2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC) | 978-1-6654-2135-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/ASP-DAC52403.2022.9712554

3C-4

SYNTHNET: A High-throughput yet Energy-efficient
Combinational Logic Neural Network

Tianen Chen, Taylor Kemp*, and Younghyun Kim
University of Wisconsin—-Madison
{tianen.chen, tkemp, younghyun.kim}@wisc.edu

Abstract—In combinational logic neural networks (CLNNs),
neurons are realized as combinational logic circuits or look-up
tables (LUTs). They make make extremely low-latency inference
possible by performing the computation with pure hardware
without loading weights from the memory. The high throughput,
however, is powered by massively parallel logic circuits or LUTs
and hence comes with high area occupancy and high energy
consumption. We present SYNTHNET, a novel CLNN design
method that effectively identifies and keeps only the sublogics that
play a critical role in the accuracy and remove those which do not
contribute to improving the accuracy. It captures the abundant
redundancy in NNs that can be exploited only in CLNNs, and
thereby dramatically reduces the energy consumption of CLNNs
with minimal accuracy degradation. We prove the efficacy of
SYNTHNET on the CIFAR-10 dataset, maintaining a competitive
accuracy while successfully replacing layers of a VGG-style
network which traditionally uses memory-based floating point
operations with combinational logic. Experimental results suggest
our design can reduce energy-consumption of CLNNs more than
90% compared to the state-of-the-art design.

I. INTRODUCTION

Reducing memory access is the core of realizing fast
and efficient neural networks (NNs). In conventional neural
processing element (NPE)-based NNs, frequent multiply-and-
accumulate (MAC) operations incur heavy memory access
overhead for fetching weight parameters and storing intermedi-
ate outputs, which is the primary source of latency and energy
consumption [1]. An emerging hardware-oriented solution to
this challenge is combinational logic NN (CLNN), where the
inputs and outputs of the neurons are binarized and represented
as arbitrary Boolean functions mapped to combinational logic
circuits or look-up tables (LUTs) [2]-[6]. The evaluation of
such hardware does not involve any memory access other
than fetching the inputs and storing the final outputs, and
hence is extremely faster than equivalent binarized MAC on
NPEs. It makes CLNNS attractive and suitable for low-latency,
fixed-function applications, such as in-sensor inference [2] and
network intrusion detection [5].

The low latency of CLNNs, however, is powered by mas-
sively parallel hardware resources that cost significant area
occupancy and hence energy consumption. The key to the
realization of area- and energy-efficient CLNNSs is to exploit
its intrinsic redundancy and error resilience like in other NN
optimization methods (e.g., pruning and quantization) in every
design step including logic-level optimization. Unfortunately,

*This work was done while the author was at the University of Wisconsin—
Madison. The author is currently at Facebook (taylorkemp@fb.com).

conventional logic optimization methods that strictly preserve
original input-to-output mapping are not able to capture and
exploit the redundancy and error resilience, and thus are far
from effective when optimizing CLNNs. As recognized in [7],
this gap between machine learning and logic optimization
is yet to be resolved, and should be addressed for more
widespread adoption of CLNNS.

In this paper, we propose a novel CLNN design method
called SYNTHNET for bridging this gap and pushing the
limit of CLNN adoption for high-throughput and low-power
applications. Our techniques improve upon the scalability of
CLNNs by proposing minimization techniques that allow for
large scale networks to be compressed to synthesizable cir-
cuits. SYNTHNET exploits the intrinsic error resilience of NNs
in order to selectively remove or replace Boolean mapping
functions and thereby significantly reduce the logic circuit
size. By judiciously over-minimizing the truth tables of neuron
mapping functions based on the significance of each mapping
with the awareness of neuron activation properties, the circuit
implementation of the resultant truth tables is reduced by
orders-of-magnitude than that of the original truth tables.
This design method also boosts the accuracy by suppressing
inference errors induced by random output mapped to input
combinations unseen during training, which is a unique hazard
in CLNNS.

The contributions of the paper are summarized as follows:

o We analyze activation of neurons realized as a logic
circuit and identify opportunities to further minimize
the logic size beyond what traditional logic optimization
methods can achieve, in order to fully exploit the error
resilience of NNs.

« Based on the analysis, we present two very effective
CLNN optimization techniques: i) synthesis-aware prun-
ing and ii) input-driven neural logic minimization. We
explore the energy-accuracy trade-offs of the logic opti-
mization and present an efficient and more scalable design
framework to determine the optimal implementation that
meets a given accuracy constraint.

o We evaluate SYNTHNET for a CLNN using the CIFAR-10
dataset [8]. Our method reduces the energy consumption
per image by 90-99% compared to a systolic array-based
architecture, while maintaining 82% accuracy, yet to be
achieved by CLNN-only implementations on the CIFAR-
10 dataset.

978-1-6654-2135-5/22/$31.00 ©2022 IEEE 232
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from |IEEE Xplore. Restrictions apply.

xlwlzlo Xy X2 x30 S|y
by ’ 000[-6/0 X
_ S=b 00 1[-16/0
npw2=l, vV @01 0|-408)n y
01 1[-14/0 X3
W3 ==54 1 00| 141
° Z)) 1 01| 40
S = z) x w! 1 1 0| 16]1 = X
; 111 6l 1 Y = XX + X1X3
McCulloch-Pitts neuron Truth table Logic implementation

Fig. 1. Combinational logic implementation of a McCulloch-Pitts neuron.

II. RELATED WORK

Researchers have proposed various methods to save energy
in neural processing by exploiting its intrinsic error resilience,
sparsity, and massive parallelism at different levels of the
system stack, but the common goal has been reducing memory
access. Examples include quantization [9], pruning [10], [11],
and model compression [12]. Processing-in-memory (PIM)
also reduces memory access by performing analog computing
in or near specially designed memory without fetching the
weights into the NPE [1], [13].

CLNNSs approach the same goal as PIM—performing com-
putations where the weights are stored—from the opposite
direction by embedding the weights in the fully digital pro-
cessor in the form of logic circuits or LUTs. The feasibility
of realization of NNs as combinational logic has been proven
in recent work [2]-[4], but the problem of scaling the large
logic size is yet to be addressed. It is mainly because the
error resilience of NNs has not been exploited during logic
minimization and synthesis, resulting in overly precise com-
binational logic and thereby leaving the potential of energy
saving largely untapped.

III. BACKGROUND: COMBINATIONAL MCCULLOCH-PITTS
NEURAL NETWORKS

The McCulloch-Pitts neuron model, which has binary inputs
and a binary output, is an ideal model for CLNN implemen-
tation since combinational logic can implement any arbitrary
binary mapping. A McCulloch-Pitts neuron’s function can is
defined as follows:

iy xwl >
ye 1 1fZ]xw_b7 0

0 otherwise

where y is the output of the neuron, x/ and w/ respectively are
the j-th input and weight, and b is the bias of the neuron. Un-
like binarized NNs that binarize everything including weights
(e.g., XNOR-based NNs), w; can be a high-precision floating-
point value, which are desirable for high accuracy [4]. Boolean
logic circuit is suitable for implementing this neuron model
because the inputs and output are binary and their mapping
requires the ability to realize arbitrary Boolean functions.

A trained McCulloch-Pitts neuron can be implemented as a
logic circuit as illustrated in Fig. 1. If the number of inputs
is small, outputs can be defined for all possible input combi-
nations based on (1) to build the truth table of a completely
specified function (CSF) with no don’t-care (DC) output. In

60 1200
51%
50 = 1000
= 3
S40 2 800
P =
2 30 2600
o =
g =
3 20 S 400 &
= 11% E
10 200
0
12345678 910+ 0 500 1000 1500 2000

Hit count Hit count in training set

(a) (b)

Fig. 2. (a) Histogram of row hit counts greater than O in the training set. (b)
Correlation between row hit counts between the training set and the test set.
(Range limited for better visualization.)

practical NNs, however, the number of inputs is much grater
than three, making it impossible to enumerate outputs for
all input combinations. Alternatively, defining the Boolean
function as an incompletely specified function (ISF), where
the output is specified only for a subset of input combinations
and the rest are left as DC, can greatly reduce the enumerated
outputs since only a small subset of input combinations are
seen during training and inference [4]. Finally, logic minimiza-
tion and synthesis is followed to implement the ISFs as logic
circuits.

In this work, the straight-through estimator in the form of
the hard hyperbolic tangent (tanh) linear activation function is
used as in [9], in order for the binarized neurons to be able to
successfully update gradients within the back-propagation al-
gorithm when the derivative is zero everywhere. We substitute
the classical dropout regularization technique with a random
binarization probability. Activations are binarized with a cer-
tain specified probability. Stochastically binarizing activations
ensures our gradients update during back-propagation, derived
from the variant of dropout in [9].

IV. MOTIVATION: UNEXPLOITED ERROR RESILIENCE

As mentioned above, conventional precise logic minimiza-
tion and synthesis does not take advantage of the high error
resilience of CLNNSs. It leads to two limitations (and oppor-
tunities) in terms of energy efficiency and accuracy.

A. Non-uniform Input Combination Frequency

When input-to-output mapping does not always have to
be precise, which is the case for CLNNS, approximate im-
plementation of Boolean functions allows sharing not only
exactly equivalent sub-circuits but also near-equivalent sub-
circuits, resulting in a smaller logic size and thus high energy
efficiency that precise implementation cannot achieve. For
the approximate implementation of combinational neuron, we
should exploit the property that the probability distributions of
neuron inputs and outputs are not uniform.

Let us consider the VGG-like architecture in [14] of six
convolutional layers followed by three fully-connected layers.
As an example, to implement the second convolutional layer
(3 x 3 convolution, 20 input channels, 20 output channels) as a
logic circuit, we would need to build 20 truth tables of 3 x 3 x

233

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from |IEEE Xplore. Restrictions apply.

20 = 180 inputs (i.e., 2'3° input combinations) of one output
each. After building a truth table with 10,000 images from
the training set, out of the 2'3Y rows, output is specified (as
either 0 or 1) for only 1.1 x 10% rows on average across 20
output channels, and the output for the rest of the rows remains
unspecified (DC). This corresponds to only 7.4 x 10747% of
total maximum possible rows. More importantly, some rows
are seen more frequently than other rows, implying that not
all rows are equally important. As a metric of the importance
of rows, we define hit count, HC, which refers to the number
of occurrences that the row’s input combination is seen during
training or inference. Fig. 2(a) shows the histogram of the row
hit counts greater than 0 (i.e., excluding DC rows with HC = 0)
after training. We can see that 51% of the rows are hit (i.e.,
the corresponding input is seen) only once, and only 11% of
the rows are hit 10 or more times. Furthermore, there exists
a very high correlation between the hit counts of the training
set and the test set (10,000 images) as shown in Fig. 2(b),
which suggests that logic optimization based on training set
will work as well for inference.

B. Accuracy Loss Due to Unspecified Outputs

The input combinations defined in the ISFs from the training
set cover the most of the input combinations of the test set,
but not all. In the same example above, about 14% of the
input combinations of the test set are not seen in the training
set. Since the output for such input combinations is set to
DC in the ISFs, an output that violates (1) may be mapped
during synthesis, which becomes a source of accuracy loss.
This is a unique hazard of CLNNs that does not exist in NPE-
based NNs where outputs for unseen inputs are still correctly
computed based on the loaded weights.

In order to mitigate the problem, we need to minimize
the accuracy loss due to unspecified outputs. This could be
achieved by increasing the possibility that the output is speci-
fied for given input combinations, i.e., increasing the hit rate,
which is defined as the percentage of the input combinations
that are seen during both the training and inference. However,
specifying more output for unseen rows is not a viable option
since it will increase the logic complexity. Rather, introducing
DCs in the inputs will increase the hit rate because the total
number of unseen input combinations is reduced, and as a
result more generalized truth tables will be generated. This is
similar to pruning of conventional NNs in that it requires a
judicious choice of inputs to be ignored. In CLNNSs, this is
an opportunity for boosting accuracy by preventing unknown
outputs during training (which does not happen in conventional
NN training).

V. DESIGN OPTIMIZATION OF CLNNS

Based on the intuitions discussed in Section IV, we present
a design optimization method of CLNNs called SYNTH-
NET, focusing on logic minimization. Specifically, we pro-
pose two complementary techniques, synthesis-aware pruning
and input-driven neural logic minimization, to address the
above-mentioned limitations and exploit the error resilience
of CLNNs for improving energy efficiency.

3C-4

—
McCulloch-Pitts

TR e GG NN > (Premse) lc;gm mini-

sion ISF truth tables MIZaHON

4 Synthesis
e =
pruning

Input-driven neural Logic {Power, area,}
logic minimization

melementatiorJ and latency
Accuracy estimation |« »| Accuracy evaluation
Target accuracy

SR I
ISF truth tables Y
—
N Y Final accuracy

ccuracy met?

Fig. 3. SYNTHNET’s fully automated design optimization of CLNNs. The
dashed box represents the territory of the proposed logic optimization.

A. Design Flow

The overall design flow is presented in Fig. 3. We first
train a McCulloch-Pitts NN and convert target layers into
ISF truth tables. Our CLNN optimization is performed before
the conventional logic minimization and synthesis of the
truth tables, as highlighted by the dashed box in the figure.
We split the multi-input multi-output truth tables into multi-
input single-output truth tables to be optimized independently.
The truth tables are then sent through our logic optimiza-
tion procedure composed of iterative synthesis-aware pruning
and input-driven neural logic minimization until it reaches
a given target accuracy. Accuracy is evaluated on the test
set using the reduced truth tables. Finally, the reduced truth
tables are implemented as logic circuits through conventional
logic minimization and synthesis. The synthesized circuit is
evaluated for hardware metrics, and the test set is applied
on the circuit to get the actual accuracy. The following two
subsections respectively describe the synthesis-aware pruning
and the input-driven neural logic minimization, followed by
the integration of both in the design flow.

B. Synthesis-aware Pruning

Pruning, in general, removes low-magnitude weights that
contribute little to the model output. In CLNNs, weight
pruning is equivalent to removing an input from the truth
table, or placing DC on the input to be removed. This serves
two benefits. First, the truth table size (hence the circuit
complexity) decreases exponentially as the number of inputs
decreases. Second, the hit rate increases because some DC
outputs, which would have mapped to a random output, are
now specified based on remaining more significant weights,
leading to accuracy improvement. There is a point of di-
minishing returns in accuracy improvement because beyond a
certain point, accuracy loss due to over-generalization becomes
greater than the accuracy gain due to the reduction of DC
outputs.

234

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from |IEEE Xplore. Restrictions apply.

Output specified (HC > 1)

lﬁ i) x|, Output respecified

10§ 145> | 1€ 10i1t-5" | ¢

> 0:0:0/[0|2000 0:1X:0/{0 /2000 X1 X3 v He
0:011|X 0 0:1Xi11|X 0 : E 10-5
0!110(X 0 * 01X10|X 0 0 0012000
011:1(X 0 0:Xi1|X 0 0 11X 0

> 1:0:10]1 5 11Xi0/| 1 5 1 001} 155

> 1:10111(0 10 11 X111]0 10 1 11141010

> 111101 | 150 1iXi0f1| 150 .

> 141131]1]1000 1:X31[1]1000 Hit count merged

Original ISF truth table Reduced ISF truth table

Fig. 4. Synthesis-aware pruning. In this example, A, = 33.3%, and hence x»
is removed.

Specifically, for a given ISF truth table, we gradually
remove inputs (introduce DCs) beginning with the correspond-
ing lowest-magnitude weights. We denote the percentage of
removed inputs by pruning degree A,. For example, in the
3 x 3 convolutional layer where there are 20 input channels,
we can remove up to 180 inputs. If A, = 90%, 162 lowest-
weight inputs will be removed, reducing the maximum of input
combinations from 2'80 to 2'8 | The input removal results in
multiple rows with different outputs mapping to the same row
with the same output in the reduced truth table. In order to
determine the new output, we take a weighted average of the
inputs mapped together under the DCs to take the importance
of each row into account for the new output y’ as follows:

2

y' = round (Zie’ Ji X HC,-)

Ziel HC;

where [is the set of inputs that are merged, y; is the output
and HC; is the hit count of the i-th row that is merged. The
hit count of the new rows, HC' is the sum of the hit counts
of the merged rows. That is,

HC' =Y HC:. 3)

icl

Consider an example shown in Fig. 4. The second input, x7,
has the lowest weight of 1, so we consider pruning it. Pruning
a single input will cause pairs of inputs to respectively map to a
single input. For example, consider the two input combinations
x1xpx3 = 101 and xjxpx3 = 111. In the original truth table,
their outputs differ as 0 and 1, respectively, but in the reduced
truth table, they both map to xjx3 = 11, and the new output
is round (&40ELA000) — 1 The hit count of the new rows is

10+1000
now 1041000 = 1010.

Two input combinations xjxpx3 = 000 and xjxpx3 = 010
show how pruning improves accuracy. The first input combi-
nation, 000, is seen during training, and its output is specified
as 0 in the original truth table. On the other hand, the second
input combination, 010, is not seen during training, and its
output is not specified. If this DC output is mapped to 1 during
synthesis, it would become a source of inference error because
it violates (1). Pruning x, effectively specifies the output of
010 as 0, which is the correct output if it had been seen during
training.

3C-4

Output specified (HC > 1)
X1 X2 X3 Xy X2 x3| ,
[101—5>’ He 01 -5 1
> 0 0 0]0]2000 0 0 0[0]2000
00 1(X 0 00 1(X 0
010X 0 _» 010X 0
011X/ 0 01 11X ©
> 1 0 0|1 5 10 0¢X 5
i1 0 1|0 10 10 14X 10 Output‘
i1 1 0[1] 150 1 1 0{X| 150 unspecified
>i1 1 1]1]1000 1 1 1{X]}1000
Original ISF truth table Reduced ISF truth table
Fig. 5. Input-driven logic minimization (row dropping). In this example,

Ap =40%, and output for four input combinations, 100, 101, 110, and 111,
are unspecified.

C. Input-driven Neural Logic Minimization

As discussed in Section IV-A, the hit counts of the rows
varies significantly, and the majority of input combinations
appear only a few times during training. These low-hit count
rows contribute little to the CLNN accuracy, as compared to
high-hit count rows, and can be removed from the ISF truth
table as if they have not appeared during training. This is done
by unspecifiying the output, i.e., making 0 or 1 to DC, and the
row is called dropped from the table. As we drop seldom-hit
inputs and introducing more DC outputs, we can reduce the
complexity of the synthesized circuit.

Specifically, our input-driven neural logic minimization, or
simply row dropping, unspecifies the output for the rows with
the lowest non-zero hit counts until the total hit counts of
dropped rows reaches a row dropping degree Aj,. We do not set
the hit count of the dropped rows to zero because the hit counts
should be preserved for making decisions in the following
iterations of pruning. Fig. 5 shows an example of row dropping
for Ay = 40%. Since the total hit count is 3165, we drop
low-hit count rows until the sum of the hit counts of the
dropped row reaches 1266. In this case, four rows xjxx3 = 100
x1xx3 = 101, x1x0x3 = 110, and x1xx3 = 111 have the lowest
non-zero hit counts, whose sumis 5+10+ 150+ 1000 = 1165.
Therefore, the four rows are dropped by unspecifying their
output, but their hit counts, 1165 in total, are preserved.

D. Pruning and Row Dropping Thresholds

Determining the two thresholds, pruning degree A, and row
dropping degree Ay, can be time-consuming since the design
space is large, and logic synthesis for accuracy evaluation takes
a long time. We propose a variant of coordinate descent to
determine the two thresholds to minimize the logic size while
meeting an accuracy constraint ¢ without time-consuming ex-
haustive search. Also, we estimate the accuracy of the resulting
NN using the reduced ISF truth table without synthesizing it.

The threshold optimization procedure is described in Al-
gorithm 1. Initially, A, is set to 0% and A is set to 0%,
i.e., no pruning and no row dropping is applied. For larger
networks, we can start A, and A, at a higher number. In the
PRUNE procedure, we first search along the space of A, by
gradually increasing it by a granularity of 5, until the accuracy
reaches the maximum. During this procedure, new accuracy
ACC(AZew,Ah) is compared to the previous step’s accuracy,

235

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1 CLNN logic optimization
1: procedure OPTIMIZE(c)
2: initialize 8, and &,
3 let Al”,’d =0, A% =0, AV =3, A"
4 while A7 > A% or ATV > AZl do
5: decrease 6, and &y,
6
7
8
9

Azld _ A;;ew7 Azld _ Azew
A" = PRUNE(AY, 5, Agl)
A7 = ROWDROP(AP?, &), A")
: end while
10 return AY APl
11: end procedure
12: procedure PRUNE(A;M, Sp, Ap)
13 while ACC(AT,A) >ACC(AY?,A) do

14: A;))ld — AZ@W, A;z)ew _ A;ld +8p
15: end while
16: return A%/

17: end procedure
18: procedure ROWDROP(AY, &, A, ¢)
19: while ACC(A,, A7) > ¢ do

20: A = Ajev | A = A0 4§y
21: end while
22: return A"

23: end procedure

ACC(Af,Id,Ah). At the maximum accuracy, we fix A, and move
on to the ROWDROP procedure where we gradually increase
Aj, by a granularity of §, until the accuracy hits the user-
defined accuracy constraint c. This is repeated until increasing
A, further does not improve accuracy and increasing Ay, further
causes the accuracy to drop below c. To reduce computational
complexity, we start at a coarse granularity for the initial
search and gradually increase the granularity. As a result, the
coordinate descent algorithm’s iterative procedure repeats the
two-dimensional search and returns the optimal A, and A, that
satisfy the given accuracy constraint.

In each iteration during coordinate descent for pruning,
ACC() function estimates the accuracy of a candidate NN,
which would require time-consuming synthesis and simulation
of its logic implementation. In order to reduce execution time,
we estimate the accuracy by keeping the ISFs as lookup
tables. Instead of time-consuming synthesis and simulation,
these lookup tables can be used to quickly estimate the output
of the circuit. Because the truth tables are incomplete, some
table lookups may fail when an input with unspecified output
is encountered. Upon the completion of Algorithm 1 for
each layer, all layers are integrated and synthesized for the
evaluation of accuracy and power consumption.

VI. EXPERIMENTS
In this section, we demonstrate the efficacy of SYNTHNET
for energy-efficient implementation of CLNN.
A. Experimental Setup

1) NN model and dataset: We consider a small CNN model
that is suitable for low-latency in-sensor image recognition

3C-4

TABLE I
VGG-LIKE NN ARCHITECTURE WITH 32 X 32 INPUT MAP USED IN THE
EXPERIMENTS.

Type [Max pool 2x2 [Dropout |
Binarized 3 x 3 Conv (3,20)
Binarized 3 x 3 Conv (20,20) v v
Binarized 3 x 3 Conv (20,40)
Binarized 3 x 3 Conv (40,40) v
Binarized 3 x 3 Conv (40,80)
Binarized 3 x 3 Conv (80,80) v
Fully connected (80,1024)

Fully connected (1024,1024)
Fully connected (1024,10)

[Layer]

—

SNENENEN

O 00| Al O\ | | W 19

as shown in Table I. Note that, while small, this network is
the deepest and most computationally complex network yet
to be integrated with ultra-low latency CLNNs. The model
is trained on the CIFAR-10 image dataset using Google
Tensorflow. Since making early layers energy-efficient is more
effective [15], we apply the proposed method to the second
and third convolutional layers. However, the applicability is
not limited to any specific layer type and is applicable to
any binary-input binary-output layers. The other layers are
binarized as well and processed by NPEs.

We use batch normalization after every layer, a batch size
of 128, and the last 5000 samples of the training set as a
validation set with the test error rate reported on the best
validation accuracy after 200 epochs, similar to [9]. We do
not retrain on the validation set and use only the images in
the training set, excluding the validation set, to build the truth
tables. Therefore, the truth tables are built on a completely
separate set of images than the images on which we test the
classification accuracy. All accuracy numbers reported in this
section are obtained by simulating synthesized circuits, not
estimated by the Acc() function.

2) Hardware evaluation: All results for CLNN are synthe-
sized with Synopsys Design Compiler using the TSMC 45 nm
library. Every circuit representing individual truth tables needs
cycles according to the height x width so that the whole input
is convolved. For example, the input to Layer 2 is 32 x 32, thus
it takes 1024 cycles of the combinational logic to convolve
the entire input. Note that one can exchange latency for area
by instantiating more combinational circuits to reduce the
number of cycles. As the baseline, we use SCALE-Sim [16]
and DRAMPower [17] to estimate the energy consumption for
memory accesses in systolic array-based architecture with the
parameters in [18].

B. Pruning and Row Dropping Results

Figs. 6 and 7 show the change in hit rate and classification
accuracy for varying A, and Ay, respectively. In Fig. 6, we
can see that hit rate increases as A, increases. As a result,
as discussed in Section IV-B, the accuracy increases up to
86.4% at A, = 83.3% in Layer 2 and 86.9% at A, = 89.4%
in Layer 3, which is found by Algorithm 1. Beyond these
A,, combinational circuitry is coalescing too many inputs and
making the output too generic. Figs. 7(a) and 7(b) shows
that the hit rate decreases as A, increases for Layers 2 and
3, while A, is set to the respective optimal value. As a

236

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from |IEEE Xplore. Restrictions apply.

—>X— Hitrate —{— Classification accuracy
100 SRR 100 —

~ , X x ~

g 95 g

) Max accuracy 86.4% g 90 5

s 90 at Api 83.3% g /B”/®h

= e ~8-g

(5} L ~
H£Ba 8045 j 0

% 85 o B,EI’B Ba8ag % Ey/i\%[ax accuracy 86.9%

A~ A~ at A, =89.4%

80 70
80 82 84 86 88 85 90 95
Pruning degree A, (%) Pruning degree A, (%)

(a) Layer 2 (b) Layer 3

Fig. 6. Synthesis-aware pruning with a varying pruning threshold A, on (a)
Layer 2 and (b) Layer 3.

—>X— Layer 2 hitrate —O—— Layer 3 hit rate —{}— Classification accuracy

100 o
- O
o Fx o R
> X = © —o. @,,@@
) g Max accuracy at O
‘2 90 Max accuracy at A, — 89.4%
153 g2y = 83.3% @ag” T
80 S
0 50 100 0 50 100 0 0.5 1
Row dropping degree A;, (%) Row dropping degree A, (%) Row dropping degree Ay, (%)
(a) Layer 2 (b) Layer 3 (c) Layers 2 and 3 combined

Fig. 7. Input-driven neural logic minimization with a varying row dropping
threshold A, on (a) Layer 2, (b) Layer 3, and (c) Layer 2 and 3 combined.

result, the classification accuracy also drops, but only by a few
percent even at A, = 90%, i.e., when only 10% of the input
combinations from training are preserved. Fig. 7(c) shows the
hit rate of Layers 2 and 3 and the accuracy after combining
both layers with the same Ay. As a result of row dropping in
subsequent layers, the accuracy is slightly decreased, but it is
still as high as 80% even when 90% of the rows are dropped
in each layer.

C. Energy Efficiency Comparison

Finally, we evaluate the CLNN in comparison to a conven-
tional systolic array-based NN estimated using SCALE-Sim
and DRAMPower. We set the target accuracy of our design to
82%, which is achieved at A, = 50% (see Fig. 7(c)). Pruning
degree A, is set to the respective optimal, 83.3% for Layer 2
and 89.4% for Layer 3. Compared to the systolic array-
based NN architecture, the proposed CLNN consumes only
a fraction of energy because there is no energy consumption
for fetching weights from off-chip memory. We can also
observe the greatest power reduction for layers with smaller

3C-4

TABLE II
SYNTHESIS RESULTS OF TARGET LAYERS AND COMPARISON TO
SCALE-SIM.

CLNN SCALE-Sim Energy

Layer Energy per Cycles Energy per energy per reduction

cycle (pJ) per image image (nJ) image (nJ) per image
[2 T 541 1024] 553] 5682] 90.3% |
[3 1 249 | 256 | 64 | 11,360 | 99.4% |

VII. CONCLUSIONS

CLNNs are a promising approach to reduce the energy
overhead of memory access in ultra low-latency NNs, but the
large logic size has limited their application at scale in area-
and energy-constrained applications. We presented a design
optimization method for the energy-efficient implementation
of CLNNs allowing for scalable synthesize of deeper NNs.
Exploiting the error-resilient nature of NNs, we proposed
two techniques to over-simplify the input-to-output mapping
of neurons and a coordinate descent-based optimization al-
gorithm to determine the optimal level of simplification.
Compared to the conventional systolic array-based NN, more
than 90% power reduction is demonstrated per layer with an
accuracy of 82% on CIFAR-10, yet to achieved by previous
CLNNs.

ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion under award CNS-1845469.

REFERENCES

[1] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in ISCA,
2016.

[2] M. Rusci et al., “Design automation for binarized neural networks: A
quantum leap opportunity?” in ISCAS, 2018.

[3] C.-C. Chi et al., “Logic synthesis of binarized neural networks for
efficient circuit implementation,” in /JCCAD, 2018.

[4] M. Nazemi et al., “Energy-efficient, low-latency realization of neural
networks through Boolean logic minimization,” in ASP-DAC, 2019.

[5]1 Y. Umuroglu et al., “LogicNets: co-designed neural networks and
circuits for extreme-throughput applications,” in FPL, 2020.

[6] E. Wang et al., “LUTNet: Rethinking inference in FPGA soft logic,” in
FCCM, 2019.

[7]1 S.Rai et al., “Logic synthesis meets machine learning: Trading exactness
for generalization,” in DATE, 2021.

[8] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 1998.

[9] 1. Hubara et al., “Binarized neural networks,” in NIPS, 2016.

[10] G. Castellano e al, “An iterative pruning algorithm for feedforward
neural networks,” IEEE Transactions on Neural Networks, 1997.

H. Li et al., “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

(1]

[12]

. . . [13] M. Cheng et al, “TIME: A training-in-memory architecture for
nput Slze. but largf?r output channel Wl.dth' For example, memristor-based deep neural networks,” in DAC, 2017.
Layer 3 is convolving over a 16 X 16 input map after a [14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
max pooling layer, which means less cycles are needed to large-scale image recognition,” ICLR, 2014. .
perform the full convolution. However, the weight fetching ! Ehhzitiz ;;nilr‘[’l r;grglillttllzﬁal iieg‘;%mggﬁ for energy-efficient and
DRAM accesses’ expenditure is much higher, regardless of [16] A. Samajdar ef al., “SCALE-Sim: Systolic CNN accelerator simulator.”
input size, and is only dependent upon the width of the input arXiv preprint arXiv:1811.02883, 2018. o
and output channels. Therefore, layers with smaller input map (17 fl g ;;r:slrj:;l%g "21(‘)’1 llmpmved power modeling of DDR SDRAM:s,
sizes and larger width experience the greatest reduction in [18] Y.-H. Chen e al., “Eyeriss: An energy-efficient reconfigurable acceler-
power consumption. ator for deep convolutional neural networks,” JSSC, 2016.

237

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from |IEEE Xplore. Restrictions apply.

