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Abstract

Named-Data Networking (NDN), a realization of the Information-
Centric Networking (ICN) vision, offers a request-response commu-
nication model where data is identified based on application-defined
names at the network layer. This amplifies the ability of censoring
authorities to restrict access to certain data/websites/applications
and monitor user requests. The majority of existing NDN-based
frameworks have focused on enabling users in a censoring network
to access data available outside of this network, without consider-
ing how data producers in a censoring network can make their data
available to users outside of this network. This problem becomes
especially challenging, since the NDN communication paths are
symmetric, while producers are mandated to sign the data they
generate and identify their certificates. In this paper, we propose
Harpocrates, an NDN-based framework for anonymous data publi-
cation under censorship conditions. Harpocrates enables producers
in censoring networks to produce and make their data available to
users outside of these networks while remaining anonymous to cen-
soring authorities. Our evaluation demonstrates that Harpocrates
achieves anonymous data publication under different settings, being
able to identify and adapt to censoring actions.
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1 Introduction

Preserving the anonymity of users that generate and share data
(e.g., pictures, videos, messages) with others is crucial especially in
scenarios where the safety and freedom of users may be in danger
(e.g., authoritarian regimes) [36]. In such scenarios, authorities,
such as governments, Internet Service Providers (ISPs), and other
organizations, may restrict access to certain websites and block
the operation of applications that allow users to publish their data
on the Internet [24]. The ultimate goal of these authorities is to
limit access to data that they do not consider favorable and avoid
having non-favorable data (e.g., videos of protests, pictures of illegal
practices) be published by their users on the Internet. For example,
during protests in a certain country, protesters may take pictures or
videos that show law enforcement personnel attempting to violently
suppress these protests. The government may restrict protesters
from uploading this data to popular hosting (e.g., YouTube and
Vimeo), news (e.g., CNN and BBC), and social media (e.g., Facebook
and Instagram) websites. Even in cases that users find ways to
upload their data on the Internet (e.g., on websites not blocked by
the government), the government in cooperation with local ISPs
may be able to identify the citizen(s) that uploaded the data and
imprison them. At the same time, hosting, news, and social media
websites have vested interest in verifying the authenticity of the
uploaded data before making it available to their users without
compromising the anonymity of the data producer.

This scenario highlights the following fundamental questions
when it comes to publishing data under censorship: (i) how can
citizens/users that produce data within oppressive countries and orga-
nizations (censoring networks) publish this data on the public Internet
(non-censoring networks)? and (ii) how can the produced data be pub-
lished and authenticated on the public Internet while its producers
remain anonymous to the oppressive countries and organizations,
which could threaten the producers’ safety and well-being? Solutions
to tackle these issues have been proposed in the context of the
IP-based network architecture [11, 22, 40, 44, 45, 48].
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Over the last decade, the direction of Information-Centric Net-
working (ICN) [3] and its prominent realization, Named-Data Net-
working (NDN) [47], have attracted attention by the research com-
munity. NDN features a request-response communication model,
where requests that identify the data by application-defined names
are forwarded towards data producers. NDN possesses the privacy
friendly features of not containing specific source and destination
addresses in its packets. However, the use of semantically rich
names at the network layer amplifies the ability of censoring au-
thorities to restrict access to non-favorable data and monitor what
data their users request.

Several solutions have been proposed to alleviate this issue [5,
6, 10, 29, 42], focusing on how users in a censoring network can
access data available in an non-censoring network. However, these
solutions did not consider how producers residing in a censoring
network can make their data available to users outside of this
network. This problem in NDN is especially challenging due to: (i)
the retrieval process, initiated by requests that carry the names of
the data to be retrieved, empowers censoring authorities to drop
requests for data produced within the censoring network at the
border of this network; (ii) the symmetry of the communication
model (i.e., each response follows the same network path back
to a requester as the corresponding request) enables censoring
authorities to analyze requests and block the corresponding data on
the way back to the requester; and (iii) as a by-product of (i), (ii), and
the NDN semantically meaningful naming, producers in censoring
networks cannot advertise the data they produce, since this would
enable censoring authorities to directly link the generated data to
them and cannot be reachable from outside of censoring networks,
since censoring authorities can easily drop incoming requests with
non-favorable or unknown data names.

To tackle these challenges, we propose Harpocrates', an NDN-
based framework for anonymous data publication, which enables
producers in censoring networks to produce, upload, and make
their data available to users outside of these networks while re-
maining anonymous to censoring authorities. Harpocrates makes
the following contributions:

o It takes advantage of communication channels and applications

that operate legally within the censoring network as well as a

decoy routing approach [22] to publish data in a peer-to-peer

fashion, maximizing the collateral damage for censoring authori-
ties;

It features mechanisms for producers to identify censoring activ-

ities and adapt their data publication process to such activities.

This ensures that the data will be successfully uploaded to a net-

work of trusted proxies in order to become available to users

outside of the censoring network;

o It features a secure delegation mechanism between producers
and proxies, preventing censoring authorities from being able to
link the generated data back to producers. As a result, proxies
can make the data available outside of the censoring network on
behalf of producers while preserving the producers’ anonymity
and, at the same time, enabling users to verify data authenticity.

! Harpocrates was the god of secrets and confidentiality according to the ancient Greek
mythology.

To the best of our knowledge, Harpocrates is among the first at-
tempts in NDN/ICN environments to tackle the problem of making
data generated within a censoring network available outside of this
network without compromising the producer’s anonymity.

2 Background and Prior Work

In this section, we give a brief background of the NDN architecture
and discuss related work in both IP and NDN/ICN environments.

2.1 Named-Data Networking

NDN [47] features a receiver-driven model that leverages application-
defined semantically meaningful naming for communication pur-
poses. In NDN, consumer applications send requests for data, called
Interest packets. Interests are forwarded based on their names to-
wards data producer applications, which send Data packets that
contain the requested data back to consumers.

For the realization of the NDN communication model, NDN
routers maintain three data structures: (i) a Forwarding Information
Base (FIB), which consists of name prefixes along with a number of
outgoing interfaces for each prefix and is used for Interest forward-
ing; (ii) a Pending Interest Table (PIT), which stores Interests that
have been recently forwarded but have not retrieved data yet; and
(iii) a Content Store (CS), where retrieved Data packets are cached
to satisfy future requests for the same data.

NDN is based on three fundamental principles: (i) identifying
network-layer packets through application-defined, semantically mean-
ingful names—-NDN carries network-layer packets that contain
application-defined names; (ii) securing data directly at the net-
work layer—each network-layer Data packet carries the signature of
its producer, which cryptographically binds the actual data to the
packet’s name and secures the data at rest and in transit across the
network, along with signature related information that specifies
the producer’s certificate or public key [39]; and (iii) a stateful for-
warding plane: forwarded Interests leave state at each router, while
Data packets follow the reverse path of the corresponding Interests,
consuming the state at each router.

2.2 Prior Work on Censorship Circumvention
and Anonymity

2.2.1 IP-based Censorship Circumvention and AnonymityTor [40]
is the most popular anonymity network, which uses an overlay of
relays to provide identity anonymity and unlinkability. Extensive
research has been conducted on various facets of Tor [11, 44, 45].
However, using layers of encryption and decryption to secure the
data imposes considerable overhead and impacts communication
latency. Tor’s high latency and its vulnerability to active prob-
ing [13] motivated the design of an alternative approach, decoy
routing [22]. Decoy routing is an in-network censorship circumven-
tion platform, where a set of decoy routers participate in relaying
the traffic outside of a censoring network. Several flavors of decoy
routing have been proposed to enhance the seminal design through
decoy placement optimizations [35] routing optimizations based
on game theory [31], mimicking access patterns to non-censored
websites [7], and routing asymmetries [30]. Another censorship
evading direction includes mimicking the traffic profiles of non-
censored, innocuous applications [15, 46]. The community has also



investigated frameworks that utilize public Content Delivery Net-
works (CDNs) to access censored data under the assumption that
blocking data hosted on these CDNs will cause collateral damage,
since innocuous data publishers will be disrupted [48].

2.2.2 NDN/ICN-based Censorship Circumvention and Anonymity
The state-of-the-art in NDN/ICN censorship circumvention and
anonymous communication is categorized into proxy-independent
and proxy-based techniques [42]. In this realm, the use of steganog-
raphy, where data and a cover file need to be combined before
publication, was among the first proposals [5]. Users obtain the
necessary data decoding information through a secure back chan-
nel. This scheme imposes considerable communication overhead,
which impacts its scalability. Techniques, such as homomorphic
encryption, have been also proposed in a publish-subscribe design
to provide privacy for user requests [16].

Tor has inspired proxy-based solutions [10, 23], where layers
of encryption between users and a network of proxies are used
for anonymity. CoNaP [25] takes a similar approach, where a user
encrypts and signs the names of Interests for authenticity. How-
ever, this signature reveals the user identity and compromises its
anonymity [32]. To reduce the cost of a symmetric key cryptosys-
tem, which needs to be carried on a per-packet basis, lightweight
coding techniques, including random linear network coding [38]
and Huffman coding [41], have been proposed. PrivICN [6] is an-
other proxy-based scheme that enables cache utilization. By em-
ploying proxy re-encryption, PrivICN enables cached data in the
censoring network to be used by multiple users. However, cache
hits in the censoring network introduce information leakage and
undermine user anonymity. A decoy routing approach was also
proposed for traffic redirection [29], where a user informs a decoy
router through a covert channel to redirect its requests to the covert
rather than the decoy destination. Finally, an Attribute-Based Sig-
nature scheme for NDN was proposed [32]. However, this scheme
focuses on anonymizing a producer’s signatures, without consider-
ing any other aspects of the anonymous data publication process.
How does Harpocrates differ from prior work? While the ma-
jority of existing NDN/ICN approaches have focused on enabling
consumers within a censoring network to reach producers in non-
censored networks to download data, very few designs have con-
sidered the problem of anonymous data publication in NDN/ICN.
Such designs primarily focus on signature anonymization [32] or
rely on onion routing, which requires multiple, costly layers of en-
cryption [23]. Our work enables producers in a censoring network
to publish (upload) their data to consumers outside of this network
in an anonymous manner without the need for multiple layers of
encryption.

3 Model and Assumptions

In this section, we present our system and network model, our
design assumptions, our threat model, and the goals of the Har-
pocrates design. Table 1 includes the notations we use in the rest of
this paper.

3.1 System and Network Model

We consider a censoring network and a set of proxies that make
data available to consumers outside of this network (Fig. 1). Our
system model consists of the following actors:

Table 1: Summary of notations.

Notation Description
P, O Big prime numbers such that P = 20 + 1
ZZ), Z;‘, Multiplicative groups of integers of order Q and P respec-
tively
Go,Gp Cyclic groups of order Q and P respectively
Gg Schnorr group (large prime-order subgroup of ZI,)
g Generator of a sub-group of Gp of order Q
ZQrand() Random number generator in Zb

(PKx,PRx) X’s public and private signing key pair
XY Symmetric key shared between X and Y’

H():{0,1}* —> Z*Q Cryptographic hash function with digest € ZZ)

w Warrant for proxy signature delegation

M Message to be signed

|| Concatenation operator

Congruence operator

e Producer: An entity in the censoring network that wishes to

anonymously publish data (potentially consisting of several network-

layer Data packets) outside of this network.

e Consumer: An entity outside of the censoring network inter-

ested in the data generated by the producer.

Peers: Entities (in the censoring network) subscribed to a peer-to-

peer application that operates “legally” in the censoring network.

The producer is a peer running this application.

e Collaborating peers: Peers selected by the producer to help
make the data generated by the producer available outside of the
censoring network.

e Censoring nodes: Entities deployed by ISPs, governments, or

other stakeholders in the censoring network to detect and block

attempts to publish data outside of this network.

Selected proxy: A trusted entity outside of the censoring net-

work that collects, reconciles, and publishes the data on behalf

of the anonymous producer, so that consumers outside of the
censoring network can access this data.

Collaborating proxies: Trusted entities outside of the censoring

network that receive censored data from the collaborating peers

and send this data to the selected proxy.

We illustrate our system through a running example in Fig. 1.

The producer selects a set of collaborating peers (subset of the

overall peers) and shares with them pieces of the generated data.

However, these pieces can be intercepted and blocked by censoring

nodes on their way to the collaborating peers. A collaborating peer

receiving a data piece will send it towards a collaborating proxy.

Each collaborating proxy will eventually forward the received data

to the selected proxy.

3.2 Assumptions

We assume that producers in the censoring network do not advertise
their data to protect their anonymity. We also assume that producers
are not reachable from outside of the censoring network, thus
they cannot directly upload their data to consumers outside of
this network. This is a fair assumption considering the symmetric,
name-based nature of NDN communication. This makes it trivial
for censors to block requests or responses for data produced in
their network and for entities within their network to ensure that
censored data does not become available to the outside world.

We consider rational attackers with bounded capabilities, that is
attackers who do not orchestrate large-scale brute force attacks or
block all the communication in the censoring network. This is a fair
assumption since pervasive blocking causes collateral damage [48].
We assume that neither collaborating proxies nor collaborating
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Figure 1: System model of Harpocrates: (1) the producer establishes a covert
channel with a selected proxy; (2) the producer shares pieces of data with collab-
orating peers in a peer-to-peer fashion, while censoring nodes may intercept
these pieces; (3) collaborating peers push the data towards collaborating proxies
outside of the censoring network in manners that prevent traffic analysis attacks;
and (4) collaborating proxies share the data with the selected proxy that makes
it available to consumers outside of the censoring network.

peers (selected by the producer) are malicious. This is a fair assump-
tion since the majority of censorship circumvention tools leverage
trust and reputation-based mechanisms to select entities playing
key roles. For instance, in Tor, only trustworthy relay nodes can be
selected as entry guards due to their importance in protecting user
anonymity [12]. We assume the existence of an anonymous public-
key certificate approach [20], which preserves the privacy of the
producers’ information in their certificates. We discuss directions
to further augment producer anonymity in Section 8. Finally, we
assume that symmetric and asymmetric cryptographic operations
are secure.

3.3 Threat Model

In NDN, the use of names at the network layer can simplify data fil-
tering, censorship, and violate the consumer and producer privacy.
In this paper, we consider that a censoring authority can deploy
active attackers and passive eavesdroppers across the censoring
network to interrupt ongoing data publications from this network
to the outside world or compromise producer anonymity. An ac-
tive attacker can capture and modify transmitted packets, while a
passive eavesdropper can analyze the captured packets. Deployed
attackers may masquerade as different entities such as peers.

The primary objective of the censoring authority is to prevent
producers in the censoring network from publishing data. Thus,
the censoring authority may: (i) block the ISP’s ingress Interests
destined to producers; (ii) act as a man-in-the-middle to collect the
requested data from the producers, compare it against a blacklist,
and either drop the packets or relay them to the requester; (iii)
deploy censoring nodes to interrupt the ongoing communication
across peers by dropping the Interest and/or Data packets; and
(iv) masquerade as a peer to interrupt the communication and
compromise the producer’s anonymity. We note that objectives
(iii) and (iv) are different in the sense that in the former one, the
attacker is an ISP node in the censoring network (e.g., a router),
while in the latter one, the attacker is one of the peers. While the
focus of this work is enabling anonymous data publication rather
than coping with traffic analysis attacks, we will briefly discuss
potential traffic analysis countermeasures in Section 8 to thwart
this category of attacks.

selected proxy the censoring network

1. Secure delegation I 2. Peer-to-peer sharing
from producer to of produced data within

3. Anonymous
uploading of shared
data outside of the
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|

|

| |

| |
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Figure 2: Overview of the Harpocrates design.

3.4 Harpocrates Design Goals

Harpocrates offers data producers—whether in a censoring network
or not-to successfully publish their data (evade censorship) while
preserving their privacy and data integrity. Harpocrates has the
following goals:

e Anonymity and plausible deniability: Harpocrates should
preserve the producer’s anonymity in the presence of different
attackers. The attackers may interrupt the data publication, but
should neither be able to reveal the producer’s identity nor link the
published data to the producer.

o Integrity guarantees: Harpocrates should guarantee the in-
tegrity of the published data without revealing the producer’s iden-
tity. This is important as the producer delegates the publication of
its data to a third party (selected proxy).

e Reasonable overhead: Harpocrates should incur reasonable
communication and computation overhead on the involved actors.
The cost of Harpocrates for the collaborating peers should be viable,
while the producer should be able to publish its data with reasonably
low latency.

4 Design Overview

In this section, we present an overview of Harpocrates (Fig. 2). In
Harpocrates, the producer will first reach and securely delegate
the data publication privilege to the selected proxy that will help
preserve the producer anonymity. After the secure delegation phase,
the producer will start the data uploading phase through a peer-
to-peer mechanism to: (i) prevent the censoring authority from
detecting abnormal amounts of data from a single peer being sent
outside of the censoring network; and (ii) ensure that the data
production cannot be linked back to the producer.

These phases are facilitated through the use of decoy routing
techniques [21], which we briefly discuss in the rest of this section
and provide details in Sections 5 and 6. Different than in IP, decoy
routing in Harpocrates is realized through decoy name prefixes (i.e.,
prefixes that allow Interests from within the censoring network
to be forwarded outside of this network). Benign information en-
coded in names help proxies identify Interests with decoy prefixes.
Combined with the fact that NDN routers have direct access to
the names of Interests, decoy routing in Harpocrates can be eas-
ily deployed outside of the censoring network, without requiring
routers to search for signalling information at higher layers of the
protocol stack (e.g., transport or application layer) [21]. This makes
the deployment of decoy routers flexible and simple, while decoy
router assignments can change over time (e.g., coordinated through
routing protocols in non-censoring networks and selected based
on placement strategies that maximize collateral damage [31]) to



overcome known attacks against decoy routing (e.g., routing around
decoys [35]).

4.1 Secure Delegation Overview

In this phase, the producer employs decoy routing to select and
reach one of the collaborating proxies, who will act as the selected
proxy, outside of the censoring network. Subsequently, the pro-
ducer securely provides delegation metadata and instructions to
the selected proxy for data publication. The selected proxy, on re-
ceiving the metadata, accepts the data publication by returning a
signed commitment to prove its involvement in data publication and
enable the initiation of the proxy signature process (Definition 4.1).
We use a warrant-based proxy signature [2] based on the difficulty
of the discrete logarithm problem.

Definition 4.1. [Proxy Signature] Proxy signature is a cooper-
ative digital signing scheme [27], in which an original signer (data
producer in our case) delegates its right of digitally signing a message
to a proxy. Such a delegation allows verifiers (consumers in our case)
with knowledge of the signer’s and proxy’s public keys to validate
signed messages. Proxy signature schemes are categorized into full
delegation, partial delegation, and delegation by warrant. A warrant
includes metadata, such as delegation scope information to authorize
the proxy to sign on behalf of the original signer. a

The producer then generates the required credentials for proxy
signature and securely sends them to the selected proxy for data
signing and publication. In Harpocrates, we use Schnorr group
(Definition 4.2) and Schnorr signature [34].

Definition 4.2. [Schnorr Group] Given two large primes Q
and P, whereP=rQ + 1,r € Z*Q and Z*Q is the multiplicative group
of integers mod Q, choose 1 < h < P, such that h" # 1 mod P, then
g = h" generates a Schnorr group (Gg). Gg is a subgroup of Z3,, the
multiplicative group of integers mod P of order Q [34]. a

4.2 Anonymous Data Uploading Overview

Overall, the Harpocrates communication design consists of two main
steps: (i) evading the censoring network by sending all producer’s
Data packets to collaborating proxies outside of censoring network
without compromising producer’s anonymity; and (ii) gathering of
all Data packets by the selected proxy, reconstructing the original
producer’s data, and making this data available to consumers on
the Internet.

To maximize collateral damage for the censoring authority, Har-
pocrates features a peer-to-peer mechanism, where the producer
makes its data available through decoy routing towards proxies
outside of the censoring network. Subsequently, Internet users can
fetch the uploaded data from the proxies. The peer-to-peer mecha-
nism leverages existing and allowed channels of communication
(e.g., gaming or local social media applications) in the censoring
network. These allowed applications and communication channels
are used to “hide” data transfers towards the collaborating peers,
spreading the data uploading traffic across these peers in the cen-
soring network. We note that having producers use decoy routing
to directly reach collaborating proxies would result in significant
volumes of traffic initiated by producers and traffic anomalies that
can be detected by censors.

PeerA Decoy Router Selected
(producer) Proxy S
Metadata Censoring Network Non-Censoring Step 1
Name: Data publication Network

name.
Data ID: Signal for proxy. Metadata
HMAC(Data, HK):Data's | |
HMAC.

Commitment

— || Name: Data pubiication
name.

HK: HMAC key. HMAC(Data, HK): Data's

K: Data encryption key.

Commitment

\\g g

HMAC.
HK: HVAC key.

Delegation Step 2

Warrant

Delegation
| (e

(o |
|
Message Signing
PRg: Signing key Confirmation Initiation
;h L
M=
77777777777777777777777777777777777777 Legend .
Interest packet Data packet

Figure 3: The secure delegation phase of Harpocrates has two steps. First, peer
A (producer) provides delegation metadata to the selected proxy (S) for data
publication and obtains the selected proxy’s itment. Subsequently, peer A
provides the credentials for proxy signature to the selected proxy.

In NDN, communication among multiple parties (e.g., for a multi-
player gaming application) is realized through a distributed synchro-
nization protocol [26]. This protocol creates a multicast name prefix
for communication among all the peers in a group (e.g., users that
play an online game as a team), ensuring that a request sent from
one peer in this group will be received by all other peers. Through
this synchronization process and the established multicast channel,
collaborating peers can share information. However, this process
can be infiltrated by the censoring network through the deployment
of censoring nodes as routers and/or peers in the synchronization
group to intercept traffic2. To cope with that, Harpocrates offers
a data encryption mechanism during the communication among
collaborating peers, ensuring that only selected collaborating peers
will be able to decrypt the exchanged information.

5 Secure Delegation Design

In this section, we present the secure delegation phase (Fig. 3),
including the proxy commitment, signature generation, delegated
message signing, and signature verification protocols. The goal is for
the producer to get the selected proxy to commit publishing the
data on behalf of the producer, while guaranteeing data integrity,
confidentiality, and anonymity. As mentioned in Section 3.2, we
assume that producers have anonymous public key certificates [20]
to avoid revealing information about themselves through their
certificates. In Section 8, we discuss approaches to augment the
anonymity level that generic public key certificates provide.

5.1 Proxy Commitment

As shown in Step 1 of Fig. 3, the producer generates delegation
metadata, including the Data Name under which the selected proxy
should publish the data, the Data ID to signal the selected proxy
of the related Data packets, the data HMAC (keyed-hash message
authentication code) and its key (HK), and the data encryption key
(K). The Data ID is a random string to be used as part of the data
name, informing the selected proxy of the Data packets that belong

2The routers deployed as censoring nodes not only can intercept but also drop the
exchanged traffic. However, this would cause significant collateral damage given that
peers utilize allowed communication channels and applications as we further discuss
in Section 8.



Protocol 1 Proxy Signature Generation by Producer A

Protocol 2 Delegated Message Signing by Proxy S

Input: Gg, W, H(), and ZQrand().

Output: PRg (Proxy S private key).
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to this particular data collection. The producer then securely (signed
and encrypted) transmits the metadata to the selected proxy. We
employ decoy routing to make the proxies reachable to the peers
inside the censoring network. As stated in Section 3.3, the censoring
authority blocks requests from outside of the censoring network
to prevent leaking internal data. Thus, the producer and peers
can only communicate with proxies by attaching information (e.g.,
delegation metadata) to Interest packets and send them using decoy
name prefixes.

Upon receiving the delegation metadata, the selected proxy
(“proxy” in the rest of this section) uses the metadata to create the
commitment, including the data name, its HMAC, and the HMAC’s
key. It then signs the commitment using its primary key pair, en-
crypts it using the shared session key, and returns it to the producer.
The rationale behind enforcing the proxy to generate the commit-
ment is to prevent a malicious proxy from altering the producer’s
data before publication. The use of warrant-based proxy signa-
tures [2] requires the producer to generate a warrant and a signing
key pair for the selected proxy—from its own asymmetric key. The
generated signing key (delegated key pair) is different from the
selected proxy’s primary key pair and should be used for proxy
signature.

5.2 Producer Signature Delegation

As shown in Step 2 of Fig. 3, peer A generates a warrant composed
of the selected proxy’s signed commitment, the proxy’s certificate
(corresponds to its primary key pair for commitment verification),
and the producer’s public key (Protocol 1). This information au-
thorizes the selected proxy to sign on behalf of the producer and
restricts the selected proxy from abusing the delegated authority
(e.g., altering the data or its name included in the commitment).
Having the warrant generated, the producer needs to derive the
proxy’s delegated key pair through the proxy signature scheme.
Protocol 1 takes an agreed upon Schnorr group (Gs), the hash-
ing function (H()), and the warrant (W) as inputs and returns the
private signing key (PRgs) of the selected proxy (proxy S); the dele-
gated private key. Producer A initiates this process by choosing a
Schnorr private signing key (PR4) and generating the correspond-
ing public verification key (PK4) (Lines 1-2). To derive the selected
proxy’s signing key, A selects a random integer i in the multiplica-
tive groups of integers of order Q and calculates ¢ (Lines 3-4). It
then generates the warrant’s digest (W},) using W and ¢ (Line 5).
In Line 6, A uses the warrant’s digest (W},), its private key (PR4),
and i to calculate the selected proxy’s private signing key (PRg).
The equation in Line 6 shows the involvement of A’s private key
in generating the selected proxy’s private signing key. Finally, A
securely sends the generated private key (PRg), the warrant (W),

Input: Gg, H(), M,and < PRg, W, t >.
Output: Signed Message.
1: Calculate proxy S public key PKg = gPRS € Z;,.
: Generate Wy, = H(W||¢).
wy
tif (PKs = (PK, " xt) € Z},) then
Select r = ZQrand ().
Calculate k = g" € Zp,.
Generate a = H(M||k) € Zg.
Calculate b = (r — (PRg X a)) € Zg.
Store < M, W, t,a,b >.
else
Fail.
: end if
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and t to S. The completion of Protocol 1 concludes the interactions
between A and S.

5.3 Proxy Data Signing

Upon collecting all Data packets, proxy S executes Protocol 2 to sign
the packets on behalf of producer A using the delegated private
signing key (PRg). Protocol 2 accepts the agreed upon Schnorr
group (Gyg), the hash function (H()), a Data packet (message M),
and the three-tuple S received from A (< PRs, W, t >) and returns
a signed packet.

Initially, S uses Gg and its private signing key (PRs) to generate
the corresponding public verification key (PKs), which will be used
by consumers to verify the delegated proxy signature on the Data
packets. To ensure the validity of PKg, S generates the warrant’s
digest (Line 2) and verifies its congruence with A’s public key (PK4)
(Line 3). The correctness of the congruence in Line 3 shows the
involvement of A’s public key in generating the delegated public
verification key (PKs). We note that Lines 1-3 of Protocol 2 need
to be executed once. Thus, the cost of executing these steps is
negligible when amortized over multiple signing operations. To
sign a Data packet (message M), S executes Lines 4-8 of Protocol 2—-
the signing process follows Schnorr signature. S selects a random
integer r € Z*Q and calculates its corresponding value k (Lines 4-5).
It then uses k in generating the message digest a (Line 6). Using the
private signing key (PRg), the digest (a), and the random integer (r),
S signs the message (Line 7) and stores the signature as a five-tuple
(< M,W,t,a,b >) for the consumer’s verification process.

5.4 Signature Verification

Protocols 1 and 2 enable consumers to validate the proxy’s signa-
tures and the delegation authorization, ensuring that S is certified
by A. Protocol 3 details the verification process by accepting the

Protocol 3 Signature Verification by Consumers

Input: Gg, H(),and < M, W, t,a,b >.
Output: Verification Success / Fail.

1: Generate Wy, = H(W ||t).
Wy
2: Generate verification key y = (PK e Z3,.
3: Caleulate ky = (g% x y9) € Zp.
4: Calculate ap = H(M||ky) € Zg.
5: if (a == ap) then
6:  Success.
7: else
8:  Fail
9: end if




Schnorr group (Ggs), the hash function (H()), and the five-tuple
generated by S (< M, W,t,a,b >).

The consumer, verifying the selected proxy’s signature, gener-
ates the warrant’s digest (W},) using warrant W and ¢ from the
signature (Line 1). The consumer then uses Wy, and A’s public key
(PK4) to derive the signature verification key (y). The amortized
cost of extracting the signature verification key (y) will be negligible
as Lines 1-2 will be executed once for a set of signature verification
operations. After extracting y, the consumer executes Lines 3-4,
which refer to the conventional Schorr signature verification pro-
cess. Following Lines 5-9, the consumer accepts the signature if
the received signature (a) matches the one that it generates (ay) or
rejects, otherwise.

6 Anonymous Data Uploading Design

In this section, we present the data uploading mechanism of Har-
pocrates, so that data produced in a censoring network can become
available to consumers outside of this network.

6.1 Evading the Censoring Network

6.1.1 Data sharing initializationThe producer selects collaborating
peers as a subset of the overall peers. The collaborating peers par-
ticipate in uploading the producer’s data outside of the censoring
network. Subsequently, the producer creates uploading metadata
for each collaborating peer, consisting of a symmetric key for the
secure communication between the collaborating peer and the pro-
ducer and the data pieces that the collaborating peer will forward
to the proxies.

Fig. 4 illustrates a scenario, where the producer (peer A) dis-
tributes a subset of the total data to peer B, who will forward it to
the proxies. The uploading metadata
[Uploading_MetaData] pg, sent from peer A to B contains the
symmetric key S 4p and a list of data pieces “/sync/Game1/Piece_B_1"
-+ “/sync/Gamel/Piece_B_k” that B should forward to the proxies.
The metadata and the data pieces are named under a multicast
synchronization (“sync” for short) prefix used by a multi-party
application (e.g., gaming) allowed to operate in the censoring net-
work. This prefix masquerades the producer’s prefix, so that it stays
anonymous.

The producer sends uploading metadata to each of the collabo-
rating peers (the metadata is encrypted using the receiving collab-
orating peer’s public key) through the multicast synchronization
channel. Thus, all peers in the multicast group will receive the
metadata. However, only the peer with the corresponding private
key (peer B in Fig. 4) will be able to decrypt the metadata and access
the names of the data pieces that will be uploaded on behalf of the
producer. In response, peer B will encrypt and send a decoy prefix
(e.g., “/Mendeley”) back to A. Each data piece listed in the uploading
metadata will contain one or more Data packets named by A under
B’s decoy prefix. Each of these packets will contain the data to be
anonymously uploaded to the proxies. Once B receives a data piece,
it will decapsulate the contained packets and forward them towards
the proxies outside of the censoring network as we further discuss
in Section 6.1.3.

6.1.2  Data sharing modes among peersUpon receiving the upload-
ing metadata, a collaborating peer will request the data pieces
specified in the metadata from the producer. We refer to this data
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Figure 4: A data uploading example: peer A (producer) shares uploading meta-
data with peer B. Subsequently, peer B requests the data pieces specified in the
metadata using the Pull communication mode. B forwards on behalf of the pro-
ducer requests with decoy name prefixes contained in the received data pieces to
collaborating proxies. These requests carry the data to be made available outside
of the censoring network in an encrypted format.

K

sharing mode as Pull. These requests will be received by all peers
in the multicast group, but only the producer has and will be able
to provide the requested data.

Requests for data pieces may be intercepted by censoring nodes
aiming to prevent the data from leaving the censoring network.
The censoring nodes may receive requests sent by collaborating
peers and reply with bogus pieces. In the example of Fig. 4, B
can detect a received bogus piece after trying to decrypt it using
SaB (shared symmetric key between A and B). As a result, B will
request such pieces multiple times, alerting the producer that it
has not received the legitimate pieces. Once the producer receives
a certain number of consecutive requests for the same piece, the
anti-censorship mode (Push data sharing mode) will be triggered.
Under the Push mode, A will attach a piece requested multiple times
onto an Interest and send (“push”) it through the multicast channel
to B (encrypted with B’s public key).

Harpocrates features an adaptive communication mode (Hybrid
data sharing mode) that operates under the Pull mode as long as no
suspicious censorship activities are detected by the producer, while
switching to the Push mode when Harpocrates detects censoring ac-
tivities. This adaptation will happen by the producer independently
for each collaborating peer, since censoring nodes may be closer to
the producer (thus being able to block requests) than only certain
collaborating peers. To this end, the producer maintains a status
for each collaborating peer and monitors the delivery progress of
corresponding pieces.

6.1.3 Making data available outside of the censoring networkAs
illustrated in Fig. 4, once a collaborating peer receives and decrypts
a data piece from the producer, this piece may contain one or more
requests (Interests) for a decoy prefix. These requests carry (“hide”)
the data to be uploaded in an encrypted format. As we mentioned
in Section 3.2, given the pull-based nature of NDN communication,
where data can be retrieved only after the reception of a request,
access to the censoring network from the outside world may be
easily restricted by the censor. To evade censorship and make the
data available outside of the censoring network, the collaborating



peers send the requests, found in the received pieces, towards the
proxies. Due to their decoy name prefixes, these requests will be
forwarded outside of the censoring network.

6.2 Data Gathering and Reconciliation

As we explained in Section 5, the producer generates and shares
with the selected proxy a Data ID random string. This is included in
the names of the requests sent from the collaborating peers to the
collaborating proxies and is used to signal the selected proxy that
these requests carry data belonging to a particular data collection.
The selected proxy shares the Data ID value with all collaborating
proxies, instructing them to forward all the packets they receive and
that contain this value in their names to the selected proxy. For in-
stance, Fig. 4 illustrates that peers A and B agreed to use “/Mendeley”
as the decoy prefix, while the requests sent to the collaborating
proxies have a name prefix “/Mendeley/Data_ID”. Collaborating
proxies receiving Interests for “/Mendeley” followed by “/Data_ID”
will forward them to the selected proxy. The suffix of the names
can be selected by the producer based on the naming patterns of
legitimate applications that use the decoy prefix, maximizing the
resemblance between these requests and legitimate requests for the
decoy prefix.

The requests received by the collaborating proxies carry the
data to be uploaded in an encrypted format, however, the selected
proxy is the only entity that can decrypt this data, since it possesses
the symmetric key K shared by the producer during the secure
delegation process (Fig. 3). As a result, only the selected proxy
can gather all the data, decrypt it, and reconcile the original data
collection generated by the producer. The reconciled data will be
published by the selected proxy to consumers under the name
instructed by the producer during the secure delegation process

(Fig. 3).
7 Evaluation

In this section, we present our evaluation study under two setups.
We first implement and evaluate our proxy signature design on
different hardware platforms. We then implement Harpocrates and
perform network simulations, so that we can scale our study to
large network topologies. Finally, we compare Harpocrates to a
design based on onion routing [17].

7.1 Evaluation Setup

To evaluate the security delegation phase (Section 5), we imple-
mented the proxy signature [2] and Schnorr signature [34] mecha-
nisms using the Charm-Crypto library [4]. We developed the proxy
signature generation (Protocol 1), the proxy signing (Protocol 2),
and the proxy verification (Protocol 3) protocols. We also imple-
mented Schnorr message signing and signature verification as our
comparison baseline. We benchmarked these protocols on three
platforms: (i) a Raspberry Pi 4 with an ARMv7 processor and 4GB
of RAM running Raspbian 10; (ii) a laptop with a 2.20GHz Intel
Core-i7 processor and 4GB of RAM running an Ubuntu 16 Virtual
Machine (VM); and (iii) a desktop class server with a 3.60GHz Intel
Xeon processor and 16GB of RAM running Ubuntu 18. The results
are averaged over 500 runs.

We use ndnSIM [28], the de-facto NDN network simulator, to im-
plement and evaluate Harpocrates based on a Rocketfuel topology

(AS1221) with 278 routers and 731 links [37]. We connect collab-
orating peers and censoring nodes to this topology by creating
links to randomly selected routers. We randomly attach five proxies
to the topology, while ensuring that the distance between each
proxy and the closest peer is at least five hops, so that each proxy
is out of the censoring network. A file of size 100MB is generated
by a producer (randomly selected among the peers) and is sent
towards the proxies. Finally, we implemented a design based on
onion routing [17] to compare with Harpocrates. The realization of
such an onion-based routing design in NDN is a challenge on its
own, since NDN is fundamentally different than TCP/IP. To this
end, in this paper, we randomly selected three onion routers and
incorporated benchmarked encryption/decryption times of onion
encryption operations for each onion router. For simplicity, we did
not consider the time for the selection of onion routers and key
exchanges. The results are averaged over ten runs.

Evaluation metrics: We consider the following metrics:

(1) Run time of proxy and Schnorr signing and verification: the time
needed to perform the signing and verification operations on dif-
ferent hardware platforms. Proxy signing includes the time for
proxy key derivation and Schnorr signature. Similarly, the proxy
verification run time includes the time for proxy key derivation and
Schnorr signature verification.

(2) Data distribution success rate: the percentage of the total data
that was successfully uploaded to the proxies.

(3) Data publication delay: the time elapsed between the producer
generating the data and the completion of the reception of all the
data by the proxies.

(4) End-to-end per packet delay: the time elapsed between starting
the data uploading process for each Data packet and the reception
of each packet by a proxy.

(5) Normalized overhead: the ratio between the volume of overhead
traffic (multicast communication, metadata exchanges, peer-to-peer
data sharing) and the volume of the data to be uploaded from the
producer to the proxies. We further normalize the overhead based
on the traffic volume generated by the Pull mode. To this end, the
Pull mode will, by definition, result in normalized overheads of
value 1.

7.2 Evaluation Results

Run time of proxy and Schnorr signing and verification: As
shown in Fig. 5, the proxy signature generation, executed by the
producer, does not incur considerable delay even when running
on a constrained device (6ms on a Raspberry Pi). The proxy sign-
ing process results in run times of about 3x higher than the run
times for Schnorr signature on all platforms. The additional cost is
attributed to the generation of the corresponding public key (for
signature verification) and matching this key against the producer’s
public key (Lines 1-3 of Protocol 2). Similarly, the proxy verification
results in run times of about 1.5x higher than Schnorr signature
verification on all platforms due to the proxy’s public key deriva-
tion (Lines 1-2 of Protocol 3). We emphasize that the key derivation
and comparison (Protocols 2 and 3) are executed only once per
uploading session, incurring a negligible cost when amortized over
multiple signing and signature verification operations.

Data distribution success rate: In Fig. 6, we present the data dis-
tribution success rate. Our results show that Hybrid and Push modes
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Table 2: Percent of collaborating peers blocked by censoring nodes.

Collaborating Peers Censoring Nodes (%)

0% 5% 10% 15% 20% 25% 40% 60%
20 0% | 58% 72% 78.5% | 84.5% | 87.5% | 90.5% 96%
40 0% | 63.5% | 82.5% | 86.25% | 88.5% | 92% 95% | 97.75%
60 0% | 75% 86% 88.5% | 94.8% | 95% | 97.5% | 97.6%

successfully upload all the produced data to the proxies. On the
other hand, in the case of Pull, censoring nodes are able to intercept
the requests for data pieces sent by the collaborating peers towards
the producer. To this end, collaborating peers will not be able to
receive and distribute the data towards the proxies. The actual suc-
cess rate values depend on the actual placement of the censoring
nodes. However, the random placement in our experiments shows
that even for small percentages of censoring nodes (5% to 10%), the
success rate of Pull degrades considerably, since the majority of
collaborating peers is blocked by censoring nodes as presented in
Table 2. Specifically, 58-75% and 72-86% of the collaborating peers
are blocked for 5% and 10% of censoring nodes respectively. As
the percentage of censoring nodes increases, up-to 96-97.75% of
the collaborating peers may be blocked. Nevertheless, even in such
cases, Harpocrates successfully uploads all the produced data to the
proxies.

Data publication delay: In Fig. 7, we present the results of the
average data publication delay for Pull, Push, and Hybrid. Our results
indicate that the data publication delay for Push is the lowest and
it does not increase as the number of censoring nodes increases,
since the data pieces are pushed to all nodes including the censors,
while only the collaborating peers can decrypt these pieces. Pull’s
performance suffers in the presence of censoring nodes, even if
their number is relatively small (e.g., 5% or 10% of the number
of collaborating peers). When the percentage of censoring nodes
increases from 0% to 5%, Pull fails to distribute all data pieces among
the collaborating peers. Hybrid, however, successfully adjusts to the
censoring nodes that intercept the data pieces, switching to the Push
mode. Our results show that as the percentage of censoring nodes
increases, Hybrid switches from the Pull to the Push mode sooner
during the data publication process, thus Hybrid’s data publication
delay converges towards the delay of Push. For all the modes, the
data publication delay decreases as we increase the number of
collaborating peers due to the fact that more peers upload the data
in parallel.

Further analysis of our results indicated that 3-8% of the data
publication delays are spent on sharing the metadata between pro-
ducers and peers, 47-56% on sharing the data pieces between pro-
ducers and peers, and 36-50% on sending the actual data from the
collaborating peers to the proxies. Note also that the Hybrid mode
results in 1.5-2.1X higher publication delays than uploading the data
from the producer to the closest proxy directly over the shortest
network path.

End-to-end per packet delay: Fig. 8 presents the CDF of the per
packet delay. Fig. 8a shows that for varying numbers of collabo-
rating peers (same percentage of censoring nodes), 40% and 80%
of the data is uploaded in less than 200ms and 300ms respectively.
The per packet delay slightly increases with the number of col-
laborating peers, since these peers may be further away from the
producer, thus the data pieces travel longer distances to reach them.
Fig. 8b shows that the per packet delay decreases as the percent-
age of censoring nodes increases, since more pieces are blocked,
thus Harpocrates switches from Pull to Push sooner during data
publication.

Normalized overhead: Fig. 9 shows the normalized overhead
results. The overhead for Pull is equal to 1, since it acts as the
normalization factor. Push results in the highest overheads, since the
data pieces are attached onto Interests pushed towards collaborating
peers. Hybrid successfully copes with the interception of data pieces
by censoring nodes, achieving overheads in the range between Pull
and Push. It converges to the overhead of Pull when no or a few
censoring nodes exist and to the overhead of Push as the number
of censoring nodes increases. As the number of collaborating peers
increases, the overhead for Push and Hybrid increases, since the
size of the peer multicast group increases.

Comparison to an onion routing based design: Compared to
a design based on onion routing, Harpocrates achieves 1.33-4.05x
lower data publication delays, since it does not require multiple
time-consuming layers of encryption/decryption. Depending on the
placement of onion routers, Harpocrates incurs roughly the same to
up to 1.51x lower overheads for Pull and Hybrid compared to the
onion routing based design when no censoring nodes exist. As we
increase the number of censoring nodes and collaborating peers,
the Hybrid mode of Harpocrates incurs 1.21-2.05% higher overheads
compared to the design based on onion routing, since: (i) it switches
from Pull to Push sooner during data publication as we increase the
number of censoring nodes; and (ii) the size of the peer multicast
group increases as we increase the number of collaborating peers.

8 Security Analysis and Discussion

In this section, we discuss further security considerations and di-
rections to extend the design of Harpocrates.

Censoring network nodes: A censoring authority may deploy
censoring nodes in the network, including routers and Deep Packet
Inspection (DPI) proxy firewalls, to interrupt data publication or
breach the producer’s anonymity. A censoring router, due to its
limited capability in processing Interest and Data packets beyond
name matching, can randomly drop a subset of packets. Such an
action will negatively impact peers that legitimately use allowed
communication channels. Prior work has argued that censoring
authorities avoid actions that result in high collateral damage [48].
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Malicious routers may redirect traffic portions to proxy firewalls

for DPL Such redirection in NDN is complicated due to the com-
munication model symmetry. More importantly, Interest and Data
packets, although semantically rich, do not carry fine-grained in-
formation that is available in TCP/IP packets (e.g., IP addresses and
port numbers). We argue that in inspecting NDN packets, a proxy
firewall can only use packet sizes, names, and signature related
information. Harpocrates limits the impact of these threats by: (i)
uploading small-sized Data packets by attaching them to Interests
to avoid traffic anomalies; (ii) revealing innocuous names (i.e., used
by traffic allowed in the censoring network); and (iii) referring to
anonymous certificates in the signature related information [39] of
data pieces to prevent the producer’s linkability to the data. It will
be computationally expensive for a censoring authority to verify
the signatures of all data pieces. However, if DPI drops all pieces
associated with anonymous certificates, Harpocrates will switch
from the Pull to the Push mode, piggybacking pieces onto Interests
(typically not signed in most NDN applications).
Censoring peers: The censoring authority may deploy censoring
nodes among peers. A censoring peer may intercept requests for
data pieces from collaborating peers and reply with bogus pieces,
which will consume PIT entries on routers and prevent the legit-
imate pieces from reaching the collaborating peers. The Hybrid
mode of Harpocrates thwarts this threat by switching to Push when
such an event is identified. As we discussed in Section 7, the Hybrid
mode achieves 100% data distribution success rates in the presence
of censoring peers—even when 60% of the peers are malicious.

If censoring nodes are among the collaborating peers, these cen-
soring collaborating peers can interrupt the communication by
obtaining and dropping the producer’s data pieces (blackhole at-
tacks). Although we assumed that the collaborating peers are not
malicious (Section 3.2), here we discuss directions to thwart such
an attack. The first direction involves data replication. In a naive
approach, the producer blindly replicates the data by communicat-
ing overlapping data portions to different collaborating peers. This
increases the chances that the data will be received by legitimate
collaborating peers, who will upload it towards the proxies. To
minimize redundant data delivery, the producer can obtain the list
of missing Data packets from the selected proxy and publish them

through the collaborating peers that delivered previous packets.
The producer identifies legitimate collaborating peers by tracking
their success rates in delivering data to the selected proxy. Network
coding techniques, such as Random Linear Network Coding [19],
can also be employed to deliver linearly independent combina-
tions of Data packets to the selected proxy, enabling efficient data
reconciliation.

The second direction involves group-oriented cryptographic

techniques such as attribute-based [18] and broadcast [14] encryp-
tion. These techniques enable a group of collaborating peers to use
their private keys to independently decrypt the same data piece
delivered to them during the Push mode over the multicast commu-
nication channel. If, at least, one of the collaborating peers that can
decrypt each data piece is legitimate, the data will be successfully
uploaded to a proxy.
Producer and collaborating peer anonymity: In our design, the
producer includes its public key in the warrant, enabling consumers
to verify the validity of the delegation in addition to the proxy’s
signatures. The producer’s public key in the warrant may allow
the censoring authority to identify the producer, compromising
its anonymity. To cope with this threat, approaches that provide
signature anonymity can be used, including attribute-based [32],
ring [33], and group signatures [9]. The producer’s anonymity can
be also augmented through a transient key cryptosystem [8], an
asymmetric key cryptosystem, in which the key pair is bound to a
short time period rather than the owner’s identity. Thus, a singed
Data packet will be associated with a time (delegation initiation
in Harpocrates) rather than an identity. However, utilizing such a
cryptosystem requires further considerations since private keys
will be deleted after their short expiry time.

A malicious producer (deployed by the censoring authority) may
be able to infer the participation of collaborating peers in data
uploading, compromising their privacy. Similar to the producer’s
anonymity, cryptosystems including ring, group, and attribute-
based signatures can preserve peers’ anonymity. Distributed anony-
mous reputation management mechanisms can also help peers
make informed decisions about their participation in data upload-
ing [43].

Traffic analysis attacks: The censoring authority may orchestrate
traffic analysis attacks to infer communication patterns from en-
crypted traffic, aiming to breach the producer’s anonymity. Note
that data producers in Harpocrates use legitimate communication
channels to transfer their data to the collaborating peers and subse-
quently to the proxies. Leveraging such legitimate communication
channels for distributing the data between the collaborating peers
hides the producer’s data and prevents the censoring authority
from identifying a data upload attempt. As described in Section 6.1,
dispersing the producer’s data across multiple collaborating peers
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Figure 9: Normalized overhead for varying numbers of collaborating peers and percentages of censoring nodes. Results for Pull are omitted when it fails to successfully make all

the data available outside of the censoring network.

allows each peer to obtain a small portion of the data-with poten-
tially different sizes—from the producer. Peers can send requests
for data to the producer such that the generated traffic follows the
legitimate application distribution, making these requests indistin-
guishable from the traffic generated by the legitimate application.
Each peer also uploads a small portion of the generated data to the
proxies, thus preventing peers from sending abnormal amounts of
data outside of the censoring network and creating traffic anom-
alies.

To transfer the producer’s data to proxies outside of the censoring
network, the collaborating peers send requests containing portions
of the data generated by the producer hidden in them. The censoring
authority may attempt to orchestrate traffic correlation attacks by
passively observing the packet sizes between the producer and
the collaborating peers or between the collaborating peers and the
proxies. However, the data producer can assign different portions
of the data to collaborating peers, ensuring that traffic patterns
between the producer and these peers are not identical. NDN also
features variable size request packets, since such packets can carry
an unbounded number of parameters (data of arbitrary sizes) as
defined by the NDN packet format [1]. As a result, data producers
can generate Interests of variable sizes that follow the packet sizes
of legitimate applications.

9 Conclusion and Future Work

In this paper, we presented Harpocrates, a framework for the anony-
mous publication of data from a censoring network to users outside
of this network. Harpocrates takes advantage of communication
channels and applications that are allowed in the censoring net-
work, maximizing the collateral damage for censoring authorities.
By employing different data sharing modes, Harpocrates can de-
fend against censoring actions. Through a secure delegation mecha-
nism, Harpocrates enables proxies outside of a censoring network to
make data available to users without compromising the producer’s
anonymity. In the future, we plan to: (i) implement a Harpocrates
prototype and evaluate it against other censorship circumvention
solutions; and (ii) design mechanisms to defend against malicious
collaborating peers and proxies.
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