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Abstract—This paper considers a multi-source updating system
in which a transmitter node powered by energy harvesting (EH)
sends status updates about multiple sources of information to a
destination, where the freshness of status updates is measured
in terms of Age of Information (AoI). The status updates of
each source and harvested energy packets are assumed to arrive
at the transmitter according to independent Poisson processes,
and the service time of each status update is assumed to be
exponentially distributed. Further, the transmitter can harvest
energy only when its server is idle. Unlike most of the existing
queueing-theoretic analyses of AoI that focus on characterizing
its average when the transmitter has a reliable energy source
and is hence not powered by EH (referred henceforth as a non-
EH transmitter), our analysis is focused on understanding the
distributional properties of AoI in multi-source systems through
the characterization of its moment generating function (MGF). In
particular, we use the stochastic hybrid systems (SHS) framework
to derive closed-form expressions of the average/MGF of AoI
under several queueing disciplines at the transmitter, including
non-preemptive and source-agnostic/source-aware preemptive in
service strategies. The generality of our results is demonstrated
by recovering several existing results as special cases.

Index Terms—Age of information, energy harvesting, queueing
systems, communication networks, stochastic hybrid systems.

I. INTRODUCTION

A typical model for real-time status update systems consists
of a transmitter node that generates real-time status updates
about some physical process(es) of interest and sends them
through a communication network to a destination node.
Such a model can be used to analyze the performance of a
plethora of emerging Internet of Things (IoT)-enabled real-
time applications including healthcare, factory automation,
autonomous vehicles, and smart homes, to name a few [3].
As a concrete example of healthcare applications, large-scale
IoT deployments could be useful in containing pandemics
through efficient monitoring and contact/infection tracing [4].
The performance of these applications highly depends upon
the freshness of the information status at the destination node
about its monitored physical process(es). Because of that,
the main design objective of such real-time status update
systems is to ensure timely delivery of status updates from
the transmitter node to the destination node. To measure the
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freshness of information at the destination node, the authors
of [5] introduced the concept of AoI which accounts for the
generation time of each status update (which was ignored by
conventional performance metrics, specifically throughput and
delay). In particular, for a queuing-theoretic model in which
status updates are generated at the transmitter node according
to a Poisson process, AoI was defined in [5] as the time
elapsed since the latest successfully received status update at
the destination node was generated at the transmitter node.

As will be discussed next in detail, the queueing-theoretic
analyses of AoI have mostly been focused on the characteriza-
tion of its average in the case of having a non-EH transmitter.
However, it is infeasible to ensure the availability of a reliable
energy source at the transmitter node in many practical IoT
scenarios. For instance, a transmitter node could represent an
aggregator deployed at a hard-to-reach place in a large-scale
IoT network, where it is impractical to replace or recharge the
energy battery at the aggregator [6]. To enable a sustainable
operation of real-time status update systems in such scenarios,
EH has been considered as a promising solution for powering
the transmitter nodes. While there are a handful of prior
works analyzing AoI for the system in which a transmitter
node is powered by EH, their analyses have been limited
to the evaluation of its average and that too in the special
case where the transmitter has a single source that generates
status updates about a single physical process. Motivated by
this, we provide the first queueing-theoretic analysis of the
distributional properties of AoI for a generic setup in which an
EH-powered transmitter has multiple sources which generate
status updates about multiple physical processes.

A. Related Work

For systems in which a non-EH transmitter has a single
source that generates status updates about some physical
process, referred to as single-source systems, the authors of
[5] first derived a closed-form expression of the average AoI
under first-come-first-served (FCFS) queueing discipline. The
average of AoI or peak AoI (an AoI-related metric introduced
in [7] to capture the peak values of AoI over time) is then
characterized under several queueing disciplines in a series of
subsequent prior works [7]–[13]. Further, a handful of recent
works aimed to characterize the distribution (or some distribu-
tional properties) of AoI/peak AoI [14]–[19]. While AoI has
been extensively analyzed in single-source systems, the prior
work on the analysis of AoI in multi-source systems has been
fairly limited [20]–[29]. Note that a multi-source system refers
to the setup where a non-EH transmitter has multiple sources
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generating status updates about multiple physical processes.
The average AoI was characterized for the M/M/1 FCFS
queueing model in [20], the M/G/1 FCFS queueing model
in [21], and the M/M/1 FCFS with preemption in waiting
queueing model (where the transmitter has a buffer that only
keeps the latest generated status update from each source)
in [22]. The authors of [23] and [24] analyzed the average
AoI under scheduled and random multiaccess strategies for
delivering the status updates generated from different sources
at the transmitter. The average peak AoI was derived for
the M/G/1 last-come-first-served (LCFS) queueing model with
(without) preemption in service in [25] (in [26]), and for the
priority FCFS and LCFS queueing models (where the sources
of information are prioritized at the transmitter) in [27].
Further, the distributions of AoI and PAoI were numerically
characterized for various discrete time queues in [28], and for
a probabilistically preemptive queueing model in [29] where
a new arriving status update preempts the one in service with
some probability. Different from [7]–[29], our focus in this
paper is on the analytical characterization of distributional
properties of AoI in the case where the transmitter has multiple
sources of information and is powered by EH.

The analyses of the above works were mainly based on
identifying the properties of the AoI sample functions and
applying geometric arguments, which often involve convoluted
calculations of joint moments. This has motivated the authors
of [30] and [31] to build on the SHS framework1 in [32], and
derive promising results allowing the use of the SHS approach
for the queueing-theoretic analyses of AoI. Following [30],
[31], the SHS approach was then used to evaluate the average
AoI for a variety of queueing disciplines in [33]–[35], and
the MGF of AoI for a two-source system with status update
management in [36]. Compared to the analyses of [33]–[36]
that considered a non-EH transmitter, the analysis of AoI using
the SHS approach becomes much more challenging when we
consider an EH-powered transmitter. This is due to the fact
that the joint evolution of the battery state at the transmitter
and the system occupancy with respect to the status updates
has to be incorporated in the process of decision-making (i.e.,
the decisions of discarding or serving the new arriving status
updates at the transmitter). This, in turn, requires analyzing
a two-dimensional continuous-time Markov chain (modeling
the system discrete state that is represented by the number of
energy packets in the battery and the number of status updates
in the system) with new transitions associated with the events
of harvested energy packet arrivals/departures, compared to
the conventional one-dimensional Markov chain used in [33]–
[36] to track the number of status updates in a system with a
non-EH transmitter.

For the case where the transmitter is powered by EH, there
are a handful of prior works [37]–[41] analyzing AoI by
applying geometric arguments [37], [38], and by using the
SHS approach [39]–[41]. However, the analyses of [37]–[40]
have been limited to the evaluation of the average AoI in
single-source systems, and the analysis of [41] was focused on
the characterization of the distributional properties of AoI in

1A detailed description of the SHS will be provided in Section III.

single-source systems. Different from these, this paper makes
the first attempt at deriving the distributional properties of AoI
for a variety of queueing disciplines in multi-source systems
with an EH-powered transmitter. Table I further highlights the
gap in the literature that we aim to fill in this paper. Before
going into more details about our contributions, it is instructive
to note that besides the above queueing theory-based analyses
of AoI, there have also been efforts to optimize AoI or
some other AoI-related metrics in different communication
systems that deal with time critical information (see [42] for
a comprehensive survey). For instance, AoI has been studied
in the context of EH systems [43]–[54], age-optimal trans-
mission scheduling policies [55]–[57], remote estimation [58],
ultra-reliable low-latency vehicular networks [59], unmanned
aerial vehicle (UAV)-assisted communication systems [60]–
[62], large-scale analysis of IoT networks [63]–[65], cache
updating systems [66]–[68], and timely communication in
federated learning [69], [70].

B. Contributions

This paper analyzes the AoI performance of a multi-source
status update system in which an EH-powered transmitter
is equipped with a battery of finite capacity to store the
harvested energy packets. In particular, we characterize the
AoI performance under the LCFS without (LCFS-WP) and
with [source-agnostic (LCFS-PS)/source-aware (LCFS-SA)]
preemption in service queueing disciplines. An arriving status
update at the transmitter preempts the one being served
(regardless of its generating source index) under the LCFS-
PS queueing discipline, whereas the preemption in service
under the LCFS-SA queueing discipline only occurs when
the two status updates (the arriving one and the one being
served) are generated from the same source. In our analysis,
the harvested energy packets/status updates generated from
each source are assumed to arrive at the transmitter according
to a Poisson process, and the service time of each status update
is assumed to be exponentially distributed. For this setup, our
main contributions are listed next.

Analysis of the average/MGF of AoI associated with each
source at the destination. We use the SHS framework to
first derive closed-form expressions of the average AoI of
each source for each of the considered queueing disciplines.
We then extend our analysis to understand the distributional
properties of AoI through the characterization of its MGF
under each queuing discipline. The novelty of our analysis lies
in the fact that this paper presents the first queueing-theoretic
analysis of AoI in multi-source updating systems with an EH-
powered transmitter. Further, it is worth noting that the prior
analyses of AoI under the source-aware preemptive policies
have been limited to the special case where a non-EH trans-
mitter only consists of two sources of information [34]. This,
in turn, indicates that our paper is also the first to analyze the
AoI performance under a source-aware preemptive in service
queueing discipline for the generic case where the transmitter
has an arbitrary number of sources. Our results allow us to
gain useful insights about the achievable AoI performance by
each of the considered queueing disciplines. For instance, we
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TABLE I
A SUMMARY OF THE QUEUEING THEORY-BASED ANALYSES OF AOI IN THE EXISTING LITERATURE.

A non-EH transmitter EH-powered transmitter
Single-source Multi-source Single-source Multi-source

Average of AoI/peak AoI [5], [7]–[13] [20]–[27], [30], [33]–[35] [37]–[40] This paper
Distribution/distributional properties of
AoI/peak AoI

[14]–[19] [28], [29], [31], [36] [41] This paper

analytically characterize the differences between the achiev-
able average AoI performances by the considered queueing
disciplines as functions of the system parameters. Further,
using the MGF of AoI expressions, we also characterize the
relationship between the achievable second moments of AoI
by the considered queueing disciplines.

Asymptotic results demonstrating the generality of the
derived expressions. We demonstrate that as the aggregate
generating rate of status updates from all the sources other
than the source of interest approaches zero, the average AoI
expressions derived in this paper reduce to their counterparts
in [39] and [41] for single-source systems with an EH-powered
transmitter, and the derived MGF of AoI expressions reduce
to their counterparts in [41]. We further demonstrate that as
the arrival rate of harvested energy packets at the transmitter
node becomes large, the derived AoI results converge to their
counterparts in [7] and [30] for single-source and multi-source
systems with a non-EH transmitter, respectively.

System design insights. Our numerical results provide sev-
eral useful system design insights. For instance, they show that
the achievable AoI performance by each queueing discipline
improves with the increase in either the battery capacity or the
arrival rate of harvested energy packets at the transmitter. They
also show that the superiority of the LCFS-PS queueing disci-
pline over the LCFS-WP and LCFS-SA queueing disciplines in
terms of the achievable AoI performance (under the exponen-
tial service time assumption) comes at the expense of having
unfair achievable average AoI values among different sources.
Further, they reveal that as the number of sources increases,
the LCFS-SA queueing discipline becomes more effective
(compared to the LCFS-PS) in achieving fairness between the
achievable AoI performances by different sources. Finally, the
results demonstrate the importance of incorporating the higher
moments of AoI in the implementation/optimization of multi-
source real-time status updates systems.

II. SYSTEM MODEL

A. Network Model

We consider a real-time status update system in which an
EH-powered transmitter node observes N physical processes,
and sends its measurements to a destination node in the form of
status update packets. As shown in Fig. 1, the transmitter node
contains N sources and a single server; each source generates
status updates about one physical process, and the server
delivers the status updates generated from all the sources to the
destination. In particular, each status update packet generated
by source i carries some information about the value of the
i-th physical process and a time stamp indicating the time at
which that information was measured. This system setup can
be mapped to many scenarios of practical interest, such as an

Fig. 1. An illustration of the system setup.

IoT network in which an aggregator (represents the transmitter
in our model) delivers measurements sensed/generated by the
N IoT devices (represent the sources) in its vicinity to a
destination node.

Status update packets generated by the i-th source are
assumed to follow a Poisson process with rate λi. Further,
the energy packets are assumed to arrive at the transmitter
according to a Poisson process with rate η, and are stored in
a battery queue of length B packets at the server (for serving
the update packets generated by the different sources). We
consider that each energy packet contains the energy required
for sending one status update from any of the sources [37]–
[40], and hence the length of the energy battery queue reduces
by one whenever a status update is successfully received at
the destination. Given that the transmitter node has at least
one energy packet in its battery queue, the time needed by
its server to send a status update packet is assumed to be a
rate µ exponential random variable [5], [7], [8]. Let ρ = λ

µ

and β = η
µ respectively denote the server utilization and

energy utilization factors, where λ =
∑N
i=1 λi. Further, we

have ρi = λi

µ , λ−i =
∑N
j=1, j 6=i λj , and ρ−i = λ−i

µ .
We quantify the freshness of information status about each

physical process at the destination node (as a consequence
of receiving status update packets from the transmitter node)
using the concept of AoI. Formally, AoI is defined as follows
[5].

Definition 1. Let ti,k and t′i,k denote the arrival and reception
time instants of the k-th update packet of source i at the
transmitter and destination, respectively. Further, define Li(t)
to be the index of the source i’s latest update packet received
at the destination by time t, i.e., Li(t) = max{k|t′i,k ≤ t}.
Then, the AoI associated with the physical process observed
by source i at the destination (referred henceforth as AoI of
source i) is defined as the following random process

∆i(t) = t− ti,Li(t). (1)
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B. Queueing Disciplines Considered in this Paper

For the above system setup, we analyze the AoI perfor-
mance at the destination under three different queueing disci-
plines for managing update packet arrivals at the transmitter
node. These queueing disciplines are described next.
• LCFS-WP queueing discipline: Under this queueing dis-

cipline, a new arriving update packet at the transmitter
(from any of the sources) enters service upon its arrival
if the server is idle (i.e., there are no status update
packets in the system) and the battery contains at least
one energy packet; otherwise, the new arriving update
packet is discarded.

• LCFS-PS queueing discipline: When the server is idle,
the management of a new arriving update packet under
this queueing discipline is similar to the LCFS-WP one.
However, when the server is busy, a new arriving update
packet replaces the current packet being served and the
old packet in service is discarded.

• LCFS-SA queueing discipline: This queueing discipline is
similar to the LCFS-PS one with the only difference that a
new arriving update packet preempts the packet in service
only if the two packets (the new arriving packet and the
one in service) are generated from the same source.

Note that the arriving status updates at the transmitter when
the battery is empty are discarded to guarantee that a trans-
mitted status update to the destination is always fresh when it
starts its service time (its age at this moment is actually 0),
which eventually improves the achievable AoI performance.
This assumption has also been made in some other closely-
related prior works, such as [39] and [40]. Further, according
to the LCFS-PS queueing discipline, status updates of a source
i with a small λi are more likely to be preempted in service
by status updates of a source j with λj � λi. Since this
issue is resolved under the LCFS-SA queueing discipline by
only allowing preemption in service between the status updates
generated from the same source, we expect that the LCFS-SA
queueing discipline will be more effective (compared to the
LCFS-PS) in achieving fairness between the achievable AoI
performances by different sources (as will be demonstrated in
Section VI). With regards to the EH process, we consider that
the transmitter can harvest energy only if its server is idle2.
This case corresponds to the scenario where the transmitter is
equipped with a single radio frequency (RF) chain, and thus
can either transmit a status update or harvest energy at a certain
time instant.

III. PROBLEM STATEMENT AND SOLUTION APPROACH

Our goal is to analytically characterize the AoI performance
of each source at the destination node as a function of: i) the
rates of generating status update packets by the N sources
{λi}, ii) the rate of harvesting energy packets η, iii) the
rate of serving status update packets µ, and iv) the finite
capacity of the energy battery queue B, at the transmitter
node. Unlike most of the analyses of AoI in the existing

2The case where the transmitter can harvest energy anytime (i.e., even its
server is busy) is left as a promising direction of future work.

literature which were focused on deriving its average, our
analysis is focused on deriving distributional properties of
AoI through the characterization of its MGF. To derive the
MGF of AoI for the considered queueing disciplines at the
transmitter node (presented in Subsection II-B), we resort
to the SHS framework in [32], which was first tailored for
the analysis of AoI by [30] and [31]. In the following, we
provide a very brief3 introduction of the SHS framework,
which will be useful in understanding our AoI MGF analysis
in the subsequent sections. The SHS technique is used to
analyze hybrid queueing systems that can be modeled by a
combination of discrete and continuous state parameters. In
particular, the SHS technique models the discrete state of the
system q(t) ∈ Q = {1, · · · ,m} by a continuous-time finite-
state Markov chain, where Q is the discrete state space. This
continuous-time Markov chain governs the dynamics of the
system discrete state that usually describes the occupancy of
the system, e.g., q(t) represents the numbers of status update
and energy packets in the system for our problem. On the other
hand, the evolution of the continuous state of the system is
described by a continuous process x(t) = [x0(t), · · · , xn(t)] ∈
R1×(n+1), e.g., x(t) models the evolution of the age-related
processes in our system setting.

A transition l ∈ L from state ql to state q′l (in the Markov
chain modeling q(t)) occurs due to the arrival of a status
update/energy packet or the delivery of a status update to
the destination (i.e., the departure of a status update from
the system), where L denotes the set of all transitions. Since
the time elapsed between arrivals/departures is exponentially
distributed, a transition l takes place with a rate λ(l)δql,q(t),
where the Kronecker delta function δql,q(t) ensures that l
occurs only when the discrete state q(t) is equal to ql. As
a consequence of the occurrence of transition l, the discrete
state of the system moves from state ql to state q′l, and
the continuous state x is reset to x′ according to a binary
reset map matrix Al ∈ B(n+1)×(n+1) as x′ = xAl. Further,
·
x(t) ,

∂x(t)

∂t
= 1 holds as long as the state q(t) is unchanged,

where 1 is the row vector [1, · · · , 1] ∈ R1×(n+1). Different
from ordinary continuous-time Markov chains, an inherent
feature of SHSs is the possibility of having self-transitions
in the Markov chain modeling the system discrete state. In
particular, although a self-transition keeps q(t) unchanged, it
causes a change in the continuous process x(t). Further, there
may be multiple transitions between any two states in Q such
that their associated reset map matrices are different.

Now, we define some useful quantities for the character-
ization of the MGF of AoI at the destination node using
the SHS technique. Denote by πq(t) the probability of being
in state q of the continuous-time Markov chain at time t.
Further, let vq(t) = [vq0(t), · · · , vqn(t)] ∈ R1×(n+1) denote
the correlation vector between q(t) and x(t), and vsq(t) =

[vsq0(t), · · · , vsqn(t)] ∈ R1×(n+1) denote the correlation vector
between q(t) and the exponential function esx(t), where s ∈ R.

3Interested readers are advised to refer to [30] and [31] for a detailed
discussion about the SHS-based analysis of AoI.
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Thus, we can respectively express πq(t), vq(t) and vsq(t) as

πq(t) = Pr (q(t) = q) = E[δq,q(t)], ∀q ∈ Q, (2)

vq(t) = [vq0(t), · · · , vqn(t)] = E[x(t)δq,q(t)], ∀q ∈ Q, (3)

vsq(t) = [vsq0(t), · · · , vsqn(t)] = E[esx(t)δq,q(t)], ∀q ∈ Q. (4)

According to the ergodicity assumption of the continuous-
time Markov chain modeling q(t) in the AoI analysis [30],
[31], the state probability vector π(t) = [π0(t), · · · , πm(t)]
converges uniquely to the stationary vector π̄ = [π̄0, · · · , π̄m]
satisfying

π̄q
∑
l∈Lq

λ(l) =
∑
l∈L′q

λ(l)π̄ql , q ∈ Q,
∑
q∈Q

π̄q = 1, (5)

where L′q = {l ∈ L : q′l = q} and Lq = {l ∈ L : ql = q}
denote the sets of incoming and outgoing transitions for state
q,∀q ∈ Q.

Using the above notations, it has been shown in [31, Theo-
rem 1] that under the ergodicity assumption of the Markov
chain modeling q(t), if we can find a non-negative limit
v̄q = [v̄q0, · · · , v̄qn], ∀q ∈ Q, for the correlation vector vq(t)
satisfying

v̄q
∑
l∈Lq

λ(l) = π̄q1 +
∑
l∈L′q

λ(l)v̄qlAl, q ∈ Q, (6)

then:
• The expectation of x(t), E[x(t)], converges to the follow-

ing stationary vector:

E[x] =
∑
q∈Q

v̄q. (7)

• There exists s0 > 0 such that for all s < s0, vsq(t)
converges to v̄sq that satisfies

v̄sq
∑
l∈Lq

λ(l) = sv̄sq +
∑
l∈L′q

λ(l)[v̄sqlAl + π̄ql1Âl], q ∈ Q,

(8)

where Âl ∈ B(n+1)×(n+1) is a binary matrix whose
elements are constructed as: Âl(k, j) = 1 if k = j
and the j-th column of Al is a zero vector; otherwise,
Âl(k, j) = 0. Further, the MGF of the state x(t), which
can be obtained as E[esx(t)], converges to the following
stationary vector:

E[esx] =
∑
q∈Q

v̄sq. (9)

From (7) and (9), when the first element of the continuous
state x(t) represents the AoI at the destination node, the
expectation and the MGF of AoI at the destination node
respectively converge to:

∆1 =
∑
q∈Q

v̄q0, (10)

M(s) =
∑
q∈Q

v̄sq0. (11)

v

v

v

v

v

Fig. 2. The Markov chain modeling the discrete state in the LCFS-WP
queueing discipline.

IV. THE AVERAGE AOI FOR THE CONSIDERED QUEUEING
DISCIPLINES

It is clear from [31, Theorem 1] (stated in Section III)
that in order to use (8) to derive the MGF of AoI at the
destination, one needs to find a non-negative limit v̄q (∀q ∈ Q)
satisfying (6), which directly characterizes the average AoI as
observed from (7). Thus, we first show in this section that this
condition holds for the three queueing disciplines considered
in this paper, which will immediately lead to the average AoI
characterization for each queueing discipline. Afterwards, we
extend our analysis in the next section to derive the AoI MGF.

Without loss of generality, we consider that source 1 is
the source of interest in the AoI analysis in the sequel. The
AoI performance of the other sources can then be obtained
using the same expressions derived for source 1, as will be
clear shortly. While analyzing the AoI of source 1, the status
update packets associated with the other sources are generated
according to a Poisson process with rate λ−1 =

∑N
j=2 λj .

Using the notations of the SHS approach (presented in Section
III), the continuous process x(t) in each queueing discipline
is given by x(t) = [x0(t), x1(t)], where x0(t) represents the
value of the source 1’s AoI at the destination node at time
instant t (i.e., ∆1(t)), and x1(t) indicates the value that the
source 1’s AoI at the destination will become if the existing
update packet in the system completes its service at time
instant t (i.e., the packet is delivered to the destination at t).
Recall from Section III that as long as there is no change
(due to the arrival/departure of an update/energy packet) in

the discrete state q(t), we have
∂x(t)

∂t
= 1, i.e., the elements

of the age vector x(t) increase linearly with time.

A. LCFS-WP Queueing Discipline

The continuous-time Markov chain modeling the discrete
state of the system q(t) ∈ Q under the LCFS-WP queueing
discipline is depicted in Fig. 2. Each state in Q represents
a potential combination of the number of update packets in
the system and the number of energy packets in the battery
queue at the server. For instance, a state q = (eq, uq) indicates
that the system has uq status update packets and the energy
battery queue at the server contains eq energy packets. Note
that since the system can have at most one status update packet
at any time instant in the LCFS-WP queueing discipline and
there is no need to track the source index from which the
update packet in service was generated, we have uq ∈ {0, 1}.
In particular, uq = 0 indicates that the system is empty and
hence the server is idle, and uq = 1 indicates that the server
is serving the existing update packet in the system. Since the
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battery queue at the server has a capacity of B packets, we
have eq ∈ {0, 1, · · · , B}. We denote the set of states in the
i−th row of the Markov chain by ri. Further, Table II presents
the set of different transitions L and their impact on the values
of both q(t) and x(t). Before proceeding into evaluating v̄q ,
∀q ∈ Q, satisfying (6), we first describe the set of transitions
(for 2 ≤ k ≤ B) as follows:

• l = 4k−3: This subset of transitions takes place between
the states of the Markov chain in r1, corresponding to
the time when the system is empty. In particular, a
transition from this set of transitions occurs when a new
energy packet is harvested by the transmitter. Clearly,
since harvesting a new energy packet does not impact the
value of ∆1(t), we observe that the first element in the
updated value of the age vector xAl (as a consequence of
this transition) is x0, i.e., this transition does not induce
any change in the source 1’s AoI at the destination.
Further, since the server is idle in the states of r1, the
second component of x(t) (quantifying the age of the
source 1’s packet in service, if any) becomes irrelevant
for such set of states. Note that whenever a component of
x(t) is/becomes irrelevant after the occurrence of some
transition l, its value in the updated age vector xAl can
be set arbitrarily (except for l = 4k − 1, as will be
clear shortly). Following the convention [30], we set the
value corresponding to such irrelevant components in the
updated age value to 0, and thus we observe that the
second component of xA4k−3 is 0.

• l = 4k − 2: A transition from this subset of transitions
occurs when there is a new arriving update packet of
source 1 at the transmitter node. Since the age of this
new arriving update packet at the transmitter is 0 and
it does not have any impact on ∆1(t), we note that the
updated age vector xA4k−2 is set to be [x0, 0].

• l = 4k − 1: A transition from this subset of transitions
occurs when any of the sources other than source 1
generates a new update packet at the transmitter node. We
note that the first component of xA4k−1 is x0 since this
transition does not have any impact on ∆1(t). Further, to
ensure that the value of ∆1(t) does not change when this
new arriving update packet is received by the destination,
we set the second component of xA4k−1 to x0, i.e., the
value of the source 1’s AoI at the arrival instant of this
new update packet.

• l = 4k: This subset of transitions occurs when the update
packet in service is delivered to the destination. When
the update packet received at the destination belongs to
source 1, the AoI of source 1 is reset to its age; otherwise,
the AoI of source 1 does not change. Note that the latter
case is achieved by setting the second component of
xA4k−1 to x0. In addition, since the system becomes
empty after the occurrence of this transition, the second
component of the age vector x(t) becomes irrelevant, and
thus its corresponding value in the updated age vector
xA4k is 0.

Now, in order to obtain v̄q satisfying (6), the steady state
probabilities {π̄q} and the vector v̄qlAl (associated with each

TABLE II
TRANSITIONS OF THE LCFS-WP QUEUEING DISCIPLINE IN FIG. 2

(2 ≤ k ≤ B).

l ql → q′l λ(l) xAl Al Âl v̄qlAl π̄ql1Âl

1 1 → 2 η [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄10, 0] [0, π̄1]

2 2 → 3 λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄20, 0] [0, π̄2]

3 2 → 3 λ−1 [x0, x0]

[
1 1
0 0

] [
0 0
0 0

]
[v̄20, v̄20] [0, 0]

4 3 → 1 µ [x1, 0]

[
0 0
1 0

] [
0 0
0 1

]
[v̄31, 0] [0, π̄3]

4k − 3 2k − 2→ 2k η [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2k−2,0, 0] [0, π̄2k−2]

4k − 2 2k → 2k + 1 λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2k,0, 0] [0, π̄2k]

4k − 1 2k → 2k + 1 λ−1 [x0, x0]

[
1 1
0 0

] [
0 0
0 0

]
[v̄2k,0, v̄2k,0] [0, 0]

4k 2k + 1→ 2k − 2 µ [x1, 0]

[
0 0
1 0

] [
0 0
0 1

]
[v̄2k+1,1, 0] [0, π̄2k+1]

transition l in L) need to be computed. The calculations of
v̄qlAl, l ∈ L, are listed in Table II, and {π̄q} are given by the
following proposition.

Proposition 1. The steady state probabilities {π̄q} can be
expressed as

π̄2k =

(
β

ρ

)k
π̄1, (12)

π̄2k+1 = ρ

(
β

ρ

)k
π̄1, (13)

where 1 ≤ k ≤ B and π̄1 is given by

π̄1 =


1

1 +B(1 + ρ)
, if ρ = β,

ρB (β − ρ)

ρB (β − ρ) + β (1 + ρ) (βB − ρB)
, otherwise.

(14)

Proof: The expressions in (12)-(14) follow from solving
the set of equations in (5). A detailed proof can be found in
Appendix A of [41].

Having the steady state probabilities {π̄q} in Proposition 1
and the set of transitions L in Table II, we are now ready to
derive v̄q satisfying (6) as well as to characterize the average
value of ∆1(t) in the following theorem.

Theorem 1. Under the LCFS-WP queueing discipline, there
exists a non-negative limit v̄q,∀q ∈ Q, satisfying (6) and the
average AoI of source 1 is given by

WP

∆ 1,1 =
1 + ρ

µρ1
+

∑
q∈r2

π̄q

µ
+

π̄1

c0µρ−1
+

B∑
j=1

π̄2j (µρ−1)
j−1∏j

h=0 c2h

+

B−1∑
j=0

π̄2j+3 (µρ−1)
j−1∏j

h=0 c2h
, (15)

where the set {c0, c2, · · · , c2B} is defined as

c2h =


λ, h = B,

η

(
1− λ−1

c2h+2

)
+ λ, 1 ≤ h ≤ B − 1,

η

(
1

λ−1
− 1

c2

)
, h = 0.

(16)
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Proof: See Appendix A.
Note that the average AoI performance for source i ∈

{2, 3, · · · , N} can be obtained directly using (15) by replacing
λ1 with λi (which results in replacing {λ−1, ρ1, ρ−1} with
{λ−i, ρi, ρ−i} as well). This argument applies to all the results
derived in this paper for source 1.

Corollary 1. For the single source case where ρ−1 = 0 and

ρ = ρ1,
WP

∆ 1,1 in (15) reduces to

WP

∆ 1,1 =


2Bρ2 + 2 (1 +B) ρ+B + 2

µ
[
Bρ2 + (1 +B)ρ

] , if ρ = β,

βB+2
(
2ρ2 + 2ρ+ 1

)
− ρB+2

(
2β2 + 2β + 1

)
µ
[
βB+2 (ρ2 + ρ)− ρB+2 (β2 + β)

] ,

(17)

where the second case in (17) holds when ρ 6= β. Note that

the expression of
WP

∆ 1,1 in (17) is identical to the average AoI
expression derived in [39, Theorem 3] under the LCFS-WP
queueing discipline (for the case of having an EH-powered
transmitter with a single source).

Proof: We note from (16) that when ρ−1 = 0, we have

c2h = η+λ, 1 ≤ h ≤ B−1, and c0 =∞. Thus,
WP

∆ 1,1 in (15)

reduces to:
WP

∆ 1,1 =
1 + ρ

µρ1
+

∑
q∈r2

π̄q

µ
+
π̄1 + π̄3

η
. The final

expression in (17) can be obtained by substituting {π̄q} from
Proposition 1, followed by some algebraic simplifications.

Corollary 2. When β →∞,
WP

∆ 1,1 in (15) reduces to

lim
β→∞

WP

∆ 1,1 =
1 + ρ

µρ1
+

ρ

µ (1 + ρ)
. (18)

Note that the expression in (18) is identical to the average
AoI expression in the case where a non-EH transmitter with
multiple sources employs the LCFS-WP queueing discipline.

Further, by setting ρ1 in (18) to ρ, we obtain lim
β→∞

WP

∆ 1,1 =

2ρ2 + 2ρ+ 1

µ (ρ2 + ρ)
, which is the average AoI expression derived in

[7] for the M/M/1/1 case (where a non-EH transmitter with
single source employing the LCFS-WP queueing discipline
was considered).

Proof: The result follows from noting that:

lim
β→∞

π̄1

c0µρ−1
= lim

β→∞

∑B
j=1

π̄2j (µρ−1)
j−1∏j

h=0 c2h
=

lim
β→∞

∑B−1
j=0

π̄2j+3 (µρ−1)
j−1∏j

h=0 c2h
= 0 and lim

β→∞

∑
q∈r2

π̄q

µ
=

ρ

µ (1 + ρ)
.

B. LCFS-PS Queueing Discipline

Fig. 3 depicts the Markov chain representing the discrete
state of the system under the LCFS-PS queueing discipline,
where the structure of Q is similar to the one associated with
the LCFS-WP queueing discipline. Further, the set of transi-
tions in the LCFS-PS queueing discipline can be constructed
using Tables II and III. The subset of transitions in Table III

v

v

v

v

v

Fig. 3. The Markov chain modeling the discrete state in the LCFS-PS
queueing discipline.

refers to the event of having a new arriving update packet
at the transmitter node while its server is serving another
update packet. According to the mechanism of the LCFS-PS
queueing discipline, the status update that is currently being
served will be discarded, and the new arrival will enter service
upon its arrival. From (5), we note that the self-transitions do
not impact the values of the steady state probabilities {π̄q},
and hence {π̄q} in this case can be obtained using Proposition
1. That said, the average value of ∆1(t) is provided in the
next theorem.

Theorem 2. Under the LCFS-PS queueing discipline, there
exists a non-negative limit v̄q,∀q ∈ Q, satisfying (6) and the
average AoI of source 1 is given by

PS

∆1,1 =
1 + ρ

µρ1
+

π̄1

c0µρ−1
+

B∑
j=1

π̄2j (µρ−1)
j−1∏j

h=0 c2h

+
1 + ρ−1

1 + ρ

B−1∑
j=0

π̄2j+3 (µρ−1)
j−1∏j

h=0 c2h
, (19)

where the set {c0, c2, · · · , c2B} is defined as in (16).

Proof: See Appendix B.

Corollary 3. For the single source case where ρ−1 = 0 and

ρ = ρ1,
PS

∆1,1 in (19) reduces to:
PS

∆1,1 =
Bρ3 + (3B + 1) ρ2 + (3B + 4) ρ+B + 2

µρ (1 + ρ) (ρB +B + 1)
, if ρ = β,

βB+2 (1 + ρ)
3 − ρB+2

[ (
β2 + β

)
(ρ+ 2) + 1 + ρ

]
µ (1 + ρ)

[
βB+2 (ρ2 + ρ)− ρB+2 (β2 + β)

] ,

(20)

where the second case in (20) holds when ρ 6= β. Note that

the expression of
PS

∆1,1 in (20) is identical to the average AoI
expression derived in [41, Corollary 3] under the LCFS-PS
queueing discipline (for the case of having an EH-powered
transmitter with a single source).

Corollary 4. When β →∞,
PS

∆1,1 in (19) reduces to

lim
β→∞

PS

∆1,1 =
1 + ρ

µρ1
. (21)

Note that the expression in (21) is identical to the average
AoI expression derived in [30, Theorem 2(a)] for the case
where a non-EH transmitter with multiple sources employs
the LCFS-PS queueing discipline.
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TABLE III
TRANSITIONS OF THE LCFS-PS QUEUEING DISCIPLINE IN FIG. 3 (2 ≤ k ≤ B).

l ql → q′l λ(l) xAl Al Âl v̄qlAl π̄ql1Âl

4B + 2k − 3 2k − 1→ 2k − 1 λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2k−1,0, 0] [0, π̄2k−1]

4B + 2k − 2 2k − 1→ 2k − 1 λ−1 [x0, x0]

[
1 1
0 0

] [
0 0
0 0

]
[v̄2k−1,0, v̄2k−1,0] [0, 0]

v

v

v

v

v

v v

v

v

v

Fig. 4. The Markov chain modeling the discrete state in the LCFS-SA
queueing discipline.

Remark 1. Note that from Theorems 1 and 2, we have

WP

∆ 1,1 −
PS

∆1,1 =

∑
q∈r2

π̄q

µ
+

ρ1

1 + ρ

B−1∑
j=0

π̄2j+3 (µρ−1)
j−1∏j

h=0 c2h
.

(22)

Since the set {c0, c2, · · · , c2B} contains positive real num-

bers, we observe from (22) that
WP

∆ 1,1 −
PS

∆1,1 ≥ 0 for any
choice of values of the system parameters. This, in turn,
indicates the superiority of the LCFS-PS queueing discipline
over LCFS-WP in terms of the achievable average AoI at the
destination node.

C. LCFS-SA Queueing Discipline

Under the LCFS-SA queueing discipline, the continuous-
time Markov chain modeling the discrete state of the system
q(t) ∈ Q is depicted in Fig. 4. Recall that according to
the mechanism of the LCFS-SA queueing discipline, a new
arriving update packet preempts the packet in service only if
the two packets are generated from the same source. Thus, the
discrete state of the system needs to not only account for the
number of update packets in the system (as it was the case
for the LCFS-WP and the LCFS-PS queueing disciplines) but
also track the index of the source which generated the current
packet in service. Because of that, we observe from Fig. 4
that for a state q = (eq, uq), we have uq ∈ {0, 1, · · · , N}.
In particular, uq = 0 indicates that the system is empty and
hence the server is idle, and uq = i indicates that there is an
update packet in service and the index of its generating source
is i. Further, due to the finite capacity of the battery queue at
the server, we have eq ∈ {0, 1, · · · , B}. The set of transitions
L and their impact on the values of both q(t) and x(t) are
presented in Table IV in the supplementary material. We start
the analysis by characterizing the steady state probabilities
{π̄q} in the following proposition.

Proposition 2. The steady state probabilities {π̄q} can be
expressed as

π̄2+(k−1)(N+1) =

(
β

ρ

)k
π̄1, (23)

π̄2+i+(k−1)(N+1) = ρi

(
β

ρ

)k
π̄1, (24)

where 1 ≤ k ≤ B, 1 ≤ i ≤ N , and π̄1 is given by (14).

Proof: The expressions in (23) and (24) follow directly
from the solution of (5).

Now, using Table IV and Proposition 2, the average AoI is
obtained in the following theorem.

Theorem 3. Under the LCFS-SA queueing discipline, there
exists a non-negative limit v̄q,∀q ∈ Q, satisfying (6) and the

average AoI of source 1 is given by:
SA

∆1,1 =

1 + ρ

µρ1 (1 + ρ1)
+

(1 + ρ)
∑
q∈Q/r2 π̄q

µ (1 + ρ1)
+

∑
q∈Q/r1 π̄q

µ
+ v̄10,

(25)

where v̄10 is given by

v̄10 =
π̄1

c̄−1µρ−1
+

B∑
j=1

π̄2+(j−1)(N+1) (µρ−1)
j−1∏j

h=0 c̄h−1

+

B−1∑
j=0

π̄3+j(N+1)

1+ρ1
+
∑1+(j+1)(N+1)
m=4+j(N+1) π̄m∏j

h=0 c̄h−1

(µρ−1)
j−1

,

(26)

where the set {c̄−1, c̄0, · · · , c̄B−1} is defined as

c̄h =


λ, h = B − 1,

η

(
1− λ−1

c̄h+1

)
+ λ, 0 ≤ h ≤ B − 2,

η

(
1

λ−1
− 1

c̄0

)
, h = −1.

(27)

Proof: See Appendix D in the supplementary material.

Corollary 5. Note that for the single source case where ρ−1 =
0 and ρ = ρ1, the LCFS-PS and LCFS-SA queueing disciplines

are similar. Because of that,
SA

∆1,1 in (25) reduces to (20) when

ρ = ρ1. Further, when β →∞,
SA

∆1,1 in (25) reduces to

lim
β→∞

SA

∆1,1 =
1 + ρ

µρ1
+

ρ−1

µ (1 + ρ) (1 + ρ1)
, (28)

which indicates that lim
β→∞

PS

∆1,1 ≤ lim
β→∞

SA

∆1,1 ≤ lim
β→∞

WP

∆ 1,1.
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Remark 2. Note that from Theorems 1, 2 and 3, we have

WP

∆ 1,1 −
SA

∆1,1 =
ρ1 (1 + ρ)

∑B
k=1 (βρ )k

µ (1 + ρ1)

[
1 + (1 + ρ)

∑B
k=1

(
β
ρ

)k]

+
π̄1ρ

2
1

1 + ρ1

B−1∑
j=0

(
β
ρ

)j+1

(µρ−1)
j−1∏j

h=0 c̄h−1

, (29)

SA

∆1,1 −
PS

∆1,1 =
ρ−1

∑B
k=1 (βρ )k

µ (1 + ρ1)

[
1 + (1 + ρ)

∑B
k=1

(
β
ρ

)k]

+
π̄1ρ1ρ−1

(1 + ρ1) (1 + ρ)

B−1∑
j=0

(
β
ρ

)j+1

(µρ−1)
j−1∏j

h=0 c̄h−1

.

(30)

Since the set {c̄−1, c̄0, · · · , c̄B−1} contains positive real

numbers, we observe from (29) and (30) that
PS

∆1,1 ≤
SA

∆1,1 ≤
WP

∆ 1,1 for any choice of values of the system parameters.

V. THE MGF OF AOI FOR THE CONSIDERED QUEUEING
DISCIPLINES

This section presents the analysis of the MGF of AoI under
each of the queueing disciplines considered in this paper.

A. LCFS-WP Queueing Discipline

According to Theorem 1, there exists a non-negative limit
v̄q,∀q ∈ Q, satisfying (6), under the LCFS-WP queueing
discipline. Thus, the MGF of AoI can be evaluated using (8)
as in the following theorem, where the calculations required
to solve the set of equations (i.e., v̄sqlAl and π̄ql1Âl, l ∈ L)
in (8) are listed in Table II.

Theorem 4. The MGF of AoI of source 1 for the LCFS-WP
queueing discipline is given by

WP

M 1(s̄) =
ρ1 (1 + ρ− s̄)

∑
q∈r1/{1} π̄q + v̄s10ρ1 (1− s̄)

(1− s̄)
[

(1− s̄) (ρ− s̄)− ρ−1

] ,

(31)

where s̄ = s
µ and v̄s10 is given by

v̄s10 =
ρ1

ρ−1

B−1∑
j=0

π̄2j+2∏j
h=0 c

s
2h

(
µρ−1

1− s̄

)j
, (32)

where the set {cs0, cs2, · · · , cs2B} is defined as

cs2h =


λ− s, h = B,

η + λ− s− µηλ−1

cs2h+2 (µ− s)
, 1 ≤ h ≤ B − 1,

(µ− s) (η − s)
µλ−1

− η

cs2
, h = 0.

(33)

Proof: See Appendix C.

Corollary 6. When ρ−1 = 0 (i.e., ρ1 = ρ),
WP

M 1(s̄) in (31)
reduces to the following MGF of AoI derived in [41, Theo-
rem 1] for the case where an EH-powered transmitter with a
single source employs the LCFS-WP queueing discipline

WP

M 1(s̄) =
ρπ̄1

[
s̄2θ − s̄θ (1 + ρ+ β) + β (1 + θ + θρ)

]
(1− s̄)2

(ρ− s̄) (β − s̄)
,

(34)

where θ can be expressed as

θ =


B, if ρ = β,

β
(
βB − ρB

)
ρB (β − ρ)

, otherwise.
(35)

Proof: When ρ−1 = 0, we first note from (33) that we
have: cs2h = η + λ − s, 1 ≤ h ≤ B − 1, and cs0 = ∞. As

a result, v̄s10 reduces to
ρ1π̄2

(1− s̄) (β − s̄)
. The final expression

in (34) can be obtained by defining
∑
q∈r1/{1} π̄q = θπ̄1 and

substituting π̄2 from Proposition 1 as β
ρ π̄1.

B. LCFS-PS Queueing Discipline

Based on Theorem 2, the MGF of AoI under the LCFS-
PS queueing discipline is derived in the following theorem by
solving the set of equations in (8) using the calculations in
Tables II and III.

Theorem 5. The MGF of AoI of source 1 for the LCFS-PS
queueing discipline is given by

PS

M1(s̄) =
ρ1 (1− π̄1 + v̄s10)

(1− s̄) (ρ− s̄)− ρ−1
, (36)

where v̄s10 is given by

v̄s10 =
µρ1

1 + ρ− s̄

B−1∑
j=0

π̄2j+2 + π̄2j+3∏j
h=0 c

s
2h

(
µρ−1

1− s̄

)j−1

, (37)

where the set {cs0, cs2, · · · , cs2B} is defined as in (33).

Proof: See Appendix E in the supplementary material.

Corollary 7. When ρ−1 = 0 (i.e., ρ1 = ρ),
PS

M1(s̄) in
(36) reduces to the following MGF of AoI derived in [41,
Theorem 3] for the case where an EH-powered transmitter
with a single source employs the LCFS-PS queueing discipline

PS

M1(s̄) =
π̄1

[
s̄2θ − s̄θ (1 + ρ+ β) + β (1 + θ + θρ)

]
ρ−1 (1 + ρ)

−1
(1− s̄) (ρ− s̄) (1 + ρ− s̄) (β − s̄)

,

(38)

where θ is given by (35).

C. LCFS-SA Queueing Discipline

Based on Theorem 3, the MGF of AoI under the LCFS-
SA queueing discipline is derived in the following theorem
by solving the set of equations in (8) using the calculations in
Table IV.
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Theorem 6. The MGF of AoI of source 1 for the LCFS-SA
queueing discipline is given by

SA

M1(s̄) =
(1 + ρ− s̄)

∑
q∈r1∪ r2/{1} π̄q + (1 + ρ1 − s̄) v̄s10

ρ−1
1 (1 + ρ1 − s̄)

[
(1− s̄) (ρ− s̄)− ρ−1

] ,

(39)

where v̄s10 is given by

v̄s10 =
µρ1

1 + ρ1 − s̄

B−1∑
j=0

π̄2+j(N+1) + π̄3+j(N+1)∏j
h=0 c̄

s
h−1

(
µρ−1

1− s̄

)j−1

,

(40)

where the set {c̄s−1, c̄
s
0, · · · , c̄sB−1} is defined as

c̄sh =


λ− s, h = B − 1,

η + λ− s− µηλ−1

c̄sh+1 (µ− s)
, 0 ≤ h ≤ B − 2,

(µ− s) (η − s)
µλ−1

− η

c̄s0
, h = −1.

(41)

Proof: See Appendix F in the supplementary material.

Corollary 8. When ρ−1 = 0 (i.e., ρ1 = ρ),
SA

M1(s̄) in (39)
reduces to the MGF of AoI derived in [41, Theorem 3] (given
by (38)) for the case where an EH-powered transmitter with
a single source employs the LCFS-PS queueing discipline.

Remark 3. Let
D

∆i,j denote the j-th moment of source i’s AoI
under queueing discipline D. Similar to Remark 2, one can
deduce from Corollaries 9, 10 and 11 (presented in Appendix

G in the supplementary material) that
PS

∆1,2 ≤
SA

∆1,2 ≤
WP

∆ 1,2

for any choice of values of the system parameters. Further,

when ρ−1 = 0 (i.e., N = 1), we have
WP

∆ 1,2−
PS

∆1,2 =
WP

∆ 1,2−
SA

∆1,2.

The insights obtained in Remarks 1-3 are quite useful from
an engineering perspective since they allow one to: i) quantify
improvement of one queueing discipline over another in terms
of the achievable AoI performance, and ii) specify the ranges
of system parameter values over which a certain queueing
discipline achieves a better AoI performance than another
queueing discipline.

VI. NUMERICAL RESULTS

In this section, we study the impact of the system design
parameters on the achievable AoI performance under each of
the three queueing disciplines considered in this paper. We
use µ = 1 in all the figures. In Fig 5, we first verify the
accuracy of the analytical expressions of the first and second
moments of AoI for all the queueing disciplines (obtained in
Corollaries 9, 10 and 11 using the MGFs derived in Theorems
4, 5 and 6) in (a)-(c) by comparing them to their simulated
counterparts (obtained numerically using [31, Theorem 1]). We
then study the impact of battery capacity B on the achievable
pairs of average AoI (∆1,1,∆2,1) when N = 2 and ρ is
fixed. We observe from Fig. 5 that the AoI performance of
each queueing discipline improves with increasing β until it
converges to its counterpart with a non-EH transmitter (as

stated in Corollaries 2, 4 and 5). Further, it is interesting
to observe that setting B to 20 is sufficient to achieve a
similar AoI performance to that of a non EH-powered updating
system. This happens since increasing B or β decreases the
likelihood that the battery queue is empty upon the arrival of
a new status update at the transmitter when the server is idle,
and hence increases the likelihood of delivering new arriving
updates to the destination.

In Fig. 6, we compare the three queueing disciplines studied
in this paper when N = 2 in terms of: i) the achievable
average AoI pairs (∆1,1,∆2,1) in Figs. 6a and 6d, ii) the
average sum-AoI ∆1,1 + ∆2,1 in Figs. 6b and 6e, and iii)
the Jain’s fairness index in Figs. 6c and 6f, which is defined

as JFI =

(∑N
i=1 ∆i,1

)2

N
∑N
i=1 ∆2

i,1

[71]. Note that the JFI ∈
[
N−1, 1

]
is a measure of the fairness between the achievable average
AoI values by different sources such that JFI = 1 when
the average AoI values of different sources are equal (the
best scenario with respect to fairness). First, we observe
from Figs. 6a, 6b, 6d and 6e the superiority of the LCFS-
PS queueing discipline over the LCFS-WP and the LCFS-SA
queueing disciplines in terms of the achievable average AoI
performance4 (which supports our arguments in Remark 2).
However as indicated from Figs. 6c and 6f, such a superiority
of the LCFS-PS queueing discipline comes at the expense of
having unfair achievable average AoI values among different
sources. Second, we observe from Figs. 6c and 6f that as N
increases, the superiority of the LCFS-SA queueing discipline
over LCFS-PS in terms of the achievable fairness performance
becomes more significant. As expected, this happens since the
LCFS-SA queueing discipline does not allow source-agnostic
preemption in service. Finally, as was the case in [41] for
single-source systems with an EH-powered transmitter node,
we observe from Figs. 6a, 6b, 6d and 6e that the standard
deviation of AoI σ associated with each queueing discipline
in multi-source systems is relatively large with respect to the
average value. This indicates that the implementation of multi-
source status update systems based on just the average value of
AoI does not ensure reliability, and it is crucial to incorporate
the higher moments of AoI in the design of such systems.
This insight demonstrates the significance of the analytical
distributional properties of AoI derived in this paper.

VII. CONCLUSION

This paper analytically characterized the AoI performance
of multi-source EH updating systems, where an EH-powered
transmitter sends status updates about several observed physi-
cal processes to a destination. In particular, we used the SHS
approach to analyze AoI under non-preemptive and source-
agnostic (LCFS-PS)/source-aware (LCFS-SA) preemptive in
service queueing disciplines. We started our analysis by
characterizing the average AoI for each considered queueing
discipline in closed-form. We then extended the analysis

4Note that this argument holds under the exponential service time assump-
tion. One possible extension to our work is to investigate the validity of the
argument for a general service time distribution.
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Fig. 5. Verification of the analytical results derived in Corollaries 9, 10 and 11: (a) the LCFS-WP queueing discipline, (b) the LCFS-PS queueing discipline,
and (c) the LCFS-SA queueing discipline. In (a)-(c), N can be chosen arbitrary and we use ρ = 1. Impact of battery capacity B: (d) the LCFS-WP queueing
discipline, (e) the LCFS-PS queueing discipline, and (f) the LCFS-SA queueing discipline. In (d)-(f), we use N = 2, β = 1.5, and ρ = 1.

to study the distributional properties of AoI through the
characterization of its MGF. Our analytical results allowed
us to obtain several useful insights regarding the achievable
AoI performance under the considered queueing disciplines.
For instance, the differences between the achievable average
AoI performances by the considered queueing disciplines
were characterized in closed-form as functions of the system
parameters. Further, our asymptotic results demonstrated the
generality of the derived expressions by recovering several
existing results for single source-systems with an EH-powered
transmitter (when the aggregate generating rate of status
updates from all the sources other than the source of interest
approaches zero), and for multi-source systems with a non-EH
transmitter (when the arrival rate of harvested energy packets
becomes large).

Several key system design insights were also drawn from
our numerical results. For instance, our results revealed a
fundamental trade-off between obtaining a minimum average
sum-AoI and having fair achievable average AoI values among
different sources. Further, they showed the effectiveness of the
LCFS-SA queueing discipline (compared to the LCFS-PS) in
achieving fairness between different sources in term of the
achievable AoI performance (especially when the number of

sources is large). Finally, the results demonstrated that it is
necessary to incorporate the higher moments of AoI in the
implementation/optimization of multi-source real-time status
updates systems rather than just relying on its average value.

While our focus in this paper was on deriving the marginal
AoI distribution of each source under a variety of queuing
disciplines, extending our results to characterize the joint
distribution of AoI processes associated with different sources
is a promising direction of future work. A major technical
challenge in such problem is that [31, Theorem 1] is not
applicable to the joint performance analysis of AoI processes
associated with different sources.

APPENDIX

A. Proof of Theorem 1

We first show the existence of a non-negative limit v̄q,∀q ∈
Q, satisfying (6), and then we obtain the average AoI of source

1 using
WP

∆ 1,1 =
∑
q∈Q v̄q0. The set of equations in (6) can

be expressed as

q1 : η[v̄10, v̄11] = µ[v̄31, 0] + [π̄1, π̄1], (42)
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Fig. 6. Comparison between the achievable AoI performance of the queueing disciplines considered in this paper. We use β = 1.5, B = 2, and ρ = 1
[ρ = 3] in (a), (b) and (c) [(d), (e) and (f)]. Further, we use N = 2 in (a), (b), (d) and (e). In (c) and (f) for N ∈ {4, 5}, we set ρ2 = 0.1(ρ − ρ1) and
ρi = 0.9

N−2
(ρ− ρ1), 3 ≤ i ≤ N .

q2 : (η + λ) [v̄20, v̄21] = µ[v̄51, 0] + η[v̄10, 0] + [π̄2, π̄2],
(43)

q2k, 2 ≤ k ≤ B − 1 : (η + λ) [v̄2k,0, v̄2k,1] = µ[v̄2k+3,1, 0]

+ η[v̄2k−2,0, 0] + [π̄2k, π̄2k], (44)

q2B : λ[v̄2B,0, v̄2B,1] = η[v̄2B−2,0, 0] + [π̄2B , π̄2B ], (45)

q2k+1, 1 ≤ k ≤ B : µ[v̄2k+1,0, v̄2k+1,1] = [λv̄2k,0, λ−1v̄2k,0]

+ [π̄2k+1, π̄2k+1].
(46)

From (45), v̄2B,0 can be expressed as

v̄2B,0 =
ηv̄2B−2,0

c2B
+
π̄2B

c2B
, (47)

where c2B = λ. Substituting k = B − 1 in (44), v̄2B−2,0 can
be expressed as

v̄2B−2,0 =
ηv̄2B−4,0

c2B−2
+
π̄2B−2

c2B−2
+

λ−1π̄2B

c2B−2c2B
+
π̄2B+1

c2B−2
,

(48)

where v̄2B+1,1 and v̄2B,0 were respectively substituted from
(46) and (47), and c2B−2 = η

(
1− λ−1

c2B

)
+ λ. Repeated

application of (44) gives

v̄2k,0 =
ηv̄2k−2

c2k
+

B+1−k∑
j=1

π̄2(k+j−1)λ
j−1
−1∏j

h=1 c2(k+h−1)

+

B−k∑
j=1

π̄2(k+j−1)+3λ
j−1
−1∏j

h=1 c2(k+h−1)

, 2 ≤ k ≤ B, (49)

v̄20 =
ηv̄10

c2
+

B∑
j=1

π̄2jλ
j−1
−1∏j

h=1 c2h
+

B−1∑
j=1

π̄2j+3λ
j−1
−1∏j

h=1 c2h
. (50)

After substituting v̄31 from (46) into (42) and then solving
(42) and (50), v̄10 is given by

v̄10 =
π̄1

c0λ−1
+

B∑
j=1

π̄2jλ
j−1
−1∏j

h=0 c2h
+

B−1∑
j=0

π̄2j+3λ
j−1
−1∏j

h=0 c2h
, (51)

where c0 = η
(

1
λ−1
− 1

c2

)
. Note that the set {c0, c2, · · · , c2B}

contains positive real numbers, and hence we observe from
(51) that v̄10 ≥ 0. Thus, from (49) and (50), we deduce that
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v̄q0 ≥ 0, q ∈ r1. As a result, we observe from (46) that v̄q0 ≥ 0
and v̄q1 ≥ 0, q ∈ r2. Finally, from (42)-(45), one can easily
see that v̄q1 ≥ 0, q ∈ r1, and hence there exists a non-negative
limit v̄q,∀q ∈ Q, satisfying (42)-(46).

Now, we proceed with evaluating the average AoI of source
1. Summing (42)-(45) gives

λ
∑

q∈ r1/{1}

v̄q0 = µ
∑
q∈ r2

v̄q1 +
∑
q∈ r1

π̄q. (52)

Further, by summing the set of equations in (46), we have

µ
∑
q∈ r2

v̄q0 = λ
∑

q∈ r1/{1}

v̄q0 +
∑
q∈ r2

π̄q, (53)

µ
∑
q∈ r2

v̄q1 = λ−1

∑
q∈ r1/{1}

v̄q0 +
∑
q∈ r2

π̄q. (54)

Thus, the average AoI of source 1 can be evaluated as

WP

∆ 1,1 =
∑

q∈ r1∪ r2

v̄q0
(a)
= (1 + ρ)

∑
q∈ r1/{1}

v̄q0 +

∑
q∈ r2

π̄q

µ

+ v̄10
(b)
=

1 + ρ

µρ1
+

∑
q∈ r2

π̄q

µ
+ v̄10, (55)

where step (a) follows from substituting
∑
q∈ r2

v̄q0 from (53)
into (55), and step (b) follows from substituting

∑
q∈ r1

v̄q0

using (52) and (54) into (55). The final expression of
WP

∆ 1,1

in (15) can directly be obtained by substituting v̄10 from (51)
into (55).

B. Proof of Theorem 2

By inspecting Fig. 3, we observe that the set of equations
in (6) corresponding to the states in r1 are still given by (42)-
(45). Regarding the states in r2, we have

q2k+1 : (λ+ µ) [v̄2k+1,0, v̄2k+1,1] = [λv̄2k,0, λ−1v̄2k,0]

+ [λv̄2k+1,0, λ−1v̄2k+1,0] + [π̄2k+1, π̄2k+1], (56)

where 1 ≤ k ≤ B. Similar to the procedure in (47)-(51) in
Appendix A, repeated application of (44) gives

v̄2k,0 =
ηv̄2k−2

c2k
+

B+1−k∑
j=1

π̄2(k+j−1)λ
j−1
−1∏j

h=1 c2(k+h−1)

+
1 + ρ−1

1 + ρ

B−k∑
j=1

π̄2(k+j−1)+3λ
j−1
−1∏j

h=1 c2(k+h−1)

, 2 ≤ k ≤ B, (57)

v̄20 =
ηv̄10

c2
+

B∑
j=1

π̄2jλ
j−1
−1∏j

h=1 c2h
+

1 + ρ−1

1 + ρ

B−1∑
j=1

π̄2j+3λ
j−1
−1∏j

h=1 c2h
.

(58)

Thus, from (42), (56) and (58), v̄10 can be expressed as

v̄10 =
π̄1

c0λ−1
+

B∑
j=1

π̄2jλ
j−1
−1∏j

h=0 c2h
+

1 + ρ−1

1 + ρ

B−1∑
j=0

π̄2j+3λ
j−1
−1∏j

h=0 c2h
.

(59)

Recalling that the set {c0, c2, · · · , c2B} contains positive
real numbers, we deduce from (42)-(45) and (56)-(59) that

there exists a non-negative limit v̄q,∀q ∈ Q, satisfying (6).
Further, the average AoI of source 1 can be evaluated as
follows. We first note that

∑
q∈ r1/{1} v̄q0 and

∑
q∈ r2

v̄q0 can
be expressed as in (52) and (53), respectively. In addition,
summing the set of equations in (56) gives

(µ+ λ)
∑
q∈ r2

v̄q1 = λ−1

∑
q∈ r1/{1}

v̄q0 + λ−1

∑
q∈ r2

v̄q0 +
∑
q∈ r2

π̄q.

(60)

By solving (52), (53) and (60), we get∑
q∈ r1/{1}

v̄q0 =
1 + ρ−1

µρ1 (1 + ρ)
+

∑
q∈ r1

π̄q

µ (1 + ρ)
,

∑
q∈ r2

v̄q0 =
ρ (1 + ρ−1)

µρ1 (1 + ρ)
+
ρ
∑
q∈ r1

π̄q

µ (1 + ρ)
+

∑
q∈ r2

π̄q

µ
. (61)

From (61), the average AoI of source 1 can be evaluated as

PS

∆1,1 =
∑

q∈ r1∪ r2

v̄q0 =
1 + ρ

µρ1
+ v̄10. (62)

The expression of
PS

∆1,1 in (19) can be obtained by substi-
tuting v̄10 from (59) into (62).

C. Proof of Theorem 4

Using Table II, the set of equations in (8) can be expressed
as

q1 : (η − s) [v̄s10, v̄
s
11] = µ[v̄s31, π̄3], (63)

q2 : (η + λ− s) [v̄s20, v̄
s
21] = µ[v̄s51, π̄5] + η[v̄s10, π̄1], (64)

q2k, 2 ≤ k ≤ B − 1 : (η + λ− s) [v̄s2k,0, v̄
s
2k,1] =

µ[v̄s2k+3,1, π̄2k+3] + η[v̄s2k−2,0, π̄2k−2],
(65)

q2B : (λ− s) [v̄s2B,0, v̄
s
2B,1] = η[v̄s2B−2,0, π̄2B−2], (66)

q2k+1, 1 ≤ k ≤ B : (µ− s) [v̄s2k+1,0, v̄
s
2k+1,1] =

λ1[v̄s2k,0, π̄2k] + λ2[v̄s2k,0, v̄
s
2k,0]. (67)

Summing the set of equations in (63)-(66) gives

(λ− s)
∑
q∈ r1

v̄sq0 = µ
∑
q∈ r2

v̄sq1 + λv̄s10. (68)

Further, by summing the set of equations in (67), we get

(µ− s)
∑
q∈ r2

v̄sq0 = λ
∑
q∈ r1

v̄sq0 − λv̄s10. (69)

(µ− s)
∑
q∈ r2

v̄sq1 = λ1

∑
q∈ r1/{1}

π̄q + λ2

∑
q∈ r1/{1}

v̄sq0. (70)
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From (11), the MGF of AoI of source 1 at the destination
can be evaluated as

WP

M 1(s̄) =
∑

q∈ r1∪ r2

v̄sq0
(a)
=

(λ+ µ− s)
∑
q∈ r1

v̄sq0 − λv̄s10

µ− s
,

(b)
=

ρ1 (1 + ρ− s̄)
∑
q∈r1/{1} π̄q + v̄s10ρ1 (1− s̄)

(1− s̄)
[

(1− s̄) (ρ− s̄)− ρ−1

] ,

(71)

where step (a) follows from substituting (69) into (71), and
step (b) follows from obtaining

∑
q∈ r1

v̄sq0 from (68)-(70) as
ρ1

∑
q∈r1/{1} π̄q+v̄s10(ρ1−ρs̄)
(1−s̄)(ρ−s̄)−ρ−1

and substituting it into (71). Finally,
v̄s10 in (32) can be obtained by following similar steps as in
(47)-(51).
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Supplementary Material
D. Proof of Theorem 3

Table IV presents the set of transitions L and their impact on the values of both q(t) and x(t). While the description
of most transitions in Table IV is similar to the description of their counterparts in Tables II and III, there are some key
differences. The first difference is that the second component of the updated age vector xAl in Table IV is set to 0 (rather
than x0 as in Tables II and III) when a new update packet is generated from source i ∈ {2, 3, · · · , N} at the time when the
system is empty (i.e., transition l = (3N + 1)k − 3N + i) or another packet generated from source i is being served (i.e.,
transition l = (3N + 1)k− 2N + i). This is because under the LCFS-SA queueing discipline, we know the index of the source
that generated the packet in service, and hence we can safely set the irrelevant second component of xAl to 0 when such
transitions l occur. The second difference, which has a similar interpretation to the first one, is that the first component of the
updated age vector xAl in Table IV is set to x0 (rather than x1 as in Table II) when an update packet generated from source
i ∈ {2, 3, · · · , N} is delivered to the destination (i.e., transition l = (3N + 1)k −N + i).

Since the second component of the vector v̄qlAl(∀l ∈ L′q and q ∈ Q) is 0, we observe from (6) that v̄q1 ≥ 0,∀q ∈ Q. The
existence of a non-negative limit v̄q,∀q ∈ Q, satisfying (6) is then tied with having v̄q0 ≥ 0,∀q ∈ Q. The set of equations in
(6) corresponding to the states in r1 can be expressed as

q1 : ηv̄10 = µv̄31 + µ

N+2∑
j=4

v̄j0 + π̄1, (72)

q2 : (η + λ) v̄20 = ηv̄10 + µv̄N+4,1 + µ

2N+3∑
j=N+5

v̄j0 + π̄2, (73)

q2+k(N+1), 1 ≤ k ≤ B − 2 : (η + λ) v̄2+k(N+1),0 = ηv̄2+(k−1)(N+1),0 + µv̄3+(k+1)(N+1),1 + µ

N+2+(k+1)(N+1)∑
j=4+(k+1)(N+1)

v̄j0

+ π̄2+k(N+1), (74)

q2+(B−1)(N+1) : λv̄2+(B−1)(N+1),0 = ηv̄2+(B−2)(N+1),0 + π̄2+(B−1)(N+1). (75)

Further, the set of equations in (6) corresponding to the states in ri+1, 1 ≤ i ≤ N , can be expressed as

q2+i+k(N+1), 0 ≤ k ≤ B − 1 : µv̄2+i+k(N+1),0 = λiv̄2+k(N+1),0 + π̄2+i+k(N+1). (76)

By noting that v̄3+k(N+1),1 =
π̄3+k(N+1)

µ+ λ1
, 0 ≤ k ≤ B − 1, (74) can be rewritten as

q2+k(N+1) : (η + λ) v̄2+k(N+1),0 = ηv̄2+(k−1)(N+1),0 + λ−1v̄2+(k+1)(N+1),0 + π̄2+k(N+1) +
µπ̄3+(k+1)(N+1)

µ+ λ1

+

N+2+(k+1)(N+1)∑
j=4+(k+1)(N+1)

π̄j , (77)

where 1 ≤ k ≤ B − 2, and
∑N+2+(k+1)(N+1)
j=4+(k+1)(N+1) v̄j0 in (74) was substituted from (76). Now, repeated application of (77) gives

v̄2+k(N+1),0 =
ηv̄2+(k−1)(N+1),0

c̄k
+

B−k∑
j=1

π̄2+(k+j−1)(N+1) (µρ−1)
j−1∏j

h=1 c̄k+h−1

+

B−k−1∑
j=1

π̄3+(k+j)(N+1)

1+ρ1
+
∑1+(k+j+1)(N+1)
m=4+(k+j)(N+1) π̄m∏j

h=1 c̄k+h−1

(µρ−1)
j−1

, 1 ≤ k ≤ B − 1, (78)

v̄2,0 =
ηv̄1,0

c̄0
+

B∑
j=1

π̄2+(j−1)(N+1) (µρ−1)
j−1∏j

h=1 c̄h−1

+

B−1∑
j=1

π̄3+j(N+1)

1+ρ1
+
∑1+(j+1)(N+1)
m=4+j(N+1) π̄m∏j

h=1 c̄h−1

(µρ−1)
j−1

, (79)

where the set {c̄h} is defined in (27). The expression of v̄10 in (26) can be obtained by solving (72) and (79) while noting
that v̄31 = π̄3

µ+λ1
and µ

∑N+2
j=4 v̄j0 = λ−1v̄20 +

∑N+2
j=4 π̄j . Since the set {c̄−1, c̄0, · · · , c̄B−1} contains positive real numbers,

we have v̄10 ≥ 0. Therefore, from (76), (78) and (79), we observe that v̄q0 ≥ 0,∀q ∈ Q, and hence there exits a non-negative
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TABLE IV
TRANSITIONS OF THE LCFS-SA QUEUEING DISCIPLINE IN FIG. 4 (2 ≤ i ≤ N , 2 ≤ k ≤ B).

l ql → q′l λ(l) xAl Al Âl v̄qlAl π̄ql1Âl

1 1 → 2 η [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄10, 0] [0, π̄1]

2 2 → 3 λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄20, 0] [0, π̄2]

1 + i 2 → 2 + i λi [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄20, 0] [0, π̄2]

2 +N 3 → 3 λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄30, 0] [0, π̄3]

1 +N + i 2 + i → 2 + i λi [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+i,0, 0] [0, π̄2+i]

2 (N + 1) 3 → 1 µ [x1, 0]

[
0 0
1 0

] [
0 0
0 1

]
[v̄31, 0] [0, π̄3]

1 + 2N + i 2 + i → 1 µ [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+i,0, 0] [0, π̄2+i]

(3N + 1) k − 3N 2 + (N + 1)(k − 2) → 2 + (N + 1)(k − 1) η [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+(N+1)(k−2),0, 0] [0, π̄2+(N+1)(k−2)]

(3N + 1) k − 3N + 1 2 + (N + 1)(k − 2) → 3 + (N + 1)(k − 2) λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+(N+1)(k−2),0, 0] [0, π̄2+(N+1)(k−2)]

(3N + 1) k − 3N + i 2 + (N + 1)(k − 2) → 2 + i+ (N + 1)(k − 2) λi [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+(N+1)(k−2),0, 0] [0, π̄2+(N+1)(k−2)]

(3N + 1) k − 2N + 1 3 + (N + 1)(k − 2) → 3 + (N + 1)(k − 2) λ1 [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄3+(N+1)(k−2),0, 0] [0, π̄3+(N+1)(k−2)]

(3N + 1) k − 2N + i 2 + i+ (N + 1)(k − 2) → 2 + i+ (N + 1)(k − 2) λi [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+i+(N+1)(k−2),0, 0] [0, π̄2+i+(N+1)(k−2)]

(3N + 1)k −N + 1 3 + (N + 1)(k − 1) → 2 + (N + 1)(k − 2) µ [x1, 0]

[
0 0
1 0

] [
0 0
0 1

]
[v̄3+(N+1)(k−1),1, 0] [0, π̄3+(N+1)(k−1)]

(3N + 1)k −N + i 2 + i+ (N + 1)(k − 1) → 2 + (N + 1)(k − 2) µ [x0, 0]

[
1 0
0 0

] [
0 0
0 1

]
[v̄2+i+(N+1)(k−1),0, 0] [0, π̄2+i+(N+1)(k−1)]

limit v̄q,∀q ∈ Q, satisfying (6). In the following, we evaluate the average AoI of source 1. By summing the equations in (76),
we have

µ
∑

q∈ ri+1

v̄q0 = λi
∑

q∈ r1/{1}

v̄q0 +
∑

q∈ ri+1

π̄q, (80)

where 1 ≤ i ≤ N . Further, summing the equations in (72)-(75) gives

λ
∑

q∈ r1/{1}

v̄q0 = µ
∑
q∈ r2

v̄q1 + µ
∑

q∈ Q/(r1∪ r2)

v̄q0 +
∑
q∈ r1

π̄q, (81)

where
∑
q∈ r2

v̄q1 =

∑
q∈ r2

π̄q

µ+ λ1
. From (80) and (81), we get

λ1

∑
q∈ r1/{1}

v̄q0 =

∑
q∈ r2

π̄q

1 + ρ1
+

∑
q∈ Q/r2

π̄q. (82)

Hence, the average AoI of source 1 can be obtained as

SA

∆1,1 =
∑
q∈ Q

v̄q0
(a)
=

1 + ρ

µρ1 (1 + ρ1)
+

(1 + ρ)
∑
q∈Q/r2 π̄q

µ (1 + ρ1)
+

∑
q∈Q/r1 π̄q

µ
+ v̄10, (83)

where step (a) follows from (80) and (82). This completes the proof.

E. Proof of Theorem 5

Similar to Appendix B, we first note that the set of equations in (8) corresponding to the states in r1 are given by (63)-(66),
and hence

∑
q∈ r1

v̄sq0 can be expressed as in (68). Regarding the states in r2, we have

q2k+1, 1 ≤ k ≤ B : (µ− s) v̄s2k+1,0 = λv̄s2k,0,

(λ+ µ− s) v̄s2k+1,1 = λ2(v̄s2k,0 + v̄s2k+1,0) + λ1(π̄2k + π̄2k+1). (84)

We observe from (84) that
∑
q∈ r2

v̄sq0 is given by (69) and
∑
q∈ r2

v̄sq1 can be expressed as

(λ+ µ− s)
∑
q∈ r2

v̄sq1 = λ2

∑
q∈ Q/{1}

v̄sq0 + λ1 (1− π̄1) . (85)
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Hence, the MGF of AoI of source 1 at the destination can be evaluated as

PS

M1(s̄) =
∑

q∈ r1∪ r2

v̄sq0
(a)
=

(λ+ µ− s)
∑
q∈ r1

v̄sq0 − λv̄s10

µ− s
(b)
=

ρ1 (1− π̄1 + v̄s10)

(1− s̄) (ρ− s̄)− ρ−1
, (86)

where step (a) follows from substituting (69) into (86), and step (b) follows from obtaining
∑
q∈ r1

v̄sq0 from (68), (69) and
(85) as ρ1(1−π̄1)(1−s̄)+v̄s10(ρ1−ρs̄)(1+ρ−s̄)

(1+ρ−s̄)[(1−s̄)(ρ−s̄)−ρ−1] and substituting it into (86). Finally, v̄s10 in (37) can be obtained by following similar
steps as in (57)-(59).

F. Proof of Theorem 6

Using Table IV, the set of equations in (8) corresponding to q ∈ r1 can be expressed as

q1 : (η − s) v̄s10 = µv̄s31 + µ

N+2∑
j=4

v̄sj0, (87)

q2 : (η + λ− s) v̄s20 = ηv̄s10 + µv̄sN+4,1 + µ
2N+3∑
j=N+5

v̄sj0, (88)

q2+k(N+1), 1 ≤ k ≤ B − 2 : (η + λ− s) v̄s2+k(N+1),0 = ηv̄s2+(k−1)(N+1),0 + µv̄s3+(k+1)(N+1),1 + µ

N+2+(k+1)(N+1)∑
j=4+(k+1)(N+1)

v̄sj0,

(89)

q2+(B−1)(N+1) : (λ− s) v̄s2+(B−1)(N+1),0 = ηv̄s2+(B−2)(N+1),0. (90)

Further, the set of equations in (8) corresponding to q ∈ ri+1, 1 ≤ i ≤ N , can be expressed as

q2+i+k(N+1), 0 ≤ k ≤ B − 1 : (µ− s) v̄s2+i+k(N+1),0 = λiv̄
s
2+k(N+1),0. (91)

Summing the equations in (87)-(90) gives

(λ− s)
∑
q∈ r1

v̄sq0 = µ
∑
q∈ r2

v̄sq1 + µ
∑

q∈ Q/(r1∪ r2)

v̄sq0 + λv̄s10, (92)

where
∑
q∈ r2

v̄sq1 =
λ1

∑
q∈ r1∪ r2/{1} π̄q

(µ+ λ1 − s)
. In addition, by summing the equations in (91), we get

(µ− s)
∑

q∈ ri+1

v̄sq0 = λi
∑

q∈ r1/{1}

v̄sq0, (93)

where 1 ≤ i ≤ N . From (92) and (93),
∑
q∈ r1

v̄sq0 can be obtained as

[
(1− s̄) (ρ− s̄)− ρ−1

] ∑
q∈ r1

v̄sq0 =
ρ1 (1− s̄)

∑
q∈ r1∪ r2/{1} π̄q

1 + ρ1 − s̄
+ (ρ1 − ρs̄) v̄s10. (94)

Hence, the MGF of AoI of source 1 can be evaluated as

SA

M1(s̄) =
∑
q∈ Q

v̄sq0
(a)
=

(λ+ µ− s)
∑
q∈ r1

v̄sq0 − λv̄s10

µ− s
(b)
=

ρ1

[
(1 + ρ− s̄)

∑
q∈r1∪ r2/{1} π̄q + (1 + ρ1 − s̄) v̄s10

]
(1 + ρ1 − s̄)

[
(1− s̄) (ρ− s̄)− ρ−1

] , (95)

where step (a) [step (b)] follows from substituting (93) [(94)] into (95). Finally, v̄s10 in (40) can be obtained by following
similar steps as in (77)-(79).
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G. Expressions of AoI Second Moments When B = 2

Corollary 9. When B = 2, the first and second moments of AoI of source 1 under the LCFS-WP queueing discipline can be
respectively expressed as

WP

∆ 1,1 =


ρ2

1 + 4ρ1ρ
3 + 2ρ−1ρ+ ρ2

(
4ρ4 + 12ρ+ 7

)
2µρ1ρ2 (3 + 2ρ)

, if ρ = β,∑5
n=0 β

nγn

µρ1β (β + ρ)
2 [
ρ2 + β (1 + ρ) (β + ρ)

] , otherwise.
(96)

γ5 = ρ1ρ+ (1 + ρ)
2
, γ4 = 3ρ1ρ

2 + 3ρ (1 + ρ)
2
, γ3 = ρ2

1 + ρ1ρ
(
3ρ2 − 2

)
+ ρ2 (1 + ρ) (5 + 3ρ) ,

γ2 = ρ2
1ρ+ ρ1ρ

2
(
ρ2 − 2

)
+ ρ3 (1 + ρ) (5 + ρ) , γ1 = ρ4 (3 + 2ρ) , γ0 = ρ5,

WP

∆ 1,2 =


2ρ3

1 (1 + ρ) + ρ2
1ρ
(
8ρ3 + 2ρ+ 3

)
+ 8ρ1ρ

5 + 2ρ−1ρ
2 (6 + 13ρ) + ζ0

2µ2ρ2
1ρ

3 (3 + 2ρ)
, if ρ = β,

2
∑7
n=0 β

nψn

µ2ρ2
1β

2 (β + ρ)
3 [
ρ2 + β (1 + ρ) (β + ρ)

] , otherwise,
(97)

ζ0 = ρ3
(
8ρ3 + 36ρ2 + 28ρ+ 15

)
, ψ7 = ρ2

1ρ+ ρ1

(
ρ2 − 1

)
+ (1 + ρ)

3
, ψ6 = 4ρ2

1ρ
2 + 4ρ1ρ

(
ρ2 − 1

)
+ 4ρ (1 + ρ)

3
,

ψ5 = ρ3
1 + ρ2

1

(
6ρ3 + ρ+ 2

)
+ 2ρ1ρ

(
3ρ3 − 6ρ− 2

)
+ 3ρ2 (1 + ρ)

2
(3 + 2ρ) ,

ψ4 = 2ρ3
1 (1 + ρ) + ρ2

1ρ
(
4ρ3 + 2ρ+ 1

)
+ 2ρ1ρ

2
(
2ρ3 − 9ρ− 4

)
+ ρ3 (1 + ρ)

2
(13 + 4ρ) ,

ψ3 = ρ3
1ρ (2 + ρ) + ρ2

1ρ
2
(
ρ3 + ρ+ 1

)
+ ρ1ρ

3
(
ρ3 − 12ρ− 8

)
+ ρ4

(
ρ3 + 12ρ2 + 24ρ+ 13

)
,

ψ2 = 2ρ2
1ρ

3 − 4ρ1ρ
4 (1 + ρ) + 3ρ5 (1 + ρ) (3 + ρ) , ψ1 = ρ6 (4 + 3ρ)− ρ1ρ

6, ψ0 = ρ7.

Proof: The expressions in (96) and (97) follow from the fact that the expression of
WP

M 1(s̄) (derived in Theorem 4) can

be used to compute the k-th moment of AoI of source 1 (denoted by
WP

∆ 1,k) as follows

WP

∆ 1,k =
1

µk
×

dk
[WP

M 1(s̄)
]

ds̄k

∣∣∣
s̄=0

, (98)

where dk

ds̄k
denotes the k-th derivative with respect to s̄.

Corollary 10. When B = 2, the first and second moments of AoI of source 1 under the LCFS-PS queueing discipline can be
respectively expressed as

PS

∆1,1 =


ρ2

1 (1 + ρ) + 2ρ−1ρ
(
ρ2 + ρ+ 1

)
+ ρ2

(
4ρ3 + 14ρ2 + 19ρ+ 7

)
2µρ1ρ2 (1 + ρ) (3 + 2ρ)

, if ρ = β,∑5
n=0 β

nγ′n

µρ1β (1 + ρ) (β + ρ)
2 [
ρ2 + β (1 + ρ) (β + ρ)

] , otherwise.
(99)

γ′5 = (1 + ρ)
3
, γ′4 = 3ρ (1 + ρ)

3
, γ′3 = ρ2

1 (1 + ρ)− ρ1ρ
(
ρ2 + 2ρ+ 2

)
+ ρ2 (1 + ρ)

2
(5 + 3ρ) ,

γ′2 = ρ2
1ρ (1 + ρ)− 2ρ1ρ

2
(
ρ2 + ρ+ 1

)
+ ρ3 (1 + ρ)

2
(5 + ρ) , γ′1 = ρ4 (1 + ρ) (3 + 2ρ)− ρ1ρ

5, γ′0 = ρ5 (1 + ρ) ,

PS

∆1,2 =


2ρ3

1 (1 + ρ) (1 + 2ρ) + ρ2
1ρ
(
2ρ3 + 11ρ2 + 8ρ+ 3

)
+ ρ−1ζ

′
1 + ζ ′0

2µ2ρ2
1ρ

3 (1 + ρ)
2

(3 + 2ρ)
, if ρ = β,

2
∑7
n=0 β

nψ′n

µ2ρ2
1β

2 (β + ρ)
3

(1 + ρ)
2 [
ρ2 + β (1 + ρ) (β + ρ)

] , otherwise,

(100)
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ζ ′1 = 2ρ2 (1 + ρ)
(
8ρ3 + 22ρ2 + 19ρ+ 6

)
, ζ ′0 = ρ3 (1 + ρ) (3 + 2ρ)

(
4ρ3 + 8ρ2 + 11ρ+ 5

)
,

ψ′7 = (1 + ρ)
5 − ρ1 (1 + ρ)

3
, ψ′6 = 4ρ (1 + ρ)

5 − 4ρ1ρ (1 + ρ)
3
,

ψ′5 = ρ3
1 (1 + ρ) + ρ2

1

(
2ρ3 + 6ρ2 + 5ρ+ 2

)
− 4ρ1ρ (1 + ρ)

(
2ρ3 + 5ρ2 + 4ρ+ 1

)
+ 3ρ2 (1 + ρ)

4
(3 + 2ρ) ,

ψ′4 = 2ρ3
1 (1 + ρ) (1 + 2ρ) + ρ2

1ρ
(
3ρ3 + 9ρ2 + 4ρ+ 1

)
− 2ρ1ρ

2 (1 + ρ)
(
5ρ3 + 14ρ2 + 13ρ+ 4

)
+ ρ3 (1 + ρ)

2 (
4ρ3 + 21ρ2 + 30ρ+ 13

)
,

ψ′3 = ρ3
1ρ (1 + ρ) (2 + 3ρ) + ρ2

1ρ
2
(
5ρ2 + 3ρ+ 1

)
− ρ1ρ

3 (1 + ρ)
(
7ρ3 + 20ρ2 + 20ρ+ 8

)
+ ρ4 (1 + ρ)

2 (
ρ3 + 12ρ2 + 24ρ+ 13

)
,

ψ′2 = ρ2
1ρ

3
(
− ρ3 + 2ρ2 + 4ρ+ 2

)
− 2ρ1ρ

4 (1 + ρ)
(
ρ3 + 4ρ2 + 4ρ+ 2

)
+ 3ρ5 (1 + ρ)

3
(3 + ρ) ,

ψ′1 = ρ6 (1 + ρ)
2

(4 + 3ρ)− ρ1ρ
6 (1 + ρ) (1 + 2ρ) , ψ′0 = ρ7 (1 + ρ)

2
.

Corollary 11. When B = 2, the first and second moments of AoI of source 1 under the LCFS-SA queueing discipline can be
respectively expressed as

SA

∆1,1 =


ρ3

1 + ρ2
1 + ρ1ρ

2
(
4ρ2 + 10ρ+ 7

)
+ ρ2

(
4ρ2 + 12ρ+ 5

)
+ 2ρ−1ρ [ρ1 (3ρ+ 1) + 2]

2µρ1ρ2 (1 + ρ1) (3 + 2ρ)
, if ρ = β,∑5

n=0 β
nγ̄n

µρ1β (1 + ρ1) (β + ρ)
2 [
ρ2 + β (1 + ρ) (β + ρ)

] , otherwise.
(101)

γ̄5 = −ρ2
1 + ρ1

(
ρ2 + 3ρ+ 1

)
+ (1 + ρ)

2
, γ̄4 = −3ρ2

1ρ+ 3ρ1ρ
(
ρ2 + 3ρ+ 1

)
+ 3ρ (1 + ρ)

2
,

γ̄3 = ρ3
1 + ρ2

1

(
−4ρ2 − 2ρ+ 1

)
+ ρ1ρ

(
3ρ3 + 11ρ2 + 5ρ− 2

)
+ ρ2 (1 + ρ) (5 + 3ρ) ,

γ̄2 = ρ3
1ρ− ρ2

1ρ (1 + ρ) (3ρ− 1) + ρ1ρ
2
(
ρ3 + 7ρ2 + 5ρ− 2

)
+ ρ3 (1 + ρ) (5 + ρ) ,

γ̄1 = −ρ2
1ρ

4 + ρ4 (2ρ+ 3) (1 + ρ1) , γ̄0 = ρ5 (1 + ρ1) ,

SA

∆1,2 =


∑5
n=0 ρ

n
1 ζ̄n + ρ−1ρ

2
1ζ̄6 + ρ2

−1ρ1ζ̄7 + ρ−1ρ1ζ̄8 + ρ−1ζ̄9

2µ2ρ2
1ρ

3 (1 + ρ1)
2

(3 + 2ρ)
, if ρ = β,

2
∑7
n=0 β

nψ̄n

µ2ρ2
1β

2 (β + ρ)
3

(1 + ρ1)
2 [
ρ2 + β (1 + ρ) (β + ρ)

] , otherwise,

(102)

ζ̄9 = 12ρ2, ζ̄8 = ρ2 (43ρ+ 22) , ζ̄7 = ρ2 (18ρ+ 4) , ζ̄6 = ρ2
(
24ρ2 + 74ρ+ 8

)
, ζ̄5 = 2, ζ̄4 = 6ρ2 + 5ρ+ 4, ζ̄3 = 2 (4ρ+ 1) ,

ζ̄2 = ρ
(
8ρ5 + 20ρ4 + 3

)
, ζ̄1 = ρ3

(
16ρ3 + 62ρ2 + 61ρ+ 6

)
, ζ̄0 = ρ3

(
8ρ3 + 36ρ2 + 54ρ+ 15

)
,

ψ̄7 = −ρ3
1 (3 + 2ρ) + ρ2

1

(
ρ3 + 4ρ2 + 2ρ− 2

)
+ ρ1 (1 + ρ)

(
2ρ2 + 5ρ+ 1

)
+ (1 + ρ)

3
,

ψ̄6 = −4ρ3
1ρ (3 + 2ρ) + 4ρ2

1ρ
(
ρ3 + 4ρ2 + 2ρ− 2

)
+ 4ρ1ρ (1 + ρ)

(
2ρ2 + 5ρ+ 1

)
+ 4ρ (1 + ρ)

3
,

ψ̄5 = 3ρ4
1 (1 + ρ)− ρ3

1

(
14ρ3 + 27ρ2 − 5

)
+ ρ2

1

(
6ρ5 + 27ρ4 + 16ρ3 − 23ρ2 − 7ρ+ 2

)
+ 2ρ1ρ

(
6ρ4 + 24ρ3 + 24ρ2 + 3ρ− 2

)
+ 3ρ2 (3 + 2ρ) (1 + ρ)

2
,

ψ̄4 = 2ρ5
1 + ρ4

1

(
6ρ2 + 3ρ+ 4

)
− ρ3

1

(
14ρ4 + 35ρ3 − 4ρ− 2

)
+ ρ2

1ρ
(
4ρ5 + 25ρ4 + 20ρ3 − 33ρ2 − 14ρ+ 1

)
+ 2ρ1ρ

2
(
4ρ4 + 23ρ3 + 30ρ2 + 4ρ− 4

)
+ ρ3 (13 + 4ρ) (1 + ρ)

2
,

ψ̄3 = 2ρ5
1ρ+ ρ4

1ρ
(
3ρ2 + 2ρ+ 4

)
− ρ3

1ρ
(
8ρ4 + 24ρ3 + 4ρ2 − 3ρ− 2

)
+ ρ2

1ρ
2
(
ρ5 + 13ρ4 + 17ρ3 − 19ρ2 − 15ρ+ 1

)
+ ρ1ρ

3
(
2ρ4 + 25ρ3 + 48ρ2 + 14ρ− 8

)
+ ρ4 (1 + ρ)

(
ρ2 + 11ρ+ 13

)
,

ψ̄2 = 2ρ4
1ρ

3 − ρ3
1ρ

3
(
2ρ3 + 9ρ2 + 4ρ− 4

)
+ ρ2

1ρ
3
(
3ρ4 + 10ρ3 − 3ρ2 − 8ρ+ 2

)
+ 2ρ1ρ

4
(
3ρ3 + 12ρ2 + 7ρ− 2

)
+ 3ρ5 (1 + ρ) (3 + ρ) ,

ψ̄1 = −2ρ3
1ρ

6 + ρ2
1ρ

6 (1 + 3ρ) + ρ1ρ
6 (7 + 6ρ) + ρ6 (4 + 3ρ) , ψ̄0 = ρ7 (1 + ρ1)

2
.


