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Abstract—In this paper, we consider a cellular-based Internet
of things (IoT) network consisting of IoT devices that can
communicate directly with each other in a device-to-device (D2D)
fashion as well as send real-time status updates about some
underlying physical processes observed by them. We assume that
such real-time applications are supported by cellular networks
where cellular base stations (BSs) collect status updates over
time from a subset of the IoT devices in their vicinity. We
characterize two performance metrics: i) the network throughput
which quantifies the performance of D2D communications, and ii)
the Age of Information which quantifies the performance of the
real-time IoT-enabled applications. Concrete analytical results are
derived using stochastic geometry by modeling the locations of
IoT devices as a bipolar Poisson Point Process (PPP) and that
of the BSs as another Independent PPP. Our results provide
useful design guidelines on the efficient deployment of future
IoT networks that will jointly support D2D communications and
several cellular network-enabled real-time applications.

Index Terms—Age of Information, cellular networks, device-
to-device communication, IoT networks, and stochastic geometry.

I. INTRODUCTION

The emerging paradigm of Internet of Things (IoT) is partic-
ularly appealing for enabling a variety of real-time applications
involving features such as local decision making and remote
monitoring. For example, IoT networks can play a vital role in
the efficient detection and management of natural disasters by
deploying multiple sensors over disaster-prone areas. In such
applications, the sensors may be dual-purpose edge devices
communicating with each other over direct links for local
processing of data while also communicating with a remote
base station (BS) to share updates about the random process
that they are monitoring. Motivated by such applications, this
paper develops a novel analytical model for IoT networks,
which includes both proximity-based device-to-device (D2D)
communications and remote monitoring via cellular BSs. From
the perspective of D2D communication, it is beneficial to
maximize the network throughput. However, ensuring the
freshness of information is important for designing the real-
time remote monitoring applications, which the conventional
metrics, such as data rate and delay, fail to capture. Recently,
a new metric, termed Age of Information (Aol), was introduced
in [2] for accurately quantifying the freshness of information
updates received through some random medium such as wire-
less channels. This work analyzes the Aol performance for the
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cellular-IoT enabled remote monitoring applications and also
investigates its interplay with the achievable data rates for the
proximity-based D2D links.

Related work. We utilize the concept of Aol to quantify
the freshness of information at the BSs regarding random
processes monitored by IoT devices [3]. The authors of [2]
characterized temporal mean performance of Aol for various
queue disciplines for a single source-destination pair. A series
of works then focused on characterizing the temporal mean
of Aol or other age-related metrics for different variations of
queue disciplines [4]. Another important line of research is to
develop Aol-optimal policies in order to effectively utilize the
resources in a variety of communication networks including,
D2D communications [5], [6], broadcast networks [7], [8], and
IoT networks [9]-[15]. The interplay between throughput and
Aol was also investigated in [6] and [16] for wireless networks
with heterogeneous traffic. While the aforementioned works
provide a thorough understanding of the temporal statistics of
Aol, they are fundamentally limited in their ability to provide
insights about the spatial disparity in the Aol performance that
is inherently present in wireless networks. This is primarily
because each receiver perceives a different signal and interfer-
ence environments, which cannot be studied using approaches
considered in the above works. Therefore, it is important to
accurately model the spatial distribution of wireless devices to
analyze the impact of spatial variations on the achievable Aol.

Stochastic geometry tools have received significant attention
for modeling the spatial distribution of wireless nodes [17].
Recently, the authors of [18]-[21] applied stochastic geometry
tools to perform spatio-temporal analysis of Aol for D2D
communication by modeling the locations of D2D pairs using a
bipolar Poisson point process (PPP) [18]-[20], and for cellular-
based IoT networks by modeling the locations of the IoT
devices and BSs using independent PPPs [21]. Specifically,
they derived bounds on the spatio-temporal mean Aol [18],
the spatio-temporal mean peak Aol [19], [21], and the spatial
distribution of the temporal mean peak Aol [20]. In contrast
to these analyses that considered Aol as the only performance
quantifying metric, this paper presents a joint spatio-temporal
analysis of Aol and throughput for cellular-based IoT networks.

Contributions. We present a stochastic geometry-based anal-
ysis of cellular-based IoT networks which includes: i) the D2D
communications between IoT devices, and ii) the transmission
of status updates from the IoT devices to the BSs regarding the
random processes they are sensing. We assume that the loca-
tions of the IoT devices follow a bipolar PPP and the locations
of the BSs follow an independent PPP. For this setup, we first
derive the moments of the transmission success probabilities
for both the D2D communication and the status update links.



Next, we characterize the D2D network throughput, and the
spatial moments of the temporal mean Aol (which capture the
spatial disparity in the Aol performance of the status update
links) as a function of maximum allowed BS-device distance.
Our numerical results validate the analytical findings and also
highlight the impact of maximum allowed BS-device distance
on the mean Aol for different system design parameters.
II. SYSTEM MODEL

We consider a cellular-based IoT network wherein the IoT
devices can exchange messages in a D2D fashion and also
send status updates regarding some random processes to their
associated BSs. The D2D links of IoT devices are assumed to
be randomly distributed according to a bipolar PPP wherein
the transmitting [oT devices form a PPP &4 with intensity
Ad. Their designated receiving IoT devices are independently
located at distance Rq in uniformly random directions. The
locations of the BSs are also assumed to follow an independent
PPP @}, with intensity Ap. The status updates from the IoT
devices contain timestamped measurements of independent
random processes observed in their vicinity (i.e., each IoT
device will have a separate Aol process associated with its mea-
surements). We consider the maximum mean signal strength
based cell association policy. Thus, the IoT device is served
by its nearest BS. The IoT devices associated with a given BS
at x € ¢y, lie within its Poisson Voronoi (PV) cell which is

Vi={y €R®:[x -yl <z~ yl.z € By},

To alleviate interference, we consider that the IoT devices
(those are not scheduled for reporting status updates) choose to
transmit regular packets in D2D fashion with probability ¢4 in
a given time slot. Further, we assume that each BS schedules
one device for status updating from its associated IoT devices
in a uniformly random fashion across the transmission slots to
avoid the collision at the BSs. We consider that the BSs and
receiving devices do not have channel state information and
the IoT devices transmit the updates and regular messages at
fixed rates. Fig. 1 shows a typical realization of the considered
system model. Let ¥}, and U4 denote the sets of the locations

‘ # Cellular BSs o IoT sensors o IoT Devices == Active Links

Dormant Links|

Figure 1. A typical realization of the cellular-based IoT network.

of active IoT devices transmitting status updates and regular
messages, respectively, in a given slot. Thus,

Uy, = {U(Vx n q)d) X € (I)b}, (D)

where U(A) represents the point selected uniformly at random
from the set A. We assume \q >> Ay, to avoid VN ®gq = @ for

Vx € ®y,. Because of the stationarity of PPP, the points within
the set Vi N ®4 are uniformly distributed in V. Therefore, ¥y,
represents the Type I user point process defined in [22]. From
Slivnyak’s theorem, we know that conditioning on a point of
PPP at x is equivalent to adding x to the PPP. Therefore, we
focus on the analysis of the status update received at the typical
BS placed at the origin o of the BS PPP @, U {0}, thus the
PV cell V, represents the typical cell. Let y ~ U(V,) denote
the location of the typical IoT device scheduled for the status
update and let Ry, = ||y|| denote its distance from the typical
BS placed at o.

Similarly, we perform the D2D communication analysis
from the perspective of the typical designated receiving IoT
device placed at o by adding a transmitting IoT device at
z = (Rq,0) (paired with the typical designated receiver) to
the PPP ®4. For the ease of exposition, we focus on the
interference-limited scenario. The signal-to-interference ratios
(SIRs) at the typical D2D receiver and the typical BS are

hoR-®P, hoR-P;
STRy = —2—4 ~94 and SIR;, = %b
d b

where

I = er@

such that ¥ = Wy for s = d and ¥ = Uy, = ¥y, \ {y}
for s = b where y € V, is the location of the typical
scheduled IoT device. P, and Py represent the fixed power
levels for the transmission of a status update and a regular
packet, respectively. Note that o denotes the path-loss exponent
and hy denotes the fading coefficient associated with the link
from IoT device at x. By assuming independent Rayleigh
fading, we model {hyx} as independent unit mean exponential
random variables. The IoT devices are assumed to transmit
the information, containing either regular messages or status
updates, in time slotted manner over the same frequency
band. This paper characterizes the achievable D2D network
throughput and the average Aol of the status updates observed
at the typical BS. The Aol of updates received at the BS is
defined by the elapsed time from the generation of the latest
received status update [2]. Thus, the Aol measured by the BS
related to the status updates from device y at time slot k is

Ay =k — Sy k, 2)
where Sy, represents the time stamp of the generation of the
latest received update until time slot k. We assume that the
IoT device always generate a fresh status update just before
its transmission. In case of a transmission failure, the update
is dropped. As a result, the Aol drops to one whenever a
successful transmission occurs.

ha||x||”*[Pal(x € ¥4) + P,1(x € )]
d

The scheduling probability of an IoT device in V, is equal
to %Vo where Ky, is the number of IoT devices associated
with the typical BS placed at o. Since the IoT devices and BSs
follow independent PPPs, the probability mass function (pmf)

of Ky, can be tightly approximated by [23]
r < (Xa/ )"
P[KVG - TL] = (n+C) < ( d/ b)n+ca
I(n+1)I(c) (c+ Xa/ M)
where ¢ = 3.575 and T'(+) is the gamma function.

3)



III. SUCCESS PROBABILITY ANALYSIS

In the following, we derive the successful transmission
probabilities of the regular D2D messages and status updates.

A. Success probability for the typical D2D link

The success probability of the regular message transmission
on D2D link is defined as the probability that SIR is above
a threshold (4. Thus, the success probability for the typical
designated D2D receiver can be determined as

Pa = P[SIRd > ﬂd] = E]d [exp (7ﬂngId/Pd)] .
Recall that the point process Wy, of IoT devices with active
status updates is selected conditioning on the BS PPP ®y,. Thus,
we can interpret Uy, as the dependent thinning of the PPP &4
for given ®y,. Despite this dependent thinning, the process of
remaining points in &/, = @4\ ¥}, can be accurately approx-
imated using homogeneous PPP with density X\ = Ag — Ap
because of the assumption Aq > Ap. The exact distribution
of Wy, is difficult to derive because of the dependent thinning.
However, one can see that Uy, is equal in distribution with the
point process obtained by the uniformly random displacement
of points x € ®}, within their PV cells V. Therefore, using this
argument and the stationarity of ®},, one can approximate Wi,
with a homogeneous PPP of density A\,. As we will discuss
in Section III-B, handling Wy, in the analysis of the success
probability for the typical BS is a more complicated. This is
because of the need to separately characterize the serving link
distance and the interference power. Unlike the well-known
downlink analysis of a cellular network, where the setup can
be simplified using Slivnyak’s theorem, we need to develop
an appropriate approximation in this case. The point process
W4 can be directly interpreted as the unconditional thinning
of point process @/, with probability ¢q. Thus, Uy will also
closely resemble PPP with density gqAj. Using the above
arguments, the point processes ¥y, and W4 can be considered
as independent of each other. We can segregate the interference
power as Iy = Iy, + Iy, where

Toy =3 hellxl Py and Iy, =30 xR

Since W4 and Wy, are considered to be independent, we can
evaluate the success probability as

pa = Lr,, (BaRG/Pa)Lry, (BaRG/Pa), “4)
where Lx (-) is the Laplace transform (LT) of random variable
X. The LT of Iy, can be determined as

1

L, &) =Ew ]| oy Tremm

where the above equality follows due to the independent
Rayleigh fading. Further, using the probability generating
functional (PGFL) of the PPP W4, we can obtain [17]
/ (SP d)6
10, () = oo (= mauy ).
where 6 = 2. Similarly, we can obtain Lr, (s) =
exp (—mAp(sPa)° /sinc(8)) . The following lemma provides
the success probability of regular transmission which we
obtained by substituting the LT of both Iy, and Iy, at
s = BqRS /Py in (4).

Lemma 1. The success probability of the typical D2D link is

_ _ , BYR: | (BaBy/Pa)’ R}
pd—exp( 7TQd/\dsinc(é) ™ sinc(d) S

B. Success probability for the typical BS

The success probability of the status updates is defined as
the probability that SIR; is above a threshold J;,. Similar
to Section III-A, this success probability can be derived by
averaging over the space. However, this spatially averaged
success probability is not very useful to characterize the perfor-
mance of non-linear metrics, such as Aol, as it will be evident
shortly. For this reason, the distribution of the conditional
success probability, termed meta distribution [24], is required.
Therefore, we derive the moments of meta distribution in
the following. Given ® = ®4 U ®y,, the conditional success
probability of the update from the IoT device at y € V, is

po(y, ®) = P[SIRy > Bo|y, @] = exp (—Bo Ry I/ Fy) -
While y is already included in @, we explicitly condition py,
on y to indicate the IoT device at y is scheduled for the status
update. Given @, the conditional success probability requires
the joint characterization of evolution of ¥4 and \i/b. However,
given the complexity of characterizing Wy, even for a fixed time
instance, as presented in [22], we presume that it is difficult to
analytically model the joint evolution of ¥4 and Uy, Therefore,
we perform the conditional success probability analysis by
considering the interference powers received from the IoT
devices belonging to ¥y and Uy, separately (independently)
for a given serving link distance Rj,. Because of this, the
random activities of an IoT device at x € ®4 for transmitting
the status updates and the regular messages can be modeled
independently of each other.

Let &4 = @4\ (PqNV,). Recall that each BS is assumed to
schedule its associated users uniformly at random in a given
slot. This implies that the probability of an IoT device at x €
V, transmitting a status update is ¢,(V,) = Ky, ! for z € ®q.
Since V, ~ V,, the expected status update activity of a typical
IoT device in ®4 can be obtained as g, = E[K;Ol], which
can be evaluated using the pmf of Ky, given in (3). The IoT
devices, that are not scheduled for status update, are assumed
to transmit regular messages with probability ¢4. Hence, to
accurately capture this, we consider that the IoT devices in ®4
transmits regular messages with probability ¢ = qa(1 — gp).
Thus, we can obtain the conditional success probability as

v
D) = | | [ [ E—— -
2 =11, (1 TR Qb>

A ,)
X +1-— .
er% (1 + Bu R |||~ £ fa

The distribution of Ry, can be accurately approximated as
TRy (r) = 2mea My exp(—meador?), 6)

where ¢y = % [25]. Since it is difficult to directly derive the
meta distribution, we determine its b-th moment as M, =

b
av
Ey o [pv(y, ®)'] = Exr, [Eeréd (1 1+ 51Rax|a)
b v

A(®a)




b
qfi ] A(k)
x E | | 1-— R )]
x€dq < 1+ﬁblea||x||a§3> '

B(®q)
Using [24, Theorem 1], we obtain B(®g) =

o (- BRI S ()07 )

To evaluate A(®4), we require the distribution of ®4 as seen

from the typical BS at o. In [22], the pair correlation function *
(PCf) for the interferers of point process defined in (1) (i.e. .

Wy,) with respect to the typical BS placed at o is derived as
g(r) = 1 — exp(—me1 \pr?), where ¢ = % Similar to [26],

we use this pcf to approximate 4 using non-homogeneous -

PPP with density Aqg(r). Thus, using the PGFL of this non-
homogeneous PPP, we get A(®q) =

oo b ?
exp (QWAdA g(T) <]. — |:1 — ]__’_/Bbqlebo‘T-Dt:| >Td7”> .

Finally, by substituting A(®4) and B(®4) in (7) and then using
(6), we obtain the moments of py,(y, ®) as given in Lemma 2.

Lemma 2. The b-th moment of the conditional success prob-
ability observed by the typical BS is

M, :/ 2mea A €Xp ( — meadpr? — TG (r, b)) rdr, (8)
0

6 > p—
where G(r,b) = wt;iidc/(gb) Z <z> (i B 1) o

+2/O°Og(v)<1 - {1 - Hﬁbqf(vﬁ)ar)vdv'

IV. THROUGHPUT AND AVERAGE A0l

In this section, we characterize the D2D network throughput
and the moments of Aol using results derived in Section III.
The network throughput is measured as the average number
of successfully delivered information bits per unit area per
second per Hertz. The effective probability of an IoT device
transmitting the regular messages is ¢ = qa(1 — ¢»). Thus,
using (5), the throughputs of the typical D2D link and the
D2D network can be determined as

Ti. = ¢4 10y (1 + Ba)pa and T = AaTr,

Now we derive the moments of (location-dependent) mean
Aol for the typical IoT device-BS link. Fig. 2 depicts a
representative sample path of the Aol. Let Yy, and X, 1
denote the sum of Aol (i.e., area of shaded region) and the
time difference between the successful reception of the k-th
and the (k + 1)-th updates from the device at y. Thus,

t M

Yy = Zk':k Aypand Xyp =3 " Ty, (9
where Ty, ; denotes the time between two consecutive schedul-
ing instances and My, denotes the random number of attempted
transmissions between two successfully received status up-
dates. The mean Aol is charaterized here similarly to [27]
wherein the authors determine the mean Aol for the case of
a single point-to-point link. For N transmissions slots with

X1 Xk o X1

Figure 2. Sample path of Ay . The red upward and blue downward arrows

7 show the transmission attempts and suécessful (ransmissions, respectively. ©

K successful updates, the average Aol for the device at y is

An(y) =
1 N 1 K K1 K
N Zk:l Ay N Zk:l Yyr = NK Zk:l Yy k-

K

i Ko 1 i L _

im 5 = gx,;7end lm g kZ::1Y & = E[Yyil,

we get A(y) = A}im An(y) = E[Yy 1]/E[Xy x]. We obtain
—00

the relation between Yy, . and X, ; as

Xy,k 1
Yyr = Zm:l m= §Xy,k(Xy,k‘ +1).

Using 1\}

Finally, we obtain

_LEXy Xy + D] _ EXT] 41
2 E[Xy x] 2E[Xy k] 2
Thus, the first two moments of Xy  are sufficient to evaluate
the mean Aol. However, the distribution of Xy, ; is not identical
for the IoT devices spread across the network for the following
reasons. The distribution of Xy ; of an IoT device-BS link
depends on its scheduling and the success probabilities. In
particular, for a given ® = &, U &4 and the IoT device at
y € V,, the scheduling probability 1/Ky, and conditional
success probability py,(y,®) characterize the distributions of
Ty ; and My, respectively, which determines its mean Aol
through Xy . This implies that the mean Aol observed by
the IoT at y is conditioned on the locations of the IoT devices
and the BSs. Hence, we refer the the mean Aol of IoT device
at y as the conditional mean Aol denoted by A(y,®). Our
focus is to derive the distribution of the conditional mean Aol.
Conditional Mean Aol: For a device at y given @, the proba-
bility that the attempted transmission is successful is py,(y, @)
and the probability that it is scheduled for the status update is
Cv, = 1/Ky,. Thus, the pmfs of Ty ; and M, become

P(Ty,; = t|®] = (v, [1 — v, ],
and P[My = m|(I)] = pb(y7 Q)[l - pb(y7 @)}m717
for 1 < m,t, respectively. Since Ty ;s are independent and

identically distributed, we can apply the Wald’s identity to (9)
and obtain the mean of Xy ; as

]E[Xy,k'] = E[Ty,i}E[My] = C‘;Olpb(y, @)71-
From (9), we have
M. M. M.
2 Y 2 y y . )
Xy,k - Zi:l Ty,i + Zi:l Zj:l,j;éz‘ TYJT)’;J'

Note that Ty ; and Ty 4, for ¢ # j, are independent because
of each BS schedules its associated IoT devices uniformly at

A(y) (10)

(1)



random in a given slot. Thus, IE[X;,MM =m] =
mE[Ty ] +m(m — DE[Ty ;)" = ml — (v, (" +m?¢.”.
Now, by averaging over the pmf of My, we obtain
E[Xyi] = (1= )G EIM ] + G EIMY],
_l-¢v, 1 1 2-—pp(y, @)
G py®) G opul(y,®)?

Finally, by substituting (11) and (12) into (10), we obtain the
conditional mean Aol as given in the following lemma.

12)

Lemma 3. The conditional mean Aol measured by the typical
BS of the updates from the IoT device at'y € V, is

Aly,®) = ¢l only, @)

Moments of conditional mean Aol: Tt is well-known that
the correlation between py(y,®) and Ky, for given @ is
difficult to capture in the spatio-temporal analysis of cellular
networks. Hence, similar to the existing stochastic geometry-
based analyses (refer to [28] for an example), we rely on the
assumption of independence of these two quantities. Thus, it
is apparent from Lemma 3 that the n-th moment of A(y, ®)
is equal to the product of (—n)-th moments py(y,®) and
Cv, which can be directly obtained from Lemma 2 and the
pmf of Ky, given in (3), respectively. However, note that
A, = E[A(y,®)] = oo because pp(y,P) — 0 as ||y| — oo.
To tackle this, we evaluate the moments of A(y, ®) under the
condition of R}, < R in the following theorem.

13)

Theorem 1. The n-th moment of the conditional mean Aol
measured at the typical BS of the status updates generated
from the IoT devices within distance R is A,(R) =

R
ZEk,, [Ky, ] / exp ( — meaApr? — TG (7, —n))rdr, (14)
0
2mea A

where Z = and G(r,—n) is given in Lemma 2.

1—exp(—7ApcaR2)
Proof. Using the assumption of independence of (y, and

pb(y,®) and Lemma 3, the n-th moment of the conditional
mean Aol can be obtained as

An(R) = Ey o[A(y, )" Ry <R]
= Exy, (K7, By o[pu(y, ®) "Ry < R].

Thus, we arrive at (14) by plugging the (—n)-th moment of
pu(y, ®) from Lemma (2) with the condition R}, < R. O

V. NUMERICAL ANALYSIS AND DISCUSSION

For the numerical analysis, we consider the system param-
eters as A\, = 1074 BSs/m?, \q = 20);, devices/m?, P; = 30
dBm, P, = 100P;, o = 4, qq4 = 0.1, and Rq = 10 m, unless
mentioned otherwise. First, we verify the success probabilities
derived in Section III through simulation results in Fig. 3. The
curves correspond to the analytical results whereas the markers
correspond to the simulation results. Fig. 3 (left) presents the
success probability observed by the typical D2D link and Fig.
3 (right) presents the mean and variance of conditional success
probability observed by the typical BS both match closely with
the simulation results.

Fig. 4 (left) shows the mean Aol at the typical BS and
the throughput of the D2D network. Note that the mean Aol

is evaluated for the maximum IoT device-BS link distance
R = 120 m where P[R, < R] ~ 0.99. The figure shows
that both the throughput of D2D network and the mean Aol
at the typical BS increase with the increase of density ratio
Ry = i—: which is expected. It is also apparent form the figure
that Ay — E[Ky,] = R, for smaller 3y, (i.e. when the success
probability is almost one) and A; — oo for larger values
of By, (i.e. when the success probability is almost zero). Let
T8 = ATy and 77 = maxg, 71, be the optimal throughputs
of the D2D network and typical D2D link, respectively, with
respect to B4. Fig. 4 (middle) shows the behaviour of 7§ and
T with respect to the density ratio R. 7y initially increases
with Ry (due to the increase in transmission of D2D links)
and then start to decrease with further increase of R) (due to
severe interference from D2D links).

Fig. 4 (right) depicts the mean Aol observed by the typical
BS from the IoT devices within distance R. The mean Aol
increases with R because it includes more IoT devices with
lower success probabilities. In addition, the mean Aol also
increases with both (B, and R since these two parameters
negatively affect the success probability of the status update.
This conditional mean Aol is important from the perspective of
devising a strategy for the collection of status updates such that
the mean Aol remains below some threshold. For instance, the
figure indicates that updating the status from the IoT devices
within distance 66 meters from the BSs (which are around
83% of total IoT devices) can bound the mean Aol below 100
slots when 8, = 3 dB and R, = 20. These numerical results
provide useful insights for maximization of the D2D network
throughput such that the mean Aol is below a limit.

VI. CONCLUSION

This paper considered a cellular-based IoT network where
the IoT devices can communicate with each other over direct
D2D links and also send status updates to BSs. We characterize
the performance of these D2D and status update links in terms
of throughput and average Aol, respectively. Using tools from
stochastic geometry, we derived the success probability for
the D2D link and the moments of the conditional success
probability of the status updates link. Then, using these results,
we obtained the achievable D2D network throughput and the
moments of the conditional mean Aol. Our numerical results
demonstrated that limiting the IoT device-BS link distance is
necessary to keep the mean Aol below a threshold. They also
revealed the impact of the ratio of densities of IoT devices and
BSs on the network throughput and average Aol.
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