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Dams and other anthropogenic barriers have caused global ecological and hydrological upheaval in the blink of the geological eye. In the present
article, we synthesize 307 studies in a systematic review of contemporary evolution following reduced connectivity and habitat alteration on
freshwater fishes. Genetic diversity loss was more commonly observed for small populations impounded in small habitat patches for many
generations behind low-passability barriers. Studies show that impoundments can cause rapid adaptive evolution in migration timing, behavior,
life history, temperature tolerance, and morphology, as well as reduce phenotypic variance, which can alter adaptive potential and ecological
roles. Fish passage structures can restore migratory populations but also create artificial selection pressures on body size and migration. The
accelerating pace of dam removals and the paucity of data for fishes other than salmonids, other vertebrates, invertebrates, and tropical and
southern hemisphere organisms highlights the urgent need for more studies on the rapid evolutionary effects of dams.
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he installation of dams has reshaped freshwater
ecosystems across the globe. Dam-induced disturbance
compounds other environmental changes wrought by cli-
mate change, eutrophication, and landscape changes (Fuller
et al. 2015). Despite these adverse consequences, dam con-
struction is accelerating in the developing regions of tropi-
cal South America, Asia, Eastern Europe, and Africa and is
expected to severely fragment 89% of global river flows by
2030 (Zarfl et al. 2014, Grill et al. 2019). Although the eco-
logical impacts of dams have been subject to close examina-
tion for many decades, the evolutionary effects were not well
studied until recently (figure 1a) and continue to receive less
attention than the ecological consequences. Anthropogenic
pressures can cause rapid evolution in affected populations,
sometimes causing intraspecific differentiation that has been
demonstrated to create ecological effects of comparable
magnitude to those seen among separate species (Hairston
et al. 2005, Post et al. 2008, Des Roches et al. 2018). An
understanding of rapid evolutionary processes is critical
for ecologists and managers alike, because humans disrupt
patterns of natural selection and phenotypic evolution,
potentially leading to undesirable outcomes such as fisheries
collapse or altered ecosystem stability (Darimont et al. 2009,
Fugeére and Hendry 2018).
Dams and other barriers have strong ecological effects,
and these effects frame the potential for evolutionary change.

Barriers decrease population connectivity by physically
blocking the movement of fishes, although smaller barriers
may allow passage to a subset of the population. These con-
nectivity changes can alter community dynamics by blocking
access to upstream habitat for ecologically important species,
such as key predators (Flecker et al. 2010). Furthermore,
the physical and chemical environment can be altered both
upstream and downstream of barriers. Stream barriers can
alter channel geomorphology, reduce discharge, decouple
the natural correlation between discharge and temperature,
and affect the magnitude, frequency, and duration of floods
(Ligon et al. 1995, Poft et al. 1997, Stanford and Ward 2001,
Olden and Naiman 2010, Zarri et al. 2019). When dam con-
struction changes the river into a lentic environment, it can
increase water depth, clarity, sediment deposition, sediment
retention, and pelagic production, while also reducing fish
diversity and creating habitat for lentic fishes, macrophytes,
and plankton (Freedman et al. 2014, Olden 2016, Arantes
et al. 2019). Finally, barriers modify biogeochemical cycles
and impede the flow of nutrients downstream (Maavara et al.
2015, 2020), in addition to blocking migratory vertebrates
from transporting nutrients to the upper reaches of the
watershed (Pringle 1997, Friedl and Wiiest 2002, Greathouse
et al. 2006, Flecker et al. 2010, Childress et al. 2014). In short,
dams act as barriers to population connectivity and alter the
physical and biological environment.
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Figure 1. Classification of studies regarding the evolutionary consequences of anthropogenic barriers for fishes. (a) Yearly
count of studies using different types of neutral markers, indicating prevalence of microsatellite studies for the last two
decades and SNP studies becoming more common in the last 5 years. Note that mitochondrial DNA studies were not
included in this graph (see the supplemental material). Different types of SNP studies include RAD (6 studies on fishes),
SNP panels (10), genomic SNPs (1), and microhaplotype (1). (b) Barrier type, including natural barriers, colored by fish
family. (c) Number of papers binned into evolutionary response, dominated by genotype and phenotype studies, with few
studies combining both. (d) Common phenotypic responses colored by fish family.

The pervasive impacts of dams on aquatic ecosystems
raises the question What are the evolutionary consequences of
dams and other anthropogenic barriers on freshwater fishes?
Portions of this question have been addressed in recent
symposia (Ross 2015), as well as in reviews on Pacific sal-
monids (Waples et al. 2008), fragmentation in response to
dams (Gido et al. 2016), and fish passage (McLaughlin et al.
2012). In the present article, we compile all these pieces in
a systematic review while bringing in new findings made
possible by the genomic revolution. In particular, the expo-
nential decrease in sequencing and computation cost has
facilitated studies of nonmodel organisms using techniques
including whole genome analysis, transcriptomics, reduced
representation sequencing such as RADseq, and targeted
genotyping of genome-wide markers. The evolutionary
impact of stream barriers is multifaceted and highly context
dependent, but studies generally involve two major classes
of evolutionary response: altered genetic connectivity in
response to fragmentation and adaptation to altered habitat.
We preface these sections with a discussion on riverscapes
and how different barrier types and location in the water-
shed mediate evolutionary outcomes. Finally, we examine
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evolutionary restoration and selective filters imposed by
barrier mitigation strategies, including fishway installation,
barrier removal, and fish translocation.

We used the Web of Science and a search protocol from
the Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) to structure our review (Moher
et al. 2015). Our search of relevant keywords identified
2,383 studies, which, on the basis of first- and second-pass
eligibility criteria to retain studies on the evolutionary con-
sequences of natural and anthropogenic barriers for aquatic
organisms (see the supplemental material), were narrowed
by two reviewers to 307 studies. On the basis of our search
results, we focus on fishes, which were the subject of 90% of
the studies in our data set. Other taxa included herpetofauna
(4%), invertebrates (5%), and plants (1%), and there was
insufficient information to evaluate whether the findings
discussed are generally applicable to these understudied
taxa. Finally, the studies included in our review extensively
cover northern latitudes (81%), whereas fewer studies took
place in the tropics (13%) and in southern latitudes (6%; see
the supplemental material). Definitions of terms are avail-
able in table 1.
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Table 1. Definitions.

Term

Definition

Adaptive loci
Allele

Anadromy

Barrier passability

Common rear (common garden)

Culvert
Dispersal

Effective population size

Gene flow
Genotype
Heritable
Heterozygosity
Hybridization
Lentic

Locus

Lotic

Migration

Neutral locus
Plasticity

Phenotype
Population structure
Resident

River order

Riverscape

Genetic variants that influence individual phenotype and fitness
One genetic variant at a particular locus

Migration from the ocean to freshwater for spawning

The probability that an individual can overcome a barrier

To raise different populations in the same environment and decouple the genetic and plastic
contributions to a trait

Anthropogenic structure that allows a stream to cross under a road
Movement and settling in a new location from birth place, which potentially leads to gene flow

The size of an ideal population that loses genetic diversity at the same rate as the actual population
under study, loosely thought of as the number of breeding individuals per generation

Movement of individuals followed by successful reproduction

Set of alleles an individual has at a single locus or several loci

A trait that, at least in part, is genetically determined by a parent
Proportion of individuals with multiple alleles at a locus
Reproduction between two distinct populations or species
Nonflowing water, such as in a reservoir or lake

A physical region in the genome that can have distinct alleles and therefore show variation among
individuals

Flowing water, such as in a river

An adaptation to spatiotemporally fluctuating resources, where individuals move to spawn or feed,
followed by death or a return to adult habitat

Locus that is not under selection, used to assess connectivity

The expression of several different phenotypes by a single genotype

Observable traits that are the product of an individual’'s genotype and environment

Genetic differences among populations that indicate levels of connectivity and time since divergence
An individual that does not migrate to complete its life cycle

Measurement of stream location in watershed, where low numbers indicate upstream streams and high
numbers indicate downstream rivers

The elements of a landscape that include or affect the river environment, integrating longitudinal, lateral,
vertical, and temporal connectivity

Natural or anthropogenic selection
leading to evolution

The process of adaptation, where individuals expressing certain traits disproportionately reproduce,

Barrier type, passability, and location within
riverscapes

The riverscape concept integrates all aspects of a land-
scape that are connected to fresh water through longi-
tudinal, lateral, vertical, or temporal links (Fausch et al.
2002). Furthermore, this concept provides an appropriate
place to understand the degree to which in-stream barri-
ers alter connectivity, primarily in the longitudinal and
temporal axes. Measurements of connectivity across the
riverscape are grounded in metrics such as the Dendritic
Connectivity Index (Cote et al. 2009) but have expanded
to include advances in resistance pathways (Zeller et al.
2012) and graph theory (Eros et al. 2011). There are
many barriers to movement across riverscapes, including
distance, resistance due to unfavorable habitat, and local
adaptation along ecological gradients (Orsini et al. 2013,
Davis et al. 2018), but we focus on anthropogenic barriers
because they present a distinct and pervasive evolutionary
disturbance.

https://academic.oup.com/bioscience

Passability is central to understanding the evolution-
ary consequences of barriers because the degree of isola-
tion strongly affects the risk of genetic diversity loss and
inbreeding (Frankham et al. 2002). Passability is affected
by barrier height, barrier type, direction of passage, river
flow, location within watersheds, and fish traits. The
most common barrier types are culverts, then low-head
dams with small or nonexistent water storage capacity,
then large dams with reservoirs (Rosenberg et al. 2000).
In the basin of the Laurentian Great Lakes, culverts are
38 times more common than all other barrier types
combined (Januchowski-Hartley et al. 2013). High bar-
rier density decreases habitat patch size, which tends to
reduce population size and accelerate genetic drift within
populations, whereas multiple barriers between popula-
tions appear to additively reduce connectivity (Jager
2005a, 2005b, Raeymaekers et al. 2008, Whiteley et al.
2013). Although culverts typically have higher passability
than dams, poorly designed culverts can be substantial
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Figure 2. Conceptual diagram of evolutionary response to anthropogenic barriers. Note increased rates of documented
trait evolution in response to larger dams, but greater fragmentation and reduced genetic diversity of resident species
in upper watersheds. Bars represent change from upper watershed to lower watershed in trait evolution, genetic
diversity, and barrier type. In the Laurentian Great Lakes, culverts are much more common than small dams, which
are much more common than large dams (Lehner et al. 2011, Januchowski-Hartley et al. 2013). Upper watersheds,
experience higher fragmentation and reduced patch size, but by barriers that commonly have greater rates of
passability. Habitat is not altered to the same degree as experienced in lower watersheds and larger dams, and trait
evolution appears to be rarer in upper watersheds. In contrast, mainstem rivers typically are less fragmentated with
larger patch sizes, but barriers can be completely impassible and trait evolution is more common given the high degree

of habitat alteration.

barriers to movement when too narrow, too long, or with
a downstream overhang and waterfall; therefore, many
culverts are completely impassible to most individu-
als moving upstream (Nislow et al. 2011, Macpherson
et al. 2012, Januchowski-Hartley et al. 2013, Wood et al.
2018). Large dams typically cause greater fragmentation
and phenotypic divergence than smaller dams or, if they
create a reservoir, alter upstream or downstream habitat
or are built on rivers that have long-distance migratory
fish species (Fluker et al. 2014, Smith et al. 2019). In
the Great Lakes, small dams are 18 times more com-
mon and impound three to four times as much water as
large dams, although they receive less attention in the
evolutionary literature (figure 2; Rosenberg et al. 2000).
Low-head dams include weirs, diversions, or watermills
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and typically release water over the barrier, causing wide-
spread fragmentation of species that cannot jump over
them (Blanchet et al. 2010). Drastically reduced water
flow can make even small barriers impassible (Dehais
et al. 2010, Bohling et al. 2019). Recent studies have
shown that hydropeaking dams, which release flow on
the basis of energy demand and cause river discharge
to fluctuate dramatically and at high frequencies, can
reduce fish effective population size and genetic diver-
sity trajectories more than run-of-the-river or bypass
dams, which do not have an upstream storage reservoir
(Valenzuela-Aguayo et al. 2020, Peek et al. 2021). Large
dams without fishways block upstream passage for most
species, whereas downstream passage can be possible
for early life-stage individuals with an increased risk of
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Box 1. All study designs are not created equal.

The physical structure of a watershed present challenges when trying to implement a repeatable study with true replication. Riverscapes
display a branching dendritic layout, high habitat heterogeneity, and a predictable change in abiotic and biotic environments from the
upper watershed to the mainstem (Vannote et al. 1980, Poff et al. 1997, Fagan 2002, Fausch et al. 2002, Benda et al. 2004). At first
glance, the most appropriate way to assess the evolutionary impact of a dam may be to compare populations upstream and downstream
of a dam. However, population size and genetic diversity for many species are positively correlated with river order even without a dam,
whereas phenotypes such as individual swimming performance can differ predictably with flow regime. Furthermore, when estimating
population-level characteristics, the analysis of a single population below the barrier and a single population above the barrier does
not provide replication. The addition of several populations spaced evenly above and below the barrier can allow better estimation of
connectivity impacts by comparing gene flow across fragmented and free-flowing reaches. However, these findings may be confounded
if genetic diversity decreases in lower river orders because of decreased effective population size, even in free-flowing watersheds. The
literature suggests that the strongest inference for assessing connectivity impacts from barriers comes from multiple comparisons of
a fragmented and free-flowing watershed, where evenly spaced populations of the same species along the adjacent watersheds can
be corrected for river order. Helpful factors in determining the distance between sampling sites include the predicted granularity of
population structure and the density of barriers, while being constrained by funding and time. Furthermore, this approach allows the
comparison of barriers across spatial scales, from the isolated reach to entire watershed. However, this begins to present challenges
around sampling effort, habitat differences, trophic structure, or water quality, so study watersheds must be chosen with care.

Although comparisons of fragmented versus free-flowing watersheds are robust to natural changes in genetic diversity, other study
designs can be effective in examining the genetic consequences of anthropogenic barriers: above or below the barrier, several popula-
tions across a single fragmented watershed, before and after the installation or removal of a barrier, and reservoir versus upstream
river populations (figure 3). Examining multiple populations within fragmented watersheds is effective for quantifying the impact of
different barrier types across different species, but studies need to assess whether genetic diversity naturally decreases with decreas-
ing river order for their focal species. We found few before-and-after studies (figure 3), which are effective in assessing phenotypic
impacts of barrier installation, fishway installation, or barrier removal. Historical collections provide the most robust but underused
opportunity to examine evolutionary responses to barrier installation and removal, although degraded DNA in archived samples can
present challenges for robust genomic analysis. Furthermore, they are the only pathway to quantifying genetic changes in response
to very old dams where we otherwise have no way of knowing the original genetic characteristics; modern comparisons cannot show
what has been lost or changed over centuries (Gustafson et al. 2007).

mortality due to power generation turbines and unfavor-
able conditions below hydroelectric dams.

Culverts are more common in headwater reaches where
streams are relatively small, whereas larger barriers are more
common where there is sufficient water flow to generate
mechanical or electrical power, divert and distribute water,
or a need for flood control (figure 2). Genetic diversity can
covary with river order, because gene flow and effective
population size of nonmigratory species typically decreases
farther upstream or at higher elevations (Narum et al. 2008,
Dehais et al. 2010, Haxton et al. 2015, Winans et al. 2015,
Blanchet et al. 2020). Well-designed studies (box 1) that
control for natural reductions in genetic diversity farther
upstream suggest that barriers in upper tributaries can be
more harmful for resident species, because they impound
smaller and lower-diversity populations that can become
inbred (Heggenes and Reed 2006, Whiteley et al. 2010,
Haxton et al. 2015, Pavlova et al. 2017, Coleman et al.
2018). Although culverts typically have higher passability
than dams, lower flows in small streams may make barrier
passability more challenging, and even reduce allelic rich-
ness of upstream populations as much as natural waterfalls
(Raeymaekers et al. 2008, Torterotot et al. 2014). However,
patch size remains a crucial predictor in genetic diversity
loss, with large patches above barriers harboring larger

https://academic.oup.com/bioscience

populations and greater genetic diversity compared to
smaller patches (Whiteley et al. 2013). Furthermore, migra-
tory species can move into upper tributaries during spawn-
ing migrations, resulting in seasonally fluctuating patterns
of genetic diversity. In some species, morphological and
physiological phenotypes vary predictably with flow regime
(Langerhans 2008), suggesting that river order may drive
trait expression. Despite being more abundant than dams,
culverts are vastly understudied in the evolutionary litera-
ture (figures 1b and 2), which is an important knowledge gap
given the natural decrease of genetic diversity in the headwa-
ters and risk of inbreeding leading to local extinction.

Dams as barriers: Shifting genetic diversity in
response to altered connectivity

The alteration in connectivity caused by dams diminishes
gene flow, which can reduce effective population size and
genetic diversity. Genetic diversity is a crucial predictor
of population persistence, because reduced diversity can
result in inbreeding depression, reduced fitness, or extirpa-
tion several decades after fragmentation (Frankham et al.
2002, Vera-Escalona et al. 2018). Genetic diversity at neu-
tral loci is loosely but not always correlated with adaptive
potential and diversity at adaptive loci (Messer et al. 2016,
Kardos et al. 2021). Decreases in genetic diversity at neutral
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Figure 3. Frequency of different study designs used to examine the evolutionary impact of barriers, colored by whether
papers examined phenotypic outcomes, genetic outcomes, or both. Note the low numbers of studies before and after barrier
installation or removal and the intermediate number of studies on continuous versus fragmented watersheds, which are

commonly the most robust comparisons.

loci indicate the sensitivity of a population to reductions in
both connectivity and the number of breeding individu-
als per generation. The majority of the studies we exam-
ined included a genetic component (figures lc and 3),
primarily measured by microsatellite and, in more recent
years, small panels of single nucleotide polymorphisms
(SNPs), genome-wide SNPs generated with restriction-
site associated DNA (RAD) studies, and gene expression
(transcriptomes) studies. In this section, we synthesize
the 152 studies in our data set that expressly measure how
anthropogenic barriers alter genetic connectivity, popula-
tion differentiation, and reductions in genetic diversity, as
well as the species and barrier features that mediate these
responses. Where applicable, we include studies on natural
barriers to understand the potential long-term genetic
implications.

Anthropogenic barriers reduce genetic connectivity of
species that disperse or migrate over long distances, unless
they are capable of moving across the barrier (Bessert and
Orti 2008, Blanchet et al. 2010). The largest and least pass-
able natural barriers cause the greatest genetic isolation
(Kelly and Rhymer 2005, Deiner et al. 2007, Buonaccorsi
et al. 2017, Bohling et al. 2019). Anthropogenic and
natural barriers are typically more passable when fish are
traveling downstream, whereas upstream passage may
only be possible during high flows (Raeymaekers et al.
2009, Junker et al. 2012, Peacock et al. 2016, Kelson et al.
2020). This asymmetrical passage can create a system
of one-way valves allowing only downstream gene flow,
which studies on natural barriers have shown to isolate
upstream populations and reduce the effective population
size of the metapopulation (Hénfling and Weetman 2006,
Gomez-Uchida et al. 2013, Bowersox et al. 2016). Over
the long time periods represented by natural barriers,
reduced and unidirectional gene flow causes a cumulative
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increase of genetic diversity below each waterfall, with the
highest diversity found in anadromous populations con-
nected to the ocean (Crispo et al. 2006, Junge et al. 2014,
Sandlund et al. 2014, Harris et al. 2015, Reis et al. 2015,
Erin et al. 2019). When river fish populations have larger
populations downstream and greater allelic richness, dams
can prevent the flow of alleles into upstream populations
(Kitanishi et al. 2012).

Barriers can increase genetic differentiation by decreas-
ing the homogenizing forces of migration and dispersal,
while also accelerating genetic drift, which causes popula-
tion divergence. For populations with high to moderate
dispersal or migratory distance, dams can rapidly increase
genetic differentiation (Bessert and Orti 2008, Leclerc et al.
2008). However, populations subdivided by natural barriers
with low passability are already differentiated and may be
slower to respond to barrier installation (Leblois et al. 2006,
Landguth et al. 2010). Finally, recent population extirpation
and subsequent reestablishment events will alter measure-
ments of genetic divergence, because not enough time has
passed for populations to become differentiated (Kitanishi
et al. 2012, Mcbride et al. 2014).

Although population connectivity is commonly reduced
within a single generation, it can take several generations
for genetic population structure to respond to reduced
gene flow (Deiner et al. 2007, Cayuela et al. 2018). Genetic
differentiation may only occur after many generations of
impoundment, or more quickly if effective population
sizes (N,) are small (Hoffman et al. 2017). In a recent large
study, Ruzich and colleagues (2019) found that genetic
differentiation did not increase after 20 generations of
impoundment for four fishes with high N, (over 3,275).
However, genetic differentiation did increase for small-
mouth bass (Micropterus dolomieu), a predatory species
with high spawning site fidelity and a lower N, (237) than
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the other species. Low N, causes populations to drift faster,
losing allelic diversity at a greater rate and stochastically
shifting allele frequencies (Frankham et al. 2002, Whiteley
et al. 2013, Argentina et al. 2018). If large N, is retained
upstream of dams, however, genetic diversity can remain
high (Kitanishi et al. 2012). Well-designed studies (box 1)
examining genetic diversity loss should therefore consider
the number of impounded generations weighted by dam
passability, the number of barriers, dispersal capabilities
of the species, and estimated changes in patch size that
can drive N, (Kelly and Rhymer 2005, Cote et al. 2009,
Whiteley et al. 2013, Rodeles et al. 2021).

Dams can further reduce genetic diversity of popula-
tions if effective population size decreases to the point of
inbreeding. Lotic species are more susceptible to reduc-
tions in population size and genetic diversity in the
reservoir, whereas lentic species may experience popula-
tion growth and increased genetic diversity (Smith et al.
1983, Whiteley et al. 2013, Farrington et al. 2014, Camak
and Piller 2018). Populations experiencing bottlenecks
or founder effects due to recent recolonization of habi-
tat above waterfalls, as well as reduction in effective
population size due to low-quality or limited habitat, can
show reduced allelic richness and expected heterozygosity
(Neville et al. 2006). Impounded and upstream populations
generally have lower genetic diversity than populations
below dams, although populations directly below large
hydropower dams have shown reduced genetic diversity as
well (Raeymaekers et al. 2008, Pavlova et al. 2017, Ackiss
et al. 2019). Reduced genetic diversity could result from a
selective sweep, because strong selection can diminish the
number of breeding individuals per generation (Corbett-
Detig et al. 2015).

Dams altering habitat: Phenotypic adaptation

Although barriers reduce genetic connectivity and diver-
sity, adaptive evolution can improve individual fitness,
increasing survival and reproduction where habitat has
been perturbed. Selection has the potential to act on a
diverse suite of heritable phenotypes that alter fish survival,
migration, or reproduction in impounded watersheds
(Waples et al. 2008). The magnitude of adaptive evolu-
tion increases with the strength of selective pressure, the
number of generations since impoundment, and the heri-
tability of the trait under selection. The reduction of gene
flow or genetic diversity can inhibit adaptive evolution,
because evolution over short time scales acts on existing
genetic variation rather than new mutations. Over long
time periods, however, studies examining natural barriers
indicate that both selection and drift play a role in shaping
phenotypes. We included the common-rearing studies (3
out of 64 studies, 5%), which can account for and quantify
incomplete inheritance, while also including relevant stud-
ies on field observations (61 out of 64, 95%), which cannot
differentiate between plastic and heritable changes. Where
relevant, we include additional common-rearing studies on

https://academic.oup.com/bioscience
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natural barriers and nonfishes (n = 13 studies). Assessing
the relative importance of evolution, plasticity, and the
evolution of plasticity is critical for understanding evolu-
tionary trajectories and ecological implications (Govaert
et al. 2016). Although the number of studies that examine
both genetic and phenotypic outcomes of barrier installa-
tion is limited (figures 1d and 3), we include them where
relevant. We discuss changes in the mean and variance of
traits that commonly appeared across the 64 phenotypic
studies in our systematic review: migration, behavior, life
history, community-induced shifts, species hybridization,
and morphology (figure 1d).

Barriers can alter selection on migratory and reproduc-
tive phenotypes, underlain by adaptative genomic regions.
Recent studies have uncovered that complex phenotypes
can be controlled, or at least strongly influenced, by
surprisingly small genomic regions (Barson et al. 2015,
Thompson et al. 2020). The 33 studies we reviewed on
migration or reproduction were primarily based on several
well-studied salmonid systems (figure 1d). Dams can
trap anadromous individuals upstream, and populations
either shift toward residency (Yamazaki et al. 2011) or, if
the reservoir habitat is extensive, freshwater migrations
(Hecht et al. 2013, Pearse and Campbell 2018, Abadia-
Cardoso et al. 2019, Larson et al. 2020). If individuals are
able to outmigrate down and over the barrier, upstream
populations can lose migratory alleles and phenotypes
over time (Morita et al. 2000, Morita and Yamamoto 2001,
Pearse et al. 2009, Phillis et al. 2016, Leitwein et al. 2017,
Fukushima et al. 2019). The frequency of alleles associ-
ated with migration in California steelhead were reduced
by 31% above impassible natural barriers and 18% above
impassible anthropogenic barriers, indicating that freshwa-
ter residency can evolve rapidly (Pearse et al. 2014, Apgar
et al. 2017). However, migratory capacity may not disap-
pear entirely: Landlocked sockeye salmon (Oncorhynchus
nerka) resumed anadromy following experimental water
releases 90 years (25 generations) after impoundment
(Godbout et al. 2011, Samarasin et al. 2017), and genetic
diversity at migratory loci was maintained in steelhead
(anadromous Oncorhynchus mykiss) above the Elwha River
and Glines Canyon Dams (Fraik et al. 2021). Common-
rearing studies indicate greater downstream movement
during darkness, growth rates, and earlier maturation rates
below waterfalls, as well as a loss of osmoregulatory capac-
ity above waterfalls (Northcote 1981, Eliassen et al. 1998).
Below barriers, migration can be delayed if outmigrating
juveniles have to pass through reservoirs, whereas growth
can be reduced by cold reservoir releases (Angilletta et al.
2008, Williams et al. 2008, Waples et al. 2017). Because
of these compounding factors, fall-run Chinook salmon
(Oncorhynchus tshawytscha) in the Snake River (United
States) have evolved to outmigrate at age one instead of
as young-of-the-year (Connor et al. 2005, Hegg et al.
2013). Tolerance to cold temperatures directly below dams
appears to be a common phenotypic response, although
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responses indicate high levels of plasticity under the short
time scales imposed by dams (King et al. 1985, Catenazzi
and Kupferberg 2017), and adaptation to altered tempera-
ture regimes within reservoirs has yet to be elucidated.

Behavioral syndromes that increase individual propen-
sity to move upstream through barriers may also be acted
on by passable barriers. Brook trout (Salvelinus fontinalis)
with larger and more streamlined bodies have higher
attempt and success rate at passing culverts, indicating
that passage may be influenced by suites of morphological
and behavioral traits that together function as migratory
syndromes (Goerig et al. 2020). Upstream movements of
European eel (Aguilla anguilla) across small dams selected
for larger individuals with greater endurance and anaero-
bic capacity that also expressed genes related to cognition
(Podgorniak et al. 2015, 2016, 2017). Only four studies in
our data set robustly examined behavioral selection (figure
1d) in fishes following impoundment but advances in tran-
scriptomics may provide alternatives to challenging field
assays in future studies.

Reservoirs create novel habitat for riverine species that
can alter selection on life-history traits such as body size,
maturation, and fecundity (n = 8 studies). In the early years
following impoundment, reservoirs commonly exhibit a
trophic upsurge and increase in fish richness, but richness
appears to decrease as the reservoir ages (Agostinho et al.
2008). Plastic shifts include reduced lifespan and maxi-
mum body size, and increased reproductive effort following
impoundment, whereas size and age at maturity tend to
increase with reservoir size (Donchelle and Panfili 1998,
Meérona et al. 2009). These results corroborate those found
across many fish communities globally, which indicate
reservoirs are disturbed habitats where high-fecundity indi-
viduals thrive (Arantes et al. 2019). These pioneer strategies
likely peak in early years of a reservoir before fish popula-
tions reach high densities.

Changes in community composition and subsequent
changes in competition or predation above barriers can
also drive evolution (n = 4 studies), and studies of natural
barriers provide information on the long-term adaptive
consequences (n = 13 combining all organisms across natu-
ral and anthropogenic barriers). Decreased predator threat
for long periods of time above barrier waterfalls can also
relax selection on pleon size and rostrum length in amp-
hidromous shrimp, boldness, sexual signaling, plate count
and spine length in threespine stickleback (Gasterosteus
aculeatus), and delay senescence and maturation through
altered sexual selection in Trinidadian guppies (Endler
1990, Kristjansson et al. 2002, Brown and Braithwaite
2004, Bryant and Reznick 2004, Olsen and Vellestad 2005,
Ocasio-Torres et al. 2015). However, phenotypic drift can
also occur over protracted isolation above natural barriers,
which likely altered lateral line, vertebra, and fin ray meris-
tics, as well as coloration in Oncorhynchus species (Currens
et al. 1990, Takahashi et al. 2016). Field observations of
white-spotted char (Salvelinus leucomaenis) showed faster
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growth and earlier maturity above small dams, where resi-
dents don’t compete with large anadromous char below the
dam. However, in common-rearing experiments, char from
above barriers grew more slowly and matured later than
char from below barriers (Conover and Schultz 1995), sug-
gesting relaxed selection on growth rate when competition
is lessened above the barrier, as opposed to below-barrier
environments where the growth rate is more correlated
with fitness (Morita et al. 2009). The same pattern was
observed for sticklebacks above and below barrier water-
falls, where common-reared growth rates were greater in
populations experiencing interspecific competition (Olsen
and Vollestad 2005). Other common-rearing studies sug-
gest strong community effects for populations trapped
above waterfalls, such as increased carotenoid sequester-
ing, and decreased parasite resistance (Craig and Foote
2001, Erin et al. 2019). Common-rearing experiments are
essential to understand competition-induced phenotypic
change, because countergradient selection may mask cryp-
tic evolutionary changes.

The reduction of flow variation and available habitat
by impoundment can decrease phenotypic diversity. In
California Chinook salmon, anthropogenically reduced flow
magnitude and variance stabilizes selection on intermedi-
ate emigration times and sizes, in contrast to the natural
environment, which balances selection on several emigra-
tion phenotypes (Sturrock et al. 2020). Fall-run Chinook
salmon enter the watershed late in the season when they
are reproductively mature and spawn farther downstream,
whereas spring-run Chinook enter when premature, migrate
to upper tributaries, and spawn after developing gonads
over the summer (Quinn et al. 2016). Spring-run spawning
habitat has been extensively compressed by dams, which has
resulted in hybridization between spring- and fall-run fish
(Kinziger et al. 2008, Thompson et al. 2019). In some cases,
allelic richness is driven more by introgression between resi-
dent and anadromous ecotypes rather than by barriers, and
transcriptomic studies corroborate that widespread loss of
these highly migratory phenotypes can reduce the adaptive
genetic diversity and gene expression of affected populations
(Rougemont et al. 2020, Thompson et al. 2020), as well as a
valuable source of early spring protein historically relied on
by Native American tribes. The extent to which stabilizing
selection acts on phenotypes beyond those linked to migra-
tion is unknown.

Dams can also alter phenotypic diversity by creating
an environment for novel species hybridizations, whereas
alternative life histories or species may evolve over lon-
ger time periods. Although we found few studies testing
hybridization (n = 14; figure 1c¢), genetic and morphological
analyses document hybridization in minnows (Cyprinidae)
and riparian toads following anthropogenic barrier instal-
lation (Balon 1992, Sullivan et al. 2015, Guivier et al.
2019). Small dams are also used as a conservation tactic to
prevent hybridization by invasive species, which include
trout, mosquitofish, lamprey, or carp (Davis et al. 2006,
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Box 2. Rapid evolution of migratory alewife (Alosa pseudoharengus) following impoundment

catalyzes an ecoevolutionary feedback loop.

The alewife is an important zooplanktivorous fish found along the Atlantic coast and in lakes across eastern North America. There
are two life-history forms of alewife: the ancestral migratory (anadromous) form that moves between marine and freshwater ecosys-
tems and the evolutionarily derived resident (landlocked) form that resides in freshwater. In many coastal watersheds, dams built by
European colonists (1630-1800) isolated individuals from anadromous ancestors creating landlocked populations (Palkovacs et al.
2008, Twining and Post 2013, Twining et al. 2013). Landlocked populations in Connecticut are genetically isolated and independently
derived from anadromous runs, which have significantly higher genetic diversity and continue to exchange genes with neighboring
anadromous runs (Palkovacs et al. 2008).

The repeated evolution of the resident phenotype has resulted in parallel evolution across several traits. Landlocked alewife remain
in freshwater year round, have smaller gape and narrower gill raker spacing, are not size selective when foraging on small-body prey,
forage exclusively in open water, and are more fusiform in body shape. Anadromous alewife are typically present in freshwater for
half the year (May-October for young of the year), have larger gape and wider gill raker spacing, are always positively size selective
and forage across near-shore and open-water habitats (Post et al. 2008, Palkovacs and Post 2009, Schielke et al. 2011, Jones et al. 2013,
Palkovacs et al. 2014). Landlocked populations have reduced fecundity, smaller adult body size, and earlier age at maturity (Graham
1956), and spawn later in the year than anadromous alewife (Littrell et al. 2018). Landlocked alewife have also partially lost the ability
to osmoregulate in seawater; it is mediated through changes in ion regulation in their gills (Velotta et al. 2014).

These phenotypic differences have altered the ecological role of these two alewife forms such that landlocked and anadromous alewife
have very different effects on community structure and ecosystem function (Post et al. 2008, Palkovacs and Post 2009, Walters et al.
2009, West et al. 2010, Twining et al. 2013, Weis and Post 2013). Lakes with landlocked alewife are dominated by small-body zoo-
plankton (Brooks and Dodson 1965, Post et al. 2008). Lakes that receive seasonal migrations of anadromous alewife are dominated by
large-body zooplankton in the spring and early summer, and small-body zooplankton in late summer and autumn (Post et al. 2008,
Howeth et al. 2013). These ecological changes in turn altered the adaptive landscape for alewife, creating an ecoevolutionary feedback,
which is the cyclical interplay between the evolution of phenotypic and ecological changes that feeds back to cause continued ecologi-
cal and evolutionary changes (Palkovacs and Post 2008).

The construction of dams initiated an ecoevolutionary feedback between alewife and the zooplankton community, which propagated
through the food web. Differences in alewife predation have, for example, driven evolution in Daphnia ambigua (Walsh and Post 2011,
Walsh et al. 2012, 2014), the dominant grazer in lakes, and that evolution has altered consumer-resource dynamics between Daphnia
and algal primary producer biomass (Walsh et al. 2012). The whole-lake changes caused by alewife evolution also caused shifts in
the foraging morphology and efficiency of bluegill (Lepomis macrochirus), a common competitor (Huss et al. 2014), the habitat use
and lipid storage of chain pickerel (Esox niger), the native top predator (Brodersen et al. 2015), and the growth and trophic ontogeny
of young-of-the-year largemouth bass (Micropterus salmoides) (Boel et al. 2018). The installation of dams were the catalyst for these
changes in the coastal ecosystems, but they may also emerge in the Laurentian Great Lakes where alewife have invaded (Smith et al.
2020). Ecoevolutionary feedbacks require a specific set of traits and ecological conditions to occur but may be more widespread in
novel impounded environments than is currently understood.

McLaughlin et al. 2012, Ardren and Bernall 2017). The
evolution and maintenance of alternative life histories can
be influenced by significant natural barriers: Siletz Falls, in
Oregon (United States), for example, is a selective barrier
to fall-run Chinook salmon that spawn below it, whereas
spring-run Chinook can pass the falls to spawn upstream
(Davis et al. 2017). Both drift and selection can play a role
in speciation above natural barriers (Ostberg et al. 2009,
Dias et al. 2013, Castro et al. 2014), but we found no evi-
dence of speciation in response to anthropogenic barriers
likely because of the generally short timeframe such barri-
ers have been in place.

Morphological evolution is a well-documented response
to impoundment, particularly in large reservoirs (n = 34
studies; Ross 2015). Morphological trait shift following
impoundment is primarily informed by studies on cyp-
rinids (figure 1d). Field observations and common-rear-
ing studies indicate that the lentic reservoir environment
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generally selects for deeper-bodied fish with smaller heads,
larger fin bases, increased caudal depth, and reduced shape
variation when compared with lotic environments (Bianco
2002, Pamponet et al. 2008, Franssen 2011, Aguirre et al.
2013, Franssen et al. 2013, Cureton and Broughton 2014,
Eagderi et al. 2014, Gaston and Lauer 2015). These intra-
specific shifts coincide with previously documented trait-
based community shifts following impoundment (Arantes
et al. 2019). Reservoir morphologies appear to allow for
faster turning speed and predator escape in lentic environ-
ments, whereas a fusiform body shape is better for main-
taining position in a flowing river. Other in situ responses
of populations in reservoirs include altered eye size and
increased caudal spot size for predator avoidance (Aguirre
et al. 2013, Geladi et al. 2019). Flow- and predator-induced
plasticity contributes to morphological changes, whereas
responses can be site and species specific. Downstream
morphological shifts include sensory adaptations to clearer
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water and niche partitioning to compensate for increased
competition through jaw morphology shifts (Morita and
Suzuki 1999, Dieterman and Galat 2005). Morphological
differentiation between river and reservoir increases with
the number of barriers separating populations and when
reservoir habitat is markedly different from the river habitat
(Poulet 2008, Franssen et al. 2013, Santos and Aratjo 2015,
Radojkovi¢ et al. 2018). The selection strength and rate of
morphological change appear to be greatest when popula-
tions are first impounded, but then slow as the population
adapts to directional selection (Cureton and Broughton
2014, Haas et al. 2021, but see Haas et al. 2010). It remains
to be seen whether morphological evolution can be reversed
when barriers are removed.

Barrier mitigation
Barrier mitigation involves conservation-oriented actions,
such as fishway construction, barrier removal, or stocking
to diminish or eliminate the negative impacts of barriers.
Fishways have important implications for connectivity and
can create selective filters on the phenotypes affecting pas-
sage (McLaughlin et al. 2012). Limited evidence discussed
below indicates that barrier removal rapidly restores genetic
connectivity, although genetic rescue and conservation
hatcheries can also be effective under some circumstances.
Fishways can make barriers passable but also act as a
selective filter on migratory phenotypes and body size.
Not all fish species can pass fishways effectively, because
they are often designed for migratory North American
salmonids (Compton et al. 2008, Wilkes et al. 2019, Matica
2020). Poorly designed fishways do not fully reconnect
populations and can increase the cost of migration, pos-
sibly favoring selection for residents life-history traits in
salmonids (Jager et al. 2016, Underwood et al. 2016, van
Leeuwen et al. 2016, Haraldstad et al. 2019, Landsman
et al. 2020, Lothian et al. 2020). For example, summer
steelhead were historically the only run that could pass
a large natural barrier because of low summer flows, but
a fishway allowed winter steelhead to pass and hybridize
with summer steelhead, nearly causing extirpation of the
run (Hemstrom et al. 2018). Furthermore, climbing amp-
hidromous gobies (subfamily Sicydiinae) with larger suck-
ing disks have a greater likelihood of passing dams than
those with smaller disks, whereas brook trout with more
streamlined bodies had more attempts and greater success
at passing a culvert (Goerig et al. 2020, Lagarde et al. 2020).
Only large brown trout could pass a waterfall on the River
Gulbrandsdalslagen (Norway), but a fishway relaxed this
selection on body size, quickly reducing somatic growth
rate and size at maturity (Haugen et al. 2008). Other
examples include selection for larger lampreys through five
dams on the Snake River (Washington, United States) but
selection against larger Atlantic Salmon in the Penobscot
River (Keefer et al. 2009, Maynard et al. 2017). Fishways
appear to stabilize selection on intermediate trait values
determined by species characteristics and fishway design,
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and no robust studies have yet documented a fishway
allowing nonselective passage.

Barrier removal appears to be the best method for recon-
necting fragmented populations. Demographic connectiv-
ity appeared to be quickly restored following removal of
both large dams and culverts (Quinn et al. 2017, Wood
et al. 2018), and the restoration of genetic connectivity may
only take a few generations (Neville and Peterson 2014,
Neville et al. 2016, Nathan et al. 2018, et al. 2021). However,
large fluctuations in population size or gene flow following
barrier remediation can result in stochastic swings in allelic
fixation and richness (Neville et al. 2016). Migratory indi-
viduals can boost the effective number of spawners in resi-
dent populations to quickly restore previously impounded
populations (Weigel et al. 2014). Prioritizing the barriers
to remove is a key factor when attempting to rescue and
preserve anadromous populations: Modeled predictions
suggest that restoring anadromous genotypes may be sig-
nificantly more cost-effective when several smaller barri-
ers are removed instead of a single large one (Apgar et al.
2017). Barrier prioritization may be a pathway to rapid
evolutionary restoration, but it remains to be seen whether
phenotypic adaptations that have evolved in response to
impoundment are maladaptive in restored rivers.

Although stocking can maintain fisheries yields and
reintroduce extirpated populations (Bowersox et al. 2016),
negative genetic effects often manifest because of reduced
effective population size and altered selection patterns.
Dams increase genetic differentiation between populations,
but stocking reduces differentiation, and both commonly
decrease effective population size and genetic diversity
(Small et al. 2007, Heist and Mustapha 2008, Pearse and
Garza 2015). Conservation barriers can effectively block
introgression by hatchery fish and retain wild alleles above
barriers, although such barriers may curtail the effective
population sizes of above-barrier wild populations (Sato
et al. 2010). Although many correctly assume that hatchery
fish will introgress with native populations, with negative
genetic outcomes, hatchery populations occasionally do not
interbreed, likely because of differences in spawning time,
low reproductive success, or low offspring survival (Deiner
et al. 2007, Weigel et al. 2014, Kelson et al. 2015, Bohling
etal. 2019). For a review of the ecological and genetic effects
of stocking, see Araki and Schmid (2010). The recently
initiated stocking of brown trout into the Pasvik River in
Norway and Russia led to high heterozygosity but low allelic
diversity, an indicator of stocking-induced outbreeding
but also an early warning sign of pending genetic diversity
reduction (Kliitsch et al. 2019). In-basin conservation hatch-
eries designed to reconnect fragmented populations without
decreasing effective population size could be useful in coun-
teracting dam-induced divergence.

Takeaways and future directions

Dams and culverts have the potential to cause rapid evolu-
tion by altering aquatic connectivity and habitat. As was
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expected from population genetic theory, connectivity
impacts are particularly severe with low barrier passability,
reduced habitat patch size, small effective population size,
highly migratory species, or when impoundments have
been in place for many generations. Headwater populations
are likely more susceptible to fragmentation and diversity
loss because of reduced effective population sizes and high
occurrence of culverts (figure 2). We find both plastic and
heritable phenotypic shifts in traits underpinning migration
(n = 22 papers), behavioral syndromes (n = 4), life history
(n = 17), and morphology (n = 42), as well as altered pat-
terns of hybridization (n = 14). Below barriers, trait shift
can also occur because of changes in river flows, turbidity,
or temperature. Furthermore, the homogenization toward
reservoir habitat, reduced variation in downstream river
flow, and reduced connectivity to upstream habitat appears
to widely reduce trait variation and genetic diversity of
adaptive loci.

Decreasing intraspecific diversity is a conservation con-
cern, because it can reduce the stability of the system
(Schindler et al. 2010). Barrier mitigation strategies such as
fishways and stocking can be effective, but prioritized dam
removals are the only way to truly restore traits and genetic
variation (Apgar et al. 2017). Fishways can restore connec-
tivity, but if they are not well planned, they may cause migra-
tion delays or act as selective filters on behavior, body size,
or morphology. Hatcheries can boost fish population size
and homogenize populations across barriers but can also
dramatically decrease genetic diversity and erode local adap-
tation. Dam removal offers a better option for evolutionary
restoration and, although studies have only recently begun
to emerge, preliminary evidence suggests that renewal of
genetic diversity may take several generations after connec-
tivity is restored. It remains to be seen whether phenotypic
adaptations to impoundments persist when the barrier is
removed.

We identified several biases in the literature that may
have affected the strength of our inference across species,
latitude, and barrier types. First, our review likely suf-
fered from publication bias, where only studies in which
evidence of evolution was found have been published.
This likely affects the adaptation and barrier mitigation
findings more than those on genetic diversity. Next, few
phenotypic studies used common-rearing techniques (3
out of 64 studies) to decouple plastic from genetic effects.
Most studies documented only field observations (61 out
of 64), which reported interesting phenotypic divergence
but were unable to determine whether observed shifts
were heritable. We also found strong latitudinal and
taxonomic bias. Most studies were from north temperate
ecosystems (supplemental figure S2), which have differ-
ent species assemblages, flow regimes, and frequency of
barrier types than tropical ecosystems. This bias is of
particular concern, because rivers in Asia, Africa, and
South America are becoming heavily fragmented with
little to no representation in our evolutionary literature
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base (Grill et al. 2019). Although neutral evolutionary
impacts likely remain the same across latitude, adaptive
responses may be different in tropical ecosystems because
of different taxa and river flow characteristics. A conse-
quence of this latitudinal bias is greater representation of
particular fish families, such as salmonids, cyprinids, and
percids (figure 1). Furthermore, understudied taxa such
as plants, herpetofauna, aquatic invertebrates, and plank-
ton have terrestrial adult life stages or resistant dormant
stages, which may not be as affected by damming. Finally,
we found biases in the barrier type and study design.
Many studies focused on large dams, even though small
dams and culverts were much more numerous across the
landscape (figure 1b). As was discussed in box 1, studies
comparing fragmented with free-flowing watersheds can
quantify the predictable reductions in genetic diversity in
upstream reaches.

Methodological advances may address these gaps in
the literature while providing opportunities for future
research. First, population genetic theory predicts that
reduced genetic diversity diminishes adaptive potential,
but this question has not been examined in populations
that experienced dam-induced selection pressure while
experiencing genetic diversity loss. In a similar theme,
some studies have alluded to strong selection around dams
leading to reductions in genetic diversity, but this has not
been robustly addressed. Whole-genome sequencing,
particularly low-coverage approaches used to estimate
allele frequencies across populations (Lou et al. 2021),
can address these questions by examining neutral mark-
ers and also allow high-resolution scans for signatures of
selection. It is important to conduct such studies on indi-
viduals for which abundant phenotypic data are available
for subsequent genome-wide association studies. Next,
the paucity of common-rearing studies handicaps robust
analysis, particularly when counter gradient selection
masks cryptic evolutionary changes as has been observed
when relaxed competition above barriers alters selective
forces. The paucity of common-rearing studies can in part
be addressed by building in situ pedigrees of wild popula-
tions using high-marker SNP panels, RAD-seq data, or
multiplexed microsatellites, to estimate pairwise related-
ness of individuals in the wild and therefore calculate trait
heritability without the need to common-rear individuals
(Gienapp et al. 2017, Gervais et al. 2019). In the future,
copy-number variant and microhaplotype studies could
outperform unphased SNP studies in detecting neutral
and adaptive genomic changes (Baetscher et al. 2018,
Dorant et al. 2020). High-marker panels and increasing
computational power can also be used to detect when
and why hybridization between populations or species
occurs following impoundment; we found only 14 studies
addressing this question. Genomic approaches can also
be used in tandem with developments in graph theory to
calculate effective distances through riverscapes of vary-
ing resistance pathways (Landguth et al. 2012). Recent
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developments in population genetics can also be lever-
aged to calculate standardized indices of barrier perme-
ability (Prunier et al. 2020). Finally, few studies to date
have robustly examined behavioral selection (figure 1d),
although advances in transcriptomics may provide alter-
natives to challenging field assays.

The accelerated rate of dam removals in the United
States and Europe provides an exciting opportunity to
track evolutionary restoration, and evolutionary recov-
ery following relaxation of anthropogenic selection is a
burgeoning field (Isanta-Navarro et al. 2021). Do allelic
diversity and heterozygosity return to preimpounded lev-
els, or is a new equilibrium reached? Similarly, are dam-
adapted traits such as altered migration, body shape, or
life-history strategies maladaptive when the lotic envi-
ronment is restored? If so, do they disappear from the
population or persist in low frequency? Strong impound-
ment-induced selection has the potential to constrain
plasticity and inhibit recovery following impoundment,
although this has not been explicitly examined. Limited
evidence indicates that high densities of culverts in
headwaters negatively affect resident species; do we
expect to see rapid recovery following removal, which is
less expensive and time consuming than dam removal?
Finally, demonstrated reduction in trait variation follow-
ing impoundment suggests that dams shift selection pat-
terns from balancing selection on several migratory trait
values to directional or stabilizing selection on a single
trait value (Franssen 2011, Sturrock et al. 2020), but it is
unknown whether this pattern extends to other traits and
whether balancing selection can restore a suite of migra-
tory phenotypes following barrier removal.

Rapid evolutionary changes following impoundment
can have ecological ramifications, but many key questions
remain. Dams have been demonstrated to catalyze ecoevolu-
tionary feedbacks in well-studied resident and anadromous
alewife (box 2; Palkovacs and Post 2008), but it is unknown
whether ecoevolutionary feedbacks are widespread phe-
nomena as a consequence of impoundment. Numerous
studies have examined phenotypic adaptation following
impoundment (n = 64), but not enough work has focused on
behavioral adaptations or physiological adaptations to modi-
fied temperatures in reservoirs. Stocking has been a staple
of population management but can erode genetic diversity,
and well-designed programs may counteract inbreeding
and genetic drift above barriers by translocating individu-
als. Another approach to reconnect populations is fishway
installation, but fishways have demonstrated selection dif-
ferentials and must be engineered to avoid selection on body
size and morphological traits. Finally, research on the evolu-
tionary consequences of ubiquitous culverts and small dams
is underexplored and critically important. In conclusion, the
installation and removal of dams are ongoing experiments
in a global laboratory, and the genomic revolution provides
tools to learn about the scale and ecological significance of
rapid evolution in nature.
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