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Abstract—This paper considers a large-scale wireless network
consisting of source-destination (SD) pairs, where the sources
send time-sensitive information, termed status updates, to their
corresponding destinations in a time-slotted fashion. We employ
Age of information (AoI) for quantifying the freshness of the
status updates measured at the destination nodes under the
preemptive and non-preemptive queueing disciplines with no
storage facility. The non-preemptive queue drops the newly
arriving updates until the update in service is successfully
delivered, whereas the preemptive queue replaces the current
update in service with the newly arriving update, if any. As
the update delivery rate for a given link is a function of the
interference field seen from the receiver, the temporal mean AoI
can be treated as a random variable over space. Our goal in
this paper is to characterize the spatial distribution of the mean
AoI observed by the SD pairs by modeling them as a bipolar
Poisson point process (PPP). Towards this objective, we first
derive accurate bounds on the moments of success probability
while efficiently capturing the interference-induced coupling in
the activities of the SD pairs. Using this result, we then derive
tight bounds on the moments as well as the spatial distribution
of peak AoI (PAoI). Our numerical results verify our analytical
findings and demonstrate the impact of various system design
parameters on the mean PAoI.

Index Terms—Age of information, bipolar Poisson point pro-
cess, stochastic geometry, and wireless networks.

I. INTRODUCTION

With the emergence of Internet of Things (IoT), wireless
networks are expected to provide a reliable platform for
enabling real-time monitoring and control applications. Many
such applications, such as the ones related to air pollution or
soil moisture monitoring, involve a large-scale deployment of
IoT sensors, which would acquire updates about some under-
lying random processes and send them to the destination nodes
(or monitoring stations). Naturally, accurate quantification of
the freshness of status updates received at the destination nodes
is essential in such applications. However, the traditional per-
formance metrics of communication systems, like throughput
and delay, are not suitable for this purpose since they do not
account for the generation times of status updates. This has
recently motivated the use of AoI to quantify the performance
of communication systems dealing with the transmission of
time-sensitive information [2]. This metric was first conceived
in [3] for a simple queuing-theoretic model in which randomly
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generated update packets arrive at a source node according to
a Poisson process, and then transmitted to a destination node
using a first-come-first-served (FCFS) queuing discipline. In
particular, AoI was defined in [3] as the time elapsed since the
latest successfully received update packet at the destination
node was generated at the source node. As evident from the
definition, AoI is capable of quantifying how fresh the status
updates are when they reach the destination node since it
tracks the generation time of each update packet. As will
be discussed next in detail, the analysis of AoI has mostly
been limited to simple settings that ignore essential aspects
of wireless networks, including temporal channel variations
and random spatial distribution of nodes. This paper presents
a novel spatiotemporal analysis of AoI in a wireless network
by incorporating the effect of both the channel variations and
the randomness in the wireless node locations to derive the
spatial distribution of the temporal mean AoI.

A. Prior Art

For a point-to-point communication system, the authors of
[3] characterized a closed-form expression for the average AoI.
Subsequently, the authors of [4]–[11] characterized the average
AoI or similar age-related metrics (e.g., PAoI [5], [8], [9] and
Value of Information of Update [10]) for a variety of queuing
disciplines. In addition, the authors of [12]–[16] presented the
queuing theory-based analysis of the distribution of AoI. The
above works provide foundational understanding of temporal
variations of AoI from the perspective of queuing theory
for a point-to-point communication system. Inspired by these
works, the AoI or similar age-related metrics have been used to
characterize the performance of real-time monitoring services
in a variety of communication systems, including broadcast
networks [17]–[19], multicast networks [20], [21], multi-hop
networks [22], [23], multi-server information-update systems
[24], IoT networks [25]–[30], cooperative device-to-device
(D2D) communication networks [31], [32], unmanned aerial
vehicle (UAV)-assisted networks [33], [34], ultra-reliable low-
latency vehicular networks [35], and social networks [36]–
[38]. All these studies mostly focus on minimizing the AoI
with the following design objectives: 1) design of scheduling
policies [17]–[19], [22], [30], 2) design of cooperative trans-
mission policies [20]–[23], [31], [32], 3) design of the status
update sampling policies [27]–[29], [36], and 4) trade-off with
other performances metrics in heterogeneous traffic/networks
scenarios [23]–[25], [29], [37]. However, given the underlying
tools used, these works are not conducive to account for some
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important aspects of wireless networks, such as interference,
channel variations, path-loss, and random network topologies.

Over the last decade, the stochastic geometry has emerged
as a powerful tool for the analysis of the large-scale random
wireless networks while efficiently capturing the above prop-
agation features. The interested readers, for examples, can
refer to models and analyses presented in [39] for cellular
networks, [40] for heterogeneous networks, and [41] for ad-
hoc networks. While these works were initially focused on the
space-time mean performance of network (such as coverage
probability), a new performance metric is recently introduced,
termed meta distribution, in [42] for characterizing the spatial
variation in the temporal mean performance measured at the
randomly located nodes. The meta distribution has become
an instrumental tool for analyzing the spatial disparity in a
variety of performance metrics (e.g., see [43]–[45]) and net-
work settings (e.g., see [46], [47]). However, these stochastic
geometry models lack to handle the traffic variations because
of which they are mostly applicable to saturated networks.
Therefore, it is important to develop a method/tool that is
capable of handling in spatial randomness through interference
and temporal variations due to traffic. But, in general, the
spatiotemporal analysis is known to be hard, for the reasons
discussed next.

The wireless links exhibit the space-time correlation through
their interference-induced stochastic interactions [48]. This
implies that the service rates of the wireless nodes are also
correlated (in both space and time), which, as a result, gener-
ates coupling between the activities of their associated queues
under random traffic patterns. The coupled queues cause diffi-
culty in the spatiotemporal analysis of wireless networks. It is
worth noting that the exact characterization of the correlated
queues is unknown even in simple settings (refer to [49]).
In the existing literature, there are broadly two approaches
for the spatiotemproal analyses trying to capture the temporal
traffic dynamics and spatial nodes variation to some extent.
The first approach is focused on the development of iterative
frameworks/algorithms specific to the performance metric of
interest. In this approach, the queues are first decoupled by
modeling the activity of each node independently using a
spatial mean activity [50]–[54] (or, a spatial distribution of
activity [45], [55]–[57]) and then the analytical framework is
solved in an iterative manner until the spatial mean activity (or,
the spatial distribution of activity) converge to its fixed-point
solution. On the other hand, the second approach adopts to
the approach used in queueing theory literature for obtaining
the performance bounds on correlated queues (for example, see
[49]). In this approach, the activities of nodes are decoupled by
constructing a dominant system wherein the interfering nodes
are considered to have the saturated queues [44], [58]–[60].
Because of their saturated queues, the activities of interfering
nodes will increase. Thus, the observing node will overesti-
mate the interference power, and hence, needless to say, its
performance will be a bound. However, such a bound tends
to get loosen when the traffic conditions are lighter, which is
quite intuitive. In [58], a second degree of dominant system is
presented wherein the interferers are assumed to operate under
their corresponding dominant systems. Naturally, this second

degree modifications will provide a better performance bound
as it estimates the interference more accurately compared to
the dominant system. In contrast, the coupling between their
activities become insignificant when a massive number of
nodes access the channel in a sporadic manner and thus it
can be safely ignored in the analysis [61].

Nevertheless, there are only a handful of recent works
focusing on the spatiotemproal analysis of AoI for wireless
networks. For example, for a Poisson bipolar network, [57]
derived the spatiotemporal average of AoI for an infinite-
length FCFS queue, whereas [62] derived the spatiotemporal
mean PAoI for a unit-length last-come-first-served (LCFS)
queue with replacement. The authors first obtained a fixed
point solution to the meta distribution in an iterative manner
and then applied it to determine the spatiotemporal mean
AoI. The authors of [62] also investigated a locally adaptive
scheduling policy that minimizes the mean AoI. Further,
[60] derived the upper and lower bounds on the cumulative
distribution function (CDF) of the temporal mean AoI for a
Poisson bipolar network using the construction of dominant
system. On the other hand, the spatiotemporal analysis of
PAoI for uplink IoT networks is presented in [45], [51], [63]
by modeling the locations of BSs and IoT devices using
independent PPPs. The authors of [45] derived the mean PAoI
for time-triggered (TT) and event-triggered (ET) traffic. The
authors employed an iterative framework wherein quantized
meta distribution and spatial average activities of devices
with different classes (properly constructed based on TT and
ET traffic) are determined together. Further, [51] derived the
mean PAoI for the prioritized multi-stream traffic (PMT) by
iteratively solving the queueing theoretic framework (devel-
oped for PMT) and priority class-wise successful transmission
probabilities together. The authors of [63] derived the spatial
distribution of the temporal mean PAoI while assuming the
IoT devices sample their updates using generate-at-will policy
(see [2]). Besides, it is worth noting that the delay analyses
presented in [52], [53], [55], [56] can be extended to analyze
the PAoI under FCFS queuing discipline.

B. Contributions
This paper presents a stochastic geometry-based analysis of

PAoI for a large-scale wireless network, wherein the sources
transmit time-sensitive status updates to their corresponding
destinations. In particular, we derive the spatial distribution
of temporal mean PAoI while assuming that the locations
of SD pairs follow a homogeneous bipolar PPP. In order
to overcome the challenge of interference-induced coupling
across queues associated with different SD pairs, we propose a
tractable two-step analytical approach which relies on a careful
construction of dominant systems. The proposed framework
efficiently captures the stochastic interaction in both space
(through interference) and time (through random transmission
activities). Our approach provides a much tighter lower bound
on the spatial moments of the conditional (location-dependent)
successful transmission probability compared to the existing
stochastic geometry-based analyses, e.g., [44], which mainly
rely on the assumption of having saturated queues at the
interfering nodes.
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The above construction of dominant system allows to model
the upper bound of service times of the update transmissions
using geometric distribution. Further, assuming the Bernoulli
arrival of status update, we model status update transmissions
using Geo/Geo/1 queue with no storage facility under pre-
emptive and non-preemptive disciplines. For this setup, we
present the spatiotemproal analysis of the PAoI. In particular,
we derive tight upper bounds on the spatial moments of the
temporal mean PAoI for the above queue disciplines. The
contributions of this paper are briefly summarized as below.

1) This paper presents a novel analytical framework to
determine tight lower bounds on the moments of the
conditional success probability while efficiently capturing
the interference-induced coupling in the activities of SD
pairs.

2) We derive the temporal mean of PAoI under both pre-
emptive and non-preemptive queueing disciplines for a
given success probability of transmission.

3) Next, using the lower bounds on the moments of the
conditional success probability, we derive tight upper
bounds on the spatial moments of the temporal mean
PAoI for both queuing disciplines.

4) Using the beta approximation for the distribution of
conditional success probability [42], we also characterize
the spatial distribution of temporal mean PAoI.

5) Next, we validate the accuracy of the proposed analytical
framework for AoI analysis through extensive simula-
tions. Finally, our numerical results reveal the impact
of key design parameters, such as the medium access
probability, update arrival rate, and signal-to-interference
(SIR) threshold, on the spatial mean and standard de-
viation of the temporal mean PAoI observed under the
aforementioned queuing disciplines.

II. SYSTEM MODEL

We model SD pairs using a static network wherein the
locations of sources are distributed according to a PPP Φ
with density λsd and their corresponding destinations are
located at fixed distance R from them in uniformly random
directions. The SIR measured at the destination at z in the
k-th transmission slot is

SIRz,k =
hkzR

−α
o∑

x∈Φ h
k
x,z‖x− z‖−α1(x ∈ Φk)

, (1)

where Φk is the set of sources with active transmission during
the k-th transmission slot, and 1(x ∈ Φk) is 1 if x ∈ Φk,
otherwise 0. α is the path-loss exponent, and hkz and hkx,z are
the channel gains for the link from desired source and the link
from the source at x to the destination at z, respectively, in
transmission slot k. We assume quasi-static Rayleigh fading
model, which implies hkx,z ∼ exp(1) independently across
both x ∈ Φ and k ∈ N.

Since the point process of SD pairs is assumed to be
stationary, the distribution of SIR observed by the different
devices across a large-scale static realization of network is
equivalent to the distribution of SIR measured at a fixed point
across multiple realizations. This can be formalized using
Palm distribution, which is the conditional distribution of the

point process given that the typical point is present at a fixed
location. Further, by the virtue of Slivnyak’s theorem, we
know that the Palm distribution for PPP is the same as the
original distribution of PPP. Please refer to [64] for more
details. Therefore, we place the typical SD pair link such that
its destination and source are at the origin o and xo ≡ [R, 0],
respectively. Fig. 1 presents a representative realization of the
bipolar Poisson network with the typical link at (o,xo). As the
analysis is focused on this typical link, we drop the subscript
z from SIRz,k and hkx,z here onwards.

Figure 1. A typical realization of the bipolar Poisson network for λsd = 10−3

links/m2 and R = 15 m. Orange dots and blue circles represent the locations
of sources and destinations, respectively.

A. Conditional Success Probability

The transmission is considered to be successful when the
received SIR is greater than a threshold β. From (1), it is
clear that the successful transmission probability measured at
the typical destination placed at o depends on the PPP Φ of
the interfering sources and is given by

µΦ = P[SIRk > β|Φ]

= P
[
hkxo > βRα

∑
x∈Φ

hkx‖x‖−α1(x ∈ Φk)
∣∣Φ] ,

= E
[
exp

(
−βRα

∑
x∈Φ

hkx‖x‖−α1(x ∈ Φk)
) ∣∣Φ] ,

=
∏
x∈Φ

[
px

1 + βRα‖x‖−α + (1− px)

]
, (2)

where px represents the probability that the source at x ∈ Φ is
active. Note that the time-average activity px for source at x is
used in (2). This implies that the typical destination observes
the activities of interfering sources as a time-homogeneous
process at any given transmission slot. This assumption will
help to develop a new framework for an accurate spatiotem-
poral analysis, as will be evident shortly. The conditional
success probability µΦ will be useful to determine the packet
delivery rate over the typical link for a given Φ. Thus, the
knowledge of the meta distribution, defined below, is crucial
to characterize the queue performance for the typical link.

Definition 1 (Meta Distribution). The meta distribution of SIR
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is defined in [42] as

D(β, x) = P[P[SIRk > β|Φ] > x] = P[µΦ > x], (3)
where µΦ, given in (2), is the conditional success probability
measured at the typical destination for a given Φ.

B. Traffic Model and AoI Metric

We consider that the source at x ∈ Φ transmits updates to
the corresponding destination regarding its associated physical
random process Hx(t). Each source (independently of others)
is assumed to sample its associated physical random process
at the beginning of each transmission slot according to a
Bernoulli process with parameter λa. This assumption of a
fixed parameter Bernoulli process for modeling the update
arrivals can be seen is a necessary approximation of a scenario
where the sources may observe different physical random
processes. However, one can relax the fixed arrival rate as-
sumption with a few but straightforward modifications to the
analysis presented in this paper.

The transmission is considered to be successful if SIR

received at the destination is above threshold β. Thus, the
source is assumed to keep transmitting a status update until it
receives the successful transmission acknowledgement from
the destination on a separate feedback channel, which is
assumed to be error free. The successful delivery of an update
takes a random number of transmissions depending on the
channel conditions that further depend on numerous factors,
such as fading coefficients, received interference power, and
network congestion. Links that are in close proximity of
each other may experience arbitrarily small update delivery
rate because of severe interference, especially when update
arrival rate is high. Therefore, to alleviate the impact of
severe interference in such cases, we assume that each source
attempts transmission with probability ξ independently of the
other sources in a given time slot. Also note that the probability
of the attempted transmission being successful in a given time
slot is the conditional success probability µΦ because of the
assumption of independent fading. Therefore, the number of
slots needed for delivering an update at the typical destination
can be modeled using the geometric distribution with param-
eter ξµΦ for a given Φ.

Let tk and t′k be the instances of the arrival (or, sampling)
and reception of the k-th update at the source and destination,
respectively. Given time slot n, let Dn = max{k|t′k ≤ n}
be the slot index of the most recent update received at the
destination and An be the slot index of the arrival (at source)
of the most recent update received at destination (i.e., at Dn).
The AoI of the status update at n-th slot is

∆(n) =

{
∆(n− 1) + 1, if transmission fails
∆(n− 1) + 1−An, otherwise.

(3)

The AoI ∆(n) increases in a staircase fashion with time and
drops upon reception of a new update at the destination to the
total number of slots experienced by this new update in the
system. Note that the minimum possible AoI is one because
we assume arrival and delivery of an update to occur at the
beginning and the end of the transmission slots, respectively.

Given this background, we are now ready to define PAoI,
which will be studied in detail in this paper.

Definition 2 (PAoI). The PAoI is defined in [5] as the value of
AoI process ∆(n) measured immediately before the reception
of the k-th update and is given by

Ak = Tk−1 + Yk. (4)
where Tk = t′k− tk is the time spent by the k-th update in the
system and Yk = t′k − t′k−1 is the time elapsed between the
receptions of the (k − 1)-th and k-th updates.

As evident from the above discussion, the mean PAoI
measured at the typical destination depends on the conditional
success probability µΦ and hence the conditional mean PAoI
is a random variable. Therefore, our goal is to determine the
distribution of the conditional mean PAoI of the SD pairs
distributed across the network. In the following, we define
the distribution of conditional mean PAoI.

Definition 3 (Conditional mean PAoI). For a given Φ, the
conditional (temporal) mean PAoI measured at the typical
destination is defined as

Ā(β; Φ) = E[Ak|β; Φ], (5)
and the complementary CDF of Ā(β; Φ) is defined as

F̄ (x;β) = P[Ā(β; Φ) > x], (6)
where β is the SIR threshold.

C. Queue Disciplines
As discussed in Section I-A, the construction of the domi-

nant system allows to decouple the activity of typical link with
the activities of other links. Thus, for a given Φ, the service
rate of the typical link becomes time-invariant (but a lower
bound) in the dominant system. This implies that the service
process can be modeled using the geometric distribution for
analyzing the conditional performance bounds of the queue
associated with the typical link. Therefore, with the above
discussed Bernoulli sampling, we can model the status update
transmissions over the typical link using Geo/Geo/1 with
arrival and service rates equal to λa and ξµΦ, respectively,
for a given Φ. In particular, we consider Geo/Geo/1 queue
with no storage facility (i.e., zero buffer) under preemptive
and non-preemptive disciplines. In preemptive case, the older
update in service (or, retransmission) is discarded upon the
arrival of a new update. However, in non-preemptive case, the
newly arriving updates are discarded until the one in service
is successfully delivered. The disadvantage of non-preemptive
discipline is that if the server takes a long time to transmit the
packet (because of failed transmission attempts), the update
in the server gets stale, which impacts AoI at the destination.
On the contrary, under the preemptive discipline, the source
always ends up transmitting the most recent update available
at the successful transmissions. Thus, this discipline is optimal
from the perspective of minimizing AoI. Nonetheless, the
mean AoIs under both disciplines are almost the same for
the sources experiencing high service rates, as will be evident
shortly. That said, the analysis of non-preemptive discipline is
still important because it acts as the precursor for the more
complicated analysis of preemptive discipline.



5

Here onward, we will append subscripts P and NP to
Ā(β; Φ) to denote the conditional mean PAoI under the
preemptive and non-preemptive queueing disciplines, respec-
tively. We first present the analysis of ĀNP(β; Φ) in Section
III. Next, we extend the analysis to obtain ĀP(β; Φ) in Section
IV using the analytical framework developed in Section III.

III. AOI UNDER NON-PREEMPTIVE Geo/Geo/1 QUEUE

In non-preemptive discipline, each source transmits the
updates on the first arrival basis without buffering them. As
a result, the updates arriving during the ongoing transmission
(i.e., busy server) are dropped. The sample path of the AoI
process for this discipline is illustrated in Fig. 2. The red
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Figure 2. Sample path of the AoI ∆(t) under the non-preemptive discipline.

upward and blue downward arrow marks indicate the arrival
and reception of updates at the source and destination, respec-
tively. The red cross marks indicate the instances of dropped
updates which arrive while the server is busy. We first derive
the conditional mean PAoI in the following subsection. In the
subsequent subsections, we will develop an approach to derive
the distribution of the conditional mean PAoI using stochastic
geometry.

A. Conditional Mean PAoI

As discussed before, the update delivery rate is governed
by the product of the medium access probability ξ and the
conditional success probability µΦ. Thus, for a given Φ,
the probability mass function (pmf) of number of time slots
required for a successful transmission is

P[Tk = n] = ξµΦ(1− ξµΦ)n−1, for n = 1, 2, . . . (7)
Thus, we can obtain E[Tk] = ξ−1µ−1

Φ . Since we assumed zero
length buffer queue, the next transmission is possible only
for the update arriving after the successful reception of the
ongoing update. Therefore, the time between the successful
reception of (k − 1)-th and k-th updates is

Yk = Vk + Tk, such that Yk ≥ 1,

where Vk is the number of slots required for the k-th update
to arrive after the successful delivery of the (k−1)-th update.
It is worth noting that the inequality Yk ≥ 1 follows from
the assumption of the transmission of an update begins in the
same slot in which it arrives. Also, the inequality Vk ≥ 0
(necessary to hold Yk ≥ 1 since Tk ≥ 1) is quite evident as
the next update can arrive at the beginning of next transmission

slot after successful reception. Therefore, using the Bernoulli
arrival of status updates, we can obtain pmf of Vk as below

P[Vk = n] = λa(1− λa)n, for n = 0, 1, 2, . . . (8)
Using the above pmf , we can obtain E[Vk] = Za = 1

λa
− 1.

Now, from (4), the conditional mean PAoI for given Φ
becomes

ĀNP(β; Φ) = Za +
2

µΦξ
. (9)

Using (9) and the distribution of µΦ, we can directly determine
the distribution of ĀNP(β; Φ). However, from (2), it can be
seen that the knowledge of probability px of the interfering
source at x ∈ Φ being active is required to determine the
distribution of µΦ. For this, we first determine the activity of
the typical source for a given µΦ in the following subsection
which will later be used to define the activities of interfering
sources in order to characterize the distribution of µΦ.

B. Conditional Activity

As each source is assumed to transmit independently in a
given time slot with probability ξ, the conditional probability
of the typical source having an active transmission becomes

ζo = ξπ1, (10)
where π1 is the conditional steady state probability that the
source has an update to transmit. Thus, ζo depends on the
probability px of the interfering source at x ∈ Φ being active
through the conditional success probability µΦ (see (2)). The
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Figure 3. State Diagram of the Geo/Geo/1 queue. States 0 and 1 respectively
signify idle and busy states of the typical source.

steady state distribution of a queue is characterized by its
arrival and departure processes. In our case, both the arrivals
and departures of the updates of H(t) follow geometric
distributions with parameters λ′a = Z−1

a and ξµΦ, respectively.
Fig. 3 shows the state diagram for the Geo/Geo/1 queue. Let
π0 and π1 be the steady state probabilities of states 0 and 1,
respectively. Thus, we have

π0 =
ξµΦ

λ′a + ξµΦ
and π1 =

λ′a
λ′a + ξµΦ

. (11)

C. Meta Distribution

From the above it is clear that the mean PAoI jointly
depends on the PPP Φ of the interfering sources and their
activities px through the conditional success probability µΦ.
Hence, the knowledge of the exact distribution of µΦ, i.e.,
P[µΦ ≤ x], is essential for characterizing the spatial distri-
bution of the mean PAoI. However, it is very challenging to
capture the temporal correlation among the activities of the
sources in the analysis. Therefore, we derive the moments and
approximate distribution of µΦ in the following lemma while
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assuming the activities px to be independent and identically
distributed (i.i.d.).

Lemma 1. The b-th moment of the conditional success prob-
ability µΦ is

Mb = exp
(
−πλsdβ

δR2δ̂Cζo(b)
)
, (12)

where δ = 2
α , δ̂ = Γ(1 + δ)Γ(1− δ) and

Cζo(b) =

∞∑
m=1

(
b

m

)(
δ − 1

m− 1

)
p̄m,

and p̄m is the m-th moment of the activity probability. The
meta distribution can be approximated with the beta distribu-
tion as

D(β, x) ≈ 1−Bx(κ1, κ2), (13)
where Bx(·, ·) is the regularized incomplete beta function and

κ1 =
M1κ2

1−M1
and κ2 =

(M1 −M2)(1−M1)

M2 −M2
1

. (14)

Proof. Please refer to Appendix A for the proof of moments
of µΦ.

The calculation of the p̄m will be presented in the next
subsection. It must be noted that the distribution of the condi-
tional success probability µΦ is approximated using the beta
distribution by equating the first two moments, similar to [42].
Now, we present an approach for accurate characterization of
µΦ in the following subsection.

D. A New Approach for Spatiotemporal Analysis

As discussed in Section III-B, the activity of the typical
source depends on its successful transmission probability
which further depends on the activities of the other sources
in Φ through interference (refer to (2)). Besides, the trans-
mission of the typical source causes strong interference to
its neighbouring sources which in turn affects their activities.
Hence, the successful transmission probabilities of the typical
source and its neighbouring sources are correlated through
interference which introduces coupling between the operations
of their associated queues. As discussed in Section I-A,
the spatiotemproal analysis under the correlated queues is
complex. Hence, we adopt to the approach of constructing
a dominant system for analyzing the performance bound on
conditional success probability and thereby on the conditional
mean PAoI.

On the similar lines of [58], we present a novel two-steps
analytical framework to enable an accurate success probability
analysis using stochastic geometry while accounting for the
temporal correlation in the queues associated with the SD
pairs.
• Step 1 (Dominant System): For the dominant system, the

interfering sources having no updates to transmit are assumed
to transmit dummy packets with probability ξ. As a result,
the success probability measured at the typical destination is
a lower bound to that in the original system. The b-th moment
and approximate distribution of µΦ for the dominant system
can be evaluated using Lemma 1 by setting p̄m = ξm. Using
(10), we can obtain the distribution of the activity of the typical

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Figure 4. CDF of the activity in the dominant system for λa = 0.1, ξ = 0.5,
β = 2, α = 4, R = 10, and λsd = {10−3, 10−4}.

source in the dominant system as

P[ζo ≤ t] = P
[
λ′a

(
1

t
− 1

ξ

)
≤ µΦ

]
,

≈ 1−Bλ′a( 1
t− 1

ξ )
(κ1, κ2) , (15)

for 0 < t ≤ ξ, where κ1 and κ2 are evaluated using (14) with
p̄m = ξm. It is quite evident that the activity ζo is less than ξ
which is also consistent with the assumption of setting px = ξ
for ∀x ∈ Φ to define the dominant system. Fig. 4 illustrates the
accuracy of the above approximate distribution of the activity
of the typical source under the dominant system. Using (15),
the m-th moment of the activity of the typical source in this
dominant system can be evaluated as

p̄D
m = m

∫ ξ

0

tm−1P[ζo > t]dt,

= m

∫ ξ

0

tm−1Bλ′a( 1
t− 1

ξ )
(κ1, κ2)dt, (16)

where κ1 and κ2 are evaluated using (14) with p̄m = ξm.
• Step 2 (Second-Degree of System Modifications): Inspired
by [58], we construct a second-degree system in which each
interfering source is assumed to operate in its dominant system
described in Step 1 (i.e., the interference field seen by a
given interfering source is constructed based on Step 1).
The typical SD link is now assumed to operate under these
interfering courses. Naturally, the activities of the interfering
sources will be higher in this modified system compared to
those in the original system. As a result, the typical SD
link will experience increased interference, and hence its
conditional success probability will be a lower bound to that
in the original system. It is easy to see that activities of the
sources (in their dominant systems) are identically but not
independently distributed. However, as is standard in similar
stochastic geometry-based investigations, we will assume them
to be independent to make the analysis tractable. In other
words, we model the activities of the interfering sources in this
modified system independently using the activity distribution
presented in (15) for the typical SD link in its dominant
system. As demonstrated in Section V, this assumption does
not impact the accuracy of our results. Hence, similar to Step
1, the b-th moment and the approximate distribution of µΦ for
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this second-degree modified system can be determined using
Lemma 1 by setting p̄m = p̄D

m.

E. Moments and Distribution of ĀNP(β; Φ)

Here, we derive the bounds on the moments and distribu-
tion of ĀNP(β; Φ) using the two-step analysis of conditional
success probability presented in Sections III-C and III-D.

Theorem 1. The upper bound of the b-th moment of the
conditional mean PAoI for non-preemptive queuing discipline
with no storage is Pb =

b∑
n=0

(
b

n

)
Zb−na 2nξ−n exp

(
−πλsdβ

δR2δ̂Cζo(−n)
)
, (17)

where Cζo(−n) =

∞∑
m=1

(−n
m

)(
δ − 1

m− 1

)
p̄D
m,

and p̄D
m is given in (16).

Proof. Using (9), the b-th moment of the conditional mean
PAoI can be determined as

Pb = EΦ

[
(2(ξµΦ)−1 + Za)b

]
,

(a)
=

b∑
n=0

(
b

n

)
Zb−na 2nξ−nM−n (18)

where (a) follows using the binomial expansion and E[µ−nΦ ] =
M−n. According to the Step 2 discussed in Subsection III-D,
M−n can be obtained using Lemma 1 by setting p̄m = p̄D

m.
Recall that the two-step analysis provides a lower bound
on the success probability µΦ because of overestimating the
activities of the interfering sources. Therefore, the b-th moment
of Ā1(β; Φ) given in (17) is indeed an upper bound since
Ā1(β; Φ) is inversely proportional to µΦ.

In the following corollary, we present the simplified expres-
sions for the evaluation of the first two moments of Ā1(β; Φ).

Corollary 1. The upper bound of the first two moments of the
conditional mean PAoI for non-preemptive queuing discipline
with no storage are

P1 = Za + 2ξ−1M−1 (19)

P2 = Z2
a + 4Zaξ

−1M−1 + 4ξ−2M−2 (20)
and the upper bound of its variance is

Var = 4ξ−2
(
M−2 −M2

−1

)
, (21)

where Ml = exp
(
−πλsdβ

δR2δ̂Cζo(l)
)

, distribution of ζo is
given in (15), and

Cζo(−1) = −E
[
ζo(1− ζo)δ−1

]
, (22)

and Cζo(−2) = (δ − 1)E
[
ζo(1− ζo)δ−2

]
− (δ + 1)E

[
ζo(1− ζo)δ−1

]
. (23)

Proof. Please refer to Appendix B for the proof.

Remark 1. For the mean PAoI given in (19), the first term
captures the impact of the update arrival rate λa whereas the
second term depends on the inverse mean of the conditional
success probability, which captures the impact of the wireless
link parameters such as the link distance R, network density

λsd, and path-loss exponent α. Furthermore, it is worth noting
that the variance of the temporal mean AoI is independent
of the arrival rate and entirely depends on the link quality
parameters. This is because the arrival rate is assumed to be
the same for all SD links and it corresponds to the additive
term in conditional mean PAoI given in (9).

Now, using the beta approximation of the conditional suc-
cess probability presented in Lemma 1, we determine the
distribution of ĀNP(β; Φ) in the following corollary.

Corollary 2. Under the beta approximation, the CDF of the
conditional mean PAoI for non-preemptive queueing discipline
is

F (x;β) = 1−B2ξ−1(x−Za)−1(κ1, κ2), (24)
where κ1 and κ2 are obtain using Lemma 1 by setting p̄m =
p̄D
m.

Proof. Using (9) and the beta approximation of the distribution
of µΦ given in Lemma 1, we can determine the distribution
of Ā1(β; Φ) as

P[ĀNP(β; Φ) ≤ x] = P
[
µΦ ≥ 2ξ−1(x−Za)−1

]
,

= D(2ξ−1(x−Za)−1).

Further, using the beta approximation for the distribution of
µΦ (given in Lemma 1), we obtain (24). The parameters κ1

and κ2 need to be determined for p̄m = p̄D
m (refer to Section

III-D).

IV. AOI UNDER PREEMPTIVE Geo/Geo/1 QUEUE

In preemptive discipline, each source transmits the most
recent update available at the source in a given transmission
slot. As a result, this queueing discipline helps to reduce the
AoI which is clearly significant when the update arrival rate
is high while the delivery rate is low. This discipline is, in
fact, optimal from the perspective of minimizing AoI at the
destination as the source always ends up transmitting its most
recent update arrival. A representative sample path of the AoI
process under the preemptive queue discipline is presented
in Fig. 5. The red upward and blue downward arrow marks
indicate the time instants of update arrivals at the source and
deliveries at the destination, respectively. The red plus sign
marks indicate the instances of replacing the older update with
a newly arrived update and tk,n highlighted in red indicates
the n-th replacement of the k-th update.
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00 Figure 5. Sample path of the AoI ∆(t) under the preemptive queue discipline.



8

A. Conditional Mean PAoI
In this subsection, we derive the conditional mean PAoI for

the typical destination for a given Φ. For this, the primary
step is to obtain the means of the inter-departure time Yk and
service time Tk for a given conditional success probability
µΦ (measured at the typical destination). While it is quite
straightforward to determine the mean of Yk, the derivation of
the mean of Tk needs careful consideration of the successive
replacement of updates until the next successful transmission
occurs.

Mean of Yk: Recall that the expected time for a new arrival
is Za = 1

λa
− 1. Also, recall that the update delivery rate

is ξµΦ which follows from the fact that both the successful
transmission and the medium access are independent events
across transmission slots. Thus, since the transmission starts
from the new arrival of the update after the successful depar-
ture, the mean time between two departures simply becomes

E[Yk] = Za +
1

ξµΦ
. (25)

Mean and Distribution of Delivery Times: The delivery
times restart after every new update arrival before epochs of
successful delivery. Let T̂k be the delivery times of the latest
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-5-5

-4-4

-3-3

-2-2

-1-1

11

22

33

44

55

66

77

88

99

1010

1111

1212

00

Figure 6. Illustration of the process T̂k under preemption.

update under preemptive queueing disciple. Fig. 6 illustrates
the typical realization of random process T̂k. The number of
slots required to deliver the latest update, i.e. T̂k, is given by

T̂k = Tk −XNk ,

where XNk =
∑Nk
i=1 τi, and Nk is the number of new update

arrivals occurring between the arrival of the k-th update (right
after (k−1)-th successful transmission) and the k-th successful
transmission, and τn is the number of slots between the arrivals
of two successive updates.

Lemma 2. For a zero buffer queue with preemption, the pmf

of number of slots required to deliver the latest update follows
a geometric distribution as given below

P[T̂k = m] = qs(1− qs)
m−1, for m = 1, 2, . . . (26)

where qs = ξµΦ + λa(1− ξµΦ).

Proof. Please refer to the Appendix C for the proof.

Now, the following theorem presents the moment generating
function (mgf) of the conditional PAoI Ak for a given Φ.

Theorem 2. For a zero buffer queue with preemption, the mgf

of the conditional PAoI is MP,Ak(t) =

λaξµΦqse
2t

(1− (1− λa)et)(1− (1− ξµΦ)et)(1− (1− qs)et)
, (27)

and the mean of the conditional PAoI is

ĀP(β; Φ) = Za +
1

ξµΦ
+

1

qs
, (28)

where qs = ξµΦ + λa(1− ξµΦ).

Proof. From Definition 2, the conditional PAoI can be written
as

Ak = T̂k−1 + Yk = T̂k−1 + Vk + Tk.

Since T̂k−1, Vk, and Tk are independent of each other and also
themselves across k, the mgf of Ak for a given Φ becomes

MAk(t) =MT̂k
(t)MAk(t)MTk(t).

We have T̂k ∼ Geo(qs) for T̂k ≥ 1 (from Lemma 2 ), Vk ∼
Geo(λa) for Vk ≥ 0 (from (8)), and Tk ∼ Geo(ξµΦ) for
Tk ≥ 1 (from (7)). Therefore, (27) follows by substituting the
mgfs of geometric distributions with above parameters. Next,
(28) directly follows by substituting the means of T̂k, Vk, and
Tk in Ak.

Remark 2. From (9) and (28), it is evident that the conditional
mean PAoI observed by the typical SD link with a preemptive
queue is strictly less than that with a non-preemptive queue
for any λa as long as ξµΦ < 1. From (9) and (28), we can
verify that

lim
λa→1

ĀNP(β; Φ) =
2

ξµΦ
and lim

λa→1
ĀP(β; Φ) = 1 +

1

ξµΦ
.

From this, we can say that preemptive discipline reduces the
mean PAoI almost by a factor of two compared to the non-
preemptive discipline in the asymptotic regime of λa when ξµΦ

is low. Further, we can also verify that

lim
ξµΦ→1

ĀNP(β; Φ) = lim
ξµΦ→1

ĀP(β; Φ) = Za + 2.

This implies that the sources observing high successful trans-
mission probability can select any one of these queueing
disciplines without much compromising on the mean PAoI
when ξ = 1. Besides, note that this performance analysis also
holds for the case where the sources can selectively opt for any
one of these queueing disciplines. This is essentially because
of the same transmission activities for any given source under
both of these queues, as will discussed next.

B. Activity and Distribution of µΦ

As the preemptive queue just replaces the older updates
with the newly arriving updates during the retransmission
instances, its transmission rate is the same as that of the non-
preemptive queue. In fact, the state diagrams for both these
queue disciplines are equivalent (please refer to Fig. 3). As a
result, the conditional steady state distributions (and thus the
conditional activities), for a given µΦ, are also the same for
both of these queues and are given by (11).

The point process of interferers is characterized by their
activities, which is the same for both queue disciplines. As a
result, the distributions of the conditional success probability
µΦ must also be the same for both of these queues. Based on
these arguments, the moments and approximate distribution of
the conditional success probability µΦ presented in Lemma
1 along with the distribution of transmission activities of
interfering sources given in (15) can be directly extended for
the analysis of AoI under preemptive queue.
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Figure 7. Verification of the proposed analytical framework: Average of the conditional mean PAoI (Left) and the spatial distribution of the conditional mean
PAoI for non-preemptive (Middle) and preemptive (Right) disciplines.

C. Moments and Distribution of ĀP(β; Φ)

In this subsection, we derive bounds on the b-th moment
and the distribution of ĀP(β; Φ) using the two-step analysis
of conditional success probability presented in Section III-D.

Theorem 3. The upper bound of the b-th moment of the
conditional mean PAoI for preemptive queueing discipline
with no storage is

Pb =
∑

l+m+n=b

(
b

l,m, n

)
Z laξ−mS(n;m), (29)

where
(

b
l,m,n

)
= b!

l!m!n! , S(n;m) =

∞∑
k=0

(
n+ k − 1

k

)
(1− λa)k

k∑
l=0

(−1)l
(
k

l

)
ξlMl−m, (30)

and Ml is evaluated using Lemma 1 by setting p̄m = p̄D
m

which is given in (16).

Proof. Please refer to Appendix D for the proof.

The general result presented above can be used to derive
simple expressions for the first two moments of Ā2(β; Φ),
which are presented next.

Corollary 3. The upper bound of the first two moments of the
conditional mean PAoI for preemptive queueing discipline
with no storage are

P1 = Za + ξ−1M−1 + S(1; 0), (31)

P2 = Z2
a + 2Zaξ

−1M−1 + ξ−2M−2

+ 2ZaS(1; 0) + 2ξ−1S(1; 1) + S(2; 0), (32)
where S(n;m) is given in (30) and

Ml = exp
(
−πλsdβ

δR2δ̂Cζo(l)
)
,

such that

Cζo(l) =

l∑
m=1

(
l

m

)(
δ − 1

m− 1

)
p̄D
m,

for l ≥ 0 and Cζo(l) for l = −1 and l = −2 is given in (22)
and (23), The distribution of ζo is given in (15) and p̄D

m is
given in (16).

Proof. Please refer to Appendix E for the proof.

The following corollary presents an approximate distribu-
tion of ĀP(β; Φ).

Corollary 4. Under the beta approximation, the CDF of the
conditional mean PAoI for preemptive queueing discipline
queue is

F (x;β) = BgµΦ
(x)(κ1, κ2) (33)

where gµΦ
(x) =

{
µΦ ∈ [0, 1] : Ā2(β; Φ) = x

}
, and κ1 and

κ2 are obtain using Lemma 1 by setting p̄m = p̄D
m.

Proof. Let gµΦ
= Ā2(β; Φ) is a function of µΦ. Therefore,

the CDF of Ā2(β; Φ) becomes
P[ĀP(β; Φ) ≤ x] = P[µΦ ≤ gµΦ

(x)]= 1−D(gµΦ
(x)),

where gµΦ(x) =
{
µΦ ∈ [0, 1] : Ā2(β; Φ) = x

}
. Next, using

the beta approximation for the distribution of µΦ given in
Lemma 1, we obtain (33). The parameters κ1 and κ2 of the
beta approximation are obtained using the two-step analysis
by setting p̄m = p̄D

m in (14).

V. NUMERICAL RESULTS AND DISCUSSION

This paper presents a new approach of the two-step system
level modification for enabling the success probability analysis
when the queues at the SD pairs are correlated. Therefore,
before presenting the numerical analysis of the PAoI, we verify
the application of this new two-step analytical framework
for characterizing the PAoI using simulation results in the
following subsection. Throughout this section, we consider
the system parameter as λa = 0.3 updates/slot, λsd = 10−3

links/m2, ξ = 0.5, R = 15 m, β = 3 dB, and α = 4 unless
mentioned otherwise. In the figures, Q1 and Q2 indicate
the curves correspond to the non-preemptive and preemptive
queiueing disciplines, respectively.

Fig. 7 verifies the proposed two-step approach based an-
alytical framework using the simulation results for different
values of link distances R. Note that R ∈ [10, 20] is a wide
enough range when λsd = 10−3 links/m2 (for which the
dominant interfering source lies at an average distance of
around 15 m). Fig. 7 (Left) shows the spatial average of the
conditional mean PAoI for both queuing disciplines, whereas
Fig. 7 (Middle) and (Right) show the spatial distribution of the
conditional mean PAoI for the non-preemptive (obtained using
Cor. 2) and preemptive (obtained using Cor. 4) disciplines,
respectively. From these figures, it is quite apparent that
the proposed two-step approach provides significantly tighter
bounds as compared to the conventional dominant system
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Figure 9. Mean and SD of Ā(β; Φ) with respect to medium access probability ξ. The plane curves correspond to the mean, whereas the circular marked
curves correspond to Std. Dev.
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Figure 8. Mean and SD of Ā(β; Φ) with respect to SIR threshold β for
R = 10. The plane curves correspond to the mean, whereas the circular
marked curves correspond to Std. Dev.

based approaches. The spatial distribution (for larger R) is
somewhat loose as compared to the spatial average. This is
because an additional approximation (beta approximation) is
used to obtain the distribution of Ā(β; Φ).

The performance trends of the conditional mean PAoI
Ā(β; Φ) with respect to the SIR threshold β and the path-
loss exponent α are presented in Fig. 8. It may be noted that
the success probability decreases with the increase in β and
decrease in α. As a result, we can observe from Fig. 8 that the
mean of Ā(β; Φ), i.e., P1, also degrades with respect to these
parameters in the same order (under both types of queues). As
expected, it is also observed that P1 increases sharply around
the value of β where the success probability approaches zero.
On the other hand, P1 converges to a constant value as β
approaches zero where the success probability is almost one.
In this region, P1 only depends on the packet arrival rate λa

and medium access probability ξ. For λa = 0.3 and ξ = 0.5,
we can obtain P1 ≈ 6.33 for non-preemptive queue and

P1 ≈ 5.56 for preemptive queue by plugging µΦ = 1 in
(9) and (28), respectively. These values of P1 can be verified
from Fig. 8 when β ≤ 0.

Further, it can be observed from Fig. 8 that the standard
deviations of Ā(β; Φ) follow a similar trend as that of P1

except at β → 0. This implies that the second moment of
Ā(β; Φ), i.e., P2, increases at a faster rate than the one of P 2

1

with respect to β and α. In fact, this trend of P1 and P2 also
holds for the other systems parameters which we discuss next.

Now, we present the performance trends of the mean and
standard deviation of the conditional mean PAoI with respect
to the medium access probability ξ and the status update arrival
rate λa in Fig. 9 (left) and Fig. 9 (right), respectively. From
these results, it can be seen that P1 approaches to infinity as
λa and/or ξ drop to zero. This is because the expected inter-
arrival times between updates approach infinity as λa → 0
and the expected delivery time approaches infinity as ξ → 0.
On the contrary, increasing λa and ξ reduces the inter-arrival
and delivery times of the status updates which reduces P1.
However, P1 again increases with further increase in λa and
ξ. This is because the activities of the interfering SD pairs
increase significantly at higher values of λa and ξ, which
causes severe interference and hence increases P1. However,
its rate of increase depends upon the success probability, which
further depends upon the wireless link parameters such as the
link distance R, SIR threshold β, path-loss exponent α. For
example, the figure shows that P1 increases at a faster rate
with λa and ξ when R is higher.

Fig. 10 (Left) shows an interesting fact that the same level
of mean PAoI performance (below a certain threshold) can
be achieved across the different densities of SD pairs λsd

just by controlling the medium access probability ξ. The
figure shows that higher ξ is a preferable choice for the
lightly dense network (i.e., smaller λsd). This is because
the tolerable interference in slightly dense scenario allows to
choose higher ξ without affecting success probability which in
turn provides to the better service rate. On the hand, smaller
ξ is a preferable choice for highly dense network (i.e., larger
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Figure 10. Mean of Ā(β; Φ) with respect to the density of SD pairs λa.

λsd). This is because the smaller ξ can help to manage the
severe interference in dense scenario, which in turn gives the
better service rate.

In addition, Fig. 10 (Right) shows that ξ allows to manage
the mean PAoI performance more efficiently as compared
to the update arrival rate λa for different network densities.
Furthermore, from the curves corresponding to Q1 for ξ = 0.1
in Fig. 10 (Right), it is interesting to note that lowering
λa with the increase of λsd allows to achieve better mean
PAoI performance. This follows since the smaller λa aids to
reduce the activities of sources, which is beneficial to alleviate
interference and thus provide better service rate in the dense
scenario.

VI. CONCLUSION

This paper considered a large-scale wireless network con-
sisting of SD pairs whose locations follow a bipolar PPP. The
source nodes are supposed to keep the information status at
their corresponding destination nodes fresh by sending status
updates over time. The PAoI metric was used to measure the
freshness of information at the destination nodes. For this
system setup, we developed a novel stochastic geometry-based
approach that allowed us to derive a tight upper bound on the
spatial moments of the conditional mean PAoI with no storage
facility under preemptive and non-preemptive queue disci-
plines. The non-preemptive queue drops the newly arriving
updates until the update in service is successfully delivered,
whereas the preemptive queue discards the older update in
service (or, retransmission) upon the arrival of a new update.

Our analysis provides several useful design insights. For
instance, the analytical results demonstrate the impact of the
update arrival rate, medium access probability and wireless
link parameters on the spatial mean and variance of the con-
ditional mean PAoI. The key observation was that preemptive
queue reduces the mean PAoI almost by a factor two compared
to the non-preemptive queue in the asymptotic regime of the
update arrival rate when the success probability is relatively
smaller. Our numerical results also reveal that the medium

access probability plays an important role as compared to the
update arrival rate for ensuring better mean PAoI performance
under different network densities.

As a promising avenue of future work, one can analyze
AoI for a system wherein the destinations are collecting status
updates from multiple sources in their vicinity regarding a
common physical random process.

APPENDIX

A. Proof of Lemma 1

The b-th moment of the conditional successful probability
µΦ given in (2) is

Mb = EΦ,px

[∏
x∈Φ

(
1− px

1 + β−1R−α‖x‖α
)b]

,

= EΦ

[∏
x∈Φ

Epx
(

1− px
1 + β−1R−α‖x‖α

)b]
,

where the second equality follows from the assumption of
independent activity px for ∀x ∈ Φ. Now, using the binomial
expansion (1 − x)b =

∑∞
m=0(−1)m

(
b
m

)
xm for a general

b ∈ Z, we can write Mb

= EΦ

[∏
x∈Φ

b∑
m=0

(−1)m
(
b

m

)
p̄m

(1 + β−1R−α‖x‖α)m

]
,

where p̄m = E[pmx ] is the m-th moment of the activity.
Further, applying the probability generating functional (PGFL)
of homogeneous PPP Φ, we obtain Mb =

exp

−2πλsd

∫ ∞
0

1−
∞∑
m=0

(
b

m

)
(−1)mp̄m(
1 + rα

βRα

)m
 rdr

 ,

= exp

(
−2πλsd

∞∑
m=1

(−1)m+1

(
b

m

)
p̄mWm(β,R)

)
, (34)

where
Wm(β,R) =

∫ ∞
0

(βRα)m

(βRα + rα)
m rdr.
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Using [42, Appendix A], Wm(β,R) can be evaluated as

Wm(β,R) =
1

α
(βRα)m

∫ ∞
0

t1−δ

(βRα + t)
m dt,

= (−1)m+1 β
δR2

α

(
δ − 1

m− 1

)
π

sin(δπ)
.

Finally, substituting the above solution in (34), we get (12).

B. Proof of Corollary 1

Solving (18) for b = {1, 2} and then substituting M−1 and
M−2 from Lemma 1, we obtain (19)-(21). From the definition
of Cζo(b), we can directly determine

Cζo(−1) = E
[ ∞∑
m=1

(−1

m

)(
δ − 1

m− 1

)
ζmo

]
,

= −E
[
ζo(1− ζo)δ−1

]
.

Now, for b = −2, let Cζo(−2) = E[B(ζo,−2)] where

B(ζo,−2) =

∞∑
m=1

(−2

m

)(
δ − 1

m− 1

)
ζmo ,

=

∞∑
m=1

(−1)2m−1(m+ 1)

(
m− 1− δ
m− 1

)
ζmo ,

= −
∞∑
m=1

(m− δ)Γ(m− δ)
Γ(1− δ)Γ(m)

ζmo + (δ + 1)

(
m− 1− δ
m− 1

)
ζmo ,

= −
∞∑
m=1

Γ(2− δ)
Γ(2− δ)

Γ(m− δ + 1)

Γ(1− δ)Γ(m)
ζmo

+ (δ + 1)

(
m− 1− δ
m− 1

)
ζmo ,

= −
∞∑
m=1

Γ(2− δ)
Γ(1− δ)

(
m− δ
m− 1

)
ζmo + (δ + 1)

(
m− 1− δ
m− 1

)
ζmo ,

= −(1− δ)
∞∑
m=1

(
m− δ
m− 1

)
ζmo − (δ + 1)

∞∑
m=1

(
m− 1− δ
m− 1

)
ζmo ,

= (δ − 1)ζo

∞∑
l=0

(
l + 1− δ

l

)
ζlo − (δ + 1)ζo

∞∑
l=0

(
l − δ
l

)
ζlo

= (δ − 1)ζo(1− ζo)δ−2 − (δ + 1)ζo(1− ζo)δ−1.

Finally, taking expectation of B(ζo,−2) with respect to ζo
provides Cζo(−2).

C. Proof of Lemma 2

Since the arrival process is Bernoulli, inter-arrival times
τns between updates are i.i.d. and also follow geometric
distribution with parameter λa. From the fact that the sum
of independent geometric random variables follows negative
binomial distribution, we know

P[Xn = K] =

(
K − 1

n− 1

)
λna (1− λa)

K−n.

Now, we derive the distribution of T̂k using the above pmfs
of Tk and XNk . We start by first deriving the probabilities for
the boundary values of T̂k for given Tk. Since at least one
slot is required for the successful update delivery, we have
1 ≤ T̂k ≤ Tk. From Fig. 6, it can be observed that T̂k = 1

either if Tk = 1 or if there is a new arrival in the (tk +Tk)-th
time slot. Therefore, we can write
P[T̂k = 1] = P[Tk = 1]+

× P[New Arrival Occurs in the (tk + Tk)-th slot]
= ξµΦ + λa(1− ξµΦ). (35)

It is worth noting that P[T̂k = 1] is independent of Tk. The
other boundary case, i.e., T̂k = Tk, is possible only if there is
no new update arrival in [tk, t

′
k). Thus, we have

P[T̂k = Tk] = (1− λa)
Tk−1. (36)

Now, we determine the probability of T̂k = m for m ∈
{2, . . . , Tk − 1}. For T̂k = m, the following two conditions
must hold so that we get XNk = Tk −m,

• the number of new arrivals within Tk are Nk ∈
{1, . . . , Tk −m}, and

• there should not be a new arrival in [t′k −m, t′k].

Therefore, for a given Tk = s, we have
P[T̂k = m|Tk = s] = P[no arrival in [t′k −m, t′k)]

× P[Nk = n such that Xn = s−m],

= (1− λa)
m
s+1−m∑
n=1

P[Xn = s−m],

= (1− λa)
m
s+1−m∑
n=1

(
s−m
n− 1

)
λna (1− λa)

s−m−n. (37)

For Tk = s > 1, from (35)-(37), we get P[T̂k = m|Tk = s]

=


λa, for m = 1,∑s+1−m
n=1

(
s−m
n−1

)
λna (1− λa)

s−n, for m = 2, . . . , s− 1,

(1− λa)
m−1, for m = s.

(38)
Finally, we can determine the pmf of T̂k for m > 1 as follows

P[T̂k = m] =

∞∑
s=m

P[T̂k = m|Tk = s]P[Tk = s],

= P[T̂k = m|Tk = m]P[Tk = m]

+

∞∑
s=m+1

P[T̂k = m|Tk = s]P[Tk = s],

= (1− λa)
m−1ξµΦ(1− ξµΦ)m−1

+

∞∑
s=m+1

ξµΦ(1− ξµΦ)s−1
s+1−m∑
n=1

(
s−m
n− 1

)
λna (1− λa)

s−n

︸ ︷︷ ︸
B

.

where the last equality follows using (7) and (38). Substituting
s−m = l in the above term B, we get

B =

∞∑
l=1

ξµΦ(1− ξµΦ)l+m−1
l+1∑
n=1

(
l

n− 1

)
λna (1− λa)

l+m−n,

= ξµΦ(1− ξµΦ)m(1− λa)
m
∞∑
z=2

(1− ξµΦ)z−2

×
z∑

n=1

(
z − 1

n− 1

)
λna (1− λa)

z−1−n.
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Next, by substituting
l∑

n=1

(
l − 1

n− 1

)
λna (1− λa)

l−n = λa,

and z − 2 = a, we obtain

B = λaξµΦ(1− ξµΦ)m(1− λa)
m−1

∞∑
a=0

(1− ξµΦ)a,

= λa(1− ξµΦ)m(1− λa)
m−1,

where the last equality follows using the power series∑∞
n=0 x

n = 1
1−x for |x| < 1. Finally, substituting B in

P[T̂k = m], we get P[T̂k = m] =

ξµΦ(1− ξµΦ)m−1(1− λa)
m−1 + λa(1− ξµΦ)m(1− λa)

m−1,

= (ξµΦ + λa(1− ξµΦ)) (1− ξµΦ)m−1(1− λa)
m−1, (39)

for m > 1. Therefore, using (35) and (39), we obtain (26).

D. Poof of Theorem 3

Let Sa = ξµΦ(1 − λa) + λa be the denominator of the
last term in (28). Since λa ∈ (0, 1), Sa represents the convex
combination of 1 and ξµΦ. As ξµΦ ∈ (0, 1), we have 0 <
Sa < 1. Therefore, using the following binomial expansion

(1 + x)−n =

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk for |x| < 1,

we can write

S−na = (1 + (Sa − 1))
−n

=

∞∑
k=0

(−1)k
(
n+ k − 1

k

)
(Sa − 1)k.

Note that (Sa − 1)k = [ξµΦ(1− λa)− (1− λa)]
k

=
(−1)k(1 − λa)k(1 − ξµΦ)k. Using this, we can obtain the
expectation of µ−mΦ S−na as
S(n;m) = E

[
µ−mΦ S−na

]
,

= E
[
µ−mΦ

∞∑
k=0

(
n+ k − 1

k

)
(1− λa)k(1− ξµΦ)k

]
,

=

∞∑
k=0

(
n+ k − 1

k

)
(1− λa)k

k∑
l=0

(−1)l
(
k

l

)
ξlMl−m.

Using this and (28), we now derive the b-th moment of
ĀP(β; Φ) as

Pb = E
[(
Za +

1

ξµΦ
+

1

ξµΦ(1− λa) + λa

)b]
,

=
∑

l+m+n=b

(
b

l,m, n

)
Z laξ−mE

[
µ−mΦ S−na

]
.

Further, substituting E
[
µ−mΦ S−na

]
= S(n;m) in the above

expression, we obtain (29). Since the moments of the upper
bound of the activity probabilities of interfering sources (given
in (16)) are used for evaluating the moments of µΦ, the
resulting b-th moment of ĀP(β; Φ) in (29) is in fact an upper
bound.

E. Proof of Corollary 3

Using E
[
µ−mΦ S−na

]
= S(n;m) and (28), the mean of

ĀP(β; Φ) can be determined as P1 =

Za + ξ−1EΦ

[
µ−1

Φ

]
+ EΦ

[
S−1

a

]
= Za + ξ−1M−1 + S(1; 0).

Similarly, the second moment of ĀP(β; Φ) can be determined
as

P2 = E
[(
Za + (ξµΦ)−1 + S−1

a

)2]
,

= Z2
a + 2Zaξ

−1M−1 + ξ−2M−2

+ 2ZaS(1; 0) + 2ξ−1S(1; 1) + S(2; 0).

Further, substitution of Ml from Lemma 1 provides the first
two moments of ĀP(β;µΦ) as in (31) and (32). The values
of Cζo(l) for l ∈ {−1,−2} directly follow from Corollary 1.
However, the upper limit of the summation in Cζo(l) for l > 0
reduces to l (refer to Appendix A). Since the lower bounds of
the moments of µΦ obtained from the two-step analysis are
used here, the moments of ĀP(β; Φ) given in (31) and (32)
are the upper bounds (please refer to Section III-D for more
details about the constructions and assumptions).
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