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Pseudo-Goldstone excitations in a striped Bose-Einstein condensate
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Significant experimental progress has been made recently for observing long-sought supersolidlike states
in Bose-Einstein condensates, where spatial translational symmetry is spontaneously broken by anisotropic
interactions to form a stripe order. Meanwhile, the superfluid stripe ground state was also observed by applying
a weak optical lattice that forces the symmetry breaking. Despite the similarity of the ground states, here we
show that these two symmetry breaking mechanisms can be distinguished by their collective excitation spectra.
In contrast to gapless Goldstone modes of the spontaneous stripe state, we propose that the excitation spectra
of the forced stripe phase can provide direct experimental evidence for the gapped pseudo-Goldstone modes.
We characterize the pseudo-Goldstone mode of such lattice-induced stripe phase through its excitation spectrum
and static structure factor. Our work may pave the way for exploring spontaneous and forced or approximate
symmetry breaking mechanisms in different physical systems.
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I. INTRODUCTION

Spontaneous symmetry breaking plays a crucial role for
the understanding of many important phenomena in differ-
ent fields ranging from elementary particles to condensed
states of matter. For instance, crystalline and superfluidity
orders are formed in the long-sought supersolids through
spontaneously breaking spatial translational and U(1) gauge
symmetries [1]. While the early study of supersolidity fo-
cused on solid 4He [2,3] without conclusive experimental
evidence [4,5], ultracold atoms have emerged as a powerful
platform in recent years for observing supersolidlike quantum
phases [6–14]. Significant experimental progress has been
made on the generation and measurement of supersolidlike
superfluid stripe states in both dipolar [10–13] and spin-
orbit-coupled Bose-Einstein condensates (BECs) [14], where
spontaneous translational symmetry breaking is driven by
dipolar or anisotropic spin interactions. In the latter case, the
anisotropic spin interactions favor the occupation of both band
minima of the spin-orbit coupling induced double-well dis-
persion, yielding superfluid stripe phase with periodic density
modulations [15–23].

In the region where ground state symmetry cannot be
spontaneously broken by interactions, the symmetry breaking
ground state may be achieved by applying a weak symmetry
breaking potential. Such a forced symmetry breaking mecha-
nism has been demonstrated recently in a spin-orbit-coupled
BEC, where the superfluid stripe ground state is realized by
applying a weak optical lattice [24] that breaks translational
symmetry explicitly. Interestingly, the forced stripe ground
state shows similar (spin-)density patterns as the spontaneous
one induced solely by the anisotropic atomic interactions.

*Corresponding author: xiwang.luo@utdallas.edu
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Therefore two questions naturally arise: Can we distinguish
the stripe ground states resulting from spontaneous and forced
symmetry breaking mechanisms? If so, are there interesting
experimental observables? These questions should also apply
to general spontaneous and forced symmetry breaking ground
states in other physical systems.

In this paper, we address these two important questions
by investigating the collective excitations of the forced su-
perfluid stripe ground state and show that the emerging
pseudo-Goldstone spectrum lies at the heart of understand-
ing its forced symmetry breaking. The pseudo-Goldstone
mode is an important concept in fields ranging from stan-
dard model to solid-state materials [25–27], with prominent
examples including the pion (the lightest hardon) [28,29] and
longitudinal polarization components of W and Z bosons
in high-energy physics [30], phonon modes in superconduc-
tors and/or superfluids [31–34], and magnons in magnets
[35–37]. However, direct experimental observation of the
pseudo-Goldstone spectrum remains challenging. The capa-
bility of directly measuring the excitation spectrum using
Bragg spectroscopy [38–43] in ultracold atomic gases thus
provides a powerful tool for probing the pseudo-Goldstone
spectrum. Our main results are as follows:

(i) In the strong anisotropic spin interaction region, the
spontaneous superfluid stripe ground state hosts two gapless
Goldstone modes. A weak lattice breaks the translational
symmetry (i.e., the symmetry is approximate) and turns
one gapless mode into a pseudo-Goldstone mode, which is
characterized by the gap of the excitation spectrum at the
long wavelength limit (i.e., zero-momentum gap). The hy-
bridization of the gapped pseudo-Goldstone and the remaining
gapless modes yields an avoided-crossing gap at a finite mo-
mentum.

(ii) In the weak anisotropic spin interaction region,
an increasing lattice potential forces a transition from
plane-wave to stripe ground states. The zero momentum
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FIG. 1. (a) Scheme to generate spin-orbit coupling and optical
lattice for a trapped BEC. (b) Phase diagram in the g2-�L plane, with
�R = 2.0ER, δ = 0, gn0 = 1.0ER and n0 the mean atom density. Two
bold dashed lines correspond to the weak and strong spin interac-
tions regimes for Figs. 2–4. The inset shows the typical densities
(normalized to n0) of spin-up (or spin-down) component (blue line)
and the total density (green line). (c) Schematic illustration of the
two (pseudo-)Goldstone modes without (left panel) and with (right
panel) a weak and explicitly symmetry-breaking term.

pseudo-Goldstone gap first decreases to zero at the phase
transition point and then reopens. In the forced superfluid
stripe region, the properties of gapped excitation spectrum
(e.g., zero-momentum and avoided-crossing gaps) largely re-
semble those for spontaneous superfluid stripe phase subject
to a weak lattice perturbation (i.e., approximate symmetry),
demonstrating that it is a pseudo-Goldstone spectrum. The
forced superfluid stripe ground state is experimentally more
accessible and robust than the spontaneous one, opening the
pathway for the direct observation of pseudo-Goldstone spec-
trum in experiments.

(iii) The structure factors of the two lowest energy modes
show that gapless Goldstone and gapped pseudo-Goldstone
branches correspond to density (phonon) and spin-density
(magnon) modes, respectively. The static structure factor for
the spin density reveals some differences between sponta-
neous and forced superfluid stripe ground states due to their
different stripe formation mechanisms. The excitation spec-
trum and structure factor can be detected in experiments
through Bragg scattering.

II. MODEL

We consider the experimental setup illustrated in Fig. 1(a).
The BEC is confined in a cigar-shaped optical dipole trap,
with spin-orbit coupling along the x direction realized by two
Raman laser beams, which couple the two pseudospin states
| ↑〉 and | ↓〉 (e.g., |1,−1〉 and |1, 0〉 of 87Rb atoms within the
F = 1 hyperfine manifold) with momentum kick 2kR (kR is
the recoil momentum). In addition, we consider a weak optical
lattice VL(x) = 2�L sin2(kLx). The single-particle Hamilto-
nian in the spin basis (with momentum and energy units as

h̄kR and h̄2k2
R

2m ) reads

H0 = (i∂x + σz )2 − δ

2
σz + �R

2
σx + VL(x), (1)

where �R is the strength of the Raman coupling and δ is
the detuning of the two-photon Raman transition. Spin-orbit
coupling induces a momentum-space double-well band dis-
persion, and the period of the optical lattice is set such that
2kL equals the separation between two band minima.

We first find the ground state ψ0s(x) by imaginary-time
evolution of the Gross-Pitaevskii (GP) equation

i
∂ψs(x, t )

∂t
= HGP(ψs)ψs(x, t ), (2)

where ψs is the spinor wave function with s =↑, ↓ and
HGP(ψs) = H0 + gn + g2|ψs̄|2 with n the total density (see
Appendix A). We have assumed the intraspin interaction as
g↑↑ = g↓↓ = g and the anisotropic spin interaction as g2 =
g↑↓ − g, with gss′ the interaction strength between atoms in
s and s′ states. The phase diagram in the g2-�L plane is shown
in Fig. 1(b) [typical (spin-)density distributions of the stripe
state are shown in the inset]. The system favors the stripe
phase (plane-wave phase) for large negative (positive) g2 (note
that the stripe and plane-wave phases become the unpolarized
and polarized Bloch states in the presence of a lattice). The
phase boundary lies at the weak anisotropic interaction region
around g2 = 0, and the critical value of g2 increases with the
lattice strength (see Appendix B for more details).

Without the optical lattice, the stripe phase occupying both
band minima can be formed in the system under the antiferro-
magnetic atomic interaction (g2 < 0) [15–18]. Typically, the
stripe phase only exits for very weak �R and δ due to the
weak anisotropy of interaction |g2| in realistic experiments,
making its observation difficult. This may be overcome by
using atoms with strong anisotropic spin interactions, or al-
ternatively, by adding a weak optical lattice that couples the
two band minima directly. The latter approach has led to the
recent observation of a long-lived superstripe state using 87Rb
atoms [24]. We want to point out that there is a tiny difference
between the ground-state stripe period at �L = 0 and the
optical lattice period. The two periods would match as long
as the optical lattice strength is not extremely small.

The forced stripe ground state induced by symmetry-
breaking potential shows similar (spin-)density patterns as the
spontaneous one induced solely by the anisotropic interac-
tions. To characterize and distinguish the stripe states formed
under different symmetry breaking mechanisms, we consider
the excitation spectrum. For spontaneous stripe phase induced
solely by interactions, both the U (1) gauge and continuous
translational symmetries are broken spontaneously, leading to
two gapless Goldstone modes [as illustrated in the left panel of
Fig. 1(c)] [44–46]. When the translational symmetry is weakly
broken by a lattice perturbation (i.e., the symmetry is now
approximate), we expect to observe the gap opening of one
Goldstone mode (equivalent to an effective mass m∗ of the
corresponding Goldstone boson). If the lower mode becomes
a gapped pseudo-Goldstone mode, there should be an avoided
crossing due to the hybridization of the two original Goldstone
modes [as illustrated in the right panel of Fig. 1(c)].

To obtain the spectrum of elementary excitations, we write
the deviations of the wave functions with respect to the
ground state as

ψs(x, t ) = e−iμt
[
ψ0s(x) + us(x)e−iεt + v∗

s (x)eiεt
]
. (3)

The amplitudes us(x) and vs(x) satisfy normalization con-
dition

∑
s

∫ d
0 dx[|us(x)|2 − |vs(x)|2] = 1, with d the stripe

period and μ the chemical potential. Substituting Eq. (3)
into Eq. (2), we obtain the Bogoliubov equation as
ε[u↑, u↓, v↑, v↓]T = H[u↑, u↓, v↑, v↓]T . The expression of
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FIG. 2. (a),(b) Low-energy spectra of the elementary excitations
for the stripe phase. (c),(d) Change of the zero-momentum gap
�ε0 with the lattice strength �L . Panels (a),(c) and (b),(d) are for
strong (g2n0 = −0.4ER) and weak (g2n0 = −0.005ER) anisotropic
spin interactions, respectively. The lattice strength �L = 0.1ER in
(a), and �c

L = 0.4871ER in (b) is the phase transition point between
the plane-wave phase and the stripe phase. The dashed lines in (c) and
(d) represent nonzero detunings. The dotted line in (d) corresponds
to �c

L . gn0 = 1.0ER and �R = 2.0ER.

the Bogoliubov Hamiltonian H is given in Appendix C, and
the excitation spectra can be calculated numerically by ex-
panding us(x) and vs(x) in the Bloch basis. Each excitation
spectrum is periodic in momentum space with the Brillouin
zone determined by the stripe period.

III. PSEUDO-GOLDSTONE SPECTRUM

We focus mainly on the elementary excitations under the
situation of the antiferromagnetic atomic interaction (i.e.,
g2 < 0), where the stripe phase mainly resides. For a typical
Raman coupling �R � ER, the system prefers to form the
stripe (plane-wave) phase under strong (weak) anisotropic
spin interaction |g2| in the absence of optical lattices. We
first consider the strong anisotropic spin interaction with a
weak optical lattice [lower region in Fig. 1(b)]. The optical
lattice slightly breaks the space translational symmetry of the
system yet alters the excitation spectrum dramatically. The
low-energy bands in the first Brillouin zone with weak op-
tical lattice are demonstrated in Fig. 2(a). The double gapless
spectrum disappears and a gap �ε0 in the second band at zero
Bloch momentum (qx = 0) is opened, which corresponds to
the generation of the pseudo-Goldstone mode of the system
at the long wavelength limit. The pseudo-Goldstone mode
is generated once the lattice is turned on. The change of
the zero-momentum gap �ε0 with the strength of the optical
lattice is given in Fig. 2(c). The gap vanishes at zero lattice
strength and increases with increasing optical lattice strength.
The size of the gap almost changes linearly with the optical
lattice except near the zero momentum. A small detuning δ

would hardly affect the spectrum, while a large δ may drive
the system out of the stripe phase and lead to a roton gap

(�ε0 > 0) at �L = 0. The effect of δ is diminished at larger
lattice strength.

With decreasing anisotropic spin interaction |g2|, the sys-
tem is driven from the stripe phase into the plane-wave phase
(i.e., the polarized Bloch state). The pseudo-Goldstone gap
�ε0 decreases to zero at the critical phase boundary and then
reopens as a nonzero roton gap. Further increasing lattice
strength can drive the transition from the polarized Bloch
state to the stripe phase, where roton gap �ε0 decreases
to zero at the critical phase boundary and then reopens as
the pseudo-Goldstone gap [see Fig. 2(d)]. Notice that at the
phase boundary, the excitation spectrum of the forced stripe
state is very similar to that for strong anisotropic interaction
with two gapless Goldstone modes [see Fig. 2(b)]. For weak
anisotropic spin interactions (g2 � 0), the phase transition
boundary locates at the lattice strength �c

L = 0.4871ER. Be-
yond the critical lattice strength �c

L, the pseudo-Goldstone
gap [see Fig. 2(d)] behaves similarly as that in the strong
anisotropic interaction regime [see Fig. 2(c)], demonstrating
the properties of the pseudo-Goldstone spectrum. Therefore,
the forced superfluid stripe ground state, which is experimen-
tally more accessible and robust than the spontaneous one,
opens the pathway for the direct observation of the pseudo-
Goldstone spectrum in experiments utilizing techniques that
have already been used to study the spectrum of elementary
excitations for spin-orbit-coupled BECs [40,41], quantum gas
with cavity-mediated long-range interactions [42], and BEC
in a shaken optical lattice [43].

The pseudo-Goldstone mode near the phase boundary re-
sults from the interplay between the interaction and optical
lattice, which tends to reduce the spatial modulation of the
GP Hamiltonian HGP(ψ0s) for the ground state. In the vicinity
of the phase boundary, HGP(ψ0s) preserves an approximate
translational symmetry (see Appendix B), which leads to a
vanishing gap of the pseudo-Goldstone mode. On the other
hand, the pseudo-Goldstone mode for strong |g2| with a very
weak lattice is induced by the approximate translational sym-
metry of H0, while HGP(ψ0s) strongly breaks the translational
symmetry. In the presence of nonzero detuning δ, the phase
boundary becomes a crossover boundary, and �ε0 decreases
to a finite value as the system goes from the stripe region to
the plane-wave region, where �ε0 is almost a constant [see
Fig. 2(d)]. The effects of the Raman coupling and the atomic
interactions on �ε0 are given in Appendix C.

IV. AVOIDED SPECTRUM CROSSING

In addition to the zero-momentum gap, there exists another
avoided crossing gap � ac (the minimum value of the gap
between the first and second bands), originating from the
hybridization between the pseudo-Goldstone and Goldstone
modes. The nonzero-momentum gap �ac as a function of
the lattice strength for strong anisotropic spin interaction is
given in Fig. 3(a). The gap increases slowly with increas-
ing lattice strength at the beginning, and then rapidly in the
deep lattice region. In contrast, the avoided crossing point qac

first increases rapidly with the lattice strength, and remains
saturated in the deep lattice region. Figure 3(b) shows �ac

as a function of lattice strength for weak anisotropic spin
interaction. In the plane-wave phase, �ac first increases with
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FIG. 3. Change of the size �ac and position qac of the nonzero-
momentum gap with the lattice strength �L . The parameters in
(a) and (b) are the same as those in Figs. 2(c) and 2(d). The dashed
lines represent nonzero detuning |δ| = 0.3ER in (a) and |δ| = 0.1ER

in (b), respectively. The gray dotted line in (b) corresponds to the
phase transition point �c

L = 0.4871ER.

the lattice strength and then decreases to zero at the phase
boundary, while qac decreases directly to zero. In the stripe
phase, �ac and qac behave similarly as those for the strong
anisotropic spin interaction [see Fig. 3(a)]. A nonzero Raman
detuning δ tends to increase both the gap �ac and its position
qac [see the dashed lines in Fig. 3(a) and 3(b)]. The effect of
the Raman coupling on �ac and qac are given in Appendix C.

V. STRUCTURE FACTORS

As discussed above, the pseudo-Goldstone spectra for the
weak and strong anisotropic spin interactions are very similar,
although the ground stripe phases are achieved through dif-
ferent symmetry breaking mechanisms. In experiments, the
collective properties of the excitation spectrum of the BECs
can be probed using Bragg spectroscopy, which measures
the dynamical structure factors. For a scattering probe with
momentum h̄qx and energy h̄ω, the dynamical structure factor
takes the form [44,47]

S(qx, ω) =
∑

j
|〈 j|ρ†

qx
|0〉|2δ̃(h̄ω − ε j ) (4)

with | j〉 the excited state, ε j the excitation energy, ρqx =∑
j eiqxx j/h̄ the density operator, and δ̃(·) the Dirac delta

function. The excitation strength Zj = |〈 j|ρ†
qx

|0〉|2 can be
evaluated as

Zj =
∑

s

∣∣∣∣
∫ d

0
[u∗

js(x) + v∗
js(x)]eiqxxψ0(x)dx

∣∣∣∣
2

. (5)

The integral of the dynamical structure factor gives the
static density structure factor S(qx ) = ∫

S(qx, ω)dω, which is
uniquely determined by the sum of the excitation strengths
for all energy bands. Similarly, we can define the spin-density
static structure factor Sσ (qx ) and the excitation strength Zσ j

by replacing ρ†
qx

with σzρ
†
qx

. Such spin structure factors may
be probed by spin-dependent Bragg spectroscopy using lasers
with suitable polarization and detuning [48–50]. S(qx ) and
Sσ (qx ) are related to density and spin-wave excitations, re-
spectively. Both of them include the contributions from all of
the considered energy bands.

The static structure factors for strong anisotropic spin inter-
action with a weak lattice �L = 0.1ER are given in Fig. 4(a)
for the density and Fig. 4(b) for the spin density, where the ex-
citation strengths Zj and Zσ j for the first three excitation bands

(
)

(
)

(
)

(
)

/ /

//

(a) (c)

(b) (d)

FIG. 4. Static structure factors and excitation strengths for the
density in (a) and (c) and spin-density in (b) and (d). Panels (a) and
(b) correspond to the excitation spectrum of the stripe phase in
Fig. 2(a) and (c) and (d) correspond to the spectrum under the same
parameter condition as Fig. 2(b) except �L = 0.6ER. The insets in
(a) and (c) show the corresponding excitation strengths and spectra
near qx = 0, respectively.

are also shown. S(qx ) and Sσ (qx ) increase with the quasimo-
mentum qx monotonically. S(qx ) vanishes, but Sσ (qx ) has a
nonzero minimum value at qx = 0. The excitation strengths
for the first and second bands exchange at the position of the
nonzero-momentum gap qac = 0.09kL , showing that the first
and second lowest bands correspond to density and spin exci-
tations, respectively. This feature could be used to identify the
pseudo-Goldstone modes in Bragg spectroscopy experiments.

S(qx ) in the forced stripe phase for the weak anisotropic
spin interaction [see Fig. 4(c)] has similar features as Fig. 4(a),
while Sσ (qx ) [see Fig. 4(d)] shows quite different prop-
erties from Fig. 4(b). In the forced stripe phase, Sσ (qx )
decreases monotonically with qx with a maximum at qx = 0
[see Fig. 4(d)]. At the phase transition point, Sσ (qx ) diverges
as qx → 0. The dependence of S(qx ) and Sσ (qx ) on other
parameters are shown in Appendix D.

In the long-wave limit, we see that the gapless Gold-
stone modes correspond to the density excitation (with nearly
vanishing spin-density structure factor), while the gapped
pseudo-Goldstone modes correspond to the spin-density ex-
citation with finite spin-density structure factor and nearly
vanishing density structure factor. Therefore, such pseudo-
Goldstone modes will not be affected by additional harmonic
traps in realistic experiments (which are typically spin inde-
pendent and thereby only affect the density excitations), and
can be observed using the spin-dependent Bragg spectroscopy.

VI. CONCLUSION

In summary, we show that the collective excitation spec-
trum of a spin-orbit-coupled BEC can be used to distinguish
the spontaneous and forced stripe ground states induced by
different symmetry breaking mechanisms. The lattice forced
stripe phase, which is experimentally more accessible and
robust than the spontaneous one, can provide direct experi-
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mental evidence for the gapped pseudo-Goldstone spectrum.
While the present work focuses on spin-orbit-coupled BECs,
similar ideas can be implemented to other systems such as
dipolar striped BECs [10–13], striped BECs in optical super-
lattice [14], or in a cavity [6–9], to study pseudo-Goldstone
modes in the presence of approximate or forced symmetry
breaking.
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APPENDIX A: METHOD

In order to calculate the excitation spectrum of the sponta-
neous and forced stripe phases, we first find the ground states
of the system. We adopt the following ansatz:

(ψ0↑(x) ψ0↓(x)) =
∑

K

(aK − bK )ei(K+k0 )x, (A1)

where K = (2l − 1)kL with the integer l = −L, ..., L + 1 rep-
resent the reciprocal lattice vectors and L is the cutoff of the
plane-wave modes. The expansion coefficients aK and bK ,
together with k0, are determined by minimizing the energy
functional

E =
∫

dxψ†(x)[H0 + 1

2
Hint(ψ0↑, ψ0↓)]ψ (x), (A2)

where ψ = (ψ0↑, ψ0↓)T is the two-component spinor
wave function normalized by the atom number
N = ∫

dxψ†(x)ψ (x), and Hint(ψ0↑, ψ0↓) = diag[gn +
g2|ψ0↓|2, g2|ψ0↑|2 + gn] with density n = |ψ0↑|2 + |ψ0↓|2.
The results for the ground state are calculated numerically
by the imaginary-time evolution of the Gross-Pitaevskii (GP)
equation. The corresponding initial solution is given by the
variational method considering the lowest-four modes in the
wave-function ansatz.

To evaluate the spectrum of elementary excitations, the
Bogoliubov equation is obtained by writing the deviation of
the wave function with respect to the ground state as

ψs(x, t ) = e−iμt
[
ψ0s(x) + us(x)e−iεt + v∗

s (x)eiεt
]
. (A3)

The perturbation amplitudes us(x) and vs(x) with s =↑, ↓
are expanded in the Bloch form in terms of the reciprocal
lattice vectors:

us(x) =
M+1∑

m=−M

Us,mei(k0+qx )x+i(2m−1)kLx, (A4)

vs(x) =
M+1∑

m=−M

Vs,mei(k0+qx )x−i(2m−1)kLx, (A5)

FIG. 5. (a) The modulation contrast of the ground state as a
function of the strength of the optical lattice. The vertical dotted line
represents the phase boundary between the plane-wave phase and
the stripe phase for g2n0 = −0.005ER. (b) The effective potential
(i.e., gn + g2|ψs̄|2 + VL) of HGP(ψ0s ) at the phase boundary. Other
parameters are �R = 2.0ER, δ = 0, and gn0 = 1.0ER.

where qx is the Bloch wave vector of the excitations and M is
the cutoff of the plane waves of the excited states.

APPENDIX B: GROUND STATE AND PHASE DIAGRAM

Depending on the spin-orbit coupling and the atomic inter-
actions, the spin-orbit-coupled BEC without the optical lattice
potential has three different phases: stripe, plane-wave, and
zero-momentum phases [15–18,44]. The parameter range for
the existence of the stripe phase is very narrow, following with
the small contrast and small wavelength of the fringes, which
make the observation of the stripe state very difficult in exper-
iments. In contrast, the stripe phase in the spin-orbit-coupled
BEC forced by the weak optical lattice has been observed
recently [24]. The key feature is that the wavelength of the
lattice beams and the Raman coupling strength are chosen
such that the lattice couples two minima of the lower spin-
orbit band, where the static spin-independent lattice provides
a 2kL momentum kick while it preserves the spin. Such a
forced stripe state has a long lifetime and is more stable, and
its existing parameter region is extended dramatically.

With a large Raman coupling strength like �R = 2.0ER and
without the optical lattice, the stripe phase and plane wave
phase appear at strong and weak anisotropic spin interaction
regions, respectively. With the optical lattice, there exists a
magnetized feature related with the plane-wave phase (i.e.,
the polarized Bloch state) in the system, which was also
revealed in previous studies [51,52]. The stripe phase (i.e.,
unpolarized Bloch wave) for the two components exists at
larger optical lattice strengths. In the formation of the stripe
phase, the modulation depth of the density increases with
the increasing lattice strength. The contrast of the total den-
sity C = (nmax − nmin)/(nmax + nmin) reflects this change and
shows the phase transition between the polarized Bloch state
and the unpolarized Bloch state (the perfect stripe phase) for
the weak anisotropic spin interaction [Fig. 5(a)].

In Fig. 1(b) of the main text, the spin polarization is plotted
with respect to the optical lattice strength and the anisotropic
spin interaction between atoms. For the strong anisotropic
spin interaction, the existence of the stripe phase does not need
the optical lattice. For the weak anisotropic spin interaction,
there is a critical lattice strength �c

L (�c
L = 0.4871ER for

gn0 = 1.0ER and g2n0 = −0.005ER) for the transition from
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the plane-wave phase (i.e., polarized Bloch state with 〈σz〉 
=
0) to the stripe phase (i.e., the unpolarized Bloch state with
〈σz〉 = 0). We calculate the first- and second-order deriva-
tives of the ground-state energy E with respect to the lattice
strength �L. The jump in the second order derivative with �L

shows that the phase transition is the second order. The phase
transition point can also be identified from the excitation spec-
trum as discussed in the main text.

At the phase transition point �c
L, the spatial modulation

due to the atom density in the GP Hamiltonian HGP(ψ0s)
cancels with the spatial modulation of the lattice potential
VL(x) [see Fig. 5(b)], therefore HGP(ψ0s) is close to a con-
stant at the ground state. HGP(ψ0s) preserves the translational
symmetry, leading to two gapless Goldstone modes shown in
the inset of Fig. 2(b) in the main text. Slightly above �c

L,
the translational symmetry becomes approximate, leading to

the pseudo-Goldstone gap. In this context, the region above
�c

L for the forced stripe phase resembles the spontaneous
stripe phase subject to a very weak lattice perturbation (i.e.,
approximate symmetry region).

APPENDIX C: BOGOLIUBOV EQUATIONS

By substituting Eqs. (A3)–(A5) into Eq. (2) in the
main text, the Bogoliubov equation can be obtained as
follows:

H

⎛
⎜⎝

u↑
u↓
v↑
v↓

⎞
⎟⎠ = ε

⎛
⎜⎝

u↑
u↓
v↑
v↓

⎞
⎟⎠, (C1)

where the Bogoliubov Hamiltonian

H =

⎛
⎜⎜⎜⎝

H↑ �R
2 + g↑↓ψ0↑ψ∗

0↓ gψ2
0↑ g↑↓ψ0↑ψ0↓

�R
2 + g↑↓ψ∗

0↑ψ0↓ H↓ g↑↓ψ0↑ψ0↓ gψ2
0↓

−gψ∗2
0↑ −g↑↓ψ∗

0↑ψ∗
0↓ −H∗

↑ −�R
2 − g↑↓ψ∗

0↑ψ0↓
−g↑↓ψ∗

0↑ψ∗
0↓ −gψ∗2

0↓ −�R
2 − g↑↓ψ0↑ψ∗

0↓ −H∗
↓

⎞
⎟⎟⎟⎠, (C2)

with

H↑ = −∂2/∂x2 + 2i∂/∂x − δ/2 + VL(x) − μ + 2g|ψ0↑|2 + g↑↓|ψ0↓|2, (C3)

H↓ = −∂2/∂x2 − 2i∂/∂x + δ/2 + VL(x) − μ + 2g|ψ0↓|2 + g↑↓|ψ0↑|2, (C4)

and g↑↓ = g + g2. The time-independent GP equation be-
comes

μψ0 = [H0 + Hint(ψ0↑, ψ0↓)]ψ0. (C5)

FIG. 6. (a),(b) The zero-momentum gap �ε0 as a function of
lattice strength �L for different �R (a) and gn0 (b). (c),(d) �ac

(c) and qac (d) of the avoided crossing gap as functions of �L

for �R = 2.3ER (dots), �R = 2.5ER (triangles), and �R = 2.7ER

(squares); qac reaches its minimum at �L = 0.6ER, 0.65ER, and
0.7ER, respectively. The other parameters are δ = 0, gn0 = 1.0ER

and g2 = −0.005ER .

The ground state ψ0 and the chemical potential μ are obtained
by the imaginary-time evolution. The Bogoliubov excitation
energy ε with respect to qx is numerically obtained by diago-
nalizing the Bogoliubov Hamiltonian.

Besides the Raman detuning δ demonstrated in Figs. 2(c),
2(d) and 3 in the main text, the effects of other tunable pa-
rameters (Raman coupling and atomic interactions) on the
elementary excitations are shown in Fig. 6. The effect of the
Raman coupling on zero-momentum gap �ε0 is shown in
Fig. 6(a), where the critical lattice strength for the minimum of
the zero-momentum gap increases with the increasing Raman
coupling strength. The effect of the atomic interactions on �ε0

is shown in Fig. 6(b), where the curves are shifted to larger op-
tical lattice strength when the atomic interaction gn0 increases.

FIG. 7. Static structure factors and excitation strengths for den-
sity (a) and spin density (b) at the critical lattice strength �c

L =
0.4871ER. The inset in (a) corresponds to two lowest energy bands
in the small momentum region. Other parameters are �R = 2.0ER,
gn0 = 1.0ER, and g2n0 = −0.005ER.
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FIG. 8. Change of the static structure factors for density (a1)–(a3) and spin-density (b1)–(b3) with different parameters �L , δ, and
g2n0. (a1),(b1) δ = 0, �R = 2.0ER, gn0 = 1.0ER, and g2n0 = −0.4ER; (a2),(b2) �R = 2.0ER, �L = 0.1ER, gn0 = 1.0ER, and g2n0 = −0.4ER;
(a3),(b3) δ = 0, �R = 2.0ER, �L = 0.6ER, and gn0 = 1.0ER.

The effects of the Raman coupling on the size and position of
nonzero-momentum gap �ac are shown in Figs. 6(c) and 6(d).
The size of �ac increases with the increasing Raman coupling
strength except at some crossing points. The minimum posi-
tion of the nonzero-momentum gap shifts to the larger optical
lattice strength for larger Raman coupling strength.

APPENDIX D: DYNAMICAL STRUCTURE FACTOR AND
BRAGG SPECTROSCOPY MEASUREMENT

The Bragg spectroscopy measures the dynamical structure
factor of the BEC, i.e., the density response of the system to
the external perturbation generated by the scattering probe
of momentum h̄qx, and energy h̄ω [44,47]. Denoting the
linear perturbation V1 = V

2 [ρ†
qx

e−iωt + ρ−qx e
iωt ], where ρqx =∑

j eiqxx j/h̄ is the Fourier transformation of one-body density
operator with the probe momenta qx, the dynamical structure
factor takes the form

S(qx, ω) =
∑

j

|〈 j|ρ†
qx

|0〉|2δ̃[h̄ω − (Ej − E0)]. (D1)

Here, |0〉 (| j〉) is the ground (excited) state with the energy E0

(Ej). We can define the spin structure factor Sσ in a similar

way, which can be measured using spin-dependent Bragg
spectroscopy [48–50].

The static structure factors and excitation strengths for the
density and spin density are given in Figs. 7(a) and 7(b) for the
phase transition point �c

L = 0.4871ER. At �c
L, the excitation

spectrum contains two gapless Goldstone modes although the
anisotropic spin interaction is weak. S(qx ) has a very similar
feature as the spontaneous stripe phase, while Sσ (qx ) shows
a divergence at qx → 0. The effects of other external param-
eters on S(qx ) and Sσ (qx ) are given in Fig. 8. As shown in
Figs. 8(a1)–8(a3), S(qx = 0) = 0, independent of parameters.
The dependence of S(qx ) on other parameters is generally
very weak.

In contrast, Sσ (qx ) shows strong dependence on other pa-
rameters. It increases with increasing optical lattice strength
�L [Fig. 8(b1)], but decreases with increasing Raman detun-
ing |δ| [Fig. 8(b2)]. Sσ (qx ) is larger for weaker anisotropic
spin interaction [Fig. 8(b3)]. Interestingly, Fig. 8(b3) shows
that Sσ (qx ) increases (decreases) monotonically with the
momentum for strong (weak) anisotropic spin interaction,
therefore has maximum (minimum) at qx = 0. This result was
also shown in Fig. 4 in the main text.
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