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Abstract
The dramatic increase in the number of connected and Internet-
of-Things devices today has called for more usable authentication
methods to establish a secure connection among a large number of
spatially dispersed devices with minimal or no human involvement.
Recently, zero-interaction pairing and authentication (ZIPA) has
emerged as a promising solution to this challenge, and researchers
have devised various techniques to exploit different entropy sources
to generate keys and set up secure connections. While prior works
have successfully shown the potential of ZIPA, the focus has been
placed mainly on exploring new sensing modalities, but barely on
optimizing the underlying signal processing that is crucial for bal-
ancing security and usability. In this paper, as a first step towards
the systematic design optimization of the signal processing pipeline
of ZIPA techniques, we propose a generic key reconciliation frame-
work that determines the proper reconciliation parameter based on
a user-given authentication range. We analyze and compare the two
most commonly used reconciliation schemes in terms of security
and usability to select the better scheme with the best parameters
to set the balance between them and estimate the computation
overhead.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Security and privacy → Authenti-
cation.
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1 Introduction
The number of connected and Internet-of-Things (IoT) devices has
been experiencing explosive growth, driven by emerging applica-
tions and advanced technologies, coupled with the active standard-
ization of connected ecosystems. As the number is continuing to in-
crease, efficient configuration and long-term management of these
devices are becoming more time-consuming and labor-intensive.
For instance, current pairing (mutually registering two devices with
no prior knowledge) and authentication (verifying the authority
of a device to access resources) methods between typical IoT de-
vices (e.g., smart speakers, lights, and thermostats) heavily involves
human-in-the-loop operations by requiring the user to manually
type in a pin or password to establish credentials between two
devices [2]. When the devices do not have a proper user inter-
face, which is typical for small, low-cost devices, the procedure
is further complicated through the usage of a secondary device,
mainly the user’s smartphone. This cumbersome procedure often
puts a burden on the user not only during the pairing time but also
when re-authenticating existing devices (e.g., periodic password
update), which results in inexperienced users opting not to change
default or old passwords. The lack of a usable pairing and authenti-
cation scheme has become an imminent threat to IoT systems as
disclosed in the 2016 Data Breach Investigations Report — 63% of
confirmed data breaches are attributed to using weak, default, or
stolen passwords [13].

The efforts to reduce human involvement have lead researchers
to introduce various zero-interaction pairing or authentication (ZIPA)
techniques. ZIPA techniques exploit a spatially correlated, tempo-
rally uncorrelated environmental noise to allow devices to authen-
ticate with each other only when they are closely located at the
same time by independently deriving identical keys from the noise.
The main assumption that underlies ZIPA is that if two devices in-
dependently observe substantially correlated environmental noise
patterns, they are likely to be located in the same physical space
called an authentication range, which implicitly means that they are
owned and controlled by the same user, and hence can be allowed
to authenticate with each other. Since the noise is significantly dif-
ferent when measured at different locations, distant devices outside
the authentication range cannot generate the same key. Compared
to traditional password-based authentication schemes, ZIPA is ad-
vantageous in terms of both security and usability. The random
keys provide higher security than user-created passwords do, and
it does not depend on the user to create, remember, and enter the
password. Furthermore, it allows devices to use a unique key for
each device pair or re-establish fresh keys more frequently and
autonomously.

While various ZIPA techniques have been proposed in many
different works, the focus has mainly been placed on the modalities
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Figure 1: General pipeline of ZIPA techniques between two
Devices: 𝐴 (Client) and 𝐵 (Host).

of sensing, i.e., the sources of entropy to create the keys. However,
the signal processing pipeline that generates the keys from the
measurement has received less attention and has been rather ad
hoc. The pipeline typically consists of stages for measurement, bit
quantization, and key reconciliation, which are highly tailored and
designed toward a specific sensing modality. A signal processing
stage designed for one technique does not work for others, and the
lack of a “systematic” pipeline design is a large missing piece of
ZIPA techniques.

In this paper, as a first step towards exploring a systematic ap-
proach for signal processing in ZIPA techniques, we investigate
and focus on the key reconciliation stage among other stages that
is most sensitive to parameter tuning and most computationally
heavy. More specifically, we propose a generic framework that au-
tomatically determines the reconciliation parameter that balances
security and usability, given a user-defined authentication range.
The proposed framework can serve as a guideline for ZIPA devel-
opers when coming up with new techniques or be implemented
in existing ZIPA works to seamlessly determine proper parameter
values. Additionally, we analyze the two most commonly used key
reconciliation schemes (leveraging error-correcting codes and com-
pressed sensing) in terms of their reconciliation rates, entropy loss,
and computation costs based on varying parameters to determine
a standard scheme to be used in our framework.

2 Security and Usability of ZIPA
2.1 Signal processing pipeline
The security and usability of a ZIPA technique are sensitive to
the design of its signal processing pipeline. A typical pipeline of
ZIPA techniques is illustrated in Figure 1. The pipeline consists
of three general stages (“Measurement”, “Bit quantization”, and
“Key reconciliation”) to generate the final authentication key. We
assume that Device 𝐴 (Client) initiates the process by sending an
authentication request to Device 𝐵 (Host).

Measurement: Two devices independently measure a surround-
ing noise context using their embedded sensors.

Bit quantization: The noise measurements are quantized into
a sequence of 1s and 0s using statistical features in the time or
frequency domain. We refer to the quantized bit sequences as envi-
ronmental bit sequences, 𝐵𝐴 and 𝐵𝐵 , and further denote their length
with 𝑏. Even the bit sequences from two very closely located de-
vices will likely exhibit occasional bit errors due to various factors
including sensor variations, random errors, etc.

Range
 profile
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BARa

Target EER

Authentication
range
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True/False
Bit error model

Supported 
BAR m
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Figure 2: Framework to determine reconciliation parame-
ter given three user inputs: authentication range, bit error
model (optional), and target EER.

Key reconciliation: The bit errors between 𝐵𝐴 and 𝐵𝐵 are rec-
onciled using a reconciliation scheme to produce identical final
keys, 𝐾𝐴 and 𝐾𝐵 , of bit length 𝑘 . During the reconciliation, partial
information about 𝐵𝐴 and 𝐵𝐵 are exchanged over the public chan-
nel that incurs some entropy loss which results in 𝐾 exhibiting
less entropy than 𝐵. It is important to ensure that the exchanged
information does not leak enough information to fully derive 𝐵 nor
𝐾 because the public channel is always assumed to be eavesdropped
by malicious adversaries trying to infer 𝐾 .

2.2 Balancing security and usability
Authentication is deemed successful only when the two resulting fi-
nal keys are identical with no bit errors. We define all devices within
the authentication range from each other as legitimate devices and
further refer to devices located outside the range as adversarial
devices. Note that the only difference between the legitimate and
adversarial devices is whether they are located in or outside the
authentication range. As a metric to compare the similarity of two
bit sequences (i.e., 𝐵 or 𝐾 ), we use bit agreement rate (BAR), which
refers to the rate of matching bits. To quantify usability, we use true
acceptance rate (TAR), referring to the rate of successful authenti-
cation between the legitimate devices. The security of the system
is quantified with false acceptance rate (FAR), which is the rate of
successful authentication of adversarial devices. The overall usabil-
ity and security balance is measured with equal-error rate (EER),
which refers to the intersection point where FAR is equivalent to
false rejection rate (FRR=100−TAR). A low ERR represents better
accuracy of distinguishing legitimate devices over adversarial ones.

Because a device’s physical location is a proxy for its legitimacy
in ZIPA, it is important to be able to strictly control the authenti-
cation range at which devices should be allowed to authenticate
with one another. The parameters of the key reconciliation scheme
determine its error tolerance threshold, which in turn depicts the
boundary of the authentication range after two authenticating de-
vices translate its measured environmental noise into bit sequences;
if and only if the two bit sequences exhibit fewer errors than the
threshold for the given parameters, identical keys can be derived
to authenticate two devices. As such, the reconciliation parameters
should be carefully chosen because the parameters that correspond
to a high error tolerance threshold will allow distant adversarial de-
vices to be able to authenticate (high FAR), while a too low threshold
will suffer from low usability (high TRR). To strike this sensible bal-
ance between security and usability, it is crucial to understand and
determine proper reconciliation parameters for different existing
reconciliation schemes.
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Table 1: Error-correcting code based reconciliation (Fuzzy
commitment) [2, 3, 6, 10–12]

Device 𝐴 Device 𝐵

1○ 𝐾𝐴 = 𝑃𝑅𝑁𝐺 (𝑘)
2○ 𝐻 (𝐾𝐴) = 𝑆𝐻𝐴256(𝐾𝐴)
3○ 𝜆𝐴 = 𝐸𝑁𝐶𝑂𝐷𝐸 (𝐾𝐴)

4○ 𝜎 = 𝐵𝐴 ⊕ 𝜆𝐴
𝜎,𝐻 (𝐾𝐴)−→ 𝜆𝐵 = 𝐵𝐵 ⊕ 𝜎

5○ 𝐾𝐵 = 𝐷𝐸𝐶𝑂𝐷𝐸 (𝜆𝐵)
6○ 𝐻 (𝐾𝐴)

?
= 𝐻 (𝐾𝐵)

Different ZIPA techniques use different forms of environmental
noise with different spatial extents. Generally, as the distance be-
tween the two devices increases, BAR between their environmental
bit sequences decreases due to spatially unique nature of the noises.
For instance, in VoltKey, which utilizes powerline noises as a source
of entropy, BAR decreases from 95% to 91% as the distance between
the devices increases from 1 m to 24 m [4]. To balance security and
usability for a given authentication range, the key reconciliation
parameters must be judiciously fine-tuned to successfully authen-
ticate only when BAR is higher than or equal to the BAR of the
desired range. While most previous works presented new methods
and different noise sources that ZIPA can leverage, the problem of
automatically determining optimal reconciliation parameters for
varying authentication range is yet to exist.

We propose a systematic framework to analyze and determine
the parameters given an authentication range and a target EER de-
fined by either the manufacturer or the user. The overall diagram
of the framework is illustrated in Figure 2. As inputs, it takes in
the desired authentication range and a target EER of the system.
The bit-error model between 𝐵𝐴 and 𝐵𝐵 (e.g., burst error model)
is an optional input. With the desired range, the “Range profile”
block determines the minimum BAR that is required between the
legitimate devices, BAR𝑙 , and the maximum BAR that is exhibited
by devices outside the range, BAR𝑎 . The Range profile block is
pre-profiled with the varying distance and its corresponding BAR
between 𝐵𝐴 and 𝐵𝐵 , which may differ from one noise source to
another. Once profiled, BAR𝑙 is selected as the corresponding BAR
under the given range, and BAR𝑎 is selected as the highest BAR
achieved beyond the range. With the selected BAR𝑙 and BAR𝑎 , the
“Supported BAR model” block, which is also pre-profiled with vary-
ing reconciliation parameters and its reconciliation performance,
outputs the optimal parameter. Additionally, it confirms if the user-
given target EER can be met. Note that this block can be based
on different existing key reconciliation schemes leveraging error-
correcting codes or compressed sensing, which will be described
in the next section. This framework can particularly benefit ZIPA
developers to quickly determine proper reconciliation parameter
(regardless of noise sources) that balances usability and security
(EER) without manually computing through different parameter
values and validating the EER point.

Table 2: Compressed sensing based reconciliation [7, 8, 14,
15]

Device 𝐴 Device 𝐵

1○ 𝐾𝐴 = 𝐵𝐴
2○ 𝐻 (𝐾𝐴) = 𝑆𝐻𝐴256(𝐾𝐴) 𝐶𝐵 = Φ · 𝐾𝐵
3○ 𝐶𝐴 = Φ · 𝐾𝐴

𝐶𝐴,𝐻 (𝐾𝐴)−→ Δ𝐶 = 𝐶𝐴 −𝐶𝐵
4○ Δ𝐵 = l1.min(Δ𝐶)
5○ 𝐾𝐵 = 𝐵𝐵 ⊕ Δ𝐵

6○ 𝐻 (𝐾𝐴)
?
= 𝐻 (𝐾𝐵)

3 Key Reconciliation Protocols
In this section, we describe two commonly used key reconciliation
schemes in ZIPA research to understand how their parameters affect
the performance of ZIPA techniques. One scheme is based mainly
on error-correcting code (ECC) and the other leverages the notion of
compressed sensing (CS) to reconcile differences in bit sequences.

3.1 ECC-based reconciliation
ECC-based reconciliation, also commonly known as fuzzy commit-
ment scheme, leverages linear ECC to allow two very similar bit
sequences as evidence to lock and unlock a “secret” so that it can be
transferred over public wireless channel [3]. In our case, the “secret”
is the final key, 𝐾 , and the two environmental bit sequences from
two devices are used to lock and unlock 𝐾 .

The overall reconciliation steps are illustrated in Table 1. First,
Device 𝐴 uses a pseudo-random number generator to generate a
random bit sequence of length 𝑘 to be used as a final key,𝐾𝐴 . It then
performs one-way hashing on the result (e.g., SHA256) to generate
𝐻 (𝐾𝐴). Afterward, 𝐾𝐴 is encoded into a codeword, 𝜆𝐴 , of length 𝑏
using an ECC (e.g., Reed-Solomon(𝑏,𝑘)) to add redundancy based on
the polynomials over Galois fields to support error correction. Then,
it performs exclusive OR between 𝜆𝐴 and extracted 𝐵𝐴 to obtain
𝜎 , which is transferred to Device 𝐵 through a public channel along
with 𝐻 (𝐾𝐴). Note that 𝜎 does not divulge any information about
𝐵𝐴 nor 𝜆𝐴 to the malicious eavesdropper on the public channel.
Once Device 𝐵 receives 𝜎 , it performs exclusive OR with its own
extracted𝐵𝐵 to produce 𝜆𝐵 which is very close to originally encoded
𝜆𝐴 . Afterward, 𝜆𝐵 is decoded using the same ECC into𝐾𝐵 . To verify
the equality of the two keys obtained on two devices, 𝐾𝐴 and 𝐾𝐵 ,
Device 𝐵 compares the two hashed results; if equal, two devices are
successfully authenticated. The fuzzy commitment scheme assumes
identical derivation of the key as long as the number of bit errors
(Hamming distance) between 𝐵𝐴 and 𝐵𝐵 does not exceed 𝑏−𝑘

2 bits,
and we denote this number of bit error as 𝑇 . Note that the added
redundancy to correct the error between the 𝐵𝐴 and 𝐵𝐵 results in
final key length 𝑘 to be shorter than 𝑏 (𝑘 < 𝑏). In Section 4, we use
𝑇 as a main parameter to benchmark the ECC-based reconciliation.

3.2 CS-based reconciliation
CS is an information processing technique to reconstruct a high-
dimensional sparse signal from a low number of measurements.
A CS-based reconciliation scheme mainly uses this property to
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Figure 3: (a) Success rate for ECC-based scheme varying 𝑇
and required BAR between devices to achieve 5%, 50% and
95% success rate in (b) independent and (c) simple Gilbert
model with 𝑟=0.2 and (d) 𝑟=0.1.

reconstruct the sparse error between 𝐵𝐴 and 𝐵𝐵 as they are very
close to each other in terms of their Hamming distance.

The overall steps are illustrated in Table 2. Unlike ECC-based
reconciliation, Devices 𝐴 and 𝐵 directly use the extracted 𝐵𝐴 and
𝐵𝐵 to be used as 𝐾𝐴 and 𝐾𝐵 , respectively, which results in 𝑘 = 𝑏.
Device 𝐴 further obtains the hashed key to later verify the equality
with 𝐾𝐵 . Then, 𝐾𝐴 and 𝐾𝐵 are compressed into 𝐶𝐴 and 𝐶𝐵 , respec-
tively, with Φ representing the random Bernoulli matrix with ±1
with equal probability. The Φ represents a randomly generated sens-
ing matrix that is assumed to be identical on both devices (can be
pre-established) and the dimension of Φ specifies the compression
rate; 𝑘 ×𝑀 matrix results in the length of 𝐶𝐴 to be 𝑀 bits. After-
ward, Device 𝐴 transfers 𝐶𝐴 , along with 𝐻 (𝐾𝐴) to Device 𝐵. Upon
receiving, Device 𝐵 obtains Δ𝐶 by subtracting the two 𝐶 which
essentially represents the difference between 𝐵𝐴 and 𝐵𝐵 in a lower
dimension. Afterward, the difference, Δ𝐵, is recovered to a higher
dimension signal by solving the 𝑙1 minimization problem of Δ𝐶 ,
which regularizes the problems by using the sparsity of the solution.
Then, 𝐾𝐵 can be derived by performing exclusive OR between Δ𝐵
and 𝐵𝐵 . In Section 4, we use 𝑀 as a main parameter to benchmark
the CS-based reconciliation.

4 Analysis of Key Reconciliation Schemes
In this section, we benchmark the two above-mentioned key rec-
onciliation schemes in terms of their reconciliation performance,
entropy losses, and computation overheads. For all evaluations, we
assume 𝑏 = 128 bits and vary the parameters 𝑇 and 𝑀 for ECC-
and CS-based reconciliation, respectively.

4.1 Reconciliation success rate
We first compare how the key reconciliation parameter affects the
performance of the two reconciliation schemes. As an evaluation
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Figure 4: (a) Success rate for CS-based scheme varying𝑀 and
required BAR between devices to achieve 5%, 50% and 95%
success rate in (b) independent and (c) simple Gilbert model
with 𝑟=0.2 and (d) 𝑟=0.1.

metric, we use success rate, which refers to the rate of successful
authentication (100% BAR between𝐾𝐴 and𝐾𝐵 ) to all authentication
attempts. To simulate two environmental bit sequences, 𝐵𝐴 and 𝐵𝐵 ,
with varying BAR, we first use a pseudo-random number generator
to obtain 𝐵𝐴 and consider three error characteristics to obtain 𝐵𝐵
with two different bit error models: the independent model and the
simple Gilbert model [1]. In the independent error model, every bit
has an equal bit error rate equivalent to the given bit error rate (i.e.,
100%-BAR). In the simple Gilbert model, the bit errors are based on
the two-state (good and bad states) Markov approach, where each
of them may generate errors based on its state (good: 0%, bad: 50%).
We use 𝑟 (the probability of transitioning from bad to good state)
of 0.1 (more bursty) and 0.2 (less bursty) to simulate different error
burstiness. Using the three different error characteristics, we vary
the BAR from 60% to 98% on a sequence of 100,000 bits.

Figures 3(a) and 4(a) illustrate the success rate of ECC- and CS-
based reconciliation, respectively, for varying parameters. Since
BAR monotonically decreases as the inter-device distance increases,
an ideal success rate curve should have a steep cut-off slope at the
BAR that corresponds to the target distance. This would allow
devices with a BAR above the threshold to always succeed in au-
thenticating and reject devices with a BAR below the threshold.
However, in reality, the success rate curve show a gradually slop-
ing curve because the BAR distribution of 𝐵 within the specified
mean BAR exhibit a normal distribution. In all cases, a burstier
error results in a flatter slope. This is because the BAR variances
of each 𝐵 with 𝑏 = 128 are higher for burstier error models even
though all three error characteristics exhibit an identical mean
BAR. In both schemes, as the error tolerance parameter, 𝑇 or 𝑀 ,
increases, the success rates increase for given BAR. This means
that an increase in 𝑇 and𝑀 can tolerate more number of bit errors
between devices. Specifically, on ECC-based reconciliation, 𝑇 = 12
achieves a 50% success rate when the BAR between the devices is
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Figure 5: Entropy of the final key,𝐾 , using (a) ECC-based and
(b) CS-based reconciliation schemes.

at 90% under different error characteristics. As 𝑇 increases to 38,
the same 50% success rate is achieved when the two devices only
exhibit a 70% BAR. Similar performance is achieved on CS-based
reconciliation with 𝑀 = 41 and 97 that can support 90% and 70%
BAR, respectively.

Figures 3(b), (c) and (d) illustrate the required BAR between de-
vices to achieve 5%, 50% and 95% success rate for varying parameters
(equivalently supporting 70% to 90% BAR) for each error charac-
teristics with the EEC-based reconciliation; and Figures 4(b), (c)
and (d) illustrate the same for the CS-based reconciliation. For each
parameter, 𝑇 or𝑀 , the shaded area above 95% line (blue) indicates
the supported BAR between legitimate devices (BAR𝑙 ) to achieve
the minimum TAR of 95%. On the other hand, the shaded area be-
low 5% line (red) indicates the supported BAR from the adversarial
devices (BAR𝑎) to achieve a maximum FAR of 5%. This indicates
that as long as BAR𝑙 is above the blue line and BAR𝑎 is below the
red line for a specific parameter, the overall system can expect 5%
EER or less (over 95% TAR and under 5% FAR). We quantize the
rate of the shaded area over the plotted region for comparison.
A larger area indicates better reconciliation performance with a
more range of BAR to potentially exhibit 5% or less EER. In both
schemes, the burstier error results in a less shaded area due to a
flatter slope of the success rate as previously mentioned. Compared
to the CS-based scheme, the ECC-based reconciliation has a higher
rate of shaded area with 71.3%, 58.1% and 45.8% for independent,
and Simple Gilbert models with 𝑟 = 0.2 and 0.1, respectively.

These plots can be implemented as a Supported BARmodel in our
envisioned framework to output optimal reconciliation parameters.
The black line, which represents the 50% success rate for varying
parameters, is the guideline for selecting the optimal parameter.
The parameter is chosen by taking the mean BAR between BAR𝑙
and BAR𝑎 , and selecting the corresponding BAR in the black line. If
the given BAR𝑙 and BAR𝑎 are within (above and below) the shaded
region, the target EER can be met. Otherwise, the target EER cannot
be met and the authentication range must be decreased. While these
plots only represent 5% EER (95% and 5% success rate line), further
plots representing varying success rates can be pre-profiled within
the Supported BAR model to verify the validity of the target EER.

4.2 Entropy loss
We next evaluate the quality of the final key, 𝐾 , generated from 𝐵

in terms of the resulting entropy. Note that the length of 𝐵 is fixed
to 128 bits (𝑏 = 128). In ECC-based reconciliation, the bit length
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of the final key, 𝑘 is obtained by taking 𝑏 − 2𝑇 (assuming Reed-
Solomon code). In CS-based scheme, 𝑘 is equivalent to 𝑏 because
𝐵 is directly utilized as 𝐾 . If only considering the key length, CS-
based scheme retains more entropy. However, in CS-based scheme,
when 𝐶𝐴 is transferred over to Device 𝐵 over a public channel,
partial information is leaked to the potential adversary. Assuming
a strong attack model where the adversary has access to a pre-
established sensing matrix Φ, we have to assume that 𝑀 bits out
of 𝑘 bits have been leaked. Considering this information leakage,
we present the resulting entropy of 𝐾 from the two reconciliation
schemes in Figure 5. The parameters 𝑇 and 𝑀 are set to 12–38
and 41–96, respectively, representing the equivalent reconciliation
performance derived from the previous analysis in Section 4.1. In
both schemes, as 𝑇 or 𝑀 increases to tolerate higher error, the
resulting entropy decreases linearly. Specifically, in the ECC-based
scheme with 𝑇 = 12, we can expect the final key to retain 104
bits of entropy, whereas with 𝑇 = 38 that can tolerate as low
as 70% BAR retains 52 bits of the entropy. Overall, the CS-based
reconciliation experiences higher entropy loss within the same
reconciliation performance range. When 𝑀 = 41 to support 90%
BAR, the resulting entropy of the final key is 87 bits. An increase in
𝑀 up to 96 will result in 𝐾 retaining only 32 bits. Considering the
two equal reconciliation performance, ECC-based scheme results
in retaining more bits of entropy in the final key.

4.3 Computation overhead
Finally, we compare the two schemes in terms of their computation
costs. We implement the two schemes in C language on both client
(Device 𝐴) and host (Device 𝐵) sides. As the main metrics, we use
the number of executed instructions and the execution timemeasured
using Linux perf command on the Raspberry Pi 4 equipped with
an ARM Cortex-A72 1.4 GHz processor. The benchmark results of
the schemes with varying𝑇 and𝑀 are illustrated in Figure 6(a) and
(b), respectively (note the log scale on the 𝑦-axis). In both schemes,
an increase in both 𝑇 and𝑀 require a higher number of executed
instructions due to the higher number of bit errors it can tolerate.
In the ECC-based scheme, Device 𝐴 merely performs an encoding
function (involving linear operations to add redundancies) that
results in execution of 180k to 320k (1.4 to 1.5 ms of execution time)
instructions as𝑇 increases from 12 to 38. On the other hand, Device
𝐵 performs more number of instructions, ranging from 300k to 800k
(1.5 to 3.2 ms of execution time), due to the higher computation
costs of the decoding function. Nevertheless, both sides can execute
under 3.2 ms regardless of the increase in 𝑇 .
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The CS-based scheme, on the other hand, is orders-of-magnitude
more computation-intensive. In Device 𝐴, 𝑘 ×𝑀 matrix multipli-
cation using Φ results in a relatively higher number of executed
instructions, ranging from 500k to 1,000k as𝑀 increases from 41 to
97, respectively. This results in an execution time of 1.5 to 2.7 ms.
On the other hand, Device 𝐵 requires orders of magnitude more
number of instructions ranging from 128M to 363M (48 to 100 ms
of execution time) due to the heavy computation of the l1 mini-
mization algorithm to recover sparse vector.

Overall, ECC-based reconciliation is computationally lighter and
faster than CS-based scheme for the same reconciliation perfor-
mance. Also, in both schemes, the computation overhead of the host
and the client is significantly different, especially in the CS-based
scheme. This asymmetry must be considered when implementing a
ZIPA technique on resource-constrained devices so that the device
with more resource play the host role.

5 Discussion
Reconciliation scheme selection: Our analysis suggests that the
ECC-based scheme outperforms the CS-based scheme in terms of its
reconciliation success rate, entropy loss, and computation overhead
(communication overhead difference between two schemes are
negligible). More importantly, the final key generated from the
ECC-based scheme is considered more secure because it is initially
generated from the pseudo-random number generator that is less
likely to be predictable by the adversary (i.e., equal probability of
having 0s and 1s). In CS-based scheme, the final key is directly being
used from the environmental bit sequences; these bit sequences are
not always truly random and many prior works have rejected its
randomness hypothesis [4, 7]. Considering this security property
in addition to our provided benchmark results, ECC-based scheme
is more suitable for our proposed framework.

Framework implementation: Most existing ZIPA works re-
quire consistent tuning of their reconciliation parameters due to
the dynamic nature of the noise sources that heavily depend on the
environment. For instance, in a prior work generating keys using
ambient audio [12], a parameter that establishes the matching final
key only within 2 m in a crowded canteen environment may exhibit
further authentication range in a quiet office environment which
may allow unwanted devices to authenticate with legitimate ones.
To dynamically adjust the range, it is important that our proposed
framework is embedded in many resource-limited IoT or wearable
devices. The implementation of our framework requires minimal
storage space and software-level modifications. Considering three
bit error models, our framework requires less than 2.5 kB of storage
space to support up to 10% target EER validation when implemented
using the ECC-based scheme. Using CS-based scheme, the storage
requirement is around 5 kB, which can easily be supported even by
today’s resource-constrained devices.

6 Related Works
Researchers have explored various random environmental contexts
as a source of entropy to generate random keys for ZIPA. For general
IoT devices, examples include wireless signal strength [9], ambi-
ent sound [11], luminosity [10], powerline noise [4], inter-event
timing [2], vehicle vibration [5], or combinations of them. ZIPA
techniques within the wearable device domain aim to prove the

co-presence of the devices worn by the same user. For instance,
physiological and behavioral signatures from electrocardiography
and body gestures have been proposed to simplify pairing and au-
thentication procedures [6–8]. While these prior works successfully
propose new sensing modalities, many works do not explicitly state
the definition of co-location or provide the parameter values for
different authentication ranges, which often leave the users to deter-
mine the right values based on different deployment environments.
Further, the lack of comprehensive comparison of different key
reconciliation schemes leads to different groups of work using dif-
ferent schemes, which hinders the coherence and fair comparison
of many ZIPA techniques.

7 Conclusion
As a first step towards developing a systematic ZIPA pipeline, we
proposed a novel framework to determine the proper reconciliation
parameter for the desired authentication range. We analyzed the
two commonly used reconciliation schemes in terms of their secu-
rity, usability, and computation overhead to find a more suitable
scheme for optimizing ZIPA operation. The proposed framework
can be embedded in many resource-constrained devices to dynami-
cally adjust its authentication range and adapt based on its deployed
environment.
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