw;' ® hv? + lw;' @ujz™ +ujz © h'u;I +ujzt @ u;az™) € CKI K

m
j=1

which satisfies
vec (PrA* APr (X)) = Qvec (X)
for any X € CKX*X_ This implies that
||7DTA*APT — ’ITLPTH
= [[PrA"APr — E [Pr A" APr]|| = |Q — E[Q]]
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m
Z (h'v;-' ® hv;' —E [h'u]H ® hv;-']) + Z (h'v;' ® 'u,ja:H —-E [h'v;' ® 'u,jacH])
j=1

B1 B2
Z (u;z" ® hv}‘| —ujzt ® hv}") Z wiz! @ ujz" — E [ujz" @ u;z"]) (D.4)
— =
B3 Ba

In the sequel, we consider the four terms on the right-hand side of (D.4) separately.

Controlling 5;. Regarding the first term (31, we denote
Z; = hv;' ® h'u]H —E [hij ® h/v;'] .

Then one has

i, = [{ (e bmzmjk-am) )
b Y1
<m0, P s
()
< |[max {1ch. b)) Hajn;,l}le

IN

2
(b} [lag [ 41

(i)

< CKlogm,
where (i) is due to the fact that ||hhH|| = ||h||2 = 1; (ii) uses (F.1) and ||Hij2Hw2 < VK (cf. Vershynin
[2018, Theorem 3.1.1]). To compute the variance term E[Z} Z;] and E[Z; Z}'], we express the operation of

Z; on a matrix X as
Z; (X) = |(h,bj)|* hh" X a;al — ||h|; hh" X

and hence
Z}'Z; (X) = [(h, b)) Rl llay|l; k" X a;al! — 2|(h, b)) | |k|; hh" X a;af + k|3 hh" X
Then one has
E (212, (X)] = 3(K +2) [h[shh"X — 2||R|S hRY X + R[S hR"X = (3K +5) [[k]l3 hh" X
Similarly, one can derive that
E[z,;Z2"(X)] =E[2"Z;(X)] = (3K +5) ||h||; hh" X
thus indicating that

1/2 1/2
m m

oz =max<{ (> E[Z}'Z]| > E[Z;2]] g\/(3K+5)m||hHg.

j=1 j=1

By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2|, one has

sz S ozy/logm + Bz log ( f) logm < v/mK logm (D.5)
with high probability.
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Controlling $;. When it comes to the second term S, we first set
H; = hv;' ®uij —E [hv;' ®uij] ,

which satisfies

Il = H 6, @ okt (I — i) )

ik
< [[{h.8;) (@, a5) aza"| - || nf' (Ix — RRM)]|

<|(h >| G, a) agl - llzlly - Rl - 1B, - | Tic — hh"|
< (b1 )l sl Tl ol - - — |

By employing ||h|2 = ||z|2 = 1, (F.1) and H||aj||2Hw2 = H||bj||2||w2 < VK (cf. Vershynin [2018, Theorem
3.1.1]), we obtain

HIE [, < CKlogm.

Iy,

Next, let us consider the operation of H; and H ]H on X, which obeys
H; (X) = (h,bj){zx,a;)hb} (Ix — hh') Xza,
H}' (X) = (h,b)) (x,a;) (Ix — hh") b;h" X a;z"
Consequently, one can deduce that
H;H" (X) = |(h,b))|*|(z,a;)|” |z|; hb" (Ix — hh") bjh" X a;al},
and
HIH; (X) = |(h,b))* |2, a;) " lay[l3 | Rll3 (I — hhY) b6} (I — hhY) Xzat.
It follows that their expectations are
E[HH (X)) = [(K +2) [BI] - 3 [R]] hRUX (202¥ + )3 I )
and
E[H}'H; (X)] = (K +2) |3 ]3 (I — k") (2hh" + R Ixc ) (I — hh") Xwa
= (K +2) (Ix — hh") Xaza".

Hence, we have

1/2 1/2
m m

oz =max{ > E[HIH;|| |> E[H;H!| < V3mK.
j=1 j=1

By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2|, one has

m

Z il S oz+/logm +leog<B f)logm<\/mKlogm (D.6)

j=1
Controlling #3. When being written in matrix form, one has ujacH ®hv}" —E[uij ®hv;'] is the conjugate

transpose of hvf! @ w;zH — E[ho!! @ u;x"], so that their norms are the same and (D.6) holds for u;z" ®
ho! — Efu;z" @ holl] as well.
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Controlling 34. For the last term (54, we denote

. H .H .H .H
W; =u;jz"” @ ujx fIE[uJa; R u;x ],

which satisfies

1w =\

{mk (x,a;)|* (Ix — hh") b;b"! (I — hh") — Tiay, [|z||5 (Ix — hh”)}i kH

® ‘
<

{Fowe (@, a))[* (I — hh") byblf (1 — hi) } J‘+’

i

(o ol (1 -} |
< || = Bh¥ ol 1 ) 3 + [[1ic = R [z

(i)

< 11513 (=, @) " + 1.

Here, (i) is due to the triangle inequality, and (ii) applies ||h||2 = ||z|2 = 1 and the fact that || I;x —hhH|| < 1.
It then follows that

2 2
Wil < max [z, a;)]"- 11B5115[5,, +1 < CKlogm,

where the second inequality uses (F.1) and H”bj”2||w2 < VK (cf. Vershynin [2018, Theorem 3.1.1]). To
calculate the variance term, one observes that

W; (X) = W' (X) = |(h,b))[” hh" X a;a!! — ||h|; Rh" X,
which gives
WW; (X) = [(h,b))]" |hll3 |lajll; hh" X ajalf —2[(h, b)) | hll; hh" X ajalf + |[h]; hh"X.
It is then seen that
E[WHW; (X)] = 3(K +2) ||h||y hh" X — 2]||h||y hh" X + || Ry hRh"X = (3K + 5) hh"X

and
E[W/W; (X)] =E [W,;W}' (X)] = 3K +5) hh" X
Therefore, one has

1/2 1/2
m m

0z = max Z]E[WJHWJ} , ZE[WJ'WJH] <VBK +5)m.

j=1 j=1

By the matrix Bernstein inequality Koltchinskii et al. [2011, Proposition 2|, one has

B
Z W;|| S ozv/logm + Bz log <M) logm < v/mK logm. (D.7)

0z

Putting all this together. Plugging (D.5), (D.6) and (D.7) into (D.4) yields that with probability at
least 1 — O(m™19),

|PrA* APr — mPr| < Cv/mK logm

holds for some large enough constant C' > 0.
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E Proof of Theorem 5

The proof of this lower bound is rather standard, and hence we only provide a proof sketch here. First of
all, it suffices to consider the case where h, z € RX. We assume that h* ~ A/(0, I¢) and suppose that there
is an oracle informing us of h*, which reduces the problem to estimating * from linear measurements

y = Az* +¢,

where A = [@1, a2, ,an)" with a; = b;'h*aj. Denoting by A, and A;, the real and the imaginary
part of A, respectively, the standard minimax risk results for linear regression (e.g. Candes and Plan [2011,
Lemma 3.11]) gives

inf sup E {Hw - w*H2 }A} 30 (tr {(ﬁljre)_l} +tr [(ﬁ,—;ﬁ,m)_l})

T gpreCK

> Ko?/ max { | Ae||”, | Am||"} (E.1)

where the infimum is over all estimator Z. It is known from standard Gaussian concentration results that,
with high probability,

. K
mae { || Al | A} < { mixmwth} 41 5 K rogm - v = /Klogm.

1<y

which together with (E.1) gives

inf sup E [||5£ — x| |A] > 0% /logm.
T x*xeCK

In turn, this oracle lower bound implies that, with high probability,

inf sup E[Hz AR |A} Zinf sup IE[Hh*AH h*w*”H§|A} = inf sup E[||£—x*||§||h*||§|A}
z*eCK T prxcCK

Z ZreM*
> 0% K/logm.

Similarly, for the second case, we assume that h* is a unit vector and there is an oracle informing us of h*.
Then we again relates the problem to estimating x* from linear measurements

y=Az* +¢,

where A = [@y,ag,--- ,dm]H with a; = b;'h*aj. Denoting by A,. and A;, the real and the imaginary part
of A, respectively. Similar to (E.1), one has

inf sup E [||:’ﬁ - w*Hg ‘A,B} = %U2 (tr {(A:;Are)_l] +tr {(A;Aim)_l}>

T precCK

> Ko?/ max {| Ae||”, | Ain] } (E2)

by the standard minimax risk results for linear regression (e.g. Candes and Plan [2011, Lemma 3.11]). From
standard Gaussian concentration, we have, with high probability,

Ain|} < {ngxm !b“h*!} IA|l < Viogm - vim = \/mlogm,

re

which taken collectively with (E.2) gives

o’K
mlogm’

inf sup E[||w—w*||2|A }N

Z gpreCK
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Hence, this oracle lower bound implies that,

inf sup E [Hé - Z*Hi | A,B} 2 inf sup E [Hh*ﬁz\H - h*sc*'-lHIQJ | A,B]
T

Z ZreM~ x*eCK

<inf sup E ||z —a"||h"]}} | A, B|
T E*G(CK
2
> oK ’
~ mlogm

with high probability.

F Auxiliary lemmas

In this section, we collect several auxiliary lemmas that are useful for the proofs of our main theorems.

Lemma 38. Consider any fized vector x independent of {a;}1<i<m. Then with probability at least 1 —
0] (mfloo), we have

ax ‘ale’ < 204/logm ||z||, . (F.1)
Additionally, there exists some constant C' > 0 such that with probability at least 1 — O (me*CK), we have
max [lal|, < 10VK. (F.2)

1<i<m

Proof. The first result follows from standard Gaussian concentration inequalities as well as the union bound.
The second claim results from Vershynin [2018, Theorem 3.1.1]. O

Lemma 39. Fiz an arbitrarily small constant € > 0. Suppose that Assumption 1 holds andm > Cp2K log? m/e?

for some sufficiently large constant C > 0. Then one has
|PrA*APr — Pr|| <,
with probability exceeding 1 — O(m~19).
Proof. This has been established in Ahmed et al. [2013, Section 5.2]. O

Lemma 40. Under Assumption 2, one has

~ I

m m

1 & H H VmKlog®m  oy/mK logm
- Zyjbjaj —h*x™ || < +
j=1
holds with probability over 1 — O(m~1°), as long as m > CK log® m for some large enough constant C' > 0.

Proof. See Appendix F.2. O

F.1 Proof of Lemma 36
By the definition of A*, we have

AT (&) =) Gbial e 1<cotogmy T O a5 Lje 150 t0gm) -

i=1 =X 7=1
Since
P <1g}i<nm €51 > Calogm) < Z;P(|fj| > Cologm)
J:
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S 19) (m—IOO) )
for sufficiently large constant C' > 0, we have with probability exceeding 1 — O(m 1Y), that

m

4 @)= |3 x| (£.3)

To bound || Z;nzl X||, we proceed by applying the matrix Bernstein inequality Koltchinskii et al. [2011,
Proposition 2]. One has
— H
Bz = ||[|&ba7 Lyig,1<corogmy [,
= 1€ L1200 108 my | 165l sl ,,

()
< Cologm ||[1b;1l,]],,, [lllasll,,,
(ii)

< CoKlogm,

where (i) uses Vershynin [2018, Lemma 2.7.7] and (ii) is due to the facts that |||la;|2]y, < VK and

11B;ll2]lp, S VK (cf. Vershynin [2018, Theorem 3.1.1]). Next, we turn to control the variance term. One
has

m

> E[X;XY

m
2
ZE |:|€J| bja?ajb? ]l{lﬁj\SCo’ logm}:|

Jj=1

= |2 2E[16F 1gi<corosm ] E [5,8] E [alfa,]

j=1

< o’mK.
Since {@;}, have the same distribution as {b;}7-,, [| >-""; E[X ' X/]|| can be controlled in the same way
as above. Then, we have

1/2 1/2
m m

0z = max ZE[X]XJH] , ZE[XJHX]] <ovmkK.

Jj=1 Jj=1

Now we are ready to invoke Koltchinskii et al. [2011, Proposition 2| to derive that with probability over
1 — O(m=2%), there holds

m
B
S°X,|| < 0z /logm + Bz log (W> logm < o/mK Tog m, (F.4)

g
i=1 z

where the last inequality holds as long as m > K log® m. Taking (F.4) collectively with (F.3), one has

m

1A @)l = | > X;|| S ov/mK logm,

j=1

holds with probability exceeding 1 — O(m=19).

F.2 Proof of Lemma 40
Denote by M = 1 Z;n:l yjbja;'. Then we have

T m

1 m
IM —E[M)| = | 3" ybjall — Btz
j=1
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m

1 - * * ok
<— Z;bjb?h*:c Hajal! — mh*z Zgjb alll (F.5)

J

The second term can be bounded by Lemma 36. We are left to control the first term.
In view of (F.2), one has

Zb inrata el — mhra Zb bihrata;al 1 {Jatizebine < —mh*z*H, (F.6)

20\/10gm) }
Jj=1

holds with probability over 1 — O(m~109).

Concentration. For any fixed unit vectors w and v, define

w2 Hp pHp* xH _ H
Zj =u'bjb;h*x a]ajvll{|a;|w*b,;h*|§(20m>2}.

Then we invoke the Bernstein inequality Vershynin [2018, Theorem 2.8.2] to control || Z;nzl(Zj —E[Z;])].
We have
HZj —E[Z;] le < CZll,, <400Clogm Hquij2 ||a;-'vH¢2 < logm.

Here, we have used [|X — E[X]||y, < C|X],, (cf. Vershynin [2018, Section 2.7]). Then the Bernstein
inequality Vershynin [2018, Theorem 2.8.2] allows us to derive that

o 12 t
P Z:—E[Z])|>t]| <2exp | —cmin [ ———,—— ) ).
j:l( ! bzt < p( <m10g2m 10gm>>

Letting t = CivmK logm for some large enough constant C; > 0, we obtain that

i (X; —E[X;])| < C:vVmK logm, (F.7)

Jj=1

holds with probability exceeding 1 — 2 exp(—cC?K).

Union bound. Next, we define Ay an e-net of the unit sphere S€~1. In view of Vershynin [2018, Corollary

4.2.13], we have
9\ 2K
ol < (1 n ) .

Taking this collectively with the union bound yields that (F.7) holds uniformly for any € N, and wu,
v € Ny with probability over

4K
2
1- (1+> -2exp (—cCPK) > 1—2exp (—CK logm).
€

Approximation. Then, for any u, v € SK~1, one can choose uy € Ny and vy € Ny satisfying max{|ju —
ugl|2, [|[v — voll2} < €2. Let

= Z [qujb;'h*m*HaJa v]l{| . —murh M| .

Mo bR | < (20v/Togm)” }

Set € = 1/4. By triangle inequality, one has

|9 (u,v) = g (w0, v0)| < g (u,v) = g (o, v)| +|g (w0, v) — g (uo, vo)]|
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< 2¢ Zb th*ac*HajaJHv ]1{| Moy —mh*z*H

*bh*|<(20vIogm)® }

Considering g(ug, vo), let

o Hp pHp % *H
Zij=u bjbjh z"aja; U]l{|a;':c*b?h*|§(20 Tgmf}‘
One has

lg (uo, vo)|

< i (Z; —E[Z;])| + i (E[z;] - muHh*a:*Hv)

< CWmKlogm + Y E {qujb?h*a:*H al v]l{|a .

*bHhs | <(20v/Togm)’ }}
1

=
Ct\/mKlongrZ
< 2CyvmK logm,

where we use (F.7) and

H Hgp % _,xH H
E {u bjbjh x ajajU]I{|a;'m*b;'h*|§(20\/log7m)2}:|‘

Hp pHpx *H H
‘ [ bibj W& a; a0 L e iine |< (200 o) }H

\/ uHb, th*g;*Ha a;"v) }IP’ (‘a?m*b?h*| < (20 1ogm)2)

< O 7100

Hence we have

g (w0, v0)| < 2C;VmK logm.

Putting all this together. It then follows that

lg (w,v)| < |g (w0, vo)| + |g (u,v) — g (uo, vo)|

<20 vVmK logm + 2¢ Zb th*m*HajaJHv ]1{‘& . —mh*z*H

bR |< (20@)}

Taking maximum over u and v on the left side yields that

max Zb]th*:E*Ha a Il{

u,vESK*1

* . xH
‘a']'.'w*b;'h*‘g(QO\/logm)z} —mh’z

H H  _H H
< 2CvmK logm + 2¢ Zb by h*z* a;a; 1{|a;‘m*byh*|g(2om)2} —mh*x*

Rearranging terms and recalling e = 1/4 give rise to

Z b; th*w*Haja;'v ]1{ mh*z*"|| < 4C;VmK logm. (F.8)

‘a]".'a:*b']'.'h* ‘§(20,/1og m)z} -
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Taking (F.6) with (F.8) collectively yields that

J

Z bjb';h*:c*HajaH — mh*z*"|| <4C,vVmK logm, (F.9)
j=1

holds with probability at least 1 — O(exp(—CK logm) + m~1%). Plugging (F.9) and (D.3) into (F.5) gives
the desired conclusion.

References

A. Ahmed, B. Recht, and J. Romberg. Blind deconvolution using convex programming. IEEFE Transactions
on Information Theory, 60(3):1711-1732, 2013.

E. J. Candes and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number of
noisy random measurements. IEEE Transactions on Information Theory, 57(4):2342-2359, 2011.

E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory and algorithms.
IEEF Transactions on Information Theory, 61(4):1985-2007, 2015.

Y. Chen, Y. Chi, J. Fan, C. Ma, and Y. Yan. Noisy matrix completion: Understanding statistical guarantees
for convex relaxation via nonconvex optimization. SIAM Journal on Optimization, 30(4):3098-3121, 2020.

F. M. Dopico. A note on sin 6 theorems for singular subspace variations. BIT Numerical Mathematics, 40
(2):395-403, 2000.

V. Koltchinskii, K. Lounici, A. B. Tsybakov, et al. Nuclear-norm penalization and optimal rates for noisy
low-rank matrix completion. The Annals of Statistics, 39(5):2302-2329, 2011.

X. Li, S. Ling, T. Strohmer, and K. Wei. Rapid, robust, and reliable blind deconvolution via nonconvex
optimization. Applied and computational harmonic analysis, 47(3):893-934, 2019.

C. Ma, K. Wang, Y. Chi, and Y. Chen. Implicit regularization in nonconvex statistical estimation: Gradient
descent converges linearly for phase retrieval and matrix completion. In International Conference on
Machine Learning, pages 3345-3354. PMLR, 2018.

R. Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47.
Cambridge University Press, 2018.

86



	Introduction and motivation
	Convex and nonconvex algorithms
	Inadequacy of prior theory
	Paper organization and notation

	Main results
	Blind deconvolution under random Fourier designs 
	Blind deconvolution under Gaussian designs
	Insights

	Prior art
	Numerical experiments
	Discussion

