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Abstract—The effective resistance between a pair of nodes in a
weighted undirected graph is defined as the potential difference
induced when a unit current is injected at one node and extracted
from the other, treating edge weights as the conductance values
of edges. The effective resistance is a key quantity of interest in
many applications, e.g., solving linear systems, Markov Chains,
and continuous-time averaging networks. We consider effective
resistances (ER) in the context of designing randomized gossiping
methods for the consensus problem, where the aim is to compute
the average of node values in a distributed manner through
iteratively computing weighted averages among randomly chosen
neighbours. For barbell graphs, we prove that choosing wake-
up and communication probabilities proportional to ER weights
improves the averaging time corresponding to the traditional
choice of uniform weights. For c-barbell graphs, we show that ER
weights admit lower and upper bounds on the averaging time that
improves upon the lower and upper bounds available for uniform
weights. Furthermore, for graphs with a small diameter, we can
show that ER weights can improve upon the existing bounds for
Metropolis weights by a constant factor under some assumptions.
We illustrate these results through numerical experiments where
we showcase the efficiency of our approach on several graph
topologies including barbell graphs, and small-world graphs. We
also present an application of the ER gossiping to distributed
optimization: we numerically verify that using ER gossiping
within EXTRA and DPGA-W methods improves their practical
performance in terms of communication efficiency.

Index Terms—Distributed algorithms/control, networks of au-
tonomous agents, optimization, randomized gossiping algorithms

I. INTRODUCTION

LET G = (N , E , w) be an undirected, weighted and
connected graph defined by the set of nodes (agents)

N = {1, . . . , n}, the set of edges E ⊆ N ×N , and the edge
weights wij > 0 for (i, j) ∈ E . Since G is undirected, we
assume that both (i, j) and (j, i) refer to the same edge when
it exists, and for all (i, j) ∈ E , we set wji = wij . Identifying
the weighted graph G as an electrical network in which each
edge (i, j) corresponds to a branch of conductance wij , the
effective resistance Rij between a pair of nodes i and j is
defined as the voltage potential difference induced between
them when a unit current is injected at i and extracted at j.
The effective resistance (ER), also known as the resistance
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distance, is a key quantity of interest to compute in many
applications and algorithmic questions over graphs. It defines
a metric on the graph providing bounds on its conductance
[2], [3]. Furthermore, it is closely associated with the hitting
and commute times of a random walk1 on the graph G
when the probability of a transition from i to j ∈ Ni is
wij/

∑
j′∈Ni

wij′ where Ni , {j ∈ N : wij > 0} denotes
the set of neighboring nodes of i ∈ N ; therefore, it arises
naturally for studying random walks over graphs and their
mixing time properties [4], [5], [6], spectral approximation
of graphs [7], continuous-time averaging networks including
consensus problems in distributed optimization [4].

There exist centralized algorithms for computing or approx-
imating effective resistances accurately which require global
communication beyond local information exchange among the
neighboring agents [8], [9], [10], [7], [11]. The references [8],
[9], [10] develop key techniques for computing the effective
resistances explicitly on specific network types. In particular,
[9] addresses a class of graphs which are underlying networks
of some symmetric association schemes whereas [8] considers
two dimensional resistor networks. The reference [10] pro-
vides an algorithm for the calculation of the resistance between
two arbitrary nodes in a distance-regular network and also
provides analytical formulas. The works [7], [11] are based on
computing or approximating the entries of the pseudoinverse
L† of the graph Laplacian matrix L, based on the identity:

Rij = L†ii + L†jj − 2L†ij , ∀ (i, j) ∈ E . (1)

However, such centralized algorithms are impractical or infea-
sible for several key applications in multi-agent systems, e.g.,
randomized gossiping algorithms, for averaging the node val-
ues across the whole network, use only local communications
between random neighbors (see [12], [13], [14]); this motivates
the use of distributed algorithms for computing effective re-
sistances which only rely on the information exchange among
immediate neighbors. In these applications, communication
among the agents is typically the bottleneck compared to the
complexity of local computations of the agents; thus, it is
crucial to develop distributed algorithms that are efficient in
terms of the total number of communications required. To the
best of the authors’ knowledge, the first attempt for computing
effective resistances in a decentralized way and also the first
ER-based randomized gossiping algorithms appeared in [1].
The latter algorithms are asynchronous gossiping algorithms
where each agents’ wake-up and communication probabilities
are chosen proportional to ER weights (see Section II for

1The hitting time is the expected number of steps of a random walk starting
from i until it first visits j. The commute time Cij is the expected number
of steps required to go from i to j and from j to i back again.
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details). Aybat and Gürbüzbalaban have shown in [1] that ef-
fective resistance (ER) weights can be computed at each agent
locally with an efficient distributed algorithm, Distributed
Randomized Kaczmarz (D-RK). Our paper is motivated by
the numerical evidence presented in [1] that using ER weights
has the potential to improve the performance of randomized
gossiping algorithms on specific graphs. Since in [1] no rig-
orous performance guarantees for the use of ER weights were
provided, here we focus on establishing the missing theoretical
results that match the outstanding empirical behavior.

Contributions. First, in this paper, we provide theoretical
guarantees on the ER-based randomized gossiping algorithms
proposed in [1] for the consensus problem, where the objective
is to compute the average of node values over a network in
a decentralized manner [13]. A standard approach for solving
the consensus problem is the randomized uniform gossiping,
where each node keeps a local estimate of the average of
node values and has the equal (uniform) probability of being
activated to communicate with a randomly chosen neighbour
to update its local estimate. However, this approach treats all
the edges (equally) uniformly and can be slow in practice. To
overcome this problem, in [1], ER-based randomized gossiping
algorithms were proposed without any theoretical guarantees,
in which the edges are being activated by non-uniform prob-
abilities that are proportional to their effective resistances.

Our theoretical results presented in Section III (see Re-
sults 1, 2, and 3) explain the superior empirical behaviour
of ER-based gossiping over the uniform gossiping observed
in [1]. Briefly, we bound the time required to compute an
inexact average using analysis based on conductance and
spectral properties of the underlying weighted communication
graph, and compare the bounds we obtained corresponding
to the ER and uniform gossiping methods. We show that
averaging time with ER weights is Θ(n) faster than that of
uniform gossiping on a barbell graph where n is the number of
agents. Furthermore, we also prove that for connected graphs
with a small diameter, the averaging time with resistance
weights can be faster than known performance bounds for the
averaging time with gossiping based on Metropolis weights by
a constant factor, see (Remark 12). Although our theoretical
results are limited to these special graph types, we also pro-
vide numerical experiments on several other graph topologies
which illustrate the performance improvements that can be
obtained within ER-based gossiping. In our experiments, the
effective resistances are first computed with the normalized D-
RK algorithm of [1] and then used for ER-based gossiping.Our
theoretical and numerical results show that ER weights are
especially useful in the presence of “bottleneck edges” or
clusters giving a graph cut leading to small graph conductance
values. In the extended version [15], we have also numerically
demonstrated that gossiping with ER weights performs better
than uniform and Metropolis weights on a class of random
graphs generated by the stochastic block model [16]. These
graphs frequently arise in real-world applications, ranging
from community detection to clustering, see e.g., [16] for a
detailed discussion.

On a different note, Aybat and Gürbüzbalaban [1] intro-
duced two methods to compute ER weights in a decentralized

manner: D-RK and normalized D-RK –both converging lin-
early. In our experiments at Section V, we have adopted the
normalized D-RK, upon proving that the convergence rate of
normalized D-RK is better than D-RK (see the extended ver-
sion of our paper in [15]); resolving a conjecture raised in [1].

Second, we consider the consensus optimization problem,
where the agents connected on a network aim to collab-
oratively solve the optimization problem minx∈Rp f(x) ,∑n
i=1 fi(x) where fi(x) : Rp → R is a cost function only

available to (node) agent i. This problem includes a number
of key problems in supervised learning including distributed
regression and logistic regression or more generally distributed
empirical risk minimization problems [17], [18]. The consen-
sus iterations are a building block of many existing state-of-
the-art distributed consensus optimization algorithms such as
the EXTRA and the distributed proximal gradient (DPGA-W)
[19] algorithms for consensus optimization. We show through
numerical experiments that our framework based on effective
resistances can improve the performance of the EXTRA and
DPGA-W algorithms for consensus optimization in terms of
the total number of communications required. We believe
our framework has far-reaching potential for improving the
communication efficiency of many other distributed algorithms
including distributed subgradient and ADMM methods, and
this will be the subject of future work.

Related work. For consensus problems, there are some
alternative methods to accelerate the commonly used
consensus protocols. The approach in [20] is a synchronous
algorithm combining Metropolis weights with a momentum
averaging scheme. There are other approaches based on
momentum averaging [21], [22], [23], min-sum splitting [24],
and Chebyshev acceleration [25], [26], [27] to accelerate the
convergence speed of the consensus methods. This paper is
orthogonal to the momentum averaging-based approaches
in the sense that it can be used in combination with the
aforementioned momentum-based schemes, we refer the
reader to the extended arXiv version of our paper [15] for
details. There are also works that provide lower bounds on the
distributed averaging time on a connected graph [13], [28],
[29], [30]. In particular, it follows from these lower bounds
that for the two-dimensional grid, even the best gossiping
weights will not lead to an accelerated performance compared
to baseline approaches. Indeed, for special graphs such as
the two-dimensional grid, cycle graph or the line graph, ER
weights will be similar to uniform weights due to the sym-
metries in the graph structure and consequently ER weights
will not improve the performance compared to uniform
weights. However, for graphs with asymmetries involving
clusters or bottleneck edges along which the graph cut has
low conductance, we expect ER weights lead to an improved
performance, based on our numerical and theoretical results.

Outline. In Section II, we give a brief overview of
randomized gossiping including uniform and ER-based
gossiping methods. In Section III, we state our main
contributions. In Section IV, we provide detailed arguments
establishing the main results stated in Section III. In Section V,
we provide numerical experiments illustrating that using ER
weights can improve the performance of EXTRA and DPGA-
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W algorithms for consensus optimization. In Section VI, we
provide concluding remarks. Finally, we present some of the
proofs and supporting results in Appendix A–B.

Notation. Let |S| denote the cardinality of a set S, b.c
denote the floor function and Z+ be the set of nonnegative
integers. We define di , |Ni| as the degree of i ∈ N , and
m , |E|. Throughout the paper, L ∈ R|N |×|N| denotes the
weighted Laplacian of G, i.e., Lii =

∑
j∈Ni

wij , Lij = −wij
if j ∈ Ni, and equals to 0 otherwise. The diameter of a graph
is D , maxi,j∈N d(i, j) where d(i, j) is the shortest path
on the graph between nodes i and j. The set Sn denotes the
set of n × n real symmetric matrices. We use the notation
Z = [zi]

n
i=1 where zi’s are either the columns or rows of the

matrix Z depending on the context. 1 is the column vector with
all entries equal to 1, and I is the identity matrix. We let ||x||p
denote the Lp norm of a vector x for p ≥ 1, and let ‖A‖F
denote the Frobenius norm of a matrix A. A square matrix
A is doubly stochastic if all of its entries are non-negative
and all its rows and columns sum up to 1. We say that a
square matrix A is weakly diagonally dominant if it’s diagonal
entries Aii satisfy the inequality |Aii| ≥

∑
j 6=i |Aij | for every

i. Let f and g be real-valued functions defined over positive
integers. We say f(n) = O(g(n)) if f is bounded above by g
asymptotically, i.e., there exist constants k1 > 0 and n0 ∈ Z+

such that f(n) ≤ k1 · g(n) for all n > n0. Similarly, we say
f(n) = Ω(g(n)) if there exist constants k2 > 0 and n0 ∈ Z+

such that f(n) ≥ k2 g(n) for every n > n0; and we say
f(n) = Θ(g(n)) if f(n) = Ω(g(n)) and f(n) = O(g(n)).
Finally, log(x) denots the natural logarithm of x, and ei is the
i-th standard basis vector in Rn for i = 1, 2, . . . , n.

II. PRELIMINARIES

A. Randomized gossiping

Here we give an overview of randomized gossiping methods
for the consensus problem. These methods can compute the
average of node values over a network in an asynchronous and
decentralized manner, for details see [13], [30].

Algorithm 1: Randomized Gossiping

1 Initialization: y0 = [y0
1 , y

0
2 , . . . , y

0
n]> ∈ Rn

2 for k ≥ 0 do
3 At time tk, i ∈ N wakes up w.p. pi = ri/

∑
j∈N rj

4 Picks j ∈ Ni randomly w.p. pj|i
5 yk+1

i ← yki +ykj
2 , yk+1

j ← yki +ykj
2

Let y0 ∈ Rn be a vector such that the i-th component y0
i

represents the initial value at node i ∈ N . The aim of the
randomized gossiping algorithms is to have each node compute
the average ȳ ,

∑n
i=1 y

0
i /n in a decentralized manner through

an iterative procedure. At every iteration k ∈ Z+, each node
i ∈ N possesses a local estimate yki of the average to be
computed and communicates with only randomly selected
neighbors to update its estimate. The setup is that each node
i ∈ N has an exponential clock ticking with rate ri > 0 where
the time between two ticks is exponentially distributed and
independent of other nodes’ clocks. A node wakes up when
its clock ticks. Since all the clocks are independent, if a node

wakes up at time tk ≥ 0, it is node i with probability (w.p.)
pi , ri/

∑
j∈N rj . Given that the node i wakes up at time tk,

the conditional probability that it picks one of its neighbors
j ∈ Ni to communicate with probability pj|i ∈ (0, 1), where
the probabilities {pj|i}j∈Ni

are design parameters satisfying∑
j∈Ni

pj|i = 1. When either i wakes up and picks j ∈ Ni
or vice versa, we say the edge (i, j) is activated. Once the
edge (i, j) is activated, nodes i and j exchange their local
variables yki and ykj at time tk and both compute the average
(yki + ykj )/2. This is illustrated in Algorithm 1 which admits
an asynchronous implementation – see, e.g., [13].

Assuming there are no self-loops for each i ∈ N , let

Pii , 0; Pij , pi pj|i, ∀ j ∈ Ni; Pij , 0, ∀j ∈ N \ Ni, (2)

where Pij is the (unconditional) probability that the edge
(i, j) is activated by the node i. By definition, we have∑
ij Pij ,

∑
i∈N

∑
j∈N Pij = 1. Let A(P ) denote an asyn-

chronous gossiping algorithm characterized by a probability
matrix P as in (5) for some set of probabilities {pi}i∈N and
{pj|i}j∈Ni

for i ∈ N . The performance of A(P ) is typically
measured by the ε-averaging time, defined for any ε > 0 as:

Tave(ε, P ) , sup
y0∈Rn\{0}

inf

{
k : P

(
‖yk − ȳ1‖
‖y0‖ ≥ ε

)
≤ ε
}
, (3)

see, e.g., [13]. Suppose (i, j) is activated by node i, then we
can write the update in Step 5 of the Algorithm 1 as

yk+1 = W (i,j)yk where W (i,j) , I − (ei − ej)(ei − ej)>

2
.

We also define

WP , EP [W (i,j)] =
∑
i,j∈N

PijW
(i,j), (4)

which is the expected value of the random iteration matrix
W (i,j) with respect to the distribution defined over i ∈ N
and j ∈ Ni. The following theorem from [13] shows that the
second largest eigenvalue of WP determines the ε-averaging
time.

Theorem 1 ([13, Theorem 3]). For a given A(P ), the sym-
metric matrix WP defined in (4) satisfies

0.5
log(ε−1)

log([λn−1(WP )]−1)
≤ Tave(ε, P ) ≤ 3

log(ε−1)

log([λn−1(WP )]−1)
,

where λn−1(WP ) is the second largest eigenvalue of WP .

This result makes the connection between the convergence
time of an asynchronous gossiping algorithm A(P ) and the
spectrum of the expected iteration matrix WP . It is therefore
of interest to design P through carefully choosing the
probabilities {pi}i∈N and {pj|i}j∈Ni

for i ∈ N in order to
get the best performance, i.e., the smallest ε-averaging time.

In this paper, we consider two different randomized gos-
siping algorithms: uniform gossiping and ER gossiping which
differ in how the probabilities {pi}i∈N and {pj|i}j∈Ni

for
i ∈ N are selected. In particular, based on Theorem 1,
we will study the second largest eigenvalue of the expected
iteration matrix WP corresponding to these two algorithms
and compare their ε-averaging times.
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B. Randomized uniform gossiping

In the randomized uniform gossiping, each node i wakes
up with equal probability pui = 1

n , i.e., using uniform clock
rates ri = r > 0 for i ∈ N . The superscript u stands for the
uniform choice of clock rates. Then, node i picks the edge
(i, j) with conditional probability puj|i = 1

di
for j ∈ Ni; thus,

Puij = pui p
u
j|i = 1/(ndi),

see, e.g., [31], [32]. One of the drawbacks of this approach
is that it can be quite slow over graphs with a high bottle-
neck ratio [33] where, intuitively speaking, some “bottleneck
edges” limit the spread of information over the underlying
graph. A classical example of a graph with a high bottleneck
ratio is the barbell graph. Barbell graphs are frequently studied
within the consensus problem literature as they constitute a
worst-case example in terms of both the mixing properties of
random walks [5, Section 5] and the performance of distributed
averaging algorithms (see, e.g., [4], [34]).

Barbell graphs consist of two complete subgraphs connected
with an edge (see Figure 1). Let Kñ denote a complete graph
with ñ nodes, we will be denoting a barbell graph with n = 2ñ
nodes by Kñ − Kñ. Let (i∗, j∗) be the edge that connects
the two complete subgraphs which we will be referring to as
the bottleneck edge. This is the only edge that allows node
values to be propagated between the two complete subgraphs;
therefore, how frequently it is sampled is a key factor that
determines the averaging time.

Fig. 1: Barbell graph Kñ −Kñ with n = 2ñ = 12 nodes

The probability of sampling the bottleneck edge (i∗, j∗),
with uniform weights can be computed explicitly:

Pui∗j∗ = Puj∗i∗ =
1

n

1

di∗
=

2

n2
. (5)

This implies that it takes Θ(n2) iterations in expectation
to activate this edge, which is the underlying reason why the
randomized uniform gossiping iterates converge slowly when
n is large on the barbell graph. The effect of bottleneck
edges on the performance of gossiping algorithms has been
recently studied experimentally by Aybat and Gürbüzbalaban
[1] on different topologies including the barbell and small-
world graphs. The authors proposed ER gossiping where the
edges are sampled with non-uniform probabilities propor-
tional to effective resistances {Rij}(i,j)∈E and the numerical
experiments in [1] showed that this can lead to significant
performance improvement over graphs with bottleneck edges,
such as barbell graphs. We next describe this method.

C. Effective-resistance (ER) gossiping

In the ER gossiping, each i ∈ N wakes up with probability
pri =

∑
j∈Ni

Rij

2
∑

(i,j)∈E Rij
, i.e., setting clock rate ri =

∑
j∈Ni

Rij

for i ∈ N , and node i picks (i, j) with conditional probability

prj|i =
Rij∑

j∈Ni
Rij

for all j ∈ Ni; thus, ER gossiping
corresponds to the unconditional probabilities

P rij = pri p
r
j|i =

Rij
2
∑

(i,j)∈E Rij
=

Rij
2(n− 1)

= P rji,

for all (i, j) ∈ E where the third equality follows from
Foster’s Theorem which says that

∑
(i,j)∈E Rij = (n − 1)

– see, e.g., [35]. This choice of sampling probabilities can
lead to bottleneck edges being more frequently sampled. We
illustrate this fact on the barbell graph (Kñ −Kñ): Note that
the unconditional probability of sampling the bottleneck edge
(i∗, j∗) is given explicitly as

P ri∗j∗ = P rj∗i∗ =
Ri∗j∗

2(n− 1)
=

1

2(n− 1)
, (6)

where n = 2ñ and we used the fact that Ri∗j∗ = 1 (see
the proof of Lemma 17 for the derivation of (6)). Hence,
comparing (5) and (6), we see that ER weights allow sampling
of the bottleneck edge (i∗, j∗) more frequently, by a factor of
Θ(n), than the uniform gossiping on Kñ − Kñ. Intuitively
speaking, this is the reason why ER gossiping can be efficient
on barbell graphs. Numerical experiments provided in [1]
support this intuition where ER gossiping outperforms uniform
gossiping over an unweighted barbell graph as well as small-
world graphs, which are random graphs that arise frequently
in real-world applications such as social networks.

Despite the empirical success of ER gossiping in practice,
theoretical results supporting its practical performance have
been lacking in the literature. The purpose of this paper is
to provide rigorous convergence guarantees for ER gossiping
algorithms on certain network topologies (see Section III for
our main results’ statements and Section IV for the proofs)
and to present further numerical evidence that ER gossiping,
beyond distributed averaging, can also improve the practical
performance of distributed methods for consensus optimization
(Section V). Indeed, in our analysis, we consider connected
graphs characterized by their diameter D ∈ Z+, barbell graphs
and c-barbell graphs which are generalizations of barbell
graphs. More specifically, a c-barbell graph (Kc

ñ) for c ≥ 2
is a path of c equal-sized complete graphs (Kñ) [36]. In the
special case, when c = 2, a c-barbell graph is equivalent to the
barbell graph. We show that for these graphs, ER gossiping has
provably better convergence properties than uniform gossiping
in terms of ε-averaging times. Precise results will be stated in
the next section.

III. MAIN RESULTS

In this section, we state our main theoretical results: We
provide performance bounds for the ER gossiping in terms
of ε-averaging time Tave(ε, P

r). Our results highlight the
performance improvements obtained with this approach.

Our first result concerns c-barbell graphs where we focus
on the ε-averaging times of uniform and ER gossiping algo-
rithms. To the best of our knowledge, for c-barbell graphs, an
analytical formula for the second largest eigenvalue WP is not
analytically available; therefore, in our analysis we estimate
this eigenvalue based on graph conductance techniques (see

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 03:55:58 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2022.3161201, IEEE
Transactions on Control of Network Systems

5

Section IV-A for details) which leads to the following lower
and upper bounds on the ε-averaging times.

Result 1. Given ε > 0, and ñ, c ∈ Z+ such that c ≥ 2,
asynchronous randomized gossiping algorithms A(Pu) and
A(P r) on a c-barbell graph with n = ñc satisfy

Θ(c2ñ3 log(1/ε)) ≤ Tave(ε, Pu) ≤ Θ(c4ñ6 log(1/ε)), (7)

Θ(c2ñ2 log(1/ε)) ≤ Tave(ε, P r) ≤ Θ(c4ñ4 log(1/ε)). (8)

These bounds from Result 1 for the c-barbell graph show
that, for any given precision ε > 0, using effective resistances
one can improve upper and lower bounds on the averaging
times by a factor of Θ(n) and Θ(n2), respectively.

The next result shows that for the case of barbell graphs
(when c = 2) the ER gossiping is in fact faster by a factor of
Θ(n). The proof idea is based on computing the eigenvalues
of WP r and WPu explicitly via exploiting symmetry group
properties of barbell graphs and showing that the lower bounds
in (7)–(8) are attained for c = 2.

Result 2. Given ε > 0 and n ∈ Z+, let n = 2ñ. The ε-
averaging times of asynchronous gossiping algorithms A(P r)
and A(Pu) on barbell graph Kñ −Kñ satisfy the equality:

Tave(ε, P
r) = Θ(1/n) Tave(ε, P

u).

A natural question is whether it is possible to further
improve the ER gossiping bounds for barbell graphs; however,
in the next result, we show that this is not possible as long
as the matrix P is symmetric –thus, ER gossiping is optimal.
Finally, we also obtain ε-averaging bounds for a more general
class of connected graphs depending on their diameters.

Result 3. Given ε > 0 and n ∈ Z+, let n = 2ñ. Among all
the gossiping algorithms A(P ) with a symmetric P on the
barbell graph, Kñ −Kñ, randomized ER gossiping leads to
Tave(ε, P

r) = Θ(n2 log(1/ε)), which is optimal with respect
to ε and n, and cannot be improved.

In a more general setting, let G be a connected graph with
diameter D ∈ Z+. The ε-averaging time of A(P r) satisfies

Tave(ε, P
r) = O(Dn3) log(ε−1).

Remark 2. The ε-averaging time of randomized gossiping
with lazy Metropolis weights2 on any graph isO(n3 log(1/ε));
while, for the barbell graph, Metropolis weights perform
similar to uniform weights; both require Θ(n3 log(1/ε)) time
which can be improved to Θ(n2 log(1/ε)) by ER gossiping.

Remark 3. If the diameter D ≤ 11, our bounds for ER
gossiping improve upon that of the randomized gossiping with
lazy Metropolis weights by a (small) constant factor (see
Remark 12). Note D = 3 for barbell graphs and D ≤ 11
is also reasonable for mid-size small-world graphs which are
random graphs that arise frequently in real-world applications
[37]. For instance, Cont et al. [37] show that the diameter D of
the randomized community-based small-world graphs admits
2 log(n) upper bound almost surely; hence, for these graphs
D ≤ 11 almost surely for n ≤ 240. Indeed, we empirically

2For lazy Metropolis weights see (15) and the paragraph after.

observe that randomly generated small-world graphs with
parameters n = {5k : k = 1, . . . , 5} and m = b0.2(n2 − n)c
using the methodology described in the numerical experiments
in Section V-A satisfy D ≤ 5 on average over 104 independent
and identically distributed (i.i.d.) samples.

IV. PROOFS OF MAIN RESULTS

In order for both uniform and ER gossiping methods to have
the same expected number of node wake-ups in a given time
period, one should have ri = r = 2(n−1)/n for i ∈ N within
the uniform gossiping model –recall that ri =

∑
j∈Ni

Rij
for i ∈ N for ER gossiping; hence, the rate of both Poisson
processes will be the same, i.e.,

∑
i∈N ri = 2(n−1). We note

that the number of clock ticks k ∈ Z+ can be converted to
absolute time easily with standard arguments (simply dividing
k by

∑
i∈N ri to get the expected time of the k-th tick),

e.g., see [13, Lemma 1]. This allows us to use the number of
iterations (clock ticks) to compare asynchronous algorithms.

It can be easily verified that for a given A(P ), the expected
iteration matrix defined in (4) satisfies

WP = I − 1
2D + 1

2 (P + P>), (9)

where D is a diagonal matrix with i-th entry
Di ,

∑
j∈Ni

(Pij +Pji). Note W (i,j) defined in Section II-A
is a doubly stochastic, non-negative and weakly diagonally
dominant matrix for all i ∈ N and j ∈ Ni; therefore, WP ,
which is a convex combination of W (i,j) matrices, is also
a doubly stochastic, non-negative and weakly diagonally
dominant matrix. It follows then from the Gershgorin’s Disc
Theorem (see e.g. [38]) that all the eigenvalues of WP

are non-negative. Moreover, since WP is a non-negative
doubly stochastic matrix, its largest eigenvalue λn(WP ) = 1.
Plugging in Pu and P r for P in this identity respectively
leads immediately to the following result.

Lemma 4. The matrices WP r = EP r [W (i,j)] and WPu =
EPu [W (i,j)] satisfy the following identities:

WPu = I − 1

2
Du +

Pu + (Pu)>

2
, WPr = I − 1

2
Dr + P r,

where Du and Dr are diagonal matrices satisfying [Du]ii ,∑
j∈Ni

(Puij+P
u
ji), [Dr]ii = 1

(n−1)Ri where Ri ,
∑
j∈Ni

Rij .

Recall the definition of Tave(ε, P ) given in (3), i.e., ε-
averaging time of an asynchronous gossiping algorithm A(P )
characterized by a probability matrix P . According to The-
orem 1, to compare uniform and ER gossiping methods
introduced in Section II, it is sufficient to estimate the second
largest eigenvalues of WP r and WPu and compare them. In
the rest of this section, we discuss estimating the second largest
eigenvalues of WP r and WPu based on the notions of graph
conductance and hitting times when the eigenvalues are not
readily available in closed form. We will also discuss some
examples for which we can explicitly compute the eigenvalues.

It is worth emphasizing that since the matrices WP r and
WPu are symmetric and doubly stochastic, they can both
be viewed as the probability transition matrix of a reversible
Markov Chain on the graph G, both with a uniform stationary
distribution. We saw that depending on the type of randomized
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gossiping, the sampling probabilities of the bottleneck edge
can differ significantly –by a factor of Θ(n) on barbell graphs
implied by (5) and (6). A similar effect can also be observed
for the Markov chains defined by the transition probability
matrices WPu and WP r . In fact, by an explicit computation
based on Lemma 4 (see Lemma 17 for details), we get

[WPu ]i∗j∗ =
2

n2
, [WP r ]i∗j∗ =

1

2(n− 1)
.

That is, the probability of moving from one complete subgraph
to the other is significantly larger (by a factor of Θ(n)) for the
Markov chain corresponding to WP r than that of the chain
with WPu . Intuitively speaking, this fact allows the ER-based
chain to traverse between the complete subgraphs faster when
n is large, leading to faster averaging over the nodes. This
will be formalized and proven in the next subsection, where we
study gossiping algorithms over barbell and c-barbell graphs.

A. Proof of Result 1 via conductance-based analysis

Probability transition matrices on graphs have been studied
well; in particular, there are some combinatorial techniques to
bound their eigenvalues based on graph conductance [5] as
well as some algebraic techniques that allow one to compute
all the eigenvalues explicitly exploiting symmetry groups of a
graph [39] as we shall discuss in Section IV-B.

The notion of graph conductance is tied to a transition
matrix W over a graph which corresponds to a reversible
Markov chain admitting an arbitrary stationary distribution
π. It can be viewed as a measure of how hard it is for the
Markov chain to go from a subgraph to its complement in
the worst case. The notion of graph conductance allows us
to provide bounds on the mixing time of the corresponding
Markov chain as we discuss below.

Definition 5 (Conductance). Let W be the transition matrix of
a reversible Markov chain3 on the graph G with a stationary
distribution π = {πi}ni=1. The conductance Φ is defined as

Φ(W ) , min
S⊂N :S,Sc 6=∅

∑
i∈S,j∈Sc πiWij

min{π(S), π(Sc)}
(10)

where π(S) ,
∑
i∈S πi.

Given a transition matrix W , the relation between conduc-
tance Φ(W ) and the second largest eigenvalue λn−1(W ) is
well-known and given by the Cheeger inequalities:

1− 2Φ(W ) ≤ λn−1(W ) ≤ 1− Φ2(W ), (11)

–see, e.g., [40, Proposition 6]. Therefore, larger conductance
leads to faster averaging, i.e., shorter Tave(ε, P ), in light
of Theorem 1. In particular, we can get lower and upper
bounds on the averaging time for both uniform and ER
gossiping methods using the Cheeger’s inequality. We study
the performance bounds for these gossiping algorithms over c-
barbell graphs; and our next result shows Θ(n) improvement
on the conductance of effective resistance-based transition
probabilities WP r compared to uniform probabilities WPu

on a c-barbell graph with n = cñ nodes.

3That is πiWij = πjWji for all i, j ∈ N .

Proposition 6. Given ñ, c ∈ Z+ such that c ≥ 2, consider
the two Markov chains on the c-barbell graph with n = ñc
nodes defined by the transition matrices WPu and WP r . Let
c∗ =

(
b c2c
)−1

. The conductance values are given by

Φ(W̄Pu) =
c∗
cñ3

, Φ(W̄P r ) =
c∗

2ñ(cñ− 1)
. (12)

Remark 7. Since a barbell graph Kñ−Kñ is a special case
of a c-barbell graph with c = 2 and n = 2ñ, Proposition 6
implies that Φ(WPu) = 4

n3 and Φ(WP r ) = 1
n(n−1) .

Given the transition matrix W , by taking the logarithm of
the Cheeger inequalities in (11), for Φ(W ) ≤ 1/2, we obtain

− log(1−Φ2(W )) ≤ log(λ−1
n−1(W )) ≤ − log(1− 2Φ(W )). (13)

Then, choosing W = WPu and W = WP r above, applying
Theorem 1 and Proposition 6 and noting − log(1 − x) ≈ x
for x close to 0, leads to the lower and upper bounds on the
averaging time of uniform and ER gossiping algorithms as
shown in Result 1 of our main results section (Section III).

Although this analysis is also applicable to other graphs with
low conductance, it does not typically lead to tight estimates,
i.e., the lower and upper bounds do not match in terms of their
dependency on n. In the next section, we show that for the
case of barbell graphs, we get tight estimates on the averaging
time by computing the eigenvalues of the averaging matrices
WP r and WPu explicitly. More precisely, we will show in
Proposition 9 that the lower bounds in (7)–(8) are tight for c =
2 in the sense that Tave(ε, Pu) = Θ(n3) and Tave(ε, P

r) =
Θ(n2) and the effective resistance-based averaging is faster by
a factor of Θ(n) which will imply Result 2.

B. Proof of Result 2 via spectral analysis

Eigenvalues of probability transition matrices defined on
barbell graphs are studied in the literature. Consider the
edge-weighted barbell graph Kñ − Kñ with n = 2ñ nodes,
where w = [wij ](i,j)∈E is the vector of edge weights that
have positive entries. Suppose each node has a self-loop,
e.g., see Fig. 2. Let (i∗, j∗) be the edge that connects the
two complete subgraphs. The result [39, Prop. 5.1] gives an
explicit formula for the eigenvalues of a probability transition
matrix W with transition probabilities proportional to edge
weights, i.e., Wij = wij/

∑
j∈Ni

wij where wij satisfy the
following assumptions: wi∗i∗ = wj∗j∗ = 0, wi∗j∗ = A,
wi∗j = wj∗i = B for all j ∈ Ni∗ \ {j∗} and i ∈ Nj∗ \ {i∗},
wij = C for all (i, j) in each Kñ such that i 6= j and
i, j /∈ {i∗, j∗}, and wii = D for i ∈ N \ {i∗, j∗} for
some A,B,C,D > 0. Note we cannot immediately use this
result to compute the eigenvalues of the transition matrices
WP r and WPu defined in Lemma 4. Mainly because all
the diagonal entries of WP r and WPu being strictly positive
breaks the wi∗i∗ = wj∗j∗ = 0 assumption of [39, Prop. 5.1].
In Proposition 8, we adapt [39, Prop. 5.1] to our setting with
some minor modifications to allow wi∗i∗ = wj∗j∗ = G for
any G > 0 so that it becomes applicable to WP r and WPu

4.

4We refer the reader to extended arXiv version of our paper [15] for further
details of the proof.
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Fig. 2: An edge-weighted barbell graph Kñ −Kñ with edge
weights A,B,C,D,G > 0 for ñ = 4.

Proposition 8 (Generalization of Proposition 5.1 in [39]).
Consider the edge-weighted barbell graph Kñ − Kñ with
n = 2ñ nodes. Let (i∗, j∗) be the edge that connects the
two complete subgraphs. Assume that weights are of the form
wi∗i∗ = wj∗j∗ = G, wi∗j∗ = A, wi∗j = wj∗i = B for all
j ∈ Ni∗ \ {j∗} and i ∈ Nj∗ \ {i∗}, wij = C for all (i, j) in
each Kñ such that i 6= j and i, j /∈ {i∗, j∗}, and wii = D
for i ∈ N \ {i∗, j∗} for some A,B,C,D,G > 0. Consider
the transition matrix W associated to this graph with entries
Wij = wij/

∑
j∈Ni

wij , then the eigenvalues of W are

• λa , 1 with multiplicity one,
• λb , −1 + A+G

A+G+E + F
F+B with multiplicity one,

• λc , D−C
B+F with multiplicity n− 4,

• λ± , 1
2

(
F

B+F + G−A
A+E+G ±

√
S
)

,

where E , (ñ− 1)B, F , D + (ñ− 2)C and S ,
(

F
B+F +

G−A
A+E+G

)2 − 4(FG−BE−AF )
(B+F )(A+E+G) .

Based on this result, in Proposition 9, we characterize the
second largest eigenvalue of the transition matrices WPu and
WPu – the proof can be found in the Appendix.

Proposition 9. Consider Markov chains on the barbell graph
Kñ−Kñ with transition matrices WP r and WPu . The second
largest eigenvalues of these matrices are given by

λn−1(WP r ) = 1−Θ(
1

n2
), λn−1(WPu) = 1−Θ(

1

n3
).

Result 2 follows as a direct consequence of Proposition 9
and Theorem 1. Thus, we establish that that averaging time
with resistance weights is Θ(n) faster on a barbell graph.

C. Proof of Result 3 via hitting and mixing times

Before giving a formal definition of the ε-mixing time,
we introduce the total variation (TV) distance between two
probability measures p and q defined on the set of nodes
N = {1, 2, . . . , n}. TV distance between p and q is defined
as ‖p−q‖TV , ‖p−q‖1/2. Given a Markov chainM with a
probability transition matrix W and stationary distribution π,
ε-mixing time is a measure of how many iterations are needed
for the probability distribution of the chain to be ε-close to the
stationary distribution in the TV distance. A related notion is
the hitting time which is a measure of how fast the Markov
chain travels between any two nodes.

Definition 10. (Mixing time and hitting times) Given ε > 0
and a Markov chain with probability transition matrix W and
stationary distribution π, the ε-mixing time is defined as

Tmix(ε,W ) , inf
k≥0

{
sup

p≥0:‖p‖1=1

‖(W k)>p− π‖TV ≤ ε
}
,

and the hitting time HW (i → j) is the expected number of
steps until the Markov chain reaches j starting from i.

Mixing-times and averaging times are closely related. In
fact, given probability transition matrix W , it is known that
Tave(ε,W ) and Tmix(ε, W̃ ) admit the same bounds up to
n log n factors [13, Theorem 7] for W̃ = I+W

2 .5 Hence,
designing algorithms with a smaller mixing time, often leads to
better algorithms for distributed averaging (see also [30]). It is
also known that mixing time is closely related to hitting times
[41, Theorem 1.1]. Next, we show the first part of Result 3,
i.e., Tave(ε, P r) = Θ(n2 log(1/ε)) is optimal among all
A(P ) with a symmetric P . Note P is symmetric implies that
it is doubly stochastic. For large n and doubly stochastic P ,
by [13, Corollary 1], we have Tave(ε, P ) = Θ

(
n log(1/ε)

1−λn−1(P )

)
.

On the other hand, Roch proved in [28, Section 3.3.1] that
any symmetric doubly stochastic P matrix on the barbell
graph with n nodes satisfies 1

1−λn−1(P ) = Ω(n). Inserting this
estimate into the expression for the averaging time, we obtain
Tave(ε, P ) = Ω

(
n2 log(1/ε)

)
for any A(P ) with symmetric

P on barbell graphs. We conclude that the averaging time of
the ER-based gossiping on the barbell graph, which satisfies
Tave(ε, P

r) = Θ(n2 log(1/ε)) by Proposition 9 and Theorem
1, is optimal with respect to its dependency to n and ε among
all symmetric choices of the P matrix.

Next, given any connected graph G, we obtain a bound on
the second largest eigenvalue of the WP r and show that the
averaging time with effective resistance weights Tave(ε, P r) =
O
(
Dn3 log(1/ε)

)
where D is the diameter of the graph.

Theorem 11. Let G be a graph with diameter D. The second
largest eigenvalue of WP r satisfies λn−1(WP r ) ≤ 1− 1

6Dn3 .

Proof: It follows from our discussion in Section IV that
WP r is non-negative and doubly stochastic (see the paragraph
before Lemma 4). Therefore, for analysis purposes, we can
interpret WP r as the transition matrix of a Markov chain M
whose stationary distribution π is the uniform distribution. Our
analysis is based on relating the eigenvalues of WP r matrix
to the hitting times of the Markov chain M where we follow
the proof technique of [42, Lemma 2.1]. By Lemma 13 from
the appendix, we get HWPr

(i→ j) ≤ n 2(n−1)
Rij

if j ∈ Ni. For
any graph, it is also known that6 mini,j Rij ≥ 2

n . Therefore,
for any neighbors i and j, HWPr

(i → j) ≤ n2(n − 1). For
any two vertices i and j not necessarily neighbors, i 6= j,
let v0(= i), v1, . . . , v`(= j) be the shortest path connecting
i and j. Then, by the subadditivity property of hitting times,
for any i, j ∈ N , we obtain HWPr

(i → j) ≤ `n2(n − 1) ≤
Dn2(n− 1). It follows from an analysis similar to [44] that

Tmix(
1

8
,WP r ) ≤ 8 max

i,j∈{1,...,n}
HWPr

(i→ j) + 1 ≤ 8Dn3. (14)

5Note [13, Theorem 7] uses absolute time whereas we used number of node
wake-ups to define ε-averaging and ε-mixing times; therefore, we multiplied
log(n) factor in [13, Theorem 7] by

∑
i∈N ri = 2(n−1) to convert absolute

times to number of node wake-ups.
6This follows directly from the Rayleigh’s monotonicity rule [6] which says

that if an edge is removed from a graph, effective resistance on any edge can
only increase. Therefore, the complete graph provides a lower bound for Rij

where Rij = 2/n (see also [43]).
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From [44, eqn. (12.12)], we also have

Tmix(
1

8
,WPr ) ≥

(
1

1− λn−1(WPr )
− 1

)
log(4).

Combining this with the estimate (14) implies directly
λn−1(WP r ) ≤ 1− 1/(6Dn3), which proves the claim.

Metropolis vs ER gossiping: Given a connected G =
(N , E), suppose there are no self-loops, i.e., (i, i) 6∈ E for
i ∈ N . Uniform weights puj|i = 1

di
can result in slow mixing

on some graphs such as the barbell graph (see Proposition 9)
or other graphs like lollipop graphs [5] which have both high
degree and low degree nodes together. A popular alternative
to uniform weights {puj|i}j∈Ni for i ∈ N is the Metropolis
weights defined as

Mij ,


1

max(di,dj)
if (i, j) ∈ E ,

1−
∑

j∈Ni\i
1

max(di,dj)
if i = j,

0 else.

(15)

Let M denote the matrix whose entries are the Metropolis
weights Mij . The weights determined by the matrix M̃ ,
I+M

2 are also popular in the distributed optimization practice
[42] which is referred to as the lazy version of the Metropolis
weights. The matrix M̃ is symmetric and positive semi-
definite, while the matrix M may have negative eigenvalues
that can be close to −1 (therefore, using M can be problematic
for the convergence of some distributed algorithms, see e.g.
[45]). Combined with uniform wake-up of nodes, this leads
to the following wake-up probabilities for the Metropolis
weights based system: P m̃ij , 1

nM̃ij , and the associated matrix
WP m̃ , EP m̃ [W (i,j)] =

∑
ij P

m̃
ij W

(i,j). In particular, for
any connected graph G = (N , E) with n nodes, we have
the following guarantees from [42, Lemma 2.1] on the lazy
Metropolis weights:

max
i,j∈N

H
M̃

(i→ j) ≤ 12n2, λn−1(M̃) ≤ 1− 1

72n2
. (16)

By (9), we have also WP m̃ = (1 − 1
n )I + 1

nM̃. Therefore,
from (16), we get the bound λn−1(WP m̃) ≤ 1 − 1

71n3 ,
for any connected graph G. Therefore, we conclude from
Theorem 1 that the ε-averaging time of Metropolis weights-
based gossiping on any graph is O(n3 log(1/ε)) – again using
the fact that − log(1− x) ≈ x for x close to 0. That said, for
barbell graphs, Metropolis weights perform similar to uniform
weights; both require Θ(n3 log(1/ε)) time which is improved
by the effective resistance-based weights to Θ(n2 log(1/ε)).
This completes the proof of Result 3.

Remark 12. Comparing the inequalities λn−1(WP r ) ≤ 1 −
1

6Dn3 and λn−1(WP m̃) ≤ 1 − 1
71n3 , we see that for D ≤

11, the upper bound on λn−1(WP r ) will be smaller than the
upper bound for λn−1(WP m̃). Therefore, performance bounds
obtained on the ε-averaging time through Theorem 1 for ER
weights will be better than those of Metropolis weights by a
(small) constant factor for D ≤ 11.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the benefits of using ef-
fective resistances for solving the consensus problem and
also within DPGA-W [19] and EXTRA [45] algorithms for
consensus optimization.

A. Consensus exploiting effective resistances

Gossiping algorithms have been studied extensively and
there have been a number of approaches [30], [46], [47],
[48], [49], [50], [51]. In light of Theorem 1, among all the
algorithms A(P ) with a symmetric P , the matrix P opt that
minimizes the second largest eigenvalue, i.e. λn−1(WP ), is
the fastest. The gossiping algorithm A(P opt) with optimal
choice of the probability matrix P opt is called the Fastest
Mixing Markov Chain (FMMC) in the literature [29]. In
[13], Boyd et al. propose a distributed subgradient method
to compute the matrix P opt. This method requires a decaying
step size and computation of the subgradient of the objective
λn−1(WP ) with respect to the decision variable P at every
iteration which itself requires solving a consensus problem at
every iteration. This can be expensive in practice in terms of
average number of communications required per node, and
its convergence to P opt can be slow with at most sublinear
convergence rate [13]. In contrast, ER probabilities P r are
optimal for some graphs (such as the barbell graph, see Result
3) and can be computed efficiently with the normalized D-RK
algorithm (see the arXiv version of our paper [15] for details)
which admits linear convergence guarantees. Therefore, ER
weights can serve as a computationally efficient alternative
to optimal weights for consensus. For illustrating this point,
we compare communication requirements per node for ER
gossiping and FMMC on barbell and small-world graphs. This
comparison consists of two stages: (i) pre-computation stage
(where the probability matrices P r and P opt are computed
up to a given tolerance) (ii) asynchronous consensus stage
(where we run ER and FMMC with probability matrices P r

an P opt obtained from the previous stage to solve a consensus
problem).

First, we implement subgradient method with decaying step
size αk = R/k from [13] where R is tuned to the graph
to achieve the best performance and stop the computation
of matrix of FMMC at step k if the iterate Pk satisfies
||Pk−P opt||F
||P opt||F ≤ ε1 where ε1 is the given precision level.7

Similarly, we compute L† for ER and stop the normalized
D-RK algorithm when the iterate Xk at step k satisfies
‖Xk−L†‖F
‖L†‖F ≤ ε1. Since the distributed subgradient method

of [13] is based on synchronous computations, we also im-
plemented the normalized D-RK algorithm with synchronous
computations for fairness of comparison. We define the com-
munication for a node as a contact with its neighbour either
to compute an average of their state vectors or to update the
matrix Pk at any iteration.

We compared both of the algorithms based on their
communication performances on stage-i an stage-ii. In
particular, we considered the number of communications
required per node to obtain the matrix Pk for ER and FMMC
at stage-i and at stage-ii, we generated 1000 instances of
y0
i to start consensus and compare the average number of

7The optimal probability matrix P opt which serves as a baseline in the
stopping criterion is estimated accurately by solving the semi-definite program
(SDP) [13, eqn. (53)] directly using a centralized method, MOSEK, and
computations required to solve this SDP is not counted as a part of the
communication cost we report for FMMC in Tables I-II.
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communications per node required to achieve yki satisfying
||yk−ȳ||
||ȳ|| ≤ ε2 where ε2 is the tolerance level. For the barbell

graph, the initial state vector y0
i for consensus is sampled

from the normal distribution N(500, 10) if i ∈ NL and from
N(−500, 10) if i ∈ NR where tolerance levels are set to
be ε1 = ε2 = 0.01. We also compare ER and FMMC on
small-world graphs while the number of nodes n is varied
with an edge density 2m

n2−n ≈ 0.4 where m is the total
number of edges. On small-world graphs we generated 1000
instances of y0

i drawn from N(0, 100) and stopped algorithms
whenever tolerance levels ε1 = ε2 = 0.05 are obtained or the
number of communications per node exceeded 106.

Graph Method Comm. per node
(stage-i)

Comm. per node(
stage-ii

)
K5 −K5 ER 2.9 ×103 81

FMMC 1.28 ×105 65
K10 −K10 ER 8.4 ×104 198

FMMC 3.93 ×105 130
K20 −K20 ER 2.6 ×106 433

FMMC 6.4 ×106 251
K25 −K25 ER 7.9 ×106 566

FMMC > 107 287

TABLE I: FMMC vs ER on the barbell graph.

Results for both of the graphs are reported in Tables I
and II in which we compare the average communication per
node in the pre-computation (stage-i) and in the consensus
computation (stage-ii) where results are averaged over 1000
runs. On barbell graph, we observe that FMMC requires less
communications at the second (consensus) stage as expected
(as FMMC is based on the optimal matrix P opt), but in terms
of total communications (stage-i + stage-ii) ER outperforms
FMMC. In the case of small-world graphs, computation of
P opt exceeded the maximum communication limit which
caused FMMC to perform worse than ER in stage-ii (since
the stage-i solution is not a precise approximation of P opt

anymore). We can say that ER performs better than FMMC
in terms of total communications for both graph types.

Graph Method Comm. per node
(stage-i)

Comm. per node(
stage-ii

)
n = 5 ER 6.4 41

FMMC 41075.2 84
n = 10 ER 16.8 130

FMMC > 106 143
n = 20 ER 19.20 315

FMMC > 106 370
n = 25 ER 20.00 403

FMMC > 106 512

TABLE II: FMMC vs ER on the small-world graph

Fastest quantum gossiping (FQG), proposed by Jafarizadeh
in [52], is an alternative key approach for choosing the optimal
wake-up (pfi ) and conditional communication probabilities
(pfj|i) at each agent i ∈ N in a way to optimize the spectral
gap of the expected iteration matrix. It requires solving an SDP
similar to FMMC; however, it is a more general approach
than FMMC as it can also support non-uniform wake-up
probabilities. We compared our ER-based gossiping with FQG

and Metropolis gossiping8 on several graph topologies; due to
the space limits, we provided the details in the extended arXiv
version of our paper [15]. Our results suggest that the Metropo-
lis weights require no pre-computation but they are the slowest
in terms of the spectral gap. ER is faster than Metropolis but
slower than FQG; but the advantage is that computing ER
weights require less CPU time and also ER weights can be ef-
ficiently computed with a linearly convergent decentralized al-
gorithm. Further experiments demonstrating the advantages of
ER-based gossiping over gossiping with uniform and Metropo-
lis weights can be found in the arXiv version of our paper [15].

B. Effective resistance-based DPGA-W and EXTRA
We implemented our ER-based communication framework

into the state of the art distributed algorithms: DPGA-W [19]
and EXTRA [45] to solve regularized logistic regression
problems over a barbell graph Kñ −Kñ with n = 2ñ nodes:
We minimize minx∈Rp

∑n
i=1 fi(x) with

fi(x) , 1
2n
‖x‖2 + 1

Ns

Ns∑
`=1

log(1 + exp−bi`a
>
i`x), (17)

where Ns is the number of samples at each node,
{(ai`, bi`)}Ns

`=1 ⊂ Rp × {−1, 1} for i ∈ N denote the set of
feature vectors and corresponding labels. We let p = 20 and
Ns = 5. For each n ∈ {20, 40} and σ ∈ {1, 2}, we randomly
generated 20 i.i.d. instances of the problem in (17) by sampling
ai` ∼ N(1, σ2I) independently from the normal distribution
and setting bi` = −1 if 1/(1 + e−a

>
i`1) ≤ 0.55 and to +1

otherwise. Both algorithms are terminated after 104 iterations.
For benchmark, we also solved each instance of (17) using
MOSEK9. We initialized the iterates uniformly sampling each
p components from the [500, 510] interval for nodes in one
Kñ, and from [−500,−490] for nodes in the the other Kñ.
The results for n = 20 and n = 40 are displayed in Fig. 3
and Fig. 4, respectively. We plotted relative suboptimality∥∥xk − x∗

∥∥ / ‖x∗‖, function value sequence
∑
i∈N fi(x

k
i ) for

the range [0, 105], and consensus violation
∥∥xk − x̄k

∥∥ /√n,
where k denotes the (synchronous) communication round
counter – in each communication round neighboring nodes
communicate among each other synchronously once – and
xk = [xki ]i∈N denotes the kth iterate; moreover, x̄k = 1⊗ x̄k,
x̄k =

∑
i∈N x

k
i /n, x∗ , 1 ⊗ x∗ and x∗ is the minimizer to

(17), where ⊗ denotes the Kronecker product.
Both DPGA-W10 and EXTRA uses a communication matrix

W that encodes the network topology. DPGA-W uses node-
specific step-sizes initialized at ≈ 1/Li for i ∈ N , where
Li denotes the Lipschitz constant of ∇fi, we adopted the
adaptive step-size strategy described in [19, Sec. III.D]; and
for EXTRA, we choose the constant step-size, common for all
nodes, as suggested in [45], i.e., we choose the step size as
2λmin(W̃ )/maxi∈N Li, where W̃ = (I +W )/2.

For both algorithms, we compared two choices of W : Wu

based on uniform edge weights, and W r based on effective

8In the Metropolis-based gossiping approach, each node i wakes up with
uniform probabilities (i.e. pmi = 1

n
) and communicates with one of its

neighbors j ∈ Ni \ {i} with probability pm
j|i = 1

max{di,dj}
.

9http://docs.mosek.com/8.0/toolbox/index.html
10In DPGA-W stepsize parameter γi is set to 1/ ‖ωi‖ for i ∈ N – see [19].
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Fig. 3: The suboptimality, function value, and the difference from
average versus the number of communication rounds, based on
logistic regression using DPGA-W and EXTRA algorithms with
resistance weights and uniform probability weights on barbell graph
K10−K10. Data is sampled using σ = 1 (Left) and σ = 2 (Right).

Fig. 4: The suboptimality, function value, and difference from
average versus the average number of communication rounds, based
on logistic regression using DPGA-W and EXTRA algorithms with
resistance weights and uniform probability weights on K20 −K20.
Data is sampled using σ = 1 (Left) and σ = 2 (Right).

resistances. In DPGA-W, the graph Laplacian is adopted for
uniform weights, i.e., Wu = Wu,DPGA-W , L, while for the
ER-based weights, we set W r = W r,DPGA-W where W r,DPGA-W

ii ,∑
j∈Ni

Rij for i ∈ N and W r,DPGA-W

ij = −Rij for (i, j) ∈ E
and 0 otherwise. For EXTRA, Wu,EXTRA = I − L/τ where

τ = λmax(L)/2+ε where λmax denotes the largest eigenvalue;
on the other hand, W r,EXTRA = I − W r,DPGA-W/τ where τ =
λmax(W r,DPGA-W)/2 + ε for ε = 0.01.

Figures 3 and 4 illustrate the performance comparison
of both DPGA-W and EXTRA algorithms with effective
resistance and uniform weights in terms of suboptimality,
convergence in function values and consensus violation for the
barbell graph K10 − K10 and K20 − K20 respectively – the
reported results are averages over the 20 problem instances.
The subfigures on the left of Figures 3 and 4 are for noise
level σ = 1 whereas those on the right are for σ = 2. In
Figures 3 and 4, we observe that using ER weights improves
upon the uniform weights for both EXTRA and DPGA-W
methods consistently to solve the logistic regression problem
in terms of suboptimality, function values and consensus
violation significantly. We also observe that with noisier data,
DPGA-W works typically faster than EXTRA in terms of
function values and suboptimality. This is because when noise
level σ gets larger, the local Lipschitz constant Li of the nodes
demonstrate higher variability, and DPGA-W adapts to this
variability as it uses a step size that is different at each node
in a way to adapt to Li, whereas EXTRA uses a constant step
size that is the same for all nodes. On the other hand, in terms
of consensus violation, we see that EXTRA with ER weights
typically outperforms DPGA-W with ER weights.

VI. CONCLUSIONS

We obtained a number of theoretical guarantees for gos-
siping with ER weights on c-barbell and barbell graphs,
and also on arbitrary graphs with a small diameter. Our
theoretical results are limited to these special graphs; however,
we also showed that these methods are effective for solving the
consensus problem in practice over barbell graphs and small-
world graphs. We provided numerical experiments which
demonstrate that using ER gossiping within EXTRA and
DPGA-W methods improves their practical performance in
terms of communication efficiency.

APPENDIX A
PROOFS OF PROPOSITIONS 6 AND 9

Proof of Proposition 6: The proof is based on finding the
subset S of the vertex set of c-barbell graph that determines the
conductance, i.e. that solves the minimization problem (10).
First, for any given G = (N , E), the conductance of a subset
S ⊂ N with respect to the probability transition matrix W is

ΦS(W ) ,
1

π(S)

∑
i∈S,j∈SC

πiWij . (18)

Eq. (10) implies Φ(W ) = minS⊂N :π(S)∈(0,1/2] ΦS(W ).11

With slight abuse of notation, for a subgraph H0 with a vertex
set S0, we define ΦH0

(W ) , ΦS0
(W ). We say that a vertex

set S ⊂ N on graph G = (N , E , w) is a one-cut set if its
complement N \ S is a connected subgraph of G. Similarly,
we define two-cut set S2 ⊂ N to be a set whose complement

11This follows after straightforward computations since the Markov chain
with transition matrix W and stationary distribution π is reversible, i.e.,
π(S)ΦS(W ) = π(Sc)ΦSc (W ) for any S with π(S) ∈ (0, 1).
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N\S2 consists of two disjoint non-empty connected subgraphs
H1 and H2 of G. We define

G1 , the left-most clique of the c-barbell graph. (19)

For c0 ∈ [2, c], we also define

Gc0 , c0-barbell subgraph that includes the left-most
c0 cliques of the c-barbell graph. (20)

Note that matrices WPu and WP r are symmetric and Markov
chains with these transition matrices have the uniform distri-
bution as a stationary distribution. Therefore, Lemmas 14 and
15 provided in Appendix B imply that a set S with minimal
conductance should be a one-cut set and has to be given by
the vertices of a subgraph Gc0 for some c0 ∈ [1, c] for both
WPu and WP r . The conductance of one-cut subgraphs with
respect to these transition matrices can be computed explicitly
(see Proof of Lemma 15 for details):

ΦGc0 (WPu) =
1

c0

1

cñ3
, ΦGc0 (WP r ) =

1

2c0ñ(cñ− 1)
. (21)

Both of the expressions at (21) are minimized for the choice
of c0 = b c2c. Therefore, the minimal conductance is attained
for the subgraph Gb c2 c. Plugging c0 = b c2c into the expressions
above yields the graph conductance values at (12). The bounds
(7) and (8) follow from Theorem 1 and inequalities (13).
Proof of Proposition 9: It follows from Corollary 16 and
Lemma 17 in Appendix B that the second largest eigenvalues
of W̄Pu and W̄P r are given by: λn−1(WPu) = 1− 8

n2(n−2) +

Θ( 1
n4 ) and λn−1(WP r ) = 1− 1

n(n−1) −Θ( 1
n3 ). This implies

directly λn−1(WP r ) = 1 − Θ( 1
n2 ) and λn−1(WPu) = 1 −

Θ( 1
n3 ), which completes the proof.

APPENDIX B
SUPPORTING RESULTS

Lemma 13. [53, Eqn. (2.2)] Let W be the transition matrix
of a Markov chain with stationary distribution π. Let j be a
neighbor of i, i.e. j ∈ Ni, then HW (i→ j) ≤ (πjWji)

−1.

Lemma 14. Consider a reversible Markov chain on a c-
barbell graph with a uniform stationary distribution. Let H0

be a subgraph of G whose vertex set is a non-empty two-cut set
S0 satisfying |S0| ≤ |N |2 . Then, there exists another subgraph
H̃0 of G such that ΦH̃0

(W ) < ΦH0(W ).

Proof: Let C1 and C2 be the vertex sets of two disjoint non-
empty connected subgraphs within N \ S0 satisfying N =

C1∪S0∪C2. Note C1∩C2 = ∅ implies either |C1∪S0| ≤ |N |2

or |C2| ≤ |N |2 . Since the transition matrix W of a reversible
Markov chain with a uniform stationary distribution is sym-
metric, the definition (18) implies ΦC1∪S0(W ) = ΦC2

(W ).
Without loss of generality, choose H̃0 to be the subgraph with
vertices S̃0 = C1 ∪ S0 s.t. |C1 ∪ S0| ≤ |N |

2 (otherwise, pick
the subgraph with vertex set C2 instead), then

ΦH0 (W ) =
1

|S0|

( ∑
i∈S0,j∈C1

Wij +
∑

i∈S0,j∈C2

Wij

)
>

1

|S0|
∑

i∈S0,j∈C2

Wij >
1

|S̃0|

∑
i∈S̃0,j∈C2

Wij = ΦH̃0
(W ),

which proves Lemma 14.
We will also need the following lemmas, whose proofs can

be founded in the extended arXiv version [15] of our paper; the
details of the proofs are omitted here due to space limitations.

Lemma 15. Consider a Markov chain on a c-barbell graph
with a probability transition matrix W . If W = WPu or W =
WP r , then for any subgraph H0 having a one-cut vertex set
S0, there exists a subgraph Gc0 for some c0 ∈ [1, c] such that
ΦGc0 (W ) ≤ ΦH0

(W ) where Gc0 is defined by (19) and (20).

Corollary 16. Under the setting of Proposition 8, assume that
the weight matrix w is normalized, i.e.,

∑n
j=1 wij = 1 for all

i ∈ N . Then W = w is doubly stochastic and the eigenvalues
of W are λa = 1 with multiplicity one, λb = −1+(A+G)+F
with multiplicity one, λc = D − C with multiplicity 2ñ − 4,
and λ± = 1

2

(
F +G−A ±

√
S
)

, where A,B,C,D,E, F,G
and S are as in Proposition 8. Moreover, λ+ satisfies

λ+ =
1

2

(
F +G−A +

√
(F −G+A)2 + 4BE

)
, (22)

and is the second largest eigenvalue, i.e. λn−1(W ) = λ+.

Lemma 17. Consider the setting of Proposition 8:
(i) If W = WPu , then Proposition 8 applies with A =

Au, B = Bu, C = Cu, D = Du and G = Gu

where Au = 2
n2 , Bu = n−1

n2(0.5n−1) , Cu = 2
n(n−2) ,

Du = n3−3n2+2n+2
n2(n−2) , and Gu = 1 − n+1

n2 . The second
largest eigenvalue of WPu is given by λn−1(W̄Pu) =

1 − n2+n−8
2n2(n−2) + 1

8

√
Sun = 1 − 8

n2(n−2) + Θ( 1
n4 ), for

Sun = 4n3+24n2−156n+192
(0.5n−1)2n3 .

(ii) If W = WP r , then Proposition 8 applies with A = Ar,
B = Br, C = Cr, D = Dr and G = Gr where Ar =

1
2(n−1) , Br = 2

n(n−1) , Cr = 2
n(n−1) , Dr = n2−2n+2

n(n−1) ,
and Gr = 1 − 1.5n−2

n(n−1) . Moreover, the second largest
eigenvalue of WPu is given by λn−1(W̄P r ) = 1− 1

(n−1)+
1
2

√
Srn = 1− 1

n(n−1) −Θ( 1
n3 ), for Srn = 4n−8

n(n−1)2 .
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