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Abstract—In this paper, we consider a cellular-based Internet
of things (IoT) network consisting of IoT devices that can
communicate directly with each other in a device-to-device (D2D)
fashion as well as send real-time status updates about some
underlying physical processes observed by them. We assume that
such real-time applications are supported by cellular networks
where cellular base stations (BSs) collect status updates over
time from a subset of the IoT devices in their vicinity. We
characterize two performance metrics: i) the network throughput
which quantifies the performance of D2D communications, and ii)
the Age of Information which quantifies the performance of the
real-time IoT-enabled applications. Concrete analytical results are
derived using stochastic geometry by modeling the locations of
IoT devices as a bipolar Poisson Point Process (PPP) and that
of the BSs as another Independent PPP. Our results provide
useful design guidelines on the efficient deployment of future
IoT networks that will jointly support D2D communications and
several cellular network-enabled real-time applications.

Index Terms—Age of Information, cellular networks, device-
to-device communication, IoT networks, and stochastic geometry.

I. INTRODUCTION

The emerging paradigm of Internet of Things (IoT) is partic-
ularly appealing for enabling a variety of real-time applications
involving features such as local decision making and remote
monitoring. For example, IoT networks can play a vital role in
the efficient detection and management of natural disasters by
deploying multiple sensors over disaster-prone areas. In such
applications, the sensors may be dual-purpose edge devices
communicating with each other over direct links for local
processing of data while also communicating with a remote
base station (BS) to share updates about the random process
that they are monitoring. Motivated by such applications, this
paper develops a novel analytical model for IoT networks,
which includes both proximity-based device-to-device (D2D)
communications and remote monitoring via cellular BSs. From
the perspective of D2D communication, it is beneficial to
maximize the network throughput. However, ensuring the
freshness of information is important for designing the real-
time remote monitoring applications, which the conventional
metrics, such as data rate and delay, fail to capture. Recently,
a new metric, termed Age of Information (AoI), was introduced
in [2] for accurately quantifying the freshness of information
updates received through some random medium such as wire-
less channels. This work analyzes the AoI performance for the
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cellular-IoT enabled remote monitoring applications and also
investigates its interplay with the achievable data rates for the
proximity-based D2D links.

Related work. We utilize the concept of AoI to quantify
the freshness of information at the BSs regarding random
processes monitored by IoT devices [3]. The authors of [2]
characterized temporal mean performance of AoI for various
queue disciplines for a single source-destination pair. A series
of works then focused on characterizing the temporal mean
of AoI or other age-related metrics for different variations of
queue disciplines [4]. Another important line of research is to
develop AoI-optimal policies in order to effectively utilize the
resources in a variety of communication networks including,
D2D communications [5], [6], broadcast networks [7], [8], and
IoT networks [9]–[15]. The interplay between throughput and
AoI was also investigated in [6] and [16] for wireless networks
with heterogeneous traffic. While the aforementioned works
provide a thorough understanding of the temporal statistics of
AoI, they are fundamentally limited in their ability to provide
insights about the spatial disparity in the AoI performance that
is inherently present in wireless networks. This is primarily
because each receiver perceives a different signal and interfer-
ence environments, which cannot be studied using approaches
considered in the above works. Therefore, it is important to
accurately model the spatial distribution of wireless devices to
analyze the impact of spatial variations on the achievable AoI.

Stochastic geometry tools have received significant attention
for modeling the spatial distribution of wireless nodes [17].
Recently, the authors of [18]–[21] applied stochastic geometry
tools to perform spatio-temporal analysis of AoI for D2D
communication by modeling the locations of D2D pairs using a
bipolar Poisson point process (PPP) [18]–[20], and for cellular-
based IoT networks by modeling the locations of the IoT
devices and BSs using independent PPPs [21]. Specifically,
they derived bounds on the spatio-temporal mean AoI [18],
the spatio-temporal mean peak AoI [19], [21], and the spatial
distribution of the temporal mean peak AoI [20]. In contrast
to these analyses that considered AoI as the only performance
quantifying metric, this paper presents a joint spatio-temporal
analysis of AoI and throughput for cellular-based IoT networks.

Contributions. We present a stochastic geometry-based anal-
ysis of cellular-based IoT networks which includes: i) the D2D
communications between IoT devices, and ii) the transmission
of status updates from the IoT devices to the BSs regarding the
random processes they are sensing. We assume that the loca-
tions of the IoT devices follow a bipolar PPP and the locations
of the BSs follow an independent PPP. For this setup, we first
derive the moments of the transmission success probabilities
for both the D2D communication and the status update links.



Next, we characterize the D2D network throughput, and the
spatial moments of the temporal mean AoI (which capture the
spatial disparity in the AoI performance of the status update
links) as a function of maximum allowed BS-device distance.
Our numerical results validate the analytical findings and also
highlight the impact of maximum allowed BS-device distance
on the mean AoI for different system design parameters.

II. SYSTEM MODEL

We consider a cellular-based IoT network wherein the IoT
devices can exchange messages in a D2D fashion and also
send status updates regarding some random processes to their
associated BSs. The D2D links of IoT devices are assumed to
be randomly distributed according to a bipolar PPP wherein
the transmitting IoT devices form a PPP Φd with intensity
λd. Their designated receiving IoT devices are independently
located at distance Rd in uniformly random directions. The
locations of the BSs are also assumed to follow an independent
PPP Φb with intensity λb. The status updates from the IoT
devices contain timestamped measurements of independent
random processes observed in their vicinity (i.e., each IoT
device will have a separate AoI process associated with its mea-
surements). We consider the maximum mean signal strength
based cell association policy. Thus, the IoT device is served
by its nearest BS. The IoT devices associated with a given BS
at x ∈ Φb lie within its Poisson Voronoi (PV) cell which is

Vx = {y ∈ R2 : ‖x− y‖ ≤ ‖z− y‖, z ∈ Φb}.
To alleviate interference, we consider that the IoT devices

(those are not scheduled for reporting status updates) choose to
transmit regular packets in D2D fashion with probability qd in
a given time slot. Further, we assume that each BS schedules
one device for status updating from its associated IoT devices
in a uniformly random fashion across the transmission slots to
avoid the collision at the BSs. We consider that the BSs and
receiving devices do not have channel state information and
the IoT devices transmit the updates and regular messages at
fixed rates. Fig. 1 shows a typical realization of the considered
system model. Let Ψb and Ψd denote the sets of the locations

Figure 1. A typical realization of the cellular-based IoT network.

of active IoT devices transmitting status updates and regular
messages, respectively, in a given slot. Thus,

Ψb = {U(Vx ∩ Φd) : x ∈ Φb}, (1)
where U(A) represents the point selected uniformly at random
from the set A. We assume λd � λb to avoid Vx∩Φd = ∅ for

∀x ∈ Φb. Because of the stationarity of PPP, the points within
the set Vx∩Φd are uniformly distributed in Vx. Therefore, Ψb

represents the Type I user point process defined in [22]. From
Slivnyak’s theorem, we know that conditioning on a point of
PPP at x is equivalent to adding x to the PPP. Therefore, we
focus on the analysis of the status update received at the typical
BS placed at the origin o of the BS PPP Φb ∪ {o}, thus the
PV cell Vo represents the typical cell. Let y ∼ U(Vo) denote
the location of the typical IoT device scheduled for the status
update and let Rb = ‖y‖ denote its distance from the typical
BS placed at o.

Similarly, we perform the D2D communication analysis
from the perspective of the typical designated receiving IoT
device placed at o by adding a transmitting IoT device at
z ≡ (Rd, 0) (paired with the typical designated receiver) to
the PPP Φd. For the ease of exposition, we focus on the
interference-limited scenario. The signal-to-interference ratios
(SIRs) at the typical D2D receiver and the typical BS are

SIRd =
hoR

−α
d Pd

Id
and SIRb =

hoR
−α
b Pb

Ib
,

where
Is =

∑
x∈Φd

hx‖x‖−α[Pd1(x ∈ Ψd) + Pb1(x ∈ Ψ)]

such that Ψ = Ψb for s = d and Ψ = Ψ̃b = Ψb \ {y}
for s = b where y ∈ Vo is the location of the typical
scheduled IoT device. Pb and Pd represent the fixed power
levels for the transmission of a status update and a regular
packet, respectively. Note that α denotes the path-loss exponent
and hx denotes the fading coefficient associated with the link
from IoT device at x. By assuming independent Rayleigh
fading, we model {hx} as independent unit mean exponential
random variables. The IoT devices are assumed to transmit
the information, containing either regular messages or status
updates, in time slotted manner over the same frequency
band. This paper characterizes the achievable D2D network
throughput and the average AoI of the status updates observed
at the typical BS. The AoI of updates received at the BS is
defined by the elapsed time from the generation of the latest
received status update [2]. Thus, the AoI measured by the BS
related to the status updates from device y at time slot k is

Ay,k = k − Sy,k, (2)
where Sy,k represents the time stamp of the generation of the
latest received update until time slot k. We assume that the
IoT device always generate a fresh status update just before
its transmission. In case of a transmission failure, the update
is dropped. As a result, the AoI drops to one whenever a
successful transmission occurs.

The scheduling probability of an IoT device in Vo is equal
to 1

KVo
where KVo

is the number of IoT devices associated
with the typical BS placed at o. Since the IoT devices and BSs
follow independent PPPs, the probability mass function (pmf)
of KVo can be tightly approximated by [23]

P[KVo = n] =
Γ(n+ c)

Γ(n+ 1)Γ(c)

cc (λd/λb)
n

(c+ λd/λb)
n+c , (3)

where c = 3.575 and Γ(·) is the gamma function.



III. SUCCESS PROBABILITY ANALYSIS

In the following, we derive the successful transmission
probabilities of the regular D2D messages and status updates.

A. Success probability for the typical D2D link
The success probability of the regular message transmission

on D2D link is defined as the probability that SIR is above
a threshold βd. Thus, the success probability for the typical
designated D2D receiver can be determined as

pd = P[SIRd > βd] = EId [exp (−βdR
α
d Id/Pd)] .

Recall that the point process Ψb of IoT devices with active
status updates is selected conditioning on the BS PPP Φb. Thus,
we can interpret Ψb as the dependent thinning of the PPP Φd

for given Φb. Despite this dependent thinning, the process of
remaining points in Φ′d = Φd \Ψb can be accurately approx-
imated using homogeneous PPP with density λ′d = λd − λb

because of the assumption λd � λb. The exact distribution
of Ψb is difficult to derive because of the dependent thinning.
However, one can see that Ψb is equal in distribution with the
point process obtained by the uniformly random displacement
of points x ∈ Φb within their PV cells Vx. Therefore, using this
argument and the stationarity of Φb, one can approximate Ψb

with a homogeneous PPP of density λb. As we will discuss
in Section III-B, handling Ψb in the analysis of the success
probability for the typical BS is a more complicated. This is
because of the need to separately characterize the serving link
distance and the interference power. Unlike the well-known
downlink analysis of a cellular network, where the setup can
be simplified using Slivnyak’s theorem, we need to develop
an appropriate approximation in this case. The point process
Ψd can be directly interpreted as the unconditional thinning
of point process Φ′d with probability qd. Thus, Ψd will also
closely resemble PPP with density qdλ

′
d. Using the above

arguments, the point processes Ψb and Ψd can be considered
as independent of each other. We can segregate the interference
power as Id = IΨd

+ IΨb
where

IΨd
=
∑

x∈Ψd

hx‖x‖−αPd and IΨb
=
∑

x∈Ψb

hx‖x‖−αPb.

Since Ψd and Ψb are considered to be independent, we can
evaluate the success probability as

pd = LIΨd
(βdR

α
d/Pd)LIΨb

(βdR
α
d/Pd), (4)

where LX(·) is the Laplace transform (LT) of random variable
X . The LT of IΨd

can be determined as

LIΨd
(s) = EΨd

∏
x∈Ψd

1

1 + sPd‖x‖−α
,

where the above equality follows due to the independent
Rayleigh fading. Further, using the probability generating
functional (PGFL) of the PPP Ψd, we can obtain [17]

LIΨd
(s) = exp

(
− πqdλ

′
d

(sPd)δ

sinc(δ)

)
,

where δ = 2
α . Similarly, we can obtain LIΨb

(s) =

exp
(
−πλb(sPd)δ/sinc(δ)

)
. The following lemma provides

the success probability of regular transmission which we
obtained by substituting the LT of both IΨd

and IΨb
at

s = βdR
α
d/Pd in (4).

Lemma 1. The success probability of the typical D2D link is

pd = exp

(
− πqdλ

′
d

βδdR
2
d

sinc(δ)
− πλb

(βdPb/Pd)δR2
d

sinc(δ)

)
. (5)

B. Success probability for the typical BS
The success probability of the status updates is defined as

the probability that SIRb is above a threshold βb. Similar
to Section III-A, this success probability can be derived by
averaging over the space. However, this spatially averaged
success probability is not very useful to characterize the perfor-
mance of non-linear metrics, such as AoI, as it will be evident
shortly. For this reason, the distribution of the conditional
success probability, termed meta distribution [24], is required.
Therefore, we derive the moments of meta distribution in
the following. Given Φ = Φd ∪ Φb, the conditional success
probability of the update from the IoT device at y ∈ Vo is

pb(y,Φ) = P[SIRb > βb|y,Φ] = exp (−βbR
α
b Ib/Pb) .

While y is already included in Φ, we explicitly condition pb

on y to indicate the IoT device at y is scheduled for the status
update. Given Φ, the conditional success probability requires
the joint characterization of evolution of Ψd and Ψ̃b. However,
given the complexity of characterizing Ψ̃b even for a fixed time
instance, as presented in [22], we presume that it is difficult to
analytically model the joint evolution of Ψd and Ψ̃b. Therefore,
we perform the conditional success probability analysis by
considering the interference powers received from the IoT
devices belonging to Ψd and Ψ̃b separately (independently)
for a given serving link distance Rb. Because of this, the
random activities of an IoT device at x ∈ Φd for transmitting
the status updates and the regular messages can be modeled
independently of each other.

Let Φ̃d = Φd \ (Φd∩Vo). Recall that each BS is assumed to
schedule its associated users uniformly at random in a given
slot. This implies that the probability of an IoT device at x ∈
Vz transmitting a status update is qb(Vz) = K−1

Vz
for z ∈ Φ̃d.

Since Vo ∼ Vz, the expected status update activity of a typical
IoT device in Φ̃d can be obtained as qb = E[K−1

Vo
], which

can be evaluated using the pmf of KVo
given in (3). The IoT

devices, that are not scheduled for status update, are assumed
to transmit regular messages with probability qd. Hence, to
accurately capture this, we consider that the IoT devices in Φd

transmits regular messages with probability q′d = qd(1 − qb).
Thus, we can obtain the conditional success probability as

pb(y,Φ) =
∏

x∈Φ̃d

(
qb

1 + βbRαb‖x‖−α
+ 1− qb

)
×
∏

x∈Φd

(
q′d

1 + βbRαb‖x‖−α
Pd

Pb

+ 1− q′d
)
.

The distribution of Rb can be accurately approximated as
fRb

(r) = 2πc2λb exp(−πc2λbr
2), (6)

where c2 = 9
7 [25]. Since it is difficult to directly derive the

meta distribution, we determine its b-th moment as Mb =

Ey,Φ[pb(y,Φ)b] = ERb

[
E
∏

x∈Φ̃d

(
1− qb

1 + β−1
b R−αb ‖x‖α

)b
︸ ︷︷ ︸

A(Φ̃d)



× E
∏

x∈Φd

(
1− q′d

1 + β−1
b R−αb ‖x‖α

Pb

Pd

)b
︸ ︷︷ ︸

B(Φd)

]
. (7)

Using [24, Theorem 1], we obtain B(Φd) =

exp

(
− πλd

(βbPd/Pb)δR2
b

sinc(δ)

∑∞

n=1

(
b

n

)(
δ − 1

n− 1

)
q′d
n
)
.

To evaluate A(Φ̃d), we require the distribution of Φ̃d as seen
from the typical BS at o. In [22], the pair correlation function
(pcf) for the interferers of point process defined in (1) (i.e.
Ψ̃b) with respect to the typical BS placed at o is derived as
g(r) = 1 − exp(−πc1λbr

2), where c1 = 12
5 . Similar to [26],

we use this pcf to approximate Φ̃d using non-homogeneous
PPP with density λdg(r). Thus, using the PGFL of this non-
homogeneous PPP, we get A(Φ̃d) =

exp

(
−2πλd

∫ ∞
0

g(r)

(
1−

[
1− qb

1 + β−1
b R−αb rα

]b)
rdr

)
.

Finally, by substitutingA(Φ̃d) and B(Φd) in (7) and then using
(6), we obtain the moments of pb(y,Φ) as given in Lemma 2.

Lemma 2. The b-th moment of the conditional success prob-
ability observed by the typical BS is

Mb =

∫ ∞
0

2πc2λb exp

(
− πc2λbr

2 − πλdG(r, b)

)
rdr, (8)

where G(r, b) = r2
(βbPd/Pb)

δ

sinc(δ)

∞∑
n=1

(
b

n

)(
δ − 1

n− 1

)
q′d
n

+ 2

∫ ∞
0

g(v)

(
1−

[
1− qb

1 + β−1
b (v/r)α

]b)
vdv.

IV. THROUGHPUT AND AVERAGE AOI

In this section, we characterize the D2D network throughput
and the moments of AoI using results derived in Section III.
The network throughput is measured as the average number
of successfully delivered information bits per unit area per
second per Hertz. The effective probability of an IoT device
transmitting the regular messages is q′d = qd(1 − qb). Thus,
using (5), the throughputs of the typical D2D link and the
D2D network can be determined as

TL = q′d log2(1 + βd)pd and TN = λdTL

Now we derive the moments of (location-dependent) mean
AoI for the typical IoT device-BS link. Fig. 2 depicts a
representative sample path of the AoI. Let Yy,k and Xy,k

denote the sum of AoI (i.e., area of shaded region) and the
time difference between the successful reception of the k-th
and the (k + 1)-th updates from the device at y. Thus,

Yy,k =
∑tk+1

k=tk
Ay,k and Xy,k =

∑My

i=1
Ty,i, (9)

where Ty,i denotes the time between two consecutive schedul-
ing instances and My denotes the random number of attempted
transmissions between two successfully received status up-
dates. The mean AoI is charaterized here similarly to [27]
wherein the authors determine the mean AoI for the case of
a single point-to-point link. For N transmissions slots with
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Figure 2. Sample path of Ay,k . The red upward and blue downward arrows
show the transmission attempts and successful transmissions, respectively.

K successful updates, the average AoI for the device at y is
∆N (y) =

1

N

∑N

k=1
Ay,k =

1

N

∑K

k=1
Yy,k =

K

N

1

K

∑K

k=1
Yy,k.

Using lim
N→∞

K
N = 1

E[Xy,k] and lim
K→∞

1
K

K∑
k=1

Yy,k = E[Yy,k],

we get ∆(y) = lim
N→∞

∆N (y) = E[Yy,k]/E[Xy,k]. We obtain
the relation between Yy,k and Xy,k as

Yy,k =
∑Xy,k

m=1
m =

1

2
Xy,k(Xy,k + 1).

Finally, we obtain

∆(y) =
1

2

E [Xy,k(Xy,k + 1)]

E[Xy,k]
=

E[X2
y,k]

2E[Xy,k]
+

1

2
. (10)

Thus, the first two moments of Xy,k are sufficient to evaluate
the mean AoI. However, the distribution of Xy,k is not identical
for the IoT devices spread across the network for the following
reasons. The distribution of Xy,k of an IoT device-BS link
depends on its scheduling and the success probabilities. In
particular, for a given Φ = Φb ∪ Φd and the IoT device at
y ∈ Vo, the scheduling probability 1/KVo and conditional
success probability pb(y,Φ) characterize the distributions of
Ty,i and My, respectively, which determines its mean AoI
through Xy,k. This implies that the mean AoI observed by
the IoT at y is conditioned on the locations of the IoT devices
and the BSs. Hence, we refer the the mean AoI of IoT device
at y as the conditional mean AoI denoted by ∆(y,Φ). Our
focus is to derive the distribution of the conditional mean AoI.
Conditional Mean AoI: For a device at y given Φ, the proba-
bility that the attempted transmission is successful is pb(y,Φ)
and the probability that it is scheduled for the status update is
ζVo = 1/KVo . Thus, the pmfs of Ty,i and My become

P[Ty,i = t|Φ] = ζVo [1− ζVo ]t−1,

and P[My = m|Φ] = pb(y,Φ)[1− pb(y,Φ)]m−1,

for 1 ≤ m, t, respectively. Since Ty,is are independent and
identically distributed, we can apply the Wald’s identity to (9)
and obtain the mean of Xy,k as

E[Xy,k] = E[Ty,i]E[My] = ζ−1
Vo
pb(y,Φ)−1. (11)

From (9), we have

X2
y,k =

∑My

i=1
T 2
y,i +

∑My

i=1

∑My

j=1,j 6=i
Ty,iTy,j .

Note that Ty,i and Ty,j , for i 6= j, are independent because
of each BS schedules its associated IoT devices uniformly at



random in a given slot. Thus, E[X2
y,k|My = m] =

mE[T 2
y,i] +m(m− 1)E[Ty,i]

2 = m1− ζVo
ζ−2
Vo

+m2ζ−2
Vo
.

Now, by averaging over the pmf of My, we obtain
E[X2

y,k] = (1− ζVo
)ζ−2
Vo

E[My] + ζ−2
Vo

E[M2
y],

=
1− ζVo

ζ2
Vo

1

pb(y,Φ)
+

1

ζ2
Vo

2− pb(y,Φ)

pb(y,Φ)2
. (12)

Finally, by substituting (11) and (12) into (10), we obtain the
conditional mean AoI as given in the following lemma.

Lemma 3. The conditional mean AoI measured by the typical
BS of the updates from the IoT device at y ∈ Vo is

∆(y,Φ) = ζ−1
Vo
pb(y,Φ)−1. (13)

Moments of conditional mean AoI: It is well-known that
the correlation between pb(y,Φ) and KVo

for given Φ is
difficult to capture in the spatio-temporal analysis of cellular
networks. Hence, similar to the existing stochastic geometry-
based analyses (refer to [28] for an example), we rely on the
assumption of independence of these two quantities. Thus, it
is apparent from Lemma 3 that the n-th moment of ∆(y,Φ)
is equal to the product of (−n)-th moments pb(y,Φ) and
ζVo

which can be directly obtained from Lemma 2 and the
pmf of KVo

given in (3), respectively. However, note that
∆n = E[∆(y,Φ)] = ∞ because pb(y,Φ) → 0 as ‖y‖ → ∞.
To tackle this, we evaluate the moments of ∆(y,Φ) under the
condition of Rb < R in the following theorem.

Theorem 1. The n-th moment of the conditional mean AoI
measured at the typical BS of the status updates generated
from the IoT devices within distance R is ∆n(R) =

ZEKVo
[Kn

Vo
]

∫ R
0

exp

(
− πc2λbr

2 − πλdG(r,−n)

)
rdr, (14)

where Z = 2πc2λb
1−exp(−πλbc2R2)

and G(r,−n) is given in Lemma 2.

Proof. Using the assumption of independence of ζVo
and

pb(y,Φ) and Lemma 3, the n-th moment of the conditional
mean AoI can be obtained as

∆n(R) = Ey,Φ[∆(y,Φ)n|Rb ≤ R]

= EKVo
[Kn

Vo
]Ey,Φ[pb(y,Φ)−n|Rb ≤ R].

Thus, we arrive at (14) by plugging the (−n)-th moment of
pb(y,Φ) from Lemma (2) with the condition Rb ≤ R.

V. NUMERICAL ANALYSIS AND DISCUSSION

For the numerical analysis, we consider the system param-
eters as λb = 10−4 BSs/m2, λd = 20λb devices/m2, Pd = 30
dBm, Pb = 100Pd, α = 4, qd = 0.1, and Rd = 10 m, unless
mentioned otherwise. First, we verify the success probabilities
derived in Section III through simulation results in Fig. 3. The
curves correspond to the analytical results whereas the markers
correspond to the simulation results. Fig. 3 (left) presents the
success probability observed by the typical D2D link and Fig.
3 (right) presents the mean and variance of conditional success
probability observed by the typical BS both match closely with
the simulation results.

Fig. 4 (left) shows the mean AoI at the typical BS and
the throughput of the D2D network. Note that the mean AoI

is evaluated for the maximum IoT device-BS link distance
R = 120 m where P[Rb ≤ R] ≈ 0.99. The figure shows
that both the throughput of D2D network and the mean AoI
at the typical BS increase with the increase of density ratio
Rλ = λd

λb
which is expected. It is also apparent form the figure

that ∆1 → E[KVo
] ≈ Rλ for smaller βb (i.e. when the success

probability is almost one) and ∆1 → ∞ for larger values
of βb (i.e. when the success probability is almost zero). Let
T ∗N = λdT ∗L and T ∗L = maxβd

TL be the optimal throughputs
of the D2D network and typical D2D link, respectively, with
respect to βd. Fig. 4 (middle) shows the behaviour of T ∗N and
T ∗L with respect to the density ratio Rλ. T ∗N initially increases
with Rλ (due to the increase in transmission of D2D links)
and then start to decrease with further increase of Rλ (due to
severe interference from D2D links).

Fig. 4 (right) depicts the mean AoI observed by the typical
BS from the IoT devices within distance R. The mean AoI
increases with R because it includes more IoT devices with
lower success probabilities. In addition, the mean AoI also
increases with both βb and Rλ since these two parameters
negatively affect the success probability of the status update.
This conditional mean AoI is important from the perspective of
devising a strategy for the collection of status updates such that
the mean AoI remains below some threshold. For instance, the
figure indicates that updating the status from the IoT devices
within distance 66 meters from the BSs (which are around
83% of total IoT devices) can bound the mean AoI below 100
slots when βb = 3 dB and Rλ = 20. These numerical results
provide useful insights for maximization of the D2D network
throughput such that the mean AoI is below a limit.

VI. CONCLUSION

This paper considered a cellular-based IoT network where
the IoT devices can communicate with each other over direct
D2D links and also send status updates to BSs. We characterize
the performance of these D2D and status update links in terms
of throughput and average AoI, respectively. Using tools from
stochastic geometry, we derived the success probability for
the D2D link and the moments of the conditional success
probability of the status updates link. Then, using these results,
we obtained the achievable D2D network throughput and the
moments of the conditional mean AoI. Our numerical results
demonstrated that limiting the IoT device-BS link distance is
necessary to keep the mean AoI below a threshold. They also
revealed the impact of the ratio of densities of IoT devices and
BSs on the network throughput and average AoI.
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