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Abstract—In this paper, we consider a large-scale wireless
network consisting of source-destination (SD) pairs where the
source nodes frequently send status updates about some underly-
ing physical processes (observed by them) to their corresponding
destination nodes. For this setup, we employ age of information
(Aol) as a performance metric to quantify freshness of the status
updates when they reach the destination nodes. While most of the
existing works are focused on the analysis of the temporal mean
Aol in deterministic network topologies, we aim to characterize
the spatial Aol performance disparity that is inherently present in
wireless networks. In particular, we treat the temporal mean Aol
as a random variable over space as the update delivery rate of a
wireless link is a function of the interference field observed by its
receiver. Our objective is to characterize the spatial distribution
of the temporal mean Aol observed by the SD pairs by modeling
them as a Poisson bipolar process. We first derive accurate bounds
on the moments of the successful transmission probability of a
status update which are then used to derive tight bounds on the
moments as well as the spatial distribution of the temporal mean
peak Aol. Our results provide useful design guidelines on the
appropriate selection of different system parameters to minimize
the mean peak Aol.

Index Terms—Age of information, meta distribution, stochastic
geometry, and wireless networks.

I. INTRODUCTION

Popular performance metrics used in communication system
design, such as throughput and delay, lack the ability of
quantifying the freshness of data packets transmitted from
source nodes, e.g., the Internet of Things (IoT) devices, to
the destination nodes, such as cellular base stations. This has
recently motivated the use of Aol to quantify the performance
of communication systems that deal with time-sensitive in-
formation [2]. This metric was first introduced in [3] for a
simple queueing-theoretic model for which the temporal mean
Aol was characterized. Although it is more meaningful to
characterize the distribution of Aol, the subsequent works
were mostly focused on characterizing the temporal mean of
Aol or other age-related metrics (e.g., peak Aol and Value
of Information of Update) for various system settings in [3]
to maintain analytical tractability (refer to [4] for a detailed
discussion). While these queueing theory-based works pro-
vided foundational understanding of Aol, their setting is not
conducive to account for some key characteristics of wireless
networks, such as interference, temporal channel variations and
random spatial distribution of nodes. Because of this, their
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analyses cannot account for the spatial disparity in the Aol
experienced by the wireless links spread across the network.
Inspired by this, we develop a novel analytical framework
with foundations in stochastic geometry that facilitates spatio-
temporal analysis of Aol, resulting in new results on the spatial
distribution of the temporal mean peak Aol.

Related work. Aol has been extensively used as a per-
formance metric for a variety of wireless communications
networks, including broadcast networks [5], [6], multicast
networks [7], radio frequency-powered networks [8], ultra-
reliable low-latency vehicular networks [9], and unmanned
aerial vehicle (UAV)-assisted networks [10], [11]. Recalling
that the main objective of this paper is the analysis of the
spatial distribution of the temporal mean peak Aol in wireless
network, the most relevant literature can be categorized into
two sets: 1) the analysis of distribution of Aol, and ii) applica-
tions of stochastic geometry for Aol analysis, which are briefly
discussed next.

The temporal distribution of Aol has been analyzed in [12]-
[15] from a queueing-theoretic perspective for a single SD
pair. The authors of [12] ([15]) characterized the distribution
of Aol for a continuous (discrete) time queue with an infinite
capacity while considering a first-come-first-served queueing
discipline. The distribution of Aol for queuing systems with
no queue or a unit capacity queue was derived in [13] under
non-preemptive scheduling. The authors of [14] obtained the
probability mass function (pmf) of Aol for a multi-hop network
with time-invariant packet loss probabilities on each link.

Owing to their analytical tractability and realism, stochastic
geometry models have been extensively used for the analysis of
large-scale wireless networks (refer to [16]). However, the in-
clusion of explicit temporal dimension in stochastic geometry-
based models is known to be hard for the analysis of traffic
aware metrics, such as delay and Aol. As a result, while there
are a handful of recent works focusing on the application of
stochastic geometry to Aol [17]-[20], their scope is limited to
the analysis of the spatio-temporal mean of Aol [17] or peak
Aol [18], [19], which fail to capture the spatial disparity in
temporal mean Aol.

Contributions. Our main contribution is the analytical char-
acterization of the spatial distribution of the temporal mean
peak Aol in a large-scale wireless network in which the
locations of the SD pairs follow a bipolar Poisson point
process (PPP). To handle the interference-induced coupling
across queues associated with SD pairs, we propose a two-step
analytical framework which relies on a careful construction
of dominant systems. Using this framework, we derive tight
lower bounds on the moments of the conditional success prob-
ability of transmitting a status update using which we obtain



an approximate, yet accurate, distribution of the conditional
success probability. Afterwards, these results are then used
to derive bounds on the moments and distribution of the
conditional (temporal) mean peak Aol. Our numerical results
verify the analytical findings and demonstrate the impact of
system design parameters on the conditional mean peak Aol.

II. SYSTEM MODEL

We model the SD pairs using a Poisson bipolar model
wherein the locations of sources follow PPP & with density
Asa and their corresponding destinations are located at fixed
distance R in uniformly random directions. By the virtue of
Slivnyak’s theorem, we know that conditioning on a point is
the same as adding a point to a PPP. Therefore, without loss of
generality, we perform the analysis for the typical link whose
destination and source are placed at the origin and x, = [R, 0],
respectively. The signal-to-interference ratio (SIR) measured at
the typical destination in the n-th transmission slot is
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where ®,, is the set of sources with active transmission during
the n-th slot, « is the path-loss exponent, and hy ,, is channel
coefficient from the source at x during n-th slot. Assuming
quasi static Rayleigh fading, we model hy , ~ exp(l) inde-
pendent across both x and n.

Conditional success probability: The transmission is con-
sidered to be successful when the received SIR is greater than
a threshold 3. From (1), it is quite clear that the successful
transmission probability measured at the typical destination
placed at o depends on the PPP @ of interfering sources and
is given by ue = P[SIR,, > (3|D]

=P [hesn > BRYD. | hallx T 1(x € @,)[]
—E [exp (<AR* Y. henllxl*1(x € @) [0,

(a) Px
= —— i + (1 —px), ()
1 T mepe + (12

SIR, =

D

where Step (a) follows using the Laplace transform of expo-
nential distribution of hy ,, the independence of {hx ,, Vx,n},
and the activity probability px of the source at x € ®. In
(2), the activities of sources are assumed to be independent.
This assumption is necessary for the spatio-temporal analysis,
which will be discussed shortly. Note that pg directly governs
packet delivery rate at the typical destination for a given .
Unconditioning of pug w.r.t ® makes the packet delivery at the
typical destination random. Therefore, the knowledge of the
distribution of ug, termed meta distribution [21], is crucial to
characterize the distribution of the temporal mean Aol.
Traffic model and Aol metric: We consider that sources trans-
mit updates to their corresponding destinations regarding some
random processes. The updates of these random processes are
assumed to arrive at the sources independently according to
a Bernoulli process with parameter \,. The links in the close
vicinity of each other may experience arbitrarily small update

delivery rate because of severe interference, especially when
update arrival rate is high. Therefore, to alleviate the impact of
severe interference in such cases, we assume that each source
attempts transmission with probability ¢ independently of the
other sources in a given time slot. Also note that the probability
of the attempted transmission being successful in a given time
slot is equal to ug because of the assumption of independent
fading. Therefore, the number of slots needed for delivering
an update at the typical destination can be modeled using the
geometric distribution with parameter {uq for a given ®.
This paper considers that each source only stores its latest
update arrival since storing and sending older packets does
not reduce Aol at its destination [13]. Therefore, the updates
arriving during transmission of the ongoing update delivery
are simply dropped.For this queue discipline, our aim is to
characterize the timeliness of random process Hy (t) observed
by the source x € ® at its corresponding destination using Aol.
Let t), and ¢}, be the time instances of the arrival and reception
of the k-th update at the source and destination, respectively.
For time slot n, let D,, = max{k|t}, < n} be the slot index
of the most recent update at the destination and A, be the
slot index of the arrival (at source) of the most recent update
received at destination (i.e., at D,,). The Aol is defined as

An—1)+1, if transmission fails
A(n) = { ( ) . 3)
otherwise.

An—1)+1+ A,

The Aol A(n) increases in a staircase fashion and drops
upon reception of a new update at the destination to the total
time experienced by this new update in the system. Note that
the minimum possible Aol is one because of the arrival and
delivery of an update are considered to be at the beginning and
end of transmission slots. Now, we formally define peak Aol,
which will be studied in detail in this paper.

Definition 1 (Peak Aol). The peak Aol is defined in [22] as
the value of Aol process A(n) measured immediately before
the reception the k-th update and is given by

A =T 1 + Y. “)
where Ty, = t), —ty and Y}, = tj, —t},_,.

The mean peak Aol measured at the typical destination
depends on the conditional success probability ;s and hence
the mean peak Aol is a random variable. Therefore, our goal is
to determine the distribution of the conditional mean peak Aol
of the SD pairs distributed across the network. In the following
we define the distribution of mean peak Aol.

Definition 2. Ler A(B;®) = E[AL|3;®] denote the con-
ditional (temporal) mean peak Aol measured at the typical
destination for given ® and SIR threshold (5. The cumulative
distribution function (CDF) of A(B;®) is defined as

F(z; 8) = PIA(B; @) < x]. (5)

III. ANALYSIS OF THE PEAK Aol

The sample path of the Aol process is illustrated in Fig.
1. The red upward (blue downward) marks indicate the arrival



(reception) of updates at the source (destination). The red cross
marks indicate the instances of dropped updates which arrive
while the server is busy. We first derive the conditional mean
peak Aol A(B;®) in the following subsection and then we
present an approach to derive the distribution of A(3; ®) using
stochastic geometry in the subsequent subsections.

A. Conditional Mean Peak Aol

The update delivery rate is governed by the product of the
medium access probability ¢ and the conditional success prob-
ability pg. The mean number of slots required for successful
transmission of an update, given ®, is E[T;] = ¢ *ug". Since

Figure 1. Typical illustration of a sample path of the Aol A(n).

we assumed zero length buffer queue, the next transmission
is possible only for the update arriving after the successful
reception of the ongoing update. Therefore, the time between
the successful reception of (k — 1)-th and k-th updates is

Y = Sk + Tk,

where Sy, is the number of slots required for the k-th update
to arrive after the delivery of the (k — 1)-th update. Since the
transmission of the next new update (after successful delivery)
begins in the same slot it arrives, we have Sy > 0. Thus, the
pmf of Si can be modeled using a geometric distribution with
parameter \, = X,/(1—\,). Thus, we get E[Sy] = Z, = X, ™.
Therefore, from (4), A(3;®) is given by

AB;®) = Z, +2ugp et (6)

Using (6) and the distribution of u4, we can directly determine
the distribution of A(j3; ®). However, from (2), it can be seen
that the knowledge of probability px of the interfering source at
x € ® being active is required to determine the distribution of
1. Thus, we first determine the activity of the typical source
for a given u4, using which the activities of interfering sources
are then obtained.

B. Conditional Activity

As we assume that each source attempts transmission in-
dependently in a given time slot with probability &, the
conditional probability of the typical source being active is

Co =&, (7

where 71 is the conditional steady state probability that the
source have an update. Thus, {, depends on the probability
px of the interfering source at x being active through the
conditional success probability ug (see (2)). The steady state
distribution of a queue depends on its arrival and departure
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Figure 2. State Diagram where State 0 and State 1 mean that the typical
source is idle and busy, respectively.

processes. In our case, both the arrivals and departures of
the updates of Hx(t), Vx, follow geometric distributions with
parameters A\, and Eug, respectively. Fig. 2 shows the state
diagram for the considered queue. The steady state distribution

is )
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where 7; is the probability of state i.

and ¥

o

C. Meta Distribution

It is clear that A(S3;®) jointly depends on the PPP & of
the interfering sources and their activities py through pg.
Hence, the knowledge of the distribution of ue, i.e., meta
distribution, is essential to characterize the spatial distribution
of A(B;®). However, it is very challenging to capture the
temporal correlation among the activities of the sources in
the success probability analysis. Therefore, we present the
moments and approximate distribution of ug in the following
lemma while assuming the activities pyx to be i.i.d.

Lemma 1. The b-th moment of g can be expressed as
My = exp (—7T/\Sd,86R2SC<O (b)) , ©)

where § = 2, 6 = T(1 + 01 — 6) and Ce, (b)) =
Zf:;:l (721) (i__ll)ﬁm, and Py, is the m-th moment of px.
The meta distribution can be approximated with the beta

distribution as
Plue < z] = I, (K1, k2) (10)

where I.(-,-) is the regularized incomplete beta function and
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Proof. The b-th moment of ug given in (2) is
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where Step (a) follows from the assumption of independent
activity px for Vx € ®. Now, using the binomial expansion
(1—a2)b =3 (=1)™(>)a™ for b € Z, we can write

m

b _
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where p,,, = E[p'] is the m-th moment of the activity. Using
the probability generating functional of PPP & and following
similar Steps as in [21, Appendix A], we obtain (9). Similar



to [21], the distribution of ;1 is approximated using the beta
distribution by matching their moments. O

D. Analysis Under Correlated Queues

The activity of a source depends on its successful transmis-

sion probability which further depends on the activities of the
other sources through interference. Besides, the transmission
from this source causes interference to its neighbouring sources
which in turn affects their activities. Hence, the success-
ful transmission probabilities of the typical source and its
neighbouring sources are correlated through interference which
causes coupling in the operations of their queues. It may be
noted that the exact analysis of the correlated queues is still an
open research problem. Therefore, the usual practice for ana-
lyzing such systems is to make meaningful modifications (refer
to [23]) so that useful bounds on the network performance can
be derived. The readers can refer to [24]—-[26] for a small subset
of relevant works in the context of wireless networks. On the
similar lines of [24], we present a novel two-steps analytical
framework to enable an accurate success probability analysis
using stochastic geometry while accounting for the temporal
correlation in the queues associated with the SD pairs.
e Step 1 (Dominant System): For the dominant system, we
consider that the interfering sources having no updates transmit
dummy updates with probability £. As a result, the success
probability measured at the typical destination is a lower
bound to that in the original system. The b-th moment and
approximate distribution of ug for the dominant system can
be evaluated using Lemma 1 by setting p,, = £™. Using (7),
we can obtain the distribution of the activity of the typical
source in the dominant system as P[(, < t] =

PX, (7" =¢7") <pa] 1= Iy g-1_¢1) (1, k2) (12)

for 0 < t < & where k1 and ko are evaluated using (11)
by setting p,,, = £™. The m-th moment of the activity of the
typical source in the dominant system can be evaluated as

1

ﬁg zm/ tm_llx(lil)(/il,/ig)dt, (13)

0 alt €
where k1 and ko are obtained using (11) for p,, = ™.
o Step 2 (Second Degree of System Modifications): Similar
to [24], we model the activities of the interfering sources
independently using the activity distribution of the typical
source obtained under Step 1. Thus, similar to Step 1, the
b-th moment and the approximate distribution of pg can be
determined using Lemma 1 by setting p,, = ]32 given in (13).

E. Moments and Distribution of A(j3;®)

}[ere, we derive the bounds on the moments and distribution
of A(B;®) using the above two-step analysis of .
Theorem 1. The upper bound of the b-th moment of the
conditional mean peak Aol A(S; ®) is

b

Q=) (2) 22T Mo,

n=0

(14)

where M_,, = exp (fw)\sdﬂéRnggo(fn)),

=35 ()

m=1
and ﬁ?n is given in (13).

Proof. Using (6), the b-th moment of the conditional mean of
the peak Aol can be determined as

b

@ = [(ena) ™ +20) 23 () 2o,

n=0

where (a) follows using the binomial expansion and E[ug"] =
M_,,. According to the Step 2 discussed in Subsection III-D,
M_,, can be obtained using Lemma 1 by setting p,, = p-..
Recall that the two-step analysis provides the lower bound on
the success probability pg because of assuming higher values
for activities of the interfering sources. Therefore, the b-th
moment of A(S3;®) given in (14) is indeed an upper bound
since A(S; ®) is inversely proportional to fig. O

In the following corollary, we present the simplified expres-
sions for the evaluation of the first two moments of A(f3; ®).

Corollary 1. The upper bound of the first two moments of the
conditional mean peak Aol are

Q1=2,+26 My (15)
Qo =224+ 42,67 M_1 +4672M_, (16)

and the upper bound of its variance is
Var = 4¢7 % (M_y — M?,), (17)

where M; = exp (—ﬂAsdﬁ5R25C¢O (l)) and

Ce,(-1) = —E[¢G(1—=C)°7"] and

Ce,(=2) = (6 = DE [¢o(1 = )] + (6 + 1)C, (- 1),
and distribution of (, is given in (12).

Proof. Solving (14) for b = {1,2} and then substituting M_;
and M_, from Lemma 1, we obtain (15)-(17). From the
definition of C¢, (b), we can directly determine C; (—1) =

IE{ i (;3) (:fi) g;”} = Ele0-6).

m=1

Now, for b = —2, let C;, (—2) = E[B(¢,, —2)] where
B(Go-2) =Y <;f> (ifl)c;"’,
=D (=) m ) <mn;: 5) ¢
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Figure 3. Verification of two-step analytical framework. The curves and markers correspond to the analytical and the simulation results, respectively.
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Finally, C¢, (—2) follows by averaging B((,, —2) w.r.t {,. [

Remark 1. For the mean peak Aol given in (15), the first term
captures the impact of the update arrival rate \, whereas the
second term depends on the inverse mean of the conditional
success probability, which captures the impact of wireless link
parameters such as the link distance R, network density Mg,
and path-loss exponent «. Furthermore, it is worth noting
that the variance of the conditional (temporal) mean Aol is
independent of the arrival rate and entirely depends on the
link quality parameters. This is because the arrival rate is
assumed to be the same for all SD links and it corresponds to
the additive term in conditional mean peak Aol given in (6).

Corollary 2. The lower bound of the distribution of the CDF
of the temporal mean peak Aol is

Fi(z;8) = 1 = Iye1(g—z,)-1 (K1, K2), (13)

where k1 and ko are obtain using (11) for p,, = ﬁa.

Proof. Using (6) and the beta approximation of the distribution
of ue given in Lemma 1, we can determine the distribution of
A(B; @) as F(x; ) =

Plpe >2 (- 2.)7 ") <1- Lpe1(p—z,)-1 (K1, K2),

where the last inequality follows from the fact that the distribu-
tion of pug (given in Lemma 1) obtained through the two-step
analysis is a lower bound. Recall that the parameters ~; and
ko need to be determined for p,, = ﬁEL to enforce the second
degree of system modification as discussed in III-D. O

IV. NUMERICAL RESULTS AND DISCUSSION

Before presenting the numerical analysis of the peak Aol,
we verify the proposed two-step analytical framework for
characterizing the Aol using simulation results. Throughout
this section, we consider the system parameter as A\, = 0.3
updates/slot, Agq = 1072 links/m?, ¢ = 0.5, R=10m, 3 =3
dB, and o = 4 unless mentioned otherwise.

Fig. 3 verifies the proposed analytical framework for R =
10 and 20 using simulation results. The curves correspond

to the analytical results whereas the markers correspond to
the simulation results. Note that & = 10 and 20 represent a
wide enough range for the link distance when \q = 1073
links/m? (for which the dominant interfering source lies at an
average distance of around 15 m). Fig. 3 (left) depicts that the
lower bound of distribution of the conditional mean peak Aol
obtained using Corollary 2 for R = 20 is reasonably close,
which gets even closer as the link distance R is decreased.
However, the mean of the conditional mean peak Aol, i.e.,
(1, as shown in Fig. 3 (right) is a relatively better match to
the simulation results compared to its distributions given in
Fig. 3 (left). This is because an additional approximation (beta
approximation) is used to obtain the distribution of A(3; ®).
While the impact of link distance R on the peak Aol metric
is presented in Fig. 3, we show performance trends of the
conditional mean peak Aol A(j3;®) with respect to the other
wireless link parameters, namely, the SIR threshold S and the
path-loss exponent «, in Fig. 4 (left). It may be noted that the
success probability reduces with the increase in 8 and decrease
in a. As a result, the mean of A(3;®), i.e., @1, also naturally
degrades with respect to these parameters in the same order.
It may be noted that (J; increases sharply around the value
of 8 where the success probability approaches to zero, which
is expected. On the other hand, (); converges to a constant
value as [ approaches to zero where the success probability
is almost one. In this region, @}; only depends on the packet
arrival rate A\, and medium access probability . For A\, = 0.3
and £ = 0.5, we can obtain (); ~ 6.33 by plugging e = 1 in
(6) as can be verified using the figure at /3 approaching to zero.
Further, it can also be observed that the standard deviation of
A(3; @) follow similar trend to that of Q; except at 3 — 0.
The average and standard deviation of the conditional mean
peak Aol are shown with respect to the medium access
probability ¢ in Fig. 4 (middle) and the status update arrival
rate \, in Fig. 4 (right). From these figures, it can be seen that
(1 approaches to infinity as A\, and/or £ drop to zero. This
is because the expected inter arrival times between updates
approach infinity as A\, — 0 and the expected delivery time
approaches infinity as & — 0. On the contrary, increasing
Aa and € reduces the inter-arrival and delivery times of the
status updates which causes 1 to drop. However, (J; again
increases with further increase in A\, and &. This is because the
activities of the interfering SD pairs increase significantly at
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Figure 4. Mean and standard deviation of A(3;®) versus SIR threshold 3 (left), medium access probability ¢ (middle), and update arrival rate A (right).

higher values of A, and £, which causes severe interference and
hence increase (). Nevertheless, the rate of increase depends
on wireless link parameters such as the link distance R,
SIR threshold S, path-loss exponent «, etc., which essentially
charaterize the success probability. For example, the figure
shows that (); increases at faster rate with A, and £ when
R is higher (for which the success probability is lower).

V. CONCLUSION

This paper considered a large-scale wireless network con-
sisting of SD pairs whose locations follow a bipolar PPP. The
sources are supposed to keep the information status at their
destinations fresh by sending status updates over time. The Aol
metric was used to measure the freshness of information. For
this system setup, we developed a new stochastic geometry-
based approach that allowed us to derive a tight lower bound
on the spatial distribution of the temporal mean peak Aol. Our
analytical results demonstrated the impact of the update arrival
rate as well as the wireless link parameters on the mean and
variance of the temporal mean peak Aol. The numerical results
revealed that the temporal mean peak Aol can be minimized
by appropriately selecting the arrival rate and medium access
probability for given system parameters, such as link distance
and SIR thresholds.
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