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Abstract—This paper studies the interplay between device-to-
device (D2D) communications and real-time monitoring systems
in a cellular-based Internet of Things (IoT) network. In partic-
ular, besides the possibility that the IoT devices communicate
directly with each other in a D2D fashion, we consider that
they frequently send time-sensitive information/status updates
(about some underlying physical processes observed by them)
to their nearest cellular base stations (BSs). Specifically, we
model the locations of the IoT devices as a bipolar Poisson
Point Process (PPP) and that of the BSs as another independent
PPP. For this setup, we characterize the performance of D2D
communications using the average network throughput metric
whereas the performance of the real-time applications is quanti-
fied by the Age of Information (Aol) metric. The IoT devices are
considered to employ a distance-proportional fractional power
control scheme while sending status updates to their serving
BSs. Hence, depending upon the maximum transmission power
available, the IoT devices located within a certain distance from
the BSs can only send status updates. This association strategy,
in turn, forms the Johnson-Mehl (JM) tessellation, such that the
IoT devices located in the JM cells are allowed to send status
updates. The average network throughput is obtained by deriving
the mean success probability for the D2D links. On the other
hand, the temporal mean Aol of a given status update link can
be treated as a random variable over space since its success
delivery rate is a function of the interference field seen from
its receiver. Thus, in order to capture the spatial disparity in
the Aol performance, we characterize the spatial moments of
the temporal mean Aol. In particular, we obtain these spatial
moments by deriving the moments of both the conditional success
probability and the conditional scheduling probability for status
update links. Our results provide useful design guidelines on
the efficient deployment of future massive IoT networks that
will jointly support D2D communications and several cellular
network-enabled real-time applications.

Index Terms—Aol, cellular networks, D2D communication,
IoT networks, and stochastic geometry.

I. INTRODUCTION

With the deployment of a massive number of devices,
IoT networks are envisioned to enable a plethora of real-
time applications involving features like local decision making
and/or remote monitoring and control using some sensory
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mechanisms. For example, IoT networks can play a vital
role in the efficient detection and management of natural
disasters by deploying multiple sensors over a large area
(potentially observing multiple physical processes). In such
a scenario, some designated aggregator sensors (or cluster
heads) may process the locally collected information from the
nearby sensors and forward timely updates to some central unit
through cellular BSs for further processing and the subsequent
dissemination of the evacuation plans when needed. For such
applications, the IoT devices may need to handle different data
traffic streams for different destinations, where each stream
has different performance objectives, such as rate, latency, or
information freshness.

To account for the heterogeneity of wireless data traffic and
multiple functionalities of IoT devices, the interplay between
the performance objectives of different data streams becomes
an interesting topic. For example, the transmitter of an IoT
device can be shared among two different traffic flows, one
aiming at maximizing the system throughput by allowing
direct D2D communication, and the other one related to
monitoring some events in the environment. The D2D com-
munications between nearby IoT devices can be useful for the
efficient utilization of their available limited energy sources.
For instance, the spatial correlation in the data measurements
collected by nearby devices can be exploited for performing
their communication tasks in a cooperative manner, thereby
reducing the total energy required to execute these tasks. On
the other hand, the IoT devices may frequently generate status
updates regarding some stochastic processes being observed
and send them to the BSs. The objective of updating the
information status is to keep the information as fresh as
possible, which can be characterized by the Age of information
(Aol) [2], [3]. Motivated by the interplay between different
IoT applications, we develop a novel analytical framework
that allows for a comprehensive analysis of the large-scale
IoT networks while integrating both the throughput-oriented
D2D traffic and the age-oriented traffic from IoT devices to
BSs into a unified network design.

A. Related Work

We utilize the concept of Aol to quantify the freshness of
information at the BSs regarding random processes monitored
by IoT devices [2]. The authors of [3] first introduced Aol for a
simple queuing-theoretic model and derived a closed-form ex-
pression for the temporal mean (average over infinite period of
time) of Aol. Using this result, it was demonstrated in [3] that
the optimal rate at which the source should generate its update



packets in order to minimize the average Aol is different from
the optimal rates that either maximize throughput or minimize
delay. A series of works then focused on extending the results
of [3] by characterizing the temporal mean of Aol or other age-
related metrics for different variations of queue disciplines [4].
These early queuing-theoretic works have inspired the use of
Aol or similar age-related metrics to quantify the freshness of
information in a variety of communication networks that deal
with time sensitive information including, D2D communica-
tions [5]-[7] and IoT networks [8]-[21]. The interplay/trade-
off between throughput and Aol was also investigated in [22]-
[25] for wireless networks with heterogeneous traffic. The
prime objective of the works in [5]-[25] was to obtain optimal
transmission policies that minimize the temporal mean of Aol
or some other age-related metrics for fixed network topologies,
referred to as Aol-optimal polices, by applying different tools
from optimization theory.

While the aforementioned works provide a thorough under-
standing of the temporal statistics of Aol, they are fundamen-
tally limited in their ability to provide insights about the spatial
disparity in the Aol performance that is inherently present
in wireless networks. This is primarily because each receiver
perceives a different signal and interference environments,
which cannot be studied using approaches considered in the
above works. Once the spatial dimension is explicitly modeled,
we can argue that the temporal mean of a performance metric
(seen over the complete ensemble of the fading gains), such as
transmission rate, delay, or Aol, observed by a receiving device
becomes a location-specific quantity. This, in turn, introduces
the spatial disparity in the quality of service (QoS) experienced
by various wireless links spread across the network. Therefore,
it is important to accurately model the spatial distribution of
wireless devices to analyze the impact of spatial variations on
the achievable QoS.

In recent years, stochastic geometry has emerged as a
powerful tool for modeling the spatial distribution of wireless
nodes. Most of the early works in this area have focused on
characterizing the coverage probability (equivalently, the frac-
tion of devices for which the received signal-to-interference-
and-noise ratio (SINR) is above some predefined threshold)
in a variety of wireless network settings, such as cellular
networks [26], heterogeneous networks [27] and ad-hoc net-
works [28]. While this spatio-temporally averaged coverage
probability provides useful insight into the network design,
it is not sufficient to study the spatial disparity in the link-
level performance of the network as discussed above. To over-
come this shortcoming, the distribution of location-specific
successful transmission probability, termed meta distribution,
was recently introduced in [29] to infer useful information like
“the percentage of devices in the network experiencing success
probability above some threshold for a given predefined SINR
value”. In particular, the moments of the meta distribution
were derived for the bipolar Poisson network in [29], and for
the Poisson cellular networks in [29] and [30]. However, these
stochastic geometry based models are usually agnostic to the
traffic variations since they mostly rely on the assumption
of saturated queues, i.e., each wireless node always has
information to transmit whenever it is scheduled to access the

channel. To relax this assumption and allow the traffic aware
performance analysis of cellular networks, a semi-analytical
framework was developed in [31] and [32] by combining
tools from queueing theory (for transmission scheduling)
and stochastic geometry (for modeling spatial dimension and
hence signal propagation). Further, [33] studied the spatial
birth-death process of randomly arriving wireless links while
capturing their stochastic interactions in both space (through
interference) and time (through random traffic). A quick glance
through the analyses of [31]-[33] is sufficient to realize
that the spatio-temporal performance analysis of of wireless
networks is challenging because of: i) the interference-induced
correlation between the evolution of queues associated with
the transmitting devices, and ii) the temporal variation of the
interference field seen by a receiving devices resulting from the
stochastic transmission scheduling policy of the transmitting
devices.

It is worth noting that the prime focus of the works in
[31]-[33] was on performing the spatio-temporal analysis of
conventional performance metrics such as transmission rate
and delay. On the other hand, the application of stochastic
geometry to perform the spatio-temporal analysis of Aol has
been only considered in a handful of recent works [34]-[37].
In particular, the authors of [34]-[36] presented the spatio-
temporal analysis of Aol in the context of D2D networks by
modeling the D2D links as a bipolar PPP. Specifically, they de-
rived bounds on the spatio-temporal mean Aol [34], the spatio-
temporal mean peak Aol [35], and the spatial distribution of
the temporal mean peak Aol [36], by incorporating system
modifications to deal with the issue of correlated queues.
Besides, the authors of [37] derived the spatio-temporal mean
peak Aol in the context of cellular-based IoT networks while
modeling the locations of the BSs and the IoT devices using
independent PPPs. Note that since the works in [34], [35],
[37] were focused on characterizing the spatio-temporal mean
of Aol or peak Aol, their analyses did not account for the
spatial Aol disparity. In contrast to these works that considered
Aol as the only performance quantifying metric, this paper
presents a joint spatio-temporal analysis of Aol and throughput
for cellular-based IoT networks with heterogeneous traffic as
discussed next.

B. Contributions

We present a novel stochastic geometry-based analysis of
the cellular-based IoT networks which includes: i) the D2D
communications between IoT devices, and ii) the transmission
of status updates from the IoT devices to the BSs regarding
some independent random processes they are sensing. Each
BS is assumed to schedule the transmission of a status update
uniformly at random from one of its associated devices, while
the other devices (i.e., the ones that are not scheduled for status
updates) are considered to transmit regular D2D messages
at a fixed rate using Aloha protocol. The locations of the
IoT devices are assumed to follow a bipolar PPP whereas
the locations of the BSs follow an independent PPP. To
improve the delivery rate of the status update transmissions, we
assume that each IoT device employs a power control method



which is also an important aspect of uplink communications.
Further, we consider a generalized system setup wherein the
transmission of status updates from the IoT devices within
a certain distance from their serving BSs is allowed, leading
to the JM tessellation based topology of cellular-based IoT
networks as will be formally defined in Section II (please
refer to [38] for more details). This is particularly useful to
capture the fact that the maximum transmission power of IoT
devices is limited in practice. This construction will allow us
to account for the correlation between the locations of IoT
devices with status updates and the locations of their serving
BSs. For this setup, we employ Aol and transmission rate as
the key metrics for characterizing the performance of the status
update links and D2D links, respectively. The contributions of
this paper are briefly summarized below.

1) The mean success probability for the D2D links and the
moments of the conditional success probability for the
status update links are derived.

2) Moments of the scheduling probability of a status update
link are derived while assuming that each BS schedules
its associated IoT devices uniformly at random.

3) Next, we derive the achievable transmission rate for the
typical D2D link using its mean success probability.
Further, the spatial moments of the temporal mean Aol
of the status update links are derived using the moments
of the conditional success probability and scheduling
probability.

4) Our simulation results verify the analytical findings. Next,
using numerical results, we highlight the impact of the
power control on the achievable D2D network throughput
and the spatio-temporal mean Aol for different system
design parameters.

To the best of our knowledge, this paper is the first to
develop a joint stochastic geometry-based analysis of Aol and
throughput for cellular-based IoT networks while capturing the
spatial disparity in the Aol performance of the status update
links.

II. SYSTEM MODEL

We consider a cellular-based IoT network wherein the IoT
devices can exchange messages in a D2D fashion and also
send status updates regarding some random processes to their
associated BSs. The D2D links of IoT devices are assumed to
be randomly distributed according to a homogeneous bipolar
PPP wherein the transmitting IoT devices form a PPP ®4
with intensity Aq. Their designated receiving IoT devices are
independently located at distance Rq in uniformly random
directions. The locations of the BSs are also assumed to follow
an independent homogeneous PPP &}, with intensity \y,.

The status updates from the IoT devices contain times-
tamped measurements of their associated random processes
observed in their vicinity. To support variety of real-time
applications, the IoT devices are generally deployed to monitor
different types of physical random processes. Therefore, we
assume that the random processes associated with different
IoT devices are independent of each other. The power control
is an important aspect of the uplink transmissions in cellular

networks for achieving improved transmission rates. There-
fore, we assume that the IoT devices send status updates
to their nearest BSs using a distance-proportional fractional
power control scheme. Specifically, the IoT device at distance
Ry, from its serving BS transmits the status update with power
P = py R{© where py, is the baseline transmit power, € € [0, 1]
is the power control fraction, and « is the path-loss exponent.
Note that € = 0 corresponds to the fixed power transmission
case (i.e., [oT devices transmit at the fixed power p,), and
e = 1 corresponds to the full power control case (i.e., BSs
receive the signals at the fixed power py,). The transmission
from the devices with high serving link distances naturally
require high transmission powers which may not be possible
when the transmission power is limited. For instance, the
transmissions of the devices with serving link distances greater
than 7 = (Pmax/Pb) a may fail when the maximum available
transmission power is Pp.x. Therefore, we consider that the
cellular-based status update links can be supported for the IoT
devices within distance J from their serving BSs using this
power control scheme. As a result, the IoT devices associated
with a given BS at x € ®, must lie within the intersection
Vi = Bx(J) N Vi, where By (J) is the ball of radius J
centred at x and Vy is the Poisson Voronoi (PV) cell which
is given by

Vi={y eR*: |x—yll < |z~ yl,z € o}.

The set of collection of cells { Vx }xea, forms a JM tessellation
[39]. This JM cell based construction provides an attractive
way of clustering the mobile users based on their performance
in a random geometric setting. For example, the authors of [38]
applied a similar construction to differentiate between the cell
center and cell edge users in the cellular networks.

A. Transmission Scheduling

The IoT devices are assumed to transmit information pack-
ets, containing either regular messages or status updates, in
a synchronized time-slotted manner over the same frequency.
Thus, the considered system provides co-channel access (or,
underlay transmission) for the D2D and cellular-enabled sta-
tus update links. We will also provide the analysis for the
orthogonal channel access (or, overlay transmission) where
the types of links (D2D and status updates) are assumed to
communicate over orthogonal frequency bands. Each BS is
assumed to schedule its associated IoT devices for the status
update transmission in a uniformly random fashion to avoid
the intra-cell interference. Such a random scheduling policy
allows for mathematical tractability and is also meaningful
from the perspective of fair resource allocation. To ensure
the timely delivery of status updates, the devices are assumed
to give higher priority to the status update transmissions over
the regular message transmissions. Thus, the IoT devices
transmit their status updates whenever they are scheduled
by their associated BSs. Further, we consider that the IoT
devices that are not scheduled for the status updates choose to
transmit regular packets on D2D links with probability g4 in
a given time slot to alleviate the inter-D2D-link interference.
Fig. 1 shows a representative realization of the system model



Table I
SUMMARY OF NOTATIONS

Point processes of BSs and IoT devices | ®,, and P4

Transmission rate of D2D links Tq

BS and IoT device densities Ab and Ag Cond. mean Aol Ay, ®)
Cellular and D2D link distances Ry, and Rq n-th moment of cond. mean Aol A,
Radius of JM cell J Success prob. of D2D link P4
PV and JM cells of BS x Vi and Vi Cond. success prob. of update link Pu(y, ®)
D2D link and uplink baseline tx. powers | pq and py Moment of Cond. success prob. My
Maximum transmission power of device Prax Mean JM cell area Ve
D2D link medium access probability qa Second moment of JM cell area Vs
Path-loss exponent o Number of users in JM cell V, Ny,
Power control fraction € Cond. update scheduling prob. Gy, @)
SIR thresholds By and Ba Transmission probability of D2D message qd
Channel bandwidth B
discussed above. construction facilitates the Aol analysis of the status updates
from the perspective of the typical BS which is significantly
different than the perspective of the typical IoT device which
is expected to reside in the bigger PV (or JM) cells (refer to
[40] for more details).

Let y ~ U(V,) denote the location of an IoT device sched-
uled for the status update transmission, and R}, = ||y|| denote
its distance from the typical BS placed at 0. We consider the
interference-limited scenario. The signal-to-interference ratio
(SIR) received at the typical BS on the status update link from
the IoT device at y is

a(e—1)
STR, = Mol P
) L,
Nt
4 | 3 where
o o <, S - ~
[ o Celllar BSs + IoT Semsors o IoT Devices Active Links Dormant Links | I, = Z hacl %[ 7 [pd]l(x € Va) + ppDYL(x € Wy) |,
xedPq

Figure 1. A typical realization of the cellular-based IoT network.

B. Signal-to-Interference Ratio

Let U, C &4 and ¥4 C &4 denote the sets of the locations
of active IoT devices transmitting status updates and regular
D2D messages, respectively. Note that ¥, NP4 = (). By this
construction, we have

\I’b = {U(Vx n (I)d) X € ‘I)b},

where U(A) represents a point selected uniformly at random
from set A. We assume \q > Ap to avoid Vy N @4 = 0
for Vx € @y, with a high probability. This assumption is quite
suitable for the IoT network as it requires cellular connectivity
to massive number of sensors deployed in the field. From
Slivnyak’s theorem, we know that conditioning on a point
of PPP at x is equivalent to adding the point x to the PPP.
Therefore, without loss of generality, we can place the typical
BS of the BS PPP ®,U{o} at the origin o and thus the PV cell
V, (or JM cell V,) represents the typical cell in the tessellation.
Further, using the stationarity of PPP, we can deduce that the
points within the set Vx N ®4 are uniformly distributed in
Vx. Thus, we will focus our Aol analysis for an updating
device that is distributed uniformly at random in V,. This

By, = Uy, \{y}, pa denotes the fixed power of regular message
transmissions on the D2D links, Dy denotes the distance of
the IoT device at x from its serving BS, and hy denotes the
fading coefficient associated with the link from the IoT device
at x. Assuming independent Rayleigh fading, we model {hy}
as independent unit mean exponential random variables.

Similar to the typical BS viewpoint discussed above, we
perform the D2D network throughput analysis from the per-
spective of the typical designated receiving IoT device placed
at o by including an additional transmitting IoT device at
z = (Rq4,0) (paired with the typical designated receiver) to
the PPP ®4. Thus, the SIR received at this typical designated
IoT receiver becomes

haR7®
SIR4 = M,
Iq
where
Io= Y hullx|"*[pal(x € ¥a) + DEpyl(x € Vy)].
xedq

C. Performance Metrics

For the system setting discussed above, our focus is on char-
acterizing the transmission rate for the typical D2D link and
the spatial disparity in the Aol performance metric measured



at the BSs. We assume that the D2D links employ a fixed rate
transmission strategy (also termed outage strategy [41]) and
have saturated queues (i.e., the devices always have a packet
to transmit). The transmission rate of the typical D2D link is

Tq = B(alogy(1 + B4)Pay, )]

where (4 and P4 are the fraction of transmission time and the
successful transmission probability of the typical D2D link,
respectively, and B is the channel bandwidth.

For the status update transmission, the IoT devices are
assumed to generate/sample status updates using generate-at-
will policy [2]. This policy implies that a device generates a
fresh status update for the transmission when it is scheduled.
Hence, this policy does not require the ACK/NACK protocol
or retransmissions since it always transmits a fresh status
update regardless of whether the previous transmission was
successful or not. We employ Aol to characterize the perfor-
mance of the timely delivery of the status updates from the
IoT devices to their BSs. The Aol of status updates received at
a BS is defined by the time elapsed from the generation of the
latest received status update [3]. Thus, the Aol measured by
the BS related to the status updates from its associated device
placed at y € V, during time slot k is

Ay(k) =k— Sy,k7 ()

where Sy ; is the timestamp of the generation of the latest
received update from the device y before time slot k. Since the
status updates are generated just before their transmissions, the
Aol drops to one whenever a successful transmission occurs.

The temporal mean Aol of status updates from the device
y €V, that is measured by the typical BS solely depends on
its scheduling probability ¢,(y,®) = Ny, ' and successful
transmission probability Py (y, ®) where & = &4 U §p, and
Ny, is the number of devices in V,. Unlike the transmission
rate metric given in (1), the Aol is a nonlinear function of these
probabilities (which will be evident in Section V). Therefore,
the knowledge of the joint distribution of these conditional
probabilities is essential to analysis the spatial distribution of
the temporal mean Aol. For the exact joint analysis of the
success probability and scheduling probability for the typical
device at y € V,, the key step is to derive the distribution
of the area of V, given y € V,. However, it is reasonable
to deduce that this exact analysis will be challenging since
even the distribution of the area of the typical cell V, (which
is a much simpler case) is empirically determined [42]. In
addition, analyzing scheduling probability jointly with the
conditional success probability will introduce additional com-
plexity. Therefore, we will derive the scheduling probability
of the device at y by relaxing the condition y € )V, and
perform the Aol analysis under the following widely accepted
assumption (e.g., please refer to [43]-[46]).

Assumption 1. The cell load Ny, and the conditional suc-
cessful transmission probability P4(y, ®) are independent of
each other.

In order to verify Assumption 1, we compare simulation
results of the distribution of conditional (temporal) mean

Aol obtained through the Monte-Carlo simulations with joint
and independent (i.e., Assumption 1) samplings of Ny, and
Py(y, ®). As will be derived in Section V, the conditional
mean Aol of user at y is given by A(y,®) = %. Fig. 2
provides a visual verification of the accuracy of Assumption 1
for the Aol analysis using simulation results. Now, we present
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Figure 2. Distribution of conditional mean Aol for Ay, = 10~%, Ay = 40\,
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the analysis of success probabilities of the update and D2D
links in the following section which will be used to derive the
Aol and D2D network throughput in Section V.

III. SUCCESS PROBABILITY ANALYSIS

In this section, we first derive the success probability for
the regular message transmissions over D2D links. Next, we
present the analysis of the distribution of conditional success
probability for the status update transmissions over device-BS
links.

A. Success Probability of D2D Transmission

The probability of successful transmission of a regular
message for the typical designated D2D receiver can be
determined as

Pq = P[SIRq > (4,
=P[h, > BaR§la/pal,
= Eld [exp (_ﬂdR(OléId/pd)} .

As 14 is the aggregate interference generated from the trans-
missions of regular messages and status updates, we require
the joint distributions of point processes W4 and ¥y, to derive
the success probability P4. However, the exact characterization
of this joint distribution is challenging because Wi, further
depends on the BS PPP ®;,. Since ¥}, has exactly one device
residing in each cell V, one can interpret Wy, as the dependent
thinning of the PPP ®4 for given ®},. Despite this dependent
thinning, the process of the remaining points in ®/, = &4\ ¥y,
can be closely approximated using a homogeneous PPP with
density A} = A\q — A\p because of the assumption Ag > Ay,
Thus, W4 can be directly interpreted as the unconditional
thinning of ®/; with probability p4, hence ¥4 can be modeled
as a PPP with density gq\).



Besides, the exact characterization of Wy, is difficult because
of the dependent thinning mentioned above. On the other hand,
one can observe that the density of Uy, can be approximated
with )\, as WUy, contains exactly one device in each Vy. In
fact, we have observed that the complementary cumulative
distribution function (CDF) of distance from a fixed point, say
0, to the nearest point in W}, closely follows exp(—mApr?)
which is the void probability of BS point process ®y,. Thus,
it is reasonable to approximate W}, with a homogeneous PPP
of density A\,. Based on the above observations and to aid the
analytical tractability, we consider that the point processes Wy,
and U, are independent of each other. The net interference
power received at the typical receiver can be segregated as
Iy = Iy, + Iy, where

= Y hul|x||"*pa and Iy, =
xeW¥y

> hllx[Im Dy

xeV¥y

Since ¥4 and ¥y, are considered to be independent, we can
evaluate the success probability as

Pa = L1, (BaRG /pa)Liy, (BaRG /pa), 3)

where L x (+) is the Laplace transform (LT) of random variable
X. The LT of Iy, is

Lr,,(s) =Eu, [] En,exp (—spahxlx||),
xeVy
I
= Ly T L o Null—a’
el 1+ spal|x]|

where the first equality follows due to the assumption of
independent fading coefficients. Further, using the probability
generating functional (PGFL) of the PPP W4, we can obtain

o[ 1
LI\I,d (S) = exp ( — 2’/Tq(1)\d/0 H(W)erdr>’
=exp | —mga\ (spa)® 4)
4" gine(s) )’

where § = 2. Now, we obtain the LT of Iy, as

Lry, () =Eu, p, [] Baxexp (—shxpnDEx[|7%),
xeWvy,
~Eu,0, [] 1
— Ly, Dy v 1+8pro¢eHX||—Ot

Recall that D, denotes the device-BS link distance, i.e., the
distance from the device (with status update) to nearest BS.
The link distance Dy is naturally smaller than J since the
devices associated with BS x are essentially located within
Vx. Therefore, the probability density function (pdf) of the
link distance Dy of a randomly selected device x becomes

o, (u) = 2T AU exp(—7r)\bu2), (5)

1
F(J)
for 0 <u < J where F(J)=1-—

=Ey, [[ F(7)

xeWy,

exp(—7mApJ?). Thus

/ 27 Apu exp(—mApu?)

du.
(1 + sppue|x||=«)

Ly, (5)

Next, using PGFL of PPP approximation of ¥y, we get Ly, (s)
2T Apu?
~ oxp / / T exp(—mA) g gy ) |
F(T)(1 + sppouce||x||—)
)\b/ / —~dudx |,
R? )

27 Apuv exp(—mApu?)
= 2w A dud
eXp( ! b/ / F(T)(A+ (spy) Tueeve) 0 )

27T)\buexp( TApu?)
)1+ (spp) ~tuoe|x|

A J
:exp< i Sjib )/ 21 Aputt2e exp(—w)\bu2)du>,
0
7r)\b spb S y(1 4 e, mAT?)
= ; (6)
) sinc(0) (mAp)€
where 7(-,-) is a lower incomplete gamma function. Finally,

by substltutmg the LTs of both Iy, (given in (4)) and Iy,
(given in (6)) at s = B4 RS /pa in (3), we obtain the success
probability of regular transmission as presented in the follow-
ing theorem.

Theorem 1. For a given €, the success probability of the
typical D2D link is Pq =

, BSR (Bapw/pa)° RZ v(1 + €, 7\, T?)
eXp( mqaAa lﬁc(g)_“ sinc(d) : (Ao ) F () >

(7
For no power control, i.e.,
following lemma.

e = 0, (7) is simplified in the

Corollary 1. For ¢ = 0, the success probability of the typical
D2D link is

’ /Bd d (ﬂdpb/pd)éR?j
Ad nc(d)_ﬂ-/\b sinc(d) ) ®

Proof. For ¢ = 0, P4 given in (8) follows by substituting
v(1,2) =1 — exp(—=x) in (7). O

Pq=exp ( Tqq

Corollary 2. Under orthogonal access, the success probability
of the typical D2D link is

Pa=e N g 9)
= ex — T .

d p qdAq sinc ( 5)

Proof. The proof follows by setting the density A;, of inter-
fering update links to zero in (7). O

B. Success Probability of the Status Update Transmission

The success probability of the status update transmission
is defined as the probability that SIRj}, is above a threshold
Bp. Similar to the analysis presented in Section III-A, this
success probability can be derived by averaging over the space.
However, this spatially averaged success probability is not very
useful to characterize the performance of non-linear metrics,
such as Aol, as will be evident in Section V. For this reason,
the distribution of the conditional success probability, termed
meta distribution [29], is required. Since the meta distribution
is difficult to determine directly [29], our first goal is to derive
its moments. Given ® = &4 U Py, the conditional success



probability of status update from the IoT device at y € V), is

Pu(y,®) = PISIR,, > Bu[@] = exp (o By "1y /)

While y is already included in ®, we explicitly condition
Py on y to indicate that the IoT device at y is scheduled
for the status update transmission. Given ®, the conditional
success probability depends on the evolution of the point
process ®4 whose devices are randomly scheduled for the
status update and D2D message transmissions. However, given
the complexity of characterizing point process of interfering
devices (transmitting status updates) even for a fixed time
instance, as presented in [38], [47], it is reasonable to presume
that the exact characterization of evolution of ®4 is even more
challenging. Therefore, we perform the conditional success
probability analysis while considering the interference powers
received from the IoT devices transmitting regular messages
and status updates are independent across the transmission
slots. Therefore, it is safe to assume that devices scheduled for
status update transmissions and regular message transmissions
are drawn from independent point processes.

Since each BS is assumed to schedule its associated users
uniformly at random, the probability that an IoT device at
z € Vy transmits the status update in a given slot is

Co(z]®) = Ny !, for x € @y, (10)

where Ny, is the number of IoT devices in set &g N V.
The IoT devices that are not scheduled for status update
transmission are assumed to transmit regular messages with
probability q4. Hence, we consider that the IoT device z € ®4
transmits regular messages with probability

Ca=qP |z ¢ U Vx
xE‘I)b
+QdE (I—Cb(Z|(I)))|Z € U Vi | P lz S U Vx] )
xEPy x€EPy

=qaF(J) +qa(1 - G)(1 = F(T)), (11)

where ¢, = E[(,(2|®))|z € Uyecq, |- The scheduling
probability (, can be obtained using the probability mass
function (pmf) of Ny, which will be derived in Lemma 2.

As discussed above, we approximate the locations of de-
vices transmitting regular messages and status updates using
independent point processes and denote them by Q4 and Qy,
respectively. Thus, the conditional success probability can be
written as

Pb(Ya (I)) = H

xEQb

< 11

Ca
L BBy e
XEQq by, Db

( a(1€2) +1- Cb)
L+ BpRy 7 Dgeflx||—

I

where Q, = Q, \ {2 NV, }. The b-th moment of conditional
success probability is given by

M, = Ey 0[Py (y, ®)"]

Cb ’
H 1- —1 pa(e—1) y—ae
> 1+ 8, R, Dy x|

A

E]]

b
(1 _ Cd > }
— e—1 2 :
xXEQq 1<i>6b 1Rg( )”X”a%

B

12)

Based on the arguments presented in Section III-A, it is
reasonable to assume that the devices with regular messages
follow a homogeneous PPP with density Aq and model their
medium access probability using (4 given in (11). Therefore,
using [29, Theorem 1], we obtain

B =exp ( - W)\dRE(l_E)C(b)>, (13)

where

(Bopa/pb)’ ~= (b (0= 1Y
Co) = sinc(4) ; <k:> (k: - 1) G- 14
On the other hand, to determine the expectation involved in
the term A of (12), we require the distribution of Q, as
seen from the typical BS at o. For this, we first charaterize
the point process Wy, which contains the devices from €
transmitting status updates in a given time slot. The pair
correlation function (pcf) of this point process of interferers
\ilb with respect to the BS at o for given J is derived in [38]
as

g(r; J)=1—exp (727r]7;1r2) , forr >0, (15)

where V! = E[|V,|7!] and |A| represents the area of set A.
The pdf of |V,| will be derived in Section IV which can be
used here to determine )_}o_ L. Further, the authors of [38] used
this pcf to approximate Uy using a non-homogeneous PPP
with density Ang(r). However, in our case, the active set of
interferers are actually scheduled from Q by their associated
BSs such that there is exactly one interfering device in each
cell Vi at a given time slot. Therefore, we can approximate
Q, using a non-homogeneous PPP with density A\qD(r;7)
where

D(r; J) = F(J)g(r; ), (16)

such that the term F'(J) represents the probability that a
device is located in one of the cells Vy for x € ®},. Thus, we
can interpret that ¥y, is a result of thinning €2y, with scheduling
probability (. Assuming Dys to be independent of each other,
we can write A =

]E&dH/[l—( Cb

— ale—1) e «
L+ By Ry e[

b

fp, (u)du

The distribution of distance from the nucleus to a uni-
formly random point in the typical PV cell follows 1 —
exp(—mApci7?), where ¢; = 2 [48, Theorem 3]. Thus, the
pdf of link distance Dy of device associated with a randomly
selected BS can be approximated using (5) with corrected
density c; \,. However, it may be noted that the link distance
Dy of interfering user x must be smaller than ||x|| as it is



closer to its serving BS than the typical BS at o. Thus, using
the pdf of Dy and the PGFL of the non-homogeneous PPP
approximation of )},, we obtain A =

0o min(v,J)
exp | —4m%ciAg Ay /D(v;j)/ f(u,v; Ry, b)duvdw
0 0

(17)
where f(u,v; Rp,b) =

C})ﬁbRS(kE)uae

-1z wexp(—mey Adpu?)
BbRs(l_E)uaﬁ + v

F(y/c min(v, 7))
(18)
Finally, by substituting A and B in (12) and then averaging

using the pdf of serving link distance Ry, given in (5), we
obtain the b-th moment of Py, (y, @) in the following theorem.

Theorem 2. For given ¢, the b-th moment of the conditional
success probability of status update at the typical BS is

21c1 A /J ( )
—_ rex — TCL AT — T
F( 71;7) o p 1AL d

(900) +r2-9c)) )dr,

My =

(19)
where

0o min(v,J)
G(r,b) = 477)\b01/ D(v;j)/ f(u,v;7, b)vdudo,
0 0

and C(b), D(v; J) and f(u,v;r,b) are given by (14), (16),
and (18), respectively.

The following lemma presents simplified expressions for
My, given in Theorem 2 for the special cases of no power
control and full power control.

Corollary 3. The b-th moment of the conditional success
probability of status update at the typical BS under full power

control (ie., e =1) is
o)),

My =exp (fmd (é(b) n
~ o] min(v,J)
G(b) :47T)\b01/ D(U;j)/ f(u,v; 1, b)duvdu,
0

0

(20)

where

and under no power control (i.e., € = 0) is

:271'(31)\[) /J exp < _ 7TC1>\b7’2
F(T) Jo

— A (G(r, b) + TZC(b)) >rdr, 1)

M,

where

oo a b
(j(r,b):2/0 D(v;j)(l [lﬁf:fiwx} >vdv.

Corollary 4. Under orthogonal access, the b-th moment of the
conditional success probability of status update at the typical

BS is

Mb :27TC1/\b

J
F(7) /0 T exp (—7rc1)\br2 — A (r, b)) dr, (22)

which under full power control and no power control becomes

M, =exp (_'/T)\dG(b)> (23)
and Mb =
J
2;((:37)‘;’ / exp (— meiApr? — TG (r, b))rdr, (24)
0

respectively, where G(r,b) is given in Theorem 2, and C;(b)
and G(r,b) are given in Corollary 3.

Proof. The proof follows by setting (4 = 0 in (19)-(21). O

IV. ANALYSIS OF CELL LOAD

As discussed in Section II-C, the temporal mean Aol seen
by a status update link depends jointly on its ability of
successful transmission and probability of getting scheduled.
Therefore, in this section, we derive the scheduling probability
of the typical IoT device and then use it along with Assump-
tion 1 to derive the moments of the conditional mean Aol in
Section V.

Recall that each BS is assumed to schedule the status update
transmission uniformly at random from one of its associated
devices in a given time slot. Thus, the scheduling probability
of a device associated with the typical BS placed at o depends
on the load of cell V, (i.e., number of devices Ny, located
in V,). As a result, the scheduling probability of a device
aty € &4 NV, for given ¢ is §,(y,P) = Ngol. By the
PPP definition, the distribution of number devices located in
a region is parameterized by its area. Thus, the knowledge
for the area distribution of ), is essential to determine the
scheduling probability of a device associated with the typical
BS placed at o. However, it is difficult to directly derive the
area distribution of a random set. Thus, we first determine
the moments of area of )}, which will then be used to
accurately characterize its distribution. While these moments
are derived in [38], we derive a simplified expression for the
second moment of area of V, in Lemma 1 using the approach
presented in [49].

Lemma 1. For a given [J, the mean of area of the typical
cell V, is

P = Aib (1—exp (—mApT?)) .

and the second moment of area of the typical cell V, is

2 — omAs //MLG“” {1—(1+AbJ2S’(uv))

exp (—A\pJ 25 (u,v)) } dvdu,

(25)

(26)

where

G(u,v) = sin(u) sin(v) sin(u + v),
S (u,v) =

S (u,v) max(sin(u), sin(v)) "2,



and S(u,v) = G(u,v) + (7 —v)sin(u) + (7 — u) sin(v).

Proof. Please refer to Appendix A for the proof. O

Let R, be the half of the distance from the typical BS
to its nearest BS. We have V, = B,(J) whenever the event
& = {R,, > J} occurs. Thus, the pdf of the area of V,
becomes

fo,(v) = 8(nT*)P[E] + fu, (v|€C)PIEC],

where §(-) is the Dirac-delta function and P[£¢] = 1 —
P[€]. From the void probability of PPP, we get P[E] =
exp(—4n A\, J?). Similar to [38], we approximate the distri-
bution fy,, (v|€C) using the truncated beta distribution as

UH171(27T‘72 _ ,U)Iigfl
(271"72)51"'”’2_1B(;‘61, HQ) ’

for 0 < v < 772, where B(ki, ko) = f01/2 v (1 —

v)*2~1dy. Note that the support of the truncated distribution
is [0, 7J?] whereas the support of untruncated distribution
is considered to be [0,277?]. We determine the parameters
k1 and ko through moment matching method. For this, we
obtained the first and second moments of the area of ),
conditioned on £¢ using Lemma 1 as

V3 = E[V,]|E7],
= (E[Vo] — E[V,|EIPE]) P[E] Y,
_ V! — 172 exp(—4m A\ T?)

fv,(w|E9) = 27)

1 —exp(—4mA\pJ2) (28)
and
1Z B AREE
= (}EHVOlQ] — E[|Vo[*|EIPE]) PIEC],
B V2 — m2Jtexp(—4n A\, T ?)

1 — exp(—4r A\ J?)

Therefore, the parameters of approximate truncated beta

distribution can be determined by solving the following si-
multaneous equations

Pt gpg2Blart Lko) (30)
B(Iil,liQ) ‘
5 B 2 3

and V2 = (%JZ‘)?M G1)

B(k1, k2)

Finally, by substituting the truncated beta approximation of |

fv,(wl€) in fy,(v), we obtain
fr,(v) =8(xT?*)(1 - F(27))

,Unl—l (27Tj2 _ ,U)Hg—l
(QWJQ)H1+K2_1B(/€1, /QQ)

for 0 < v < wJ2. The accuracy of the above approximation
of area distribution of V), has been discussed extensively in
[38]. Using (32), we now present the pmf of number of IoT
devices located in V, in the following lemma, which will be
used to analyze Aol in Section V-B.

+

FQ2J),

Lemma 2. The pmf of the number of devices residing in

29)

7+ oY T DHHPIC Py RN ? GO eVIeEat Y- Sppwle
and blue downward arrows show the transmission attempts and successful
+ transmissions, respectively.

(32) -

1 [
IP)[NV :n]_

° " nl

Jor n >0, where fy_ (v) is given by (32).

(Aqv)™ exp(—Aqv) fy, (v)dv, (33)

V. D2D THROUGHPUT AND AVERAGE AOI

In this section, we first determine the D2D network through-
put using the success probability of regular message trans-
missions derived in Theorem 1. Next, we will characterize
the spatial distribution of the temporal mean Aol using the
moments of conditional success probability of update trans-
missions derived in Theorem 2 and the cell load distribution
derived in Lemma 2.

A. Throughput of D2D Network

The network throughput is measured by the average number
of successfully delivered information bits per unit area per sec-
ond per Hertz (bit/s/Hz/m?). Note that the effective probability
of an IoT device transmitting the regular messages is (4 (refer
to (11)). Therefore, for a given density Ay of the IoT devices,
the throughputs of the typical D2D link and the D2D network

can be determined as
Ty = CdB 10g2(1 + ﬂd)Pd and Ty = \g Ty, (34)

respectively, where (4 is given in (11) and P4 is given in
Theorem 1.

B. Spatial Distribution of Temporal Mean Aol

In this section, our goal is to derive the spatial distribution of

the temnoral mean Aanl aheerved hv the TaT device-RS linkc

i
¢ Xk

of- Aol A

system model discussed in Section II-C. Let Yy ; and Xy j

* denote the sum of Aol Ay (k) (i.e., area of shaded region)

and the time difference between the successful reception of
the k-th and the (k + 1)-th status updates from device at y,
respectively. Thus, we can write

tet1 Ly
Yyr = Z Ay(k) and X, = ZTy,i, (35)
k=t =1



where T}, ; denotes the time elapsed between two consecutive
scheduling instances of device y and L, denotes the number
of attempted transmissions between two successfully received
status updates from device y. The temporal mean Aol (for a
device-BS link conditioned on ®) is charaterized here similarly
to [50] wherein the authors determine temporal mean Aol for
the case of a single point-to-point link. For a period of NV
time slots, where K, successful updates occur, the temporal
mean Aol for device at y conditioned on @ is

Ay, ®; N) ZA
k: 1
K,
jg: ok
k=1
K
K, 1
=—— 36
N K, 2 (36)
1 3 Ky —
Using hm = ﬁ and lylg1OO 7y Z Y, =E[Yy], w
can obtam the mean Aol for the device y for given ® as
, E[Yy]
A(y,®) = lim A(y,®;N) = Y 37
(y,®) = lim Ay, ®;N) EX,] 37)

Further, we can establish the relation between Yy, j, and Xy

as
Z m== vk +1). (38)
Thus, we can obtain
CIEXy x(Xyre + 1)) E[Xf,] 1
Ay, ®) = 5 EX, ] = 3E[X,)] +3 (39)

From (39), it is evident that the knowledge of the first two
moments of Xy ;. is sufficient to evaluate the temporal mean
of Aol. However, the distribution of Xy, j is not identical for
the IoT devices spread across the network for the following
reasons. The distribution of Xy ; of an IoT device-BS link
jointly depends on its scheduling and successful transmission
probabilities. In particular, for a given ® and the IoT device at
y € V,, the scheduling probability {,(y,®) and conditional
success probability Py, (y, ®) charaterize the distributions of
Ty and Ly, respectively, which essentially determine the
temporal mean Aol through Xy ;. This implies that the
temporal mean Aol observed at an IoT device-BS link is
conditioned on the locations of the IoT devices and the BSs.
Hence, we refer to this mean Aol as the conditional temporal
mean Aol. Our goal is to derive the spatial distribution of the
temporal mean Aol.

1) Conditional temporal mean Aol

For the IoT device at y € V, given ®, the probability of
successful transmission of status update is Py, (y, ®) and the
probability that it is scheduled for the status update is ¢, (y, ©).
Therefore, the pmfs of Ty ; and L, become

PTy; = t|®] = Go(y, @)1 - Gu(y, @), (40)
and IF)[LY = m|y7 (D} = Pb(Yv CD)[]' - Pb(y7 (I))]m_lv (41)

for 1 < m,t, respectively. Since T} ;s are independent and
identically distributed (because of the random scheduling), we
can apply the Wald’s identity and obtain the mean of Xy ;. as

1
Cb(Y7 (I))Pb(y7 CI)) ‘

Now, we determine the second moment of Xy .. From its
definition, we can write

Ly 2,

2
Xow= 2T | =2,
i1 i=1

Note that Ty ; and Ty , for ¢ # j, are independent because
each BS schedules its associated IoT devices uniformly at
random in a given slot. Thus, for Ly, = m, we get

E[Xy] = E[Ty]]E[Ly} = 42)

Ly Ly
T+ > Tyily;.

i=1 j=1,j#i

E[X}|Ly = m] = mE[T;] + m(m — 1)E[T}]?,
= mVar[T] + m*E[T)?,
:ml—gb(y,(I)) 2 1
Gy, ®)? Gy, ®)?
Now, by averaging over the pmf of Ly, given in (41), we obtain
oy _ 1 -Gy, ®) 1 >
E[Xj] = WIE[L),} + WE[Ly]
1 -G(y,®) 1 1 2-Pu(y,®)
Gy, 2)?2 Pu(y,®)  G(y,®)? Pu(y,®)?

(43)

Finally, by substituting (42) and (43) into (39), we obtain
the conditional temporal mean Aol as given in the following
lemma.

Lemma 3. For a given ®, the conditional temporal mean Aol
measured by the typical BS of the status updates from the loT
device located at'y €V, is

Aly,®) = !

Co(y; @)Py(y, @)

2) Spatial Moments of Ay, ®)

In this subsection, we analyze the spatial distribution of
temporal mean Aol under Assumption 1. Thus, it is apparent
from Lemma 3 that the n-th moment of A(y, ®) is equal to
the product of n-th moments of Py, (y,®)~! and ¢,(y,®) !
which can be directly obtained from Theorem 2 and Lemma
2, respectively.

(44)

Theorem 3. The n-th moment of the temporal mean Aol of
the status updates generated from the loT devices is

A, =B[N [Ny, > 1]M_,, (45)

where M_,, is given in Theorem 2 and pmf of Ny, is given
in Lemma 2.

Proof. Using the assumption of independence of (;,(y, ®) and
Py(y,®) and Lemma 3, the n-th moment of the conditional
temporal mean Aol can be obtained as

An = Ey o[Aly, ®)"] Ty 0 [Py(y. ®) 7).

Thus, we arrive at (45) by plugging the (—n)-th moment of
Py (y, ®) from Theorem 2 and using the pmf of Ny, given in

= Ey,@ [Cb(}’a q))



Lemma 2. O

Corollary 5. The spatiotemporal mean of the Aol is

A
A = )\—d (1 — exp(—ﬂclx\bJQ)) M_y
b

where M_1 is given in Theorem 2.

(46)

Simplified expressions for the moments of the temporal
mean Aol can be obtained for the special cases of no power
control and full power control using the moments of condi-
tional success probability M; presented in Corollary 3. In
addition, the moments of the temporal mean Aol for the
orthogonal access can also be obtained using the moments
of conditional success probability M, presented in Corollary
4. They not repeated here due to lack of space.

Remark 1. Note that Theorem 3 presents the spatial moments
of the mean Aol for a general case as it allows to control the
status update support for the devices experiencing link quality
(which is expected to decrease with the increase of serving link
distance) above a certain percentile by appropriately setting
J (o1, Ppax and €). The status update support for all devices
is a special case to which our analysis can be easily extended
by simply setting J = oo (for which, we need Ppax = 00 or
€ = 0). However, it may be noted that M _,, (thus the spatial
moments \,,) becomes unbounded as J — oo which can be
verified using (19). Therefore, it is important to appropriately
select J such that it covers the devices of interest. From this
perspective, the JM cell based analysis of Aol is meaningful.

VI. NUMERICAL ANALYSIS AND DISCUSSION

In this section, we first verify the success probabilities of
transmissions of regular messages and status updates derived
in Section III using simulation results. Next, we will discuss
the impact of various system design parameters on our key
performance metrics (i.e., D2D network throughput and Aol
associated with status updates) presented in Section V using
numerical results. For the numerical analysis, the system
parameters are considered as A, = 107% BSs/m?, \g = 20\,
devices/rm?, B = 200 KHz, J = 40 m, p, = pq = 100
dBm, o = 4, gg = 0.3, Rq = 2 m, and 8, = 3 dB, unless
mentioned otherwise. Note that the JM cell radius J = 40 m
provides coverage to around 40% of the IoT devices for the
status update transmissions. In our simulations, we perform
the spatial averaging of temporal mean Aol and conditional
success probability over 10000 network realizations and for
each realization the temporal averaging (on small scale fading)
is performed over 1000 transmission slots.

Fig. 4 (left) verifies the accuracy of the success probability
of the regular message transmissions, and Fig. 4 (middle
and right) verifies the accuracy of the first two moments
of the conditional success probability of the status update
transmissions. The curves correspond to the analytical results
whereas the markers correspond to the simulation results. Fig.
4 (middle and right) shows that the power control provides
improvement in the success probability of the status update
transmissions. However, it can be observed from the figure
that increasing power control fraction € beyond 0.3 will not

contribute much in the improvement of success probability of
status update because it becomes limited by the interference
from the regular message transmissions over D2D links. In
addition, it is also necessary to select a small value of € to
ensure better success probability of D2D links. A smaller e
provides better success probability in the high SIR regime.
This is because the devices with higher SIR lie closer to their
serving BSs, thus for these devices, the desired signal power
received at their BSs does not improve faster with increasing
e compared to the increase of the inter-cell interference.

Let Dy = i—i represents the ratio of densities of devices
and BSs. Fig. 5 (left) shows the impact of Dy and € on
the achievable throughput of D2D network for Ry = 2 m
and 5 m. The achievable throughputs of D2D link and D2D
network are determined as T} = maxg, Tq and T = AqT},
respectively. The initial rise in the achievable D2D link
throughput is because of better chances of medium access
for regular message transmission (since the update scheduling
probability drops with increasing D). However, the D2D link
throughput drops eventually with increasing D, because of
the increased interference. Nevertheless, the achievable D2D
network throughput monotonically increases with D). The fig-
ure also shows that the achievable throughput is higher when
D2D communication range is shorter. The BS density Ay,
has two interrelated impacts on the D2D network throughput
performance: 1) increasing Ay, reduces the transmission powers
of the status updating devices (because of the smaller serving
link distances) which positively affects the D2D throughput,
and 2) increasing A, leads to higher density of status updating
devices which negatively affects the D2D throughput. Fig. 5
(right) shows the D2D throughput as a function of A, for a
fixed \y = 1072 and sufficiently large J (such that V, = V).
The larger value of J is selected to see the maximum benefit
of increasing A, through the reduced transmission power
as stated above. However, the figure reveals that the D2D
throughput degrades as A increases which in turn implies
that the negative impact is dominant.

Fig. 6 (left) shows the impact of SIR thresholds on the
spatio-temporal mean Aol of status update transmissions and
the throughput of D2D network. The mean Aol increases
with the SIR threshold fy,, which is expected as the success
probability of status updates drops with the increase of fy,.
The figure shows that the mean Aol A; is almost equal to
E[Ny,] = DA(1 — exp(—mApJ?)) for a small value of S3y,.
That is the mean Aol is equal to the mean number of slots
required for scheduling the status updates from the typical
device when g is very small. This happens because the success
probability of status updates is almost equal to one for small
values of f;, and the mean number of slots required for a
device to attempt the transmission is equal to the number of
devices in the associated with the serving BS. On the other
hand, A; rises rapidly as (3}, increases ultimately approaching
to a value where the success probability of the status updates is
close to zero (the corresponding points can be confirmed from
Fig. 4), which is expected. However, a finite mean Aol can
be supported for large values of [;, by increasing the power
control fraction e. The figure shows the mean Aol curves for
the extreme cases of power control (i.e., e = 0 and € = 1).
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Figure 6. Left: mean Aol and D2D network throughput versus the SIR threshold. Interplay of Aol and D2D transmission rate with respect to JM cell radius

J (middle) and power ratio z—: (right).

The interplay between mean Aol and achievable D2D
network throughput with respect to the JM cell radius [ and
the ratio of powers of update and regular transmissions are
presented in Fig. 6 (middle) and Fig. 6 (right), respectively.
Fig. 6 (middle) shows that both the mean Aol and D2D
throughput degrade with increasing cell radius J. With the
increase in 7, both the scheduling probability and the success
probability drop, which in turn causes poor Aol performance.
In particular, with increasing 7, the scheduling probability
decreases because of the need to support status updates for a
large number of devices while the success probability drops

because of the increase in both the serving link distance and
interference. On the other hand, the degradation in the D2D
throughput is due to the fact that status updates will need to
be transmitted at a higher power because of the increased link
distances (with increasing 7), which increases the aggregate
interference power. Further, the figure shows that higher ¢
results in a better Aol performance at the cost of degraded
D2D throughput. Therefore, for a given Ay, we can maximize
the D2D network throughput by selecting minimum e that
keeps the mean Aol below a predefined performance threshold.
Fig. 6 (right) shows that the mean Aol improves and the D2D
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Figure 7. Left: mean Aol versus status update coverage for 5, = 0 dB. Middle and right: Co-channel and orthogonal access comparisons for the mean Aol

and the D2D network throughput.

network throughput degrades with the increase in the ratio %Z’
which is quite expected. However, in this regime, the impact
of the increasing power ratio becomes insignificant on the
mean Aol since the interference from the D2D transmission
becomes insignificant (thus the success probability of status
update becomes invariant to py,). It may be noted that both
the D2D throughput and the mean Aol depend on py, and pq
through their ratio.

For a given J, the fraction of devices with status up-
date support (i.e., status update coverage) is equal to 1 —
exp(—7mApJ?). Fig. 7 (left) shows the interplay between the
mean Aol and status update coverage. It particular, it shows
that one can tune € in the power control model to achieve a
higher status update coverage for a given mean Aol target.
For instance, the figure shows that the full power control
provides coverage of approximately 80%, whereas ¢ = 0.3
supports the coverage of approximately 55% when the mean
Aol threshold is 30 and Dy = 20. It is worth noting that
allowing full status update coverage (i.e., J = oco) will result
in unbounded mean Aol as the Aol grows rapidly when the
conditional success probability approaches to zero. Therefore,
the knowledge of feasible status update coverage is important
from the perspective of network design to ensure bounded
mean Aol.

Fig. 7 (middle and right) shows that the mean Aol degrades
and the achievable D2D network throughput improves with the
increase in D), which is expected. From the middle figure,
it can be observed that the power control fraction ¢ does
not affect the mean Aol much under the orthogonal access.
Moreover, the co-channel mode with full power control results
in almost equal mean Aol as the orthogonal access case. Thus,
the orthogonal access is preferable when the transmission
power is limited, while the co-channel access is preferable
when the spectrum is limited. The right figure shows that the
orthogonal access provides higher D2D throughput compared
to the co-channel access and the gain increases with e.

VII. CONCLUSION

This paper presented a stochastic geometry-based analysis
of throughput and Aol performance metrics in a cellular-
based IoT network while accounting for the spatial disparity
in the Aol performance experienced by various wireless links
spread across the network. In particular, the throughput was

used to characterize the QoS of D2D communications between
IoT devices, whereas the Aol was employed to quantify the
freshness of status updates (regarding some time-sensitive
applications) transmitted by the IoT devices to cellular BSs.
The locations of IoT devices and BSs were modeled as a
bipolar PPP and an independent PPP, respectively. Further,
we considered that each BS schedules the transmission of
status updates from the IoT devices located in its JM cell. In
addition, the IoT devices were assumed to employ a distance-
proportional fractional power control scheme for uplink trans-
missions to improve the success delivery rate of status updates.
For this setup, the mean success probability for the D2D links
was derived to characterize the average network throughput.
On the other hand, we captured the spatial disparity in the
Aol performance by characterizing spatial moments of the
temporal mean Aol. Specifically, we obtained the spatial
moments of the temporal mean Aol by deriving the moments
of both the conditional success probability and the conditional
scheduling probability for status update links. We validated the
analytical results using extensive simulations. Our numerical
results demonstrated the impact of power control, medium
access probability and density of IoT devices on the achievable
D2D network throughput and the spatio-temporal mean Aol.
In particular, the results showed that the power control can
facilitate the transmission of status updates from a large
number of IoT devices such that the mean Aol remains below
some predefined threshold.

The analysis of the interplay between Aol and throughput
for the case where the IoT devices can employ superposition
coding for the non-orthogonal transmission of the regular
packets (to other devices) and status updates (to the BSs) could
be considered as the direction of this work.

APPENDIX
PROOF FOR LEMMA 1

Using [51, Eq. (15)], the mean area of V), presented in (25)
can be directly derived as

Vi = / P(x € V,)dx,
Bo(T)

J
= 27r/ exp(—mApr?)rdr,
0
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Similarly, using [51, Eq. (21)], the second moment of area of
V, can be determined as

B /BO(J) /BO(J)
r r

P(x,y € V,)dxdy,

Figure 8. Tllustration of union of two circles centred at x = (r1,0) and

y = (r2,9).

riresin(y) + 381 + r3B2 where 31 and 3, are the external
angles of the triangle oxy as shown in the figure. To evaluate
the integral I, we employ the change of variables as

r1 = 2Rcos(p) and ry = 2R cos(y) — ).

So, we have ¢ € (-2,2),¢ € (0,o+3%), and R €
O,f{max) where Ry = 0.57 max(cos(¢p), cos(¢p — @)~

and the determinant of the Jackobian Matrix can be determined
as

D(rlv TQ) .
———="| =4Rsin(p).

‘ D(R, )

With this change of variables, the external angles of triangle
oxy can be expressed as 31 = § — o+ and B2 = § + o.

Therefore, we get

5 et3 Rumax R
I= 16/ / / R3exp (—4RQS(<,0,¢))
-z Jo 0

x cos(p) cos(®) — @) sin(p)dRdyde

where S(p,0) =  cos(p)eos(y — p)sin(y) +
(2 —¢+v)cos(p) + (Z+¢)cos(p — ). Solving the
inner most integral of I w.r.t R, we get

2)\/ /Wg? ))2[1—(1+/\bJ25"(s0,w))

x exp (—Ab TS (¢, v)) | dyde,

where C}'(cp,z/}) = cos(ip) cos(1h — ¢)sin(y) and S”(p, ) =

S(e.¥) : B _ =
max(cos(gafcos(wﬂa))"" Finally, by substituting ¢ = % — u and

— @ = 5 — v and further simplifying, we obtain the second
moment of area of V), as given in (26).
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