
SYNTHNET: A High-throughput yet Energy-efficient
Combinational Logic Neural Network

Tianen Chen, Taylor Kemp∗, and Younghyun Kim
University of Wisconsin–Madison

{tianen.chen, tkemp, younghyun.kim}@wisc.edu

Abstract—In combinational logic neural networks (CLNNs),
neurons are realized as combinational logic circuits or look-up
tables (LUTs). They make make extremely low-latency inference
possible by performing the computation with pure hardware
without loading weights from the memory. The high throughput,
however, is powered by massively parallel logic circuits or LUTs
and hence comes with high area occupancy and high energy
consumption. We present SYNTHNET, a novel CLNN design
method that effectively identifies and keeps only the sublogics that
play a critical role in the accuracy and remove those which do not
contribute to improving the accuracy. It captures the abundant
redundancy in NNs that can be exploited only in CLNNs, and
thereby dramatically reduces the energy consumption of CLNNs
with minimal accuracy degradation. We prove the efficacy of
SYNTHNET on the CIFAR-10 dataset, maintaining a competitive
accuracy while successfully replacing layers of a VGG-style
network which traditionally uses memory-based floating point
operations with combinational logic. Experimental results suggest
our design can reduce energy-consumption of CLNNs more than
90% compared to the state-of-the-art design.

I. INTRODUCTION

Reducing memory access is the core of realizing fast

and efficient neural networks (NNs). In conventional neural

processing element (NPE)-based NNs, frequent multiply-and-

accumulate (MAC) operations incur heavy memory access

overhead for fetching weight parameters and storing intermedi-

ate outputs, which is the primary source of latency and energy

consumption [1]. An emerging hardware-oriented solution to

this challenge is combinational logic NN (CLNN), where the

inputs and outputs of the neurons are binarized and represented

as arbitrary Boolean functions mapped to combinational logic

circuits or look-up tables (LUTs) [2]–[6]. The evaluation of

such hardware does not involve any memory access other

than fetching the inputs and storing the final outputs, and

hence is extremely faster than equivalent binarized MAC on

NPEs. It makes CLNNs attractive and suitable for low-latency,

fixed-function applications, such as in-sensor inference [2] and

network intrusion detection [5].

The low latency of CLNNs, however, is powered by mas-

sively parallel hardware resources that cost significant area

occupancy and hence energy consumption. The key to the

realization of area- and energy-efficient CLNNs is to exploit

its intrinsic redundancy and error resilience like in other NN

optimization methods (e.g., pruning and quantization) in every

design step including logic-level optimization. Unfortunately,

∗This work was done while the author was at the University of Wisconsin–
Madison. The author is currently at Facebook (taylorkemp@fb.com).

conventional logic optimization methods that strictly preserve

original input-to-output mapping are not able to capture and

exploit the redundancy and error resilience, and thus are far

from effective when optimizing CLNNs. As recognized in [7],

this gap between machine learning and logic optimization

is yet to be resolved, and should be addressed for more

widespread adoption of CLNNs.

In this paper, we propose a novel CLNN design method

called SYNTHNET for bridging this gap and pushing the

limit of CLNN adoption for high-throughput and low-power

applications. Our techniques improve upon the scalability of

CLNNs by proposing minimization techniques that allow for

large scale networks to be compressed to synthesizable cir-

cuits. SYNTHNET exploits the intrinsic error resilience of NNs

in order to selectively remove or replace Boolean mapping

functions and thereby significantly reduce the logic circuit

size. By judiciously over-minimizing the truth tables of neuron

mapping functions based on the significance of each mapping

with the awareness of neuron activation properties, the circuit

implementation of the resultant truth tables is reduced by

orders-of-magnitude than that of the original truth tables.

This design method also boosts the accuracy by suppressing

inference errors induced by random output mapped to input

combinations unseen during training, which is a unique hazard

in CLNNs.

The contributions of the paper are summarized as follows:

• We analyze activation of neurons realized as a logic

circuit and identify opportunities to further minimize

the logic size beyond what traditional logic optimization

methods can achieve, in order to fully exploit the error

resilience of NNs.

• Based on the analysis, we present two very effective

CLNN optimization techniques: i) synthesis-aware prun-

ing and ii) input-driven neural logic minimization. We

explore the energy-accuracy trade-offs of the logic opti-

mization and present an efficient and more scalable design

framework to determine the optimal implementation that

meets a given accuracy constraint.

• We evaluate SYNTHNET for a CLNN using the CIFAR-10

dataset [8]. Our method reduces the energy consumption

per image by 90–99% compared to a systolic array-based

architecture, while maintaining 82% accuracy, yet to be

achieved by CLNN-only implementations on the CIFAR-

10 dataset.

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

3C-4

232

20
22

 2
7t

h 
As

ia
 a

nd
 S

ou
th

 P
ac

ifi
c 

De
sig

n 
Au

to
m

at
io

n 
Co

nf
er

en
ce

 (A
SP

-D
AC

) |
 9

78
-1

-6
65

4-
21

35
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
P-

DA
C5

24
03

.2
02

2.
97

12
55

4

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from IEEE Xplore.  Restrictions apply. 



McCulloch-Pitts neuron

Σ

w1 = 10

w2 = 1

w3 = −5
b = 6

x3

y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

– 6

– 4

14
4

16
6

x3x2x1 yS

x2

x1

Truth table Logic implementation

y = x1x2 + x1x3

x3
x2
x1

y
S

?
≥ b – 16

– 14

S =
∑
j

xj × wj

Fig. 1. Combinational logic implementation of a McCulloch-Pitts neuron.

II. RELATED WORK

Researchers have proposed various methods to save energy

in neural processing by exploiting its intrinsic error resilience,

sparsity, and massive parallelism at different levels of the

system stack, but the common goal has been reducing memory

access. Examples include quantization [9], pruning [10], [11],

and model compression [12]. Processing-in-memory (PIM)

also reduces memory access by performing analog computing

in or near specially designed memory without fetching the

weights into the NPE [1], [13].

CLNNs approach the same goal as PIM—performing com-

putations where the weights are stored—from the opposite

direction by embedding the weights in the fully digital pro-

cessor in the form of logic circuits or LUTs. The feasibility

of realization of NNs as combinational logic has been proven

in recent work [2]–[4], but the problem of scaling the large

logic size is yet to be addressed. It is mainly because the

error resilience of NNs has not been exploited during logic

minimization and synthesis, resulting in overly precise com-

binational logic and thereby leaving the potential of energy

saving largely untapped.

III. BACKGROUND: COMBINATIONAL MCCULLOCH-PITTS

NEURAL NETWORKS

The McCulloch-Pitts neuron model, which has binary inputs

and a binary output, is an ideal model for CLNN implemen-

tation since combinational logic can implement any arbitrary

binary mapping. A McCulloch-Pitts neuron’s function can is

defined as follows:

y =

{
1 if ∑ j x jw j ≥ b
0 otherwise

, (1)

where y is the output of the neuron, x j and w j respectively are

the j-th input and weight, and b is the bias of the neuron. Un-

like binarized NNs that binarize everything including weights

(e.g., XNOR-based NNs), w j can be a high-precision floating-

point value, which are desirable for high accuracy [4]. Boolean

logic circuit is suitable for implementing this neuron model

because the inputs and output are binary and their mapping

requires the ability to realize arbitrary Boolean functions.

A trained McCulloch-Pitts neuron can be implemented as a

logic circuit as illustrated in Fig. 1. If the number of inputs

is small, outputs can be defined for all possible input combi-

nations based on (1) to build the truth table of a completely

specified function (CSF) with no don’t-care (DC) output. In

1 2 3 4 5 6 7 8 9 10+
Hit count

0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(%

)

0 500 1000 1500 2000
Hit count in training set

0

200

400

600

800

1000

1200

H
it 

co
un

t i
n 

te
st

 s
et More

im
po

rta
nt

Less

im
po

rta
nt

(a) (b)

11%

51%

Fig. 2. (a) Histogram of row hit counts greater than 0 in the training set. (b)
Correlation between row hit counts between the training set and the test set.
(Range limited for better visualization.)

practical NNs, however, the number of inputs is much grater

than three, making it impossible to enumerate outputs for

all input combinations. Alternatively, defining the Boolean

function as an incompletely specified function (ISF), where

the output is specified only for a subset of input combinations

and the rest are left as DC, can greatly reduce the enumerated

outputs since only a small subset of input combinations are

seen during training and inference [4]. Finally, logic minimiza-

tion and synthesis is followed to implement the ISFs as logic

circuits.

In this work, the straight-through estimator in the form of

the hard hyperbolic tangent (tanh) linear activation function is

used as in [9], in order for the binarized neurons to be able to

successfully update gradients within the back-propagation al-

gorithm when the derivative is zero everywhere. We substitute

the classical dropout regularization technique with a random

binarization probability. Activations are binarized with a cer-

tain specified probability. Stochastically binarizing activations

ensures our gradients update during back-propagation, derived

from the variant of dropout in [9].

IV. MOTIVATION: UNEXPLOITED ERROR RESILIENCE

As mentioned above, conventional precise logic minimiza-

tion and synthesis does not take advantage of the high error

resilience of CLNNs. It leads to two limitations (and oppor-

tunities) in terms of energy efficiency and accuracy.

A. Non-uniform Input Combination Frequency

When input-to-output mapping does not always have to

be precise, which is the case for CLNNs, approximate im-

plementation of Boolean functions allows sharing not only

exactly equivalent sub-circuits but also near-equivalent sub-

circuits, resulting in a smaller logic size and thus high energy

efficiency that precise implementation cannot achieve. For

the approximate implementation of combinational neuron, we

should exploit the property that the probability distributions of

neuron inputs and outputs are not uniform.

Let us consider the VGG-like architecture in [14] of six

convolutional layers followed by three fully-connected layers.

As an example, to implement the second convolutional layer

(3×3 convolution, 20 input channels, 20 output channels) as a

logic circuit, we would need to build 20 truth tables of 3×3×

3C-4

233
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from IEEE Xplore.  Restrictions apply. 



20 = 180 inputs (i.e., 2180 input combinations) of one output

each. After building a truth table with 10,000 images from

the training set, out of the 2180 rows, output is specified (as

either 0 or 1) for only 1.1× 106 rows on average across 20

output channels, and the output for the rest of the rows remains

unspecified (DC). This corresponds to only 7.4× 10−47% of

total maximum possible rows. More importantly, some rows

are seen more frequently than other rows, implying that not

all rows are equally important. As a metric of the importance

of rows, we define hit count, HC, which refers to the number

of occurrences that the row’s input combination is seen during

training or inference. Fig. 2(a) shows the histogram of the row

hit counts greater than 0 (i.e., excluding DC rows with HC = 0)

after training. We can see that 51% of the rows are hit (i.e.,

the corresponding input is seen) only once, and only 11% of

the rows are hit 10 or more times. Furthermore, there exists

a very high correlation between the hit counts of the training

set and the test set (10,000 images) as shown in Fig. 2(b),

which suggests that logic optimization based on training set

will work as well for inference.

B. Accuracy Loss Due to Unspecified Outputs

The input combinations defined in the ISFs from the training

set cover the most of the input combinations of the test set,

but not all. In the same example above, about 14% of the

input combinations of the test set are not seen in the training

set. Since the output for such input combinations is set to

DC in the ISFs, an output that violates (1) may be mapped

during synthesis, which becomes a source of accuracy loss.

This is a unique hazard of CLNNs that does not exist in NPE-

based NNs where outputs for unseen inputs are still correctly

computed based on the loaded weights.

In order to mitigate the problem, we need to minimize

the accuracy loss due to unspecified outputs. This could be

achieved by increasing the possibility that the output is speci-

fied for given input combinations, i.e., increasing the hit rate,

which is defined as the percentage of the input combinations

that are seen during both the training and inference. However,

specifying more output for unseen rows is not a viable option

since it will increase the logic complexity. Rather, introducing

DCs in the inputs will increase the hit rate because the total

number of unseen input combinations is reduced, and as a

result more generalized truth tables will be generated. This is

similar to pruning of conventional NNs in that it requires a

judicious choice of inputs to be ignored. In CLNNs, this is

an opportunity for boosting accuracy by preventing unknown
outputs during training (which does not happen in conventional

NN training).

V. DESIGN OPTIMIZATION OF CLNNS

Based on the intuitions discussed in Section IV, we present

a design optimization method of CLNNs called SYNTH-

NET, focusing on logic minimization. Specifically, we pro-

pose two complementary techniques, synthesis-aware pruning

and input-driven neural logic minimization, to address the

above-mentioned limitations and exploit the error resilience

of CLNNs for improving energy efficiency.

McCulloch-Pitts
NN

ISF truth tables

Target accuracy

Logic
implementation

Power, area,
and latency

Test set

Reduced
ISF truth tables

Final accuracyYN

Training set

Training

Truth table conver-
sion

Synthesis-aware 
pruning

Input-driven neural 
logic minimization

Accuracy met?

(Precise) logic mini-
mization

Synthesis

Accuracy evaluationAccuracy estimation

Fig. 3. SYNTHNET’s fully automated design optimization of CLNNs. The
dashed box represents the territory of the proposed logic optimization.

A. Design Flow

The overall design flow is presented in Fig. 3. We first

train a McCulloch-Pitts NN and convert target layers into

ISF truth tables. Our CLNN optimization is performed before

the conventional logic minimization and synthesis of the

truth tables, as highlighted by the dashed box in the figure.

We split the multi-input multi-output truth tables into multi-

input single-output truth tables to be optimized independently.

The truth tables are then sent through our logic optimiza-

tion procedure composed of iterative synthesis-aware pruning

and input-driven neural logic minimization until it reaches

a given target accuracy. Accuracy is evaluated on the test

set using the reduced truth tables. Finally, the reduced truth

tables are implemented as logic circuits through conventional

logic minimization and synthesis. The synthesized circuit is

evaluated for hardware metrics, and the test set is applied

on the circuit to get the actual accuracy. The following two

subsections respectively describe the synthesis-aware pruning

and the input-driven neural logic minimization, followed by

the integration of both in the design flow.

B. Synthesis-aware Pruning

Pruning, in general, removes low-magnitude weights that

contribute little to the model output. In CLNNs, weight

pruning is equivalent to removing an input from the truth

table, or placing DC on the input to be removed. This serves

two benefits. First, the truth table size (hence the circuit

complexity) decreases exponentially as the number of inputs

decreases. Second, the hit rate increases because some DC

outputs, which would have mapped to a random output, are

now specified based on remaining more significant weights,

leading to accuracy improvement. There is a point of di-

minishing returns in accuracy improvement because beyond a

certain point, accuracy loss due to over-generalization becomes

greater than the accuracy gain due to the reduction of DC

outputs.

3C-4

234
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from IEEE Xplore.  Restrictions apply. 



y′

y′

2000
0

HC'

155
1010

10 1 −5
2000

0
0
0
5

10
150

1000

0 0 0 0
0 0 1 X
0 1 0 X
0 1 1 X
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

x3x2x1
y HC

Output specified (HC ≥ 1)

−5
X 0 0
X 1 X
X 0 X
X 1 X
X 0 1
X 1 0
X 0 1
X 1 1

x3
1

−5
0 0 0
0 1 X
1 0 1
1 1 1

x3x1
10

2000
0
0
0
5

10
150

1000

HC1
0
0
1
1
0
0
1
1

x2

Hit count merged

Output respecified

2000
0

155
1010

HC'
0
X
1
1

y′

Original ISF truth table

0
0
0
0
1
1
1
1

x1
10

x2

X
X
X
X
X
X
X
X

1
x2

Reduced ISF truth table

Fig. 4. Synthesis-aware pruning. In this example, Δp = 33.3%, and hence x2

is removed.

Specifically, for a given ISF truth table, we gradually

remove inputs (introduce DCs) beginning with the correspond-

ing lowest-magnitude weights. We denote the percentage of

removed inputs by pruning degree Δp. For example, in the

3× 3 convolutional layer where there are 20 input channels,

we can remove up to 180 inputs. If Δp = 90%, 162 lowest-

weight inputs will be removed, reducing the maximum of input

combinations from 2180 to 218 . The input removal results in

multiple rows with different outputs mapping to the same row

with the same output in the reduced truth table. In order to

determine the new output, we take a weighted average of the

inputs mapped together under the DCs to take the importance

of each row into account for the new output y′ as follows:

y′ = round

(
∑i∈I yi×HCi

∑i∈I HCi

)
, (2)

where I is the set of inputs that are merged, yi is the output

and HCi is the hit count of the i-th row that is merged. The

hit count of the new rows, HC′ is the sum of the hit counts

of the merged rows. That is,

HC′ = ∑
i∈I

HCi. (3)

Consider an example shown in Fig. 4. The second input, x2,

has the lowest weight of 1, so we consider pruning it. Pruning

a single input will cause pairs of inputs to respectively map to a

single input. For example, consider the two input combinations

x1x2x3 = 101 and x1x2x3 = 111. In the original truth table,

their outputs differ as 0 and 1, respectively, but in the reduced

truth table, they both map to x1x3 = 11, and the new output

is round
(

0×10+1×1000
10+1000

)
= 1. The hit count of the new rows is

now 10+1000 = 1010.

Two input combinations x1x2x3 = 000 and x1x2x3 = 010

show how pruning improves accuracy. The first input combi-

nation, 000, is seen during training, and its output is specified

as 0 in the original truth table. On the other hand, the second

input combination, 010, is not seen during training, and its

output is not specified. If this DC output is mapped to 1 during

synthesis, it would become a source of inference error because

it violates (1). Pruning x2 effectively specifies the output of

010 as 0, which is the correct output if it had been seen during

training.

HC'y′

2000
0
0
0
5

10
150

1000

10 1 −5
2000

0
0
0
5

10
150

1000

0 0 0 0
0 0 1 X
0 1 0 X
0 1 1 X
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

x3x2x1
y HC

Output specified (HC ≥ 1)

10 1 −5
0 0 0 0
0 0 1 X
0 1 0 X
0 1 1 X
1 0 0 X
1 0 1 X
1 1 0 X
1 1 1 X

x3x2x1

Output
unspecified

5
10

150
1000

1
0
1
1

1 0 0
1 0 1
1 1 0
1 1 1

X
X
X
X

Original ISF truth table Reduced ISF truth table

Fig. 5. Input-driven logic minimization (row dropping). In this example,
Δh = 40%, and output for four input combinations, 100, 101, 110, and 111,
are unspecified.

C. Input-driven Neural Logic Minimization
As discussed in Section IV-A, the hit counts of the rows

varies significantly, and the majority of input combinations

appear only a few times during training. These low-hit count

rows contribute little to the CLNN accuracy, as compared to

high-hit count rows, and can be removed from the ISF truth

table as if they have not appeared during training. This is done

by unspecifiying the output, i.e., making 0 or 1 to DC, and the

row is called dropped from the table. As we drop seldom-hit

inputs and introducing more DC outputs, we can reduce the

complexity of the synthesized circuit.
Specifically, our input-driven neural logic minimization, or

simply row dropping, unspecifies the output for the rows with

the lowest non-zero hit counts until the total hit counts of

dropped rows reaches a row dropping degree Δh. We do not set

the hit count of the dropped rows to zero because the hit counts

should be preserved for making decisions in the following

iterations of pruning. Fig. 5 shows an example of row dropping

for Δh = 40%. Since the total hit count is 3165, we drop

low-hit count rows until the sum of the hit counts of the

dropped row reaches 1266. In this case, four rows x1x2x3 = 100

x1x2x3 = 101, x1x2x3 = 110, and x1x2x3 = 111 have the lowest

non-zero hit counts, whose sum is 5+10+150+1000= 1165.

Therefore, the four rows are dropped by unspecifying their

output, but their hit counts, 1165 in total, are preserved.

D. Pruning and Row Dropping Thresholds
Determining the two thresholds, pruning degree Δp and row

dropping degree Δh, can be time-consuming since the design

space is large, and logic synthesis for accuracy evaluation takes

a long time. We propose a variant of coordinate descent to

determine the two thresholds to minimize the logic size while

meeting an accuracy constraint c without time-consuming ex-

haustive search. Also, we estimate the accuracy of the resulting

NN using the reduced ISF truth table without synthesizing it.
The threshold optimization procedure is described in Al-

gorithm 1. Initially, Δp is set to 0% and Δh is set to 0%,

i.e., no pruning and no row dropping is applied. For larger

networks, we can start Δh and Δp at a higher number. In the

PRUNE procedure, we first search along the space of Δp by

gradually increasing it by a granularity of δp until the accuracy

reaches the maximum. During this procedure, new accuracy

ACC(Δnew
p ,Δh) is compared to the previous step’s accuracy,

3C-4

235
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 CLNN logic optimization

1: procedure OPTIMIZE(c)

2: initialize δp and δh
3: let Δold

p = 0, Δold
h = 0, Δnew

p = δp, Δnew
h = δh

4: while Δnew
p > Δold

p or Δnew
h > Δold

h do
5: decrease δp and δh
6: Δold

p = Δnew
p , Δold

h = Δnew
h

7: Δnew
p = PRUNE(Δold

p ,δp,Δold
h )

8: Δnew
h = ROWDROP(Δold

h ,δh,Δnew
p ,c)

9: end while
10: return Δold

p , Δold
h

11: end procedure
12: procedure PRUNE(Δold

p , δp, Δh)

13: while ACC(Δnew
p ,Δh)>ACC(Δold

p ,Δh) do
14: Δold

p = Δnew
p , Δnew

p = Δold
p +δp

15: end while
16: return Δold

p
17: end procedure
18: procedure ROWDROP(Δold

h , δh, Δp, c)

19: while ACC(Δp,Δnew
h )> c do

20: Δold
h = Δnew

h , Δnew
h = Δold

h +δhit
21: end while
22: return Δold

h
23: end procedure

ACC(Δold
p ,Δh). At the maximum accuracy, we fix Δp and move

on to the ROWDROP procedure where we gradually increase

Δh by a granularity of δh until the accuracy hits the user-

defined accuracy constraint c. This is repeated until increasing

Δp further does not improve accuracy and increasing Δh further

causes the accuracy to drop below c. To reduce computational

complexity, we start at a coarse granularity for the initial

search and gradually increase the granularity. As a result, the

coordinate descent algorithm’s iterative procedure repeats the

two-dimensional search and returns the optimal Δp and Δh that

satisfy the given accuracy constraint.
In each iteration during coordinate descent for pruning,

ACC() function estimates the accuracy of a candidate NN,

which would require time-consuming synthesis and simulation

of its logic implementation. In order to reduce execution time,

we estimate the accuracy by keeping the ISFs as lookup

tables. Instead of time-consuming synthesis and simulation,

these lookup tables can be used to quickly estimate the output

of the circuit. Because the truth tables are incomplete, some

table lookups may fail when an input with unspecified output

is encountered. Upon the completion of Algorithm 1 for

each layer, all layers are integrated and synthesized for the

evaluation of accuracy and power consumption.

VI. EXPERIMENTS

In this section, we demonstrate the efficacy of SYNTHNET

for energy-efficient implementation of CLNN.

A. Experimental Setup
1) NN model and dataset: We consider a small CNN model

that is suitable for low-latency in-sensor image recognition

TABLE I
VGG-LIKE NN ARCHITECTURE WITH 32×32 INPUT MAP USED IN THE

EXPERIMENTS.

Layer Type Max pool 2×2 Dropout

1 Binarized 3×3 Conv (3,20)

2 Binarized 3×3 Conv (20,20) � �
3 Binarized 3×3 Conv (20,40)

4 Binarized 3×3 Conv (40,40) � �
5 Binarized 3×3 Conv (40,80)

6 Binarized 3×3 Conv (80,80) � �
7 Fully connected (80,1024) �
8 Fully connected (1024,1024) �
9 Fully connected (1024,10)

as shown in Table I. Note that, while small, this network is

the deepest and most computationally complex network yet

to be integrated with ultra-low latency CLNNs. The model

is trained on the CIFAR-10 image dataset using Google

Tensorflow. Since making early layers energy-efficient is more

effective [15], we apply the proposed method to the second

and third convolutional layers. However, the applicability is

not limited to any specific layer type and is applicable to

any binary-input binary-output layers. The other layers are

binarized as well and processed by NPEs.
We use batch normalization after every layer, a batch size

of 128, and the last 5000 samples of the training set as a

validation set with the test error rate reported on the best

validation accuracy after 200 epochs, similar to [9]. We do

not retrain on the validation set and use only the images in

the training set, excluding the validation set, to build the truth

tables. Therefore, the truth tables are built on a completely

separate set of images than the images on which we test the

classification accuracy. All accuracy numbers reported in this

section are obtained by simulating synthesized circuits, not

estimated by the ACC() function.
2) Hardware evaluation: All results for CLNN are synthe-

sized with Synopsys Design Compiler using the TSMC 45 nm

library. Every circuit representing individual truth tables needs

cycles according to the height × width so that the whole input

is convolved. For example, the input to Layer 2 is 32×32, thus

it takes 1024 cycles of the combinational logic to convolve

the entire input. Note that one can exchange latency for area

by instantiating more combinational circuits to reduce the

number of cycles. As the baseline, we use SCALE-Sim [16]

and DRAMPower [17] to estimate the energy consumption for

memory accesses in systolic array-based architecture with the

parameters in [18].

B. Pruning and Row Dropping Results
Figs. 6 and 7 show the change in hit rate and classification

accuracy for varying Δp and Δh, respectively. In Fig. 6, we

can see that hit rate increases as Δp increases. As a result,

as discussed in Section IV-B, the accuracy increases up to

86.4% at Δp = 83.3% in Layer 2 and 86.9% at Δp = 89.4%

in Layer 3, which is found by Algorithm 1. Beyond these

Δp, combinational circuitry is coalescing too many inputs and

making the output too generic. Figs. 7(a) and 7(b) shows

that the hit rate decreases as Δh increases for Layers 2 and

3, while Δp is set to the respective optimal value. As a

3C-4

236
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from IEEE Xplore.  Restrictions apply. 



80 82 84 86 88
80

85

90

95

100

Pe
rc

en
ta

ge
 (

%
)

85 90 95
70

80

90

100

Pe
rc

en
ta

ge
 (

%
)

Pruning degree Δp (%) Pruning degree Δp (%)

(a) Layer 2 (b) Layer 3

Classification accuracyHit rate

Max accuracy 86.4%
at 

Max accuracy 86.9%
at 

Δp = 83.3%

Δp = 89.4%

Fig. 6. Synthesis-aware pruning with a varying pruning threshold Δp on (a)
Layer 2 and (b) Layer 3.

0 0.5 10 50 100 0 50 100

Classification accuracyLayer 2 hit rate Layer 3 hit rate

Row dropping degree Δh (%) Row dropping degree Δh (%) Row dropping degree Δh (%)

Pe
rc

en
ta

ge
 (%

)

80

100

90

(a) Layer 2 (b) Layer 3 (c) Layers 2 and 3 combined

Max accuracy at 
Δp = 83.3%

Δp = 89.4%
Max accuracy at 

Fig. 7. Input-driven neural logic minimization with a varying row dropping
threshold Δh on (a) Layer 2, (b) Layer 3, and (c) Layer 2 and 3 combined.

result, the classification accuracy also drops, but only by a few

percent even at Δh = 90%, i.e., when only 10% of the input

combinations from training are preserved. Fig. 7(c) shows the

hit rate of Layers 2 and 3 and the accuracy after combining

both layers with the same Δh. As a result of row dropping in

subsequent layers, the accuracy is slightly decreased, but it is

still as high as 80% even when 90% of the rows are dropped

in each layer.

C. Energy Efficiency Comparison

Finally, we evaluate the CLNN in comparison to a conven-

tional systolic array-based NN estimated using SCALE-Sim

and DRAMPower. We set the target accuracy of our design to

82%, which is achieved at Δh = 50% (see Fig. 7(c)). Pruning

degree Δp is set to the respective optimal, 83.3% for Layer 2

and 89.4% for Layer 3. Compared to the systolic array-

based NN architecture, the proposed CLNN consumes only

a fraction of energy because there is no energy consumption

for fetching weights from off-chip memory. We can also

observe the greatest power reduction for layers with smaller

input size but larger output channel width. For example,

Layer 3 is convolving over a 16× 16 input map after a

max pooling layer, which means less cycles are needed to

perform the full convolution. However, the weight fetching

DRAM accesses’ expenditure is much higher, regardless of

input size, and is only dependent upon the width of the input

and output channels. Therefore, layers with smaller input map

sizes and larger width experience the greatest reduction in

power consumption.

TABLE II
SYNTHESIS RESULTS OF TARGET LAYERS AND COMPARISON TO

SCALE-SIM.

CLNN SCALE-Sim Energy
Layer Energy per Cycles Energy per energy per reduction

cycle (pJ) per image image (nJ) image (nJ) per image

2 541 1024 553 5682 90.3%

3 249 256 64 11,360 99.4%

VII. CONCLUSIONS

CLNNs are a promising approach to reduce the energy

overhead of memory access in ultra low-latency NNs, but the

large logic size has limited their application at scale in area-

and energy-constrained applications. We presented a design

optimization method for the energy-efficient implementation

of CLNNs allowing for scalable synthesize of deeper NNs.

Exploiting the error-resilient nature of NNs, we proposed

two techniques to over-simplify the input-to-output mapping

of neurons and a coordinate descent-based optimization al-

gorithm to determine the optimal level of simplification.

Compared to the conventional systolic array-based NN, more

than 90% power reduction is demonstrated per layer with an

accuracy of 82% on CIFAR-10, yet to achieved by previous

CLNNs.

ACKNOWLEDGEMENT

This work was supported by the National Science Founda-

tion under award CNS-1845469.

REFERENCES

[1] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in ISCA,
2016.

[2] M. Rusci et al., “Design automation for binarized neural networks: A
quantum leap opportunity?” in ISCAS, 2018.

[3] C.-C. Chi et al., “Logic synthesis of binarized neural networks for
efficient circuit implementation,” in ICCAD, 2018.

[4] M. Nazemi et al., “Energy-efficient, low-latency realization of neural
networks through Boolean logic minimization,” in ASP-DAC, 2019.

[5] Y. Umuroglu et al., “LogicNets: co-designed neural networks and
circuits for extreme-throughput applications,” in FPL, 2020.

[6] E. Wang et al., “LUTNet: Rethinking inference in FPGA soft logic,” in
FCCM, 2019.

[7] S. Rai et al., “Logic synthesis meets machine learning: Trading exactness
for generalization,” in DATE, 2021.

[8] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 1998.

[9] I. Hubara et al., “Binarized neural networks,” in NIPS, 2016.
[10] G. Castellano et al., “An iterative pruning algorithm for feedforward

neural networks,” IEEE Transactions on Neural Networks, 1997.
[11] H. Li et al., “Pruning filters for efficient convnets,” arXiv preprint

arXiv:1608.08710, 2016.
[12] S. Han et al., “Deep compression: Compressing deep neural networks

with pruning, trained quantization and Huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[13] M. Cheng et al., “TIME: A training-in-memory architecture for
memristor-based deep neural networks,” in DAC, 2017.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ICLR, 2014.

[15] P. Panda et al., “Conditional deep learning for energy-efficient and
enhanced pattern recognition,” in DATE, 2016.

[16] A. Samajdar et al., “SCALE-Sim: Systolic CNN accelerator simulator,”
arXiv preprint arXiv:1811.02883, 2018.

[17] K. Chandrasekar et al., “Improved power modeling of DDR SDRAMs,”
in Euromicro DSD, 2011.

[18] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable acceler-
ator for deep convolutional neural networks,” JSSC, 2016.

3C-4

237
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 16,2022 at 04:26:54 UTC from IEEE Xplore.  Restrictions apply. 


