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Abstract

We introduce the ratio-cut polytope defined as the convex hull of ratio-cut
vectors corresponding to all partitions of n points in Rm into at most K clusters.
This polytope is closely related to the convex hull of the feasible region of a number
of clustering problems such as K-means clustering and spectral clustering. We
study the facial structure of the ratio-cut polytope and derive several types of
facet-defining inequalities. We then consider the problem of K-means clustering and
introduce a novel linear programming (LP) relaxation for it. Subsequently, we focus
on the case of two clusters and derive a sufficient condition under which the proposed
LP relaxation recovers the underlying clusters exactly. Namely, we consider the
stochastic ball model, a popular generative model for K-means clustering, and we
show that if the separation distance between cluster centers satisfies ∆ > 1 +

√
3,

then the LP relaxation recovers the planted clusters with high probability. This is a
major improvement over the only existing recovery guarantee for an LP relaxation
of K-means clustering stating that recovery is possible with high probability if
and only if ∆ > 4. Our numerical experiments indicate that the proposed LP
relaxation significantly outperforms a popular semidefinite programming relaxation
in recovering the planted clusters.

Key words. Ratio-cut polytope; K-means clustering; Linear programming, Stochastic
ball model.
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1 Introduction

Clustering is concerned with partitioning a given set of data points {xi}ni=1 in Rm into K
subsets such that some dissimilarity function among the points is minimized. Consider
a partition of [n] := {1, . . . , n}; i.e., {Γk}Kk=1 such that Γa ∩ Γb = ∅ for all a, b ∈ [K] :=
{1, . . . , K} and ∪k∈[K]Γk = [n], where we further assume Γk 6= ∅ for all k ∈ [K]. K-means
clustering partitions the data points into K clusters by minimizing the total squared
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distance between each data point and the corresponding cluster center:

min
K∑
k=1

∑
i∈Γk

∥∥∥xi − 1

|Γk|
∑
j∈Γk

xj
∥∥∥2

2
(1)

s.t. {Γk}k∈[K] is a partition of [n].

It is well-known that Problem (1) is NP-hard even when there are only two clusters [6] or
when the data points are in R2 [20]. The most famous heuristic for K-means clustering
is Lloyd’s algorithm [18] which, in spite of its effectiveness, in practice may converge to a
local minimum that is arbitrarily bad compared to the global minimum [15]. Moreover,
numerous constant-factor approximation algorithms have been developed, both for the
fixed number of clusters K and for the fixed dimension m (see for example [15, 11]). In
this paper, we are interested in the quality of convex relaxations for K-means clustering.

Several equivalent reformulations of K-means clustering, including a nonlinear bi-
nary program [26], a binary semidefinite program (SDP) [23], and a completely positive
program [25] are given in the literature. In the following, we present an alternative formu-
lation that we will use to construct our new convex relaxation (see [16] for the derivation).
Consider partition of [n]; let 1Γk

, k ∈ [K] be the indicator vector of the kth cluster; i.e.,
the ith component of 1Γk

is defined as: (1Γk
)i = 1 if i ∈ Γk and (1Γk

)i = 0 otherwise.
Define the partition matrix as

Z =
K∑
k=1

1

|Γk|
1Γk

1TΓk
. (2)

Denote by D ∈ Rn×n the distance matrix with the (i, j)th entry given by dij = ||xi−xj||22.
Then it can be shown that Problem (1) can be equivalently written as:

min
∑
i,j∈[n]

dijZij (3)

s.t. Z is a partition matrix defined by (2).

SDP relaxations. The most popular convex relaxations for K-means clustering are
SDP relaxations; indeed, both theoretical and numerical properties of these algorithms
have been extensively investigated in the literature (see for example [24, 23, 25]). These
relaxations are obtained by observing that any partition matrix Z satisfies the following
properties:

Z1n = 1n, Tr(Z) = K, (4)

Z � 0, Z ≥ 0,

where 1n is a n-vector with all entries equal to 1 and Tr(Z) is the trace of the matrix
Z. Moreover, Z � 0 and Z ≥ 0 mean that the matrix Z is positive semidefinite and
component-wise nonnegative, respectively. A widely-studied SDP relaxation of the K-
means clustering, often referred to as “Peng-Wei relaxation” [23], is given by

min
∑
i,j∈[n]

dijZij (5)

s.t. Z1n = 1n, Tr(Z) = K, Z � 0, Z ≥ 0, Z = ZT .
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If by solving Problem (5), we obtain a minimizer Z̄ that is a partition matrix as defined
by (2), then Z̄ is also optimal for the original problem, as the feasible region of Problem (5)
contains the feasible region of Problem (3). Otherwise, a common approach is to devise
a rounding scheme to extract a feasible solution of (3) from the relaxation solution Z̄.
This two-phase approach has been successfully employed for clustering various synthetic
and real data sets [23, 25].

Recovery guarantees under stochastic models. A recent stream of research in
data clustering is concerned with obtaining conditions under which a planted clustering
corresponds to the unique optimal solution of a SDP relaxation under suitable generative
models [4, 2, 12, 22, 14, 5, 3, 17, 16]. Such conditions are often referred to as exact
recovery (henceforth, simply recovery) conditions. Generally speaking, these works first
provide deterministic sufficient conditions for a given clustering assignment to be the
unique optimal solution of a SDP relaxation via the construction of dual certificates.
Subsequently, they show that those conditions hold with high probability under a given
random model. Throughout this paper, we say that an optimization problem recovers
the planted clusters if its unique optimal solution corresponds to the planted clusters.

The stochastic ball model (SBM) is the most widely-studied generative model for K-
means clustering. In this distributional setting, we assume that there exist K clusters in
Rm and the data in each cluster consists of n

K
points sampled from a uniform distribution

within a ball of unit radius. The question is what is the minimum separation distance ∆
between cluster centers needed for a convex relaxation to recover these K clusters with
high probability (i.e., probability tending to 1 as n → ∞). Clearly, a convex relaxation
recovers the planted clusters only if the original K-means problem succeeds in doing
so. Perhaps surprisingly, the recovery threshold for K-means clustering under the SBM
remains an open question. Recently, in [6], the authors prove that when the points are
generated uniformly on two m-dimensional touching spheres for m ≥ 3, in the limit, i.e.,
when the empirical samples is replaced by the probability measure, K-means clustering
identifies the two individual spheres as the two clusters. In this paper, we show that the
same recovery result is valid for the SBM.

In [4], the authors consider the Peng-Wei relaxation as defined by (5) and show that
if ∆ > 2

√
2(1+1/

√
m), then the SDP recovers the planted clusters with high probability.

In [14], the authors consider the same SDP and prove that recovery is guaranteed with
high probability if ∆ > 2 + K2/m, which is near optimal in m � K2 regime. The
authors of [16] obtain yet another recovery condition for Peng-Wei relaxation given by
∆ > 2 + O(

√
K/m) which is an improvement over the previous condition when K is

large. Moreover, in [16], the authors prove that if ∆ < 1 +
√

1 + 2/(m+ 2), then with
high probability, Peng-Wei relaxation fails in recovering the planted clusters.

LP relaxations. It is widely accepted that state-of-the-art LP solvers outperform the
SDP counterparts in both speed and scalability. However, for K-means clustering, to
date, there exists no LP relaxation with desirable theoretical or computational properties.
In [4], the authors consider the following LP relaxation of K-means clustering:

min
∑
i,j∈[n]

dijZij (6)

s.t. Z1n = 1n, Tr(Z) = K, Z ≥ 0, Z = ZT , Zij ≤ Zii, ∀i, j ∈ [n].
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Subsequently, they show that under the SBM, Problem (6) recovers the planted clusters
with high probability if and only if ∆ > 4. We should remark that if ∆ > 4, any two points
within a particular cluster are closer to each other than any two points from different
clusters, and hence in this case, recovery follows from a simple distance thresholding.
They complement this negative theoretical result with poor numerical performance to
conclude the ineffectiveness of the “natural” LP relaxation for K-means clustering. In [8,
9], the authors study the recovery properties of LP relaxations for community detection
and joint object matching.

Our contribution. In this paper, we propose a novel LP relaxation for K-means clus-
tering with favorable theoretical and numerical properties. We start by introducing
the ratio-cut polytope RCutKn defined as the convex hull of ratio-cut vectors corresponding
to all assignments of n points to at most K nonempty clusters. We are interested in a
certain facet of RCutKn , denoted by RCut=K

n , which corresponds to all ratio-cut vectors
of exactly K nonempty clusters. As we detail later, RCut=K

n is the polytope obtained by
projecting out variables Zii, i ∈ [n] from convex hull of the feasible region of Problem (3).
We then study the facial structures of RCutKn and RCut=K

n and derive several classes of
facet-defining inequalities for these polytopes. This in turn enables us to obtain a new LP
relaxation for K-means clustering. We then address the question of recovery when there
are two clusters. First, we obtain a deterministic sufficient condition under which the
planted clusters correspond to an optimal solution of the LP relaxation. Subsequently, we
focus on the SBM, and prove that if ∆ > 1 +

√
3, the LP relaxation recovers the planted

clusters with high probability. While this recovery guarantee is significantly better than
the recovery guarantee of Problem (6), our empirical observations suggest that it is overly
conservative. Indeed, our numerical experiments on a collection of randomly generated
test problems indicate that the LP relaxation outperforms the Peng-Wei SDP relaxation.

Organization. The remainder of the paper is structured as follows. In Section 2, we
study the facial structure of the ratio-cut polytope. In Section 3 we introduce a new LP
relaxation for K-means clustering. We then focus on the case of two clusters and obtain
a deterministic sufficient condition under which the planted clusters correspond to an
optimal solution of the LP relaxation. In Section 4, we consider the K-means clustering
problem with two clusters under the SBM. We first show that for dimension m ≥ 3, in
the continuum limit, the K-means clustering problem achieves optimal recovery threshold.
Next, utilizing our deterministic condition of Section 3, we obtain a recovery guarantee
for the LP relaxation. We present our numerical experiments in Section 5. Finally, proofs
of the technical results omitted in Section 4 are given in Section 6.

2 The ratio-cut polytope

In this section, we perform a polyhedral study of the convex hull of the feasible region
of Problem (3). Denote by {xi}ni=1 a set of points in Rm that we would like to put into
at most K clusters. Consider a partition of [n] denoted by {Γk}Kk=1 where some of the
partitions Γk could be empty. For any 1 ≤ i < j ≤ n, define Xij = 1

|Γk|
if i and j

belong to the same partition Γk, for some k ∈ [K] and Xij = 0 if i and j are in different
partitions. Let X be the

(
n
2

)
-vector whose elements are Xij. We refer to any such vector

X as a ratio-cut vector and we refer to the convex hull in R(n
2) of all ratio-cut vectors
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corresponding to at most K nonempty clusters as the ratio-cut polytope and denote it by
RCutKn . Throughout the paper, we let Xji = Xij whenever i < j. If K = 1, then RCutKn
is given by RCut1

n = {X : Xij = 1
n
, ∀1 ≤ i < j ≤ n}. Moreover, it can be shown that

RCut2
2 = {X12 : 0 ≤ X12 ≤ 1/2}. Henceforth, we assume that n ≥ 3 and 2 ≤ K ≤ n.

We denote by RCut=K
n the convex hull of all ratio-cut vectors corresponding to exactly

K nonempty clusters. If K = n, it follows that RCut=n
n = {X : Xij = 0, ∀1 ≤ i < j ≤ n}

and if K = n− 1, it can be shown that

RCut=n−1
n =

{
X :

∑
1≤i<j≤n

Xij =
1

2
, Xij ≥ 0, ∀1 ≤ i < j ≤ n

}
.

Henceforth, when studying the facial structure of RCut=K
n , we assume that n ≥ 4 and

2 ≤ K ≤ n− 2. See Figure 1 for an illustration of RCutKn and RCut=K
n , with n = 3 and

K = 2.

Figure 1: The polytopes RCutKn and RCut=K
n , with n = 3 and K =

2. The ratio-cut polytope RCutKn is the convex hull of the ratio-cut vectors{
(1

3
, 1

3
, 1

3
), (1

2
, 0, 0), (0, 1

2
, 0), (0, 0, 1

2
)
}

. The polytope RCut=K
n , shaded in red, is a facet

of RCutKn whose affine hall is given by X12 +X13 +X23 = 1
2
.

Consider the convex hull of the feasible region of Problem (3) denoted by ZKn ; i.e.,
the convex hull of all partition matrices Z. It then follows that

RCut=K
n =

{
X ∈ R(n

2)| ∃Z ∈ ZKn : Xij = Zij,∀1 ≤ i < j ≤ n
}
. (7)

That is, the polytope RCut=K
n is obtained by projecting out diagonal variables Zii, i ∈ [n]

from the convex hull of partition matrices. Hence, understanding the facial structure of
RCut=K

n enables us to construct a strong LP relaxation for K-means clustering. By
definition, RCutKn ⊃ RCut=K

n . However, we are interested in studying RCutKn due to its
following fundamental property.

Proposition 1. The ratio-cut polytope RCutKn with n ≥ 3 and 2 ≤ K ≤ n is full-
dimensional; i.e., dim(RCutKn ) =

(
n
2

)
.

Proof. Since RCutKn ⊂ RCutK
′

n for all K ′ > K, to prove the statement, it suffices to show
that RCut2

n contains
(
n
2

)
+ 1 affinely independent points.

First let n 6= 4. Consider the ratio-cut vector corresponding to one cluster; i.e.,
Xij = 1

n
for all 1 ≤ i < j ≤ n and the

(
n
2

)
ratio-cut vectors corresponding to two clusters
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of cardinality two and n − 2; i.e., for any 1 ≤ r < s ≤ n, consider the ratio-cut vector
with Xrs = 1

2
, Xij = 1

n−2
if i /∈ {r, s} and j /∈ {r, s}, and Xij = 0, otherwise. It can be

checked that these
(
n
2

)
+ 1 ratio-cut vectors are affinely independent.

Now consider n = 4; in this case RCut2
4 is the convex hull of eight ratio-cut vectors

and it can be checked that any seven of these vectors containing the ratio-cut vector
corresponding to one cluster are affinely independent. Notice that we could not utilize
the same construction as the one we used for n 6= 4 since due to symmetry, for n = 4,
the set of all ratio-cut vectors corresponding to two clusters of cardinality two and n− 2
consists of 1

2

(
n
2

)
= 3 affinely independent points.

2.1 Three types of facets of RCutKn and RCut=K
n

In the next three propositions, we present various classes of facet-defining inequalities
for RCutKn and RCut=K

n . These results enable us to construct a strong LP relaxation for
K-means clustering.

Proposition 2. The inequality ∑
1≤i<j≤n

Xij ≥
n−K

2
(8)

is valid for RCutKn and is facet-defining if and only if K ≤ n − 1. Moreover, the affine
hull of RCut=K

n is defined by the equation∑
1≤i<j≤n

Xij =
n−K

2
. (9)

Proof. Consider a partition of [n] given by {Γk}Kk=1; denote by K1 the subset of [K] for
which |Γk| = 1 and denote by K2 the subset of [K] for which |Γk| ≥ 2. It then follows
that ∑

1≤i<j≤n

Xij =
∑
k∈K2

1

|Γk|

(
|Γk|

2

)
=

1

2

( ∑
k∈K2

|Γk| − |K2|
)

=
n− |K1| − |K2|

2
≥ n−K

2
,

where the last inequality holds with equality when K = |K1| + |K2|; i.e., when all Γk,
k ∈ [K] are nonempty; that is, we have exactly K clusters.

Now let K ≤ n− 1 and consider a facet-defining inequality aX ≥ α for RCutKn that
is satisfied tightly by all ratio-cut vectors that are binding for inequality (8). We show
that the two inequalities coincide up to a positive scaling which by full dimensionality of
the ratio-cut polytope (see Proposition 1), implies that inequality (8) defines a facet of
RCutKn .

Consider a partition of [n] with K nonempty clusters Γk, k ∈ [K] with Γ1 = {i} for
some i ∈ [n]. Consider a second partition obtained by switching point i with a point
j where j ∈ Γr for some |Γr| ≥ 2. Note such a Γr always exists since by assumption
K ≤ n− 1. Substituting the corresponding ratio-cut vectors in aX = α and subtracting
the resulting equalities, we obtain:∑

l∈Γr\{i,j}

ajl =
∑

l∈Γr\{i,j}

ail. (10)
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Next, take the two partitions defined above and for each one, remove a point k 6= i, j
from Γr and place it in Γ1. Substituting the corresponding ratio-cut vectors in aX = α
yields:

aik
2

+

∑
l∈Γr\{i,j,k} ajl

|Γr| − 1
=
ajk
2

+

∑
l∈Γr\{i,j,k} ail

|Γr| − 1
. (11)

From (10) and (11) it follows that aik = ajk for all distinct i, j, k ∈ [n]. Moreover it
can be checked that for any ratio-cut vector associated to K nonempty clusters we have∑

1≤i<j≤nXij = (n−K)/2. Hence, if K ≤ n−1, the inequality aX ≥ α coincides with (8)
up to a positive scaling implying that inequality (8) is facet-defining.

Now let n = K; in this case, the right-hand side of inequality (8) is zero and hence
is implied by valid inequalities Xij ≥ 0 for all 1 ≤ i < j ≤ n. Therefore, in this case
inequality (8) is not facet-defining.

Finally, since the set of all ratio-cut vectors corresponding to K nonempty clusters
constitute the set of tight points of the facet-defining inequality (8), we conclude that
dim(RCut=K

n ) =
(
n
2

)
−1 for all K ≤ n−1 and its affine hull is induced by

∑
1≤i<j≤nXij =

(n−K)/2.

Next, we present a class of facet-defining inequalities for the ratio-cut polytope that
can be considered as the generalization of the well-known triangle inequalities associated
with the cut polytope [10] (see Subsection 2.2 for more detail).

Proposition 3. Let l ∈ [n] and let T be a nonempty subset of [n]\{l}. Then the inequality

2
∑
j∈T

Xlj +
∑

j∈[n]\T∪{l}

Xlj ≤ 1 +
∑

i,j∈T :i<j

Xij, (12)

is valid for RCutKn . Moreover, if 2 ≤ |T | ≤ K, then inequality (12) defines a facet of
RCutKn , and if in addition, K ≤ n− 2 then this inequality defines a facet of RCut=K

n .

Proof. Denote by ω the number of points in T that are in the same cluster as l and let Ω
denote the size of the corresponding cluster; clearly ω ≥ 0 and Ω ≥ 1. Then

∑
j∈T Xlj = ω

Ω

and
∑

j∈[n]\T∪{l}Xlj = Ω−ω−1
Ω

. Moreover, if ω ≥ 2, we have
∑

i,j∈T Xij ≥
(
ω
2

)
1
Ω

. Hence to

show the validity of inequality (12) it suffices to show that 1 + ω−1
Ω
≤ 1, if ω ∈ {0, 1} and

1 + ω−1
Ω
≤ 1 + ω(ω−1)

2Ω
, if ω ≥ 2, both of which are valid.

Let K ∈ {2, . . . , n}; we now show that if t := |T | ∈ {2, . . . ,min{n − 1, K}}, then
inequality (12) defines a facet of RCutKn . Denote by

aX ≤ α, (13)

a nontrivial valid inequality for RCutKn that is satisfied tightly by all ratio-cut vectors that
are binding for (12). We show that inequalities (12) and (13) coincide up to a positive
scaling, which by full dimensionality of RCutKn (see Proposition 1) implies that (12)
defines a facet of RCutKn .

Let Γk, k ∈ [K] form a partition of [n]. Assume that (i) l ∈ Γ1, (ii) |Γ1 ∩ T | = 1
or |Γ1 ∩ T | = 2 and (iii) |Γk ∩ T | ≤ 1 for all k ∈ [K] \ {1}. It can be checked that the
ratio-cut vector corresponding to any partition satisfying conditions (i)-(iii) satisfies (12)
tightly. Note that all such partitions consist of at least t nonempty clusters if |Γ1∩T | = 1
and at least t − 1 nonempty clusters if |Γ1 ∩ T | = 2, all of which correspond to valid
ratio-cut vectors in RCutKn since by assumption 2 ≤ t ≤ K. Henceforth, by a “binding
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partition,” we imply a partition of [n] consisting of at most K nonempty clusters, which
satisfies conditions (i)-(iii) above. In the following we present several types of binding
partitions and by substituting the corresponding ratio-cut vectors in aX = α, we prove
the facetness of inequality (12).

Take some r ∈ T and some s ∈ [n]\ (T ∪{l}). Consider a binding partition consisting
of q ≤ K − 1 nonempty clusters such that Γ2 = {r, s}. Note that this binding partition
exists since by assumption t ≥ 2. Moreover, such a partition with exactly K−1 nonempty
clusters exists if K ≤ n− 1. Now consider another binding partition consisting of q + 1
nonempty clusters, obtained from the above partition by removing s from Γ2 and putting
it in Γq+1. Substituting the ratio-cut vectors in aX = α we obtain ars = 0.

For any j ∈ [n] \ (T ∪ {l, s}), consider a binding partition such that Γ2 = {r, s}
and Γ3 = {j}. Such a partition with exactly K nonempty clusters exists if K ≤ n − 2.
Construct a second binding partition from the above partition by swapping j and s.
Substituting the ratio-cut vectors in aX = α and using ars = 0, we obtain arj = 0 for all
j ∈ [n] \ (T ∪ {l}). Similarly, we obtain asj = 0 for all j ∈ [n] \ (T ∪ {l, s}).

For any i ∈ T and for any j ∈ [n] \ (T ∪ {l}), consider a binding partition (consisting
of K nonempty clusters, if K ≤ n− 2) such that Γ2 = {r, j} and Γ3 = {i}. Construct a
second binding partition from the above partition by swapping r and i. Substituting the
ratio-cut vectors in aX = α and using arj = 0, we obtain

aij = 0, ∀i ∈ T, j ∈ [n] \ (T ∪ {l}). (14)

For any i, j ∈ [n] \ (T ∪ {l}), consider a binding partition (consisting of K nonempty
clusters, if K ≤ n − 2) such that Γ2 = {s, j} and Γ3 = {i}. Construct a second binding
partition from the above partition by swapping s and i. Substituting the ratio-cut vectors
in aX = α and using asj = 0, we obtain

aij = 0, ∀i, j ∈ [n] \ (T ∪ {l}). (15)

For any i, j ∈ T , consider a binding partition (consisting of K nonempty clusters, if
K ≤ n − 1) with Γ1 = {1, i} and Γ2 = {j}. Construct a second binding partition from
the above partition by swapping i and j. Substituting the ratio-cut vectors in aX = α,
we obtain

ali = β, ∀i ∈ T. (16)

For any i, j ∈ [n] \ (T ∪ {l}), consider a binding partition (consisting of K nonempty
clusters, if K ≤ n− 1) with |Γ1 ∩T | = 1, i ∈ Γ1, and j ∈ Γ2. Construct a second binding
partition from the above partition by swapping i and j. Substituting the ratio-cut vectors
in aX = α and using (14)-(16), we obtain

ali = γ, ∀i ∈ [n] \ (T ∪ {l}). (17)

For any i, j, k ∈ T , consider a binding partition (consisting of K nonempty clusters, if
K ≤ n− 2) with Γ1 = {l, i, j} and Γ2 = {k}. Construct a second binding partition from
the above partition by swapping j and k. Substituting the ratio-cut vectors in aX = α
and using (16), we obtain

aij = ζ, ∀i, j ∈ T. (18)

For any i, j ∈ T and k ∈ [n] \ (T ∪ {l}), consider a binding partition (consisting of
K nonempty clusters, if K ≤ n − 2) with Γ1 = {l, i, j} and Γ2 = {k}. Construct a
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second binding partition from the above partition by swapping j and k. Substituting the
ratio-cut vectors in aX = α and using (14)- (18), we obtain

β + ζ = γ. (19)

For any i, j ∈ T and k ∈ [n] \ (T ∪ {l}), consider a binding partition (consisting of K
nonempty clusters, if K ≤ n − 2) with Γ1 = {l, i} and Γ2 = {j, k}. Construct a second
binding partition from the above partition by adding j to Γ1. Substituting the ratio-cut
vectors in aX = α and using (14), (16), and (18), we obtain

β + 2ζ = 0. (20)

Consider a binding partition, consisting of K nonempty clusters if K ≤ n − 1,
with Γ1 = {l, i} for some i ∈ T . Substituting the corresponding ratio cut vector in
aX = α and using (14)-(16) yields β = 2α. Together with (19) and (20), this in turn
implies that inequality (13) can be equivalently written as α(2

∑
j∈T Xlj +

∑
j /∈T∪{l}X1j−∑

i,j∈T,i<j Xij) ≤ α where α > 0 since by assumption, inequality (13) is nontrivial and

inequality (12) is valid, and this concludes the proof of facetness for RCutKn .
Finally, let us consider the polytope RCut=K

n for 2 ≤ K ≤ n− 2. In the above proof,
with the exception of the first one, all of the binding partitions consist of K nonempty
clusters and hence the corresponding ratio-cut vectors are present in RCut=K

n . As RCut=K
n

is a facet of RCutKn , it follows that the inequality (12) defines a facet of RCut=K
n ..

Now consider the valid inequalities Xij ≥ 0 for all 1 ≤ i < j ≤ n. As we show in the
following, if K ≥ 3, these inequalities define facets of the ratio-cut polytope.

Proposition 4. Let K ≤ n − 1. Then inequalities Xij ≥ 0 for all 1 ≤ i < j ≤ n define
facets of RCutKn and RCut=K

n if and only if K ≥ 3.

Proof. We show without loss of generality that X12 ≥ 0 defines a facet of RCutKn if and
only if K ≥ 3. First suppose that K ≥ 3. It then follows that X12 ≥ 0 is binding at
all ratio-cut vectors in which 1 and 2 are not in the same cluster. Let aX ≥ α denote
a nontrivial valid inequality for RCutKn that is binding at all ratio-cut vectors for which
X12 ≥ 0 is satisfied tightly. We show that the two inequalities coincide up to a positive
scaling, which by full dimensionality of RCutKn implies that X12 ≥ 0 defines a facet of
RCutKn .

Consider a partition of [n] consisting of K−1 nonempty clusters such that Γ1 = {1, n}.
Construct a second partition of [n] consisting of K nonempty clusters obtained from the
partition defined above by removing the nth point from the first cluster and putting it in
the Kthe cluster. The corresponding ratio-cut vectors are binding and hence substituting
in aX = α we obtain a1n = 0.

Next for any j ∈ [n]\{1, 2, n} consider two partitions of [n] consisting of K nonempty
clusters corresponding to binding ratio-cut vectors, where in the first partition we have
Γ1 = {1, n}, Γ2 = {j} and ∪Kk=3Γk = [n] \ {1, j, n}. The second partition is obtained
from the first one by only modifying the first and second clusters as follows: Γ1 = {1, j},
Γ2 = {n}. Substituting the ratio-cut vectors in aX = α and using a1n = 0 yields:

a1j = 0, ∀j ∈ [n] \ {1, 2}. (21)

Similarly, for any j ∈ [n] \ {1, 2} and for any k ∈ [n] \ {1, j}, consider two partitions
of [n] consisting of K nonempty clusters both of which correspond to binding ratio-cut
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vectors, defined as follows: in the first partition we have Γ1 = {1, j}, Γ2 = {k}, and
∪Kk=3Γk = [n] \ {1, j, k}. The second partition is obtained from the first one by only
changing the first and second clusters as follows: Γ1 = {1}, Γ2 = {j, k}. Substituting the
ratio-cut vectors in aX = α and using (21) yields

ajk = 0, ∀2 ≤ i < j ≤ n.

Hence, since by assumption aX ≥ α is nontrivial and valid for RCutKn we conclude that
it can be equivalently written as a12X12 ≥ 0 where a12 > 0, implying that if K ≥ 3 the
inequality X12 ≥ 0 defines a facet of RCutKn .

Now suppose that K = 2. We show that X12 ≥ 0 is implied by a collection of inequal-
ities all of which are valid for RCut2

n indicating that it is not facet-defining. Consider the
following inequalities

2(X1i +X2i) +
∑

j∈[n]\{1,2,i}

Xij ≤ 1 +X12, ∀i ∈ {3, . . . , n}. (22)

By letting S = {1, 2, i} for each i ∈ {3, . . . , n}, from Proposition 3 it follows that inequal-
ities (22) are valid for RCut2

n. Moreover, take inequality
∑

1≤i<j≤nXij ≥ (n−2)/2 whose
validity follows from Proposition 2; multiplying this inequality by −2 and adding the
result to the inequality obtained by summing up all inequalities (22), we get −nX12 ≤ 0.
Hence Xij ≥ 0 does not define a facet of RCut2

n.
Finally, let us consider the polytope RCut=K

n for 3 ≤ K ≤ n− 1. In the above proof,
with the exception of the first one, all of the defined ratio-cut vectors binding for Xij ≥ 0
correspond to K nonempty clusters and hence are present in RCut=K

n . As RCut=K
n is

a facet of RCutKn , it follows that the inequality Xij ≥ 0 defines a facet of RCut=K
n as

well.

2.2 Connections with the cut polytope

The cut polytope, a celebrated polytope in combinatorial optimization, is the convex hull
of all cut vectors of a graph (see [10] for an exposition). This polytope corresponds to the
convex hull of the feasible region of the max-cut problem. Consider a graph with n nodes;
we define a cut vector Y associated with a graph cut as follows: for any 1 ≤ i < j ≤ n,
let Yij = 1 if i and j are in the same partition and let Yij = 0, otherwise. The cut
polytope Cutn is then defined as the convex hull of all cut vectors. In this section, we
describe some key similarities and differences between the cut polytope and the ratio-cut
polytope.

The facial structure of the cut polytope has been extensively studied and numerous
classes of facet-defining inequalities have been identified for this polytope. The most
well-known class of facet-defining inequalities for Cutn are triangle inequalities given by

Yij + Yik ≤ 1 + Yjk, (23)

and
Yij + Yik + Yjk ≥ 1, (24)

for all distinct i, j, k ∈ [n] (see for example [10]).
Now let l ∈ [n], and let T ⊆ [n]\{l} with 2 ≤ |T | ≤ K; define Xll := 1−

∑
j∈[n]\{l}Xlj.

Then inequality (12) can be equivalently written as∑
j∈T

Xlj ≤ Xll +
∑

i,j∈T :i<j

Xij. (25)
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By Proposition 3, inequalities of the form (25) define facets of RCutKn . Let K = 2; then
all inequalities of the form (25) can be written as:

Xij +Xik ≤ Xii +Xjk, ∀ distinct i, j, k ∈ [n], (26)

where as before Xii := 1 −
∑

j∈[n]\{i}Xij. Hence, inequalities (26) (and more generally,

inequalities (25)) for the ratio-cut polytope can be considered as an equivalent of in-
equalities (23) for the cut polytope. Moreover, the fact-defining inequality (8) can be
considered as an equivalent of inequalities (24) for the cut polytope. We further detail on
some parallels between Cutn and RCutKn in the next section as we introduce a relaxation
of the ratio-cut polytope.

In spite of certain similarities, it is important to note that there are fundamental
differences between the cut polytope and the ratio-cut polytope. For example, unlike the
cut polytope, the ratio-cut polytope does not have the so-called “zero-lifting” property
(see Section 26.5 of [10] for the definition of zero-lifting). Roughly speaking, the zero-
lifting property implies that if an inequality defines a facet of Cutn then it also defines a
facet of Cutn′ for all n′ > n. Indeed, the lack of this property in case of inequalities (25)
is hidden in the definition of Xii.

2.3 A polyhedral relaxation of the ratio-cut polytope

We now define a polyhedral relaxation of RCutKn defined by all facet-defining inequal-
ities given by Propositions 2, 3, and 4. We denote this relaxation by RMetKn due to
its similarities to the metric polytope. The metric polytope defined by triangle inequal-
ities (23) and (24) is a widely used relaxation of the cut polytope. Similarly, we define
a polyhedral relaxation of RCut=K

n defined by equality (9) together with facet-defining
inequalities given by Propositions 3, and 4. We denote this relaxation by RMet=K

n . No-
tice that RMetKn is defined by a collection of inequalities all of which are facet-defining
for RCutKn and RMet=K

n is the restriction of RMetKn to one of such inequalities. It then
follows that RMet=K

n is a facet of RMetKn .
It is well-known that the metric polytope coincides with the cut polytope if and only

if n ≤ 4 [10]. The following demonstrates an analogous relation between RCutKn and
RMetKn .

Proposition 5. RCutKn = RMetKn if and only if n ≤ 4.

Proof. If n = 3 and K = {2, 3} or if n = 4 and K ∈ {2, 3, 4}, it can be checked, by
direct calculation that the ratio-cut vectors constitute all vertices of RMetKn , implying
RCutKn = RMetKn .

Now let n ≥ 5 and consider some K ∈ {2, . . . , n}. To show that RCutKn ⊂ RMetKn ,
we present a point X̄ such that X̄ ∈ RMetKn and X̄ /∈ RCutKn . To prove the latter, we
present an inequality that is valid for RCutKn but is violated by X̄.

We first give the valid inequality for the ratio-cut polytope. Consider a pair i, j ∈ [n]
and let T ⊆ [n] \ {i, j} with |T | ≥ 2. Let Xii = 1−

∑
k∈[n]\{i}Xik and suppose that Xjj

is similarly defined. We first show that the inequality∑
k∈T

(Xik +Xjk)−Xij ≤ Xii +Xjj +
∑
k<l∈T

Xkl (27)

is valid for RCutKn . Two cases arise:
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(i) i and j are in the same cluster of size Ω. Then Xii = Xjj = Xij = 1
Ω

. Denote
by ω the number of points in T that belong to the same cluster as i and j. Then∑

k∈T (Xik +Xjk) = 2ω
Ω

. Moreover, if ω ≥ 2, we have
∑

k<l∈T Xkl ≥
(
ω
2

)
1
Ω

. Hence if
ω ≤ 1, it suffices to show that 2ω

Ω
− 1

Ω
≤ 1

Ω
+ 1

Ω
and if ω ≥ 2, it suffices to show that

2ω
Ω
− 1

Ω
≤ 1

Ω
+ 1

Ω
+
(
ω
2

)
1
Ω

, both of which are valid.

(ii) i and j are in two distinct clusters of size Ω1 and Ω2, respectively. Then Xii = 1
Ω1

,

Xjj = 1
Ω2

and Xij = 0. Denote by ω1 (resp. ω2) the number of points in T that are in

the same cluster with i (resp. j). Then
∑

k∈T (Xik +Xjk) = ω1

Ω1
+ ω2

Ω2
. Let q1 =

(
ω1

2

)
(resp. q2 =

(
ω2

2

)
), if ω1 ≥ 2 (resp. ω2 ≥ 2) and let q1 = 0 (resp. q2 = 0) , otherwise.

Then it suffices to show that ω1

Ω1
+ ω2

Ω2
≤ 1

Ω1
+ 1

Ω2
+ q1

Ω1
+ q2

Ω2
. The validity of this statement

follows from the fact that ω1 ≤ 1 + q1 and ω2 ≤ 1 + q2.

We now present a point X̄ ∈ RMetKn that does not satisfy inequality (27). Suppose
that |T | = 3; for notational simplicity, let {i, j} = {1, 2} and T = {3, 4, 5}. Two cases
arise:

(i) n = 5: in this case, let

X̄12 = 0

X̄1k = X̄2k = α =
5

24
, k ∈ {3, 4, 5}

X̄kl = ω =
2

24
, k < l ∈ {3, 4, 5}

We now show that X̄ ∈ RMetK5 . We have
∑

1≤i<j≤5 X̄ij = 6α + 3ω = 3
2
≥ 5−K

2
,

where the last inequality is valid for any K ≥ 2; hence, inequality (8) is satisfied at
X̄. It remains to show the validity of inequalities (25) for 2 ≤ |T | ≤ min{K, 4} and
for 2 ≤ K ≤ 5. We have X̄11 = X̄22 = β = 9

24
and X̄kk = γ = 10

24
for k ∈ {3, 4, 5}.

Then for |T | = 2, it suffices to have 2α ≤ β + ω, 2α ≤ γ, ω ≤ γ, all of which are
valid. For |T | = 3, it suffices to have 3α ≤ β+ 3ω which is satisifed and all inequalities
corresponding to |T | = 4 are implied by the above inequalities. Thus, we conclude
that X̄ ∈ RMetK5 . Substituting X̄ in inequality (27) yields 6α − 0 ≤ 2β + 3ω, which
simplifies to 30

24
≤ 18

24
+ 6

24
and is clearly not valid.

(ii) n > 5: in this case, let

X̄12 = 0

X̄1k = X̄2k = α =
n

3(3n− 7)
, k ∈ {3, 4, 5}

X̄kl = ω =
n

6(3n− 7)
, k < l ∈ {3, 4, 5}

X̄1k = X̄2k = η1 =
3n− 14

2(3n− 7)(n− 5)
, k ∈ {6, . . . , n}

X̄kl = η2 =
4n− 21

3(3n− 7)(n− 5)
, k ∈ {3, 4, 5}, l ∈ {6, . . . , n}

X̄kl = η3 =
3n− 14

(3n− 7)(n− 5)
, k < l ∈ {6, . . . , n}.

We now show that X̄ ∈ RMetKn . First, X̄ij ≥ 0 for all 1 ≤ i < j ≤ n. Moreover,∑
1≤i<j≤n X̄ij = 6α + 3ω + 2(n − 5)η1 + 3(n − 5)η2 + (n−5)(n−6)

2
η3 = 2n

3n−7
+ n

2(3n−7)
+
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3n−14
3n−7

+ 4n−21
3n−7

+ (n−6)
2

3n−14
3n−7

= n−2
2
≥ n−K

2
, implying inequality (8) is satisfied. We now

establish the validity of inequalities (25) at X̄, for 2 ≤ |T | ≤ K. It can be checked
that X̄11 = X̄22 = β = n

2(3n−7)
and X̄kk = γ = 2n

3(3n−7)
for k ∈ {3, 4, 5}. From the

construction of X̄, it follows that the inequalities of the form (25) not implied by the
rest are the following: 2α ≤ β + ω, 2α ≤ γ, ω ≤ γ, 3α ≤ β + 3ω all of which are
satisfied by X̄. Hence, X̄ ∈ RMetKn . Finally, substituting X̄ in inequality (27) yields
6 n

3(3n−7)
− 0 ≤ 2 n

2(3n−7)
+ 3 n

6(3n−7)
, which simplifies to 2n ≤ n + n

2
and is clearly not

valid.

While for n ≥ 5, the polytopes RMetKn and RCutKn do not coincide, next, we show
that every ratio-cut vector is a vertex of RMetKn .

Proposition 6. Every ratio-cut vector is a vertex of RMetKn and every ratio-cut vector
corresponding to K nonempty clusters is a vertex of RMet=K

n .

Proof. We first show that every ratio-cut vector is a vertex of RMetKn . By Proposition 5
it suffices to consider n ≥ 5. Let Γk, k ∈ [K] form a partition of [n], where as before we
allow for some empty Γk. Denote by K ′ the number of nonempty clusters and denote
by X̂ the corresponding ratio-cut vector. We show that X̂ is a vertex of RMetKn by
presenting

(
n
2

)
linearly independent facets of RMetKn that are satisfied tightly by X̂. The

following cases arise:

(i) K ′ = 1: in this case for each i, j, k in the partition, consider facet-defining inequalities
of the form (12) given by 2(Xij + Xik) +

∑
l∈[n]\{j,k}Xil ≤ 1 + Xjk, 2(Xij + Xjk) +∑

l∈[n]\{i,k}Xjl ≤ 1 +Xik, and 2(Xik +Xjk) +
∑

l∈[n]\{i,j}Xkl ≤ 1 +Xij.

(ii) K = K ′ = 2: in this case for each i, j in one partition and for each k in the other
partition consider facet-defining inequalities of the form (12) given by 2(Xij + Xik) +∑

l∈[n]\{j,k}Xil ≤ 1 + Xjk and 2(Xij + Xjk) +
∑

l∈[n]\{i,k}Xjl ≤ 1 + Xik. In addition,

consider the facet defining inequality
∑

1≤i<j≤nXij ≥ n
2
− 1.

(iii) K > 2, K ′ 6= 1, in this case for each i, j in the same partition and for any k in a
different partition consider facet-defining inequalities of the form (12) given by 2(Xij +
Xik) +

∑
l∈[n]\{j,k}Xil ≤ 1 + Xjk and 2(Xij + Xjk) +

∑
l∈[n]\{i,k}Xjl ≤ 1 + Xik. In

addition, for each i, j not in the same partition consider the facet defining inequality
Xij ≥ 0.

It can be checked that X̂ satisfies above inequalities tightly and that these inequalities
contain

(
n
2

)
linearly independent facets implying that X̂ is a vertex of RMetKn .

Finally, notice that every ratio-cut vector corresponding to K nonempty clusters be-
longs to RMet=K

n and by the above argument is a vertex of RMetKn . Moreover, RMet=K
n

is a facet of RMetKn ; it then follows that all such ratio-cut vectors corresponding to K
nonempty clusters are vertices of RMet=K

n as well.

3 A new LP relaxation for K-means clustering

As we detailed in Section 2, the polytope RCut=K
n corresponds to a projection of the

convex hull of the feasible region of Problem (3) defined by (7). Hence, to obtain an LP
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relaxation for K-means clustering, first, we outer-approximate the polytope RCut=K
n by

the polytope RMet=K
n . Next, we introduce additional variables Xii := 1 −

∑
j∈[n]\{i}Xij

for all i ∈ [n] and let Xji = Xij for all 1 ≤ i < j ≤ n. Let t ∈ {2, . . . , K}; for each
i ∈ [n] define Sti := {S ⊆ [n] \ {i} : 2 ≤ |S| ≤ t}. It then follows that an LP relaxation
of K-means clustering is given by:

min
∑
i,j∈[n]

dijXij (LPK)

s.t. Tr(X) = K, (28)
n∑
j=1

Xij = 1, ∀i ∈ [n], (29)∑
j∈S

Xij ≤ Xii +
∑

j,k∈S:j<k

Xjk, ∀i ∈ [n], ∀S ∈ Sti , (30)

Xij ≥ 0, ∀1 ≤ i < j ≤ n. (31)

By the proof of Proposition 8, ifK = 2, inequalities (31) are implied by equalities (28), (29)
and inequalities (30). However, for K ≥ 3, these inequalities are facet-defining at hence
are present in Problem (LPK).

Clearly, letting t = K results in the strongest LP relaxation. However, it is im-
portant to note that system (30) contains Θ(nt+1) inequalities and hence, for large t,
Problem (LPK) is too expensive to solve. Indeed, even for t = 2, the above LP is expen-
sive to solve for n ≥ 200. To address this issue, a common approach is to devise a cutting
plane generation scheme together with the dual Simplex algorithm to solve the LP in an
iterative manner (see for example [19]). Given a fixed t, let us consider the separation
problem over inequalities (30). For a fixed i ∈ [n], these inequalities can be written as∑

j,k∈S:j<kXjk ≥
∑

j∈S Xij −Xii. Hence, the separation problem over these inequalities
is quite similar to the separation problem over clique inequalities and therefore similar
heuristics and acceleration techniques can be used (see for example [21]). We should also
remark that inequalities of the form (30) corresponding to subsets S of smaller cardinal-
ity are sparser (i.e., contain fewer variables with nonzero coefficients) than those of the
larger cardinality, a property that is highly desirable from a computational perspective.
A careful selection of t and designing of an efficient cutting plane algorithm requires
a systematic computational study and is a subject of future research. However, as we
demonstrate in Section 5, the LP relaxation with t = 2 outperforms the SDP relaxation,
even for K = 5 clusters.

Remark 1. Recall that Problem (6) is the existing LP relaxation for K-means cluster-
ing [4]. To show that the feasible region of Problem (LPK) is contained in the feasible
region of this LP, it suffices to prove that inequalities Xij ≤ Xii for all i 6= j ∈ [n] are
implied by system (28)-(31). Without loss of generality consider X12 ≤ X11. Consider
the following inequalities and equalities all of which are present in system (28)-(31):

(i) X12 +X13 ≤ X11 +X23,

(ii) X12 +X23 ≤ X22 +X13,

(iii) X12 +X1j ≤ X11 +X2j, for all j ∈ {4, · · · , n},

(iv)
∑

j∈[n] X1j = 1,
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(v)
∑

j∈[n] X2j = 1.

Multiplying inequality (i) by +2, inequality (ii) by +1, each inequality of type (iii) by +1,
equality (iv) by -1, equality (v) by +1 and adding all resulting inequalities and equalities
yields nX12 ≤ nX11 and this completes the argument.

3.1 Optimality of the planted clusters

We now focus on the case with two clusters and obtain a sufficient condition under which
the ratio-cut vector corresponding to a planted clustering is an optimal solution of the
LP relaxation. As we discussed before, even with only two clusters, K-means clustering
is NP-hard [6]. The LP relaxation of K-means clustering for K = 2 is given by:

min
∑
i,j∈[n]

dijXij (LP2)

s.t. Tr(X) = 2, (32)
n∑
j=1

Xij = 1, ∀1 ≤ i ≤ n, (33)

Xij +Xik ≤ Xii +Xjk, ∀i 6= j 6= k ∈ [n], j < k, (34)

where as before we let Xji = Xij for all 1 ≤ i < j ≤ n. We start by constructing the
dual of Problem (LP2); define dual variables ω associated with (32), µi, i ∈ [n] associated
with (33), and λijk for all (i, j, k) ∈ Ω := {(i, j, k) : i 6= j 6= k ∈ [n], j < k} associated
with (34). It then follows that the dual of Problem (LP2) is given by

max − (2ω +
∑
i∈[n]

µi)

s.t. µi + µj +
∑

k∈[n]\{i,j}

(λijk + λjik − λkij) + 2dij = 0, ∀1 ≤ i < j ≤ n, (35)

ω + µi −
∑

j,k∈[n]\{i}:
j<k

λijk = 0, ∀i ∈ [n], (36)

λijk ≥ 0, ∀(i, j, k) ∈ Ω,

where we let λikj = λijk for all (i, j, k) ∈ Ω. Now consider the following planted model:
suppose that n is even, the first half of the points are in the first cluster and the second
half are in the second cluster; define C1 := {1, . . . , n/2} and C2 := {n/2 + 1, . . . , n}.
Then the ratio-cut vector associated with this planted clustering is given by: X̄ij = 2

n

for all i < j ∈ C1 and for all i < j ∈ C2 and X̄ij = 0, otherwise. We would like to
obtain conditions under which X̄ is an optimal solution of Problem (LP2). To this end,
it suffices to find a dual feasible point (λ̄, µ̄, ω̄) for which strong duality is attained:

2ω̄ +
∑
i∈[n]

µ̄i = − 4

n

( ∑
i,j∈C1:i<j

dij +
∑

i,j∈C2:i<j

dij

)
. (37)

For notational simplicity, for every A ⊆ [n] and f : A→ R, we define

−
∑
i∈A

f(i) :=
1

|A|
∑
i∈A

f(i).
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Moreover, for each i ∈ Cl, l ∈ {1, 2}, let us define din
i := −

∑
j∈Cl

dij, and dout
i := −

∑
j∈[n]\Cl

dij.

We now present a sufficient condition for the optimality of the planted clusters.

Theorem 1. Define

η :=
1

2

(
−
∑
i∈C1

dini + −
∑
i∈C2

dini

)
. (38)

Then the ratio-cut vector corresponding to the planted clusters is an optimal solution of
Problem (LP2) if for all i, j ∈ Cl, l ∈ {1, 2}, we have

−
∑

k∈[n]\Cl

min{dik + dinj , djk + dini } − dij ≥ η. (39)

Proof. By complementary slackness λ̄ijk = 0 if i ∈ C1 and j, k ∈ C2 or if i ∈ C2 and
j, k ∈ C1. Substituting in (35) yields:

µ̄i + µ̄j +
∑
k/∈Cl

(λ̄ijk + λ̄jik) +
∑

k∈Cl\{i,j}

(λ̄ijk + λ̄jik − λ̄kij) + 2dij = 0, (40)

for every i < j such that i, j ∈ Cl, l ∈ {1, 2} and

µ̄i + µ̄j +
∑

k∈C1\{i}

(λ̄ijk − λ̄kij) +
∑

k∈C2\{j}

(λ̄jik − λ̄kij) + 2dij = 0, (41)

for every i ∈ C1, j ∈ C2. Moreover, equation (36) simplifies to

ω̄ + µ̄i −
∑

j∈Cl\{i},
k /∈Cl

λ̄ijk −
∑

j<k∈Cl\{i}

λ̄ijk = 0, (42)

for each i ∈ Cl, l ∈ {1, 2}. Now for each i, j ∈ Cl and k /∈ Cl, l ∈ {1, 2}, let

λ̄ijk − λ̄jik =
djk − dik
n/2

+
din
i − din

j

n/2
. (43)

Substituting (43) in (41) yields:

µ̄i + µ̄j + dout
i + dout

j + din
i + din

j − −
∑
k∈C1

din
k − −

∑
k∈C2

din
k = 0, ∀i ∈ C1, j ∈ C2. (44)

To satisfy (44), let
µ̄i = −din

i − dout
i + η, ∀i ∈ [n]. (45)

where η is defined by (38). Substituting (45) in (37) we obtain

ω̄ =
1

2

∑
i∈[n]

(dout
i − din

i ). (46)

Utilizing (43) and (45), equation (40) can be equivalently written as∑
k∈C2

λ̄ijk +
1

2

∑
k∈C1\{i,j}

(λ̄ijk + λ̄jik − λ̄kij) = din
i − dij + dout

j − η, (47)
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for any (i, j) ∈ C1. By (45) and (46), for each i ∈ C1, equation (42) simplifies to∑
j∈C1\{i},
k∈C2

λ̄ijk +
∑

j<k∈C1\{i}

λ̄ijk =
1

2

∑
j∈[n]

(dout
j − din

j )− dout
i − din

i + η. (48)

We now obtain a set of conditions under which system (48) is implied by equalities (47).
Firstly, it can be checked that∑

j 6=k∈C1\{i}

(λ̄ijk + λ̄jik − λ̄kij) = 2
∑

j<k∈C1\{i}

λ̄ijk.

Hence, for each i ∈ C1 it suffices to have∑
j∈C1\{i}

(
din
i − dij + dout

j − η
)

=
1

2

∑
j∈[n]

(dout
j − din

j )− dout
i − din

i + η,

whose validity can be verified by a simple calculation. Hence, to find a dual certificate,
it suffices to find nonnegative λ̄ijk satisfying equalities (40); that is, for each (i, j) ∈ C1,
we should find λ̄ijk satisfying the following system∑

k∈C2

(λ̄ijk + λ̄jik) +
∑

k∈C1\{i,j}

(λ̄ijk + λ̄jik − λ̄kij) = dout
i + dout

j − 2dij + din
i + din

j − 2η

λ̄ijk ≥ 0, λ̄jik ≥ 0, ∀k ∈ C2

λ̄ijk − λ̄jik =
djk − dik
n/2

+
din
i − din

j

n/2
, ∀k ∈ C2

λ̄ijk ≥ 0, λ̄jik ≥ 0, λ̄kij ≥ 0, ∀k ∈ C1 \ {i, j}.

By letting λ̄ijk ≥ max
{

0,
djk−dik
n/2

+
dini −dinj
n/2

}
and λ̄jik ≥ max

{
0,

dik−djk
n/2

+
dinj −dini
n/2

}
for all

k ∈ C2, it follows that the above system has a feasible solution, if

1

2

∑
k∈C1\{i,j}

(λ̄ijk + λ̄jik − λ̄kij) ≤ −
∑
k∈C2

min{dik + din
j , djk + din

i } − dij − η, (49)

for all i, j ∈ C1 together with nonnegativity of the remaining multipliers.
By letting λ̄ijk = 0 for all i, j, k ∈ Cl, l ∈ {1, 2}, inequality (49) simplifies to condi-

tion (39) and this completes the proof.

As we demonstrate in Section 4, for the SBM, condition (39) leads to an overly
conservative estimate for the minimum separation distance between cluster centers. We
are hoping that the theoretical analysis presented in this paper serves as a starting point
for deriving more realistic recovery guarantees for the proposed LP relaxation. Obtaining
recovery guarantees for K ≥ 3 is left for future research as well.

4 Recovery under the stochastic ball model

In this section, we consider a popular generative model for K-means clustering often
referred to as the stochastic ball model in the literature. This random model is defined as
follows: let {γk}k∈[K] be ball centers in Rm. For each k, draw i.i.d. vectors {yk,i}ni=1 from
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some rotation-invariant distribution supported on the unit ball. The points in cluster k
are then taken to be xk,i := yk,i + γk. Moreover, we define ∆ := mink 6=l∈[K] ||γk − γl||2.

Henceforth, we focus on the case of two clusters; throughout this section, whenever we
say with high probability, we imply with probability tending to one as n tends to infinity.
We are interested in the following question: what is the minimum separation distance
∆ required for the LP relaxation to recover the planted clusters with high probability?
Before proceeding further with addressing this question, we first establish a recovery
threshold for K-means clustering under the SBM. This threshold then serves as a recovery
limit for any convex relaxation of K-means clustering. In the following, we denote by
{ei}mi=1 the standard basis for Rm. Moreover, for any k ∈ [m], we denote by Hk the
k-dimensional Hausdorff measure.

4.1 Recovery for K-means clustering

In [6], the authors show that if the points are uniformly generated on two m-dimensional
touching spheres for some m ≥ 3, in the continuum limit, the K-means clustering problem
identifies the two individual spheres as clusters. The goal of this section is to show that
a similar recovery result is valid for the SBM.

We start by introducing some notation. We denote byB(x, r) the closedm-dimensional
ball centered at x with radius r. For a set A ⊂ Rm, we denote by A the closure of A
and by ∂A the boundary of A. Given a Borel measure ρ on Rm with support S and a
Borel-measurable subset S1 ⊂ S with complement S2 = S \ S1, the mean squared error
associated with the partition {S1, S2} of S is

ES(S1) = min
c∈Rm

∫
S1

‖x− c‖2dρ(x) + min
d∈Rm

∫
S2

‖x− d‖2dρ(x).

For every Borel subset A ⊂ Rm and every k ∈ [m], we define the measure Hk A as
follows:

Hk A(B) = Hk(A ∩B), for every Borel subset B ⊂ Rm.

For every Borel-measurable subset A ⊂ Rm, we denote by b(A) :=
∫
A
xdx the barycenter

of A. It is easy to check that, if A is a k-dimensional smooth set and Hk A is a
finite non-zero measure, than b(A) is the only minimizer of the function y ∈ Rm 7→∫
‖x− y‖2dHk A. In this section we prove the following result:

Theorem 2. For any m ≥ 3, let S := B(−e1, 1) ∪ B(e1, 1) and ρ := Hm B(−e1, 1) +
Hm B(e1, 1). Then, up to a set of zero Lebesgue measure, the partition {B(−e1, 1),
B(e1, 1)} of S is the unique minimizer of the mean squared error.

In [6], the authors prove Theorem 2 in the case where ρ is the surface measure for the
union of two touching spheres, i.e., ρ = Hm−1 ∂B(−e1, 1) + Hm−1 ∂B(e1, 1). To this
end, they first prove that an optimal partition is given by a separating hyperplane that
is orthogonal to the symmetry axis (Lemma 3.5 and Theorem 2.2 in [6]). Subsequently,
they examine the offset of the optimal separating hyperplane. More precisely they show
the following:

Proposition 7. [Theorems 2.4 and 2.5 in [6]] For any m ≥ 3, let S := ∂B(−e1, 1) ∪
∂B(e1, 1) and ρ := Hm−1 ∂B(−e1, 1) + Hm−1 ∂B(e1, 1). Then the function a ∈ R 7→
ES({x ∈ S : x1 ≤ −a}) attains a minimum at a = 0, and this minimum is unique.
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Remark 2. Proposition 7 is invariant under scaling. In particular if for any r > 0 we
define S := ∂B(−re1, r) ∪ ∂B(re1, r) and ρ := Hm−1 ∂B(−re1, r) +Hm−1 ∂B(re1, r),
then the function a ∈ R 7→ ES({x ∈ S : x1 ≤ −a}) attains a minimum at a = 0, and
this minimum is unique. Moreover, in [6], the authors renormalize ρ to get a probability
measure, but this changes ES(S1) just by a constant factor.

Since the proofs of Lemma 3.5 and Theorem 2.2 in [6] can be repeated verbatim for
balls, in order to prove Theorem 2, we just need to prove the following analogous result
to Proposition 7:

Proposition 8. For any m ≥ 3, let S := B(−e1, 1)∪B(e1, 1) and ρ := Hm B(−e1, 1)+
Hm B(e1, 1). Then the function

a ∈ R 7→ F (a) := ES({x ∈ S : x1 ≤ −a})

attains a minimum at a = 0, and this minimum is unique.

Proof. Assume by contradiction there exists a 6= 0 such that F (a) ≤ F (0). By symmetry,
we can assume a > 0. Define S1 := {x ∈ S : x1 ≤ −a}, Sr1 := {x ∈ ∂B(−e1, r) : x1 ≤
−a}, Sr2 := {x ∈ ∂B(−e1, r) : x1 ≥ −a} ∪ ∂B(e1, r), and as before, we let S2 = S \ S1.
Then, by Coarea formula (see Chapter 2 of [27])∫ 1

0

∫
∂B(−e1,r)

‖x+ e1‖2dHm−1(x)dr +

∫ 1

0

∫
∂B(e1,r)

‖x− e1‖2dHm−1(x)dr = F (0)

≥ F (a) =

∫
S1

‖x− b(S1)‖2dx+

∫
S2

‖x− b(S2)‖2dx

=

∫ 1

0

∫
Sr
1

‖x− b(S1)‖2dHm−1(x)dr +

∫ 1

0

∫
Sr
2

‖x− b(S2)‖2dHm−1(x)dr.

We deduce that there exists r ∈ (0, 1), such that∫
∂B(−e1,r)

‖x+ e1‖2dHm−1(x) +

∫
∂B(e1,r)

‖x− e1‖2dHm−1(x)

≥
∫
Sr
1

‖x− b(S1)‖2dHm−1(x) +

∫
Sr
2

‖x− b(S2)‖2dHm−1(x).

(50)

Define Sr3 := {x ∈ ∂B(−e1, r) : x1 ≥ −a} ∪ ∂B((2r − 1)e1, r). It then follows that∫
Sr
1

‖x− b(S1)‖2dHm−1(x) +

∫
Sr
2

‖x− b(S2)‖2dHm−1(x)

≥
∫
Sr
1

‖x− b(Sr1)‖2dHm−1(x) +

∫
Sr
3

‖x− b(Sr3)‖2dHm−1(x)

>

∫
∂B(−e1,r)

‖x+ e1‖2dHm−1(x) +

∫
∂B((2r−1)e1,r)

‖x− (2r − 1)e1‖2dHm−1(x)

=

∫
∂B(−e1,r)

‖x+ e1‖2dHm−1(x) +

∫
∂B(e1,r)

‖x− e1‖2dHm−1(x),

(51)

where the first inequality follows from the definition of the barycenter and the second
inequality follows from Proposition 7 and Remark 2. Combining (50) with (51), we get
the desired contradiction.
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Remark 3. It is well-known that in dimension one, for both spheres and balls, K-means
clustering recovers the planted clusters with high probability if and only if ∆ > 1+

√
3 (see

for example [14, 6]). In [6] the authors show that for two touching spheres in dimension
two, the minimum of F (a) = ES({x ∈ S : x1 ≤ −a}) is attained at a point a 6= 0. The
authors of [14] numerically verify that a similar result holds for the SBM in dimension
two. To date, the recovery threshold in dimension two, for both spheres and balls, remains
an open question.

4.2 Recovery for the LP relaxation

In this section, we obtain a recovery guarantee for the proposed LP relaxation under the
SBM. Namely, we prove that our deterministic optimality condition given by inequal-
ity (39) implies that Problem (LP2) recovers the planted clusters with high probability,
provided that ∆ > 1 +

√
3 ≈ 2.73. By Remark 3, this sufficient condition is tight if

m = 1. This is a significant improvement compared to the only existing recovery result
for an LP relaxation of K-means clustering stating that recovery is possible with high
probability if and only if ∆ > 4 [4].

In the remainder of this section, for an event A, we denote by P(A) the probability
of A. We denote by E[Y ] the expected value of a random variable Y . In case of a
multivariate random variable Xij, the conditional expected value in j, with i fixed, will
be denoted either with Ei[X] or with Ej[X]. To prove the next theorem, we make use of
two technical lemmas; to streamline the presentation, these lemmas are given in Section 6.

Theorem 3. Let K = 2 and suppose that the points are generated according to the SBM.
Then Problem (LP2) recovers the planted clusters with high probability, if ∆ > 1 +

√
3.

Proof. To prove the statement, we need to show that for ∆ > 1+
√

3, with high probability
the ratio-cut vector corresponding to the planted clusters is the unique optimal solution
of Problem (LP2).

To prove uniqueness, notice that the solution to the LP is not unique only if the objec-
tive function coefficient vector d = {dij}1≤i<j≤n is orthogonal to an edge of the polytope
RMet=2

n . The objective function coefficient vector is generated from a probability distri-

bution which is absolutely continuous with respect to the Lebesgue measure H(n
2) in R(n

2).
The set of all “bad” directions however is the union of finitely many

(
n
2

)
− 1-dimensional

subspaces and hence is a zero H(n
2)-measure set. Hence any optimal solution is unique

with probability one.
We now address the question of optimality of the planted clusters under the SBM.

In particular, we show that the optimality condition (39) holds with high probability.
Namely, we show that, given ε > 0 as defined in the statement of Lemma 1 (since
∆ > 1 +

√
3), we have

P
( ⋂
i,j∈C1

{
dij + η − −

∑
k∈C2

min{dik + din
j , djk + din

i } ≤ 0
})

≥ 1−
(

4e−2(n/2
2 )ε2/16 + ne−nε

2/32 + 2

(
n/2

2

)
e−2nε2/128

)
.

20



We first observe that

P({|η − E[η]| ≥ ε})

= P
(∣∣∣ −∑

i,j∈C1

dij − E
[
−
∑
i,j∈C1

dij

]
+ E

[
−
∑
i,j∈C2

dij

]
− −
∑
i,j∈C2

dij

∣∣∣ ≥ 2ε
)

≤ P
({∣∣∣ −∑

i,j∈C1

dij − E
[
−
∑
i,j∈C1

dij

]∣∣∣ ≥ ε
}
∪
{∣∣∣E [ −∑

i,j∈C2

dij

]
− −
∑
i,j∈C2

dij

∣∣∣ ≥ ε
})

≤ P
(∣∣∣ −∑

i,j∈C1

dij − E
[
−
∑
i,j∈C1

dij

]∣∣∣ ≥ ε
)

+ P
(∣∣∣E [ −∑

i,j∈C2

dij

]
− −
∑
i,j∈C2

dij

∣∣∣ ≥ ε
)

≤ 4e−2(n/2
2 )ε2/16.

(52)

The first inequality holds by set inclusion and the third inequality follows from Hoeffding’s
inequality (see for example Theorem 2.2.6 in [28]), since dij, i, j ∈ Cl are i.i.d. random
variables for every l ∈ {1, 2} and dij ∈ [0, 4].

For notational simplicity, let us denote

tij := Ek
[
−
∑
k∈C2

min{dik + Ej[din
j ], djk + Ei[din

i ]}
]
.

We now observe that

P
( ⋃
i,j∈C1

{∣∣∣tij − Ek
[
−
∑
k∈C2

min{dik + din
j , djk + din

i }
]∣∣∣ ≥ ε

})
≤ P

( ⋃
i∈C1

{∣∣∣din
i − Ei[din

i ]
∣∣∣ ≥ ε/2

})
≤ ne−nε

2/32,
(53)

where the first inequality follows from the linearity of expectation and the second inequal-
ity follows from the application of Hoeffding’s inequality and taking the union bound.
Combining the previous estimates, we conclude the claimed inequality:

P
( ⋂
i,j∈C1

{
dij + η − −

∑
k∈C2

min{dik + din
j , djk + din

i } ≤ 0
})

≥ P
( ⋂
i,j∈C1

{
dij + η − dij − E[η] + tij − −

∑
k∈C2

min{dik + din
j , djk + din

i } ≤ 3ε
})

≥ P
({∣∣∣η − E[η]

∣∣∣ < ε
}
∩
⋂
i,j∈C1

{∣∣∣tij − Ek
[
−
∑
k∈C2

min{dik + din
j , djk + din

i }
]∣∣∣ < ε

}
∩
⋂
i,j∈C1

{∣∣∣Ek [−∑
k∈C2

min{dik + din
j , djk + din

i }
]
− −
∑
k∈C2

min{dik + din
j , djk + din

i }
∣∣∣ < ε

})
≥ 1−

(
4e−2(n/2

2 )ε2/16 + ne−nε
2/32 + 2

(
n/2

2

)
e−2nε2/128

)
.

The first inequality follows from Lemma 1, since ∆ > 1+
√

3; the second inequality holds
by set inclusion; the third inequality is obtained by taking the union bound, followed by
the application of Hoeffding’s inequality, inequalities (52) and (53).

5 Numerical Experiments

In this section, we conduct a preliminary numerical study to demonstrate the desirable
numerical properties of the proposed LP relaxation defined by (LPK). A comprehensive
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computational study including the design and implementation of a separation algorithm
for inequalities (30) is a subject of future research. First, we compare the recovery
properties of the proposed LP relaxation versus the SDP relaxation defined by (5). To
this end, we set m ∈ {2, 3}, K ∈ {2, 3} and generate the points in each cluster according
to the SBM. We set t = 2 in the LP relaxation. As before we denote by ∆ the minimum
distance between the cluster centers. For each fixed configuration (m,K), we consider
various values for ∆; namely, we set ∆ ∈ [2 : 0.01 : ∆̄], where ∆̄ is set to a value at
which recovery is clearly achieved for both algorithms. For each fixed ∆, we conduct
20 random trials. We count the number of times the optimization algorithm returns the
planted clusters as the optimal solution; dividing this number by total number of trials, we
obtain the empirical rate of success. All experiments are performed on the NEOS server [7];
LPs are solved with GAMS/CPLEX [13] and SDPs are solved with GAMS/MOSEK [1].

Our results are depicted in Figure 2. As can be seen from these graphs, in all con-
figurations, the LP clearly outperforms the SDP in recovering the planted clusters. In
particular, results for K = 2 suggest that our recovery guarantee of Section 4 is exces-
sively conservative. In addition, it can be seen that the recovery threshold of the LP
relaxation in dimension m = 3 is better than the threshold in dimension m = 2; this
effect is not reflected in our recovery guarantee and is a subject to future research. We
also remark that in all these experiments, the optimal solution of the LP is a partition
matrix; that is, even when the LP fails in recovering the planted clusters, its optimal
solution is still a partition matrix and hence optimal for the original nonconvex problem.
This is in sharp contrast with the SDP relaxation whose solution is not a partition matrix
whenever it fails in recovering the planted clusters.
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Figure 2: The empirical probability of success of the LP versus the SDP in recovering
the planted clusters when the points are generated according to the SBM.

In all above experiments, we set t = 2; this implies that in cases with K ≥ 3,
the LP relaxation can be further strengthened by adding inequalities of the form (30)
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corresponding to subsets S with |S| > 2. However, such a strengthening implies a
significantly higher cost for the LP relaxation and requires the implementation of a clever
separation algorithm. We now show that even for K > 3, the weakest LP relaxation,
i.e., Problem (LPK) with t = 2, outperforms the SDP relaxation. To this end, we set
m = 2 and let K ∈ {4, 5}; the points in each cluster are generated according to the
SBM and the cluster centers have a hive-shaped geometry (see Figure 3). As before, we
set ∆ ∈ [2 : 0.01 : ∆̄] and for each fixed ∆, we conduct 20 random trials. Our results
are depicted in Figure 4. As can be seen from these graphs, the weakest LP relaxation
outperforms the SDP relaxation for both K = 4 and K = 5 clusters.
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Figure 3: Cluster centers γk, k ∈ [K] with hive-shaped geometry. The parameter ∆ is
defined as the distance between two adjacent centers.

2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y 
R

at
e

LP

SDP

(a) K = 4, n = 100

2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

R
ec

ov
er

y 
R

at
e

LP

SDP

(b) K = 5, n = 125

Figure 4: The empirical probability of success of the weakest LP versus the SDP in recov-
ering planted clusters for the SBM in dimension two, with K = 4 clusters (Figure 4(a))
and with K = 5 clusters (Figure 4(b)).

We now illustrate the impact of inequalities (30) on the quality of the LP relaxation via
a simple numerical experiment. As we mentioned before, a careful selection of parameter t
requires the development of a separation algorithm that is beyond the scope of this paper.
We consider two LP relaxations of K-means clustering: (i) Problem (LPK) with t = 2,
referred to as LPt2 and (ii) Problem (LPK) with t = 3, referred to as LPt3. As before,
we set m = 2 and we generate the points according to the SBM. We consider K ∈ {4, 5}
where the cluster centers are chosen as shown in Figure 3. To better understand the
impact of inequalities (30), in addition to recovery, we compare the tightness of the two
LPs. That is, we say that a relaxation is tight, if the returned optimal solution is a
partition matrix as defined by (2). Moreover, we assume that the balls from which the
points are drawn may overlap; that is, we let ∆ ∈ [0 : 0.1 : ∆̄] and for each fixed
∆ we conduct 50 random trials. Indeed in practice, there is often no clear separation
between the underlying clusters, and the recovery question does not make much sense; in
such settings, one is interested in finding an optimal clustering (i.e., an optimal partition
matrix) which may or may not correspond to a planted clustering.

Our results are depicted in Figure 5. Interestingly, while LPt2 and LPt3 have identical
performance with respect to recovery, the addition of inequalities (30) with |S| = 3,

23



clearly improves the tightness of the LP relaxation. This serves as a strong motivation
for developing an efficient separation algorithm for inequalities (30). We conclude by
acknowledging that in order to fully investigate the relative computational benefits of
the LP relaxation versus the SDP relaxation for K-means clustering, a comprehensive
numerical study on various real data sets is needed. This is indeed a subject of future
research.
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Figure 5: Comparing the quality of two LP relaxations, LPt2 vs LPt3 for the SBM in
dimension two, with K = 4 clusters (Figure 5(a)) and with K = 5 clusters (Figure 5(b)).

6 Technical proofs

In this section, we present the two technical lemmas that we utilized to prove Theorem 3.
In the following, for a Borel set A ⊂ Rm and measurable function f : Rm → R, we define

−
∫
A

f(x)dHm(x) :=
1

Hm(A)

∫
A

f(x)dHm(x).

Moreover, for any x ∈ Rm, we denote by xi the ith component of x. Given two points
x, y ∈ Rm, the notation x ‖ y means that x and y are linearly dependent.

Lemma 1. Suppose that the random points are generated according to the SBM. Then
the following inequality holds provided that ∆ > 1 +

√
3:

ε :=
1

3

(
inf
i,j∈C1

Ek
[
−
∑
k∈C2

min{dik + Ej[dinj ], djk + Ei[dini ]}
]
− dij − E[η]

)
> 0. (54)

Proof. Denote by B1 and B2 the balls corresponding to the first and second clusters,
respectively. Up to a rotation we can assume that the center of B1 and B2 are 0 and
∆e1, respectively. For notational simplicity, we denote the ith (resp. jth) point in B1

by x (resp. y). By Lemma 2, it suffices to show that inequality (54) can be equivalently
written as:

max
x,y∈B1

−
∫
B2

max{xT z, yT z}dHm(z)− xTy < 1

2
∆2. (55)

First, notice that for any i ∈ B1 we have

Ei[din
i ] = −

∫
B1
‖x− z‖2dHm(z) = ‖x‖2 +−

∫
B1
‖z‖2dHm(z)− 2xT−

∫
B1
zdHm(z)

= ‖x‖2 +−
∫
B1
‖z‖2dHm(z).

(56)
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By symmetry, the same calculation holds for Ei[din
i ] with i ∈ B2. By (56), we have

E
[
−
∑
k∈B1

din
k

]
= E

[
−
∑
k∈B2

din
k

]
= −
∫
B1

(
‖z‖2 +−

∫
B1
‖w‖2dHm(w)

)
dHm(z) = 2−

∫
B1
‖z‖2dHm(z).

(57)

Hence, by (56) and (57), inequality (54) reads

min
x,y∈B1

−
∫
B2

min{‖x− z‖2 + ‖y‖2, ‖y − z‖2 + ‖x‖2}dHm(z)− ‖x− y‖2 > −
∫
B1
‖z‖2dHm(z),

which expanding the squares gives

min
x,y∈B1

−
∫
B2
‖z‖2 + min{−2xT z,−2yT z}dHm(z) + 2xTy > −

∫
B1
‖z‖2dHm(z). (58)

Via a change of variables

−
∫
B2
‖z‖2dHm(z) = −

∫
B1
‖∆e1 + z‖2dHm(z) = −

∫
B1
‖∆e1‖2 + ‖z‖2 + 2∆eT1 zdHm(z)

= ∆2 +−
∫
B1
‖z‖2dHm(z) + 2∆eT1−

∫
B1
zdHm(z) = ∆2 +−

∫
B1
‖z‖2dHm(z),

hence (58) reads

min
x,y∈B1

−
∫
B2

min{−2xT z,−2yT z}dHm(z) + 2xTy > −∆2,

which is equivalent to (55).

Lemma 2. Inequality (55) holds if and only if ∆ > 1 +
√

3.

Proof. We will prove that the maximum of the left-hand side of inequality (55) over all
x, y ∈ B1 is attained at (e1,−e1). This in turn implies that inequality (55) is satisfied if
and only if

∆ + 1 = −
∫
B2
z1dHm(z) + 1 <

1

2
∆2,

which is true if and only if ∆ > 1 +
√

3; i.e., the desired condition.
Define

F (x, y) := −
∫
B2

max{xT z, yT z} − xTydHm(z).

Our goal is to show that
max
x,y∈B1

F (x, y) = F (e1,−e1). (59)

We divide the proof in several steps:

Step 1. Slicing:
Let z, w be any pair of points in B2 satisfying z1 = w1, z2 = −w2 ≥ 0, zj = wj = 0

for all j ∈ {3, . . . ,m}. Define

H(x, y) :=

{
1

2
max{xT z, yT z}+

1

2
max{xTw, yTw} − xTy

}
.
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Then (59) holds if the following holds

max
x,y∈B1

H(x, y) = H(e1,−e1). (60)

Proof of Step 1. Since

F (x, y) =
1

Hm(B2)

∫ ∆+1

∆−1

∫
{z1=s}∩B2

max{xT z, yT z} − xTydHm−1(z)ds,

to show (59) it is enough to show that the function

G(x, y) :=

∫
{z1=s}∩B2

max{xT z, yT z} − xTydHm−1(z)

is maximized in x = e1, y = −e1, for every s ∈ [∆ − 1,∆ + 1]. Denoting A := {z1 =
s, z2 ≥ 0} ∩ B2, then

G(x, y) =

∫
A

1

2
max{xT z, yT z}+

1

2
max{xT (2se1 − z), yT (2se1 − z)} − xTydHm−1(z).

Hence, it is enough to prove that for every s ∈ [∆− 1,∆ + 1] and for every z ∈ A,

max
x,y∈B1

{
1

2
max{xT z, yT z}+

1

2
max{xT (2se1 − z), yT (2se1 − z)} − xTy

}
, (61)

is achieved at (e1,−e1). Since Problem (61) is invariant under a rotation of the space
around the axis generated by e1, we conclude that solving Problem (61) is equivalent to
solving Problem (60).
Step 2. Symmetric distribution of the maxima:

Let z, w be any pair of points as defined in Step 1. Define

I(x, y) :=
1

2
xT z +

1

2
yTw − xTy.

In order to show that (60) holds, it suffices to prove that

max
x,y∈B1

xT z≥yT z, yTw≥xTw

{I(x, y)} ≤ H(e1,−e1) = z1 + 1. (62)

Proof of Step 2. Assume by contradiction that (62) holds, but (60) does not hold. Then
there exists z, w ∈ B2, z1 = w1, z2 = −w2 and zj = wj = 0 for all j ∈ {3, . . . ,m} and
x̄, ȳ ∈ B1 such that x̄T z ≥ ȳT z, x̄Tw ≥ ȳTw and H(x̄, ȳ) > H(e1,−e1). We deduce that

H(e1,−e1) < H(x̄, ȳ) =
1

2
x̄T z +

1

2
x̄Tw − x̄T ȳ ≤ max

x,y∈B1

1

2
xT z +

1

2
xTw − xTy

= max
x∈B1

1

2
xT z +

1

2
xTw + ‖x‖.

(63)

Since the function 1
2
xT z + 1

2
xTw + ‖x‖ is convex in x, then

max
x∈B1

1

2
xT z +

1

2
xTw + ‖x‖ = max

x∈∂B1

1

2
xT z +

1

2
xTw + ‖x‖ = max

x∈∂B1

1

2
xT z +

1

2
xTw + 1. (64)
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The maximization problem on the right hand side of (64) has critical points satisfying

z + w + 2λx = 0. (65)

Since z, w ∈ B2, z1 = w1, z2 = −w2 ≥ 0 and zj = wj = 0 for every j = 3, . . . ,m, then
equation (65) implies that x ‖ e1. We deduce that any maximum point of (64) satisfies
x = te1, with t ∈ [−1, 1]:

max
x∈∂B1

1

2
xT z +

1

2
xTw + 1 = max

t∈[−1,1]
tz1 + 1, (66)

and the maximum point of (66) is attained at t = 1, since z1 > 0. Combining (63), (64)
and (66), we deduce the contradiction H(e1,−e1) < z1 + 1 = H(e1,−e1).
Step 3. Reduction from balls to disks:

To show the validity of (62), we can restrict to dimension m = 2.
Proof of Step 3. We fix z = (z1, z2, 0, . . . , 0) and w = (z1,−z2, 0, . . . , 0). Denote

x = (x1, x
′) and y = (y1, y

′), where x′ := (x2, . . . , xm) and y′ := (y2, . . . , ym). We will
use the same notation also for z, w. Moreover denote x̃ = (x1, x̃

′) and ỹ = (y1, ỹ
′), where

x̃′ := (x̃2, 0, . . . , 0), ỹ′ := (ỹ2, 0, . . . , 0), such that ‖x′‖ = ‖x̃′‖ and ‖y′‖ = ‖ỹ′‖, x̃2 ≥ 0
and ỹ2 ≤ 0. To prove the claim, it suffices to show that the maximum in (62) is attained
at x, y ∈ span{e1, e2}. To this end, it is enough to show that I(x, y) ≤ I(x̃, ỹ), which is
equivalent to

1

2
(x′)T z′ +

1

2
(y′)Tw′ − (x′)Ty′ ≤ 1

2
(x̃′)T z′ +

1

2
(ỹ′)Tw′ − (x̃′)T ỹ′.

In turn, this inequality is valid because

(i) by definition x̃′ ‖ z′, ỹ′ ‖ w′, x̃2 ≥ 0, ỹ2 ≤ 0 and z2 ≥ 0; then we have (x′)T z′ ≤
(x̃′)T z′ and (y′)Tw′ ≤ (ỹ′)Tw′.

(ii) by definition ‖x′‖ = ‖x̃′‖, ‖y′‖ = ‖ỹ′‖, x̃2 ≥ 0, ỹ2 ≤ 0, and x̃′ ‖ ỹ′; then we have
(x′)Ty′ ≥ (x̃′)T ỹ′.

Step 4. Reduction from disks to circles:
In order to prove Problem (62), it is enough to show that

max
x,y∈∂B1

xT z≥yT z, yTw≥xTw

I(x, y) ≤ H(e1,−e1) = z1 + 1, (67)

for every z ∈ B2, z1 = w1 and z2 = −w2 ≥ 0.
Proof of Step 4. Fix x, y ∈ B1. To prove this step, it is enough to find x′, y′ ∈ ∂B1

such that I(x′, y′) ≥ I(x, y). Let us denote x̄ = x/‖x‖ if x 6= 0 and x̄ = e1 if x = 0. Let
us denote ȳ = y/‖y‖ if y 6= 0 and ȳ = e1 if y = 0. Since x, y, z, w are fixed, we define the
constants a = 1

2
x̄T z, b = 1

2
ȳTw and c = x̄T ȳ. We consider the problem

max
(r1,r2)∈[−1,1]2

I(r1x̄, r2ȳ) = max
(r1,r2)∈[−1,1]2

r1a+ r2b− r1r2c.

It is well-known that the maximum of a bilinear function over a box is attained at a
vertex of the box and this completes the proof.
Step 5. Symmetric local maxima:
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For any pair x, y ∈ ∂B1 of the form x1 = y1 and x2 = −y2, we have

I(x, y) ≤ H(e1,−e1).

Proof of Step 5. Given such symmetric pair (x, y), the objective function evaluates to
I(x, y) = z1x1 + z2x2 − x2

1 + x2
2. Using x2

1 + x2
2 = 1 and z2

√
1− x2

1 ≤ z2, it suffices to
show that

z2 ≤ 2x2
1 − z1x1 + z1, ∀x1 ∈ [−1, 1]. (68)

Since the function f̂(x1) := 2x2
1 − z1x1 + z1 on the right hand side of (68) is a convex

parabola in x1, its minimum is either attained at one of the end points or at x̃1 = z1
4

,
provided that −1 ≤ z1

4
≤ 1. Since ∆ − 1 ≤ z1 ≤ ∆ + 1, the point x̃1 lies in the domain

only if ∆− 1 ≤ z1 ≤ min{4,∆ + 1}. The value of f̂ at x1 = −1 and x1 = 1 evaluates to
2 + 2z1 and 2, respectively, both of which are bigger than z2. Hence it remains to show
that √

1− u2 ≤ (u+ ∆)− (u+ ∆)2

8
, −1 ≤ u ≤ min{4−∆, 1},

where we set u := z1 − ∆ and we use that z2 ≤
√

1− u2. Since u + ∆ ≤ 4, the right
hand side of the above inequality is increasing in ∆; hence it suffices to show its validity
at ∆ = 2; i.e.,

√
1− u2 ≤ (u+ 2)− (u+ 2)2

8
, −1 ≤ u ≤ 1.

The right-hand side of the above inequality is concave and hence is lower bounded by
its secant line through the boundary points (−1, 7/8), (1, 15/8); hence it suffices to show
that

√
1− u2 ≤ 1

2
(u + 11

4
) for all −1 ≤ u ≤ 1. Squaring both sides and rearranging

the terms, the above inequality can be equivalently written as u2 + 11
10
u + 57

80
≥ 0, where

−1 ≤ u ≤ 1. It can be shown that the minimum of the left hand side of this inequality
is attained at u = −11

20
and is equal to 0.41 and this completes the proof.

Step 6. Decomposition of the circle:
To solve Problem (67), it suffices to solve

max
x,y∈∂B1∩{x1≤0, y1≥0}
xT z≥yT z, yTw≥xTw

I(x, y) ≤ H(e1,−e1) = z1 + 1, (69)

for every z ∈ B2, z1 = w1, z2 = −w2 ≥ 0.
Proof of Step 6. We first consider the case when x1 ≤ 0 and y1 ≤ 0. Since z1 > 0,

then x1z1 ≤ −x1z1, y1z1 ≤ −y1z1. We deduce that I(x, y) ≤ I((−x1, x2), (−y1, y2)).
Now, since the case {x1 ≥ 0, y1 ≤ 0} is symmetric to the case {x1 ≤ 0, y1 ≥ 0}, we

just need to show that

max
x,y∈∂B1∩{x1≥0, y1≥0}
xT z≥yT z, yTw≥xTw

I(x, y) ≤ H(e1,−e1) = z1 + 1.

Consider x, y ∈ ∂B1 such that x1 ≥ 0, y1 ≥ 0, xT z ≥ yT z, yTw ≥ xTw. If x2, y2 are both
negative (resp. both positive), we can consider the new couple (x1,−x2), (y1, y2) (resp.
(x1, x2), (y1,−y2)), which gives a bigger (or equal) value for I. Hence, we can restrict
our study to the case x2 ≥ 0 and y2 ≤ 0. We denote in spherical coordinates x = (1, θ),
y = (1, η), z = (‖z‖, γ) and w = (‖z‖, 2π − γ). Since x, y ∈ ∂B1, x1 ≥ 0, y1 ≥ 0, x2 ≥ 0
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and y2 ≤ 0 then θ ∈ [0, π/2] and η ∈ [3π/2, 2π]. Furthermore, since z, w ∈ B2, we can
easily verify that

γ ∈ [0, π/4), (70)

since the straight line parallel to e1 + e2 does not intersect B2, for every ∆ ≥ 2.
With this notation we have

I(θ, η) =
1

2
‖z‖ cos(θ − γ) +

1

2
‖z‖ cos(η + γ)− cos(η − θ).

It then follows that the critical points of the above function have to satisfy

1

2
‖z‖ sin(θ − γ) + sin(η − θ) = 0, and − 1

2
‖z‖ sin(η + γ) + sin(η − θ) = 0.

Subtracting the two equations, since ‖z‖ > 0, we deduce that

sin(θ − γ) = − sin(η + γ). (71)

We observe that θ − γ ∈ [−π/2, π/2] and η + γ ∈ [3π/2, 5π/2]. Since sin(s) is injective
for s ∈ [−π/2, π/2], we deduce that the only solution is θ = 2π − η. This critical
point corresponds to a symmetric couple x1 = y1, x2 = −y2 and by Step 5 we have
I(x, y) ≤ H(e1,−e1). Up to rotation, the boundary cases of θ and η coincide. Hence,
we are just left to study the boundary case θ = 0, or equivalently (x, y) = (e1, y) (the
boundary case θ = π/2 gives x1 ≤ 0 and will be threated in Step 7). In this case, since
y1 ≥ 0 and y1, y2, z2 ∈ [−1, 1]

I(e1, y) =
1

2
z1 +

1

2
y1z1 −

1

2
y2z2 − y1 ≤

1

2
z1(1 + y1) + 1/2 < z1 + 1 = H(e1,−e1).

Step 7. We solve Problem (69).
Proof of Step 7. We now assume that x, y ∈ ∂B1, x1 ≤ 0, y1 ≥ 0, xT z ≥ yT z and

yTw ≥ xTw. As explained in Step 6, we can also assume that x2 ≥ 0 and y2 ≤ 0. This
implies that, using the notation of Step 6, we need to study the domain

(θ, η) ∈ [π/2, π/2 + 2γ]× [3π/2, 2π]. (72)

Using a similar line of argument as in Step 6, all critical points in this region must
satisfy (71). By (70), since the function sin(s) is strictly increasing in [−γ, π/2− γ] and
sin(s) > sin(π/2 − γ) = sin(π/2 + γ) for every s ∈ (π/2 − γ, π/2 + γ), it follows that
sin([π/2− γ, π/2 + γ]) ∩ sin([−γ, π/2− γ]) = {sin(π/2− γ)} and that the equation (71)
is never satisfied in the interior of the region (72). This implies that the only maximum
points can be achieved at the boundary. We are just left to check that for all the boundary
points (x, y) of this region, I(x, y) ≤ H(e1,−e1).

We start with θ = π/2, that is, all the points of the form (e2, y) with y ∈ ∂B1. We
claim that

I(e2, y) =
1

2
z2 +

1

2
y1z1 −

1

2
y2z2 − y2 ≤ z1 + 1, ∀y ∈ ∂B1.

The maximum of the linear function I(e2, y) over y ∈ ∂B1 is attained at

ỹ =
(z1,−(z2 + 2))√
z2

1 + (z2 + 2)2
.
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Hence, it suffices to show that the following inequality is valid:

I(e2, ỹ) =
1

2
z2 +

1

2

√
z2

1 + (z2 + 2)2 ≤ z1 + 1, ∆− 1 ≤ z1 ≤ ∆ + 1, 0 ≤ z2 ≤ 1,

Defining u = z1 −∆, the above inequality can be equivalently written as:

√
1− u2 ≤ (u+ ∆)− (u+ ∆)2

4(u+ ∆ + 2)
, −1 ≤ u ≤ 1, (73)

First, notice that the right hand side of inequality (73) is increasing in ∆, hence it
suffices to show its validity at ∆ = 2. Second this expression is concave is and hence can
be lower bounded by its secant line, denoted by au+ b; therefore, it suffices to show that√

1− u2 ≤ au + b. Squaring both sides, we need to show that (au + b)2 + u2 ≥ 1 for
−1 ≤ u ≤ 1 and it can be checked that the latter inequality is valid.

The calculations for the boundary case η = 3π/2, that is all the points (x,−e2) with
x ∈ ∂B1, are symmetric to the case θ = π/2 (up to a rotation).

We now consider the boundary case η = 2π, that is all the points (x, e1) with x ∈ ∂B1

and we claim that I(x, e1) ≤ z1 + 1 for every x ∈ ∂B1. Indeed, since z1 ≥ 1

I(x, e1) =
1

2
x1z1 +

1

2
x2z2 +

1

2
z1 − x1 =

(
1

2
− 1

z1

)
x1z1 +

1

2
x2z2 +

1

2
z1, ∀x ∈ ∂B1.

Since 1
z1
∈ (0, 1], we have

(
1
2
− 1

z1

)
x1z1 ≤ 1

2
z1 and since x2, z2 ∈ [−1, 1], we have

I(x, e1) ≤ 1

2
z1 +

1

2
x2z2 +

1

2
z1 ≤ z1 + 1 = H(e1,−e1), ∀x ∈ ∂B1.

The last boundary case is θ = π/2 + 2γ, for every η ∈ [3π/2, 2π]. In this case, we
observe that θ− γ ≥ 2π− η+ γ, where θ− γ is the angle between x and z and 2π− η+ γ
is the angle between y and z). Hence xT z ≤ yT z and

I(x, y) ≤ 1

2
yT z +

1

2
yTw − xTy ≤ y1z1 + 1 ≤ z1 + 1 = H(e1,−e1).

This concludes the proof of Step 7.
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