

1 **REVIEW ARTICLE**2 **Role of the Supporting Surface in the Thermodynamics and**
3 **Cooperativity of Axial Ligand Binding to Metalloporphyrins at**
4 **Interfaces**5 Kristen N. Johnson^a, Bhaskar Chilukuri^b, Zachary E. Fisher^b, K. W. Hipps^{a*} and Ursula
6 Mazur^{a*}7 *^aDepartment of Chemistry and Material Science and Engineering Program, Washington State University,
8 Pullman, 99164-4630, WA, USA; ^bDepartment of Chemistry, Illinois State University, Normal, IL, 61790-4160,
9 USA*

ARTICLE HISTORY

Received:

Revised:

Accepted:

DOI:

Abstract: Metalloporphyrins have been shown to bind axial ligands in a variety of environments including the vacuum/solid and solution/solid interfaces. Understanding the dynamics of such interactions is a desideratum for the design and implementation of next generation molecular devices which draw inspiration from biological systems to accomplish diverse tasks such as molecular sensing, electron transport, and catalysis to name a few. In this article, we review the current literature of axial ligand coordination to surface-supported porphyrin receptors. We will focus on the coordination process as monitored by scanning tunneling microscopy (STM) that can yield qualitative and quantitative information on the dynamics and binding affinity at the single molecule level. In particular, we will address the role of the substrate and intermolecular interactions in influencing cooperative effects (positive or negative) in the binding affinity of adjacent molecules based on experimental evidence and theoretical calculations.

10 **Keywords:** Porphyrins, axial ligand binding, STM, single molecule thermodynamics, cooperative binding, Density
11 Functional Theory calculations12 **1. INTRODUCTION**13 The properties, structures, and chemical reactivity of metal porphyrin complexes have been the subject of
14 considerable interest recently because their relevance in diverse fields such as catalysis [1-3], chemical sensors [4-6],
15 molecular separations [7-9], spintronics [10, 11], and medicine [12, 13]. These tetrapyrrole-based molecules are
16 stable relative to their size and exhibit useful chemical and photoelectric properties. Considerable work has been done
17 in the metalloporphyrin synthesis field allowing for increasingly complex molecules and unique properties. Both
18 macrocycle substituents and metal ion transformations are used to tune the electronic, physical, and chemical
19 properties. One significant functional chemical property of metalloporphyrins is their ability to bind axial ligands.
20 Axial coordination of porphyrins is ubiquitous in biochemistry where porphyrins are commonly found in the active
21 site of proteins and enzymes. Understanding the binding affinity of metalloporphyrins and the influence of surface
22 confinement are necessary for the advancement of catalysis and sensing applications as it has been shown that the
23 interface plays an important role in modulating axial ligand binding affinity [14, 15]. Simple metalloporphyrins have
24 been well studied as self-assembled monolayers on conducting surfaces such as Au, Ag, Cu, and highly ordered
25 pyrolytic graphite (HOPG) [16-18]. The self-assembled monolayers are stable and lend themselves to study at the
26 single molecule level by techniques like scanning tunneling microscopy (STM).27 *Address correspondence to this author at the Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA; Email:
28 umazur@wsu.edu, hipps@wsu.edu29 This review is concerned with the reactivity of these tetrapyrrole self-assembled surfaces with ligands. The
30 advantage of STM over large scale, ensemble level techniques in this application is the ability to investigate reactions
31 in real time on a per molecule basis, thus allowing for the investigation of the distribution of reacting sites, reaction

32 mechanisms, and binding dynamics information that may be obscured in methods that require $\geq 10^8$ molecules (large
33 scale) techniques. STM can also be used to investigate the cooperativity in surface ligation reactions in a unique way
34 with the spatial resolution allowing for the determination of the distribution of neighboring reacted adsorbed
35 molecules. Cooperative interactions are broadly characterized as nonadditive interactions where the behavior of a
36 system depends on the amount of interactions present. Cooperativity is abundant in biological systems and used to
37 alter the stability and reactivity of interaction components and is likely the source of high specificity of ligand to
38 enzymes [19, 20].

39 In this review, we summarize the current state of the literature regarding axial ligand binding of various
40 metalloporphyrins at interfaces with special focus on: (1) the role of the surface at the vacuum- and solution-solid
41 interfaces and (2) the cooperative properties of the systems. In the final section of this review, we sum up the current
42 progress and share our outlook for binding studies at the single molecule level. For additional readings on porphyrin
43 chemistry and self-assembly at interfaces, the reader is directed to other recent excellent reviews [18, 21-23].

44 **2. AXIAL LIGAND BINDING TO SURFACE SUPPORTED METALLOPORPHYRINS**

45 **2.1 General Considerations**

46 The axial ligation of metalloporphyrin systems has been used as a functional target for a variety of applications.
47 Axial ligands have been shown to alter the redox, photovoltaic, and magnetic properties of metal porphyrins [23-25].
48 Although the coordination is typically relatively weak and reversible, coordinated species tend to be
49 thermodynamically stable. Metalloporphyrin coordination has been studied extensively in fluid solutions [26] and in
50 various environments where the porphyrin is confined at the vacuum-solid [23] and solution-solid interfaces [22].
51 When confined to interfaces, porphyrins undergo surface-induced structural adaptation (ring deformation, rotation of
52 substituents) to fit their local environments [23]. In addition to the structural changes to surface confined porphyrins,
53 the affinity of porphyrins to axial ligands can also be modified by the surface. In some cases, the modification of
54 porphyrin reactivity by a surface has been attributed to the surface acting as an additional coordinative bond, it has
55 even been compared with the classical “trans-effect” in which the presence of an axial ligand can alter the bond
56 strength of the axial ligand positioned trans to the first ligand with respect to the porphyrin macrocycle [14, 15].
57 Computational work has also shown that the surface can act as either a charge donor or an acceptor under differing
58 circumstances [27]. The subsequent discussion is divided into cases of ligand binding occurring at the (1) vacuum-
59 solid interface and (2) the solution-solid interface.

60 **2.2 Vacuum-solid Interface**

61 To study axial ligand coordination to surface supported porphyrins, typically the porphyrin is vapor deposited onto
62 a solid substrate followed by exposure to the ligand. Gaseous ligands such as nitric oxide (NO), carbon monoxide
63 (CO), dioxygen (O₂), and ammonia (NH₃) are perhaps the most well-studied types of axial ligands binding to
64 porphyrins at the vacuum-solid interface [23]. They are of biological importance and metalloporphyrins interact with
65 them in a range of processes from oxygen storage to muscle contraction and synaptic transmission [28, 29]. As such,
66 there is interest in using porphyrins as sensors, single metal atom catalysis as alternative chemical storage devices,
67 and information storage as spintronics. Many of the reactions are not observed at room temperature and require
68 cryogenic temperatures to “freeze-out” the desired reaction product. However, nitrogen dioxide (NO₂) was shown to
69 bind nickel tetraphenyl porphyrin (Ni-TTP) molecules at room temperature on the Cu(110) surface [30]. Bond
70 energies of axially ligated porphyrins that are stable enough to be imaged at the vacuum-solid interface can approach
71 the strength of covalent bonds (for reference, C-C single bond strength is ~ 350 kJ/mol [31]). Some examples of strong
72 ligand-metallocporphyrin bonds are 1,3-dimethylimidazol-3-ium (IMe)-RuTTP/Ag(111), 96.5 kJ/mol from
73 temperature programmed desorption (TPD) spectra [32], CO-RuTTP/Ag(111), 183 kJ/mol from TPD spectra [33],
74 NO-CoP/Ag(111), 124 kJ/mol, and NO-FeP/Ag(111), 168 kJ/mol from DFT calculation [14].

75 The STM probe can be a powerful tool for controlling ligand-porphyrin binding chemistry at interfaces [34, 35].
76 One recent example is the deligation of 1,3-dimethylimidazol-3-ium (IMe) from IMe-RuTTP complex on Ag(111)
77 [32]. When a monolayer of RuTTP deposited on Ag(111) was exposed to IMe at 300K, almost all RuTTP became
78 coordinated, Fig. 1b. The system was subsequently cooled to 5 K and the STM tip was positioned over an IMe-RuTTP
79 molecule. The probe was then manipulated by turning the feedback loop off, setting the sample bias -3V, and then
80 moving the tip 2 Å toward the surface. Scanning the same area shows the manipulated molecule returns to the unligated
81 RuTTP state following the tip manipulation protocol.

82 The surface is an active participant in many coordination reactions. For example, the oxygen reduction capabilities
83 of metal porphyrins and phthalocyanines have been of interest for a long time. Theoretical studies of homolytic oxygen
84 cleavage by manganese porphyrins and phthalocyanines agree that the reaction pathway involving

Table 1. Comparison of ligand pKa and thermodynamic values for the formation of various 5-coordinate CoOEP-nitrogenous ligand complexes in toluene solution at 298 K.

Ligand molecule	pKa	$K_s(M^{-1})$	$-\Delta G_{(soln)} (kJ/mol)$
Pyridine (Py) ^a	5.22	491	15.35
1-Phenyl imidazole (PhIm) ^b	5.45	1680	18.13
4-Methoxy pyridine (MeOPy) ^c	6.58	890	16.80
Imidazole (Im) ^d	6.90	7340	22.00

^a[45], ^b[51], ^c[49], ^d[71]

85 the macrocycle alone has a high energy barrier and is unlikely to proceed [36-39]. The substrate must be involved in
 86 order for the cleavage of O₂ to be observed. One recent report on oxygen cleavage by iron phthalocyanine adsorbed
 87 on Ag(100) showed that Ag adatoms play an important role in the reaction mechanism and may even facilitate oxygen
 88 transfer between adjacent molecules [40]. The surface has also been known to attenuate the reactivity of certain
 89 molecules. In solution, the dioxo forms of Ru-porphyrins are known to be catalytically active for alkene/olefin
 90 epoxidations; however, when adsorbed on Ag(111) the RuTTP complex was found to be completely unreactive to
 91 molecular oxygen [41].

92 The presence of the surface can also significantly alter the magnetic or spin properties of an adsorbed porphyrin.
 93 Without the influence of an external magnetic field, paramagnetic metalloporphyrins have net zero magnetic moments,
 94 however, magnetic coupling between the metalloporphyrins and the surface or chemical modification of an adsorbed
 95 porphyrin have both been shown as ways to modify the spin properties of the porphyrin [42]. For example,
 96 CoTPP/Ni(001) shows ferromagnetic coupling between the porphyrin and Ni(001) surface. With NO coordination,
 97 the magnetic coupling is no longer observed leading to an *off* state of the Co spin. The *on* state of the Co spin is
 98 recovered upon thermal dissociation of the NO ligand [43]. The degree of porphyrin-surface interaction has also been
 99 shown to be tunable based on the axial ligand identity. When CoTTP/Au(111) was exposed to NH₃ and separately
 100 NO₂ gas at 80K, Scanning tunneling spectroscopy (STS) measurements, Fig. 2 showed zero bias peaks associated
 101 with net spin polarization likely originating from Kondo effect, for NO₂-CoTTP (strongest interaction) and NH₃-
 102 CoTTP (weaker interaction) and no peak for NO₂-CoTTP (no interaction) [44]. For more information on the control
 103 of magnetism of surface adsorbed molecules, see the excellent review by Kuch and Bernien [42].

104 2.3 Solution-solid Interface

105 At the solution-solid interface, it becomes possible to use STM to study reversible axial coordination. Reversibly
 106 bound ligands are especially relevant when considering biochemical system functions and applications such as
 107 catalysis or small molecule sensing. With STM, reversible binding/dissociation processes can be monitored and both
 108 qualitative and quantitative information about ligand binding affinity and the energetics that define a particular ligation
 109 reaction can be extracted. Molecular and time-dependent imaging can establish whether the process under study is at
 110 equilibrium and can also provide kinetic data and mechanisms.

Table 2. Experimental and calculated thermodynamic values for the formation of five-coordinate Im, MeOPy, and PhIm of selected metal porphyrin complexes at 298 K.

System	$K_s(M^{-1})$	$\Delta G (kJ/mol)$		$\Delta H (kJ/mol)$	
	Exp.	Exp.	Calc.	Exp.	Calc.
MeOPy-CoOEP (solution) ^b	890	-16.8±0.2	-20.7	--	-56.9
MeOPy-CoOEP/HOPG ^b	190	-13.0±0.3	-20.4	-50±5	-55.6
PhIm-CoOEP (solution) ^c	1680	-18.13	-6.6	--	-46.3
PhIm-CoOEP/HOPG ^d	--	--	-59	--	-98
Im-NiOEP (solution) ^a	--	--	--	--	-22
Im-NiOEP/HOPG ^a	590	-15.8	--	-80	-65

^a[50], ^b[49], ^c[71], ^dfor computational details see supplementary material.

111 Currently, example studies that demonstrate axial ligand binding to surface supported porphyrins at the organic
112 solution-solid interface are still rare. However, there is sufficient data reported to allow discussion of trends in ligand
113 identity and the differences between solution phase and solution-solid interface chemistry. Examples of such ligands
114 include nitrogenous ligands such as pyridine-based [45-49] and imidazole-based molecules [50, 51], and gases such
115 as dioxygen [52, 53]. The surface is essential for observing binding reactions of metal porphyrins with some of these
116 molecules. For example, Co-porphyrins do not typically bind oxygen in solution at room temperature. A notable
117 exception here is the Co picnic basket or picket-fence porphyrins which bind molecular oxygen at 300 K [54, 55]. It
118 is important to note that even in these special cases, oxygen binding requires the presence of an imidazole residue
119 coordinated trans to the ligated oxygen [54, 55]. Interestingly, cobalt(II)octaethylporphyrin (CoOEP), while not
120 reacting with O₂ in fluid solution, was shown to bind dioxygen at the phenyloctane/HOPG interface at room
121 temperature [52]. This facile binding reaction was attributed to the presence of the HOPG surface which acts as an
122 electron donor, thus enhancing oxygen ligation to the CoOEP supported on that substrate.

123 CoOEP has been studied extensively at the phenyloctane-HOPG and Au(111) interfaces and the stability and
124 surface structure of its monolayer is well known [56, 57]. The solution phase binding chemistry of different ligands
125 to simple porphyrins is widely known from UV-Visible spectroscopy or nuclear magnetic resonance (NMR)
126 experiments. Many of these studies observed correlations between ligand basicity and their binding affinity (ΔG) [58-
127 60]. In general, ligands with high pKa values tended to bind more readily to metal porphyrins than ligands with lower
128 pKa's, although steric effects tended to modify this trend in some instances. For example, cyclic amines have
129 larger association constants than those of noncyclic amines because of decreased repulsion between the substituents
130 and the porphyrin plane [59]. In solution, it has been observed that while most metalloporphyrins follow the trend of
131 increased ligand basicity leading to higher stability constants, it has been shown that Mg(II)porphyrins and some
132 Fe(II)porphyrins show the opposite trend [58, 61]. Ligand binding affinity to Co(II) porphyrins, on the other hand,
133 was found to depend more on the electron donating capabilities of the porphyrin macrocycle than the nature of the
134 ligand [62]. For reference, the binding affinity trend versus the basicity for nitrogenous ligands reacting with CoOEP
135 in toluene solution are collected in Table 1. Note that imidazole-based compounds show greater binding affinity than
136 the pyridine compounds. At the phenyloctane-HOPG interface, the nitrogen bases (in Table 2) binding affinity toward
137 CoOEP, although not necessarily the same as in fluid solution, mainly followed the same trend as their pKa values,
138 Table 1.

139 Fig. 3 shows typical STM images obtained from ligand binding experiments with CoOEP/HOPG. In all images,
140 the bright molecules correspond to the unligated CoOEP molecules and the dark circled molecules are coordinated
141 with the ligand. At the extremes, the least basic ligand, pyridine (Py), Fig. 3a, shows no surface coordinated molecules,
142 while the most basic ligand, imidazole (Im), Fig. 3d, causes partial dissolution of the monolayer. The dissolution may
143 be due to the increased solubility of complexed Im-CoOEP species in solution [49]. Figures 3b and 3c, respectively,
144 indicate that PhIm and MeOPy react with CoOEP [49, 50]. Furthermore, the on-surface coordination reactions of these
145 ligands are completely reversible and can be followed in real time. Ligand concentration dependence and variation of
146 reaction temperature studies can be carried out for quantitative evaluation of the binding affinity and thermodynamic
147 parameters [49, 50]. At high 4-methoxypyridine concentrations, dissolution of the MeOPy-CoOEP molecules at the
148 phenyloctane/HOPG interface was also observed [49]. One important note here is that MeOPy was found to bind to
149 CoOEP more strongly in solution than at the HOPG/phenyloctane interface.

150 Another example where a surface confined porphyrin's affinity toward a ligand is different than in a solution
151 environment is NiOEP reaction with Im. While imidazole does not react with NiOEP in organic solutions, it readily
152 binds reversibly to the nickel ion at the NiOEP/HOPG interface in phenyloctane [50]. In a different report, zinc-
153 5,10,15,20-meso-tetradodecylporphyrin adsorbed on HOPG was found to coordinate to 3-nitropyridine better than
154 when dissolved in toluene solution [46].

155 Computational work has confirmed the role that the substrate plays in such reactions. DFT calculations have shown
156 that the reactivity of imidazole toward NiOEP adsorbed on HOPG is attributable to charge donation from the graphite
157 stabilizing the Im-Ni bond. This charge transfer pathway is supported by molecular and periodic DFT calculations
158 which indicate that the Im ligand behaves as a π -acceptor [50]. In Table 2, a collection of reaction enthalpies for axial
159 ligand coordination to metalloporphyrins is presented. The reaction enthalpies for the surface adsorbed species were
160 obtained from DFT calculations and STM experiments; the enthalpies of formation of the corresponding complexes
161 in the gas phase were determined by DFT only. The Im-NiOEP complex is not experimentally observed in the solution
162 phase but its computed ΔH value is approximately 3 times less favorable than the enthalpy of formation for imidazole
163 binding NiOEP adsorbed on HOPG. This result supports the experimental results of high stabilizing interaction of the
164 substrate and the Im-NiOEP complex and absence of ligand binding in solution [50]. The calculated coordination
165 reaction enthalpies for MeOPy-CoOEP and MeOPy-CoOEP/HOPG are approximately equal [49]. Both experimental
166 and theoretical ΔH quantities for the MeOPy-CoOEP/HOPG system are in excellent agreement.

167 Examples of axial ligand binding at aqueous- and electrolyte-solid interfaces are also known. Many of these studies
168 include analysis of the metalloporphyrins catalytic or electrocatalytic activity. For example, cobalt porphyrins
169 adsorbed on Au(111) were found to catalyze O₂ reduction reaction (ORR) in acidic solution [63]. Imaging in aqueous
170 and electrochemical environments utilizes electrochemical scanning tunneling microscopy (EC-STM) where the
171 solution potential can be controlled separately from sample bias and tip-sample voltage, giving a large range of control
172 over the adsorbed porphyrin structure and reactivity. Because of the complex chemistry that may ensue in an
173 electrochemical environment, EC-STM studies of metalloporphyrin ligand binding are considered beyond the scope
174 of this review. Interested readers are directed to the related review articles [18, 64].

175 **2.4 Cooperative binding with surface supported metalloporphyrins**

176 *What is cooperativity?* Cooperative interactions are broadly defined as interactions that are not additive in nature.
177 Commonly, cooperativity is categorized as a set of multistep reactions where the free energy change for subsequent
178 steps is different than for the initial step. Positive cooperativity refers to the decrease in free energy required per step
179 as the number of steps increases. Negative cooperativity instead refers to the increase in free energy required for
180 increasing number of interactions. Traditionally, cooperativity is used to describe chemical reactions, particularly the
181 reactions between substrates and allosteric sites in enzymes, and more recently the definition has been expanded and
182 applied to more complex instances where intermolecular interactions are highly important; such as, self-assembly,
183 protein folding, and chelation [65]. Cooperative effects can be modulated by many complex interactions. In the case
184 of hemoglobin, these are allosteric motions of the protein subunits in which slight changes in the histidine-Fe bond
185 distance leading to differing amounts of charge donation from the histidine and stabilizing the oxygen adduct [54, 66].
186 At the solution-solid interface, it is speculated that the substrate may act as an electron source/sink which can lead to
187 cooperative on-surface binding. It is important to understand cooperativity because it is the source of high specificity
188 of natural systems molecular recognition.

189 *Nearest Neighbor Analysis.* The difficulty in studying many complex systems and quantifying the cooperativity is that
190 the number of binding sites is not always known (biological systems) or might be indistinguishable. Since molecules
191 in STM imaging are distinguishable, this methodology allows for a unique way to approach studying cooperative
192 reactions. Metalloporphyrins are known to form stable, well-ordered monolayers on conducting surfaces. Provided
193 that the reacted state of the porphyrin is long lived enough to observe in STM images, the state of a particular molecule
194 can be followed as a function of time. It has been shown that when studying metalloporphyrin ligation, sometimes
195 clusters of ligated molecules appear within the monolayer. Such clustering is indicative of positive cooperativity – a
196 ligand binding near an existing bound system has lower energy than one binding far from another bound ligand. As a
197 way to quantify the degree of clustering, the relative proportion of the number of porphyrin nearest neighbors that are
198 ligated can be determined. If ligand binding was truly random, where binding to one site on the monolayer did not
199 influence subsequent ligand binding to neighboring molecules, the proportion of ligand-bound molecules, $f_k(\theta)$ with
200 k -ligated neighbors out of n total nearest neighbors would follow a binomial distribution given by:

$$201 \quad f_k(\theta) = (n!/(k!(n-k)!))\theta^k(1-\theta)^{n-k} \quad (1)$$

202 where θ is the fractional surface coverage of bound ligands. Cooperativity is signaled by deviations from the random
203 distribution.

204 To determine the experimental distribution of k -dark nearest neighbors, a typical analysis is to collect a sufficiently
205 large STM image such that the image captures a representative view of the surface at large while still providing
206 molecular resolution such that the state of the molecule can be determined. Present authors recommend at least 50 x
207 50 nm² images with 100 x 100 nm² or larger images preferred for analysis.

208 The analysis described above has been used as a qualitative measure of cooperativity in some recent work with
209 CoOEP and nitrogenous based ligands MeOPy [46] and PhIm [50]. It has also been used to describe the clustering of
210 oxygenated manganese porphyrins; however, in this case the clustering was attributed to O atoms produced by the
211 dissociation of O₂ binding to the nearest available Mn site [52, 67]. This was not considered cooperative in the sense
212 that the energy of binding was not considered. Fig. 4 shows an example taken from the CoOEP and PhIm case, here
213 you see that the fraction of clusters containing 2,3, and 4 bound (dark) nearest neighbors is greater than expected based
214 on the binomial distribution [50]. The authors attribute the larger than expected clusters of bound molecules to
215 cooperative binding. They confirmed computationally that the binding energy of systems with clustered PhIm-
216 CoOEP/HOPG decreased as the number of PhIm molecules increased [50]. The nearest neighbor analysis method is
217 useful for experiments where molecular resolution can be achieved, but it is however only a qualitative device and
218 must be paired with computations or isothermal binding curves to comment on the energetics of cooperativity of the
219 system.

220 *Adsorption Isotherm Analysis.* The classical way to identify cooperative binding is by constructing ligand
221 concentration-dependent binding curves at constant temperature. This method does not require molecular resolution
222 and can be applied to data obtained through a variety of techniques from spectroscopy such as IR and UV-Visible.
223 Adsorption isotherms can be fit to various models. When an isotherm that does not account for cooperativity
224 (Langmuir isotherm) fails, a new model must be selected and two of those choices are the Hill or Temkin isotherms
225 [68, 69]. The Hill model is one that assumes that the binding of ligands is cooperative and was originally formulated
226 to describe the oxygen binding to hemoglobin. It reflects the fraction of available binding sites that are bound by
227 ligands. The Hill coefficient provides a way to quantify the degree of interaction between binding sites. Expressed
228 linearly, the Hill equation is:

229
$$\log(\theta/(1-\theta)) = n_h \log([L]) - \log(K_a) \quad (2)$$

230 where θ is the fraction of bound ligands, $[L]$ is the concentration of ligand, and K_a is the equilibrium association
231 constant for the reaction. When a plot of $\log(\theta/(1-\theta))$ vs $\log[L]$ is created, the slope is equal to the Hill coefficient, n_h .
232 A Hill coefficient of 1 means no cooperativity, <1 is anticooperative behavior, and >1 is positive cooperative behavior.
233 The Temkin isotherm looks at the situation through a thermodynamic lens and assumes that the heat of adsorption for
234 additional ligand binding changes linearly with coverage. The entropy change (ΔS^0) associated with ligation of surface
235 adsorbed metalloporphyrin is taken to be coverage independent while the heat of adsorption (ΔH^0) is taken to be:

236
$$\Delta H^0 = \Delta H(1 + \alpha_T \theta) \quad (3)$$

237 where α_T is a fitting parameter and ΔH^* is the heat of adsorption when the coverage is very low (minimal influence of
238 cooperativity). Both the Temkin and Hill equations reproduce the Langmuir equation at low coverages and/or when
239 the systems are noncooperative. An example of the adsorption isotherm applied to a porphyrin axial ligand binding
240 system at the solution-solid interface is NiOEP plus imidazole on HOPG. At low imidazole concentrations, the system
241 follows a Langmuir isotherm and as the imidazole concentration increases, the behavior begins to deviate. In Fig. 5,
242 we see that the ratio of NiOEP/HOPG bound to imidazole is nonlinear with increasing imidazole concentration [70].
243 The behavior is described very well by the Temkin adsorption model and fitted $\alpha_T = -0.18$. The data is also fit to the
244 Hill model which gives a slope of 0.49 which further supports the negative cooperativity.

245 **2.5 Computational modeling of cooperativity in surface supported metalloporphyrins**

246 Computational studies provide an important insight into the energetics of axial binding to surface adsorbed
247 porphyrins, and they can also tell us about the role that the surface plays in the cooperative phenomena. PW-DFT
248 calculations have been used to determine the binding energies and investigate the charge distributions of various
249 surface-supported porphyrin ligation reactions. In the case of NiOEP/HOPG and Im, it was found that the binding
250 energy of imidazole decreased by 14% between the first imidazole and a complete imidazole-NiOEP/HOPG
251 monolayer [71]. The charge redistribution analysis showed that HOPG acts as an electronic charge acceptor from
252 NiOEP without imidazole present but as a donor to the Im–NiOEP complex. The imidazole ligand acts as a π -acceptor
253 when it binds to NiOEP/HOPG, contrary to the conventional understanding of imidazole as an electron donor through
254 lone pair electrons on the nitrogen.

255 Another recent work [51] did a more complete set of computations using cobalt(II) porphine (CoP) as a template
256 and was able to show that the distance between ligated CoP/HOPG molecules matters. Here, CoP neighbors directly
257 adjacent showed positive cooperative binding affinity to PhIm ligands, but molecules further away did not exhibit the
258 same trend [51]. Additionally, charge analysis of PhIm-CoP/HOPG models showed that HOPG acts as a donor of
259 charge from no to low PhIm coverage, while turning out to be an acceptor at high PhIm coverage. This fluctuation in
260 the charge distribution with high and low ligand coverage is consistent with cooperative binding.

261 Similar studies on the MeOPy-CoOEP/HOPG system, Fig. 5, also show positive cooperativity using PW-DFT
262 calculations. A comparison of binding energies of PhIm and MeOPy ligands in CoP/HOPG system showed that both
263 ligands follow a similar trend with respect to cooperative binding, but the binding energies of MeOPy are lower than
264 that of PhIm. Additionally, MeOPy acts as a weaker charge acceptor than PhIm on CoP/HOPG. The calculations also
265 reproduce the experimental determination of positive cooperativity in MeOPy-CoOEP/HOPG STM results [49].

266 As outlined in the supplemental material, Gaussian single molecule gas and solution calculations can be paired
267 with surface gas calculations to estimate the thermodynamics of the ligation process in fluid solution.

268 **SUMMARY AND OUTLOOK**

269 It is clear that understanding the interaction of the substrate with the supported complex is paramount for
270 understanding the axial ligation of surface-confined porphyrins. To artificially reproduce the chemical specificity and
271 catalytic capabilities observed in biology, a good understanding of porphyrin-surface interactions and the surface

272 influence on porphyrin axial ligation is needed. To date, experiments at the vacuum-solid interface have revealed that
273 the surface acts as an additional coordinative bond to a metalloporphyrin and thus may influence axial ligation
274 similarly to the classical *trans*-effect. This has been shown by measuring changes in surface-porphyrin bond lengths
275 [14], modifications in the charge distribution between adsorbed porphyrins and the adsorbed complexes [72], and
276 finally in changes to the molecules electronic and spin states [43]. Studies in UHV have been generally confined to
277 systems far from equilibrium. There are currently few single molecule ligation studies at the solution-solid interface
278 because of the dearth in the surface science techniques that may be used. However, these studies are of critical
279 importance because they allow for the investigation of systems in dynamic equilibrium.

280 Theoretical studies are an important component of developing a compressive understanding of ligand binding
281 chemistry at the solution-solid interface. To date, most calculations have not yet included solvent effects. However,
282 plane-wave DFT calculations have indicated that the charge distribution of an absorbed porphyrin changes upon axial
283 ligation and that the presence of a substrate stabilizes some ligation products which allow them to be observed even
284 if they are not observed in solution [50, 53].

285 Axial ligation of porphyrins at interfaces is a promising system for fabricating selective chemical sensors and
286 catalysts and has been the subject of significant research interest for the duration of the 21st century. The influence of
287 the substrate surface means that the properties of metalloporphyrin ligated complexes may be significantly different
288 than the properties observed in solution. It will be important for future fundamental research to learn to predict the
289 properties of surface-confined porphyrin systems. The influence of the surface on the cooperativity of surface reactions
290 may offer a new, unique way to control the extent and spatial orientation of reactions.

291 Notwithstanding the many attractive experimental features and utilities of scanning tunneling microscopy, it does
292 have one distinct weakness, which is the fact that it is slow to collect images, typically on the order of minutes per
293 frame. In electrochemical systems, the so called “video-rate” imaging has been employed to achieve millisecond time
294 resolution imaging [73, 74]. Even with these advances, the data collection speeds pale in comparison with state-of-
295 the-art spectroscopic methods which can achieve up to femtosecond time resolution. With these limitations in mind,
296 it is necessary for the residence time of the axial ligands bound to the metalloporphyrins of interest to be greater than
297 the time to collect one image. If the association/dissociation rates are faster than the scan rate, it is possible that instead
298 of two distinct heights corresponding to the ligated and unligated state of the molecule, the STM image may show an
299 approximate average height where the distinct coordination states cannot be distinguished [47]. At the vacuum-solid
300 interface, short-lived surface species may be captured by cooling the experiment to sufficiently low temperatures, but
301 the dynamic properties of the system will be lost. For studying ligand association/dissociation reactions at the solution-
302 solid interface, STM measurements will need to be combined with rapidly acquired statistical data from techniques
303 such as optical methods. Addition of advanced computations will provide a more complete picture of reversible ligand
304 binding processes at the solution-solid interface.

305 CONCLUSION

306 This review summarizes the current literature surrounding axial ligation reactions involving surface supported
307 metalloporphyrins. To date, many studies of porphyrin ligation have been completed at the vacuum-solid interface
308 and a lesser number have been completed at the solution-solid interface. In general, this work has shown the surface
309 influences the binding affinity, physical properties of the porphyrin, as well as the reaction cooperativity. The future
310 of this field will be to continue with fundamental research on the topic in order to learn how to predict the properties
311 of surface confined porphyrin systems. Such systems have promising applications in diverse fields such as catalysis,
312 chemical sensors, molecular separations, and medicine.

313 CONFLICT OF INTEREST

314 The authors declare no competing financial interests.

315 FUNDING

316 This material is based upon work supported by the National Science Foundation (USA) under the grant CHE-
317 1800070 and CHE-1807225. We gratefully acknowledge their support.

318 SUPPLEMENTARY MATERIAL

319 Supplementary material with details of PW-DFT calculations for PhIm-CoOEP complex formation energy is available
320 on the publisher’s website along with the published article

321 REFERENCES

-
- [1] Barona-Castaño, J. C.; Carmona-Vargas, C. C.; Brocksom, T. J.; De Oliveira, K. T.; Graça, M.; Neves, P. M. S.; Amparo, M.; Faustino, F. Porphyrins as catalysts in scalable organic reactions. *Molecules*, **2016**, *21*, 310.
- [2] Seo, S.; Lee, K.; Min, M.; Cho, Y.; Kim, M.; Lee, H. A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene. *Nanoscale*, **2017**, *9*, 3969–3979.
<https://doi.org/10.1039/C6NR09428G>
- [3] Lei, H.; Wang, Y.; Zhang, Q.; Cao, R. First-row transition metal porphyrins for electrocatalytic hydrogen evolution. **2020**, *24* (11–12), 1361–1371. <https://doi.org/10.1142/S1088424620500157>
- [4] Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for chemical sensor applications. *Chem. Rev.*, **2017**, *117* (4), 2517–2583. <https://doi.org/10.1021/acs.chemrev.6b00361>
- [5] Lvova, L.; Mastroianni, M.; Di Natale, C.; Lundstroem, I.; Paolesse, R. Towards hyphenated sensors development: Design and application of porphyrin electropolymer materials. *Electroanalysis*, **2012**, *24*, 776–789.
<https://doi.org/10.1002/elan.201100562>
- [6] Lvova, L.; Monti, D.; Di Natale, C.; Paolesse, R. The Long-Lasting Story of One Sensor Development: From Novel Ionophore Design toward the Sensor Selectivity Modeling and Lifetime Improvement. *Sensors*, **2021**, *21* (4), 1–15.
<https://doi.org/10.3390/s21041401>
- [7] Han, J.; Bai, L.; Yang, B.; Bai, Y.; Luo, S.; Zeng, S.; Gao, H.; Nie, Y.; Ji, X.; Zhang, S.; Zhang, X. Highly selective oxygen/nitrogen separation membrane engineered using a porphyrin-based oxygen carrier. *Membranes*, **2019**, *9* (9). <https://doi.org/10.3390/membranes9090115>
- [8] Chikushi, N.; Ohara, E.; Hisama, A.; Nishide, H. Porphyrin network polymers prepared via a click reaction and facilitated oxygen permeation through their membranes. *Macromol. Rapid Commun.* **2014**, *35*, 976–980.
<https://doi.org/10.1002/marc.201400038>
- [9] Choi, W.; Ingole, P. G.; Li, H.; Kim, J. H.; Lee, H. K.; Baek, I. H. Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material. *J. Clean. Prod.*, **2016**, *133*, 1008–1016.
<https://doi.org/10.1016/j.jclepro.2016.06.031>
- [10] Kuch, W.; Bernien, M. Controlling the magnetism of adsorbed metal-organic molecules. *J. Phys.-Condens. Mat.*, **2017**, *29* (2), 23001.
<https://doi.org/10.1088/0953-8984/29/2/023001>
- [11] Wende, H.; Bernien, M.; Luo, J.; Sorg, C.; Ponpandian, N.; Kurde, J.; Miguel, J.; Piantek, M.; Xu, X.; Eckhold, P.; et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. *Nat. Mater.*, **2007**, *6* (7), 516–520.
<https://doi.org/10.1038/nmat1932>
- [12] Shi, Y.; Zhang, F.; Linhardt, R. J. Porphyrin-based compounds and their applications in materials and medicine. *Dyes Pigments*, **2021**, *188*, 109136. <https://doi.org/10.1016/j.dyepig.2021.109136>
- [13] Kralova, J.; Kejik, Z.; Briza, T.; Kaplanek, R.; Zaruba, K.; Martasek, P.; Kral, V. Design, synthesis, selective recognition properties and targeted drug delivery application. *Handbook of porphyrin science*; World Scientific, 2014; Vol. 33, pp 1–75.
https://doi.org/10.1142/9789814417297_0008
- [14] Hieringer, W.; Flechtnar, K.; Kretschmann, A.; Seufert, K.; Auwärter, W.; Barth, J. V.; Görling, A.; Steinrück, H. P.; Gottfried, J. M. The surface trans effect: influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. *J. Am. Chem. Soc.*, **2011**, *133* (16), 6206–6222.
<https://doi.org/10.1021/ja1093502>
- [15] Gottfried, J. M.; Marbach, H. Surface-confined coordination chemistry with porphyrins and phthalocyanines: aspects of formation, electronic Structure, and reactivity. *Z. Phys. Chem.*, **2009**, *223* (1–2), 53–74.
<https://doi.org/10.1524/zpch.2009.6024>
- [16] Scudiero, L.; Barlow, D. E.; Hipps, K. W. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of nickel(II) octaethylporphyrin deposited from vapor. *J. Phys. Chem. B*, **2002**, *106*, 996–1003.
<https://doi.org/10.1021/jp012436m>
- [17] Drain, C. M.; Varotto, A.; Radivojevic, I. Self-organized porphyrinic materials. *Chem. Rev.* **2009**, *109* (5), 1630–1658.
<https://doi.org/10.1021/cr8002483>
- [18] Otsuki, J. STM studies on porphyrins. *Coord. Chem. Rev.*, **2010**, *254* (19), 2311–2341.
<https://doi.org/10.1016/j.ccr.2009.12.038>
- [19] Kremer, C.; Lützen, A. Artificial allosteric receptors. *Chem. Eur. J.*, **2013**, *19* (20), 6162–6196.
<https://doi.org/10.1002/chem.201203814>
- [20] Whitty, A. Cooperativity and Biological Complexity. *Nat. Chem. Biol.*, **2008**, *4*(8), 435–439.
<https://doi.org/10.1038/nchembio0808-435>
- [21] Auwärter, W.; Écija, D.; Klappenberger, F.; Barth, J. V. Porphyrins at interfaces. *Nat. Chem.*, **2015**, *7* (2), 105–120.
<https://doi.org/10.1038/nchem.2159>

-
- [22] Mazur, U.; Hipps, K. W. Single molecule level studies of reversible ligand binding to metal porphyrins at the solution/solid interface. *J. Porphyr. Phthalocya.*, **2020**, *24* (8), 993–1002. <https://doi.org/10.1142/S1088424620300049>
- [23] Gottfried, J. M. Surface Chemistry of porphyrins and phthalocyanines. *Surf. Sci. Rep.*, **2015**, *70* (3), 259–379. <https://doi.org/10.1016/j.surfrep.2015.04.001>
- [24] Arruda, L. M.; Ali, M. E.; Bernien, M.; Hatter, N.; Nickel, F.; Kipgen, L.; Hermanns, C. F.; Bißwanger, T.; Loche, P.; Heinrich, B. W.; Franke, K. J.; Oppeneer, P. M.; Kuch, W. Surface-orientation- and ligand-dependent quenching of the spin magnetic moment of Co porphyrins adsorbed on Cu Substrates. *Phys. Chem. Chem. Phys.*, **2020**, *22* (22), 12688–12696. <https://doi.org/10.1039/d0cp00854k>
- [25] Liao, M. S.; Scheiner, S. Electronic structure and bonding in metal porphyrins, metal = Fe, Co, Ni, Cu, Zn. *J. Chem. Phys.*, **2002**, *117* (1), 205–219. <https://doi.org/10.1063/1.1480872>
- [26] Sanders, J. K.; Bampas, N.; Clyde-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, H. J.; Webb, S. J. Axial coordination chemistry of metalloporphyrins. In *The Porphyrin Handbook*; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic: San Diego, CA, USA, **2000**; 1–48.
- [27] Chilukuri, B.; Mazur, U.; Hipps, K. W. Structure, properties, and reactivity of porphyrins on surfaces and nanostructures with periodic DFT calculations. *Appl. Sci.*, **2020**, *10* (3), 740. <https://doi.org/10.3390/app10030740>
- [28] Garthwaite, J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. *Trends Neurosci.*, **1991**, *14*, 60–67. [https://doi.org/10.1016/0166-2236\(91\)90022-m](https://doi.org/10.1016/0166-2236(91)90022-m)
- [29] Hoffman, B. M.; Petering, D. H. Coboglobins: oxygen-carrying cobalt-reconstituted hemoglobin and myoglobin. *Proc. Natl. Acad. Sci. USA*, **1970**, *67*, 637–643. <https://doi.org/10.1073/pnas.67.2.637>
- [30] Zamborlini, G.; Jugovac, M.; Cossaro, A.; Verdini, A.; Floreano, L.; Lüftner, D.; Puschnig, P.; Feyer, V.; Schneider, C. M. On-surface nickel porphyrin mimics the reactive center of an enzyme cofactor. *Chem. Commun.*, **2018**, *54* (95), 13423–13426. <https://doi.org/10.1039/c8cc06739b>
- [31] Strength of covalent bonds <https://chem.libretexts.org/@go/page/25291> (accessed Jul 13, 2021).
- [32] Knecht, P.; Zhang, B.; Reichert, J.; Duncan, D. A.; Schwarz, M.; Haag, F.; Ryan, P. T. P.; Lee, T. L.; Deimel, P. S.; Feulner, P.; Allegretti, F.; Auwärter, W.; Médard, G.; Seitsonen, A. P.; Barth, J. V.; Papageorgiou, A. C. Assembly and manipulation of a prototypical N-heterocyclic carbene with a metalloporphyrin pedestal on a solid surface. *J. Am. Chem. Soc.*, **2021**, *143* (11), 4433–4439. <https://doi.org/10.1021/jacs.1c01229>
- [33] Knecht, P.; Reichert, J.; Deimel, P. S.; Feulner, P.; Haag, F.; Allegretti, F.; Garnica, M.; Schwarz, M.; Auwärter, W.; Ryan, P. T. P.; Lee, T.; Duncan, D. A.; Seitsonen, A. P.; Barth, J. V.; Papageorgiou, A. C. Conformational control of chemical reactivity for surface-confined Ru-porphyrins. *Angew. Chemie Int. Edit.*, **2021**, *60*, 16561–16567. <https://doi.org/10.1002/anie.202104075>
- [34] Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. *Annu. Rev. Phys. Chem.*, **2006**, *57*, 497–525. <https://doi.org/10.1146/annurev.physchem.57.032905.104634>
- [35] den Boer, D.; Elemans, J. A. W. Triggering chemical reactions by scanning tunneling microscopy: from atoms to polymers. *Eur. Polym. J.*, **2016**, *83*, 390–406. <https://doi.org/10.1016/j.eurpolymj.2016.03.002>
- [36] Tsuda, M.; Dy, E. S.; Kasai, H. Comparative study of O₂ dissociation on various metalloporphyrins. *J. Chem. Phys.*, **2005**, *122* (24), 244719. <https://doi.org/10.1063/1.1947187>
- [37] Sun, S.; Jiang, N.; Xia, D. Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. *J. Phys. Chem. C*, **2011**, *115* (19), 9511–9517. <https://doi.org/10.1021/jp101036j>
- [38] Murphy, B. E.; Krasnikov, S. A.; Sergeeva, N. N.; Cafolla, A. A.; Preobrajenski, A. B.; Chaika, A. N.; Lübben, O.; Shvets, I. V. Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111). *ACS Nano*, **2014**, *8* (5), 5190–5198. <https://doi.org/10.1021/nn501240j>
- [39] Wang, Y.; Yuan, H.; Li, Y.; Chen, Z. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. *Nanoscale*, **2015**, *7* (27), 11633–11641. <https://doi.org/10.1039/c5nr00302d>
- [40] Sedona, F.; Lo Cicero, M.; Carlotto, S.; Basagni, A.; Fakhrabadi, M. M. S.; Casarin, M.; Sambi, M. Substrate involvement in dioxygen bond dissociation catalysed by iron phthalocyanine supported on Ag(100). *Chem. Commun.*, **2018**, *54* (68), 9418–9421. <https://doi.org/10.1039/c8cc04362k>

-
- [41] Duncan, D. A.; Deimel, P. S.; Wiengarten, A.; Han, R.; Acres, R. G.; Auwärter, W.; Feulner, P.; Papageorgiou, A. C.; Allegretti, F.; Barth, J. V. Immobilised molecular catalysts and the role of the supporting metal substrate. *Chem. Commun.*, **2015**, *51* (46), 9483–9486.
<https://doi.org/10.1039/c5cc01639h>
- [42] Kuch, W.; Bernien, M. Controlling the magnetism of adsorbed metal–organic molecules. *J. Phys. Condens. Mat.*, **2017**, *29* (2), 023001.
<https://doi.org/10.1088/0953-8984/29/2/023001>
- [43] Wäckerlin, C.; Chylarecka, D.; Kleibert, A.; Müller, K.; Iacovita, C.; Nolting, F.; Jung, T. A.; Ballav, N. Controlling spins in adsorbed molecules by a chemical switch. *Nat. Commun.*, **2010**, *1* (1), 1–7. <https://doi.org/10.1038/ncomms1057>
- [44] Chang, M. H.; Chang, Y. H.; Kim, N. Y.; Kim, H.; Lee, S. H.; Choi, M. S.; Kim, Y. H.; Kahng, S. J. Tuning and sensing spin interactions in Co-porphyrin/Au with NH₃ and NO₂ binding. *Phys. Rev. B*, **2019**, *100* (24), 245406.
<https://doi.org/10.1103/PhysRevB.100.245406>
- [45] Summers, J. S.; Stolzenberg, A. M. The *cis*-influence of hydroporphyrin macrocycles on the axial ligation equilibria of cobalt(II) and zinc(II) porphyrin complexes. *J. Am. Chem. Soc.*, **1993**, *115* (23), 10559–10567.
<https://doi.org/10.1021/ja00076a014>
- [46] Ikeda, T.; Asakawa, M.; Goto, M.; Miyake, K.; Ishida, T.; Shimizu, T. STM observation of alkyl-chain-assisted self-assembled monolayers of pyridine-coordinated porphyrin rhodium chlorides. *Langmuir*, **2004**, *20* (13), 5454–5459.
<https://doi.org/10.1021/la049577a>
- [47] Otsuki, J.; Seki, E.; Taguchi, T.; Asakawa, M.; Miyake, K. STM observation of labile axial ligands to zinc porphyrin at liquid/solid interface. *Chem. Lett.*, **2007**, *36* (6), 740–741. <https://doi.org/10.1246/cl.2007.740>
- [48] Visser, J.; Katsonis, N.; Vicario, J.; Feringa, B. L. Two-dimensional molecular patterning by surface-enhanced Zn-porphyrin coordination. *Langmuir*, **2009**, *25* (10), 5980–5985. <https://doi.org/10.1021/la804196r>
- [49] Johnson, K. N.; Hipps, K. W.; Mazur, U. Quantifying reversible nitrogenous ligand binding to Co(II) porphyrin receptors at the solution/solid interface and in solution. *Phys. Chem. Chem. Phys.*, **2020**, *22* (42), 24226–24235.
<https://doi.org/10.1039/d0cp04109b>
- [50] Nandi, G.; Chilukuri, B.; Hipps, K. W.; Mazur, U. Surface directed reversible imidazole ligation to nickel(II) octaethylporphyrin at the solution/solid interface: a single molecule level study. *Phys. Chem. Chem. Phys.*, **2016**, *18* (30), 20819–20829.
<https://doi.org/10.1039/C6CP04454A>
- [51] Korpany, K. V.; Chilukuri, B.; Hipps, K. W.; Mazur, U. Cooperative binding of 1-phenylimidazole to cobalt(II) octaethylporphyrin on graphite: a quantitative imaging and computational study at molecular resolution. *J. Phys. Chem. C*, **2020**, *124* (34), 18639–18649. <https://doi.org/10.1021/acs.jpcc.0c05516>
- [52] den Boer, D.; Li, M.; Habets, T.; Iavicoli, P.; Rowan, A. E.; Nolte, R. J. M.; Speller, S.; Amabilino, D. B.; De Feyter, S.; Elemans, J. A. A. W. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. *Nat. Chem.*, **2013**, *5*, 621–627.
- [53] Friesen, B. A.; Bhattacharai, A.; Mazur, U.; Hipps, K. W. Single molecule imaging of oxygenation of cobalt octaethylporphyrin at the solution/solid interface: thermodynamics from microscopy. *J. Am. Chem. Soc.*, **2012**, *134* (36), 14897–14904.
<https://doi.org/10.1021/ja304431b>
- [54] Collman, J. P.; Brauman, J. I.; Doxsee, K. M.; Halbert, T. R.; Hayes, S. E.; Suslick, K. S. Oxygen binding to cobalt porphyrins. *J. Am. Chem. Soc.*, **1978**, *100* (9), 2761–2766. <https://doi.org/10.1021/ja00477a031>
- [55] Collman, J. P. Synthetic models for the oxygen-binding hemoproteins. *Acc. Chem. Res.*, **1977**, *10* (7), 265–272.
<https://doi.org/10.1021/ar50115a006>
- [56] Bhattacharai, A.; Mazur, U.; Hipps, K. W. A Single molecule level study of the temperature-dependent kinetics for the formation of metal porphyrin monolayers on Au(111) from solution. *J. Am. Chem. Soc.*, **2014**, *136* (5), 2142–2148.
<https://doi.org/10.1021/ja412648x>
- [57] Bhattacharai, A.; Marchbanks-Owens, K.; Mazur, U.; Hipps, K. W. Influence of the central metal ion on the desorption kinetics of a porphyrin from the solution/HOPG interface. *J. Phys. Chem. C* **2016**, *120* (32), 18140–18150.
<https://doi.org/10.1021/acs.jpcc.6b05964>
- [58] Hambright, P. The coordination chemistry of metalloporphyrins. *Coord. Chem. Rev.*, **1971**, *6* (2–3), 247–268.
[https://doi.org/10.1016/S0010-8545\(00\)80041-7](https://doi.org/10.1016/S0010-8545(00)80041-7)
- [59] Satake, A.; Kobuke, Y. Dynamic supramolecular porphyrin systems. *Tetrahedron*, **2005**, *61* (1), 13–41.
<https://doi.org/10.1016/j.tet.2004.10.073>
- [60] Kirksey, C. H.; Hambright, P.; Storm, C. B. Stability constants and proton magnetic resonance studies of zinc $\alpha,\beta,\gamma,\delta$ -tetraphenylporphyrin and substituted pyridines. *Inorg. Chem.*, **1969**, *8* (10), 2141–2144.
<https://doi.org/10.1021/ic50080a022>
- [61] Falk, J. E.; Phillips, J. N.; Magnusson, E. A. Metal-ligand bonding in iron-porphyrins and oxyhaemoglobin. *Nature*, **1966**, *212*, 1531–1533. <https://doi.org/10.1038/2121531a0>
- [62] Walker, F. A. Steric and electronic effects in the coordination of amines to a cobalt(II) porphyrin. *J. Am. Chem. Soc.*, **1973**, *95* (4), 1150–1153.

-
- <https://doi.org/10.1021/ja00785a025>
- [63] Yoshimoto, S.; Inukai, J.; Tada, A.; Abe, T.; Morimoto, T.; Osuka, A.; Furuta, H.; Itaya, K. Adlayer structure of and electrochemical O₂ reduction on cobalt porphine-modified and cobalt octaethylporphyrin-modified Au(111) in HClO₄. *J. Phys. Chem. B*, **2004**, 108 (6), 1948–1954.
- [64] Feng, H.; Xu, X.; Du, Y.; Dou, S. X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. *Electrochem. Energ. Rev.*, **2021**, 4 (2), 249–268.
<https://doi.org/10.1007/s41918-020-00074-3>
- [65] Langner, A.; Tait, S. L.; Lin, N.; Rajadurai, C.; Ruben, M.; Kern, K. Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces. *Proc. Nat. Acad. Sci. USA*, **2007**, 104 (46), 17927–17930.
<https://doi.org/10.1073/pnas.0704882104>
- [66] Pauling, L. The oxygen equilibrium of hemoglobin and its structural interpretation. *Proc. Natl. Acad. Sci. USA*, **1935**, 21, 186–191.
- [67] Hulskens, B.; Hameren, R.; Gerritsen, J.; Khouri, T.; Thordarson, P.; Crossley, M.; Rowan, A.; Nolte, R.; Elemans, J.; Speller, S.; Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. *Nat. Nanotechnol.*, **2007**, 2 (5), 285–289.
<https://doi.org/10.1038/nnano.2007.106>
- [68] Al-Ghouti, M. A.; Da'ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: a review. *J. Hazard. Mater.*, **2020**, 393, 122383. <https://doi.org/10.1016/j.jhazmat.2020.122383>
- [69] Foo, K. Y.; Hameed, B. H. Insights into the modeling of adsorption isotherm systems. *Chem. Eng. J.*, **2010**, 156 (1), 2–10.
<https://doi.org/10.1016/j.cej.2009.09.013>
- [70] Nandi, G.; Hipps, K. W.; Mazur, U. Washington State University, Pullman, WA, USA. Unpublished work, **2016**.
- [71] Johnson, K. N.; Hipps, K. W.; Mazur, U. Washington State University, Pullman, WA, USA. Unpublished work, **2021**.
- [72] Deimel, P. S.; Bababrik, R. M.; Wang, B.; Blowey, P. J.; Rochford, L. A.; Thakur, P. K.; Lee, T. L.; Bocquet, M. L.; Barth, J. V.; Woodruff, D. P.; et al. Direct quantitative identification of the surface trans-effect. *Chem. Sci.*, **2016**, 7 (9), 5647–5656.
<https://doi.org/10.1039/c6sc01677d>
- [73] Magnussen, O. M.; Polewska, W.; Zitzler, L.; Behm, R. J. In situ video-STM studies of dynamic processes at electrochemical interfaces. *Faraday Discuss.*, **2002**, 121, 43–52.
<https://doi.org/10.1039/B200016B>
- [74] Yanson, Y.I., Schenkel, F., Rost, M.J.: Design of a high-speed electrochemical scanning tunneling microscope. *Rev. Sci. Instrum.*, **2013**, 84, 023702.