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Abstract. Stochastic gradient Hamiltonian Monte Carlo (SGHMC) is a variant of stochas-
tic gradients with momentum where a controlled and properly scaled Gaussian noise is
added to the stochastic gradients to steer the iterates toward a global minimum. Many
works report its empirical success in practice for solving stochastic nonconvex optimiza-
tion problems; in particular, it has been observed to outperform overdamped Langevin
Monte Carlo–based methods, such as stochastic gradient Langevin dynamics (SGLD), in
many applications. Although the asymptotic global convergence properties of SGHMC
are well known, its finite-time performance is not well understood. In this work, we study
two variants of SGHMC based on two alternative discretizations of the underdamped
Langevin diffusion. We provide finite-time performance bounds for the global conver-
gence of both SGHMC variants for solving stochastic nonconvex optimization problems
with explicit constants. Our results lead to nonasymptotic guarantees for both population
and empirical risk minimization problems. For a fixed target accuracy level on a class of
nonconvex problems, we obtain complexity bounds for SGHMC that can be tighter than
those available for SGLD.
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1. Introduction
We consider the stochastic nonconvex optimization
problem

min
x∈Rd

F(x) :� EZ~D[ f (x,Z)] , (1)

where Z is a random variable whose probability distri-
bution D is unknown, supported on some unknown set
Z, and the objective F is the expectation of a random
function f : Rd × Z → R, where the functions x �→
f (x, z) are continuous and nonconvex. Having access to
independent and identically distributed (i.i.d.) samples
Z � (Z1,Z2, : : : ,Zn), where each Zi is a random variable
distributed with the population distribution D, the goal
is to compute an approximate minimizer x̂ (possibly
with a randomized algorithm) of the population risk; that
is, we want to compute x̂ such that EF(x̂) − F∗ ≤ ε̂ for a

given target accuracy ε̂ > 0, where F∗ �min x∈RdF(x) is
the minimum value and the expectation is taken with
respect to both Z and the randomness encountered (if
any) during the iterations of the algorithm to compute
x̂. This formulation arises frequently in several contexts,
including machine learning. A prominent example is
deep learning in which x denotes the set of trainable
weights for a deep learning model and f (x,zi) is the
penalty (loss) of prediction using weight x with the
individual sample value Zi � zi ∈ Z.

Because the population distribution D is unknown,
a common popular approach is to consider the empiri-
cal risk minimization (ERM) problem

min
x∈Rd

Fz(x) :� 1
n

∑n
i�1

f (x,zi) , (2)

1

OPERATIONS RESEARCH
Articles in Advance, pp. 1–17

ISSN 0030-364X (print), ISSN 1526-5463 (online)http://pubsonline.informs.org/journal/opre

October 22, 2021

mailto:xfgao@se.cuhk.edu.hk
https://orcid.org/0000-0003-2424-8257
mailto:mg1366@rutgers.edu
https://orcid.org/0000-0002-0575-2450
mailto:zhu@math.fsu.edu
https://doi.org/10.1287/opre.2021.2162
https://orcid.org/0000-0003-2424-8257
https://orcid.org/0000-0002-0575-2450
http://pubsonline.informs.org/journal/opre


based on the data set z :� (z1, z2, : : : ,zn) ∈ Zn as a proxy
to Problem (1) and minimize the empirical risk

EFz(x) −min
x∈Rd

Fz(x) (3)

instead, for which the expectation is taken with respect
to any randomness encountered during the algorithm
to generate x.

1
Many algorithms have been proposed

to solve Problem (1) and its finite-sum version (2).
Among these, gradient descent, stochastic gradient,
and their variance-reduced or momentum-based var-
iants come with guarantees for finding a local mini-
mizer or a stationary point for nonconvex problems. In
some applications, convergence to a local minimum
can be satisfactory (Du et al. 2018, Ge et al. 2018). How-
ever, in general, methods with global convergence
guarantees are also desirable and preferable in many
settings (Hazan et al. 2016, Şimşekli et al. 2018).

It is well known that sampling from a distribution
that concentrates around a global minimizer of F is a
similar goal to computing an approximate global min-
imizer of F. For example, such connections arise in the
study of simulated annealing algorithms in optimiza-
tion that admit several asymptotic convergence guar-
antees (see, e.g., Kirkpatrick et al. 1983, Gidas 1985,
Hajek 1985, Gelfand and Mitter 1991, Bertsimas and
Tsitsiklis 1993, Borkar and Mitter 1999, Belloni et al.
2015). Recent studies make such connections between
the fields of statistics and optimization stronger, justi-
fying and popularizing the use of Langevin Monte
Carlo–based methods in stochastic nonconvex optimi-
zation and large-scale data analysis further (see, e.g.,
Welling and Teh 2011; Chen et al. 2016; Şimşekli et al.
2016, 2018; Chaudhari et al. 2017; Dalalyan 2017;
Raginsky et al. 2017; Wibisono 2018).

Stochastic gradient algorithms based on Langevin
Monte Carlo are popular variants of stochastic gra-
dients that admit asymptotic global convergence guar-
antees with which a properly scaled Gaussian noise is
added to the gradient estimate. Two popular
Langevin-based algorithms that have demonstrated
empirical success are stochastic gradient Langevin dy-
namics (SGLD) (Welling and Teh 2011, Chen et al.
2015) and stochastic gradient Hamiltonian Monte
Carlo (SGHMC) (Duane et al. 1987; Neal 2010; Chen
et al. 2014, 2015) and their variants to improve their ef-
ficiency and accuracy (Ahn et al. 2012, Patterson and
Teh 2013, Ding et al. 2014, Ma et al. 2015, Wibisono
2018). In particular, SGLD can be viewed as the ana-
logue of stochastic gradients in the Markov Chain
Monte Carlo (MCMC) literature, whereas SGHMC is
the analogue of stochastic gradients with momentum
(see, e.g., Chen et al. 2014). SGLD iterations consist of

Xk+1 � Xk − ηgk +
��������
2ηβ−1

√
ξk ,

where η > 0 is the step-size parameter, β > 0 is the in-
verse temperature, gk is a conditionally unbiased esti-
mate of the gradient of Fz, and ξk ∈ R

d is a sequence of
i.i.d. centered Gaussian random vectors with unit co-
variance matrix. When the gradient variance is zero,
SGLD dynamics correspond to an (explicit) Euler dis-
cretization of the first order (aka overdamped) Lange-
vin stochastic differential equation (SDE)

dX(t) � −rFz(X(t))dt+
������
2β−1

√
dB(t) , t ≥ 0 , (4)

where {B(t) : t ≥ 0} is the standard Brownian motion in
R

d. The process X admits a unique stationary distribu-
tion πz(dx)∝exp (−βFz(x))dx, also known as the Gibbs
measure, under some assumptions on Fz (see, e.g.,
Chiang et al. 1987, Holley et al. 1989). For β chosen
properly (large enough), it is easy to see that this distri-
bution concentrates around approximate global mini-
mizers of Fz. Recently, Dalalyan (2017) established nov-
el theoretical guarantees for the convergence of the
overdamped Langevin MCMC and the SGLD algo-
rithm for sampling from a smooth and log-concave
density, and these results have direct implications to
stochastic convex optimization; see also Dalalyan and
Karagulyan (2019). In a seminal work, Raginsky et al.
(2017) show that SGLD iterates track the overdamped
Langevin SDE closely and obtained finite-time perfor-
mance bounds for SGLD. Their results show that
SGLD converges to ε-approximate global minimizers
after O(poly( 1λ∗ ,β,d,

1
ε)) iterations in which λ∗ is the uni-

form spectral gap that controls the convergence rate of
the overdamped Langevin diffusion, which is, in gen-
eral, exponentially small in both β and the dimension d
(Raginsky et al. 2017, Tzen et al. 2018). A related result
of Zhang et al. (2017a) shows that a modified version
of the SGLD algorithm finds an ε-approximate local
minimum after polynomial time (with respect to all pa-
rameters). Recently, Xu et al. (2018) improved the ε de-
pendency of the upper bounds of Raginsky et al. (2017)
further in the mini-batch setting and obtained several
guarantees for the gradient Langevin dynamics and
variance-reduced SGLD algorithms.

On the other hand, the SGHMC algorithm is based
on the underdamped (aka second order or kinetic)
Langevin diffusion

dV(t) � −γV(t)dt −rFz(X(t))dt +
��������
2γβ−1

√
dB(t), (5)

dX(t) � V(t)dt, (6)

where γ > 0 is the friction coefficient, X(t),V(t) ∈ R
d

models the position and the momentum of a particle
moving in a field of force (described by the gradient
of Fz) plus a random (thermal) force described by
Brownian noise, first derived by Kramers (1940). It
is known that, under some assumptions on Fz, the
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Markov process (X(t),V(t))t≥0 is ergodic and admits a
unique stationary distribution

πz(dx,dv) � 1
Γz

exp −β 1
2
‖v‖2 + Fz(x)

( )( )
dxdv, (7)

(see, e.g., Hérau and Nier 2004, Pavliotis 2014) in
which Γz is the normalizing constant:

Γz �
∫
R

d×Rd
exp −β 1

2
‖v‖2 + Fz(x)

( )( )
dxdv

� 2π
β

( )d=2∫
R

d
e−βFz(x)dx:

Hence, the x-marginal distribution of stationary distri-
bution πz(dx,dv) is exactly the invariant distribution
of the overdamped Langevin diffusion.2 SGHMC dy-
namics correspond to the discretization of the under-
damped Langevin SDE in which the gradients are
replaced with their unbiased estimates. Although var-
ious discretizations of the underdamped Langevin
SDE have also been considered and studied (Chen
et al. 2015, Leimkuhler et al. 2015), the following first
order Euler scheme is the simplest approach that is
easy to implement and a common scheme among
practitioners (Chen et al. 2015, 2016; Teh et al. 2016):

Vk+1 � Vk − η[γVk + g(Xk,Uz,k)] +
����������
2γβ−1η

√
ξk, (8)

Xk+1 � Xk + ηVk, (9)

where (ξk)∞k�0 is a sequence of i.i.d. standard Gaussian
random vectors in R

d and {Uz,k : k � 0, 1, : : : } is a se-
quence of i.i.d. random elements such that

Eg(x,Uz,k) �rFz(x) for any x ∈ R
d:

In this paper, we focus on the unadjusted dynamics
(without the Metropolis–Hastings type of correction)
that works well in many applications (Chen et al.
2014, 2015) as Metropolis–Hastings correction is typi-
cally computationally expensive for applications in
machine learning and large-scale optimization when
the size of the data set n is large and low-to-medium
accuracy is enough in practice (see, e.g., Welling and
Teh 2011, Chen et al. 2014).

There is also an alternative discretization to (8) and
(9), recently proposed by Cheng et al. (2018a) that leads
to state-of-the-art estimates in the special case that
improves upon the Euler discretization when the objec-
tive is strongly convex (Cheng et al. 2018a). To intro-
duce this alternative discretization by Cheng et al.
(2018a), we first define a sequence of functions ψk by
ψ0(t) � e−γt and ψk+1(t) �

∫ t

0
ψk(s)ds, k ≥ 0. The iterates

(X̂k, V̂k) are then defined by the following recursion:

V̂k+1 � ψ0(η)V̂k −ψ1(η)g(X̂k,Uz,k) +
��������
2γβ−1

√
ξk+1, (10)

X̂k+1 � X̂k +ψ1(η)V̂k −ψ2(η)g(X̂k,Uz,k) +
��������
2γβ−1

√
ξ′k+1,

(11)

where (ξk+1,ξ′k+1) is a 2d-dimensional centered Gauss-
ian vector so that the (ξj,ξ′j ) s are i.i.d. and independent
of the initial condition, and for any fixed j, the random
vectors ((ξj)1, (ξ′j )1), ((ξj)2, (ξ′j )2), : : : ((ξj)d, (ξ′j )d) are
i.i.d. with the covariance matrix

C(η) �
∫ η

0
ψ0(t),ψ1(t)
[ ]T

ψ0(t),ψ1(t)
[ ]

dt: (12)

In the rest of the paper, we refer to the Euler discreti-
zation (8) and (9) as SGHMC1 and the alternative dis-
cretization (10) and (11) as SGHMC2.

Recently, Eberle et al. (2019) showed that the under-
damped SDE converges to its stationary distribution
faster than that of the best known convergence rate of
overdamped SDE in the two-Wasserstein metric under
some assumptions, where Fz can be nonconvex. Their
result is for the continuous-time underdamped dynam-
ics. This raises the natural question of whether the dis-
cretized underdamped dynamics (SGHMC) can lead to
better guarantees than the SGLD method for solving
stochastic nonconvex optimization problems. Indeed,
experimental results show that SGHMC can outper-
form SGLD dynamics in many applications (see, e.g.,
Chen et al. 2014, 2015; Eberle et al. 2019). Although as-
ymptotic convergence guarantees for SGHMC exist
(see, e.g., Mattingly et al. 2002, Section 3; Chen et al.
2014; Leimkuhler et al. 2015), there is a lack of finite-
time explicit performance bounds for solving noncon-
vex stochastic optimization problems with SGHMC in
the literature including risk minimization problems.

1.1. Contributions
Our main contributions can be summarized as follows:

• We provide, for the first time to our knowledge,
nonasymptotic provable guarantees for SGHMC to
find approximate minimizers of both empirical and
population risks with explicit constants. We establish
the results under some regularity and growth assump-
tions for the component functions f(x, z) and the noise
in the gradients, but we do not assume f is strongly con-
vex in any region.

• We show that, for a class of nonconvex problems,
SGHMC2 can improve upon the (vanilla) SGLD algo-
rithm in terms of the gradient complexity, that is the total
number of stochastic gradients required to achieve a
global minimum. Here, “improvement”means the best
available bounds for SGHMC2, which we prove in our
paper, are better than the best available bounds for
SGLD for some class of problems; see Section 5 for de-
tails. As a consequence, our analysis gives further theo-
retical justification to the success of momentum-based
methods for solving nonconvex machine learning
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problems, empirically observed in practice (see, e.g.,
Sutskever et al. 2013).

• We illustrate the applications of our theoretical re-
sults using two examples including binary linear classi-
fication and robust ridge regression.

• On the technical side, we adapt the proof techni-
ques of Raginsky et al. (2017) developed for the over-
damped dynamics to the underdamped dynamics and
combine them with the analysis of Eberle et al. (2019),
which quantifies the convergence rate of the under-
damped Langevin SDE to its equilibrium. The main
new technical results we derive in this paper, relative
to these studies, include controlling the discretization
errors between SGHMC and the continuous-time
underdamped Langevin SDE and bounding the mo-
ments of underdamped dynamics.

1.2. Related Work and Comparison with
Existing Literature

In a recent work, Şimşekli et al. (2018) obtains a finite-
time performance bound for the ergodic average of
the SGHMC iterates in the presence of delays in gradi-
ent computations. Their analysis highlights the depen-
dency of the optimization error on the delay in the
gradient computations and the step size explicitly;
however, it hides some implicit constants that can be
exponential in both β and d in the worst case. A com-
parison with the SGLD algorithm is also not given.
On the contrary, in our paper, we make all the con-
stants explicit. This allows us to make gradient com-
plexity comparisons with respect to overdamped
MCMC approaches, such as SGLD.

Cheng et al. (2018b) consider the problem of sam-
pling from a target distribution p(x)∝exp (−F(x)),
where F : Rd → R is L-smooth everywhere and m-
strongly convex outside a ball of finite radius R. They
prove upper bounds for the time required to sample
from a distribution that is within ε of the target distri-
bution with respect to the one-Wasserstein distance
for both underdamped and overdamped methods
that scale polynomially in ε and d. They also show
that an underdamped MCMC has a better dependen-
cy with respect to ε and d by a square root factor.
Compared with this paper, in our analysis, we consid-
er a larger class of nonconvex functions F(x) that satis-
fy the dissipativity condition, a weaker condition that
does not require strong convexity outside a region.
Under our assumptions, the best known bounds are
such that the distance to the invariant distribution
scales exponentially with dimension d in the worst
case but not polynomially in d (see, e.g., Raginsky et al.
2017, Xu et al. 2018). When F is globally strongly con-
vex (or, equivalently, when the target distribution
p(x)∝exp (−F(x)) is strongly log-concave), there is also
a growing interesting literature that establishes per-
formance bounds for both overdamped MCMC (see,

e.g., Dalalyan 2017) and underdamped MCMC meth-
ods (see, e.g., Mangoubi and Smith 2017, Cheng et al.
2018b). In this particular setting, the fact that under-
damped Langevin MCMC (also known as Hamiltonian
MCMC) can improve upon the best available bounds
for overdamped Langevin MCMC algorithms is also
proven (Mangoubi and Smith 2017, Chatterji et al.
2018, Cheng et al. 2018b, Dalalyan and Riou-Durand
2020). Similar results have also been established when
F(x) is convex but not strongly convex (Dalalyan et al.
2019). Compared with these papers in which F(x) is
convex, our assumptions are weaker as we allow F(x)
to be nonconvex as long as it is dissipative.

A related paper, Xu et al. (2018) applies variance re-
duction techniques to overdamped MCMC to improve
performance when the empirical risk can be noncon-
vex, satisfying the same dissipativity assumption con-
sidered in our paper. However, these results do not
give guarantees for the risk minimization Problem (1).
Furthermore, such variance-reduction techniques re-
quire objectives in the form of a finite sum and do not
apply to the streaming data settingwhen each data point
is used only once. In this work, we obtain guarantees
for both the risk minimization problem and the empir-
ical risk minimization, and our results apply to the
streaming data setting. Also, the convergence guaran-
tees provided in Xu et al. (2018) depend on a spectral
gap–related parameter that is not provided explicitly,
whereas all our results are explicit, and this allows us
to have explicit performance comparisons between the
upper bounds of SGLD and SGHMC algorithms.

We also note that underdamped Langevin MCMC
(also known as Hamiltonian MCMC) and its practical
applications are also analyzed further in a number of
recent works (see, e.g., Betancourt et al. 2014, 2017;
Betancourt 2017; Lee andVempala 2018;Mangoubi et al.
2018). In particular, Mangoubi et al. (2018) provide a
characterization of the conductance of Hamiltonian
Monte Carlo (HMC) in continuous time using
Liouville’s theorem, and invoking Cheeger’s inequality,
they obtain upper and lower bounds on the spectral
gap of HMC in continuous time. Although the formula
provided in Mangoubi et al. (2018) for the conductance
of HMC is elegant, it is not an explicit formula. In our
analysis, our focus is to obtain performance bounds
with explicit constants, and therefore, we build on
the coupling techniques of Eberle et al. (2019), which
leads to explicit constants for the class of problems
we consider.

We also note that Mangoubi et al. (2018) consider
sampling from the target distribution 1

2N (−1,σ2) +
1
2N (1,σ2) in dimension one and estimate the spectral
gap of HMC in the regime as σ→ 0. This is a mixture
of two Gaussians with the same variance σ2 centered
at –1 and 1, respectively, in which they argue that, for
this specific example, HMC does not lead to much
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improvement over the random walk approach for
sampling. In our paper, our results apply to more
general targets that are not necessarily a mixture of
Gaussians. However, if we consider sampling from
the distribution 1

2N (−a,σ2) + 1
2N (a,σ2) as a→∞ for σ2

fixed, Proposition 1 is applicable, and it implies that
HMC is more efficient than overdamped Langevin
dynamics in terms of dependency to a (which meas-
ures the distance between the modes) in the sense that
the mixing time is O(a) in HMC, whereas it is O(a2) in
random walk. This does not contradict the results of
Mangoubi et al. (2018) because we consider different
scaling regimes: we fix σ > 0 and let a→∞, whereas
Mangoubi et al. (2018) fix a � 1 and let σ→ 0.

There are also some connections of our work to exist-
ing momentum-based optimization algorithms. More
specifically, if the term with dB(t) involving the Brown-
ian noise is removed in the underdamped SDE (5) and
(6), this results in a second-order ordinary differential
equation (ODE) in X(t). Momentum-based algorithms
for strongly convex objectives, such as Polyak’s heavy
ball method as well as Nesterov’s accelerated gradient
method, both can be viewed as (alternative) discretiza-
tions of this ODE (see, e.g., Polyak 1987, Su et al. 2014,
Wilson et al. 2016, Shi et al. 2018). It is known (Su et al.
2014, Wilson et al. 2016, Shi et al. 2018) that Nesterov’s
accelerated gradient method tracks this second order
ODE (also referred to as Nesterov’s ODE in the litera-
ture), whereas the first order nonaccelerated methods,
such as the classical gradient descent, are known to
track a first order ODE in X(t) called the gradient flow
dynamics. Furthermore, existing analysis shows that
Nesterov’s ODE converges to its equilibrium faster (in
time) than the first order gradient flow ODE in terms
of upper bounds, and this speed-up is also inherited by
the discretized dynamics. Roughly speaking, our re-
sults can be interpreted as the analogue of these results
in the nonconvex optimization setting in which we
deal with SDEs instead of ODEs building on the theory
of Markov processes and show that SGHMC tracks the
second order (underdamped) Langevin SDE closely
and inherits its favorable convergence guarantees (in
terms of upper bounds on the expected suboptimality)
compared with that of overdamped Langevin SDE.

Acceleration of first order gradient or stochastic gra-
dient methods and their variance-reduced versions
for finding a local stationary point (a point with a gra-
dient less than ε in norm) are also studied in the litera-
ture (see, e.g., Nesterov 1983, Allen-Zhu and Hazan
2016, Ghadimi and Lan 2016, Carmon et al. 2018, Jofré
and Thompson 2019). It is also shown that, under
some assumptions, momentum-based accelerated
methods can escape saddle points faster (see, e.g., Liu
et al. 2018, O’Neill and Wright 2019). In contrast, in
this work, our focus is obtaining performance guaran-
tees for convergence to global minimizers instead.

2. Preliminaries and Assumptions
In our analysis, we use the following two-Wasserstein
distance: for any two probability measures ν1,ν2 on
R

2d, we define

W2(ν1,ν2) � inf
Y1~ν1,Y2~ν2

E ‖Y1 −Y2‖2
[ ]( )1=2

,

where ‖ · ‖ is the usual Euclidean norm, ν1,ν2 are two
Borel probability measures on R

2d with finite second
moments, and the infimum is taken over all random
couples (Y1, Y2) taking values in R

2d × R
2d with mar-

ginals Y1 ~ ν1,Y2 ~ ν2 (see, e.g., Villani 2008). We let
C1(Rd) denote the set of continuously differentiable
functions on R

d and L2(πz) denote the space of
square-integrable functions on R

d with respect to the
measure πz.

We first state the assumptions used in this paper in
Assumption 1. Note that we do not assume the com-
ponent functions f(x, z) to be convex; they can be non-
convex. The first assumption of nonnegativity of f can
be assumed without loss of generality by subtracting a
constant and shifting the coordinate system as long as
f is bounded below. The second assumption of Lip-
schitz gradients is, in general, unavoidable for discre-
tized Langevin algorithms to be convergent (see, e.g.,
Mattingly et al. 2002), and the third assumption is
known as the dissipativity condition (see, e.g., Hale
1988) and is standard in the literature to ensure the
convergence of Langevin diffusions to the stationary
distribution (see, e.g., Mattingly et al. 2002, Raginsky
et al. 2017, Eberle et al. 2019). The fourth assumption is
regarding the amount of noise present in the gradient
estimates and allows not only constant variance noise,
but allows the noise variance to grow with the norm of
the iterates (which is the typical situation in mini-
batch methods in stochastic gradient methods; see,
e.g., Raginsky et al. 2017). Finally, the fifth assumption
is a mild assumption saying that the initial distribution
μ0 for the SGHMC dynamics should have a reasonable
decay rate of the tails to ensure convergence to the sta-
tionary distribution. For instance, if the algorithm is
started from any arbitrary point (x0,v0) ∈ R

2d, then the
Dirac measure μ0(dx,dv) � δ(x0,v0)(dx,dv) works. If the
initial distribution μ0(dx,dv) is supported on a Euclide-
an ball with radius being some universal constant, it
also works. Similar assumptions on the initial distribu-
tion μ0 are also necessary to achieve convergence to a
stationary measure in continuous-time underdamped
dynamics as well (see, e.g., Hérau and Nier 2004).

Assumption 1. We impose the following assumptions:
i. The function f is continuously differentiable, takes non-

negative real values, and there exist constants A0,B ≥ 0 so
that

| f (0, z) | ≤ A0, ‖rf (0,z)‖ ≤ B,
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for any z ∈ Z.
ii. For each z ∈ Z, the function f (·,z) is M-smooth:

‖rf (w, z) −rf (v,z)‖ ≤M‖w− v‖:
iii. For each z ∈ Z, the function f (·,z) is (m, b)-dissipative:

〈x,rf (x,z)〉 ≥m‖x‖2 − b :

iv. There exists a constant δ ∈ [0, 1) such that, for every z,
E[‖g(x,Uz) −rFz(x)‖2] ≤ 2δ(M2‖x‖2 +B2) :

v. The probability law μ0 of the initial state (X0,V0) satis-
fies ∫

R
2d
eαV(x,v)μ0(dx,dv) <∞ ,

where V is a Lyapunov function to be used repeatedly for
the rest of the paper:

V(x,v) :� βFz(x) + β

4
γ2(‖x+ γ−1v‖2 + ‖γ−1v‖2 −λ‖x‖2) ,

(13)

and γ is the friction coefficient as in (5), λ is a positive
constant less than min (1=4,m=(M+ γ2=2)), and α �
λ(1− 2λ)=12.

We note that the Lyapunov function V is used in
Eberle et al. (2019) to study the rate of convergence to
equilibrium for underdamped Langevin diffusion,
which itself is motivated by, for example. Mattingly
et al. (2002). It follows from these assumptions (apply-
ing Lemma EC.9) that there exists a constant A ∈
(0,∞) so that

x ·rFz(x) ≥m‖x‖2 − b ≥ 2λ(Fz(x) + γ2‖x‖2=4) − 2A=β :
(14)

This drift condition, which is used later, guarantees
the stability and the existence of Lyapunov function V
for the underdamped Langevin diffusion in (5) and
(6); see Eberle et al. (2019).

3. Main Results for the SGHMC1
Algorithm

Our first result shows SGHMC1 iterates (Xk, Vk) in (8)
and (9) track the underdamped Langevin SDE in the
sense that the expectation of the empirical risk Fz with
respect to the probability law of (Xk, Vk) conditional
on the sample z, denoted by μk,z, and the stationary
distribution πz of the underdamped SDE is small
when k is large enough. The difference in expectations
decomposes as a sum of two terms J 0(z,ε) and J 1(ε)
although the former term quantifies the dependency
on the initialization and the data set z, whereas the lat-
ter term is controlled by the discretization error and
the amount of noise in the gradients, which depends
on the parameter δ. We also note that the parameter

μ∗ (see Table 1) in our bounds governs the speed of
convergence to the equilibrium of the underdamped
Langevin diffusion.

Theorem 1. Consider the SGHMC1 iterates (Xk, Vk) de-
fined by the recursion (8) and (9) from the initial state (X0,
V0), which has the law μ0. If Assumption 1 is satisfied,
then for β,ε > 0, we have

EFz(Xk) −E(X,V)~πz(Fz(X))
∣∣ ∣∣ � ∣∣∣∣∫

R
d×Rd

Fz(x)μk,z(dx,dv)

−
∫
R

d×Rd
Fz(x)πz(dx,dv)

∣∣∣∣
≤ J 0(z,ε) +J 1(ε) ,

where

J 0(z,ε) :� (Mσ+B) ·C
��������������
Hρ(μ0,πz)

√
· ε, (15)

J 1(ε) :�(Mσ+B) ·
((

C0

μ3=2∗
(log (1=ε))3=2δ1=4 + C1

μ3=2∗
ε

)
�����������������������
log (μ−1∗ log (ε−1))

√
+C2

μ∗

ε2

(log (1=ε))2
)
, (16)

with σ defined by (EC.20) provided that

η ≤min
ε

(log (1=ε))3=2
( )4

, 1,
γ

K2
(d=β+A=β), γλ

2K1
,
2
γλ

{ }
,

(17)

and

kη � 1
μ∗

log
1
ε

( )
≥ e: (18)

Here, Hρ is a semimetric for probability distributions de-
fined by (EC.12). All the constants are made explicit and
are summarized in Table 1.

The proof of Theorem 1 is presented in detail in Sec-
tion EC.1 in the e-companion. In the following sec-
tions, we discuss that this theorem combined with
some basic properties of the equilibrium distribution
πz leads to a number of results that provide perfor-
mance guarantees for both the empirical and popula-
tion risk minimization.

3.1. Performance Bound for the Empirical Risk
Minimization

In order to obtain guarantees for the empirical risk
given in (3), in light of Theorem 1, one has to control
the quantity∫

R
d×Rd

Fz(x)πz(dx, dv) −min
x∈Rd

Fz(x) ,

which is a measure of how much the x− marginal of
the equilibrium distribution πz concentrates around a

Gao, Gürbüzbalaban, and Zhu: Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo
6 Operations Research, Articles in Advance, pp. 1–17, © 2021 INFORMS



global minimizer of the empirical risk. As β goes to in-
finity, it can be verified that this quantity goes to zero.
For finite β, Raginsky et al. (2017) (see proposition 11)
derives an explicit bound of the form∫

R
d×Rd

Fz(x)πz(dx,dv) −min
x∈Rd

Fz(x)

≤ J 2 :� d
2β

log
eM
m

bβ
d
+ 1

( )( )
, (19)

(which is also provided in the e-companion for the sake
of completeness, see Lemma EC.12). This combined
with Theorem 1 immediately leads to the following per-
formance bound for the empirical risk minimization.
The proof is omitted.

Corollary 1 (Empirical Risk Minimization with SGHMC1).
Under the setting of Theorem 1, the empirical risk minimi-
zation problem admits the performance bounds

EFz(Xk) −min
x∈Rd

Fz(x) ≤ J 0(ε, z) + J 1(ε) + J 2 ,

provided that Conditions (17) and (18) hold in which the
terms J 0(z,ε), J 1(ε) and J 2 are defined by (15), (16), and
(19), respectively.

3.2. Performance Bound for the Population Risk
Minimization

By exploiting the fact that the x− marginal of the in-
variant distribution for the underdamped dynamics is
the same as it is in the overdamped case, it can be
shown that the generalization error F(Xk) − FZ(Xk) is
no worse than that of the available bounds for SGLD
given in Raginsky et al. (2017), and therefore, we have
the following corollary. A more detailed proof is given
in Section EC.1.

Corollary 2 (Population Risk Minimization with
SGHMC1). Under the setting of Theorem 1, the expected
population risk of Xk (the iterates in (9)) is bounded by

EF(Xk) − F∗ ≤ J 0(ε) + J 1(ε) + J 2 + J 3(n) ,
with

J 0(ε) :� (Mσ + B) · C ·
����������
Hρ(μ0)

√
· ε, (20)

J 3(n) :� 4βcLS
n

M2

m
(b + d=β) + B2

( )
, (21)

Table 1. Summary of the Constants and Where They Are Defined in the Text

Constants Source

Cc
x �

∫
R

2d
V(x,v)μ0(dx,dv)+(d+A)

λ

1
8(1−2λ)βγ2 , Cc

v �

∫
R

2d
V(x,v)μ0(dx,dv)+(d+A)

λ

β
4(1−2λ)

(EC.1), (EC.2)

K1 �max 32M2 1
2+γ+δ( )

(1−2λ)βγ2 , 8
1
2M+1

4γ
2−1

4γ
2λ+γ( )

β(1−2λ)

{ }
(EC.3)

K2 � B2 1+ 2γ+ 2δ
( )

(EC.4)

Cd
x �

∫
R

2d
V(x,v)μ0(dx,dv)+4(d+A)

λ

1
8(1−2λ)βγ2 , Cd

v �

∫
R

2d
V(x,v)μ0(dx,dv)+4(d+A)

λ

β
4(1−2λ)

(EC.5), (EC.6)

σ �max
����
Cc
x

√
,

����
Cd
x

√{ }
� ����

Cd
x

√ (EC.20)

C0 � γ̂ · M2Cd
x +B2

( )
β=γ+ ���������������������

M2Cd
x +B2

( )
β=γ

√( )1=2 (EC.8)

C1 � γ̂ · βM2(C2)2=(2γ) +
��������������������
βM2(C2)2=(2γ)

√( )1=2 (EC.9)

C2 � 2γ2Cd
v + (4+ 2δ) M2Cd

x +B2
( )

+ 2γβ−1
( )1=2 (EC.10)

γ̂ � 2
��
2

√���
α0

√ 5
2+ log

∫
R

2d
e
1
4αV(x,v)μ0(dx,dv) + 1

4 e
α(d+A)

3λ αγ(d+A)
( )( )1=2 (EC.11)

α0 � α(1−2λ)βγ2

64+32γ2 , α � λ(1−2λ)
12

(EC.7)

μ∗ � γ
768min λMγ−2,Λ1=2e−ΛMγ−2,Λ1=2e−Λ

{ }
(EC.13)

C � (1+γ) ��
2

√
e1+

Λ
2

min{1,α1}
�����������������������������������������������������������������������
max{1, 4(1+ 2α1 + 2α2

1)(d+A)β−1γ−1μ−1∗ =min{1,R1}}
√ (EC.14)

Λ � 12
5 (1+ 2α1 + 2α2

1)(d+A)Mγ−2λ−1(1− 2λ)−1, α1 � (1+Λ−1)Mγ−2 (EC.15)

ε1 � 4γ−1μ∗=(d+A) (EC.16)

R1 � 4 · (6=5)1=2(1+ 2α1 + 2α2
1)1=2(d+A)1=2β−1=2γ−1(λ− 2λ2)−1=2 (EC.17)

Hρ(μ0) � R1 +R1ε1max M+ 1
2βγ

2, 34β
{ }

‖(x,v)‖2L2(μ0) +R1ε1 M+ 1
2βγ

2
( )

b+d=β
m +R1ε1

3
4d+ 2R1ε1 βA0 + βB2

2M

( )
(EC.18)
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where σ is defined by (EC.20); Hρ(μ0) is defined by
(EC.18); J 1(ε) and J 2 are defined by (16) and (19), respec-
tively; and cLS is a constant satisfying

cLS ≤ 2m2 + 8M2

m2Mβ
+ 1
λ∗

6M(d+ β)
m

+ 2

( )
,

and λ∗ is the uniform spectral gap for overdamped Langevin
dynamics:3

λ∗ :� inf
z∈Zn

inf
β−1

∫
R

d
‖rg‖2dπz∫

R
d
g2dπz

: g ∈ C1(Rd) ∩ L2(πz),
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
g≠ 0,

∫
R

d
gdπz � 0

}
: (22)

3.3. Generalization Error of SGHMC1 in the
One-Pass Regime

Because the predictor Xk is random, it is natural to
consider the expected generalization error EF(Xk) −
EFZ(Xk) (see, e.g., Hardt et al. 2016) that admits the
decomposition

EFZ(Xk) −EF(Xk) � EFZ(Xk) −EFZ(Xπ)( )
+ EFZ(Xπ) −EF(Xπ)( )
+ EF(Xπ) −EF(Xk)( ) , (23)

where Xπ is the Gibbs output; that is, its distribution
conditional on Z � z is given by πz. If every sample is
used once, that is, if only one pass is made over the
data set, then the second term in (23) disappears. As a
consequence, the generalization error is controlled by
the bound

|EFZ(Xk) −EF(Xk)| ≤ EFZ(Xk) −EFZ(Xπ)| |
+ EF(Xπ) −EF(Xk)| |: (24)

The following result provides a bound on this quanti-
ty. The proof is similar to the proof of Theorem 1 and
its corollaries and, hence, omitted.

Theorem 2 (Generalization Error of SGHMC1). Under
the setting of Theorem 1, we have

EF(Xk) − EF(Xπ)| | ≤ J 0(ε) + J 1(ε) ,

EFZ(Xk) − EFZ(Xπ)| | ≤ J 0(ε) + J 1(ε),
provided that (17) and (18) hold when Xπ is the output of
the underdamped Langevin dynamics, that is, its distribu-
tion conditional on Z � z is given by πz and J 0(ε) is de-
fined by (20). Then, it follows from (24) that, if each data
point is used once, the expected generalization error satisfies

|EFZ(Xk) −EF(Xk)| ≤ 2J 0(ε) + 2J 1(ε):

4. Main Results for the SGHMC2
Algorithm

Recall the SGHMC2 algorithm (X̂k, V̂k) defined in (10)
and (11), and denote the probability law of (X̂k, V̂k)
conditional on the sample z by μ̂k,z(dx,dv). Similar to
our analysis for SGHMC1, we can derive similar per-
formance guarantees for SGHMC2 in terms of empiri-
cal risk, population risk, and the generalization error.
The main difference is that the term J 1(ε) is con-
trolled by the accuracy of the discretization and has to
be replaced by another term Ĵ 1(ε) as the SGHMC2 al-
gorithm is based on an alternative discretization. In
particular, the performance bounds we get for
SGHMC2 are tighter than SGHMC1 as is elaborated
further in Section 5.

Theorem 3. Consider the SGHMC2 iterates (X̂k, V̂k) de-
fined by the recursion (10) and (11) from the initial state
(X0, V0). which has the law μ0. If Assumption 1 is satisfied,
then for β,ε > 0, we have

EFz(X̂k) −E(X,V)~πz(Fz(X))
∣∣∣ ∣∣∣ � ∣∣∣∣∫

R
d×Rd

Fz(x)μ̂k,z(dx,dv)

−
∫
R

d×Rd
Fz(x)πz(dx,dv)

∣∣∣∣
≤ J 0(z,ε) + Ĵ 1(ε) ,

where J 0(z,ε) is defined in (15) and

Ĵ 1(ε) :� (Mσ+B) · C0���
μ∗

√
������������
log (1=ε)

√
δ1=4 + Ĉ1���

μ∗
√ ε

( )
�����������������������
log (μ−1∗ log (ε−1))

√
, (25)

with σ defined by (EC.20) provided that

η ≤min
ε������������

log (1=ε)√( )2
, 1,

γ

K̂2
(d=β+A=β), γλ

2K̂1
,
2
γλ

{ }
,

(26)

and

kη � 1
μ∗

log
1
ε

( )
≥ e: (27)

Here, Hρ is a semimetric for probability distributions de-
fined by (EC.12). All the constants are made explicit and
are summarized in Tables 1 and 2.

The proof of Theorem 3 is given in Section EC.2.
Relying on Theorem 3, one can readily derive the
following result on the performance bound for the
empirical risk minimization with the SGHMC2 algo-
rithm. The proof follows a similar argument as dis-
cussed in Section 3.1 and is omitted.
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Corollary 3 (Empirical Risk Minimization with SGHMC2).
Under the setting of Theorem 3, the empirical risk minimi-
zation problem admits the performance bounds

EFz(X̂k) −min
x∈Rd

Fz(x) ≤ J 0(z, ε) + Ĵ 1(ε) + J 2 ,

provided that Conditions (26) and (27) hold in which the
terms J 0(z,ε), Ĵ 1(ε) and J 2 are defined by (15), (25), and
(19), respectively.

Next, we present the performance bound for the
population risk minimization with the SGHMC2 algo-
rithm. Similarly to in Section 3.2, to control the popu-
lation risk during SGHMC2 iterations, one needs to
control the difference between the finite sample size
Problem (2) and the original Problem (1) in addition
to the empirical risk. This leads to the following result.
The details of the proof are given in Section EC.2.

Corollary 4 (Population Risk Minimization with
SGHMC2). Under the setting of Theorem 3, the expected
population risk of X̂k (the iterates in (11)) is bounded by

EF(X̂k) − F∗ ≤ J 0(ε) + Ĵ 1(ε) +J 2 +J 3(n) ,
where J 0(ε), Ĵ 1(ε), J 2, J 3(n) are defined in (20), (25),
(19), and (21).

Finally, we present a result on the generalization er-
ror of the SGHMC2 algorithm in the one-pass regime.
The proof follows from Theorem 3 and the discussion
for the SGHMC1 algorithm in Section 3.3 and, hence,
is omitted.

Theorem 4 (Generalization Error of SGHMC2). Under
the setting of Theorem 3, we have

EF(X̂k) − EF(Xπ)
∣∣∣ ∣∣∣ ≤ J 0(ε) + Ĵ 1(ε) ,
EFZ(X̂k) − EFZ(Xπ)
∣∣∣ ∣∣∣ ≤ J 0(ε) + Ĵ 1(ε),

provided that (26) and (27) hold, where Xπ is the output
of the underdamped Langevin dynamics; that is, its distri-
bution conditional on Z � z is given by πz and J 0(ε) is
defined by (20). Then, it follows from (24) that, if each

data point is used once, the expected generalization error
satisfies

|EFZ(X̂k) −EF(X̂k)| ≤ 2J 0(ε) + 2Ĵ 1(ε):

5. Performance Comparison with Respect
to the SGLD Algorithm

In this section, we compare our performance bounds
for SGHMC1 and SGHMC2 to SGLD. We use the nota-
tions Õ and Ω̃ to give explicit dependence on the pa-
rameters d,β,μ∗, but it hides factors that depend (at
worst polynomially) on other parameters m,M,B,λ,γ,b
and A0. Without loss of generality, we assume here the
initial distribution μ0(dx,dv) is supported on a Euclide-
an ball with radius being some universal constant for
the simplicity of performance comparison.

5.1. Generalization Error in the One-Pass Setting
A consequence of Theorem 2 is that the generalization
error of the SGHMC1 iterates |EFZ(Xk) −EF(Xk)| in the
one-pass setting satisfy

Õ
(d+ β)3=2
μ∗β

5=4 ε+ (d+ β)3=2
β(μ∗)3=2

(log (1=ε))3=2δ1=4 + ε
( )(

�����������������������
log (μ−1∗ log (ε−1))

√
+ d+ β

β

ε2

μ∗(log (1=ε))2
)
, (28)

for k � KSGHMC1 :� Ω̃ 1
μ∗ε4

log 7(1=ε)
( )

iterations, and sim-

ilarly, Theorem 4 implies the generalization error of
the SGHMC2 iterates |EFZ(X̂k) −EF(X̂k)| in the one-
pass setting satisfy

Õ
(d+ β)3=2
μ∗β

5=4 ε+ (d+ β)3=2
β

���
μ∗

√
������������
log (1=ε)

√
δ1=4 + ε

( )(
�����������������������
log (μ−1∗ log (ε−1))

√ )
, (29)

for k � KSGHMC2 :� Ω̃ 1
μ∗ε2

log 2(1=ε)
( )

iterations (see the

discussion in Section EC.7 for details). On the other

Table 2. Summary of the Constants and Where They Are Defined in the Text

Constants Source

K̂1 � K1 +Q1
4

1−2λ+Q2
8

(1−2λ)γ2
(EC.22)

K̂2 � K2 +Q3 (EC.23)

Q1 � 1
2 c0((5M+ 4− 2γ+ (c0 + γ2)) + (1+γ) 5

2+ c0(1+ γ)
( )

+ 2γ2λ) (EC.24)

Q2 � 1
2 c0[((1+ γ) c0(1+γ) + 5

2

( )
+ c0 + 2+λγ2 + 2(Mc0 +M+ 1)) 2(1+ δ)M2

( )+ 2M2 + γ2λ+ 3
2γ

2(1+ γ)
( )

(EC.25)

Q3 � c0((1+γ) c0(1+ γ) + 5
2

( )
+ c0 + 2+λγ2 + 2(Mc0 +M+ 1))(1+ δ)B2 + c0B2 + 1

2γ
3β−1c22 + γ2β−1c12 +Mγβ−1c22 (EC.26)

c0 � 1+γ2, c12 � d
2 , c22 � d

3
(EC.27)

Ĉ1 � γ̂ ·
(
3βM2

2γ Cd
v + (2(1+ δ)M2Cd

x + 2(1+ δ)B2) + 2dγβ−1
3

( )
+

������������������������������������������������������������
3βM2

2γ Cd
v + 2(1+ δ)M2Cd

x + 2(1+ δ)B2
( )+ 2dγβ−1

3

( )√ )1=2 (EC.29)
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hand, the results of theorem 1 in Raginsky et al. (2017)
imply that the generalization error for the SGLD algo-
rithm after KSGLD iterations in the one-pass setting
scales as

Õ
β(β+ d)2

λ∗
δ1=4log (1=ε) + ε
( )( )

for

KSGLD � Ω̃
β(d+ β)
λ∗ε4

log5(1=ε)
( )

: (30)

The constants λ∗ (see (22)) and μ∗ (see Table 1) are ex-
ponentially small in both β and d in the worst case,
but under some extra assumptions, the dependency
on d can be polynomial (see, e.g., Cheng et al. 2018b)
although the exponential dependence on β is unavoid-
able in the presence of multiple minima in general
(see Bovier et al. 2005). One can readily see that
KSGHMC2 has better dependency on ε than KSGHMC1

and infer from (28) and (29) that the performance of
SGHMC2 is better than SGHMC1. Hence, in the rest
of the section, we only focus on the comparison be-
tween SGHMC2 and SGLD.

We see that the generalization error for SGHMC2
(29) is bounded by

Õ
(d + β)3=2

βμ∗

������������
log (1=ε)

√
δ1=4 + ε

( ) �����������������
log log (1=ε)

√( )
,

(31)

as μ∗ is small, and if we ignore the
�����������������
log log (1=ε)√

fac-
tor,4 then we get

Õ
(d+ β)3=2

βμ∗

������������
log (1=ε)

√
δ1=4 + ε

( )( )
for

KSGHMC2 � Ω̃
1

μ∗ε2
log 2(1=ε)

( )
(32)

iterations of the SGHMC2 algorithm, whereas the cor-
responding bound for SGLD from Raginsky et al.
(2017), theorem 1, is

Õ
β(β+ d)2

λ∗
log (1=ε)δ1=4 + ε
( )( )

for

KSGLD � Ω̃
β(d+ β)
λ∗ε4

log5(1=ε)
( )

(33)

iterations of the SGLD algorithm. Note that KSGHMC2

and KSGLD do not have the same dependency on ε up
to log factors (the former scales with ε as log 2(1=ε)ε−2
and the latter log5(1=ε)ε−4), and this improvement on
ε dependency is due to better diffusion approximation
of SGHMC2 (see Lemma EC.6) compared with SGLD
and the exponential integrability estimate we have
in Lemma EC.2, which improves the estimate in
Raginsky et al. (2017), and using the same argument,

one can improve the log5(1=ε)=ε4 term in (33) to
log 3(1=ε)=ε4.

To make the comparison with SGLD simpler, we
notice that in both Expressions (32) and (33), we see a
term scaling with δ1=4 because of the gradient noise
level δ (δ is fixed in the one-pass setting), and we fix
the error in (32) and (33) without the δ term to be the
same order and then compare the number of itera-
tions KSGHMC2 and KSGLD. More precisely, given ε̂ > 0,

and we choose ε > 0 such that (d+β)3=2
βμ∗

ε � ε̂ in (32) so
that the generalization error for SGHMC2 is

Õ ε̂ + (d+ β)3=2
βμ∗

�������������������
log

(d+ β)3=2
βμ∗ε̂

( )√√
δ1=4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ for

KSGHMC2 � Ω̃
(d+ β)3
β2μ3∗ ε̂

2 log
2 (d+ β)3=2

βμ∗ε̂

( )( )
: (34)

Similarly, the generalization error for SGLD is

Õ ε̂ + β(β+ d)2
λ∗

log
β(β+ d)2

λ∗ε̂

( )
δ1=4

( )
for

KSGLD � Ω̃
β5(d+ β)9

λ5
∗ ε̂

4 log 5 β(β+ d)2
λ∗ε̂

( )⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠: (35)

When λ∗ and μ∗ are on the same order or μ∗ is larger,
because typically β ≥ 1, the term involving δ in the
generalization error for SGHMC2 is (smaller) better
than the counterpart for SGLD, and this is guaranteed
to be achieved in a fewer number of iterations ignor-
ing the log factors and universal constants for
KSGHMC2 in (34) and KSGLD in (35).

Comparing λ∗ and μ∗ on arbitrary nonconvex func-
tions seems nontrivial; however, we give a class of non-
convex functions (see Proposition 1 and Example 1),

where 1
μ∗
� Õ

���
1
λ∗

√( )
. For this class, we can infer from (34)

that KSGHMC2 has a dependency 1=μ3
∗ � Õ(1=λ3=2

∗ ),
which is much smaller in contrast to 1=λ5

∗ for KSGLD

in (35).

5.2. Empirical Risk Minimization
The empirical risk minimization bound given in Cor-
ollary 3 has an additional term J 2 compared with the
J 0(ε) and Ĵ 1(ε) terms appearing in the one-pass gen-
eralization bounds. Note also that J 0(z,ε) ≤ J 0(ε). As
a consequence, the SGHMC2 algorithm has expected
empirical risk

Õ
(d+ β)3=2
μ∗β

5=4 ε+ (d+ β)3=2
β

���
μ∗

√
������������
log (1=ε)

√
δ1=4 + ε

( )(
�����������������������
log (μ−1∗ log (ε−1))

√
+ d · log (1+ β)

β

)
, (36)
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after KSGHMC2 � Ω̃ 1
μ∗ε2

log 2(1=ε)
( )

iterations as opposed

to

Õ
β(β+ d)2

λ∗
δ1=4log (1=ε) + ε
( )

+ d · log (1+ β)
β

( )
, (37)

after KSGLD � Ω̃
β(d+β)
λ∗ε4 log 5(1=ε)

( )
iterations required in

Raginsky et al. (2017). Comparing (36) and (37), we
see that the last terms are the same. If this term is the
dominant term, then the empirical risk upper bounds
for SGLD and SGHMC2 are similar except that
KSGHMC2 can be smaller than KSGLD, for instance, when

1
μ∗
� Õ

���
1
λ∗

√( )
. Otherwise, if the last term is not the domi-

nant one and can be ignored with respect to other
terms, then the performance comparison is similar to
the discussion about the generalization bounds (31)
and (33).

We next briefly discuss the comparisons of
SGHMC2 and SGLD based on the total number of sto-
chastic gradient evaluations (gradient complexity),
and we compare with a recent work (Xu et al. 2018),
which establishes a faster convergence result and im-
proves the gradient complexity for SGLD in the mini-
batch setting compared with Raginsky et al. (2017).
Here, the total number of stochastic gradient evalua-
tions of an algorithm is defined as the number of sto-
chastic gradients calculated per iteration (which is
equal to the batch size in the mini-batch setting) times
the total number of iterations. Xu et al. (2018) show
that it suffices to take

K̂SGLD � Ω̃
d7

λ̂
5
ε̂5

( )
(38)

stochastic gradient evaluations to converge to an ε̂

neighborhood of an almost ERM, where Ω̃(·) hides
some factors in β and λ̂ is the spectral gap of the dis-
crete overdamped Langevin dynamics, that is, SGLD
with zero gradient noise. This improves upon the re-
sult in Raginsky et al. (2017), which shows that the
same task requires Ω̃ d17

λ9
∗ ε̂

8

( )
stochastic gradient evalua-

tions. Our results show that (see, e.g., (36)), for
SGHMC2, it suffices to have

K̂SGHMC2 � Ω̃
d9

μ4∗ ε̂
6

( )
(39)

stochastic gradient evaluations, ignoring the log fac-
tors in the parameters ε̂,μ∗,d and hiding factors in β

that can be made explicit. To see (39), we infer from
(36) that, for fixed precision ε̂ > 0 and dimension d, by
ignoring the log factors and β, we can choose ε so that
d3=2ε=μ∗ � ε̂ and choose the gradient noise level δ so

that d3=2δ1=4= ���
μ∗

√ � ε̂. So the number of SGHMC2 iter-
ations is

KSGHMC2 � Ω̃
1

μ∗ε2

( )
� Ω̃

d3

μ2∗ ε̂
2

( )
:

On the other hand, the mini-batch size to achieve gra-
dient noise level δ is given by 1=δ (see Raginsky et al.
2017), which is equal to d6=(μ2

∗ ε̂
4). Hence, we obtain

(39), which is the product of the mini-batch size and
number of iterations.

It is hard to compare λ̂ in (38) and μ∗ in (39) in gen-
eral because λ̂ is the spectral gap of the discrete over-
damped Langevin dynamics (i.e., SGLD with zero
gradient noise) without a simple closed-form formula.
However, when the step size is small enough, we ex-
pect λ̂ is similar to λ∗, which is the spectral gap of the
continuous-time overdamped Langevin diffusion. As
a consequence, when the step size η is small enough
(which is the case, for instance, when target accuracy

ε̂ is small enough), we have λ̂ ≈ λ∗ and 1
μ∗
�O

���
1
λ∗

√( )
�

O
��
1
λ̂

√( )
for the class of nonconvex functions we discuss

in Proposition 1 and Example 1. For this class of prob-
lems, comparing (38) and (39), we see that we obtain
an improvement in the spectral gap parameter (μ4

∗
versus λ̂

5
); however, ε̂ and d dependency of the

bound (38) is better than (39).

5.3. Population Risk Minimization
If samples are recycled and multiple passes over the
data set are made, then one can see from Corollary 2
that there is an extra term J 3 that needs to be added to
the bounds given in (36) and (37). This term satisfies

J 3 � Õ
(β+ d)2
λ∗n

( )
:

If this term is dominant compared with other terms
J 0,J 1 and J 2, for instance, this may happen if the
number of samples n is not large enough, and then,
the performance guarantees for population risk mini-
mization via SGLD and SGHMC2 are similar. Other-
wise, if n is large and β is chosen in a way to keep the
J 2 term on the order J 0 , then similar improvement
can be achieved.

5.4. Comparison of l∗ and m∗
The parameters λ∗ (see (22)) and μ∗ (see Table 1) gov-
ern the convergence rate to the equilibrium of the
overdamped and underdamped Langevin SDE, and
they can be both exponentially small in dimensions d
and in β. They appear naturally in the complexity esti-
mates of the SGHMC2 and SGLD methods as these al-
gorithms can be viewed as discretizations of Langevin
SDEs (when the discretization step is small and the
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gradient noise δ � 0, the discrete dynamics behave
similarly to the continuous dynamics). Next, to get
further intuition, first, we discuss some toy examples

of nonconvex functions in which 1
μ∗
�O

���
1
λ∗

√( )
. For these

examples, if the other parameters (β,d,δ) are fixed,
then SGHMC2 can lead to an improvement upon the
SGLD performance. We then show in Proposition 1
that these examples generalize to a more general class
of nonconvex functions.

Example 1. Consider the following symmetric double-
well potential in R

d studied previously in the context
of Langevin diffusions (Eberle et al. 2019):

fa(x) �U(x=a) with U(x) :�
1
2
(‖x‖− 1)2 for ‖x‖ ≥ 1

2
,

1
4
−‖x‖2

2
for ‖x‖ ≤ 1

2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
where a > 0 is a scaling parameter that is illustrated in
the left panel of Figure 1. For this example, there are
two minima that are apart at a distance R �O(a). For
simplicity, we assume there is only one sample, that
is, z � (z1) and Fz(x) � f (x,z1) � fa(x). We consider the
nonconvex optimization Problem (2) with both the
SGHMC2 and SGLD algorithms. Eberle et al. (2019)
show that μ∗ ≥Θ(1a) for this example, whereas
λ∗ ≤Θ( 1a2), making the constants hidden by the Θ ex-
plicit. This shows that the contraction rate of the
underdamped diffusion μ∗ is (faster) larger than that
of the overdamped diffusion λ∗ by a square root factor
when a is large and all the constants can be made ex-
plicit. Such results extend to a more general class of
nonconvex functions with multiple wells and higher
dimensions as long as the gradient of the objective sat-
isfies a growth condition (see examples 1.1 and 1.13 in
Eberle et al. (2019) for a further discussion).

For computing an ε-approximate global minimizer
of fa � f (x,z1) (or, more generally, for a nonconvex
problem satisfying Assumption 1), β is chosen large
enough so that the stationary measure concentrates
around the global minimizer. Using the tight charac-
terization of λ∗ from theorem 1.2 in Bovier et al. (2005)
for β large, further comparisons with similar conclu-
sions between the rate of convergence to the equili-
brium distribution between the underdamped and
overdamped dynamics can also be made. For exam-
ple, consider the nonconvex objective Fz(x) � f̃ a(x) �
Ũ(x=a) instead, illustrated in the right panel of Figure 1
for a � 4, where

Ũ(x) �

1
2
(x− 1)2 for x ≥ 1

2
,

1
4
− x2

2
for − 1

8
≤ x ≤ 1

2
,

1
2
x+ 1

4

( )2
+ 15
64

for x ≤ −1
8
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
is the asymmetric double-well potential in dimension
one. It follows from Theorem EC.1 (see also Eberle
et al. 2019) that the contraction rate satisfies μ∗ �
Θ a−1( ) , whereas it follows from theorem 1.2 in Bovier
et al. (2005) that λ∗ �Θ(1=a2). This shows that, when
the separation between minima or, alternatively, the
scaling factor a is large enough, μ∗ is larger than λ∗ by
a square root factor up to constants.

The behavior in these toy examples can be general-
ized to more general nonconvex objectives with a
finite-sum structure satisfying Assumption 1. Proposi-
tion 1 gives a class of functions in which μ∗ is on the
order of the square root of λ∗. The proof is presented
in detail in Section EC.6.

Proposition 1. Suppose that the functions fa(x, z) indexed
by a satisfies Assumption 1(i)–(iii) with m �m1a−2, M �

Figure 1. (Color online) The Illustration of the Functions fa(x) (Left) and f̃ a(x) (Right) for a � 4
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M1a−2 and B � B1a−1 for some fixed constants m1, M1, and
B1. Then, we have, as a→∞,

λ∗ �O(a−2), μ∗ �Θ(a−1): (40)

This result is more general than the previous example.
In particular, if f(x, z) satisfies Assumption 1(i)–(iii)
with m, M, and B replaced by m1,M1,B1, then fa(x,z) :
� f (x=a,z) satisfies Assumption 1(i)–(iii) with m �
m1a−2, M �M1a−2 and B � B1a−1. Proposition 1 essen-
tially says that, if we consider the normalized empiri-
cal risk objective Fz(x=a) � 1

n
∑n

i�1f (x=a,zi), where a is a
(normalization) scaling parameter and f(x, z) satisfies
Assumption 1, then for large enough values of a, the
empirical risk surface is relatively flat, and the conver-
gence rate of momentum variant SGHMC2 to an
ε-neighborhood of the global minimum is governed
by the parameter μ∗, which is larger than that of the
parameter λ∗ of SGLD when a is sufficiently large.
This leads to improved performance bounds for
SGHMC2 compared with known performance bounds
for SGLD.

6. Applications
We note that several nonconvex stochastic optimiza-
tion problems of interest can satisfy Assumption 1 un-
der appropriate noise assumptions for the underlying
data set. For example, LASSO problems with noncon-
vex regularizers (see, e.g., Hu et al. 2017); nonconvex
formulations of the phase retrieval problem around
global minimum (see, e.g., Zhang et al. 2017b); or non-
convex stochastic optimization problems defined on a
compact set, including but not limited to dictionary
learning over the sphere (see, e.g., Sun et al. 2016) and
training deep learning models subject to norm con-
straints in the model parameters (see, e.g., Anil et al.
2019). In this section, we discuss some applications of
our results, and we provide two specific examples.

6.1. Binary Linear Classification
In binary linear classification, the aim is to learn a pre-
dictive model of the form P(Y � 1|Ain � a) � σc(〈x̃,a〉),
where x̃ ∈ R

d is a parameter vector to be learned, Ain is
the input variable (feature vector), Y is the binary out-
put, and σc : R→ [0, 1] is a threshold function. Binary
classification arises in many data-driven applications
in operations research from diagnosing patients in
healthcare (Wu and Liu 2007) to predicting directions
in the stock market (James et al. 2013).

A number of empirical studies demonstrate that
nonconvex choices of the σc function can often lead to
superior classification accuracy and robustness prop-
erties compared with convex choices of σc, such as the
hinge loss (Collobert et al. 2006, Wu and Liu 2007,
Chapelle et al. 2009, Nguyen and Sanner 2013). Given
access to a data set of input–output pairs zi � (ai,yi), a

standard way of estimating x̃ is based on minimizing
the regularized squared loss over the data set, that is,

min
x∈Rd

1
n

∑n
i�1

(yi − σc(〈x,ai〉))2 +λr

2
‖x‖2, (41)

where λr > 0 is a regularization parameter that may
depend on the number of samples n. By Lagrangian
duality, this problem is equivalent to the constrained
optimization problem

min
x∈Rd

1
n

∑n
i�1

(yi − σc(〈x,ai〉))2 subject to ‖x‖ ≤ R,

for some R, which has also been considered in the lit-
erature (see, e.g., Foster et al. 2018, Mei et al. 2018,
Wang et al. 2019). For nonconvex σc(·), this problem is
also nonconvex in general. We consider minimizing
the objective (41) in the mini-batch setting in which
the gradients in SGHMC iterations are estimated from
nb data points sampled with replacement,; that is, the
gradient is estimated as

g(x,Uz) � 1
nb

∑nb
j�1

rf (x, zj) , (42)

where zj are i.i.d. with a uniform distribution over the
set of indices {1, 2, : : : ,n}. We also consider the follow-
ing assumption for the threshold functions σc, which
are satisfied by many choices of σc in practice. A
prominent example is the logistic (or sigmoid) func-
tion in which case σc(z) � 1=(1+ e−z), which is also
used in deep learning. Another possible choice is the
probit function, which corresponds to σc(t) � Φ(t),
where Φ is the cumulative distribution function of the
standard normal distribution.

Assumption 2. The threshold function σc is twice contin-
uously differentiable on R. It is bounded and has bounded
first and second derivatives; that is, there exists a constant
Lσc > 0 such that max{‖σc‖∞, ‖σ′c‖∞, ‖σ′′c ‖∞} ≤ Lσc : The
distribution of the input data Ain has compact support; that
is, ‖Ain‖ ≤D for some D > 0.

We show in the next lemma that, if Assumption 2
holds, then Assumption 1 holds with explicit con-
stants A0,B,M,m,b, and σc that are precise. The proof
is in the e-companion.

Lemma 1. In the setting of binary linear classification,
consider the SGHMC method applied to Objective (41),
where gradients are estimated according to (42), where the
probability law μ0 of the initial state has compact support.
If Assumption 2 holds, then Assumption 1 holds for any
δ ∈ [ 1

4nb
, 1) with the following constants:

A0 � (1+ ‖σc(0)‖)2, B � 2D 1+ ‖σc‖∞
( )‖σ′c‖∞, (43)

M � 2D2‖σ′c‖2∞ + 2D2(1+ ‖σc‖∞)‖σ′′c ‖∞ + 5λr, (44)

m � λ=2, b � 8(1+ ‖σc‖∞)2‖σ′c‖2∞D2=λr: (45)
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We conclude from Lemma 1 that the objective is dissi-
pative, and our main results for the SGHMC1 and
SGHMC2 algorithms described in Sections 3–5 apply
to binary linear classification under Assumption 2 with
the constants given in Lemma 1 and in which μ∗ is giv-
en by the formula in Table 1. For example, if D �O(1),
then we have 1

μ∗
� Θ̃( �������

d+ β
√

eΘ̃(d+β)) (see (EC.89)), and
we conclude from (39) that it suffices to have

K̂SGHMC2 � Ω̃
d9

μ4∗ ε̂
6

( )
� Ω̃

d9eΘ̃(d+β)

(d2 + β2)ε̂6
( )

stochastic gradient evaluations to converge to an ε̂
neighborhood of an almost ERM ignoring the log fac-
tors in the parameters ε̂,μ∗,d and hiding other con-
stants that can be made explicit based on Lemma 1.

We also note that, under further assumptions on
the statistical nature of the input and if the number of
data points is large enough, it can be shown that Ob-
jective (41) admits a unique minimizer, the objective is
strongly convex in some regions (Mei et al. 2018), and
the convergence to the unique minimizer is indepen-
dent of the dimension d. However, our assumptions
here are weaker; for example, we have weaker as-
sumptions on the threshold function σc. Therefore,
such arguments are not directly applicable.

6.2. Robust Ridge Regression
Given an input (feature) vector Ain ∈ R

d, the aim is to
predict the output Y ∈ R. Given access to a data set of
input–output pairs zi � (ai,yi), we assume a linear
model yi � aTi x̃ + εi, where the errors εi are i.i.d. with
mean zero. The standard ridge regression estimate of x̃
minimizes a penalized residual sum of squares (Hoerl
and Kennard 1970); that is, it minimizes

∑n
i�1‖yi−〈x,ai〉‖2 +λr‖x‖2, where λr > 0 is a regularization pa-

rameter.5 However, this formulation can be sensitive
to outliers. Robust formulations of the ridge regres-
sion (Razavi et al. 2012) can be obtained if one solves
instead the following problem

min
x∈Rd

1
n

∑n
i�1

f (x,zi), f (x, zi) � ρ yi − 〈x, ai〉( )+λr

2
‖x‖2,

(46)
where λr > 0 is a regularization parameter and ρ :
R→ R is a suitably chosen loss function. In particular,
for achieving robustness to outliers, the nonconvex
choices of the function ρ that are either bounded or
slowly growing near infinity has been considered in
the literature (as opposed to the standard ridge regres-
sion setting that corresponds to ρ(t) � ‖t‖2). For exam-
ple, popular choices of the function t �→ ρ(t) include
Tukey’s bisquare loss defined as

ρTukey(t) � 1− (1− (t=t0)2)3 for ‖t‖ ≤ t0,
1 for |t| ≥ t0,

{

(see, e.g., Mei et al. 2018) and exponential squared loss
(Wang et al. 2013): ρexp (t) � 1− e−‖t‖

2=t0 , where t0 > 0 is
a tuning parameter. In the following, similar to Wang
et al. (2019), we assume that the data Ain is bounded
and the threshold function and its derivatives up to
order two are bounded. This assumption for ρ is satis-
fied in several cases, including Tukey’s bisquare and
exponential squares losses.

Assumption 3. The function ρ is twice continuously differ-
entiable on R. The function ρ is bounded and has bounded
first and second derivatives; that is, there exists a constant
Lρ such that max (‖ρ‖∞, ‖ρ′‖∞, ‖ρ′′‖∞) ≤ Lρ. Furthermore,
the distribution of the input data Ain has compact support;
that is, there exists D such that ‖Ain‖ ≤D.

The following lemma shows that, under Assump-
tion 3, our assumptions (Assumption 1) for analyzing
the SGHMCmethods hold with proper initialization.

Lemma 2. In the setting of robust regression, consider Ob-
jective (41) in which gradients are estimated according to
(42) in which the probability law μ0 of the initial state has
compact support. If Assumption 2 holds, then Assumption 1
holds for both SGHMC1 and SGHMC2 methods for any
choice of δ ∈ [ 1

4nb
, 1) with the following constants:

A0 � ‖ρ‖∞, B � 4‖ρ′‖∞D, (47)

M � ‖ρ′′‖∞D2 +λr, m � λr=2, b � 2‖ρ′‖2∞D2

λr
:

(48)

Similarly, we conclude from Lemma 2 that our main
results for the SGHMC1 and SGHMC2 algorithms de-
scribed in Sections 3–5 apply to the problem of robust
regression under Assumption 3.

7. Outline of the Proof
To obtain the main results in this paper, we adapt the
proof techniques of Raginsky et al. (2017) developed
for the overdamped dynamics to the underdamped
dynamics and combine it with the analysis of Eberle
et al. (2019), which quantifies the convergence rate of
the underdamped Langevin SDE to its equilibrium. In
an analogy to the fact that momentum-based first or-
der optimization methods require a different Lyapu-
nov function and a quite different set of analysis tools
(compared with their nonaccelerated variants) to
achieve fast rates (see, e.g., Nesterov 1983, Su et al.
2014, Lu et al. 2018), our analysis of the momentum-
based SGHMC1 and SGHMC2 algorithms requires
studying a different Lyapunov function V defined in
(13) that also depends on the objective f as opposed to
the classic Lyapunov function H(x) � ‖x‖2 arising in
the study of the SGLD algorithm (see, e.g., Mattingly
et al. 2002, Raginsky et al. 2017). This fact introduces
some challenges for the adaptation of the existing
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analysis techniques for SGLD to SGHMC. For this
purpose, we take the following steps.

First, we show that SGHMC1 and SGHMC2 iterates
track the underdamped Langevin diffusion closely in
the two-Wasserstein metric. As this metric requires
finiteness of second moments, we first establish uni-
form (in time) L2 bounds for both the underdamped
Langevin SDE and SGHMC1 and SGHMC2 iterates
(see Lemmas EC.1 and EC.5), exploiting the structure
of the Lyapunov function V. Second, we obtain a
bound for the Kullback–Leibler divergence between
the discrete and continuous underdamped dynamics
making use of the Girsanov theorem, which is then
converted to bounds in the two-Wasserstein metric
by an application of an optimal transportation in-
equality of Bolley and Villani (2005). This step re-
quires proving a certain exponential integrability
property of the underdamped Langevin diffusion
(Lemma EC.2). We show in Lemma EC.2 that the ex-
ponential moments grow at most linearly in time,
which strictly improves the exponential growth in
time in lemma 4 in Raginsky et al. (2017).6 As a result,
the method improves upon the ε dependence of the
number of iterates (see Equations (32) and (33)).

Second, we apply the seminal result of Eberle et al.
(2019), which shows that the continuous-time under-
damped Langevin SDE is geometrically ergodic with
an explicit rate μ∗ in the two-Wasserstein metric. In or-
der to get explicit performance guarantees, we derive
new bounds that make the dependence of the con-
stants to the initialization in Eberle et al. (2019) explicit
(see Lemma EC.4).

As the x-marginal of the equilibrium distribution
πz(dx,dv) of the underdamped Langevin SDE concen-
trates around the global minimizers of Fz for β appropri-
ately chosen and we can control the error between the
discrete-time SGHMC1 and SGHMC2 dynamics and
the underdamped SDE by choosing the step size accord-
ingly, this leads to performance bounds for the empirical
riskminimizations for the SGHMC1 and SGHMC2 algo-
rithms in Corollaries 1 and 3. For controlling the popula-
tion risk during SGHMC iterations, in addition to the
empirical risk, one has to control the generalization error
F(Xk) − FZ(Xk) that accounts for the differences between
the finite sample size Problem (2) and the original Prob-
lem (1). By exploiting the fact that the x−marginal of the
invariant distribution for the underdamped dynamics is
the same as it is in the overdamped case, we control the
generalization error in Corollaries 2 and 4, which is no
worse than that of the available bounds for SGLD given
in Raginsky et al. (2017).

8. Conclusion
SGHMC is a momentum-based popular variant of
the stochastic gradient in which a controlled amount

of isotropic Gaussian noise is added to the gradient
estimates for optimizing a nonconvex function. We
obtain first-time, finite-time guarantees for the con-
vergence of SGHMC1 and SGHMC2 algorithms to
the ε-global minimizers under some regularity as-
sumption on the nonconvex objective f. We also
show that, on a class of nonconvex problems,
SGHMC2 can be faster than overdamped Langevin
MCMC approaches, such as SGLD, in the sense that
the best available bounds for SGHMC2, which we
prove in our paper, are better than the best available
bounds for SGLD. This effect is due to the momen-
tum term in the underdamped SDE. Furthermore,
our results show that momentum-based acceleration
is possible on a class of nonconvex problems under
some conditions if we compare known upper
bounds between SGLD and SGHMC. Finally, we
mention a few limitations in our work that may lead
to some future research directions. In our paper, the
performance dependence on dimension is exponen-
tial in general. In the future, we will investigate for
what class of (nonconvex) target functions f we can
obtain performance bounds independent of dimen-
sion d or has polynomial dependence on d. In addi-
tion, our results suggest that momentum-based
SGHMC methods work particularly well when the
(nonconvex) target functions have relatively flat
landscapes. In the future, we will investigate wheth-
er we can obtain theoretical results for SGHMC on a
wider class of nonconvex problems.
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Endnotes
1 We note that, in our notation, Z is a random vector, whereas z is a
deterministic vector associated to a data set that corresponds to a re-
alization of the random vector Z.
2 With slight abuse of notation, we use πz(dx) to denote the x-
marginal of the equilibrium distribution πz(dx,dv).
3 In Raginsky et al. (2017), their formula for λ∗ missed the β−1 factor.
4 We emphasize that the effect of the last term

�����������������
log log (1=ε)√

ap-
pearing in (31) is typically negligible compared with other parame-

ters. For instance, even if ε � 2−2
16
is double-exponentially small, we

have
�����������������
log log (1=ε)√ ≤ 4.

5 See Kilmer and O’Leary (2001) for details regarding the choice of
the parameter λr.
6 The method used in the proof of Lemma EC.2 can indeed be
adapted to improve the exponential integrability and, hence, the
overall estimates in Raginsky et al. (2017) for SGLD as well.

Gao, Gürbüzbalaban, and Zhu: Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo
Operations Research, Articles in Advance, pp. 1–17, © 2021 INFORMS 15



References
Ahn S, Korattikara A, Welling M (2012) Bayesian posterior sampling

via stochastic gradient Fisher scoring. Internat. Conf. Machine
Learn., 1771–1778.

Allen-Zhu Z, Hazan E (2016) Variance reduction for faster non-
convex optimization. Balcan MF, Weinberger KQ, eds. Proc.
33rd Internat. Conf. Machine Learn., vol. 48 (PMLR, New York),
699–707.

Anil C, Lucas J, Grosse R (2019) Sorting out Lipschitz function ap-
proximation. Chaudhuri K, Salakhutdinov R, eds. Proc. 36th In-
ternat. Conf. Machine Learn., vol. 97 (PMLR, New York), 291–301.

Belloni A, Liang T, Narayanan H, Rakhlin A (2015) Escaping the lo-
cal minima via simulated annealing: Optimization of approxi-
mately convex functions. Conf. Learn. Theory, 240–265.

Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Statist. Sci. 8(1):
10–15.

Betancourt M (2017) A conceptual introduction to Hamiltonian
Monte Carlo. Preprint, submitted January 10, https://arxiv.org/
abs/1701.02434.

Betancourt M, Byrne S, Girolami M (2014) Optimizing the integrator
step size for Hamiltonian Monte Carlo. Preprint, submitted
November 24, https://arxiv.org/abs/1411.6669.

Betancourt M, Byrne S, Livingstone S, Girolami M (2017) The geo-
metric foundations of Hamiltonian Monte Carlo. Bernoulli
23(4A):2257–2298.

Bolley F, Villani C (2005) Weighted Csiszár-Kullback-Pinsker in-
equalities and applications to transportation inequalities. Annales
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