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Abstract

Characterizing the asymptotic distributions of eigenvectors for large random matri-
ces poses important challenges yet can provide useful insights into a range of statistical
applications. To this end, in this paper we introduce a general framework of asymptotic
theory of eigenvectors (ATE) for large spiked random matrices with diverging spikes and
heterogeneous variances, and establish the asymptotic properties of the spiked eigenvec-
tors and eigenvalues for the scenario of the generalized Wigner matrix noise. Under some
mild regularity conditions, we provide the asymptotic expansions for the spiked eigen-
values and show that they are asymptotically normal after some normalization. For the
spiked eigenvectors, we establish asymptotic expansions for the general linear combina-
tion and further show that it is asymptotically normal after some normalization, where
the weight vector can be arbitrary. We also provide a more general asymptotic theory
for the spiked eigenvectors using the bilinear form. Simulation studies verify the validity
of our new theoretical results. Our family of models encompasses many popularly used
ones such as the stochastic block models with or without overlapping communities for
network analysis and the topic models for text analysis, and our general theory can be

exploited for statistical inference in these large-scale applications.

*Jianqing Fan is Frederick L. Moore ’18 Professor of Finance, Department of Operations Research and Fi-
nancial Engineering, Princeton University, Princeton, NJ 08544, USA (E-mail: jqfan@princeton.edu). Yingy-
ing Fan is Professor and Dean’s Associate Professor in Business Administration, Data Sciences and Opera-
tions Department, Marshall School of Business, University of Southern California, Los Angeles, CA 90089
(E-mail: fanyingy@marshall.usc.edu). Xiao Han is Postdoctoral Scholar, Data Sciences and Operations De-
partment, Marshall School of Business, University of Southern California, Los Angeles, CA 90089 (E-mail:
zhan011@e.ntu.edu.sg). Jinchi Lv is Kenneth King Stonier Chair in Business Administration and Professor,
Data Sciences and Operations Department, Marshall School of Business, University of Southern California,
Los Angeles, CA 90089 (E-mail: jinchilv@marshall.usc.edu). This work was supported by NIH grants RO1-
GMO072611-14 and 1R01GM131407-01, NSF grants DMS-1662139 and DMS-1712591, NSF CAREER Award
DMS-1150318, a grant from the Simons Foundation, and Adobe Data Science Research Award. The authors
sincerely thank the Joint Editor, Associate Editor, and referees for their valuable comments that helped

improve the paper substantially.



Running title: Asymptotic Theory for Eigenvectors
Key words: Random matrix theory; Generalized Wigner matrix; Low-rank matrix; Eigen-
vectors; Spiked eigenvalues; Asymptotic distributions; Asymptotic normality; High dimen-

sionality; Networks and texts

1 Introduction

The big data era has brought us a tremendous amount of both structured and unstructured
data including networks and texts in many modern applications. For network and text
data, we are often interested in learning the cluster and other structural information for
the underlying network communities and text topics. In these large-scale applications, we
are given a network data matrix or can create such a matrix by calculating some similarity
measure between text documents, where each entry of the data matrix is binary indicating
the absence or presence of a link, or continuous indicating the strength of similarity between
each pair of nodes or documents. Such applications naturally give rise to random matrices
that can be used to reveal interesting latent structures of networks and texts for effective
predictions and recommendations.

Random matrix has been widely exploited to model the interactions among the nodes of
a network for applications ranging from physics and social sciences to genomics and neuro-
science. Random matrix theory (RMT) has a long history and was originated by Wigner in
Wigner (1955) for modeling the nucleon-nucleus interactions to understand the behavior of
atomic nuclei and link the spacings of the levels of atomic nuclei to those of the eigenvalues
of a random matrix. See, for example, Bai (1999) for a review of some classical technical
tools such as the moment method and Stieltjes transform as well as some more recent devel-
opments on the RMT, and Mehta (2004); Tao (2004); Bai and Silverstein (2006) for detailed
book-length accounts of the topic of random matrices.

There is a rich recent literature in mathematics on the asymptotic behaviors of eigenvalues
and eigenvectors of random matrices (Erdds et al., 2013; Bourgade et al., 2018; Bourgade and
Yau, 2017; Rudelson and Vershynin, 2016; Dekel et al., 2007). The main challenge in many
RMT problems is caused by the strong dependence of eigenvalues if they are close to each
other. Using the terminologies in RMT, four regimes are often of interests: bulk, subcritical
edge, critical edge, and supercritical regimes. The first three regimes all have eigenvalues
that are highly correlated with each other, and the last regime has weaker interactions among
the eigenvalues. The last regime can be further divided into two categories according to the
relative strength of spiked eigenvalues compared to noise, which can be roughly understood
as the signal-to-noise ratio. There have been exciting mathematical developments in the
recent mathematical literature when the smallest spiked eigenvalue has the same order as the
noise (Capitaine and Donati-Martin, 2018; Knowles and Yin, 2013; Bao et al., 2018). Due

to the challenge caused by constant signal-to-noise ratio, these existing results often take



complicated forms and the asymptotic distributions depend generally on the noise matrix
distribution in a complex way, limiting their practical usage to statisticians. In this paper, we
consider the setting of diverging spikes where the spiked eigenvalues are an order of magnitude
larger than the noise level asymptotically. Although mathematically easier, such random
matrices are of great interests to statisticians, because many statistical applications such
as network analysis and text analysis often fall into this regime. Yet there lack any formal
results on the asymptotic expansions and asymptotic distributions of spiked eigenvectors
even in this setting. This motivates our study in this paper.

There is a larger literature on the limiting distributions of eigenvalues than eigenvectors
in RMT. For instance, the limiting spectral distribution of the Wigner matrix was generalized
by Arnold (1967) and Arnold (1971). Marchenko and Pastur (1967) established the well-
known Marchenko—Pastur law for the limiting spectral distribution of the sample covariance
matrix including the Wishart matrix which plays an important role in statistical applications.
In contrast, the asymptotic distribution of the largest nonspiked eigenvalue of Wigner matrix
with Gaussian ensemble was revealed to be the Tracy-Widom law in Tracy and Widom (1994)
and Tracy and Widom (1996). More recent developments on the asymptotic distribution of
the largest nonspiked eigenvalue include Johnstone (2001), El Karoui (2007), Johnstone
(2008), Erdos et al. (2011), and Knowles and Yin (2017). See also Fiiredi and Komlds
(1981), Baik et al. (2005), Bai and Yao (2008), Knowles and Yin (2013), Pizzo et al. (2013),
Renfrew and Soshnikov (2013), Knowles and Yin (2014), and Wang and Fan (2017) for the
asymptotic distributions of the spiked eigenvalues of various random matrices and sample
covariance matrices. For the eigenvectors, Capitaine and Donati-Martin (2018) and Bao et al.
(2018) established their asymptotic distributions, which depend on the specific distribution
of the Wigner matrix in a complicated way, in the challenging setting of constant signal-to-
noise ratio. There is also a growing literature on the specific scenario and applications of
large network matrices. To ensure consistency, Johnstone and Lu (2009) proposed the sparse
principal component analysis to reduce the noise accumulation in high-dimensional random
matrices. See, for example, McSherry (2001), Spielman and Teng (2007), Bickel and Chen
(2009), Decelle et al. (2011), Rohe et al. (2011), Lei (2016), Abbe (2017), Jin et al. (2017),
Chen and Lei (2018), and Vu (2018).

Matrix perturbation theory has been commonly used to characterize the deviations of
empirical eigenvectors from the population ones, often under the average errors (Horn and
Johnson, 2012). In contrast, recently Fan et al. (2018) and Abbe et al. (2019) investigated
random matrices with low expected rank and provided a tight bound for the difference be-
tween the empirical eigenvector and some linear transformation of the population eigenvector
through a delicate entrywise eigenvector analysis for the first-order approximation under the
maximum norm. See also Paul (2007), Koltchinskii and Lounici (2016), Koltchinskii and

Xia (2016), and Wang and Fan (2017) for the asymptotics of empirical eigenstructure for



large random matrices. Yet despite these endeavors, the precise asymptotic distributions
of the eigenvectors for large spiked random matrices still remain largely unknown even for
the case of Wigner matrix noise. Indeed characterizing the exact asymptotic distributions
of eigenvectors in such setting can provide useful insights into a range of statistical applica-
tions that involve the eigenspaces. In this sense, the asymptotic expansions and asymptotic
distributions of eigenvectors established in this paper complement the existing work in the
statistics literature.

The major contribution of this paper is introducing a general framework of asymptotic
theory of eigenvectors (ATE) for large spiked random matrices with diverging spikes, where
the mean matrix is low-rank and the noise matrix is the generalized Wigner matrix. The
generalized Wigner matrix refers to a symmetric random matrix whose diagonal and upper
diagonal entries are independent with zero mean, allowing for heterogeneous variances. Our
family of models includes a variety of popularly used ones such as the stochastic block models
with or without overlapping communities for network analysis and the topic models for text
analysis. Under some mild regularity conditions, we establish the asymptotic expansions for
the spiked eigenvalues and prove that they are asymptotically normal after some normaliza-
tion. For the spiked eigenvectors, we provide asymptotic expansions for the general linear
combination and further establish that it is asymptotically normal after some normalization
for arbitrary weight vector. We also present a more general asymptotic theory for the spiked
eigenvectors based on the bilinear form. To the best of our knowledge, these theoretical re-
sults are new to the literature. Our general theory can be exploited for statistical inference in
a range of large-scale applications including network analysis and text analysis. For detailed
comparisons with the literature, see Section 3.6.

The rest of the paper is organized as follows. Section 2 presents the model setting
and theoretical setup for ATE. We establish the asymptotic expansions and asymptotic
distributions for the spiked eigenvectors as well as the asymptotic distributions for the spiked
eigenvalues in Section 3. Several specific statistical applications of our new asymptotic theory
are discussed in Section 4. Section 5 presents some numerical examples to demonstrate
our theoretical results. We further provide a more general asymptotic theory extending
the results from Section 3 using the bilinear form in Section 6. Section 7 discusses some
implications and extensions of our work. The proofs of main results are relegated to the

Appendix. Additional technical details are provided in the Supplementary Material.

2 Model setting and theoretical setup

2.1 Model setting

As mentioned in the introduction, we focus on the class of large spiked symmetric random

matrices with low-rank mean matrices and generalized Wigner matrices of noises. It is



worth mentioning that our definition of the generalized Wigner matrix specified in Section
1 is broader than the conventional one in the classical RMT literature; see, for example,
Yau (2012) for the formal mathematical definition with additional assumptions. To simplify

the technical presentation, consider an n X n symmetric random matrix with the following

structure

X=H+W, (1)
where H = VDV7 is a deterministic latent mean matrix of low rank structure, V =
(vi,--+,Vg)isan nx K orthonormal matrix of population eigenvectors vy’s with VIV =1k,
D = diag(dy,--- ,dk) is a diagonal matrix of population eigenvalues di’s with |dy| > -+ >

|di| > 0, and W = (wjj)1<i j<n is a symmetric random matrix of independent noises on and
above the diagonal with zero mean Ew;; = 0, variances 01-2]- = Ew?j, and maxi<; j<n |wi;| < 1.
The rank K of the mean part is assumed typically to be a smaller order of the random ma-
trix size n, which is referred to as matrix dimensionality hereafter for convenience. The
bounded assumption on w;; is made frequently for technical simplification and satisfied in
many real applications such as network analysis and text analysis. It can be relaxed to
E|w;;|! < C'2E|w;;|2, 1 > 2, with C some positive constant, and all the proofs and results
can carry through.

In practice, it is either matrix X or matrix X — diag(X) that is readily available to us,
where diag(-) denotes the diagonal part of a matrix. In the context of graphs, random matrix
X characterizes the connectivity structure of a graph with self loops, while random matrix

X —diag(X) corresponds to a graph without self loops. In the latter case, the observed data

matrix can be decomposed as
X — diag(X) = H+ [W — diag(X)] . (2)

Observe that W —diag(X) has the similar structure as W in the sense of being symmetric and
having bounded independent entries on and above the diagonal, by assuming that diag(X)
has bounded entries for such a case. Thus models (1) and (2) share the same decomposition
of a deterministic low rank matrix plus some symmetric noise matrix of bounded entries,
which is roughly all we need for the theoretical framework and technical analysis. For these
reasons, to simplify the technical presentation we abuse slightly the notation by using X
and W to represent the observed data matrix and the latent noise matrix, respectively, in
either model (1) or model (2). Therefore, throughout the paper the data matrix X may
have diagonal entries all equal to zero and correspondingly the noise matrix W may have a
nonzero diagonal mean matrix, and our theory covers both cases.

In either of the two scenarios discussed above, we are interested in inferring the structural

information in models (1) and (2), which often boils down to the latent eigenstructure (D, V).



Since both the eigenvector matrix V and eigenvalue matrix D are unavailable to us, we resort

to the observable random data matrix X for extracting the structural information. To this

end, we conduct a spectral decomposition of X, and denote by Aq,---, A, its eigenvalues
and Vi,---,V, the corresponding eigenvectors. Without loss of generality, assume that
[Ad1] > -+ > |\,| and denote by V= (V1,++,Vk) an n x K matrix of spiked eigenvectors.

As mentioned before, we aim at investigating the precise asymptotic behavior of the spiked
empirical eigenvalues A1, - - - , A\ and spiked empirical eigenvectors vy, - - - , Vi of data matrix
X. It is worth mentioning that our definition of spikedness differs from the conventional one
in that the underlying rank order depends on the magnitude of eigenvalues instead of the
nonnegative eigenvalues that are usually assumed.

One concrete example is the stochastic block model (SBM), where the latent mean matrix
H takes the form H = TP’ with II = (7y,--- ,m,)" € R™X a matrix of community

€ REXE 3 nonsingular matrix with pg € [0,1] for

membership vectors and P = (py)
1 < k,l < K. Here, for each 1 < i < n, m; € {e],--- ,ex} with e; € RX 1< j <K,
a unit vector with the kth component being one and all other components being zero. It
is well known that the community information of the SBM is encoded completely in the
eigenstructure of the mean matrix H, which serves as one of our motivations for investigating

the precise asymptotic distributions of the empirical eigenvectors and eigenvalues.

2.2 Theoretical setup

We first introduce some notation that will be used throughout the paper. We use a < b to
represent a/b — 0 as matrix size n increases. We say that an event &, holds with significant
probability if P(£,) = 1 — O(n™!) for some positive constant ! and sufficiently large n. For
a matrix A, we use A\;(A) to denote the jth largest eigenvalue in magnitude, and ||A| F,
|A]l, and ||A||e to denote the Frobenius norm, the spectral norm, and the matrix entrywise
maximum norm, respectively. Denote by A_; the submatrix of A formed by removing the
kth column. For any n-dimensional unit vector x = (z1,--- ,2,)7, let dx = ||%||oo represent
the maximum norm of the vector.

We next introduce a definition that plays a key role in proving all asymptotic normality

results in this paper.

Definition 1. A pair of unit vectors (x,y) of appropriate dimensions is said to satisfy the
W!-CLT condition for some positive integer | if xT(Wl — EWl)y 1 asymptotically standard

normal after some normalization, where CLT refers to the central limit theorem.

Lemmas 1 and 2 below provide some sufficient conditions under which (x,y) can satisfy
the W!-CLT condition defined in Definition 1 for [ = 1 and 2, which is all we need for our
technical analysis of asymptotic distributions. In this paper, we apply these lemmas with
either x or y equal to vi. Therefore, a sufficient condition for the results in our paper is

that ||[vg| o is small enough.



Lemma 1. Assume that n-dimensional unit vectors x andy satisfy

1/2

xllsol¥lloo < [var(x' Wy)] Sn- (3)

Then xT WYy satisfies the Lyapunov condition for CLT and we have (x Wy—ExT Wy)/s, Z,
N(0,1) as n — oo, which entails that (x,y) satisfies the W'-CLT condition with 1 = 1.

To introduce W2-CLT, for any given unit vectors x = (z1,--- ,2,)" andy = (y1,- - ,yn)"

i

we denote respectively s2 y and rxy the mean and variance of the random variable
bl

> Ul%i[ S walzry +yer) + Y wilzi + vim)

1<k i<n, k<i 1<l<k<n 1<i<i<n

2
+ (1 = i) Ewsi (ziye + xkyi)} +2 0 > ik + wavi)

1<k, i<n, k<i
X [ > walzy+yee) + Y walzy + yim)
1<i<k<n 1<i<i<n
+ (1 = Opi) Ewii (2iyr + xkyi)} + Y mwiley + zi)? (4)
1<k, i<n, k<i

where ;= Ewp, and kg = E(wi, — 02,)? for k # i, v = 2(Bwyy, — 02 Ewpr), krk =
4E(w,%k — aik)Q with wir = 27wy, a,%k = Ewik, and 6p; = 1 when k& = i and 0 otherwise.
It is worth mentioning that the random variable given in (4) coincides with the one defined
in (A.7) in Section B.2 of Supplementary Material, which is simply the conditional variance
of random variable x7 (W2 — EW?)y given in (A.5) when expressed as a sum of martingale
differences with respect to a suitably defined o-algebra; see Section B.2 for more technical

details and the precise expressions for si,y and kxy given in (A.8) and (A.9), respectively.

Lemma 2. Assume that n-dimensional unit vectors x and'y satisfy ||x||co||¥|/cc — 0, Fd}({; <

sx.y, and sxy — 00. Then we have [xT(W? — EW?)y]/sxy Z, N(0,1) as n — oo, which
entails that (x,y) satisfies the W2-CLT condition.

Remark 1. To provide more insights into the conditions of Lemmas 1 and 2, we discuss
the special case of standard Wigner matriz where U?j = p(1 — p) with p the expected value of
entries of X. Then s2 := var(x! Wy) € [p(1 — p),2p(1 — p)] and condition (3) in Lemma 1

reduces to

]l oc ¥ lloo < v/ var(xWy) ~ v/p(1 — p).

Moreover, (A.13) in the Supplementary Material ensures that Lemma 2 holds under the

following sufficient conditions
]l ocl[¥lloe =+ 0, 2*2p(1 = p)|xI[3 ]Iy I3 — 0, and p(1 = p)n — oc. (5)

Thus if either ||X||so o7 ||¥]lco s small enough, both lemmas hold. Indeed in this scenario,



direct calculations show that sgcjy ~np(l —p).

We see from Lemmas 1 and 2 that the W'-CLT condition defined in Definition 1 can
indeed be satisfied under some mild regularity conditions. In particular, Definition 1 is im-
portant to our technical analysis since to establish the asymptotic normality of the spiked
eigenvectors and spiked eigenvalues, we first need to expand the target to the form of
XT(Wl — EWl)y with [ some positive integer plus some small order term, and then the
asymptotic normality follows naturally if (x,y) satisfies the W!-CLT condition. To facilitate
our technical presentation, let us introduce some further notation. For any ¢ # 0 and given
matrices My and My of appropriate dimensions, we define the function

L
R(My, My, t) = — Y ¢ HIMTEW'M,, (6)
1=0,1#1
where L is some sufficiently large positive integer that will be specified later in our technical
analysis. For each 1 < k < K, any given matrices M; and My of appropriate dimensions,

and n-dimensional vector u, we further define functions
~ -1
P(Mla M27 t) = tR(Mla M27 t)a Pk:,t = [t2 (AVk,k‘,t/t),] ; (7)

_ —1
bu,k,t =u- V—k [(D—k) ! + R(V—ka V—k7 t)] R(uu V—k’ t)Ta (8)

where D_; denotes the submatrix of the diagonal matrix D by removing the kth row and

kth column,
Awps =P, v, t) = P(u, Vi, t) [(D_1) '+ P(V 1, Vo, )] P(Vop,vit),  (9)

(1)’ denotes the derivative with respect to scalar ¢ or complex variable z throughout the

paper, and the rest of notation is the same as introduced before.

3 Asymptotic distributions of spiked eigenvectors

3.1 Technical conditions
To facilitate our technical analysis, we need some basic regularity conditions.
Condition 1. Assume that a,, = |[E(W —EW)?||'/2 = 00 as n — .

Condition 2. There exists a positive constant ¢y < 1 such that min{|d;|/|d;| : 1 <i < j <
K +1,d; # —d;} > 1+ cg. In addition, either of the following two conditions holds:

i) |di|/(nfay) — oo with some small positive constant e,

i) max; jvar(wi;) < (2a2)/n and |dk| > coylogn with some constants ¢y > 1 and

c>der(1+271¢).



Condition 3. It holds that |di| = O(|dk|), |dx |owmin/ctn — 00, ||Vil%/omin — 0, afLHkaﬁo/

2 2 R ; . oy 211/2
(Vnoim) — 0, and o7, n — 00, where omin = {mini<; j<n, iz Ewij} /2,

Conditions 1-2 are needed in all our Theorems 1-5 and imposed for our general model
(1), including the specific case of sparse models. In contrast, condition 3 is required only for
Theorem 3 under some specific models with dense structures such as the stochastic block
models with or without overlapping communities.

Condition 1 restricts essentially the sparsity level of the random matrix (e.g., given by
a network). Note that it follows easily from maxi<; j<,|wi;| < 1 that o, < nt/2. Tt
is a rather mild condition that can be satisfied by very sparse networks. For example,
if Bw}y = -+ = Ewi
a? > 2711logn — co. Many network models in the literature satisfy this condition; see, for
example, Jin et al. (2017), Lei (2016), and Zhang et al. (2015).

Condition 2 requires that the spiked population eigenvalues of the mean matrix H (in

logn] = 1/2 and the other wi;’s are equal to zero, then we have

the diagonal matrix D) are simple and there is enough gap between the eigenvalues. The
constant ¢y can be replaced by some o(1) term and our theoretical results can still be proved
with more delicate derivations. This requirement ensures that we can obtain higher order
expansions of the general linear combination for each empirical eigenvector precisely. Oth-
erwise if there exist some eigenvalues such that d; = d;11, then v; and v, are generally no
longer identifiable so we cannot derive clear asymptotic expansions for them; see also Abbe
et al. (2019) for related discussions. Condition 2 also requires a gap between «,, and |dk]|.
Since parameter «, reflects the strength of the noise matrix W, it requires essentially the
signal part H to dominate the noise part W with some asymptotic rate. Similar condition is
used commonly in the network literature; see, for instance, Abbe et al. (2019) and Jin et al.
(2017).

Condition 3 restricts our attention to some specific dense network models. In particular,
|d1| = O(|dk|) assumes that the eigenvalues in D share the same order. The other assump-
tions in Condition 3 require essentially that the minimum variance of the off-diagonal entries
of W cannot tend to zero too fast, which is used only to establish a more simplified theory

under the more restrictive model; see Theorem 3.

3.2 Asymptotic distributions of spiked eigenvalues

We first present the asymptotic expansions and CLT for the spiked empirical eigenvalues

A, -+, Ax. For each 1 < k < K, denote by t; the solution to equation

fol2) =1+ dk{R(vk, Vir 2) = R(Vi, Vg, 2) [(D_p) P4+ ROV, Vg, 2)]

% R(V_p, Vi, z)} =0 (10)



when restricted to the interval z € [ag, bg], where

dk/(l + 2_160), di >0 (1 + 2_160)dk, di >0
ag = and b, =

(1427 ¢o)dy, dp <0 di/(14+271¢g), dp <0

The following lemma characterizes the properties of the population quantity t;’s defined in

(10): It is unique and the asymptotic mean of Ag.

Lemma 3. Equation (10) has a unique solution in the interval z € [ay, bx] and thus ty’s are

well defined. Moreover, for each 1 < k < K we have ty/dp — 1 as n — oo.

It is seen from Lemma 3 that when the matrix size n is large enough, the values of ¢, and
dy, are very close to each other. The following theorem establishes the asymptotic expansions

and CLT for Ay and reveals that ¢ is in fact its asymptotic mean.

Theorem 1. Under Conditions 1-2, for each 1 < k < K we have
Ak =ty = VE Wi + Op(and, ). (11)

Moreover, if var(vi Wvy) > oz?Ld,;Q and the pair of vectors (vi,vy) satisfies the W'-CLT

condition, then we have

A —t — EvIW 7
k%~ PV 1/‘;’“ 75 N(0,1). (12)
[var(vi Wvy)]

Capitaine et al. (2012) and Knowles and Yin (2014) established the joint distribution
of the spiked eigenvalues for the deformed Wigner matrix in different settings than ours.
Capitaine et al. (2012) assumed that Ew? = 1/2 and Ew?j = 1 for i # j, while Knowles and
Yin (2014) assumed that Ew?j = 1 for all (4,7). Under their model settings, the smallest
spiked eigenvalue |dx| and the noise level «, are of the same order, and as a result, their
asymptotic distributions depend on the distributions of the Wigner matrix. In contrast, our
Theorem 1 is proved in the setting of diverging spikes. Thanks to the stronger signal-to-noise
ratio, the noise matrix contributes to the distributions of the spiked eigenvalues in Theorem
1 in a global way, allowing for more heterogeneity in the variances of entries of the noise
matrix W.

Theorem 1 requires that (vi,vg) satisfies the W!-CLT condition and var(vi Wvy) >
a%d;Q. To gain some insights into these two conditions, we will provide some sufficient
conditions for such assumptions. Let us consider the specific case of oy, > 0, that is, the

generalized Wigner matrix W is nonsparse. We will show that as long as

Vil = 0 and Guwin > anlds] (13)

10



the aforementioned two conditions in Theorem 1 hold. We first verify the W!-CLT condition.
By Lemma 1, a sufficient condition for (v, v) to satisfy the W'-CLT condition is that

1/2

1/2
Hkago < [Var(v;‘vikﬂ = [E(V{va —EV;;FWVk)Z] / .

(14)

Observe that it follows from Zlgign(vk’)? =vivi=1and Zlgign(vk)? < |Ivil% <1 that

1/2
1/2
[]E(VZWVk — EVZva)Q} / > |2 Z afj(vk)?(vk)f
1<4,j<n,i#j
1/2 1/2
>omin (20 >, (IR =omn [2-2 ) (Vi)
1<i,j<n,i#j 1<i<n
2\1/2
Z Omin (2 - 2||VkHoo) ’ (15)
where (v},); stands for the ith component of vector vi. The assumption ||vg |20t — 0 in

(13) together with (15) ensures (14), which consequently entails that (vg,vy) satisfies the
WLCLT condition.

We next check the condition var(vi Wvg) = E(viWvy, — Ev] Wvg)? > a%d;z. It
follows directly from (15) that this condition holds under (13). In fact, since Condition 2
guarantees that a,,/|dy| asymptotically vanishes, the assumption oy > a,|dp|~! can be
very mild. In particular, for the Wigner matrix W with o;; =1 for all 1 <4, j < n, it holds
that

E(viWvy, — EviWv,)? = 2. (16)

Thus the condition of E(vi Wvy, — EviWvy)? > a%al,;2 reduces to that of a%dlzz < 1,
which is guaranteed to hold under Condition 2.

We also would like to point out that one potential application of the new results in
Theorem 1 is determining the number of spiked eigenvalues, which in the network models
reduces to determining the number of non-overlapping (or possibly overlapping) communities

or clusters.

3.3 Asymptotic distributions of spiked eigenvectors

We now present the asymptotic distributions of the spiked empirical eigenvectors vy for
1 <k < K. To this end, we will first establish the asymptotic expansions and CLT for the
bilinear form

x v viy

with 1 < k < K, where x,y € R" are two arbitrary non-random unit vectors. Then

by setting y = vi, we can establish the asymptotic expansions and CLT for the general

11



T T

linear combination x7¥;. Although the limiting distribution of the bilinear form x7v,v1y
is the theoretical foundation for establishing the limiting distribution of the general linear
combination x” ¥}, due to the technical complexities we will defer the theorems summarizing
the limiting distribution of XTVngy to a later technical section (i.e., Section 6), and present
only the results for x’ ¥}, in this section. This should not harm the flow of the paper. For
readers who are also interested in our technical proofs, they can refer to Section 6 for more
technical details; otherwise it is safe to skip that technical section. For each 1 < k < K, let
us choose the direction of vy, such that v, vy > 0 for the theoretical derivations, which is

always possible after a sign change when needed.

Theorem 2. Under Conditions 1-2, for each 1 < k < K we have the following properties:
1) If the unit vector u satisfies that |ul'vy| € [0,1) and a,‘LQdivar[(bamk—uTvka)va] —
oo, then it holds that

T~ ~1/2 T T T
tr (u Vi + AU,kvtk,Pk,/tk) = (bu7k‘7tk —u ViV YWy,

+ 0p ({Var[(bg,k,tk - UTszvf)WVk]}l/Q) : (17)

where the asymptotic mean has the expansion Au7k,tk7311/ti =—ulv, + O(aidﬁ). Further-

more, if (bukt, — vkau,vk) satisfies the W'-CLT condition, then it holds that

t (uTGk + Au,k,@ﬁiﬁ) —E [(bak,tk — uTvkvf)va] p NGO
— ,1).

{Var [(bg,k,tk — uTvkvf)va] }1/2

2) If (ay d? + 1)var(vi W2vy) — oo, then it holds that
~ ~ 1/2
2t2 (v;‘gvk + AVk’k’tkP;ﬁ) = (VV2 — EWQ) Vi + 0p { [Var(ngQVk)] / } ) (18)

where the asymptotic mean has the expansion Avkﬁvtkﬁli/ti = -1+ 2_1t;2v;‘5EW2vk +
O(a%d;?’). Furthermore, if (v, Vi) satisfies the W2-CLT condition, then it holds that

2 T ~1/2
2y, (Vk Vie + Avikt Pro,

o (W] >—@>N(O,1).
var (v, vy

1/2

T3) can be of

The two parts of Theorem 2 correspond to two different cases when var(u
different magnitude. To understand this, note that for large enough matrix size n, we have
|ti| > an, by Condition 2 and Lemma 3. In view of (18), the asymptotic variance of v vy, is
equal to var(27't; >vI'W?2vy). In contrast, in light of (17), the asymptotic variance of u’ v

with [uTvy| € [0,1) is equal to var [tlzl(blTl,k‘,tk —ulvv{)Wv,] . Let us consider a specific
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case when Var[(bak’tk —ulvivI)Wv,] ~ 1. By Lemma 4 in Section 6, we have
var (271, 2viW?v;) = O (a2t ?) < var [t;l(bik,tk —u'viv)Wv,] =0 (7).

This shows that the above two cases can be very different in the magnitude for the asymptotic
variance of u’ v, and thus should be analyzed separately.
To gain some insights into why v;f?k has smaller variance, let us consider the simple case

of K = 1. Then in view of our technical arguments, it holds that

~ 1 (W —21)~!
V{VlvlTvl = —— vi ( T D)7 v dz
211 Jo, 1+ divi (W — 2I)~1vy
1 1
= — — dz, (19)
2mi Jo, [VI(W —2I)~tvq] ™ +dy

where ¢ = +/—1 is associated with the complex integrals represents the imaginary unit and
the line integrals are taken over the contour 2y that is centered at (ay + b1)/2 with radius
copldi|/2. Then we can see that the population eigenvalue d; is enclosed by the contour ;.

By the Taylor expansion, we can show that with significant probability,

-1

[V{(W —z2I) v =2 - viWvi + O (Jz| taZlogn) .

Substituting the above expansion into (19) results in

1 1 1 1
— dz = —— "

2mi Jo, [vI(W — 2I)~1v] i 2mi Jo, di — 2z — vIWv; + O(]z| a2 logn)
1 1 1 vIwv, 5

= ¢ ALy d%a21
2mi Jo, di —z 2w Jo, (di — 2)? 2 +0 (d "oy logn)
1 1

=—— d7 20?1 9
2Wi7§21d1—z+0(1a”0gn) (20)

with significant probability. Thus the asymptotic distribution of v{ﬂG{vl is determined by
O,(d;?a2 logn), which has no contribution from v{ Wvy. On the other hand, our technical
analysis for u/v1v1vy (which is much more complicated and can be found in the technical
proofs section) reveals that the dominating term is u’Wv; when u # vy or —vy. This

explains why we need to treat differently the two cases of u close to or far away from vj.

3.4 A more specific structure and an application

Theorem 2 in Section 3.3 provides some general sufficient conditions to ensure the asymp-
totic normality for the spiked empirical eigenvectors. Under some simplified but stronger
assumptions in Condition 3, the same results on the empirical eigenvectors and eigenvalues
continue to hold. Note that the stochastic block models with non-overlapping or overlapping

communities can both be included as specific cases of our theoretical analysis. As mentioned
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before, we choose the direction of v, such that v%@k >(0foreach 1 <k < K.

Theorem 3. Under Conditions 1-3, for each 1 < k < K we have the following properties:
1) (Eigenvalues) It holds that

)\k — tk — EV{WVk 9

. . 21/2—>N(0,1).
[E(viWvy, — EviWvy)?]

-1

2) (FEigenvectors) If the unit vector u satisfies that Umin|’Vk(b£,k,tk —ulvivh)|w = 0

and [uTvy| € [0,1 — €] for some positive constant €, then it holds that

tr (uT?k + AUktkjskl;/ti> —-E [(b:,fktk - uTvkvg)va]

9
— N(0,1). (21)
{var [(bak,t;@ —uTvvI)Wv,] }1/2
Moreover, it also holds that
~ ~1/2
2t% (v;‘gvk + Avkvkatkpk:,/tk.> 2
7 — N(0,1). (22)
[var(vi W2v;)]
Theorem 2 also gives the asymptotic expansions for the asymptotic mean term Ay 1 ¢, ﬁ;/ti

It is seen that if |dg| diverges to infinity much faster than a2, then the O(-) terms in the

asymptotic expansions of the mean become smaller order terms and thus the following corol-

lary follows immediately from Theorem 3.

Corollary 1. Assume that Conditions 1-8 hold. For each 1 < k < K, if the unit vector
u satisfies that [u’vy| € [0,1 — €] for some positive constant € and agA‘divar[(bg,k,tk —

ulvivI YWy — oo, then we have

tr (uTVk — uTvk) —E [(bz,k,tk — uTVkvg)va] 2

N(0,1). (23)
172
{var [(bl .., —uTvivI)Wv,]} /
Moreover, if a;,Sd3var(vEW?2vy) — oo then we have
23 (Vivi — 1) + viEW? ;
(Ve —1) + Vi EWPve o N(0,1). (24)

[Var(v£W2vk)} 1/2

Theorem 3 includes the stochastic block model as a specific case. If X is the affinity
matrix from a stochastic block model with K non-overlapping communities and the size of
each community is of the same order O(n), then it holds that ||vi||ec = O(n"'/2), dx = O(n),
an <02 and oy || Vi|lso < O(1). Thus Condition 3 can be satisfied as long as o, > n~ /4,
leading to the asymptotic normalities in Theorem 3.

Our Theorem 3 also covers the stochastic block models with overlapping communities.
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For example, the following network model was considered in Zhang et al. (2015)
EX = @IIPII' ©7, (25)

where ® is an n X n diagonal degree heterogeneity matrix, IT is an n x K community
membership matrix, and P is a K x K nonsingular irreducible matrix with unit diagonal
entries. Observe that the above model has low-rank mean matrix and thus can be connected
to our general form of eigendecomposition EX = H = VDV7. If the spiked eigenvalues and
spiked eigenvectors satisfy that |dy| = O(n) and ||vi|/ee = O(n~Y/2) for all 1 < k < K, then

—1/4

Condition 3 can be satisfied when oy > n . Consequently, the asymptotic normalities

in Theorem 3 can hold.

3.5 Proofs architecture

The key mathematical tools are from complex analysis and random matrix theory. At a high
level, our technical proofs consist of four steps. First, we apply Cauchy’s residue theorem
to represent the desired bilinear form x7v,viy with 1 < k < K as a complex integral
over a contour for a functional of the Green function associated with the original random
matrix X = H + W. It is worth mentioning that such an approach was used before to
study the asymptotic distributions for linear combinations of eigenvectors in the setting of
covariance matrix estimation for the case of i.i.d. Gaussian random matrix coupled with
linear dependency. Second, we reduce the problem to one that involves a functional of the
new Green function associated with only the noise part W by extracting the spiked part.
Such a step enables us to conduct precise high order asymptotic expansions. Third, we
conduct delicate high order Taylor expansions for the noise part using new Green function
corresponding to the noise part. In this step, we apply the asymptotic expansion directly
to the evaluated complex integral over the contour instead of an expansion of the integrand.
Such a new way of asymptotic expansion is crucial to our study. Fourth, we bound the
variance of x* (W'! — EW')y using delicate random matrix techniques. In contrast to just
counting the number of certain paths in a graph used in classical random matrix theory
literature, we need to carefully bound the individual contributions toward the quantity a,, =

|E(W — EW)2||'/2; otherwise simple counting leads to rather loose upper bound.

3.6 Comparisons with the statistics literature

In a related work, Tang and Priebe (2018) established the CLT for the entries of eigenvectors
of a random adjacency matrix. Our work differs significantly from theirs in at least four
important aspects. First, Tang and Priebe (2018) assumed a prior distribution on the mean
adjacency matrix, while we assume a deterministic mean matrix. As a result, the asymptotic

variance in Tang and Priebe (2018) is determined by the prior distribution and is the same for
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each entry of an eigenvector, while in our paper the CLT for different entries of an eigenvector
can be different and the asymptotic variance depends on all entries of the eigenvector. While
Tang and Priebe (2018) also provided the conditional CLT under the setting of the stochastic
block model, their result conditions on just one node. Second, our model is much more general
than that in Tang and Priebe (2018) in that the spiked eigenvalues can have different orders
and different signs. Third, we establish the CLT for the general linear combinations of
the components of normalized eigenvectors and the CLT for eigenvalues, while Tang and
Priebe (2018) proved the CLT for the rows of A1/2{\7T, where A € RE*K i5 the diagonal
matrix formed by K spiked eigenvalues of the adjacency matrix and V= (V1,-+,Vk) is the
matrix collecting the corresponding eigenvectors of the adjacency matrix. Fourth, through a
dedicated analysis of the higher order expansion for the general linear combination u’ vy, we
uncover an interesting phase transition phenomenon that the limiting distribution of u’vy
is different when the deterministic weight vector u is close to or far away from v (modulo
the sign), which is new to the literature.

Wang and Fan (2017) proved the asymptotic distribution of the linear form v vy with
1 <i,k < K, where v;’s and vi’s are the spiked population and empirical eigenvectors for
some covariance matriz, respectively. Their asymptotic normality results cover the case of
vI¥) when K = 1, and v ¥y for 1 < i,k < K with i # k when K > 2. Similarly, Koltchinskii
and Lounici (2016) considered the sample covariance matriz under the Gaussian distribution
assumption, and derived the asymptotic expansion of the bilinear form xT%ﬁ;‘gy, where x,y
are two deterministic unit vectors. They also obtained the asymptotic distribution of x”+;.
Different from Wang and Fan (2017) and Koltchinskii and Lounici (2016), in this paper we
establish the asymptotic distribution for the general linear combination u’ vy for the large
structured symmetric random matrix from model (1) under fairly weak regularity conditions.
Our proof techniques differ from those in Wang and Fan (2017) and Koltchinskii and Lounici

(2016), and are also distinct from most of existing ones in the literature.

4 Statistical applications

The new asymptotic expansions and asymptotic distributions of spiked eigenvectors and
eigenvalues established in Section 3 have many natural statistical applications. Next we
discuss three specific ones. See also Fan et al. (2019) for another application on testing the

node membership profiles in network models.

4.1 Detecting the existence of clustering power

One potential application of Theorem 3 is to improve the results on community detection
under model setting (25). Spectral methods have been used popularly in the literature for

recovering the memberships of nodes in network models. For example, applying the K-means
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clustering algorithm to the K spiked eigenvectors calculated from the adjacency matrix has
been a prevalent method for inferring the memberships of nodes. However, it may not be true
that all these K eigenvectors are useful for clustering. For example, if eigenvector v, = 1/y/n,
then it has zero clustering power and should be dropped in the K-means clustering algorithm.
This is especially important in large networks because including a useless high-dimensional
eigenvector may significantly increase the noise in clustering. Theorem 3 suggests that we
can test the hypothesis Hy : vy = 1/y/n using the test statistic ?gl. Then with the aid
of Theorem 3, the asymptotic null distribution can be established and the critical value
can be calculated. This naturally suggests a method for selecting important eigenvectors in

community detection.

4.2 Detecting the existence of denser subgraph

Another application of Theorem 3 is to detect the existence of a denser community in a given
random graph, the same problem as studied in Arias-Castro et al. (2014) and Verzelen et al.
(2015). Specifically, assume that the data matrix X = (x;;) is a symmetric adjacency matrix
with independent Bernoulli entries on and above the diagonal. Let H = E[X] be the mean

adjacency matrix. Consider the following null and alternative hypotheses
Hy:-H=p111 ~vs. H :H=p11l +(g—pee7,

where £ is the vector with the first n; entries being 1 and all remaining entries 0, and
q € (p,1]. It can be seen that under the alternative hypothesis, there is a denser subgraph
and ¢ measures the connectivity of nodes within it. Arias-Castro et al. (2014) and Verzelen
et al. (2015) proposed tests for the above hypothesis in the setting of n; = o(n). We focus
on the same setting and in addition assume that n™' < p < g and ¢ ~ p. We next discuss
how to exploit our Theorem 3 to test the same hypothesis.

Under the null hypothesis, a natural estimator of p is given by p = 71(%—1) Zlgigg‘gn Tij.

Moreover, direct calculations show that
vIEW?v, = np(1 —p) and var(vi W?vy) = p(1 — p) [2(n—1)+ PP+ - p)?’] . (26)
Thus the mean and variance of v W2v; in (26) can be estimated as
np(1 —p) and p(1—p) [2(n —1)+p° + (1 -D)°], (27)

receptively. In view of (24) in Corollary 1, since vi = n~Y21 under the null hypothesis

Hy : H = p117, a natural test statistic for testing Hy : H = p117 is given by

202 (n=V2179; — 1) + np(1 - p)

T, = |
[B(1—p)[2(n — 1) + 7% + (1 — p)3]) /2
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It can be seen that since A; &~ ¢; (see Lemma 3), the asymptotic null distribution of
T, is expected to be N(0,1) by resorting to (24) in Corollary 1. On the other hand, un-
der the alternative hypothesis, since the leading eigenvector differs from n~/21, the term
n~ 12179, — 1 in the numerator of T}, is expected to take some negative value, and thus
T, is expected to have different asymptotic behavior than N(0,1). In fact, we provide the
proof sketch in Section D.5 of Supplementary Material on the asymptotic null and alternative

distributions. In particular, we show that the asymptotic null distribution of T}, is N(0,1),

e n3(g¢—p)* | ni(¢—p) B : . s
and if T > 1, then T,, — —oo with asymptotic probability one under the

alternative hypothesis.

4.3 Rank inference

Our theory can also be applied to statistical testing on the true rank K of the mean matrix
H. Rank inference is an important problem in many high-dimensional network applications.
See, for example, Lei (2016), Chen and Lei (2018), and Li et al. (2020), and the importance
of the problem discussed therein. Consider the following hypotheses

Hy: K=Ky vs. H,: K > Ky,

where Ky is some prespecified positive integer satisfying Ky < K. Define

Ko
Wij = Ty Z AL€; ViV €;
k=1
K K
Ts ST T T TS ST
= Wij — Z [)\kei ViV €5 — dkei ViV e]'] + Z )\kei ViV €;. (28)
k=1 k=Kop+1

Under the null hypothesis Hy : K = K, the last term in (28) disappears and we can obtain
the asympttoic expansion of @w;; around w;; explicitly by an application of Theorems 1 and
2. Then under some additional regularity conditions, it is expected that w;; is close to wj;.

By the independence of w;;, i = 1,--- ,n, it holds that

n ..
721:1 Wi 7, N(0,1) as n — oc.

i1 wzzi

Since w;; ~ w;; under the null hypothesis, the following asymptotic distribution is expected
to hold as well .
T, = 2=t 0i 7, N ), (29)
Do W
This naturally suggests a statistical test based on statistic T, for testing Hy : K = Kp.
Under the alternative hypothesis, since w;; contains the smallest K — K spiked eigenvalues

and the corresponding eigenvectors, its asymptotic behavior is expected to be different, and
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consequently, the test can have nontrivial power. In fact, a more sophisticated version of
this test constructed based on the off-diagonal entries of W was investigated recently in Han
et al. (2019).

The above asymptotic distribution can also be used to construct confidence intervals for
the rank K. To understand this, note that 7}, defined in (29) is a function of Ky. Thus an
immediate idea for the 100(1 — «)% confidence interval construction is to identify all K such
that the corresponding T;, falls into the range of [-®~ (1 — a),®~1(1 — )], where ®~1(.) is
the inverse distribution function of the standard normal. Similar ideas can also be exploited

to construct confidence intervals for other parameters in network models.

5 Simulation studies

In this section, we use simulation studies to verify the validity of our theoretical results. We
consider the stochastic block model with K = 2 communities. Assume that the number of
nodes is n, the first n/2 nodes belong to the first community, and the rest belong to the
second one. Then the adjacency matrix X has the mean structure EX = H = ARA7,
where R is a 2 x 2 matrix of the connectivity probabilities, and A = (ar,as) € R™*? with
a; = nfl/z(lT,OT)T and ag = Tfl/z(OT7 17T where 0,1 € R™? are vectors of zeros and
ones, respectively. It is worth mentioning that ARA” is not the eigendecomposition of the
mean matrix H, which is why we use different notation than that in model (1).

For the connectivity probability matrix R, we consider the structure

where parameter r takes 6 different values 0.02, 0.05, 0.1, 0.2, 0.3, and 0.4. A similar model
was considered in Abbe et al. (2019) and Lei (2016). For the connectivity matrix X, we
simulate its entries on and above the diagonal as independent Bernoulli random variables
with means given by the corresponding entries in the mean matrix H, and set the entries
below the diagonal to be the same as the corresponding ones above the diagonal. We choose
the number of nodes as n = 3000 and repeat the simulations for 10,000 times.

To verify our theoretical results, for each simulated connectivity matrix X we calculate its
eigenvalues and corresponding eigenvectors. For the eigenvalues, we compare the empirical

distribution of

Ak — tg

[var(vI Wvy)] 1/2

(30)

with the standard normal distribution, where ¢ is the solution to equation (10). The exact

expression of R(vi, V_p, 2)[(D_x) ' + R(V_p, V_i, 2)]| 'R(V_g, Vi, 2) in (10) is compli-
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Figure 1: Histograms of the normalized eigenvalues (30) when r = 0.4, with the blue curves
representing the standard normal density. Left panel: the first eigenvalue; right panel: the
second eigenvalue.

cated. Since this term is much smaller than R(vy, v, z), we can calculate an approximation

of t; by solving the equation
1 +dkR(Vk,Vk,Z) =0 (31)

using the Newton—Raphson method. Guided by the theoretical derivations, we use L = 4
in the asymptotic expansion of R(x,y,t) in (6) for all of our simulation examples. Tables
1-2 summarize the means and standard deviations of (30) with £ = 1 and 2 calculated from
the 10,000 repetitions as well as the p-values from the Anderson—Darling (AD) test for the
normality. Figure 1 presents the histograms of the normalized first and second eigenvalues
(i.e., (30) when k =1 and 2) from the 10,000 repetitions.

For the eigenvectors, we evaluate the asymptotic normality of the linear combination
u’V;, with £ = 1 and 2. We experiment with three different values for u: ay, (1,0,---,0)7,

and vi. When u = aj or (1,0,---,0)7, we calculate the normalized statistic

~ =1/2
tr (uTVk + All,k,tkpk;,/tk)

{var [(bak,tk — uTvkvg)va] }1/2

using the 10,000 simulated data sets, while when u = v we calculate the normalized statistic

~ S1/2
Qti (ngk + Avk7k,tkpk,/ztk>

[var (v, W2v;)] /2

instead. In either of the two cases above, the variance in the denominator is calculated as
the sample variance from 2,000 simulated independent copies of the noise matrix W. We
compare the empirical distributions of the above two normalized statistics with the standard
normal distribution. The simulation results are summarized in Tables 3-8 and Figures 2-3.

Our simulation results in Figure 1 and Tables 1-2 suggest that the normalized spiked
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Table 1: Simulation results for (A\; — t1)/[var(vi Wvy)]/2

r 0.02 0.05 0.1 0.2 0.3 0.4
Mean 0.0719 0.0149 -0.0068 -0.0080 -0.0024 0.0124
Standard deviation 1.0107 1.0085 0.9927 1.0115 1.0023 1.0125
AD.p-value 0.0725 0.5387 0.6263 0.2342  0.9243 0.2010

Table 2: Simulation results for (Ay — to)/[var(vi Wvy)]'/2

T 0.02 0.05 0.1 0.2 0.3 0.4
Mean 1.0761 0.2552 0.0681 0.0272 0.0093 0.0052
Standard deviation 0.9630 0.9820 0.9872 1.0100 1.0057 1.0005
AD p-value 0.5349 0.6722 0.8406 0.1806 0.0535 0.8341

eigenvalues have distributions very close to standard Gaussian which supports our results
in Theorem 1. Indeed, such a large p-value is extremely impressive given the “sample size”
(the number of simulations is 10,000). In general, the simulation results for the eigenvectors
support our theoretical findings in Section 3. However, the results corresponding to the first
spiked eigenvector v (Tables 3-5) are better than those for the second spiked eigenvector v
(Tables 4-8). This is reasonable since for the larger spiked eigenvalue, the negligible terms
that we dropped in the proofs of the asymptotic normality become relatively smaller and
thus have smaller finite-sample effects on the asymptotic distributions. For the linear form
u’v,, when u = vy, the convergence to standard normal is slower when compared to the
case of u # vy. This again supports our theoretical findings in Section 3 and explains why
we need to separate the cases of u = v and u # vi. Such effect is especially prominent for
ngg, whose sample mean is —11.8020 when r = 0.02 as shown in Table 7. However, it is
seen from the same table (and other tables) that as the spiked eigenvalue increases with r,

the distribution gets closer and closer to standard Gaussian.

Table 3: Simulation results for uZv; with u = a;

r 0.02 0.05 0.1 0.2 0.3 0.4
Mean -0.0573 -0.0140 -0.0023 -0.0045 -0.0071 -0.0069
Standard deviation 1.0335 1.0244 1.0011 1.0001 1.0214 1.0016
AD.p-value 0.7879  0.4012 0.2417 0.5300 0.9482  0.9935
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Table 4: Simulation results for viv;

r 0.02 0.05 0.1 0.2 0.3 0.4
Mean -1.3288 -0.4817 -0.1900 -0.0742 -0.0409 -0.0186
Standard deviation 1.0940 1.0545 1.0338 0.9749 1.0030 1.0005
AD.p-value 0.0582 0.4251 0.0251 0.0225 0.3312 0.2912
Table 5: Simulation results for u’v; with u = (1,0,---,0)”
r 0.02 0.05 0.1 0.2 0.3 0.4
Mean 0.0025 0.0021 0.0003 0.0105 0.0061 -0.0122
Standard deviation 1.0432 1.0354 0.9871 1.0016 1.0205 0.9898
AD.p-value 0.0044 0.4877 0.3752 0.1514 0.1304 0.3400
Table 6: Simulation results for u’ v, with u = a;
r 0.02 0.05 0.1 0.2 0.3 0.4
Mean 4.2611 1.0129 0.3067 0.0745 0.0219 0.0037
Standard deviation 1.2384 1.0952 1.0294 1.0098 1.0280 1.0044
AD p-value 0.3829 0.7535 0.3759 0.4105 0.9129 0.9873
Table 7: Simulation results for VQTVQ
0.02 0.05 0.1 0.2 0.3 0.4
Mean -11.8020 -4.3274 -2.0057 -0.7447 -0.3526 -0.1650
Standard deviation 1.3775 1.1192 1.0980 1.0343 1.0104 1.0089
AD p-value 0.0000 0.0011 0.0422 0.3964 0.4980 0.1186
Table 8: Simulation results for u’ v, with u = (1,0,---,0)7
r 0.02 0.05 0.1 0.2 0.3 0.4
Mean 0.0622 0.0204 0.0018 -0.0074 -0.0119 -0.0049
Standard deviation 1.1221 1.0537 1.0272 1.0022 1.0088  0.9933
AD p-value 0.0003 0.5853 0.0930 0.6011 0.2423 0.4385

22



Density

. A
Histogram of ugv1

. A
Histogram of v1Tv1

. A
Histogram of uTv1

0.4 0.5

0.3
Density

Density

0.2

0.1

0.0

Figure 2: Histograms corresponding to the first eigenvector vi when r = 0.4, with the blue
curves representing the standard normal density. Left panel: ufv;; middle panel: vivy;

right panel: ulv;, where u; = a; and uz = (1,0,---,0)7
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Figure 3: Histograms corresponding to the second eigenvector vo when r = 0.4, with the
blue curves representing the standard normal density. Left panel: uf vo; middle panel: vvs;

right panel: ulv;, where u; = a; and uz = (1,0,---,0)7
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6 A more general asymptotic theory

As mentioned before, the asymptotic theory on the spiked eigenvectors in terms of the gen-
eral linear combination and on the spiked eigenvalues presented in Section 3 is in fact a
consequence of a more general asymptotic theory on the spiked eigenvectors in terms of the
bilinear form. In this section, we focus our attention on such a more general asymptotic

TG;ﬁzy with 1 < k < K, where x and y are two arbitrary

theory for the bilinear form x
n-dimensional unit vectors. See Sections 3.5 and 3.6 for detailed discussions on the techni-
cal innovations of our novel ATE theoretical framework and comparisons with the existing
literature on the asymptotic distributions of eigenvectors.

For technical reasons, we will break our main results on the asymptotic distributions of

TV;ﬁ{y down to two theorems, where we consider in Theorem 4 the case

the bilinear form x
when either vector x or vector y is sufficiently further away from the population eigenvector
v, and then we study in Theorem 5 the case when both vectors x and y are very close to vy
The technical treatments for these two cases are different since in the latter scenario, the first
order term which determines the asymptotic distribution in Theorem 4 vanishes, and thus we
need to consider higher order expansions to obtain the asymptotic distribution in Theorem
5. Let Jxy k> Lxykitpr and Qyy iy, be the three rank one matrices given in (113)—(115),
respectively, in the proof of Theorem 5 in Section A.6. Denote by o7 = var[tr(WJxy k.1, )]

and
op =var {tr [Wlxyrt, — (W2 —EW?) Ly y s, | + tr (Wvpv]) tr (WQuyri,)}- (32)

Both of the quantities above play an important role in our more general asymptotic theory.

Theorem 4. Assume that Conditions 1-2 hold and x and y are two n-dimensional unit
vectors. Then for each 1 < k < K, if 02 > t;*a2(|Ax oty + [Ay pan)? + t,;4 we have the

asymptotic expansion
X' ViVEY = ap + (W i) + Op {8 2an ([ Ax ] + Ay kal) + 6.7} (33)

where the quantity aj, = Ax,k,tkAy,k,tkfi)vk,tk-

The assumption of o2 > ¢, *a2(|Ax | + |Ay ks |)? + % in Theorem 4 requires the
variance of random variable tr(WJyx y 1+, ) not too small, which at high level, requires that
either vector x or y is sufficiently faraway from the population eigenvector vy. If 0;; ~ 1 for
each (i, j) pair, then such an assumption restricts essentially that ||Jxy k.| should not be
too close to zero. This in turn ensures that the first order expansion is sufficient for deriving
the asymptotic normality of xTQkVZy. Theorem 4 also entails that a simple upper bound

for 5, as defined in (32) can be shown to be O(t; *ax).
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Theorem 5. Assume that Conditions 1-2 hold and x and y are two n-dimensional unit
vectors. Then for each 1 <k < K, if 02 = O(2) and 2 > t;, "ol (| Ax .1, | + | Ay k.0 [)? +15

we have the asymptotic expansion

XTGkﬁgy = ay + tr [WJx,y,k,tk - (W2 — EWQ) Lx,y,k,tk] + tr (vavg) tr (WQx,y,k,tk)
+ Op { Itk i (| Aoty | + [Ay k) + 116177} (34)

where the quantity ay is given in (33).

The ATE theoretical framework for the more general asymptotic theory established in

Theorems 4 and 5 is empowered by the following two technical lemmas.

Lemma 4. For any n-dimensional unit vectors x and y, we have
T (a7l N _ . -1 ! l
x" (W' —EW")y = Op(min{a;,, ~, dxay,, dya, }) (35)

with [ > 1 some bounded positive integer and dx = ||X||co-

Lemma 5. For any n-dimensional unit vectors x and y, we have ExT W'y = O(1) and
Ex! W'y = O(al) (36)

with [ > 2 some bounded positive integer.

The detailed proofs of Lemmas 4 and 5 are provided in Sections B.5 and B.6 of Sup-
plementary Material. Our delicate technical arguments therein establish useful refinements
to the classical idea of counting the number of nonzero terms from the random matrix the-
ory. In particular, Lemma 4 is the key building block for high order Taylor expansions that

involve polynomials of quantities in the lemma with different choices of (x,y,[).

7 Discussions

In contrast to the immense literature on the asymptotic distributions for eigenvalues of large
spiked random matrices, the counterpart asymptotic theory for eigenvectors has remained
largely underdeveloped in statistics literature for years. Yet such a theory is much desired for
understanding the precise asymptotic properties of various statistical and machine learning
algorithms that build upon the spectral information of the eigenspace constructed from
observed data matrix. Our work in this paper provides a first attempt with a general ATE
theoretical framework for underpinning the precise asymptotic expansions and asymptotic
distributions for spiked eigenvectors and spiked eigenvalues of large spiked random matrices
with diverging spikes. Our results complement existing ones in the RMT literature as well

as the networks literature.
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The family of models in our ATE framework includes many popularly used ones for
large-scale applications including network analysis and text analysis such as the stochastic
block models with or without overlapping communities and the topic models. Our general
asymptotic theory for eigenvectors can be exploited to develop new useful tools for precise
statistical inference in these applications. It would be interesting to investigate the problem
of reproducible large-scale inference as in Barber and Candes (2015); Candes et al. (2018);
Lu et al. (2018); Fan et al. (2019); Fan et al. (2019) in these model settings. It would also
be interesting to develop a general method to determine the rank and provide robust rank
inference in such high-dimensional low-rank models. These extensions are beyond the scope

of the current paper and will be interesting topics for future research.

A Proofs of main results

Recall that Condition 2 involves two scenarios of the spike strength. We will first prove all
the results under scenario i). Then in Section D of Supplementary Material, we will adapt
the proofs to show that the same results also hold under scenario ii). We provide the proofs
of Theorems 1-5 and Corollary 1 in this appendix. Additional technical details including the
proofs of all the lemmas and further discussions on when the asymptotic normality can hold

for the asymptotic expansion in Theorem 5 are contained in the Supplementary Material.

A.1 Proof of Theorem 1

The results on the asymptotic distributions of spiked eigenvalues in Theorem 1 are in fact
a consequence of those on the asymptotic expansions and asymptotic distributions for the
spiked eigenvectors, where a more general asymptotic theory of the eigenvectors is presented
in Theorems 4-5 in Section 6. Let us define a matrix-valued function that is referred to as

the Green function associated with only the noise part W
G(z)= (W —zI)! (37)

for z in the complex plane C, where I stands for the identity matrix of size n. Recall that
A1, -+, Ay are the eigenvalues of matrix X and v1,- - - , v, are the corresponding eigenvectors.
By Weyl’s inequality, it holds that max |\; — d;| < [[W||. Thus, in view of Condition 2 and
Lemma 6 in Supplementary Material, all the spiked eigenvalues A; with 1 < k < K of the
observed random matrix X have magnitudes of larger order than the eigenvalues of the noise
matrix W with significant probability as the matrix size n increases. This entails that with
significant probability, matrices G(A\;) with 1 < k& < K are well defined and nonsingular.
For the rest of this proof, we restrict all the derivations on such an event that holds with

asymptotic probability one.
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It follows from the definition of the eigenvalue, the representation X = H+W = VDV’ 4+
W, (37), and the properties of the determinant function det(-) that for each 1 < k < K,

0 = det(X — A\I) = det(W — M\ I+ VDVT) = det[G ™ (\g) + VDVT]
= det[G™ (\g)] det[T + G(\)VDVT],

which leads to det[I + G(\;)VDVT] = 0 since det[G™1(\;)] = det[G(\;)]~! is nonzero.
Using the identity det(I + AB) = det(I + BA) for matrices A and B, we obtain for each
1<k<K,

0 = det[I + G(\,)VDVT] = det[I + DVTG(\;) V], (38)

where the second I represents an identity matrix of size K and we slightly abuse the notation
for simplicity. Since the diagonal matrix D is nonsingular by assumption, it follows from
(38) that

det[d, VIG(\,)V + di D71 = dp det(D 1) det[T + DVIG()\,) V] =0 (39)

foreach 1 <k < K.

By the asymptotic expansions in (79), Lemmas 4 and 5, and Weyl’s inequality max |\ —
di| < ||[W]|, we have for j # ¢, dkv;‘.FG()\k)ve = —dkOp(A,f) = Op(1/|dg|). Thus, we can see
that all off diagonal entries of matrix d, VI G(\;)V +dD ™! in (39) are of order O,(1/|dy]).
For j # k, the jth diagonal entry of dy VI G(\)V + dpD~! equals dkv]TG()\k)Vj + dy/d;.
By (78) and Lemma 4, we have dkvfG(Ak)vj + 1 = o0p(1). Moreover, by Condition 2
|di/dj — 1| > c for some positive constant c¢. Hence, all these diagonal entries but the kth
one are of order at least Op(1). Thus the matrix (de;fFG(/\k)vj + 0ijdy/di)1<i <K, i jk 1S
invertible with significant probability, where ¢;; = 1 when ¢ = j and 0 otherwise. Recall the

determinant identity for block matrices from linear algebra

A Ap .
det = det(Agz) det(AH — A12A22 A21)

Ao Ay

when the lower right block matrix Aso is nonsingular. Treating the kth diagonal entry of
diVTG(\p)V + dpD 7! as the first block, we have with significant probability

det[d, VIG(\,)V +di D71 =0 (40)

entailing dxvi G (M) vi+1 = divEFi (M) vy, where Fi(z) = G(2)V_i[D7,+ VL, G(2)V_g] !
- VT, G(z) and A_j denotes the submatrix of matrix A by removing the kth column. In
light of (40) and the solution #; to equation (94) in the proof of Theorem 4 in Section A.5,
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it holds from the uniqueness of 1) that
Ak = %\k (41)

Therefore, combining equality (41) with asymptotic expansion tj, —tj, = VIW vy +Op(an/ty)
obtained in (99) completes the proof of Theorem 1.

A.2 Proof of Theorem 2

The results on the asymptotic distributions of spiked eigenvectors in Theorem 2 are also an
implication of a more general asymptotic theory of the eigenvectors presented in Theorems
4-5 in Section 6 on the delicate asymptotic expansions and asymptotic distributions for the
spiked eigenvectors. Recall that V= (V1, - ,Vg) with v} for 1 < k < K the empirical
spiked eigenvectors of the observed random matrix X. Without loss of generality, let us
choose the direction of eigenvector v such that vak > 0. Clearly, fixing the direction of
vy, does not affect the distribution of XTVkV;;Fy; that is, its distribution stays the same when
—Vy, is chosen as the eigenvector. We will separately consider the two cases of V;{ﬂ; and
u’'Vy with u # vi, where the former relies on the second order expansion given in (111) in
the proof of Theorem 5 in Section A.6, and the latter utilizes the first order expansion given
in (107) in the proof of Theorem 4 in Section A.5.

We first consider Vf@k. Choosing x =y = v} in Theorem 4 gives ap = A%k,k,tkﬁk,tk- By
Lemma 5, it holds that

L T l
vi. EW'v
P(vi,viti) = = D = = —1+ O(ap/f}) (42)
1=0,1#£2 k
and
L T l
vIEW!V_,,

IPVE Vot =1 — ’“tilll = O(a} /7). (43)

1=0,l#£2 k

Moreover, recalling the definition of Ay, in (9), Auke, can be rewritten as
Av, ity = P(Vie, Vi, t) =t " P(vi, Vg, ty) (D:}c +R(V_, V_p, tk))ilp(v—ka Vi, tr)-
Therefore, by (42)-(43), (A.16), and (91), we have
Av, k1, = —1+0(a2/t7) and ﬁk,tk =14+ 0(a?/t3). (44)

Now recall the second order expansion of x! v} vy given in (111) in the proof of Theorem

5. We next calculate the orders of each term in the expansion (111). First, we consider
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bzk,k,tk' By (43), (A.16), and the definition (7), we have

—1
1%, s, =Vl = | RO Vo (Do) 4+ ROVos Vo) VI = 0t/ ()

This together with (44) entails that
1wy ke + Aveet Pra Vi | = Oor /17). (46)
It follows from Lemma 4 and (44) that

Ay it Prt 00, s+ Avibty Prte Vi )WY/t = Op(ad /[tk]),

katkt];2 |:27Dk7tk: (Avk:kvtkbz;k,k,tk + Avmk,tkbzk,k,tk) vavg + bz;k,k‘,tkkabz;k,k,tk va
_ 2
A Prt st 2x T Wy vEW vy, — £ 2VEW VLR (Vi Vg, t
+ Avp kit Photy U7X VEVE WV r Vi YWV (Vk7 —k;)
_ —1
X DT+ RV Vopste)] ' VI W |
+ Ay kit Proty {t;QVvikv£va - t,;2v£WVkR(vk, V_i,t)

x [DZL 4 RV, Vi t)] VZkak}

~ _ -1
+ Ay bt Prtitn “R(Vi, Vg t) [D74 + R(V_p, Vo 1) VI (W2 - EW?)v,
ing — _ -1
+ Ay bt Prtitn “R(Vi, V_op t) [D73 + R(V_y, Vo 1) VI (W2 —EW?)y,
1 oy,
= Op(—= + —=),
bl |t1|2 |tk|3)

and

ﬁk:tk tlz2(AVka,thT + Avk,k,tkyT)(Wz - EW?)VI@ + 3t];2AVk7k7tk Avy kit ﬁk‘,tkvg (WQ - EWQ)VIC

vI(W? - EW?)v;
=" + Op(a}/1}).

Substituting the above equations into (111) results in
ViV VE =AY o P, = —Vi (W2 = EW?)vi /6] + Ot 2 + ap /[te), (47)

where the leading term of the asymptotic expansion now depends on the second moments of
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the noise matrix W. Recall that vi vy > 0. By (44) and (47) we have

T 2 2
~ ~1/2 v (W7 —EW?)vy
Vioktke Ukt Yk
v (W2 —EW?)vy _
= W BV | oyl 2+ el i) (49
k

We now consider an arbitrary unit vector u € R with [u?vy| € [0,1) for investigating
the asymptotic distributions of the general linear combinations u’vy,. Recall the first order

expansion given in (107) in the proof of Theorem 4 and (46) that

+ Op(an/13)- (49)
Then dividing (49) by vi¥, and using (44) and (48), we can deduce that
w Vi + Auka Prly, = Prli, ( + Aukty, Prty Vi )WVE /[t + Op(an /1)

u,k,tg

= (b ks, — W ViV )W/t + Op(an/17). (50)

In view of the asymptotic expansions in (50) and (48), we can see that the desired
asymptotic normalities in the two parts of Theorem 2 follow from the conditions of Lemmas
1 or 2. More specifically, for (50) if a,;%ivar[(b?;k’tk —ulv;vIYWv,] — 0o, then we have
an/ti < {var[(bamk — ulvvI)Wwv]}1/2 and thus the first part of Theorem 2 in (17)
holds in view of (50). Furthermore, if (bg,k,tk - uTVkV{)va is W!-CLT, then (bukt, —
vkvfu, V) is also W!-CLT and thus we have

~ ~1/2
t (uTvk + Au,k,tkpk,/tk> —E [(bT — uTvka)va]

u7k7tk 9

— N(0,1).

{Var [(bamk — uTvkvg)va] }1/2

Similarly, the second part of Theorem 2 in (18) also holds under the condition (a;,*ds +
Dvar[vE(W? — EW?2)v;] — oo and the CLT holds if (v, vy) is W2-CLT. This concludes
the proof of Theorem 2.

A.3 Proof of Theorem 3

The results on the asymptotic distributions of spiked eigenvalues and spiked eigenvectors in
Theorem 3 are an application of those in Theorems 1 and 2 for a more specific structure of
the low rank model (1), including the stochastic block model with both non-overlapping and
overlapping communities as special cases.

First, note that (15) implies that the condition of Lemma 1 holds for vi Wv;, under
Condition 3. Consequently, (v, v) is W!-CLT. In addition, (15) ensures that I[E(vav/y€ —
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EvIWvy)? > a2 /d2 under Condition 3. Therefore, it follows from Theorem 1 that the first
result of Theorem 3 holds. Recall that in (A.12), s« y is defined as the expected value of the
conditional variance of vI (W? — EW?)v,. By definition, we have var[vi (W2 —EW?)v,] >
sxy > co2. n. Thus the condition (o, *d? + 1)var[vi (W? — EW?)v,] — oo in Theorem 2 is

ensured by the assumptions

dK |omin
2 n — 00, L—>oo, angnl/Q
Qp

in Condition 3. Moreover, by (A.13) we can see that the conditions of Lemma 2 are satisfied
for vl (W2 — EW?)v;, under Condition 3. Thus (vi, vy) is W2-CLT. Therefore, (22) holds
by an application of (18) in Theorem 2.

It remains to show that the condition
var[(bﬂkik —ulvivEYWv,] > o2 /d3 (51)

in Theorem 2 can be guaranteed by Condition 3. Then the expansion in (17) holds. Moreover,

the condition o ‘vk bu ket — u’ vkvk H — 0 ensures that (by, — vkv{u, vi) is Wi-

]
CLT. Combining these results entails that the asymptotic normality (21) holds. Now we
proceed to verify (51). Consider an arbitrary unit vector u € R” satisfying [u?vy| € [0,1—¢]
for some positive constant e. Recalling the definition of by, 1+ in (8), we have bi ktVE = {u”—
R, V_p, )[(D_p) ™t + R(V_i, Vi, )] ' VL, }vy, = uTvi. Thus it holds that bg,k,tk —
ulvpvl = bu ket — b€7k7tkvkv£ = bg,k,tk (I — vivl). Moreover, similar to (15) we can show

that
1/2
[ETWvi — Eu" Wvi)2] "% > omin(2 — 2||vi|2) 2. (52)
This ensures that there exists some positive constant ¢; such that

var[(by g, — w Vv )WVi]? > 0730 (2 = 20Vl %) 1bg g, — 0" vievi |

> 0nin (2 = 2[|Vi[3) g gyr, (T = viv)|®

> 10l (0" Vi) + b g, Pusk i (53)

where we have applied bak,th = u’'v again in the last step.
Let V = (Vk41, - ,vn) be an n X (n — K) matrix such that (V, V) is an orthogonal
matrix of size n. Then the n-dimensional unit vector u can be represented as u =Y " | a;v;
for some scalars a;’s. For each 1 < k < K, by the definition of R in (6) and Lemma 5 we

can show that

2 2

_ o2 _ o?
IR(V i, Vi, t) + 15, T :O<W) and [|R(w, V_, tp)+t, a" V_| = (]t |3) (54)
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Therefore it holds that

HR(U,V_k,tk)[ k—I—R(V E, V_ k,tk)] 1\7Tk—|— Z tkd L ) Iy T

]

1<i#k<K
— 0(2/82). (53)
Then it follows from (55) and (8) that
bl = Zaz R(W, V_p, 1) D7 + R(V_p, Vop, 1) VL,
and
bukt, — Ve — > ai[l+ (ted; = 1)7 Z aivil| = O(a; /17). (56)
1<i#k<K i=K+1

We denote by cx = arvi + 31 <izp<pe @ill + (trd; P — 1) v + > k41 @ivi. By (56),

we can obtain

—(uTvi)? + b, buky, = —ai + lexl? + [bugt, — ekl + 2(bugs, — ck) ek
n
= > a4 md =0T+ > af +0(ah /1)
1<i£k<K i=K+1
+ some small order term, (57)

where the small order term takes a rather complicated form and thus we omit its expression
for simplicity. Since by assumption |[ulvg| € [0,1 — €], u= Y1 | a;v; is a unit vector, and

(vi,--+,Vy) is an orthogonal matrix, it holds that

n

Yo oalz1-(1-¢? (58)

1<i#k<n

Moreover, Condition 3 and Lemma 3 together entail that |tkd;1| is bounded away from 0

and 1. Thus there exists some positive constant ¢y < 1 such that
(14 (trd; P = 1)1 > ¢ (59)

for each 1 < i # k < K. Therefore, combining (53) and (57)—(59), and by the assumption
Omin > o /tx, we can obtain the desired claim in (51), which completes the proof of Theorem
3.
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A.4 Proof of Corollary 1

The conclusions of Corollary 1 follow directly from the results of Theorem 3.

A.5 Proof of Theorem 4

The more general asymptotic theory in Theorem 4 focuses on the first order asymptotic

TV;ﬁzy with x and y two arbitrary n-dimensional unit

expansion for the bilinear form x
vectors, while that in Theorem 5 further establishes the higher order (which is second order)
asymptotic expansion for the same bilinear form. We begin with the analysis for the first
order asymptotic expansion. The main ingredients of the proof are as follows. First, we
represent xTVkGfkry as an integral which is a functional of X = H + W. By doing so we
can deal with the matrix H + W instead of the eigenvectors. Second, for the functional of
H + W obtained in the previous step we extract the H part from H+ W and further obtain
a functional of W. Roughly speaking, we can get an explicit function of form f((W —¢I)~1)
with [¢| > |[W]|. Third, by the matrix series expansion (W — tI)~! = —$°7° ¢~ (+DW!,
the function f((W —¢I)~!) can be approximated by f(— ZlL:O t=UHDW?) for some positive
integer L. Fourth, we can then calculate the first (second or higher) order expansion of
f(= ZIL:O t~U+DW?) since we have an explicit expression of function f.

To facilitate our technical derivations, let us recall some basic matrix identities from the
Sherman—Morrison—Woodbury formula. For any matrices A, B, C, and F of appropriate

dimensions and any vectors a and b of appropriate dimensions, it holds that

(A+BFC) '=A'-A'B(F'+CA'B)"'CcA! (60)
and
N1 Cla
(Crab) e = pTca (61)

when the corresponding matrices for matrix inversion are nonsingular.

To illustrate the main ideas of our proof, we first consider the simple case of K = 1 and
x =y = vi. The general case of K > 1 and arbitrary unit vectors will be discussed later.
Let Q1 be a contour centered at (a1 + b1)/2 with radius |by — a1|/2, where the quantities ay,
and by with 1 < k < K are defined in Section 3.2. Then it is seen that d; is enclosed by ;.

In view of Condition 2, Lemma 6, and Weyl’s inequality, we have
A1 = di| < W] <min{|dy — a1, [dr — b1[}

and
[Aj —di| > |di| — [[W]| > max{|d1 — a1], |d1 —b1[}, j > 2
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with significant probability. We can see that the contour €2; does not enclose any other
eigenvalues A; with j # 1. Thus, by Cauchy’s residue theorem from complex analysis, we

have with significant probability

1 1 1 1
—_ dz=1 and - D
2mi Jo, M1 — 2 2mi Jg, Aj — 2

dz=0, j =2,

where ¢ associated with the complex integrals represents the imaginary unit (—1)1/ 2 and the

line integrals are taken over the contour 2. Noticing that (X—2zI)7t =37 | (), —z)_lﬂﬁ;‘»ﬁ,

we can then obtain an integral representation of the desired bilinear form that with significant

probability
T~ ST n SO
~ ~ 1 1 ViV
VlTvlviFvl =" Vlv,l Vi % dz = —— v{( !l )vldz
21 0 A1 — % 2w Jo, = Aj—z
1 T~

= —— vi G(z)vidz, 62
31, VGG (62)

where the matrix-valued function G(z) = (X —zI)~! for z in the complex plane C is referred
to as the Green function associated with the original random matrix X = H+ W.
Note that by (1) and K = 1 for the simple case, we have X = H+ W = djviv] + W.

Thus the line integral in (62) can be rewritten as
~ -~ 1 _
vivivlv, = —_7{ vI(W = 2L + dyvivl) " tvide. (63)
271 (oN}

With the aid of (60) and (61), the line integral in (63) can be further represented as

1 vI(W —2I)" vy
2mi Jo, 1+ divi(W — 2I)~1vy

viviwlv, = dz. (64)

To analyze the integrand of the line integral on the right hand side of (64), we first consider

the term (W — 2I)~!. Such a term admits the matrix series expansion

oo
(W =27 ==Y ~HOwl, (65)
1=0
Let L be the smallest positive integer such that
L+1(] (L+1)/2
oy (logn) 0. (66)

‘dK’L_2

Such an integer L always exists since |dg|/(n‘a,) — oo for small positive constant e by
Condition (2) and a,, < n'/? by definition. Since we consider z on the contour Qy, it follows
that |z| > c|di| for some positive constant ¢. Thus, by (65), Condition 1, and Lemma 6
in Section B.7 of Supplementary Material, with the above choice of L in (66) we have with
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probability tending to one that

= 2 Clak(logn)/?  O{CT*lakt (logn)LHD/2Y O(1)
(141 l _ n _
> Wl < Y EER - 2] L2 P (67)

where C' is some positive constant. In light of (65) and (67), we can obtain the asymptotic

expansion
L o)
vI(W —2I) "ty = — Z 2~ HyTwly, — Z 2~y Twhy,
=0 I=L+1
Lo 0,(1)
==Y 2 v Whvy + ’C’T (68)
1

N
Il
=)

for z on the contour ;.

Directly working with the line integral in (62) or (64) is challenging in deriving the CLT
for the bilinear form vlT%?{vl. Next we introduce some simple facts about Cauchy’s residue
theorem. Assume that a complex function f(z) is a holomorphic function inside 7 except

at one point . Then it holds that

1
2mi

f( )dz = Res(f, 1),

where Res(f,t) represents the residue of function f at point ¢. In addition, assume that the

Laurent series expansion of f around point ¢ is given by

[ee]
fz) =) aj(z=1)
j=—00
with a; some constants. Then we have Res(f,t) = (27i)~ fQ z)dz = a_;. Furthermore,

if lim,_,4(z — t) f(z) exists then the Laurent series expansion of f entails that

lim(z —t)f(z) = a_1. (69)

z—t

Now let us consider the line integral in (64). Observe that the only singular point of function

vI(W —2I)7tvy/[1 4+ divi (W — 2I)~!vyq] inside Q; is the solution to equation
1+ divi(W —2I)" vy =0,

which we denote as 71. Let us use [(W — #;I)~!]" as a shorthand notation for A’(t;) with
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h(t) = (W —tI)~!. Then by Cauchy’s residue theorem and in view of (64), we have

S 1 'w— .1t — 1) v (W —2I)7!
doritvie b f AWy Ty
2mi Jo, 1+ divi (W —2I)~1vy oty 1+ divi (W = 2I)~lvy

V{(W — ?11)_1V1
dlvlT[(W — aI)_l]lvl )

Therefore, an application of the Taylor expansion to function v (W —#, 1)~ vy /{d; v [(W —
HI)")vy} yields

W oRD e S B VW +dt0,(1) (70)
dvi[(W —tD)~ v q, SF 1+ D)5 TIVIWivy 4 d7t0,(1)

Note that #; is a random variable that depends on random matrix X. In fact, from (99)
we can see that the asymptotic expansion of t is a polynomial of vI W'v;. Thus the
asymptotic expansion of (70) is also a polynomial function of VlTlel. Therefore, controlling
the variance of vr{lel can facilitate us in identifying the leading term of the asymptotic
expansion. So far we have laid out the major steps in deriving the asymptotic expansion for
vI9,97vi. This can shed light on the detailed proof for the general case of x”V;Viy with
K >1.

We now move on to the general case of K > 1 and arbitrary n-dimensional unit vectors
x and y. The technical arguments for the general case are similar to those for the simple
case of K =1 and x = y = vy presented above, but with more delicate technical derivations.
Similarly as in (62), it follows from Cauchy’s residue theorem, the definitions of the eigenvalue
and eigenvector, and (1) that the bilinear form x” v, v1 y for each 1 < k < K admits a natural

integral representation; that is, with significant probability,

K
PR 1 ~ 1 -1
xT vty = ~5 xT'G(z)ydz = ~5 xT (W I+ ) djvjva) ydz
Qe Qe =
-1 —1
dpxT” (W —2I+ > djvjv;f) vEvi (W —2I+ > dww?) y
1 1<j#k<K 1<j#k<K A
= — -1 )
27 Joy, 1+ dpvl <W -4+ ) djvjv]T) Vi
1<jZR<K
(71)

where the Green function (-}(z) associated with the original random matrix X is defined in
(62) and the line integral is taken over a contour {2 that is centered at (ay + bx)/2 with
radius |by — ag|/2. Then the contour € encloses the population eigenvalue dj, of the latent

mean matrix H. Note that in the representation above, we have used the results, which can
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be derived from Condition 2, Lemma 6, and Weyl’s inequality, that for each j =1,--- , K,
Ak = di| < [W]| < min{|dk — a|, |dx — bkl},

(Aj = di| = |dj = di| = [Aj — dj| = |dj — di| — W] > max{|di — ax|, [di, — bk|}

for j # k with significant probability; that is, the contour €2 encloses Ay but not any other
eigenvalues with high probability.
An application of (60) leads to
(W—zI+ 3 djvjvjf’) = G(2)-G(2)V_; [DZ} + VI, G(2)V 4] ' VI, G(2), (72)
1<jAk<K

where the Green function G(z) associated with only the noise part W is defined in (37). To

simplify the expression, let
Fi(2) = G(2)V_,[D ;. + VL, G(2)V_] 'VL,G(2) (73)

Then in view of (72), the last line integral in (71) can be further represented as

1 dixT[G() = Fu(2)] vivl [G(2) — Fu(2)ly
<y = 5 o 1+ dpvT [G(z) - Fr(2)] Vi dz (74)

It is challenging to analyze the terms in (74) since the expression of F(z) is complicated
and we need to study the asymptotic expansion of F(z) carefully. In the proof below, we
will see that Lemma 4 in Section 6 is a key ingredient of the technical arguments; see Section
B.5 of Supplementary Material for the proof of this lemma.

We will conduct detailed calculations for the asymptotic expansion of Fy(z). Let us
choose L as the same positive integer as in (66). Then we have » %, | 2~ H)xTWly =

Op(|z|7%) for z on the contour Q. It follows from Lemma 4 and Condition 2 that

L
Zz_(lH)XT(Wl ~EWYy =0, {an]z\_3 + 02|z 4+ aﬁ_l\z\_@“)}
1=2

= Op(aml2| ™).
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Therefore, similar to (68) we can show that

L 00
XTG(Z)y _ _Z—ley _ Z—QXTWy _ Z Z—(H—l)XTEwly o Z z—(H—l)XTwly
=2 I=L+1

L
_ Z Z*(H’l)XT(Wl o ]Ewl)y
=2

L
= 2 xTy — 2 %XTWy — Z 2~ HUXTEWly 4 0, (|27 + anlz[ 7). (75)
1=2

Moreover, since for z € €, we have |z|™* < ay,|2|~® by Condition 1, we can further obtain

L
xIG(2)y = —z Ty — 2 2xTWy — Z »~ DX TEW!y + Op(an|zl_3). (76)

=2
In fact, the probabilistic event associated with the small order term O, (ay,|2|™3) in (76) holds

uniformly over z since the term Op(ay,|z|™3) is simply |2| 730, ().

To simplify the technical presentation, hereafter we use the generic notation u to denote
either x or y unless specified otherwise, which means that the corresponding derivations and
results hold when u is replaced by x and y. Since x and y can be chosen as any unit vectors,

we can obtain from (76) the following asymptotic expansions by different choices of x and y

L
u'G(2)vp = =z talvy, — 2 2ul Wy, — Z 2~ DUTEW! v, + O (an|2|72), (77)
1=2

L
vIG(2)vp = —27 1 — 272V Wy, — Z 2" HONVTEW v, + O (a2 72), (78)
1=2
L
ViG(2)V_p = =2 ViWV_; = > 2" FIUVIEW!V_; + Oy (anl2| ™), (79)
1=2
L

WGV =—2""u'V_ — 220" WV_, - Y D EW!V_,
=2
+ Op(an|2|73), (80)
L
VLGV = =2 1= 22VEWV_ = Y 2 FOVT EWIV_, + Oy (anl2|7%). (81)
1=2
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Thus it follows from (76)—(81) that

_ 1
uTFk(Z)Vk’ = R(“? V_g, Z) [Dfllg + R(V—k7 V_g, )]

(V—ka Vi, Z)
PR, Vg, 2) [DTE+ RV, Vg, 2)] T VE W,
2uTWV_, [DIL 4+ R(V 4, Vg, 2)] T RV, Vi, 2)

+ 27273(11, V_g, Z) [D T R(V by V_ i, 2
X [D:}C + ’R(V,k, V,k, Z)]

)] VI,WV_,
)
=R(u,V_g,2) [

R(V_ k,vk,z + Op(an|z|™ 3)
ARV Vog,2)] "R(V g, v, 2)
_ Ly
-z QR(U,V_k,Z)[ k+R(V ks V_ks 2 )]

and

_ —1
VEF(2)vi = viG(2)V_j, [D7} + VI, G(2)V_y]

VT, G(2)vy
— -1
= R(Vk, V,k, Z) [D—k + R(V,k, V,k, Z)]

R(V _k, Vi, 2)
— 2_2R(Vk, V,k, Z) [D:]lg + R(V,k, V,k, Z)] !

_ ~1
=R(Vi, Vi, 2) [DZp + R(V_, Vi, 2)]

where Fy(z) is defined in (73) and R is defined in (6)

VLW + Op(aml2| ™)

R(V—k7 Vi, Z) + OP(O‘TL|Z|_3)7

(82)

V:Ckak + Op(an\z|_3)

(83)

With all the technical preparations above, we are now ready to analyze the terms in

representation (74). Specifically let us consider the ratio {dix"[G(z)

Fu()ly}/A{1 + divi] [G(2) -

of (74). Similar to (75), taking the derivative of G(z) we have

o0

=> (+1)z" "Wy
=0

xTG/(2)y = xT (W — 21) %y

=R(x,y,2) + 22 3xT Wy + 2710, ()

It follows from Lemmas 4-5 that

By

R/(Vk, V_k, Z)

= O(ai/ZA)a R/(Vk,Vk, Z) -

= =02/,
HR/(V—/C?V—kv Z) - Z_le = O(ai/zél)

(79) and Lemmas 4-5, we can conclude that

Vi G(2)Vog = 2720p(1) + [2| 0y (a7).
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— Fr(2)lvivi [G(2) -
Fi(2)] vi} that appears as the integrand on the left hand side

(85)



Moreover, by (80) and (A.16) we have

-1

H {[D:i +VI,G(x)V_] '~ D7} +R(V_k,v_k,z)]*1}’

_ -1 _ —1
_ H DL+ VT, G()V_i] T VG (2)V_, [DZL+ VI, G(2)V 4]

~ DRIV Vo 2)] T RV, Vo 2) [DIL RV, Vg, 2)] |
=0 {l!VTkG’(z)V_k RV _ V2| H D+ V;kG(z)V_k]_luz}

+ O{ H D7, + VI, G(2)V_y] !

— D7+ R(V_i, Vo, z)]‘lu
: H DL+ VT, G)V_i] T RI(V_, VL, z)H }
= 2]7'0p(1) + 272 Op(om) (87)

and

H {[D:}g + R(V,k,V,k,z)]_l}/

_ H D=L+ RV, Vo, 2)] T RV, Vi, 2) [DTL + R(V_k,V_k,z)]_lu
—0(1). (88)

Note that in light of (84)—(87), we can obtain

VIF)(2) v = 2V G/ (2)V_, [DL + VI, G(2)V ] 7 VI, G(2)vs
VTG (2)V_y, { D7+ VI, G(2)V_4] ”}'VT,CG(Z)V,C
— 2R (vi, V1, 2) [DTE+ RV, Vi, 2)] T R(V g, Vi, 2)
+ R(vg, V_k, 2) { [D:}C +R(V_g, V_p, z)] _1}/ R(V_g, Vi, 2)

+2710,(1) + 2790, (). (89)
Combining the above result with (84) leads to

d
dvi [G'(z) — Fi(2)] vi, = 273’,“ + 223 dvE W + 271 0p (|dy| ) (90)
Z2°Fk,z

for z € [ag, bg]. Further, recalling the definition in (7) and by (88), it holds that

-1

1 Ak
= = ( ok, > = R/(Vkavka Z) - 2R/(Vka V_g, Z) [D:’lg + R(V—k‘a V_g, Z)}
ZQPIC,Z <
13/
X R(V,k,vk, Z) — R(vk,V,k, Z) { [D:}C + R(V,k,V,k,z)] 1} R(V,k,vk, Z)

=224+ 0(a?/2Y). (91)
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Plugging this into (90) and by Lemmas 4-5, we have for all z € [ag, bx],

dkv;‘g [G'(z) — Fﬁc(z)] v =dpz "2 + 22_3de£WVk + z_40p(|dk|ozi)
= diz 2 [1+ Op(|2] 7 + |27 %02)] = dpz 2 [1+ 0p(1)]. (92)

Thus 1+ di vl [G(2) — Fi(2)] vk is a monotone function with probability tending to one.
k

Further, in light of expressions (78) and (83) we can obtain the asymptotic expansion
1+ dpvl [G(2) — Fr(2)] v = fu(2) — dpz 2 Vi Wvg + 2720, (o) (93)

for all z € [ag, bg], where fi(z) is defined in (10). Note that fx(ax) = O(1), fr(bx) = O(1),
and fi(ag)fr(bg) < 0 as shown in the proof of Lemma 3 in Section B.4 of Supplementary
Material. These results together with (92), which gives the order for the derivative of 1 +

dpvl [G(2) — Fi(2)] Vi, entail that there exists a unique solution ¢ to the equation
1+ dipvi [G(2) = Fi(2)] v = 0 (94)
for z in the interval [ag, bx]. Using Lemma 4, we can further show that (93) becomes
L v [G2) — Ful2)]vic— fil2) = — SvT Wi + 0p(12l2a0) = Op(1217)  (95)

for z € [ag,bg]. Note that fi(z) is a monotone function over z € [ag,by] as shown in the
proof of Lemma 3 and (A.17). Thus it follows from (94) and (95) that

te — tr, = Op(1). (96)

In fact, we can obtain a more precise order of , —t;, than the initial one in (96). In view

of (93) and the definition of ¢, we have
1+ dpvi [G(tr) — Frlte)] vie = —dit; >vi Wi + Op(ant,?). (97)
By (92) and (97), an application of the mean value theorem yields

0=1+ dkvf [G(%\k) — Fk(%\k)] VE — 1+ dkvf [G(tk) — Fk(tk)] Vi
+ ity [1+ Op(|di| ™" + |dil 0] (B, — te), (98)

where f;, is some number between t; and #j. The asymptotic expansions in (98) and (97)
entail further that
2

~ t _ -
ty —tr = t—gv;;FWVk + Op(ant; ) = VEWvy + Oplant; h). (99)
k
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Now by the similar arguments as for obtaining (69), the integral (74) can be evaluated

oety_ L 4xTGE) - Tl vivE [GE) - Fu)ly
FYEY = omi Jo, 1+ dpv? [G(2) — Fr(2)] vi
. %}%XT [G(?k) — Fk(ﬂ@)] VkVZ [G(tAk — sz(?k)] Yy

= - ~ . (100)
2vT [G/ (i) — Fp(b)] vi

By (90) we have

1
vl (G (t) — Fl(tk)] vk

= Pys, — 20, Py Vi Wi + 1,20y (an) (101)

and (100) can be written as

ro . OXT[G(t) — Fi(tr)] vivl [G(te) — Fi(te)] v
X VEVEY = 2T i N
v (G (tr) — Fi(te)] vi

= [ﬁk,t} = 20V W, + 1,70, (an)] tx" [G(t) = Fi(te)] vavi

% [G(f) ~ Fu(B)] y. (102)

Recall the definitions in (6) and (7). Then it follows from (77), (82), and (99) that

~ ~ ~ ~ N ~ -1
tru” [G(tp) — Fr(tr)] vi = P(w, vk, tr) — P(u, V_p, 1) [(xDZ) + P(V_p, V_, 11)]

X P(V Vi ) — b 0T Wv + 6, 'R0, Vg, B) [DZE+ RV, Vo B)]
x VI, Wvy, + Op(antAIZZ)
= P(u, Vi, tg) — P(W, V_j, 1) [(xD L+ P(V i, Vg t)]
X P(V_ Vi, ) — b 0T Wy + 6" R(0, Vg, 1) [DTE+ RV, Vg, t)]
x VI, Wvy, + Op(ant,?),
= Auhty =t D, WYk + Oplant,?), (103)

where u stands for both x and y as mentioned before. Furthermore, by Lemma 5 and (99)

we can conclude that
Pri, = P + Oplanty?). (104)

Combining the representation (102) and asymptotic expansions (103)—(104), by Lemma 4
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we can deduce that (100) can be further written as

2xT [G(ty) — Fi(tr)] vivi [G(te) — Fi(te)] ¥
vt (G (t) — Fh(t)]

— [ﬁktk - 2tlzlﬁ,§7tkv;‘5va + Op(antZQ)}

xTv iy =

X Ay bt = b DY 1, Wi+ Oplantys?)]

= |:Pk,tk — 2t];173]z7th£WVk + Op(oznt,;2)} X [Ax,k,tkAy,k,tk
- tlzl (Akavtk bz,k,tk + Ayvkvtk bg;,k,tk) va

+1.%bT, Wb, Wy + Op(anckt,f)} : (105)

where ¢ = [Ax ks, | + [Ayre | + 1t

We can expand (105), or equivalently (100), further as

~ ~T =~ 1N _
XTVka; y= [Pkytk — 2ty lplz,tk VgWVk: + Op(anty, 2)} X |:Ax7k'7tkAy7k7tk

- tlzl (Ax,k,tk bz:,k,tk + Ay,k,tk bz:,k,tk) Wvy, + t,;sz;k’tkakb)T,’k’tkak + Op(aant;Q)}

D) -1 D) T D) T
= P At Ay ke = U Axot Pty (by,k,tk. + Ay,k,tkpk,tkvk) Wy
-1 D T > T
— U, Ayt Proy <bx,k,tk + Askti Phity Vk) Wi

+ b Pro, |:2Pk7tk (At Prkse + Ay ki by gs ) WVivi + bi,k,tkWkaif,k,tJ Wy

— 26,2 P 1, Dk WViDY 1 WYV WV + Op {amert; *} (106)

Therefore, we have characterized the terms involving t,;l for the desired first order asymptotic

expansion. That is, by (106) we have

TS ST D) -1 D T D T
X vkvk y= ,Pk7tk:Axyk7tk AY7k7tk - tk Ax7k7tkpk7tk <by,k2,tk + Ayvkvtkpkvtkvk‘> va

— tlzlAy,k,tkﬁk,tk (bz,k,tk + Ax,k,tkﬁk,tkvz> Wv, + 0, {(Oznck + 1)75,;2} . (107)

Thus if O-l% = tlZQ,Plz,tkE[(Amkikb;‘,;,k,tk + Ay,k,tkbik,tk + 2AkaatkAYvkvtk’Pkatkvg)va]z >
(anck + 1)2t1:4 ~ Ug(‘Ax,k,tk‘ + ‘f‘ly,k,f/k‘)%iz4 + t;:4 and (Ax,k,tkbz:,k’,tk + Ay,k,tkbz,k,tk +
2Ax k1), Ay7k7tk’[3k’tkv;€, v}) is WL-CLT, then (33) holds, where ~ means the asymptotic order.
This concludes the proof of Theorem 4.

A.6 Proof of Theorem 5

We have characterized the first order asymptotic expansion for the bilinear form XTV;ﬁgy
in the proof of Theorem 4 in Section A.5, where x and y are two arbitrary n-dimensional
unit vectors. We now proceed with investigating the higher order (which is second order)

asymptotic expansion for the same bilinear form. More specifically, the proof of Theorem 5
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involves further expansion for the O,{anct; >} term given in (106).

To gain some intuition, let us recall (75) and compare with (77)-(81). By Lemma 4, we
see that the order Op(a,|2| =) comes from the terms of form x* (W2 —EW?2)y /23, Therefore,
to obtain a higher order expansion we need to identify all terms of form x” (W2 —EW?2)y/23.
It follows from (75) and Lemmas 4 and 5 that

T W2 o EW2
XTG(Z)y — Ty 2% Twy — x ( _ )y
z

L
— Z 2 UHDXTEW!y + 0, (|2] ™ + a2]2|7%) . (108)

=2

Moreover, using similar arguments as for proving (101) and (103) but expanding to higher

orders we can obtain

~ ~ —1 ~ —1:5 -2
{%Vf [G/<tk) — F;C (tk)] Vk} = Pk,tk{l — th I’Pkﬂgkvngk — tk QIPk,tk

% [3v] (W2 — EW?)v;, — 2(vf Wvp)?] b+ Oy |ta] ) (109)
and

tul [G(fk) — Fk(fk)] Vi = Aukt), — t;luTva
F RO Vg ) [DTE+ RV, Vo t)] T VI Wi + £, 20T Wy i Wy,
— . VIWVR(W, Vg, ) [DTL 4+ RV, Vg t)] T VI Wy,
F PR,V g, ty) DL+ RV, Vg, t)] T V(W2 — EW?)v,
— 12T (W2 = EW?)v + 26 VI WV R(W, Vg, 1) [DTE+ RV, Vg, t)]
X VZkak + Op(a?l|tk|*3), (110)

where u represents both x and y as mentioned before.

Using the representations (100) and (102), and by the asymptotic expansions (109)—(110),
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we can obtain the O/p(t,;?) term for the desired second order asymptotic expansion as follows

~

Fi(te)] y

x vty =

B (G0 Filiv)] vi] [C G
kvk [G/(tk) F, tk ]

= (ﬁk,tk X {1 — QtI; ,Pk,tkvk va — t]; Pk,tk [3V£(W2 — EWQ)Vk — 2(V£WV]€)2]}
+ Op(a2 ] ) [Bex [G(E) — Fil@n)] vi| [fiv [GE) — Ful@n)] ]

-~ -1 T -~ T D -1
= _Ax,k,tkpkiktk (by,k,tk + Ayyk,tkpkikvk) Wy, — Ay,k’ﬂfkpkiktk

) —

X (bz;k,tk + Ax,k,tkﬁk,tkvg> W

+ Pt | 2P (AbtPhrs, + Ay Dyss) Woivh + DL, Wbl | W

+ 240 e Ay iote (VEWV) 4 Ay Prss {t,;QxTvav}{va — t. VWV R(X, Vg, t)

x D2 4 RV, Vg tn)] kava}

+ As ot Pros {t,;QyTvav}vak — 1. 2VIWYLR(y, Vg, 1)

X [DTL+ RV Voo ti)] VT W}

+ Ay oty Pran b 2R Vg 1) [DTE+ ROV, Vg, t)] T VI (W2 — EW?)vy,

Akt Pranti 2Ry, Vg t) DL+ RV, Vg, t)] T VIL(W? — EW?)v,

— Prants Ay kX" + Ax o,y ) (W2 — EW?)vy

— 3t  Ax ey Ay oty Pt VE (W2 — EW?)vy, + Oy { (0er + 1)t =} . (111)
In contrast to the small order term Op{ancktf} in (106) from the first order asymptotic
expansion, we now have the small order term O,{(a2ci + 1)|tx| =3} from the second order
asymptotic expansion.

Let us conduct some simplifications for the expressions given in the above asymptotic

expansions in (111). A combination of (106) and (111) shows that the asymptotic distribution
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is determined by

— Akt Pty (D, + Ay Pravi ) Wk
— Ay ot Proagti <b£k,tk + Ax,k,tkﬁk,th;‘g) Wy
+ Pranli? | 2Pty (At D, + Ayt bpes,) WVivh + b1y Wbl W,
+ 2Ax gt Ay kot (V%WVkF + Ay7k7tk’ﬁk7tk {t,;ZXTvaV;‘vik — t;2v£vaR(x, V_i,t)
x DL RV, Vg t)] ™! VZkak}
+ Ax,k,tkﬁkﬂfk {t;QyTWVkV£va — . VEWVLR(y, Vo, t)
X [DTL+ ROV Voo te)] VW |
+ Ay ot Pran b 2RV g, t) [DZL+ ROV, Vg )]
+ Akt Pranti R0y, Voo t) [DTE+ RV, Vg, )] VI (W2 — EW?)vy,
- 75k7tkt,;2 (Ay7k7thT + Ax7k7tkyT) (W2 - sz)vk
— 3t 2 As oty Ay kot Protp Vi (W2 — EW?) vy, (112)

VT, (W? —EW?)v;,

To further simplify the notation, we define three terms

Txyite = Pty Vi (Ay7k,tkb£k,tk + Aty Dy s, + 2Ax,k7tkAy,k,tkﬁk,th£) ;o (113)
Lyt = Pragte Vi { [Ay ks ROV o t) + Ao, R(Y, Vo )]

x [DZp + R(V_i, Vi, t)] - VI + Ay kX’ + Aot y”

+ 3Ax7k,tkAy7k7tkv;‘g}, (114)

_~ -2 T
QX,Yvkatk = LXvY»kvtk - Pkytktk Ax»kvtkAy:k:tkvkvk

Note that all the three matrices defined in (113)—(115) are of rank one and the identity
xT Ay = tr(Ayx”) holds for any matrix A and vectors x and y. Thus in view of (113)-

(115), the lengthy expression given in (112) can be rewritten in a compact form as
tr [Wly it — (W2 —EW?) Ly y s, | + tt (Wvevi) tr (WQyy s, ) - (116)

So far we have shown that the second order expansion of x” Vv y is given in (111). Note
that 52 defined in (32) is essentially the variance of (116). Thus if 67 > (aZc, + 1)%;° ~
(| Ax kot | + [ Ay k)%, ¢ +1,%, then (116) is the leading term of (111). Furthermore, the
assumption of o7 = O(d}7) entails that the first order expansion in Theorem 4 does not
dominate the second order expansion. Therefore, we see that the asymptotic distribution in

Theorem 5 is determined by the joint distribution of the three random variables specified in
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expression (116). This completes the proof of Theorem 5.
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Supplementary Material to “Asymptotic Theory of
Eigenvectors for Random Matrices with Diverging Spikes”

Jianging Fan, Yingying Fan, Xiao Han and Jinchi Lv

This Supplementary Material contains additional technical details. In particular, we present
in Section B the proofs of all the lemmas and provide in Section C some further techni-
cal details on under what regularity conditions the asymptotic normality can hold for the
asymptotic expansion in Theorem 5. Section D contains the technical details on relaxing the
spike strength condition when considering scenario ii) of Condition 2 in place of scenario i),

as well as the proof sketch for results in Section 4.2.

B Proofs of technical lemmas

B.1 Proof of Lemma 1

Let x = (w1, ,2,)" and y = (y1,--- ,yn)T be two arbitrary n-dimensional unit vectors.
Since W is a symmetric random matrix of independent entries above the diagonal, it is easy

to show that

X'Wy —x"EWy = Y wi(wiys +zm) + Y (wi — Bw) (@iy;) (A1)
1<i,j<n, i<j 1<i<n
and
52 = E(x'Wy—xTEWy)? = Z Ew?j(xiyj—l—xjyi)Q—i— Z E(wy; —Ew;;)2xy?. (A.2)
1<i,j<n, i<j 1<i<n

Since w;; with 1 <14 < j < n and wy; —Ewy; with 1 <4 < n are independent random variables
with zero mean, by the Lyapunov condition (see, for example, Theorem 27.3 of Billingsley

(1995)) we can see that if

1
3 Z E|wij\3|xiyj + xjyi|3 + Z ]E|w“ — Ew”]3|1:lyl|3 — 0,
no1<i,j<n,i<j 1<i<n

then it holds that




Since by assumption maxi<; j<n |wi;j| < 1 and |[X||oc ||y |loc < sn, we have

1
= > ElwiPlaiy; +aul® + ) Elwi — Bwil?|ziyi]®

n | 1<i j<n,i<j 1<i<n
2
<3 > BlwglPlriy +zul’ + Y Elwi — Buw*lziyil®
no|1<ij<n,i<j 1<i<n

2s
< 573” Z E\wij|2|xiyj + :L“jyi’2 + Z E\wii — Ewii|2\xiyi]2 S 2, (A3)
1<i,j<n,i<j 1<i<n

which completes the proof of Lemma 1.

B.2 Proof of Lemma 2

The technical arguments for the proof of Lemma 2 are similar to those for the proof of
Lemma 1 in Section B.1. For the case of xT (W? — EW?)y, let us first consider the term

x"W?2y. Such a term can be written as

2
o wrwazgy =Y wewa(Ty+ mye) Y WSk
1<k,il<n 1<k,il<n, k>l 1<k,i<n
= Z wyiwit (Teyr + T1Yx) + Z Wi Wi (TRY + T1Yk)
1<k,i,1<n, k>1, k<i 1<k,i,1<n, k>1, k>i
2
+ Y wew(TRy + TYk) Y WhTEY
1<i<k<n 1<k,i<n
= > wrwi (Tey + Tiyr) + > wirwi (ziy + 1Y)
1<k,iI<n, k>1, k<i 1<kyil<n,i>l,i>k
2
+ Y wwp(Ty oyy) £ Y Wiy
1<I<k<n 1<k,i<n
= Z wm‘(wk Z Wyl + Yk Z wyxp + T Z WrLYt + Yi Z wkm)
1<k<i<n 1<I<k<n 1<I<k<n 1<I<i<n 1<I<i<n
2 2
+ Z Wi (TEY + T1Yx) + Z Wi (TkYk + Tiyi) + Z Wik TkYk- (A.4)
1<I<k<n 1<k<i<n 1<k<n

Then it follows from (A.4) and the independence of entries wy; with 1 < k < i < n that

Ex?W?y = Z Ewg; (xryr + 2iyi) + Z Ewi 21y
1<k,i<n, k<i 1<k<n

To ease the technical presentation, let us define some new notation wy; = 2~ wgs, and



a,%k = Ew,%k. We can further show that

T (w2 2
(W2 —EW?)y = >y [iﬂk ST owayitye Y, wam+xi >, wy
1<k,i<n, k<i 1<i<k<n 1<I<k<n 1<l<i<n

+ Yi Z wrzy + Ewgi (i, + xkyi)] + Z [(w,%l- — o) (zryr + ziy;)
1<I<i<n 1<k i<n, k<i

+2(wiy — o) (@ryk + xiyi)] + > 2wk — Ewpr) (!L‘k > way
1<k<n 1<i<k<n

+ Yk Z wklu’vz), (A.5)

1<I<k<n

where O']%i = Ew,%i denotes the variance of entry wy; as defined before.

We next define a o-algebra F; = o{toy,--- ,10;}, where w; = wy; with t = k+271(1 - 1)
and 1 < k <[ < n. Clearly we have t < 2_1n(n + 1). In fact, there is a one to one
correspondence between t < 27 'n(n+1) and (k,[) with k& < I. Suppose that such a statement
is not true. Then there exist two different pairs (k1,1) and (kz2,l2) with 1 < k; <13 < n and
1 < k9 <y < n such that

h(l; —1 Ia(ls —1
gy iz (1) (A.6)
2 2
It is easy to see that we must have ki # ko and l; # ls. Without loss of generality, let us
assume that [; < ly. Then by (A.6), it holds that
la(la — 1)  ULi(l1 —1)

— =k —ky <k —1.
5 5 1— K2 S K1

On the other hand, since I1 < Iy we have

ol B _
2le=1) hh=D  hh+D) hlh=1), o,
2 2 2 2

which contradicts the previous inequality. Thus we have shown that there is indeed a one to
one correspondence between ¢ < 27 n(n + 1) and (k,1) with k < [.

Assume that t; < to with t; = ky +271(l1 — 1) and t = ko + 27 !5(I3 — 1). Then using
the similar arguments we can show that {1 < [y and further k1 < ks when I; = l». This
means that for t = k£ +271(l — 1) with 1 < k <1 < n, we have F; = o{toy,--- ,t;} =
a{w,-j :1<i<j<lorl<i<k<j=I}. With such a representation, we can see that the
expression in (A.5) is in fact a sum of martingale differences with respect to the o-algebra

Fry2-1ii—1)- This fact entails that for 1 <k <i <mn,
E [(wkz‘ — Ewy; )b + (wii - Ewl%i)cki|Fk+2—1i(i—l)—l] =0,

where by; = x, Zl§l<k§n Wi Y1+ Yk Zl§l<k§n WX+ T4 Zl§l<i§n Wi Y1 +Yi Zl§l<i§n Wi T+



(1 — 0p;) Ewii (ziyx + xy;) with dx; = 1 when k =i and 0 otherwise, and cx; = xxyr + xy;.

The conditional variance is given by

Z E { [wribgi + (w; — oii)%]Q ’fk—f—Q*li(i—l)—l}

1<k,i<n, k<i
2 2 2
+ ) E { [(wrk — Bwrr)brr + 2(wi — oiik)chr] |~7:2—1k(k+1)71}
1<k<n
_ 212 19 Dy Crs i A7
= OjeiOk; + VribriCri + KkiChis (A7)
1<k,i<n, k<i 1<k,i<n, k<i 1<k,i<n, k<i

where vy, = ]Ew,%i and Kp; = ]E(w,%l — Uzi)Q for k # 1, and v, = Q(Ew,%k — azk]Ewkk) and
KLk = 4E(w,%k - O']%k)Z.

The mean of the random variable in (A.7) can be calculated as

suy =E(AT) = ) [Fﬂki(mkyk o)’ +on Y oo+ yea)’
1<k,i<n, k<i 1<l<k<n

ok Y oulwiy+ ym)z} + > oh(l = Ok [E(wi + wi))?
1<I<i<n 1<k, i<n, k<i

X (zyi + Tigr)” (A.8)

Moreover, the variance of the random variable in (A.7) is given by

kxy = var(A.7) = Z ]E{ [0212'1(21311'1 — ]Ez,%lil)

1<k ,i1,k2,i2<n, k1 <i1, k2 <iz
2 2 2
+ 2f)/]"?lil (xk'lyk'l + xiyi)zklil] [ngig (Zkziz - Ezkgiz)

+ 2Ykgin (Lo Yks + TiYi) iy | }, (A9)

where 2k = Y 1 ) open Wit (TrYITYRT) + D21 < cicn Wht(Tiye+yixn) + (1= 0k ) Ewi (2iyk + 293
Let us recall the classical martingale CLT; see, for example, Lemma 9.12 of Bai and
Silverstein (2006). If a martingale difference sequence (Y;) with respect to a o-algebra F;

satisfies the following conditions:

S EOR|Fien) P
a) ST Ey? — 1,
T EYRI(Yi|// L EY2|>e€)] T EYA
t=1 t t=1 t 1= < t=1 t
b) ST oy < 35T vy — 0 for any € > 0,

T
then we have —==t2t_ 7, N(0,1) as T — oo, where I(-) denotes the indicator function.

/~T
Zt:l IE}/t2

It follows from the assumption of m,lc/ ;,1 < sx,y that

(A7) p
E(AT) "

which shows that condition a) above is satisfied. Moreover, by the simple fact that for any



fixed i, EwZy? < 1, and the assumptions that sxy — 00 and ||x/|oo||¥|lcc — 0, we have

Z {wm[ Z Wiyl + Yk Z Wi Ty + T Z WY

1<k,i<n, k<i 1<I<k<n 1<I<k<n 1<I<i<n
4
+u Y wkzxz—kEwn(Iiyk-kayi)” + ) E[Z(Wkkz_Ewkk)
1<I<i<n 1<k<n
4
Z WriYt + Yk Z wkmﬂ
1<l<k<n 1<l<k<n
+ Y {Elwh - o) e+ 2]+ E(wh - of) @ay + mi)] '} < sty
1<k i<n, k<i

which entails that condition b) above is also satisfied. Therefore, an application of the

martingale CLT concludes the proof of Lemma 2.

B.3 Further technical details on conditions of Lemma 2

Let us gain some further insights into the technical conditions in Lemma 2. Define ay; =

zry + yrr; and note that k;; = E(w -2- — -2-)2 = Ew?- — ij. By the assumption of |w;;| < 1,
it is easy to see that 0 < k;; < EwU < Ew = 012] Then we can show that the random

2

variable in (A.7) subtracted by its mean s

can be represented as

2 _ 2 2 2y 2 2 24 2
(A.7) — Sxy = Z Uk;i[ Z (w — o5)ag + E (Wi — o) aq
1<k, i<n, k<i 1<l<k<n 1<l<i<n
+ § Wity Wily Akly Akly + Z Wkl Wiy Qily a”ilg:|
1<y, lo<k<n, 1 #l2 1<y l2<i<n, l1 #l2
2
+2 Z O i Wily Wiy Okly Gily

1<k,i<n, k<i, 1<l <k<n,1<ls<i<n

+2 > [vkiakk + ki (1 — Ori) B < > waaw+ Y wkl%l) (A.10)

1<k,i<n, k<i 1<I<k<n 1<I<i<n



By (A.10) and (A.31), we have

ey =E[(An -2, <c{B) Y ok Y wh-ohad

1<k,i<n, k<i 1<i<k<n

fEOY o Y whoohad] B Y ok X wau,

1<ki<n, k<i  1<l<i<n 1<ki<n, k<i  1<lylo<k<n,li#l

2 2
2
X Qg am) + E( E Oli § Wi, Wiy Gil, ai12>

1<k, i<n, k<i 1<ty ,l2<i<n, l1#l2

2
2
+ E( E Tjoi Wil Wiy Ok, ailz) +E E [Vriki
1<k,i<n, k<i, 1<l <k<n, 1<ly<i<n 1<k,i<n, k<i

+ ogiaki(1 — Oki) Ew“< > waam+ ) wklazl)}

1<i<k<n 1<i<i<n

SC{( > O’iif( > magt+ Y Kk:lﬁz)

1<k,i<n, k<i 1<i<k<n 1<l<i<n

2 2 2 2
+ E Ok1i0koiTily Tily Ok1ly Ok1la Akoly Ckolo
1<k ko1 la<n, l1#l2, 11 <k1, l2<ko

2 92 2 2
+ Z Oki1 OkioOkly Okly Virly Qiylp Qigly Figly
1<k, i1,02,l1,l2<n, l1 #la<min{i1 2}

2 2 92 9 2
+ E OkiTily Okly Okily Qily
1<k,il1,lo<n, k<i,li <k, l2<i

+ > ek + ohiadi (1= 0k [E(wii + wee)]? < > ohap+ Y Jklazl)}

1<k, i<n, k<i 1<l<k<n 1<i<i<n

= O {noy x5yl } (A11)

where C' is some positive constant.

Given [|X]|oo||¥]|coc — 0, it follows from (A.8) that

Siy= > [/fm(mkyk- taw)®+ Y on(aey + yrw)”
1<k, i<n, k<i 1<i<k<n
+ Z oy + ym)ﬂ
1<i<i<n
> omin Y { S @t + > (wwt yz‘wl)2]
1<k,i<n, k<i 1<I<k<n 1<I<i<n
> colin, (A.12)
where 02, is defined in Condition 3. Then we can exploit the upper bound on kx y in (A.11)
and the lower bound on s%  in (A.12) to simplify the conditions of Lemma 2, which can be
reduced to
a1 1y 113
1% oo ||¥ ]| o0 — O, e — 0, and o2, ,n — oco. (A.13)
mln

Therefore, the conclusions of Lemma 2 hold as long as condition (A.13) is satisfied.



B.4 Proof of Lemma 3

In view of the definition of the function fi(z) defined in (10), we have

fr(2) = dk{R(vk, Vi, 2) — R(Vi, V_g, 2) [D:i +R(V_g, V_g, z)] -1

* R(V_g, Vi, z)}'. (A.14)

For z € [ag, by, it follows from Lemma 5, Condition 2, and the definition of R in (6) that

L
HR(V—]{,‘)V—ka) 4 Z—lIH — H—Zz_(l'f‘l)VTkEWlV_k
=2
L
<3 e HVTkEWlV_kH — 0(a2]2]7%). (A.15)
=2

Without loss of generality, we assume that k& # 1. For [ such that |d;| > |dg|, by (A.15) the
diagonal entry of D:l,lg + R(V_g, V_g, 2) corresponding to d; is given by

it =271+ 0(eq|2|7%) = (2 — di) /() + O(ag|2| 7).

By Condition 2, there exists some positive constant ¢ such that max{|ag|, |bx|} < (1 —¢)|d].
It follows that |(z —d;)/(zd;)| > ¢/|z| and thus |(z — d;)/(zd;) + O(a2|z|~3)|~! = O(]z|). For
the remaining diagonal entry with |d;| < |dk|, there exists some positive constant ¢; such
that min{|ag|, |bx|} > (1 + c1)|d;| and similarly we have |(z — d;)/(zd;) + O(a2|z|73)|7! =
O(|2|). Thus it follows from (A.15) that the off diagonal entries of D~} + R(V_g, V_j, 2)

are dominated by the diagonal ones, leading to
[+ ROV Vo) | = 02D (A.16)

for all z € [ag, by].

Next an application of Lemma 5 gives

L
[+1 1 -
R (Vi, Vi, 2) = Z WV;{Elek =3 +0(a2|z|™).

1=0, 11

By (A.14) and Condition 2, we have
_ -1 ! _ _
{R(Vk,V—k,Z) D7} + R(V_g, V_i, 2)] R(V—kavkaz)} = O(aip|2|7%) = o(ad]2| ™).
Thus in view of (A.14), it holds that

F(2) = diz2[1 + o(1)] (A.17)



for z € [ak, bg]. We can see from (A.17) that fi(z) is a monotone function over z € [ay, bg]
when matrix size n is large enough.

Now recall that
_ —1
fre(dy) = 1+dy {R(VmVIw dr) = R(Vie, Vi, di) [DZp + R(V_p, Voo die) ]| R(V_, Vi, dk)} :

By Lemma 5, we have

L
1
1+ dR(Vi, Vi, di) =1 — Z TV]ZEWZVk = O(Oz%d’;2)
1=0,1#£1 k
and
_ ~1 _
A R(vi, V_p,di) [DZ4 + R(V_i, Voo di)] T R(V g, Vi, diy) = O(0dy ).

Thus it holds that fr(dx) = O(a,%df) = o(1). Noticing that the derivative fi(z) =
dpz72[14+0(1)] ~ dyz=2 ~ |di|™! and by the mean value theorem, we have fi(ar) ~
o(1) + |dg| Y (ar —di) and fi(br) ~ o(1) + |dg| =L (b, — di.), where ~ represents the asymptotic
order. Therefore, we see that fi(ar)fr(br) < 0 and consequently the equation fi(z) = 0
has a unique solution for z € [ag, by, which solution satisfies that ¢, = dj + o(dy). This

completes the proof of Lemma 3.

B.5 Proof of Lemma 4

The asymptotic bounds characterized in Lemma 4 play a key role in establishing the more
general asymptotic theory in Theorems 4 and 5. We first assume that all the diagonal entries
of W = (w;j)1<i j<n are zero, that is, w; = 0. The general case of possibly wy # 0 will
be dealt with later. The main idea of the proof is to calculate the moments by counting
the number of nonzero terms involved in E(x” W'y — ExTW'y)2, which is a frequently used
idea in random matrix theory; see, for example, Chapter 2 of Bai and Silverstein (2006).
An important difference is that bounding the order of E(x? W'y — Ex"W'y)? by simply
counting the number of nonzero terms inside is too rough for our setting since the variances
of the entries of W can be very different from each other. Observe that the nonzero terms
of the variance involve the product of w;} with m > 2. We thus collect all such terms with

the same index ¢ but different index j, which means that we will bound 3% _; Ejw;;|™ < a?

2

- can be

instead of using E|w;;|/™ < 1. Then we can obtain a more accurate order since «
much smaller than n in general. Our technical arguments here provide useful refinements to
the classical idea of counting the number of nonzero terms from the random matrix theory.

Let x = (w1, ,2,)  andy = (y1,--- ,yn)? be two arbitrary n-dimensional unit vectors,



and [ > 1 an integer. Expanding E(x? W'y — Ex? W'y)? yields

E(x"Wly — ExTW'y)?

- Z E{ (xilwiligwizis Wiy Yigyy — By Wiy Wiy - - wizil+1yil+1)
1<ig, i 1,J1 141 <,
isFigy1,JsFTs41,1<s<l

X (5055 Wi+ Wi Yieen — BERWh 5 W+ Wiy Yjia) } (A.18)

Let i = (i1,---,i141) and j = (j1,--- ,jiy1) be two vectors taking values in {1,--- ,n}*L.
For any given vector i, we define a graph G; whose vertices represent distinct values of the
components of i. Vertices is and 4541 of G; are connected by undirected edges for 1 < s <.
Similarly we can also define graph gj corresponding to j. It can be seen that Gj is a connected
graph, which means that there exists some path from is to iy for any 1 < s # s’ < n. Thus

for each product

E[ ($i1wi1izwi2i3 C Wi Y — Ezilwhizwizh T wiliz+1yiz+1)

X (5105 Wi+ Wiiega Yien = BER W32 Wiajs - W2 Vi) } (A.19)

there exists a corresponding graph gi U Qj. If gi U gj is not a connected graph, then the

corresponding expectation

E[ (wi1wi1i2wi2i3 Wi Yiy — IExilwi1i2wi2i3 T wizil+1yiz+1)
X (lewjljzwhjzs Wi Y — Exj, wj, j, Wjajs - - - Wy1g141 yjl+1) } = 0.

This shows that in order to calculate the order of E(x’ W'y — Ex"W'y)?, it suffices to
consider the scenario of connected graphs gi U gj.

To analyze the term in (A.59), let us calculate how many distinct vertices are contained
in the connected graph Qi U Qj. Since there are 2/ edges in gi U gj and Ewgy = 0 for s # 5/,
in order to get a nonzero value of (A.59) each edge in G; U gj has at least one copy. Thus for
each nonzero (A.59), we have [ distinct edges in Qi U Qj. Since graph gi U Qj is connected,
there are at most [+ 1 distinct vertices in G U gj. Denote by S the set of all such pairs (i, j).

Combining the above arguments, we can conclude that

(A18) = § E[ ($i1wi1i2wi2i3 S Wiy Yipyy — B Wiy iy Wigig - - wiziz+1yiz+1)

(Lj)es
X (5105 Wi+ Wit Yieen = BLi W32 Wiy W2 Y ] (A.20)
For notational simplicity, we denote ji, - -+, jir1 by 41419, -+ ,ig12 and definei = (i1, - , 4141,

Jiso 5 Jier) = (i1, - -+, d2142). We also denote Gy U Qj by ]-"; which has at most [ + 1 distinct



vertices and [ distinct edges, with each edge having at least two copies. Then it holds that

|(A60)| == ) g E[(xilwiligwigig e w’iﬂ'l+1yil+1 - ]Exilwili2wi2i3 e wilil+1yil+1)
Fs, ies
1
X (xil+2wiz+2il+3wil+3il+4 w0 Wigyqigipo Yinipe — Ewil+2wil+2il+3wil+3il+4 T wi21+1i21+2yi21+2)] ‘

< E , E‘xilwilizwiﬂs Wiy Yig 1 Tip o Wiy ody 3 Wiy gig "7 w121+1i21+2yi21+2‘
Fs,1e8
1
+ § E‘xilwil’iQ’LUiQiS ©r o Wigiy 1 Yig |E‘xil+2wiz+zil+3wil+3iz+4 © Wiy yiga Yisigo ‘ (A.21)

7. ies
1

Observe that each expectation in (A.61) involves the product of some independent ran-

dom variables, and x;, wj, i, Wiyig * Wiip Yiy oy a0 T Wiy ig, s Wiggig g " Wigg g yiog 0 Yisg o

1

may share some dependency through factors w],' and w;?, respectively, for some wq, and

nonnegative integers mi and ms. Thus in light of the inequality
E‘wab‘m1E|wab|m2 S E|wab|ml+m2a
we can further bound (A.61) as

(A'61) <2 E E}xhwiﬂzwiﬂ:& W Yi 1 Tipg o Wiy oy 3 Wiy gty * 7

Fi,fes
X Wigy 4 yigi2Yiniyo ‘ (A.22)

To facilitate our technical presentation, let us introduce some additional notation. Denote
by 1 (21 +2) the set of partitions of the edges {(i1,2), (i2,73), - - , ({2141, 921+2) } and ¥>2(20+
2) the subset of 1(2] + 2) whose blocks have size at least two. Let P(i) € >2(20 4+ 2) be
the partition of {(i1,42), (i2,43), -+ , (42141, 921+2)} that is associated with the equivalence
relation (is,,%s,+1) ~ (is,,%s,+1) Which is defined as if and only if (is,,%s;+1) = (isy,tsy+1) OF
(is1,%s14+1) = (isy+1,%s,). Denote by ]P(T)] = m the number of groups in the partition P(i)
such that the edges are equivalent within each group. We further denote the distinct edges
in the partition P(i) as (s1,s2), (53,54), -, (S2m—1, S2m) and the corresponding counts in
each group as 11, -+ , T, and define s = (s1, s2, -+ , S2,, ). For the vertices, let ¢(2m) be the
set of partitions of {1,2,---,2m} and Q(s) € ¢(2m) the partition that is associated with the

equivalence relation a ~ b which is defined as if and only if s, = s;. Note that so;_1 # s9;
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since the diagonal entries of W are assumed to be zero for the moment. Then we have

E E‘*Thwhizwizis © Wigd g Yigp Tigyo Wiy 0t s Wigggiyg * 7" Wiggqqdnigo yi2z+2‘

.7:';,168
1

< Z Z Z Z |xi1yil+1xil+2yi2l+2|

1<|P(1)|=m<i 1 with partition P(1) Q(S)EP(2m) S with partition Q(S)

<81, ,8 <n
0 Ty, rm>2 =815 582m >
Pl)eysq(t2)

m
X [T Elweny_y s, |- (A.23)

j=1
We denote by Fg the graph constructed by the edges of s. Since the edges in s are the
same as those of the graph .7-"}, we see that Fg is also a connected graph. In view of (A.63),

putting term |z;, ¥, Ti), ,Yiy .| aside we need to analyze the summation

m
r
E H]E’wSQj—ISQj| 7

S with partition Q(g) Jj=1
1<sq1,,8gm<n
If index soi_1 satisfies that sop_1 # s for all s € {s1,--+ , 89} \ {S2k—1}, that is, index sox_1
appears only in one ws,, s,;, we call sop_1 a single index (or single vertex). If there exists

some single index sor_1, then we have

m
r
E | | j
E‘w52j7152j ‘

S with partition Q(g) j=1
1<s1,,89m<n

m n
T Tk
S E HE‘wSQj—lsw‘ ! § : E‘w52k7152k . (A'24)
S\ {s2_1} with partition Q(&\{sax_1}) j=1 Sorp_1=1

1<sy, 82K —2:52k+2:52m <N
sgp=s; for some 1<j<2m

Note that since graph Fg is connected and index sox_1 is single, there exists some j such

that s; = sgi, which means that in the summation ) | 1 Elws,, s, ™ index sgf, is fixed.

n
S2k—1=

It follows from the definition of a,, |w;;| < 1, and ry > 2 that

n

Tk 2
z : E‘w52k7152k| S Qp.

Sok—1=1

After taking the summation over index sop_1, we see that there is one less edge in
F(3). That is, by taking the summation above we will have one additional a2 in the upper
bound while removing one edge from graph F(s). For the single index s, we also have
the same bound. If sox,_; is not a single index, without loss of generality we assume that

Sok;—1 = S2kp—1. Then this vertex sorp_1 need to deal with carefully. By the assumption of

11



|w;j| <1, we have
Elwag—1.2%|"™ |wak, —1,25, |™ < Elwag—1,25|"™" + Elwag, —1,25, |1

Then it holds that

m
Z HE|wS2j—1S2j "

S with partition Q(S) Jj=1
1<sq1,,8gm<n

m

S Z H E{w52j—152j "

é\(32k_1,52k1_1) with partition Q(g\(SQk—LSle—l)) Jj=1,j#k
1<sy,,som<n

m

+ > I Elwsy, a7 (A.25)

S\(s2k—1:52; —1) v;igtil}j?ft,i:;ir:grfg\(s2kil,Sleil)) J=1,j#k1
Note that since Fgz is a connected graph, if we delete either edge (sax—1,521) or edge
(S2k;—1,82k,) from graph Fg the resulting graph is also connected. Then the two sum-
mations on the right hand side of (A.25) can be reduced to the case in (A.24) for the graph
with edge (Sax—1, Sak) Or (S2k,—1, S2k, ) removed, since sgi_1 Or Sok,—1 is a single index in the
subgraph. Similar to (A.24), after taking the summation over index so_1 or sg, 1 there
are two less edges in graph Fg and thus we now obtain 202 in the upper bound.

For the general case when there are m; vertices belonging to the same group, without
loss of generality we denote them by wap,, -+, Wab,,, - If for any k graph Fg is still connected
after deleting edges (a,b1),---,(a,bk—1), (a,bg11), -, (a,bpy,), then we repeat the process
in (A.25) to obtain a new connected graph by deleting k — 1 edges in wgp,, - - s Wab,,, and
thus obtain ka2 in the upper bound. Motivated by the key observations above, we carry out

an iterative process in calculating the upper bound as follows.

(i) If there exists some single index in S, using (A.24) we can calculate the summation
over such an index and then delete the edge associated with this vertex in Fg5. The
corresponding vertices associated with this edge are also deleted. For simplicity, we

also denote the new graph as Fg. In this step, we obtain a? in the upper bound.
(ii) Repeat (i) until there is no single index in graph Fg.

(iii) If there exists some index associated with £ edges such that graph Fy is still connected
after deleting any k — 1 edges. Without loss of generality, let us consider the case of
k = 2. Then we can apply (A.24) to obtain a2 in the upper bound. Moreover, we

delete k edges associated with this vertex in JFg.
(iv) Repeat (iii) until there is no such index.

(v) If there still exists some single index, turn back to (i). Otherwise stop the iteration.

12



Completing the graph modification process mentioned above, we can obtain a final graph

Q that enjoys the following properties:
i) Each edge does not contain any single index;
ii) Deleting any vertex makes the graph disconnected.

Let SQ be the spanning tree of graph Q, which is defined as the subgraph of Q with the
minimum possible number of edges. Since SQ is a subgraph of Q, it also satisfies property
ii) above. Assume that SQ contains p edges. Then the number of vertices in SQ isp+ 1.
Denote by q1,- -, gp+1 the vertices of SQ and deg(q;) the degree of vertex ¢;. Then by the
degree sum formula, we have Zf;l deg(q;) = 2p. As a result, the spanning tree has at least
two vertices with degree one and thus there exists a subgraph of SQ without either of the
vertices that is connected. This will result in a contradiction with property ii) above unless
the number of vertices in graph Q is exactly one. Since [ is a bounded constant, the numbers

of partitions P(i) and Q(3) are also bounded. It follows that

(A.63) < Cdids > T Elwes, s, 17, (A.26)

S with partition Q(g) j:l
1<s1,-,89, <n

where dx = ||X||s, dy = ||X||oo, and C'is some positive constant determined by /. Combining
these arguments above and noticing that there are at most [ distinct edges in graph Fg, we

can obtain

2 12 201—2
(A4.26) < Cd2d2a? > E|wsyp, 1505 I
1< S0kg 1,52k <M, (S26g—1,52k )= Q
2 32 21
< Cdidyonn.

Therefore, we have established a simple upper bound of O{dxdyaﬁlnl/ 2.

In fact, we can improve the aforementioned upper bound to O(al1). Note that the
process mentioned above did not utilize the condition that both x and y are unit vectors,
that is, [|x|| = |ly[| = 1. Since term |x;,¥;,,, i, ,Yin,. | is involved in (A.63), we can analyze
them together with random variables w;;. There are four different cases to consider.

1). Two pairs of indices i1, 941, 942, G242 in .7-"1 are equal. Without loss of generality,
let us assume that iy = i;41 # 442 = d2142. Then it holds that |z Y. T, Yiy..| =

|y Yir Ty o Vi o] < 4722 + yi)(;r?Hz + yi2l+2). Let us consider the bound for

m
Z 1'221 x121+2 H E‘ws2j—182j 7. (A.27)
j=1

S with partition Q(g)
1<s1,,89m<n

We assume without loss of generality that i1 = s; and 4;,9 = so for this partition. Then the

13



summation in (A.27) becomes

m

2 2 T

Z LTy HE‘w52j7152j 7.
=1

S with partition Q(s)
1<s1,,89m<n
By repeating the iterative process (i)—(v) mentioned before, we can bound the summation

for fixed so and obtain an alternative upper bound

n n
Z azglE‘wsls2|” < Z xgl =1
s1=1 s1=1
since X is a unit vector. Thus for this step of the iteration, we obtain 1 instead of a2 in the
upper bound. Since the graph is always connected during the iteration process, there exists
another vertex b such that w,, is involved in (A.27). For index s2, we do not delete the
edges containing s, in the graph during the iterative process (i)—(v). Then after the iteration
stops, the final graph Q satisfies properties i) and ii) defined earlier except for vertex ss.
Since there are at least two vertices with degree one in SQ, we will also reach a contradiction
unless the number of vertices in graph Q is exactly one. As a result, we can obtain the upper
bound

(A.63) < Ca?~* Z Ex§2}w52b|r < Ca?l—2 (A.28)
1<s9,b<n, (SQ,b):Q

with C' some positive constant. Therefore, the improved bound of O(al!) is shown for this
case.

2). Indices i1, ij11, {112, i2742 In .7-'; are all distinct. Then by the triangle inequality, we
have @4, Yiy, , Tipy o Vigo| < 47127 + x?Hz)(y?lﬂ + yi221+2). Thus this case reduces to case 1
above.

3). Indices i1, 9141, 142, to142 In F are all equal. Then it holds that Ty Yiy o Tig o Wiy | =
a2 y? < 7. We see that there are at most [(2] +2 — 2)/2] = [ distinct vertices in the chain
H?l:_ll w;,i,,, and for this case there are at most [ — 1 distinct edges in }—f’ where [-] denotes
the integer part of a number. Compared to case 1, the maximum number of edges in the

graph becomes smaller. Therefore, for this case we have

(A.63) < Ca2l > Ex? |ws,p|" < CaZ72, (A.29)
1<s1,b<n, (sl,b):Q

where C' is some positive constant and we have assumed that i; = s; without loss of gener-
ality.
4). Three of the indices i1, i;41, 142, i2+2 in ]-"} are equal. For such a case, without

. . _ 2
loss of generality let us write |74 Y\ i, o Yini 0| = |77, YiyYio,o|- Then there are at most

14



[(2l + 2 — 1)/2] = [ distinct vertices in the chain Hil:_ll W;gi,,, and thus for this case there
are at most [ — 1 distinct edges in .7-"}. Therefore, this case reduces to case 3 above.

In addition, we can also improve the upper bound to O(min{dxal,, dyal,}). The technical
arguments for this refinement are similar to those for the improvement to order O(al™!)

above. As an example, we can bound the components of y by dy = ||y||c, Which leads to

2

i1v1)/2. Then the analysis becomes similar to that for case 3

‘$ilyil+lxil+2yi2l+2| < d?,(l‘?l +x
above. The only difference is that the length of graph .7-"} is at most [ instead of I — 1. Thus

similar to (A.29), for this case we have

(A.63) < CdZap~? > Ex2, |ws,p|” < Cdiad, (A.30)
1<s2,b<n, (52,6)=Q

where C' is some positive constant and we have assumed that i; = s1 or z;,,, = s1 without
loss of generality. The other one can then be used to remove a factor of «,,. Thus we can
obtain the claimed upper bound O(min{dxa!,,dyal,}). Therefore, combining the two afore-
mentioned improved bounds yields the desired upper bound of O, (min{al; !, dxal,, dyal}).

We finally return to the general case of possibly wy; # 0. Let us rewrite W as W =
Wy + W, with Wy = diag(wi1, -+ ,wpy,). Then it holds that

xIWly — ExT W'y = xT(Wy + W))ly — Ex? (W + W))ly.

Recall the classical inequality

E(X;+ 4 Xpn)? <m(EX? +---+EX2), (A.31)
where X1, -, X,, are m random variables with finite second moments. Define a function
!
f(h) =] Wa,. (A.32)
=1

where the vector h = (hy,- -, h;) with h; = 0 or 1. Then we have
T ! T e T 2
E[x"(Wo + Wh)'y — ExT(Wo + W1)'y] " = E{ 3" x"[f(b) — Ef(b)]y }
h

< SR (n) ~Ef )y} (A.33)
h

This shows that we need only to consider terms of form E{x”[f(h) — Ef(h)]y}?, each of
which is a polynomial of Wy and W7.
As an example, let us analyze the term E(XTW1W6_1y — EXTW1W6_1y)2. Similar to
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(A.18), it can be shown that

E(x"W, W,y — Ex"W, Wi y)?

= E E[ (xi1wi1i1wi1i2 Wiy Y — Bz, wiyi, Wiyig + - wizflilyil)
1<iq,-- 10,01, J <n,
isFigy1,JsFTs41, 1<s<l

X (@5 Wjy 1 Wi+ Wi Yy — BT Wy W) - Wi i) } (A.34)
Repeating the arguments from (A.18)—(A.62), we can obtain

(A'34) <2 E E‘xilwilhwiliz Cr Wiy Yiy T Wi yig Wiggqigye * " Wigg_qig Yigy

Fz
1

<2 § E‘xilwiliQ Wi Y Lip Wigprigge " Wigg_qig Yig ‘

Fs
1

Comparing to (A.62), we can see that by replacing the diagonal entries with 1 in the expec-
tations, the number of edges in this graph is no more than the original one in (A.62). Thus

repeating all the steps before (A.34), we can deduce the bound
Ex"W Wiy — Ex" Wi W 'y)? = O(min{a2"Y, dxo) d50ll}).

For the other expectations E{x”[f(h) —Ef(h)]y}?, by the same reason that W7 is a diagonal
matrix we can obtain a similar expression as (A.34) with the number of edges no larger than
the original one for E(XTW6y — ]EXTWBy)2. Thus all the technical arguments above can be
applied to E{x”[f(h) — Ef(h)]y}? so we can have the same order for the upper bound as
before. This shows that all the previous arguments can indeed be extended to the general

case of possibly w;; # 0, which concludes the proof of Lemma 4.

B.6 Proof of Lemma 5

The main idea of the proof is similar to that for the proof of Lemma 4 in Section B.5. We
first consider the case when all the diagonal entries of W = (wjj;)i<i j<n are zero, that is,

wj; = 0. Then we can derive a similar expression as (A.18)

Txarl, E :
Ex W Yy = E (:vilwiliQwiQiS .. -wililﬂyil“) . (A.35)
1<iy, i1 <n
isFigy1, 1<s<l
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By the definition of graph G; in the proof of Lemma 4, we can obtain a similar expression
as (A.62)

[(A.35)] < Z E‘xi1wi1i2wi2i3 T

Qi with at most [I/2] distinct edges and [I/2] + 1 distinct vertices

X Wiy Yigq ‘ (A.36)

Using similar arguments for bounding the order of the summation through the iterative
process as for case 3 in the proof of Lemma 4 and noticing that |z, y;,,,| <27(z} + yle),

we can deduce the desired bound
Ex!Wly = O(al ™), (A.37)

where the diagonal entries of W have been assumed to be zero.
For the general case of W with possibly nonzero diagonal entries, we can apply the similar

expansion as in the proof of Lemma 4 to get

Ex"(Wo + W)y =Y Ex"f(h)y, (A.38)
h

where W = W + W with W = diag(wi1,- -, Wny), and vector h and function f(h) are
as defined in (A.32). Since by assumption W7 is a diagonal matrix with bounded entries,

an application of similar arguments as in the proof of Lemma 4 gives
Ex" f(h)y = O(a;, ).

To see this, with similar arguments as below (A.33) let us analyze the term EXTW1W6_1y
as an example. Similar to (A.35), it holds that

T -1 § :
Ex* W 1 VVO Yy = E (xilwililwiliQ s wil—lilyil) . (A39)
1<ig,- iy <n
isFigp1, 1<s<I—1

By the assumption of maxj<;<p |wi;| < 1, we can derive a similar bound as (A.36)

‘(A,?)Q)‘ < Z E‘xhwhizwiﬂs T
gi with at most [(I — 1)/2] distinct edges and [(I — 1)/2] + 1 distinct vertices
X Wi i Yiy |- (A.40)

Since the number of edges is no more than that in (A.36), we can obtain the same bound

Ex"W,; Wiy = O(alh).
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For the other terms in (A.38), by the same reason that W1 is a diagonal matrix with bounded
entries we can derive similar expression as (A.40) with the number of edges no more than that
in (A.36). Therefore, since [ is a bounded constant we can show that Ex” W'y = O(al™!)
for the general case of W with possibly nonzero diagonal entries. This completes the proof

of Lemma 5.

B.7 Lemma 6 and its proof

Lemma 6. The random matric W given in (1) satisfies that for any positive constant L,

there exist some positive constants Cr, and o such that

IP{HWH > O(log n)1/2an} <n°L, (A.41)

where || - || denotes the matriz spectral norm and o, = ||E(W — EW)?||'/2,

Proof. The conclusion of Lemma 6 follows directly from Theorem 6.2 of Tropp (2012).

C Further technical details on when asymptotic normality

holds for Theorem 5

We now consider the joint distribution of the three random variables specified in expres-
sion (116) in the proof of Theorem 5 in Section A.6. To establish the joint asymptotic
normality under some regularity conditions, it suffices to show that the random vector
(te[(W —EW) Ty, — (W2 = EW?)Lyey ], tr(W —EW)viv]), tr((W —EW)Qyy 1. 1,))
tends to some multivariate normal distribution as matrix size n increases, where we consider
the de-meaned version of this random vector for simplicity. Consequently, we need to show

that for any constants ci, co, and c3 such that c% + c% + c% =1, the linear combination

ctr[(W —EW) Iy ks, — (W2 —EW?)Lyy 11, ] + cotr((W — EW)vivi)
+ cstr((W — EW)Qx7y7k7tk) (A.42)

converges to a normal distribution asymptotically. Define S = vkvg and let J, L, and
Q be the rescaled versions of Jxy k1., Lxykt,, and Qxy 4, , respectively, such that the
asymptotic variance of each of the above three terms is equal to one. Then it remains to

analyze the asymptotic behavior of the random variable

> wm‘{q [ > wilw+ Y wiLi + T+ (1= 0k) (L + Lik)Ewii}

1<k,i<n, k<i 1<i<k<n 1<i<i<n
+ (1 = i) (caShi + CSkai)} e Y, (i — o) (L + L), (A.43)
1<k i<n, k<i
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where A;; indicates the (i, j)th entry of a matrix A and 0x; = 1 when k = i and 0 otherwise.
Using similar arguments as in (A.7), we can show that (A.43) is in fact a sum of martingale
differences with respect to the o-algebra Fj o-1;;-1)—1- The conditional variance of the

random variable given in (A.43) can be calculated as

> U]%i{cl [ S wal+ Y wiLi + T+ (1= 0) (L + Lik)Ewii]

1<k,i<n, k<i 1<i<k<n 1<i<i<n
2
2 2
+ (1 — Oi) (c2Ski + CSQki)} +d Y kki(Lek + L)
1<k,i<n, k<i

+20 Y (L + Lii){cl [ > wilm+ Y wiLi+ Ik
1<k,i<n, k<i 1<i<k<n 1<i<i<n

+ (1 — k) (Ligs + Lik)Ewii} + (1 — ki) (c2Ski + C3Qm‘)}- (A.44)

Moreover, the expectation of the random variable given in (A.44) can be shown to take the

form

ot Z {ng{ Z oL + Z oLy + I + (1 — 0pi) (L + Lik)Q(Ewii)2]
1<k, i<n, k<i 1<i<k<n 1<i<i<n

2 2 2 @2 2 2 2
+ Kki (Lgk + L) } +c; E 01iSki + 3 E 01 Qi
1<k,i<n, k<i 1<ki<n, k<i

+2 Z {Uzi(CQSki + c3Qy) (Liki + Lz‘k)Ewn}
1<k,i<n, k<i

+2c1ea Y iSki(Lak +Lid) +2cics > WiQui(Lik + Lig)

1<k, i<n, k<i 1<k, i<n, k<i
+ 2coc3 Z U%iskiQki + 26% Z [/‘fki(ka + L) (Lg; + Lik)Ewii} . (A.4b)
1<k,i<n, k<i 1<k,i<n, k<i

Let us consider the following three regularity conditions.

i) Assume that the six individual summation terms in (A.45) tend to some constants
asymptotically. Then (A.45) tends to some constant C' asymptotically. Without loss
of generality, we assume that C' # 0; otherwise (A.43) tends to zero in probability.

ii) Assume that SD(A.44) < (A.45), where SD stands for the standard deviation of a

random variable.

iii) Assume that

4
> Fém{E[ S wilim+ Y wiLi + ki + (1= 0k) (Lgi + L) Ewgs
1<k, i<n, k<i 1<I<k<n 1<I<i<n
+ (1 = 6ki) (Sii + Q%i)} + Y E(wi—op)* (L + La)* < 1. (A.46)
1<k, i<n, k<i

We can see that conditions i) and ii) entail condition a) in the proof of Lemma 2 in Section
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B.2 below (A.9), while condition iii) entails condition b). Therefore, (A.43) converges to a

normal distribution asymptotically.

D Relaxing the spike strength condition and proof sketch for

results in Section 4.2

The main goal of this section is to show that all the results continue to hold when Condition
2i) is replaced with Condition 2ii), which is a weaker assumption on the spike strength. Thus
from now on, we will assume Condition 2ii) instead of Condition 2i). Moreover, we provide

the proof sketch for results in Section 4.2.

D.1 Replacing Condition 2i) with Condition 2ii)

Checking the proofs of our theorems, we can see that it is sufficient to show that the asymp-
totic expansion of XTG(z)y remains to hold under Condition 2ii). In other words, we need
to prove (76) and (108) under Condition 2ii). To accommodate the smaller magnitude of dx
in Condition 2ii), the key idea is to carefully examine the asymptotic expansions (76) and
(108) as L — oo. To this end, we choose L = logn and define ¢ = ¢/(1 + 27 1¢cg). Since

an < n'/?, we have the following improved version of inequality (66)

Oéngl(ClOgn)(LJrl)ﬂ _ aZ(Clogn)(L+1)/2 _ C(logn+1)/2,3/2
min{|aK"|bK|}L72 - (C/ logn)L72 — (logn)(lognfS)/QC/logan

—0 (A.4T7)

for any positive constant C'.
We first show that (76) holds with the choice of L = logn. In view of (75), it is sufficient

to establish the following two equations

o0

_ 1
Z z (21+2)XTle:OP(W) (A.48)
I=L+1
and .
> 2Bk —~EW)y =0, (’ ’3) (A.49)

=2
for z € Q. In fact, (A.48) is a direct consequence of Lemma 6 and (A.47). In light of the
definitions of ax and by below (10), we can conclude that for any z € Qp, |z| > 4cia,, logn.
Thus we see that

{ a2 (4c¢; logn)?

P } is a decreasing sequence when [ is increasing for z € . (A.50)
z
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Then it follows from Lemma 7 and (A.50) that

9
Z P 2l+2 Ewl)y 19) (
=2

S

I=vL
(4010210[721172 L )21 20—2

(4cilogn
CL Z | 2|22

|Z|21+2

9 afl(4cllogn)2vl°g" < C(4c1)%at (logn)® <<oil
|2|8(c/ log n)2VIesn—4 = | 2|8(¢! /(4cy ))2VIosn—4 2|8’

< C(logn)

and

VI VE
Y T(W_EWy | | < VLY || IR [XT(WI ~EW)y

=10 =10
l2l 20-2

< ovE 3 el

|2l+2
=10

ad((4e)’logn)!® _ ot
ERCI L=

(4c1/Togn)?a2l-2
<CVL Z 2242
1=10

< Clogn

Therefore, combining (A.51)—(A.53) yields (A.49).
To establish (108) with L = logn, we need only to prove (A.48) and
L .

> KT (WL —EW!)y = O(
=3

i

where the former has been shown before. By Lemma 7, we can deduce

9
ZZ_(2Z+2)XT(WZ _ EWZ)y — Op(

(A51)

2
L L
2
E [Z 5 2l+2) T Ewl)y < L Z ‘Z‘_(QH_Q)E [XT(WZ _Ewl)y
C

(A.52)

2

(A.53)

(A.54)

(A.55)

Thus (A.54) holds by combining (A.52), (A.53), and (A.55). This concludes the proofs of

the desired results.

D.2 Improvement of Lemmas 4 and 5 under Condition 2ii)

Lemma 7. For any n-dimensional unit vectors x and 'y, there exists some positive constant

C independent of | such that

2
E [x7 (W! —]EWl)y} < C(4erl)? (min{als !, dxaly, dyal, })2
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with | > 1 some positive integer and dx = ||X||co-

Lemma 8. For any n-dimensional unit vectors x and 'y, there exists some positive constant
C independent of | such that
‘EXTle‘ < C(2c1l)lal, (A.57)

with [ > 2 some bounded positive integer.

D.3 Proof of Lemma 7

The proof of Lemma 7 is a modification of that for Lemma 4. Thus we highlight only the
differences of the technical arguments here. We work directly on the general case allowing

for Ew;; # 0. In view of (A.18), we have

E(x"Wly — ExTW'y)?

- 2 E[ (xilwilizwizis Wiy Yy — B Wiy iy Wiy -+ wizilﬂyizﬂ)
1<, Siiq 1,01, Ji41 <0
X (T W) ja Wiags Wi Y — BLjWh 52 Whngs Wiy Y ) } (A.58)
Let i = (i1,---,i;41) and j = (j1,--- ,Jiy1) be two vectors taking values in {1,--- ,n}*L.

For any given vector i, we define a graph G; whose vertices represent the components of i.
Vertices i5 and is11 of G are connected by undirected edges for 1 < s <. Similarly we can
also define graph Qj corresponding to j. It can be seen that G; is a connected graph, which
means that there exists some path from is to iy for any 1 < s # s’ < n. One should notice
that here we allow for is = i541 or js = jsy1. Such relaxation will affect only the number
of pairs (i,j), but will not affect the main arguments of the proof which are similar to the

graph arguments for proving Lemma 4. Thus for each product

E[ (Scilwilizwizi:a W Y, — Exhwilizwizi;a Cr Wigdy gy yil+1)
x ($j1wj1j2 Wiags " Wiygip1 Yjipr — Ele Wiy jaWiagz *** Wyijigq yjl+1) } ) (A-59)

there exists a corresponding graph G; U gj. If Gy U gj is not a connected graph, then the

corresponding expectation

E[ (xi1wi1i2wi2i3 Wiy Yipyy — BT Wi iy Wiy - - wiziz+1yiz+1)
X (wjle1j2wj2j3 S WG Yy — B Wi o Wings Wy yjz+1) } =0.
This shows that in order to calculate the order of E(XTle — IEXTWZy)Z, it suffices to
consider the scenario of connected graphs gi U Qj.

To analyze the term in (A.59), let us calculate how many distinct vertices are contained

in the connected graph G; U Qj. We say that (is,is41) € Gy is an efficient edge if is # is11.
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Since there are at most 2/ efficient edges in G; U gj and Ewgy = 0 for s # §', in order to get
a nonzero value of (A.59) each efficient edge in gi U gj has at least one copy. Thus for each
nonzero (A.59), we have at most [ distinct efficient edges in G; U gj. Since graph G; U gj is
connected, there are at most [ + 1 distinct vertices in gi U gj. Denote by S the set of all such

pairs (i,j). Combining the above arguments, we can conclude that

(A]'S) = E E[ (xilwi1i2wi2i3 e wilil+1yil+1 - E$i1wi1i2wi2i3 Tt wilil+1y’il+1)

(ijes
X (i Wi Wi Wi Vs — B Wi oW Wi Ui) |- (A60)
For notational simplicity, we denote ji,- - , jj4+1 as j49, -- ,ig+2 and define i = (i1, -+ , 4141,

Jis s Jigr) = (ir, - -+, d9142). We also denote G; U gj as .7-'} which has at most [ + 1 distinct
vertices and [ distinct efficient edges, with each edge having at least two copies. Then it
holds that

|(A60)| == ) g E[(xilwilbwigig o w’il’il+1y’il+1 - ExilwiliQwiQiS T wilil+1yil+l)
Fi,ies
1
X (xil+2wiz+2iz+3wil+3il+4 © WiggyqiogypoYiogpa — Ewiz+2wil+2iz+3wiz+3il+4 T wi21+1i21+2yi21+2)] ‘

< E E’$i1w11i2wi2i3 C Wiy Y Yo Wit 3 Wiy gigpg "0 wi21+1i21+2yi21+2‘
F3, ies
1
+ E E‘xilwili2wi2i3 C W Yiga |E‘xil+2wil+2il+3wil+3il+4 C Wiy yigipo Yisgyo ‘ (A'61)

7. i€
1

Observe that each expectation in (A.61) involves the product of some independent ran-
dom variables, and ;Wi i, Wigig - - Wiyig 1 Yirpr and Lippo Wiy o143 Wiryzirpa " WiggprizoYisgio

1

may share some dependency through factors w],' and w;?, respectively, for some wq, and

nonnegative integers m; and mgy. Thus with the aid of the inequality
IE|wab|ml]E|wab|m2 < E|wab|ml+m27
we can further bound (A.61) as

(A'ﬁl) <2 E E‘wi1wi1i2wi2i3 C Wigiy 1 Yig g1 Tip o Wiy oig 3 Wipgipyg * "

Fi,ies
1

(A.62)

X Wiy yigy 12 Yisit2 ‘ .

To facilitate our technical presentation, let us introduce some additional notation. Denote

by (204 2) the set of partitions of the edges {(i1,12), (i2,43), - , (42141, 12142), Is 7 ls+1,S =
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1,---,2l + 1} and ¢>2(20 + 2) the subset of ¥(2] + 2) whose blocks have size at least two.
Let P(i) € th>2(20 + 2) be the partition of {(i1,4a), (ia,i3), - , (i2141, f2142), is £ Gss1,5 =
1,---,20+ 1} that is associated with the equivalence relation (is,,is,4+1) ~ (isy,%s,+1) Which
is defined as if and only if (is,,is,41) = (isysls9+1) OF (isy,4s,4+1) = (isy+1,ls,). Denote

by |P(i)] = m the number of groups in the partition P(i) such that the edges are equiv-
alent within each group. We further denote the distinct edges in the partition P(T) as
(s1,82),(83,84), -+, (S2m—1, S2m) and the corresponding counts in each group as r1,- -, 7,
and define s = (s1,82, -+ ,S2m). For the vertices, let ¢(2m) be the set of partitions of
{1,2,---,2m} and Q(S) € ¢(2m) the partition that is associated with the equivalence re-
lation @ ~ b which is defined as if and only if s, = s;. Note that sy;_1 # s9; since in the
partition, we consider only the off-diagonal entries (efficient edges) and for diagonal entries,

we use the simple inequality |w;;| < 1. Then it holds that

E E‘xilwiliz Wigig *** Wigig g1 Yigp1 Ligpo Wiy oty sWip g gipya " wi21+1i21+2yi21+2}

7. ies
1

< Z Z Z Z |z, Yigp1TigpoYioiyo |

1<|P()|=m<i 1 with partition P(l) Q(8)EP(2m) S with partition Q(S)
= 1<s1,,89m<n
P(hews,(2ir2)

m

r

X H ]E}w52j7152j | ’
Jj=1

1y, Tm 22

2.2

< Z (%)m Z Z Z |xi1yiz+1xil+2yi21+2"

i with partition P(i) Q(§)€¢(2m) g with partition Q(g)

1<|Pd)|=m<
< T Tm >2 1<sq," 59 <n

P)eysq(2i+2)

(A.63)

It suffices to bound the number of graphs in the above summation. In fact, since the
graph is connected there are at most m+1 different vertices in the graph. Moreover, there are
2l edges in the original graph with at most [ efficient edges and the partitions corresponding
to the edges have at most (41)? cases. Thus combining these arguments together we can

deduce

2.2
1% \m
§ (T) E § § |74y yiz+1xiz+2y121+2|
1<|P(d)|=m<t 1 with partition P(1) @(S)EP(2m) S with pﬁfcitiong(S)
3 Y, ;T'mZQ <s71, PED Y 3
P(I)Ew22(2l+2)

2 2
CTOx
< dgdy ()t Y > > > 1
n - . . ~ ~ ~
1§|P(i)\:mgl i with partition P(1) @(S)€E4(2m) S with partition Q(S)
Pyevsyrzy 1M

S d%{dgf( )l(4l)2lnl+1
< (4erl)* nall dyd3,. (A.64)

2.2
ciog,
n
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Therefore, we can establish the simple upper bound that
2
E |x"(W!' - EW')y| < C(deil)nalldids. (A.65)

For the other upper bounds C(4c;l)*d%a?, C’(4cll)2ld§,a%l, and C(4c1l)?a2 =2, the ar-
guments are similar to those for the proof of Lemma 4. The crucial steps are considering
the impact of |z, Y, T4y, Yisy,.| from (A.27) to (A.30). For our case, we can directly prove
the desired bounds C (4¢11)? d%a?, C’(4cll)2ld§,a721l, and C(4c11)?'a2!=2 by combining the left
hand side of (A.64) with the arguments from (A.27) to (A.30). This completes the proof of

Lemma 7.

D.4 Proof of Lemma 8

Similar to the proof of Lemma 5, the proof of Lemma 8 is a direct modification of that of

Lemma 7. Thus we omit it for brevity.

D.5 Proof sketch for results in Section 4.2

By calculating the variance of p, we have

ﬁ:p+0p(p(1l_p)):p[1+0p<‘2?)]. (A.66)

Then the mean and variance of v W2vy in (26) can be estimated as

vIEW?2v; = np(1 —p) and var(vi W2vi) =p(1 —p) [2(n — 1) +5° + (1 — p)*], (A.67)

receptively. By Theorem 1, (A.66), and (A.67), direct calculations show that if n™! < p < 1,
then it holds that

1
N =t = 0p(— + V),
=0tV
vIEW2v;  vIEW?vy

+ 0p(1).

\/Var(v{w2v1) \/V&I‘(V{WQVﬂ

Thus if the conditions of Corollary 1 hold, by (24) we can obtain

201 (vivi— 1) + vIEW2v; 4
}1/2 —

[ — N(0,1). (A.68)
var(vi W2vy)

Since vi = n~'/21 under the null hypothesis, the above results together with (A.68) ensure
that under the null hypothesis, statistic 7}, is asymptotically standard normal.

Next we consider the case of alternative hypothesis. It can be derived that the leading
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eigenvalue and eigenvector take the following forms

1

di = = [np+ni(g —p) + (n®p? + 2n1(2n1 — n)p(q — p) + ni(q —p)?)

2 "]

and vi = (v, vl,)T, where vy is an nj-dimensional vector with all entries being

(n—mn1)p
\/(n - nl)(dl — nlq)Q + nl(n _ n1)2p2

and vy 2 is an (n — np)-dimensional vector with all entries being

di —mniq
V(n—n1)(dy — n1q)2 + ni(n — ny)?p?

With some direct calculations, we can show that under the alternative hypothesis,

n-1/21Ty. — (n—ny)(di —ni(g—p))
n \/n((n - 7”L1)(d1 — le)2 + nl(n — n1)2p2) : (A.69)

Since n1 = o(n), n™! < p < ¢, and p ~ ¢, by the Taylor expansion we can deduce

dp+5(g—p)  ,nilg—p)?
di = 200 )2 T\ P it A Y
1 =np+ni(g—p) np + O( n2p )
and
Vn((n —ny)(di —n1g)? 4+ na(n —n1)?p?)
nivn(n —ny)%p? n? n?
=+/n(n—n1)(d —niq) + 1v/n( )P +£+O(£)
2y/(n—n1)(dr —nig) 4 L
2 3
_ - (g —p) AP P e (AP ES D) o P
= vn(n—ni) [np nlg—p) =~ = - +nil@—p) T O 7)
Substituting the above two equations into (A.69) yields
- 2 2(q — p)? 4p+5(q¢ —p)
—1/2qTy 1 ™ nl[ m ng nilg—p)° 5 Ap+5(g—p
" Vi n + 2n  4n? n2p? ni(g = p) 4n2p?
3 3 2
ny  ni(g—p)
L0+ )]
2 2 3 3 2
_ nilg—p)? 4p+5(q —p) ny | ni(g—p)
If the conditions of Corollary 1 hold, by (24) we have
MMV = DAV EWSL g (A.71)

var(viT W2y, )] /2
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This entails that

T 2 TNRT2 1/2
vi* EW?vy + |var(vi! W4vy) 1
[ 2 } )= Op(—np), (A.72)
1

V{Vl —1= Op<

where the last step is obtained by directly calculating the mean and variance of V?Wzvl

and noting that t; ~ np. Since vi,--- , v, form an orthonormal basis, it follows from (A.72)
that
=, T 1
ST =1- (%) = 0, ). (A.73)
j=2

Similarly, by (A.69) and the assumptions of n; = o(n) and ¢ ~ p, we can deduce

n 3 3 2
Z —1/21T _ M ni(q —p) A 74
j=2 O(n3 " n3p? ) (A.74)

Then it follows from (A.69), (A.72), and (A.74) that

n
n 217G —1 = n_l/ZlTvlv{Ql —1+n Y27 Zvjv]T§1
j=2
2 2 3 3 2
ni(q —p) 2 4p+5(q—p)} i, nig-p?* 1
= |22 —_p) = =7 O, [ —_— —} A.75
n2p2 + n] (q p) 4n2p2 + n3 nsp + ( )

Under the alternative hypothesis, it can be shown that the estimators in (27) are of orders

np(1 — p) = Op(np) and p(1 — p) [2(n — 1) + p* + (1 — p)*] = Op(np), respectively, and in

addition, t; ~ np. Therefore, if the conditions of Corollary 1 holds and = (qpp ) +n1(q P s 1,

with probability tending to one we have

T, — —o0,

which means that the power can tend to one asymptotically. This concludes the proof sketch

for the results in Section 4.2.
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