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BEURLING-FOURIER ALGEBRAS ON LIE GROUPS AND THEIR SPECTRA

MAHYA GHANDEHARI, HUN HEE LEE, JEAN LUDWIG, NICO SPRONK,
AND LYUDMILA TUROWSKA

ABSTRACT. We investigate Beurling-Fourier algebras, a weighted version of Fourier alge-
bras, on various Lie groups focusing on their spectral analysis. We will introduce a refined
general definition of weights on the dual of locally compact groups and their associated
Beurling-Fourier algebras. Constructions of nontrivial weights will be presented focusing
on the cases of representative examples of Lie groups, namely SU(n), the Heisenberg
group H, the reduced Heisenberg group H., the Euclidean motion group F(2) and its sim-
ply connected cover E(Q) We will determine the spectrum of Beurling-Fourier algebras
on each of the aforementioned groups emphasizing its connection to the complexification
of underlying Lie groups. We also demonstrate “polynomially growing” weights does not
change the spectrum and show the associated regularity of the resulting Beurling-Fourier
algebras.
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1. INTRODUCTION

Let G be a locally compact group and A(G) its Fourier algebra as defined in [10]. We
recall that A(G) is the predual of the von Neumann algebra V N (G) generated by the left
regular representation \ : G — B(L?(Q)), and, moreover, is a dense subalgebra of Cy(G).
In a sense which is specified in the theory of locally compact quantum groups, the pair
(A(G),VN(Q)) is the Pontryagin dual object to (L'(G), L>°(G)), where we purposely
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suppress mention of the Haar weights. In fact, if G is abelian, then (A(G),VN(G)) =
(L! (é), LOO((A?)) where G is the dual group. Hence we expect aspects of the theory of the
convolution algebra L!(G), and related convolution algebras, to be reflected in the theory
of A(G).

Beurling algebras, L'(G, w) for submultiplicative weights, w : G — (0, o) satisfying
w(zy) < w(z)w(y) for z,y in G, are important variants of L'(G), in particular when G
is abelian or is compactly generated. Recently, weighted versions of the Fourier algebra
have been introduced and investigated by various subsets of the present authors [[19,132,134]
under the name of Beurling-Fourier algebras; see also [41]. These have proved to admit a
rich theory. In [32] properties such as Arens regularity are studied. This is followed up by
[19] where it is shown that Beurling-Fourier algebras can often be isomorphic to algebras
of operators on Hilbert spaces, a property which stands in contrast to A(G) (33} Prop.
3.1]). In [34]], spectral theory and associated properties such as regularity are studied. The
present article is really a continuation on the theme of the latter.

The first goal of the present note is to give a unified treatment to all known examples. In
broad terms, we proceed as follows.

(1) We formulate a general definition of a weight W on the dual of G, which allows
the definition of the Beurling-Fourier algebra A(G, W) which is commutative. See
Section

The definition is in terms of unbounded positive operators. In order to show that the defi-
nition is meaningful, we must proceed to

(2) construct examples of weights W on the dual of G.

To do this, we have three fundamental strategies: we construct central weights, typically
on connected compact groups (Section [3.3.2); we extend certain weights from subgroups
(Section[3.3.3)); and we use the Laplacian on certain connected Lie groups, which, in par-
ticular, gives us the polynomial weights (Section 3.3.4). The first step in the analysis of a
commutative Banach algebra is to understand its spectral theory. Hence for every example
that we devise, we

(3) compute the spectrum of A(G,W).

This turns out to be the most difficult aspect of our theory, and our approach is outlined
below.

Beginning with the influential work of Wiener [50], spectral theory has proved to be an
essential part of understanding a commutative Banach algebra. Of course, our modern un-
derstanding of spectral theory arises from the revolutionary work of Gelfand [16]]. Eymard
[10], Saito [44] and Herz [23]] have all given different proofs that the spectrum of A(G)
is identifiable with G. In both [[10, [23], spectral synthesis at points plays a key role in the
determination of the spectrum.

Let us consider the case of G abelian. We let

Ge = {x : G — C* | x is continuous and mutiplicative},

where C* is the multiplicative group of non-zero complex numbers. Then it is straightfor-
ward to see that the spectrum of L!(G,w) is the set of w-bounded characters, those y in
G such that |x(z)| < w(x) for all z in G (see [23] Section 2.8]). Notice for y in G, the
range of any compact subgroup is in T. Hence we expect interesting theory of the spec-
trum only for G with no compact subgroups, i.e. those groups for which G is connected.
Notice, in the case of connected Lie dual group, i.e. G = R™ x Z™ so G =~ R x T,
and we have G¢ = C" x (C*)™ is the complexification of G. We note that especially in
the case that G = R™ or Z", and w bounded away from 0, the set of Fourier transforms
A(G,w) = {f : f € L*(G,w)} have been important in the study of spectral properties
of commuting operators on Banach spaces and (systems of) operator equations through
A(G, w)-functional calculus. Here the analytic structure and spectral synthesis in A(G, w)
have been significant issues. See, for example, [36}47].
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When we consider the Beurling-Fourier algebras A(G, W), we simultaneously lose any
(a priori) notion of spectral synthesis of points and a straightforward notion of “general-
ized W-bounded character”. Hence this task of understanding the structure of the spec-
trum requires a novel approach. We require a means of allowing complexifications of (in
the present paper) a connected Lie group G to act as operators on L?(G), affiliated with
V N(G), in a manner that interacts nicely with W. Regrettably, there are no general means
of doing so in the literature, so we are forced to devise one ourselves. Our approach en-
tails a large amount of hard analysis, specific to examples. Our mix of unbounded operator
theory, harmonic analysis, and Lie theory appears to be novel and hence an interesting
contribution itself.

1.1. Basic strategy. In [34], three of the present authors considered central weights on
compact groups. Here the dual object G is the set of equivalence classes of irreducible
representations. They considered functions w : G — (6,00), & > 0, which satisfy the
submultiplicativity condition

(1.1) w(p) < w(m)w(n’)

for any w, 7', p € G such that p C m® 7', ie. pis a subrepresentation of 7 ® «’. They,
then, let

AG w) = f€C(G): Y wmds| [ () < o0
WE@
where the norm is given by a weighted sum of the trace norms of the matricial Fourier
coefficients

(1.2) Fe(m) = /G f(g)m(g)dyg.

In the case that w is the constant function 1, this gives A(G). In this case the subalgebra
Trig(QG) of finite linear combinations of matrix coefficients of elements of G forms a dense
subspace. McKennon [37] defined the abstract complexification G¢ of G as the set of non-
zero multiplicative functionals Spec Trig(G), and a full analysis was done by Cartwright
and McMullen [3]]. For a connected compact Lie group, this is exactly the universal com-
plexification due to Chevalley ([2, III.8]), and generally is a pro-Lie group which is an
extension of the complexification of the connected component of the identity Gy, by the
totally disconnected quotient G/Gy. Hence computing Spec A(G, w) reduces to the task
of determining which elements of G¢ lie naturally in the dual of A(G,w). This task is
interesting only on connected groups and can be easily reduced to connected Lie groups.
See Section[3. 1.1l for some sample computations in this context.

For the reason just mentioned and other considerations below, we restrict our analysis
to certain connected Lie groups. The main theme of this paper is to extend the above
scheme to the case of general connected possibly non-compact Lie groups. However, we
immediately face an obstacle, namely the absence of the abstract Lie theory applicable for
non-compact locally compact groups. There is one model of abstract Lie theory for locally
compact groups suggested by McKennon ([38]). However, the authors were not able to find
any direct connection between our Beurling-Fourier algebras A(G, W) and McKennon’s
model (see (2) of Remark [3.16]for more details) at the time of this writing. For this reason,
we are forced to establish an “abstract Lie model” suitable for Beurling-Fourier algebras
from scratch.

As a motivation for this “abstract Lie model” we consider the case of G = R. Using
Pontryagin duality we begin with a weight function (i.e. sub-multiplicative and Borel mea-
surable) w : R — (0, 00). We assume that w is bounded below (i.e. inf,er w(x) > 0) to
ensure that L'(R, w) C L*(R). Here, R is the dual group of R. Then the Beurling-Fourier
algebra A(R,w) can be identified with the Beurling algebra L!(R,w) via the Fourier
transform, F, on the dual group R. Even though we know R =~ R we will keep the
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notation R to emphasize the distinction of the two groups. As mentioned above, the spec-
trum SpecLl(@, w) is well-understood via the concept of w-bounded characters. How-
ever, we require a more subtle route starting with a dense subalgebra A = F @(Cgo (R))
of A(R,w) = L'(R,w), which plays an important role replacing Trig(G) for a compact
group G. An element ¢ € SpecA(R, w) is determined by its restriction ¢| 4 by the density
of A C A(R,w), and its transferred version ¢ := |4 o 7R C>=(R) — Cis now a
continuous multiplicative linear functional with respect to convolution product on R. This
is illustrated in the diagram below.

Since 1) arises from a locally integrable function in L“(I@,w_l), it is continuous on
C2°(R). Hence the Cauchy functional equation for distributions, which will be discussed
in Section shows that (up to normalization of the Lebesgue measure)

7/1(f):/]§f(a:)efi“dx for some c in C.

Notice that the Paley-Wiener Theorem tells us that A is an algebra of analytic functions, and
hence solving the Cauchy functional equation amounts to saying that such point evaluations
comprise SpecA. Returning to SpecA(R, w), we simply need to determine for which ¢ in
C does sup, . % < 00. Notice that C is the universal complexification Rc.

In this paper, we aim to determine SpecA(G, W) for a connected Lie group G by ex-

tending the above approach as follows.

(Step 1) Any dense subalgebra A of A(G, W) gives an injective embedding
SpecA(G, W) C SpecA.

We require A to satisfy that Spec.A = G¢ through an appropriate “abstract Lie”
theory. Hence, we require that any element in .4 extends analytically to G, so that
we can identify a point z € G¢ and the point evaluation functional ¢, € SpecA
at x.
(Step 2) We check which points in G¢ give rise to a linear functional bounded in the
A(G,W)-norm.
Both of these steps are much more involved than in the abelian case illustrated above. In
particular, choosing the sublalgebra A is a highly non-trivial task since we need to ensure
its density in A(G, W) for any general weight W, possibly of “exponential growth”. Thus,
for example, an immediate candidate C°(G), the space of test functions, is not enough
for that purpose, as indicated in Remark below. To find A in (Step 1) we borrow the
“background” Euclidean structure of the given Lie group. This trick drives us to a suitable
modification of the Cauchy functional equation, leading us to the points on G¢. Thus,
the procedure just described could be understood as the “abstract Lie” theory we needed.
Moreover, we use the concept of entire vectors for unitary representations to guarantee their
analytic extendability.

The technicality of choosing a dense subalgebra A and the associated Cauchy type func-
tional equation forces us not to attempt to establish a general theory applicable for any con-
nected Lie group in this paper. Instead, we will focus on representative examples, namely
SU (n) among compact connected Lie groups, the Heisenberg group H among simply con-
nected nilpotent Lie groups and its reduced version H,., the Euclidean motion group F(2)
acting on R? among solvable non-nilpotent Lie groups and its simply connected cover
E (2). These are groups which are known to have sufficiently many entire vectors.
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1.2. Organization. In Section2]we summarize some basic materials we need in this paper.
In Section2.Tlwe cover basics on unbounded operators, including Borel functional calculus
for strongly commuting self-adjoint operators and a general treatment on an extension of
*x-homomorphisms to certain unbounded operators. In Section we provide materials
about Lie groups, Lie algebras, and related operators, including complexification models
of Lie groups and entire vectors of unitary representations. We include a short Section[2.3.2]
on the choice of Fourier transforms since we use various versions of them.

In SectionBlwe will provide a general definition of Beurling-Fourier algebras on locally
compact groups, and the associated weights on their dual, which replaces the definition in
[32]. We begin with motivation from the case of abelian groups in Section[3.1] In Section
[3.2] we give a rigorous definition of weights on the dual of locally compact groups and
define associated Beurling-Fourier algebras based on it. A more concrete interpretation of
Beurling-Fourier algebras is given in the following two subsections and[3.2.2] In Sec-
tion [3.3] we introduce three fundamental ways of constructing weights, namely the central
weights, the weights extended from subgroups, and the weights obtained from Laplacian
on the group.

Starting from Section 4] we examine concrete examples, with the first being compact
connected Lie groups, in particular SU(n), the n x n special unitary group. We first
provide details of weights on the dual of compact connected Lie groups in Section |3l We
then determine the spectrum of Beurling-Fourier algebras in Section The cases of
central weights and the weights extended from subgroups are fundamentally different, so
the corresponding approaches also differ.

In Section[f] we analyze the case of the Heisenberg group H. The technical key obser-
vation here is that we borrow the “background” Euclidean structure of H, namely R? for
the choice of dense subalgebra .4, playing the role which Trig(G) does in compact theory.
Then, we continue to the Cauchy functional equation for distributions on R? to provide a
substitute for the Chevalley style of complexification model. In Section[7lwe continue the
case of the reduced Heisenberg group H,., which shares most of the technical details of the
Heisenberg group case.

In Section [§] we focus on the case of the Euclidean motion group E(2). The choice of
the dense subalgebra becomes more involved, reflecting the structure of the representation
theory using the polar form on R?. Moreover, the corresponding Cauchy functional equa-
tion is also more involved. In Section[Q we continue the case of the simply connected cover
E(2) of E(2), which shares most of the technicalities.

Up to this point, we mainly focused on the case of “exponentially growing” weights
providing the spectrum of the corresponding Beurling-Fourier algebras strictly larger than
the original group. In Section[I0, however, we consider the case of “polynomially growing
weights”. The main result is that polynomially growing weights do not change the spec-
trum of the Beurling-Fourier algebras. The proof also provides the regularity of the corre-
sponding Beurling-Fourier algebras. We also provide some non-regular Beurling-Fourier
algebras at the end of this section.

In the final section, we collect some questions remaining from our analysis.

2. PRELIMINARIES

2.1. Unbounded operators. We collect some of the basic materials on unbounded op-
erators. Our main reference on this matter is the text of Schmiidgen, [45]], in particular
Chapters 4 and 5.

A linear map 7" defined on a subspace dom7’, which we call the domain of 7', of a
Hilbert space H into another Hilbert space K is called closed if the graph of T', {(h, Th) :
h € domT'}, is closed in H @ K. We say that another linear map S : domS C H — K is
an extension of T if domT C domS and S|qomr = T In this case we write T' C S. We
say that T' is closable if it has a closed extension. In this case we denote the smallest (with
respect to the above inclusion) closed extension by T, the closure of T.
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We consider an unconventional unitary “equivalence” notation for unbounded operators,
which we introduce for the notational convenience. We consider two unbounded operators
S and T acting on the Hilbert spaces H and K, respectively. Let U : H — K be a unitary
operator. Then we write

@2.1) SKT on D
if for some || - || ;-dense subspace D C domS we have USh = TUh for each h in D. Note

that the relation < is not an actual equivalence relation since it need not be transitive.

If an operator 7' : domT C H — H is densely defined (i.e. domT is dense in H) then
its adjoint operator T* : dom(7T*) C H — H is well-defined as a linear map and closed.
We say that such a T is self-adjoint if T = T'*, in which case T is closed as well. We
say that such a T is essentially self-adjoint if T is self-adjoint. A self-adjoint (possibly un-
bounded) operator on a Hilbert space is very well-understood through the spectral integral,
which we review below.

Given a measurable space (€2,.4) and a Hilbert space H, a spectral measure is a map
E : A — B(H) which is projection-valued, countably additive in the strong operator sense
and for which E(Q) = I. If f : § — Ris A-measurable then we may consider the spectral
integral

(2.2) T:/Qde:/th(Eoffl)(t),

which is a densely defined self-adjoint operator on 1. Conversely, let 7' be a densely
defined self-adjoint operator on H. The spectral theorem tells us that there exists a spectral
measure Ep on the Borel o-algebra Br on R, for which

domT = {x € H: / 2 d|Er(t)z|* < OO}
R
and for which
T:/tdET(t).
R

Furthermore for 7" as in (2.2), we have Ez = Eo f~1, where Eo f~1(B) = E(f~(B)),
B € Bg.

A family of densely defined self-adjoint operators 71, ..., T, is said to strongly com-
mute if each pair of elements Er, (A) and E7,(B) commute, where A, B € Bg. In this
case we can define a product spectral measure on the product o-algebra,

Ep X - XEp, :Bpn =Br®---QBg — B(H),
taking the natural definition on measurable rectangles:
EJT1 X oo X ETn(Bl X oo X Bn) = ETl(Bl) .. ETn(Bn)

We shall write E, . 1, = Ep X --- x Eq,. Using this spectral measure, we obtain a
functional calculus: for any real-valued measurable g on supp(E7q, X - -+ x Er, ), we may
define

o(Th,....T)) :/ Gt ) dIEr 5 - % B (b1, )

_ /de[(ETl X x Ep,) o g (s)

with Egr, 1) = (BEp, X -+ X Er,) o g—'. Notice that if g is locally bounded (i.e.
bounded on any compact set) then

o0

(2.3) D1, = |JranEr, x - x Eg, ([—k, k")
k=1
7



is a core for each operator S = T7, ..., T, or g(Th, ..., T,), i.e. is dense in (domS, || - || s).
If T is given in (2.2), then we have product and composition rules: if S = fQ f' dE for
f": © — R measurable and g is a measurable function on ran(f) we have

ST = ff’dEandg(T):/gode.
Q Q

Notice that if i, (t1,...,tn) = t1...t,, then we get the closure of T3 ... T, and its
spectral measure given by

un(Tl,...,Tn):Tl...Tnand (E’T1 X XETH)O/LJIZEW.

This functional calculus allows us to easily define the two concepts, below.

2.1.1. Tensor products. Let T}, be a densely defined, self-adjoint operatoron Hy, k =1, 2.
Then let

T1®I::/sd[ET1 % 1)(s), and [ © T :z/td[I@ETz](t).
R R

These operators are each densely defined and self-adjoint, and they both strongly commute
on the Hilbertian tensor product H; ®2 H,. We may thus define

T'RT:=w(hLIT) =TI T).

It is sufficient, in practice, to consider this operator on Dr, g1, 19T, as defined above.

2.1.2. Homomorphisms. One of the main technicalities in the general construction of we-
ights in [32]] was to extend a *-homomorphism to unbounded operators, which we clarify
here.

We say that a densely defined self-adjoint operator 7" as given in is affiliated with
a von Neumann subalgebra M of B(H) if UT C TU for every unitary U € M/, or
equivalently if Er(B) = E(f~1(B)) € M for each B in Bg. Note that this condition is
implied by the condition on the spectral measure that £(A) € M for each A in A. Let
7 : M C B(H) - N C B(H') be a normal x-homomorphism between von Neumann
algebras, and T be as defined above. We define 7(7") to be

w(T) := / tdlmro Ep|(t) = | fd[roE]
R Q
where ™ o Er and 7 o E are evidently spectral measures. Then 7(T") is a self-adjoint
operator on H’ affiliated with V.

We observe that if 77, ..., T, is a strongly commuting family of densely defined self-
adjoint operators, each affiliated with M, then E7, X --- x Er, (B) € M for B in Bgn
(as may be checked on measurable rectangles and extended). Hence 7 o g = [(7 0
Er) x -+ x (mo Er, )] opu,! takes values in N/. Furthermore we have

(T Tp)=7n(Th) - -7(Th)

which, on the common dense domain Dy(1,).... x(7,), is equal to 7(T1) - - - w(T7,). In the
sequel we shall take liberty to simply write

(T Tp) =7n(Th) - -7(Th)

where this operator is understood to act on a common dense domain such as D1y, ... x(T,)-
Furthermore, for any real-valued measurable g on

supp(Ep, X -+ X Er,) Dsuppl[(wro Epy) X -+ X (w0 Er,)]

we have

g(m(Th), -, 7(Tn)) = w(g(Th, -, Th)).
8



2.1.3. Homomorphisms for non-commuting pairs. We shall frequently make use of the
following, which will typically apply to particular cases of products of non-self adjoint
bounded operators with unbounded self-adjoint operators. No assumption of strong com-
muting will be made. For unbounded S and bounded A we recall that domSA = {h €
H : Ah € domS}, whereas domAS = domS.

Proposition 2.1. Let T, M and 7 be as above, and A € M.

(1) If T A is densely defined and bounded, then TA € M, ranm(A) C dom(w(T))
and (T A) = n(T)w(A).

(2) If  is injective and w(T)w(A) is bounded, then T A € M.

(3) If AT is bounded, then w(AT) = w(A)x(T).

Proof. (1) Let P, = Er([—n,n]). Then lim,, P, = I and lim,, TP, = T in the strong
operator topology on dom7'. The same is true for limits involving the projections 7(F;,)
relative to dom(7(7T)).

First, T'A is closed; see Exercise 1.5.9 of [45]. A closed bounded operator has full
domain H. Hence TA = lim,, TP, A, where the limit is in the strong operator topol-
ogy on H, so TA € M. In fact, the sequence of operators TP, A is uniformly bounded
and hence converges in the o-strong operator topology on H. Thus lim, n(TP,A) =
m(TA) in the o-strong operator topology on H’. We have n(TP,A) = #n(TP,)n(A)
while 7(T'P,) = w(T)n(P,), as P, strongly commutes with 7. If h € ranw(A),
h = lim, 7(P,A)x for some = in H', and n(T)n(P,A)x = w(TP,A)x converges
toy = w(TA)x, so (h,y) = lim,(r(P,A)z, 7(T)w(P,A)z) is in the closed graph of
m(T). Thus ranm(A) C dom(w(T)). But then dom(n(T)7(A)) = H' and n(T)w(A) =
lim,, 7(TP,A) = n(T A), where the limit is in the strong operator topology on H'.

(2) We simply apply 7~ to the von Neumann algebra 7(M) in B(H'), and appeal to
part (1).

(3) We use simple facts about the adjoint as shown in Proposition 1.7 of [45]. If AT
is bounded then TA* = (AT)* is bounded. Then we see that w(AT) = w(TA*)* =
[7(T)mw(A*)]*, where the factorization is from (i). The latter contains 7(A)7(T), so
w(A)m(T) is bounded with dense domain. On this domain we see that 7(AT) = w(A)7(T).

O

2.2. Lie groups, Lie algebras and related operators. We collect some materials on Lie
theory which we will use frequently in this paper. The symbols G and g will be reserved
for a connected real Lie group and its associated Lie algebra with the exponential map
exp : g — G throughout the paper unless specified otherwise. We also fix the symbol H
and h for a connected closed Lie subgroup of GG and its associated Lie algebra.

2.3. Complexification of Lie groups. We say that a complex Lie group G¢ together with
a Lie group homomorphism i) : G — G is the universal complexification of G if for
any Lie group homomorphism ¢ : G — H for a complex Lie group H there is a complex
Lie group homomorphism ¢ : G¢ — H such that ¢ o b = . It may be the case that
the Lie algebra gc of G is a proper quotient of the Lie algebra complexification g¢ of g.
However, all the examples in this paper satisfy that gc = gc, so that we will simply call
G the complexification.

When G is compact, we have a concrete construction of the universal complexification
G due to Chevalley ([[2, II1. 8]). We define

Ge :={T € Trig(G) :mN(T) =T & T, T # 0}

where m : Trig(G) © Trig(G) — Trig(G) is the pointwise multiplication defined on the
algebraic tensor product and m! is the algebraic adjoint. In other words, G is the set of
non-zero multiplicative functionals on Trig(G). Using the canonical duality

Trig(G)' = ] Ma,
71'6@



where Trig(G) is the algebraic dual of Trig(G) and G is the unitary dual of G, we can
regard elements in G¢ as sequences of matrices indexed by G. This justifies the injective
embedding (or the group homomorphism)

J:G—=Gc, g J(g) = (J(9)(n)),cq

given by
J(9)(m) = [mi (9)]{5-1

which is just 7(g). Here m;; is the coefficient function of the unitary representation 7 :
G — B(H,) given by m;;(g) = (m(g)e;, e;) for a fixed orthonormal basis (ej)?gl of Hy.
It is well known that (G¢, J) is the universal complexification of G, and the Lie algebra
associated to G is the Lie algebra complexification g¢ of g. From the universality of G,
the representation 7 extends to a complex representation ¢ : G¢ — GLg, (C), defined as
mc(T) = [T(mij)]. Thus, to any T' € G we can associate the sequence (7c (7)), g in
the following way.

T(m) = [T(mij)] = [(7c)i(T)] = me(T).
The matrix 7¢ (7°) has the polar decomposition ¢ (T') = Uy exp(i X, ) with U, € Uy (C),
the group of unitary d. x d, matrices, and X, = —X* € M, _ and it has been proved that
there is a uniquely determined g € G and X € g such that

m(g9) = U, and dm(X) = X,

where dm : g — M, is the Lie algebra representation derived of 7. This leads us to the
Cartan decomposition:

(2.4) Gec 2 G- G¢ =G -exp(ig).

Note that the above concept of complexification has been extended to general compact
groups by McKennon [37]] and Cartwright/McMullen [3].

2.3.1. Operators associated to certain elements of the universal enveloping algebra and
entire vectors. We fix a basis {X1, ..., X, } of g and we consider the following norm on
the complexification gc¢ given by

n
H Z a; X;
j=1

Let U(g) denote the universal enveloping algebra of gc. We simply refer to U(g) as the
enveloping algebra of g. The map X +— —X is an anti-isomorphism of g. Its unique
extension to an anti-isomorphism of U(g) is an involution for the algebra U(g). Let 7 :
G — B(H;) be a unitary representation of G. A vector v € H, is called a C*-vector
for m if the mapping g — 7(g)v from the C'°°-manifold G into the Hilbert space H is a
C*°-mapping. Let D°(7) be the space of C'°°-vectors for 7, which is known to be dense
in H, and invariant under 7(g), g € G. For X € g, we define the operator dm(X) with
domain D*°(7) by

n
=Y lagl, (a;)j= € C.
j=1

dr(X)v = %ﬂ'(exp(tX))vh:O.

The mapping X — dn(X) satisfies the following. For any o, 5 € R, X, Y € g and
v, w € D*>°(7) we have

The space D () is invariant under dr(X),

dr(aX + BY)v = adn(X)v + Bdm(Y ),

dr([X,Y])v = dr(X)dn(Y)v — dn(Y)dr(X)v,

(dr(X)v,w) = — (v, dn(X)w).

In other words, dr is a *-homomorphism of the Lie algebra g on D°°(7), which extends

uniquely to a x-homomorphism d7 from the x-algebra U(g) to the algebra of operators on
D> ().
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For some elements in U(g) we have a better understanding of dn(X). For X € g,
1 dn(X) is known to be essentially self-adjoint on #.,.. We denote its self-adjoint extension
idn(X) by
i0m(X)
which is actually the infinitesimal generator of the strongly continuous one-parameter uni-
tary group ¢ — m(exp(tX)) on H, i.e. we have

m(exp(tX)) = exp(tom(X)).

The case of (Nelson) Laplacian A = X? + ... + X2 € U(g) is more involved ([45,
Corollary 10.2.5]), but still the same is true, namely dr(A) is essentially self-adjoint with
the self-adjoint extension 97 (A), which is a negative self-adjoint operator on H.

The space D*° () has a natural locally convex topology given by the following family
of seminorms (p, )m>0 Where

m (V) = dn(X;, - X;
pn(v) = max (X, -+ X, o]
with the understanding that po(v) = ||v||. The above family can be used to define analytic
vectors and entire vectors for 7. We say that a C'*°-vector v € H is an analytic vector for
 if the mapping g — m(g)v is a real analytic function on G, or equivalently ([40, Lemma
1.1]),
o0 Sm
Es(v) := Z mpm(v) < oo
m=1

for some s > 0. We say that a C*°-vector v € H is an entire vector for w if E4(v) < 0o
for all s > 0. We denote the space of all entire vectors for m by Dg° (). For v € Dg°(mr)

— 1
we can readily check that 7(exp X)v = Z - (dm(X))"v for X € g. Motivated by this
n

n=0

fact we define for X € gc that
oo 1 N
me(expe X)v = Z E(dﬂ'(X)) v
n=0

where expe @ gc — G is the exponential map of the complexification G¢ of G. We
will use the notation exp for exp by a slight abuse of notation since exp¢ actually is an
extension of exp. Then, by [21, Proposition 2.2, 2.3] we know that 7¢c is a holomorphic
representation of G¢ on Dg°(m) in the following sense: for any v € D°(w) the map
X € gc — mc(exp X)v € D (7) is holomorphic and

mc(exp X)me(exp Y)v = me(exp X exp Y )o.
forany X,Y € gc.

Remark 2.2. When G is compact and w € G, then it is easy to see that any element in
H, = C% is an entire vector for w. Moreover, the above definitions of dr and ¢ coincide
with the corresponding symbols from Section[2.3]

We are mostly interested in the case of 7 being the left regular representation A of G
or an irreducible unitary representation appearing in the decomposition of A. For the left
regular representation we have a criterion for identifying entire vectors by Goodman [20].
We assume that G is separable, type I and unimodular, so that we have a clear Plancherel
picture of GG as follows. The unitary dual G becomes a standard Borel space and there
is a unique Borel measure p on G with the following property: for a fixed p-measurable
cross-section & — ¢ from G to concrete irreducible unitary representations acting on Hy
we have
G, ~G

() f2 (©))du(€), fi, f € LNG) N L*(G)

11
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where
@5 YO =FUNE = /G f(g)n*(9)dg € B(He), f e LY(G)NL*G).
Thus, the group Fourier transform
FO: LNG) = L™(G.dp BUH)), = FO())
with FE(f) = (FO(£)(€))¢ea = (F€(€))¢eq extends to a unitary
FOLAG) = LA(G.dp; S*(Hy)). |+ FE(f).

Here, S?(H) is the space of Hilbert-Schmidt operators on a Hilbert space H. We further
assume that G is solvable, so that we may suppose that our fixed basis {X,} for g is a
Jordan-Hélder basis ([20] or [42]), i.e. for by, = span{ X7y, -, Xx}, 1 < k < n we have

[9,b] Chp—1, 1 <k <.
For ease of reference recall some of the main results in [20, 142].

Theorem 2.3. Let G be a connected solvable Lie group which is separable, type I and
unimodular.

(1) A function f € L*(G) is an entire vector for X if and only if
ranfG (&) € D (7)) p-almost every & and

/A sup [7&(v)FE(€)|2du(€) < oo foranyt > 0,
G YEQ

where the set S, is given by Q, = {expX : X € g¢, | X|| < t} and || - ||2 is the
Hilbert Schmidt norm. Moreover, we have
FC 00
(26) Ae(r) ~ (1E(M)ee on DEWM)
in the sense of @.1) for any v € Gc.
(2) Let f € L?(G) be an entire vector for \, then we have

[ s InE e FE@lhdute) < oc
G v€EQ

forany t > 0, where || - ||1 is the trace class norm. Moreover, | is analytically ex-
tended to G¢ with the analytic continuation fc given by the absolutely convergent
integral

fe(y) = / Tr(n&(v~1) FE(€))du(€), v € Ge.

G

Proof. The first statement is from [20, Theorem 3.1] and the second one is from [20, Theo-
rem 4.1], where G is assumed to be a simply connected nilpotent Lie group. The nilpotency
condition on G could be relaxed into the solvability condition by replacing the technical
step [20, Theorem 1.1] with [42, Corollary 1.5]. The simple connectedness can be easily
removed by a careful examination of the proofs, where most of the part are involved with
the norm estimates of the elements of the universal enveloping algebra. 0

We end this section by recording a theorem of Paley-Wiener which characterizes entire
functions for the left regular representation of R"™.

Proposition 2.4. Let F' € L?(R"), n € N be a function. Then, F satisfies
et(|£1|+---+\£n\)ﬁR" (517 R 7577,) c LQ(Rn)
Sforanyt > 0 if and only if F' extends to an entire function on C™ and satisfies
sup / |F(I1 +Zyla aIn+Zyn)|2dI1dIn < oo

[yl lyn|<s
12



for any s > 0. In this case we have
/ F¥' (€1, &u)etrotam8de, o dg, = Fe(z,- -, 20)

where Fg is the analytic continuation of F and (z1,- -+ , z,) € C™

Proof. The case of n = 1 is presented in [28, Section 7.1] and the case of n > 2 can be
done by a similar argument. g

2.3.2. The choice of Fourier transforms. We take a moment to record the choices of Fourier
transforms we made in this paper. We will use group Fourier transforms on various Lie
groups. When the group is non-abelian (separable, type I) as in the previous section, then
we choose (2.3) as the definition.

For the abelian case, we follow the canonical choice as follows. For f € L'(R") we
define

n 1 .
f (817"' 7871) = o f(‘rla"' 7xn)e—l(w181+---+wnsn)dxl dwn
(2m)2 Jgn
where dz; - - - dx, is the Lebesgue measure on R™. For f € L!(T™) we define
Pl ydn) = | flynee e sya)e OBt T dy, o dy,
T’Vl

where dy - - - dy,, is the normalized Haar measure on T". Finally, for f € (1(Z") we
define

Pt )= Sl dg)e ),

(dy,- ,dpn)EL™
These choices provide the following consequences:
o L2(R") — L%(R"), f fE" and L2(T") — ¢2(Z"), f — f*" are unitaries.
o 7 (2) = izfR(z), 2 € Rand J' (m) = im [ (m), m € Z.

n

o frg = (2m)% fR"GR". Thus, (27)% F&" is multiplicative with respect to the
—T" n no. .- . .
R™-convolution, whilst fxg = ]?T g"", so that FT" is multiplicative with

respect to the T"-convolution.

—T
e (%) (m)= f(-m),me€Z.

Note that we made a choice of the Fourier transforms for the abelian case different from

the non-abelian case.

3. A REFINED DEFINITION FOR BEURLING-FOURIER ALGEBRAS

In [32] the authors suggested a model for a weight W on the dual of a locally compact
group G. Regrettably, the suggested set of axioms in [32] was slightly misleading and
had limitations in covering variety of examples beyond the ones already covered there,
namely the case of “central weights” on compact groups (extending the case of [34]) and
the Heisenberg group. Here, we introduce a refined definition of weights and the associated
Beurling-Fourier algebras extending the previous definitions in [32]. Note that a closely
related model of weighted Fourier algebras has been introduced in [41]. See Remark 3.16]
below for the detailed comparison of the definitions.

3.1. Motivation: review of weights on abelian groups.

Definition 3.1. Given a locally compact abelian group G, a weight function is a Borel
measurable function w : G — (0, 00) which satisfies

3.1 w(zy) < w(z)w(y) for almost every z,y € G.
13



Remark 3.2. It is shown in [8] (see also Lemma 1.3.3 of [23]) that a weight function is
always locally bounded: given compact K in G there are constants a and b so 0 < a <
w(z) < bforall xin K. It is then shown in Section 3.7 of [43] that w is equivalent to a
continuous weight function w : G — (0, 00); i.e. there is M > 0 so %w <w < Mw.

The Beurling algebra with the weight function w is given by
(3.2) LYG,w) = {f : G — C| f Borel measurable, fw € L'(G)}

equipped with the norm || f||1(q,w) := || fw|[z1(c). It is well-known that this space is a
Banach algebra under convolution. Moreover if w is equivalent to a weight function w,
then L(G, w) is isomorphic to L' (G, w) as a Banach algebra. We observe that this space
has dual space

(3.3) L>(G,%)={f:G — C| f Borel measurable, £ € L>=(G)}
with the dual norm given by || f|| Lo (¢, 1) = ||£HL°°(G).

Let ¥ : LY(G,w) — L'(G) be the surjective isometry given by ¥(f) = fw. Let
Q:Gx G — (0,1] be given by Q(s,t) = %, and define for f,g in L'(G) the
twisted convolution f xq g by

(3.4) f*agly) = /G f(a:)g(:z:fly)ﬂ(:c, xily) dx forae. yin G.

Then we have that U(f) xq ¥(g) = U(f * g), showing that (L'(G), *q) is a Banach
algebra, isometrically isomorphic to L' (G, w).

The submultiplicativity condition (3.1) can be rephrased as the following function in-
equality

(3.5) MNw)<wxwe Q=T(w)(w!xw?!)<1,

where I'(w) : G x G — Cis given by I'(w)(z,y) = w(zy), z,y € Gand w X w(z,y) =
w(zx)w(y), z,y € G. Note that the map I is in fact the obvious extension (to unbounded
functions) of the canonical coproduct I : L>°(G) — L*°(G x G). Now we would like
to transfer the above inequality to a condition on operators using the canonical embedding
L>(G) — B(L*(G)),¢ + My, where My denotes the multiplication operator with
respect to the function ¢. In the case of an unbounded Borel measurable function ¢, the
operator M can be concretely understood as an unbounded operator. Thus, the statement
Q < 1in (BJ) is equivalent to Mg being a contraction (since € > 0). Now we observe
that the operator Mg is actually an extension of Mp () My—1x-1 = Mp(w)(Mujl ®
M, 1), which is the composition of two unbounded operators, namely Mr () and M, e
M_*. Finally, we note that M, is affiliated with the commutative von Neumann algebra
L*°(G@) C B(L*(G)). This motivates the general definition we formulate below.

3.2. Weights on the dual of G and Beurling-Fourier algebras. We now give a very
general definition of a weight which encompasses all examples we have. We shall make
liberal use of concepts surrounding unbounded operators discussed in Section

We recall that the coproduct is the unique normal *-homomorphism

I': VN(G) = VN(G)®VN(Q)
satisfying

T(A(s)) = A(s) ® A(s), Vs € G.
This probably appeared first in Section 9 of [48]. Here, we use the same symbol as in the
case of L*°(G) by abuse of notation. The coproduct I is cocommutative (i.e. Yo' =T
for the tensor flipping map ¥ : VN(G x G) - VN(G x G), A® B — B® A) and
satisfies the co-associativity law

T®id)oT' = (Id®T") o T.

Definition 3.3. A weight on the dual of G is a densely defined operator W on L*(G),
which satisfies
14



(a) W is positive, affiliated with V N (G), and is injective on its domain (hence admits
positive inverse);

(b) T(W)(W =t @ W) is defined and contractive on a dense subspace, hence ex-
tends to a contraction Xy on L*(G x G); and

(c) the contraction X satisfies the 2-cocycle condition:

(T @id)(Xw))(Xw @ I) = ((id &) (Xw)) I @ Xw).

Moreover, we say that W is a strong weight if it is a weight with the additional condition
that

(d) T(W) and W @ W strongly commute.

Remark 3.4. (1) Let W a weight on the dual of G. Since W is invertible, the appro-
priate analogue of the core (2.3) is

(3.6) Dy = | ranEw ([2,n]).
n=1
It is also given by functional calculus: W~ = f(o dEW (t). Further we

see that WW 'Ew ([1,n]) = Ew/([,n]), so the core ’DW is common to the
domains and ranges of both W and W1,

(2) Itis clear that W @ W is a weight on the dual of G X G.

(3) The extended contraction Xy actually belongs to VN (G x G). Indeed, we know
that both of T(W) and W ~*@W ~! are affiliated with V N (G x G), so that for any
unitary U € VN(G x G)' we have UT(W) C T(W)U and UW L@ W1 C
(W=toW=Y)U. Thus, for any ¢ € D(W @ W 1) such that (W 1eW1)¢ €
D(T(W)) we have

UTW)W oW hHe=T(W)
rw)
Such elements & form a dense subspace of L*
to VN(G x Q).

(4) In the quantum group literature the 2-cocycle condition is often different from ours
in (c) as follows:
(Xw @ (I @id)(Xw)) = (I @ Xw)((id @I')(Xw)).
These conditions coincide in the case of a strong weight.

(5) We will see examples of strong weights in Proposition|3.26l Definition [3.33] will
provide some examples of weights which are not strongly commuting.

UW oW1
W te W hHue.
G x@G), so that we know Xy belongs

(
(

Example 3.5. Let G be an abelian group, and fix a weight function w : G — (0, 00)
on the dual of G. Then, the associated multiplication operator M,, acting on L2(a) isa
densely defined positive operator affiliated with the von Neumann algebra L> (CA?) as one
can see in [29, p.342] for instance. Recall that in the case of an abelian group, VN (G)
can be identified with L*°(G) via the group Fourier transform FS : L2(G) — L%(G),
ie. VN(G) = (FO)"1L>(G)FC. Thus, we get a densely defined positive operator
Mw affiliated with the von Neumann algebra V N (G) using this unitary conjugation, i.e.
Mw = (]-'G)fl o M,, 0 FC. Now the discussion in SectionB 1l tells us that Mw is a weight
on the dual of G.

We say that a positive operator 1" is bounded below if it is injective and T~ ! is bounded.
The upshot of the following is that for none of our examples will we have to manually
verify the 2-cocycle condition.

Proposition 3.6. Let W be a densely defined operator on L*(Q).

(1) If W satisfies the conditions (a), (b) and (d) in Definition then it is a strong
weight.
15



(2) If W is bounded below and satisfies (a) and (b) in Definition[3.3) then it is a weight.

Proof. (1) Using functional calculus as it applies to homomorphisms and tensor products of
commuting operators, we have on a common core (guarranteed by the functional calculus
theory) that

(T ®id)(Xw))(Xw @ 1)
=T eid) W)W oW 1) TW) W e W ) el
= (T @id) o D)WW H @ W) (TW)(W ™ @W™)) @)
= (Fr@id) o) W)W oW teoWw1).
Likewise, on the same core, we have
(d@D)(Xw)(I ® Xw) = ([d&D) o D)WW o W o W)

and we appeal to the coassociativity of I".
(2) Given assumption (a) and (b), Proposition[2.1] applied to the homomorphisms I' ®id
and id ®T', justifies the computations of the last paragraph to give (c). 0

Now let us consider our first model of the Beurling-Fourier algebra, defined in the
proposition below, which is analogous to (3.4), above.

Proposition 3.7. Let W be a weight on the dual of G. The map
'y : VN(G) - VN(G x G) 2 VN(G)®VN(G)
given by
Pw(A) =T(A) Xw
is weak*-weak* continuous, contractive, co-associative and co-commutative, and hence

induces a product -w on A(G), making (A(G), -w) a commutative Banach algebra. Fur-
thermore, the spectrum of (A(G), -w) is given by

Spec(A(G), w) ={U € VN(G) :Tw(U) =U®U, U #0}.

Proof. Note that Xy belongs to VN (G x G) as we have seen in Remark 3.4 Weak*-
weak*-continuity and contractivity of 'y are trivial. We use co-associativity of I" and the
2-cocycle condition on Xy to see that for A in VN(G) we have

(Tw ®id) o 'w)(A4) = (I ® id)(I'(A) Xw))(Xw ® 1)
= (I'®id) o D)(A)[((I' @ id)(Xw))(Xw @ I)]
= (((idel') o I')(A)[((id &I')(Xw))(I ® Xw)]
= (([d@T'w) o T'w)(A)

which is the co-associativity condition for I'yy .

The flip map ¥ on VN(G)®@V N(G) is a x-automorphism which satisfies Y o I" = T,
and is given by 3(A) = FAF where F = F* is the flip unitary on L?(G x G). Note that
wehave FWL@WHF =Wl@W-tonD = DW~1) @ D(W™1!), which is a
core for the operator W~! @ W~1. Hence

WileW ! l=FW1W - )Fpc FW oW HF
which implies W= @ W~ = F(W~! @ W~1)F, as both operators are selfadjoint. We
have also FT' (W)F =T (W) as FT'(A(s))F = T'(A(s)) giving that FT'(A)F = T'(A) for
any A € VN(G) and hence for any self-adjoint operator affiliated with VN (G). From the
definition of weight we know that D(I'(W)(W ! @ W~1)) is dense in L?*(G x G) and so
is F(DL(W)(W~t @ W1))). Now for £ € F(D(L(W)(W~ @ W~1))) we have
FE(W)(W=' @ WHF(§) = (FT(W)F)(F(W™' @ W™H)F)(€)
=ITW) W= e W=h(©),
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so that F Xy F(€) = X (€), and the density of the subspace F(D(I'(W)(W ~teW 1))
in L2(G x G) tells us that F Xy F = Xyy. Consequently, we have X o T'yy = Ty, i.e.
I'yy is co-commutative.
For the last assertion we note that u -y v = (I'w )« (u ® v) for u, v in A(G). Thus for
Uin VN(G), U € Spec(A(G), -w) exactly when for any u, v in A(G)
(Tw (U),u®v) = (Uu-wv)={U,u{Uv)={UU,uuv)
which is when 'y (U) = U @ U. O

Remark 3.8. The coproduct Ty on VN (G) is completely contractive, so (A(G), -w)
is a completely contractive Banach algebra with respect to the canonical operator space
structure on A(G) = VN(G).. See [9] for the details of operator spaces and completely
contractive Banach algebras.

In computational practice, it is more convenient to consider the second model of a
Beurling-Fourier algebra, which is equivalent to the first model. First, we define weighted
spaces following (3.3).

Definition 3.9. We define the weighted space VN (G, W ~1) by
VN(G, W)= {AW : A€ VN(G)}
with the norm
AW v na,w-1) = [[Allvna)
which gives us a natural isometry:
®:VN(G) = VNG, W), A AW.

We also endow V N(G, W) with the operator space structure that makes ® a complete
isometry.
The weighted space VN (G x G, W1 @ W~1) is similarly defined.

Remark 3.10. Note that VN (G, W ~1) is well-defined as a set. Indeed, if we have AW =
BW for A, B € VN(G) we know that A and B coincide on ran W, which is dense from
the definition of weight W. Thus, we have A = B.

We continue to define weighted space and the second model of a Beurling-Fourier alge-
bra following (3.2).

Definition 3.11. We define the weighted space
A(G7 W) = (@71)*(14((;))7

which can be understood as a predual VN (G,W~1), of VN(G, W ~1) with an obvious
duality bracket. Then, the Banach algebra structure of (A(G), -w) can be transferred to
A(G, W) via the isometry ® 1 = (®71)*| o). In other words, the algebra multiplication
on A(G, W) is given by

W =3 o (Tw)so (B, ®D,): A(G,W)RAG, W) — AG, W),

where & is the operator space projective tensor product. For u,v € A(G, W) we use the
notation
w-v:=T"(u®w).

The following is straightforward from Proposition[3.7]
Proposition 3.12. We have
Spec(A(G,W),-) = {UW : U € Spec(A(G), w)}-

The space A(G,W) is defined as an abstract predual of VN (G, W~1). However, in
many situations, we could give a concrete model for A(G, W) which justifies the title
“weighted space” as follows.
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3.2.1. When W is bounded below. Recall that for u € A(G) and S € VN(G), we let Su
in A(G) be given by (Su, A) = (u, AS), forevery A € VN(G).

Proposition 3.13. If W is bounded below, then there is a natural continuous injective
algebra homomorphism

Gt A(G, W) = A(G), &7 (u) — W,
whose adjoint is the formal embedding
j:VN(G) = VNG, W™, A AWIW.

Proof. We consider the elements W,, = W Ew (|1, n]) € V.N(G) which satisfy W,, W~ =
Ew ([%,n]), by (1) of Remark[3.4] It follows that

(AW~1: Ac VN(G)} D {AEW([%,n]) . A e VN(G)),

and the latter set is weak* dense in V N (G), which shows that j, is injective.

Let us consider the adjoint map j = (j.)*. Given A in VN(G) and v € A(G, W), we

have
<U7.7(A)> = <]*(U)7A> = <W_1(I)*(U)7A> = <(I)*(U)7AW_1> = <U7AW_1W>7
s0 j(A) = AW ~IW. It is immediate that ®~! o j(A) = AW~ for Ain VN(G).

We wish to see that j. is an algebra homomorphism, which shows that its range is a
subalgebra of A(G). Hence we must show that the identity I'x o (j, ® ji) = jx o T =
Jeo® o (T )wo (P, @®,) holds on A(G, W)® A(G, W), which is equivalent to having

Tuo (o ® ' ®juo® ) =jso® o (Tw).
on A(G) ® A(G). If A € VN(G) we compute
Twod toj(A) =Tw (AW H =TAW oW = (@ tojad 'oj)ol(A)
which gives the desired equation by duality. g

Remark 3.14. The above embedding j. allows us to identify A(G, W) with the space
AG,W) == {W tu:uec AG)} C A(G)
with the norm
W =ull 16 = Il ac-

It is well-known that Spec(A(G)) = {A(s) : s € G} = G, where the last identification
is a homeomorphism.

Corollary 3.15. If W is bounded below, then Spec(A(G, W), -) contains the set
AW i s € G},
which in weak* topology is homeomorphic to G.

Proof. We appeal to Proposition [3.12] the fact above, and the fact that j is weak*-weak*
continuous and injective. Thus, if G is non-compact, j({A(s) : s € G} U {0}) is compact
and homeomorphic to {A(s) : s € G} U {0}, which in turn is homeomorphic to the one-
point compactification of G. O

Remark 3.16. (1) Let us compare the definitions of weights on the dual of a general
locally compact group G from [32), Definition 2.4] and Definition[3.3]

First of all, the restrictions on a weight W being boundedly invertible and on
the operator T (W)(W ~1@W 1) being selfadjoint in |32} Definition 2.4] has been
removed in Definition 33| which allows us to include more examples of weights.
Moreover; the techniques of exhibiting non-trivial examples of weights in Section
B3 can easily be verified with Definition3.3] whilst the case of [32}, Definition 2.4]
is not clear for the moment.
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Secondly, |32, Definition 2.4] is slightly misleading as follows. A closed pos-
itive operator W affiliated with VN (G) is called a weight on the dual of G in
the sense of 32, Definition 2.4] when the operator I'(W) satisfies certain condi-
tions. However, the understanding of T'(W) in [32] is based on the extension of
*-homomorphism given by |32, Lemma 2.1], which depends on the choice of a net
of projections in the Lemma. This forces us to assume a fixed choice of a net of
projections for T'(W) and the validity of the rest of the results in [32, Section 2.1]
is maintained when we make this implicit assumption.

In contrast, we understand T'(W), in this article, through spectral integrals as
is explained in Section2.12] which is free of the above mentioned ambiguity. Note
that the spaces D := U2 ranEw ([, n]) and D’ := U2 ranl'(Ew ([, n])) are
cores for W and T'(W), respectively, thanks to the property of spectral integrals.
This means that the projections EW([%, n]), n > 1, satisfy all the conditions
of 132l Lemma 2.1], and T'(W) there coincides with the one from Section 212
Thus, we can say, thanks to Proposition that the weight W on the dual of G
in [32), Definition 2.4] is a weight in the sense of Definition[3.3| as long as we take
the choice of the above sequence of projections. Note that the examples in 32,
Section 2.2 — 2.3] are based on “canonical” choices of projections different from
the above sequence Evy ([X,n]), n > 1. We will explain that they are still included
in the framework of Definition3.3]in Remark[3.23and Remark[6.3]

In [41]) the authors defined a weight inverse w™"' as an element of M(C}(Q)),
the multiplier algebra of the reduced group C*-algebra of G, which is expected to
be a replacement of W= € VN(G) in [32, Definition 2.4]. Since M(C}(Q))
and VN(G) are different in general, a direct comparison is not possible for a
general locally compact group G. However, for a compact group G we do have
M(C}(G)) = VN(Q), and 41, Examples] (before Theorem 2.6 there) explains
that the central weights in |32 Definition 2.4] produce weight inverses in [41]] in
this case.

Proposition[3.13| shows the truth of Remark 2.10 (1) of [32l, effectively replacing
Theorem 2.8 of that article.

The elements of VN (G, W~1) are poorly behaving as operators. For example,
the operator AW, A € V.N(G) is not even closable in general. Indeed, we know
that (AW)* = W*A* = W A* ([45] Proposition 1.7(ii)]), so that AW is closable
if and only if dom(W A*) is dense in L?(G). This cannot be true for the operator
A withranA* Ndom (W) = {0}. So we need to be very careful when we deal with
general elements in weighted spaces and this is one of the obstacles to connect
¢ € SpecA(G, W) to McKennon’s model ([38]) of complexifications for locally
compact groups. More precisely, ¢ € SpecA(G, W) should be understood as
an element AW € VN(G, W‘l), which, in general, is not even closable whilst
any element of G¢ in McKennon’s model is a closed operator affiliated to VN (G)
acting on L*(G) satisfying a certain property.

3.2.2. When G is separable and type I. In this case the unitary dual G is a standard Borel
space. Moreover, by [[13, Theorem 3.24], we have a standard measure ;& on G and a -
measurable cross-section £ — 7¢ from G to concrete irreducible unitary representations
acting on H such that X is quasi-equivalent to |, Cﬁf 7&dp(€) so that we have

VN(G) 22 L®(G, du(€); B(He)).

Thus, in turn we get

A(G) = LY(G, du(€); S (He)).

With the above identifications in mind, we would like to focus on a general weight W
on the dual of GG, which is not necessarily bounded below. Since the weight W is a closed
operator affiliated with V N (G), it is automatically decomposable (see [[7, Proposition 4.4])
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with the decomposition

@
W= [ Wedn(o)

such that W is closed and densely defined on H for almost every £. This decomposition
allows us to make a concrete realization of certain elements of A(G, W) as in the case of
W being bounded below. We first consider the following map.

Jet A(GW) = A, 07H(6) » W lo = (Wi de)ecq

where A is the space of all decomposable closed operators acting on L?(G). Note that ¢¢
is a bounded operator, so that ng(bg is a closed operator for almost every &.

Now we consider a dense subspace S of A(G, W) such that for any ¢ € A(G) with
® 1(¢) € S, the operator WE_lqﬁf is densely defined for almost every £. Note that the
elements of j.(S) are exactly those decomposable closed operators ()¢) e acting on
L?(G) such that (1) ¢ is densely defined and ran(¢¢) C dom(W;) for almost every &;
(2) and the field of operators (Wet)¢) 5 belongs to @.(S) C LY(G, du(€); St (Hg)); this
observation will be used frequently later with the choice of the subspace S in each case.

Moreover, we can see that the map j, is an embedding on S, i.e. (j.)|s is injective.
Indeed, if we have W~1¢ = W14 for ¢, ¢ € A(G) with ®;1(¢), d;1(¢) € S, then for
almost every & we have WE_1¢5 = WE_lng, which are densely defined closed operators.
By [45, Proposition 1.7(i)] we have ¢; W' C (Wi 'ge)* = (W 'de)* D drW
Since dom(¢f W ') = ranWe = dom(¢fW; ') we have oW, " = ;W' So, we
conclude that qﬁz and qég coincide on domWg, which is a dense subspace of H¢ by [46,
Proposition 12.1.8], and we get ¢¢ = &5 a.e. €.

As before the above embedding j, allows us to identify S C A(G, W) with the space

S={Wlp:pc AG), ;'pc S} C A
with the norm
IW=lls = ll¢]lac)-
As we shall frequently deal with “central” weights in the case of separable type I groups,
we introduce the definition here.

Definition 3.17. We call a weight W on the dual of a locally compact group G central if it
is affiliated with the centre of VN (G).

Hence if G is separable and type I, then a central weight W admits the decomposition
W=/ Cﬁf Wedp(§) with We being a constant multiple of the identity for almost every &.

Remark 3.18. When G is compact, we can actually drop the condition of separability on
G in the above.

3.3. Examples of weights. In this section we review three fundamental ways of construct-
ing weights on the dual of (G, namely central weights as in Definition weights ex-
tended from subgroups and the weights using Laplacian on the group. Regardless of the
choice of the methods they are all based on classical examples of weight functions on R™
or Z", which we begin with.

3.3.1. A list of weight functions on RF x Z"~*. We first exhibit canonical examples of
weight functions on R or Z.

Example 3.19. Fora,s,t > 0and 0 < b < 1 we have a family of weight functions on R
as follows:
Wap st () = e (14 |2])* (log(e + |2]))!, = € R.
The above includes polynomial weights (a = t = 0), exponential weights (b = 1, s =
t = 0), and sub-exponential weights (b < 1). The restrictions wq b, s |7 are clearly weight
functions on Z.
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We may extend the above weights to RF x Z"~* by tensoring.

Example 3.20. For a;,s;,t; > 0and 0 < b; < 1, where 1 < j < n, we have a family of
weight functions on RF x Z"~* as follows:

n
W(az,bj,s5.t5)1<i<n (@1, o) = H Wayj,bj,s5,t; (@)
Jj=1

forxy,--- o €R,) 241, T € Z.

Of course, there are many other weights, but any weights on R¥ x Z"~* are at most
exponentially growing.

Proposition 3.21. Let w be a weight function on R¥ x Z"=F. Then, there are positive
numbers C, p1,- -+ , pn such that

’LU(Il," ! 7xn) < Op‘lwl‘ ' ..plfnl, (Ila' o ,In) € Rk X Zn_k'

Proof. We recall, as noted in Remark[3.2] any weight function is locally bounded. Then it
is straightforward to check that

w(xy,  ,Tn) < m[‘”“” : ~-m,D$”H < m‘f“‘“ comEaltt
where m; = supe(_y 1 w(- -+ ,0,¢,0,---) (ith position) for 1 <4 < n. O

Example 3.22. There is a family of multiplicative weight functions on R. For ¢ € R we
have
we(z) =e“, z e R.

The restriction w.|z is a multiplicative weight function on Z. This class of examples provide
weights which are not bounded below.

3.3.2. Central weights. When the group G is compact or more generally separable and
type I, it is natural to expect weights to be central in the sense of Definition[3.17] Indeed,
this is what happened in the case of compact groups as we have seen in the Introduction.
Here, we present a different approach more suitable to Definition 3.3

Let G be a compact group. It is well-known that the left regular representation A on G
is a direct sum of irreducible ones, i.e. we have the quasi-equivalence

3.7 A aT,
which gives us
VN(G) = P My, and A(G) = ('-Hd,S) .
e el

Here, 52,1 < p < oo refers to Schatten p-class on éi. In the above, the latter identification
uses a standard duality coming from the Plancherel theorem

L*(G) = - P Vd,. S5 .

ﬂ'eé

Letw : G — (0, 00) be a function. We associate w with the operator

W =P w(n)Ix
71'6@

which can be understood as a spectral integral. More precisely, we consider the spectral
measure

~

E:PG)— B(H), J— Grejlr
where P(CAT') is the o-algebra of all subsets of G and H is given by

H=0r-PVdS5.

™
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Indeed, the scalar valued map (E(-)X,X) : P(G) — Rforany X = (X(7)), € H is
given by
(B()X,X) = de| X(m)]13, JC G
e
so that (E(-)X, X) is a measure for any X. Thus, [45, Lemma 4.4] tells us that E is a

spectral measure, and we define W to be the spectral integral / w dE, which we denote

G
by ®we§ w(m) 1.
Recall that for A = (A(7)) ..a € VN(G) we have

F(A) = Orn [Ufr*,w’(@UQ@W’A(U))UW,W’]

where for o, 7,7’ € G, the notation ¢ C 7 ® 7’ means that ¢ is a subrepresentation of
7w @', and Uy - is the unitary appearing in the irreducible decomposition of 7 @ 7. Since

(W)= /A wd(T o E), we have for , 7' € G that
a

F(W)(Wil ® Wﬁl)(ﬂ'ﬂr/) = Ufr*,w'(@Ugwt@ﬂ/w(a)w(ﬂ)ilw(ﬂ/)illo)Uw,ﬂ/a
which explains that I'(W) (W~ ® W) is a contraction if and only if
(3.8) w(o) < w(m)w(n")

forany o, 7,7’ € G such that o C w®7’. This is exactly the sub-multiplicativity condition
(L.I). For the 2-cocycle condition we note that W ® W is central (i.e. at each components
we have constant multiples of the identity), so that I'(WW) and W ® W are strongly com-
muting.

From the above description of the central weight W = @ _5w(m)I, and the dis-
cussion in Section B.22 with § = A(G,W) we recover the Beurling-Fourier algebra
A(G,W) = A(G, w) on compact groups in [34]

(39  AGW)= {X = (X0 € [ Ma, : Y dew(m)l| Xalls < oo}.
776@ 7766

o~

Considering the embedding Trig(G) < [[,.ca Ma,. f = (f(7)),.cq We get

Ifllaew) = D dew(m)||f(m)]l1, [ € Trig(G) € C(G)

ﬂeé

as before.

Remark 3.23. (1) Note that we are not assuming w to be bounded away from zero
unlike [32].
(2) In [32] Section 2.2] the net of projections {E(J) : J C G, |J| < oo} was consid-
ered to define T'(W). However, it is immediate to see that both of the definitions of
(W), the one from [32, Section 2.2] and the one from Section2.1.2 coincide.

We call the above A(G, W) a central Beurling-Fourier algebra on compact groups as
in [32]. More detailed examples of central weights on the dual of compact groups will be
presented later in Section[3

Remark 3.24. In [32] a model for central weights on the dual of the Heisenberg group
has been investigated, which can be explained in the model we described in the next sec-
tion, namely the weights extended from subgroups. See Remark[6.2for more details. Note
also that central weights on the dual of the reduced Heisenberg group and the dual of the
Euclidean motion group are completely described in Remark[Z.3] and Remark[82 respec-
tively.
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3.3.3. Extension from closed subgroups. In this subsection we provide a fundamental con-
struction of weights by extending from closed subgroups under mild assumptions. Let H
be a closed subgroup of a locally compact group G and we consider the restriction map
Ry : A(G) — A(H), f v+~ f|u, which is a surjective quotient homomoprhism thanks to
Herz restriction theorem, see for example [23|[39]. Then, the adjoint ¢ = RjJ; is an injective
*-homomorphism satisfying

(3.10) t: VN(H) = VN(G), Ag(z) — Aa(z),

where Ay and A\ are left regular representations of H and G, respectively. From this point
on the symbol ¢ will be reserved for the above particular embedding.

Proposition 3.25. Let H be a closed subgroup of a locally compact group G and Wy be
a weight on the dual of H. Then the operator Wg = 1(Wy) is a weight on the dual of G
provided that any of the following holds:

(1) H is abelian,

(2) Wy is central, or

(3) Wy is bounded below.

Proof. First, we observe that 'gor = (¢®¢) ol . Indeed, we can easily check the identity
for the elements Ay (x), € H and we can use w*-density to get the general result. In cases
(1) and (2) we have that W is a strong weight, i.e. 'y (Wg ) and Wy ® Wy are strongly
commuting. Then, we can easily see that T'¢(Wg) = Tg o t(Wy) = (0 @ )Ty (Wg))
and Wg @ W = (1 @ 1)(Wy ® Wy) are also strongly commuting from the construction
in Section Thus, we may apply functional calculus for the above operators, so that
we get Xy, = (¢ ®¢)(Xw, ) a contraction, which immediately implies that W is even a
strong weight on the dual of G by Proposition3.6]

For the case (3) we appeal to Proposition2.I]to get Xy, = (¢ ® ¢)(Xw, ) and to verify
the 2-cocycle condition, which establishes (b) and (c) of Definition[3.3} ]

When G is a connected Lie group and H is a connected abelian Lie subgroup, then all the
extended weights are obtained from the Lie derivatives via functional calculus. Note that if
H is a connected abelian Lie group then it is isomorphic as a Lie group to R7 x T"7, for
some 0 < j < n. In particular, we can arrange a basis { X1, - - - , X, } for the Lie algebra b
of H for which exp(RX; +---+RX;) 2 R/, and each exp(Xy) 2 Tfork = j+1,...,n.

Proposition 3.26. Let H be a closed connected abelian Lie subgroup of a connected Lie
group G, with basis {X1,--- , Xy} for its Lie algebra b arranged as above. A weight
Sunction w : H — (0, 00), induces a weight on G by functional calculus as follows:

We = w(idAa(X1), - ,idA(Xn)).

Proof. First, we let H = RJ x T® 7. The Fourier transform of a derivative gives the
formula

i g (Xp) = (FE)"to M,, o FH
where My, f(z1,...,2n) = zxf(21,...,2,). Notice that x1,...,x; are real variables,
whereas z;41, ..., x, are integer variables. Hence functional calculus, and its interchanga-
bility with homomorphisms, provides that

WA (X1), -+ 10N (X)) = My,

where Mw is the unitary conjugation of a multiplication operator as in Example[3.3 Since
H is abelian, we may apply Proposition[3.23] the fact that (O (X)) = OAg(Xy) for
each k, and again functional calculus, to obtain the desired formula. O

When we have two subgroups isomorphic by an automorphism on the group, then there
is a natural connection between the corresponding spectrums. Let o : G — G be a contin-
uous group automorphism. If G is a connected Lie group, then from the definition of uni-
versal complexification we have a uniquely determined analytic extension a¢ : Gc — G¢
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of a, where G is the universal complexification of G. It is straightforward to see that ac
is also a group automorphism. Note that the transferred measure d(a(x)) is left invariant
again, so that there is a constant C' > 0 such that d(a(x)) = C' - dz. This implies that we
have a unitary U = v/Cap2 on L?(G), where a2 : L*(G) — L*(G), f +~ f o a. This
map transfers to the level of A(G) and VN (G) as follows.

ap: AG) = AG), f— foa.
Indeed, for f(z) = (A\(x)&, 1), £,n € L*(G) we have

foa(z) = (Aa(x))§,n)

= AM@)U(€), U(n)),
which means « 4 is an isometry. Then, its adjoint ooy y = oy is given by
ayy : VN(G) = VN(G), AMz) = Ma(z)) = U"A(x)U.
Now we can observe that aiy v is an inner normal *-isomorphism.

Theorem 3.27. Let o : G — G be a continuous automorphism and W be a weight on the
dual of G which is either a strong weight or is bounded below. Then ay (W) is also a
weight on the dual of G and we have

SpecA(G, ayn(W)) = SpecA(G, W)
which is implemented by resticting the isometry
II: VN(G,W™!) - VN(G,avn(W™)), AW = ayn(A)ay y(W).
Proof. We first note that ay v (W) is also a weight on the dual of G. Indeed, we have the
identity
(3.11) (ayny @ayny)ol =Toayy.

It is straightforward to verify conditions (a) and (b) of Definition 3.3 using properties of
normal automorphism a7, which is implemented by unitary, and appeal to Proposition
[B.6lto see that ay iy (W) is a weight. Likewise, on VN (G) we have

(avn®@ayy)oly, yow) =Twoayy
which, by Proposition 3.7l shows that ay ns = (A(G),-w) — (A(G), ay y(w)) is an
isometric isomorphism, and ay v carries Spec(A(G), o, 5 (w)) 0onto Spec(A(G), -w ).
We let @ : VN(G) — VN(G,ayn(W)™1) be given in analogy to ® in the definition
of the space VN (G,W~1). We then let I, = (®%)7! o ayyn. o @, : A(G,W) —
A(G, ay Ny (W)). The adjoint IT = IL." satisfies

(Aayn(W)) = ®oayy o (8%)H(Aayn(W)) = avy(A)W.

It follows from Proposition that IT maps SpecA(G, ay ny(W)) onto SpecA(G, W).
O

Remark 3.28. The above theorem tells us that we could focus on a representative choice
of subgroup among the subgroups in the similarity class.

We end this subsection with the following functorial result about restrictions.
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Proposition 3.29. Let H be a closed subgroup of G, Wy be a weight on the dual of H
which is bounded below, and W = (W) be the weight on the dual of G specified by
Proposition[3.23 Then the restriction map

ur ulg: A(G,We) — A(H, W)
is a surjective quotient homomorphism.

Proof. Recall the embedding . : VN(H) — VN(G) from (310). It is shown in the proof
of Proposition3.23|that ¢ ® (X, ) = Xw,. Since, also, (1 @ 1) o'y =T g o, for Ain
V N(H) we have that

t@t)oTw,(A) =1 Tr(A)Xw,) =Tw, o t(A).

Thus, by duality, the quotient map Ry is an algebra homomorphism from (A(G), -w.,)
onto (A(H), -w, )- Then the desired restriction map is given by

(@5 ) 0 Ry o (Bg)s : A(G, We) — A(H, W)

where (®5'). : A(G) — A(G,Wg) is the isometry indicated in Definition for
example. 0

3.3.4. Construction of weights using Laplacian. Measuring the growth rate of a function
has always been a central theme in various fields of mathematics. In [34]] the authors sug-
gested that the Laplacian could provide such a measure on the dual of a compact connected
Lie group G. For such a group it is well-known that the operator OA(A) is central, i.e. we
have a function 2 : G — (0, 00) such that
—0NA) =@, aUm)Lx.

Note that the function €2 is independent of the choice of the basis { X7, -, X} of the
associated Lie algebra g and the function {2 plays the role of homogeneous monomial of

order 2. From this we can define a family of polynomially/exponentially growing weights
on the dual of a compact group G as follows.

Definition 3.30. For o > 0, we define the weight w% by
W () = (14 9(m) 3.

The above weight w2 is said to have polynomial growth rate of order cv.
Similarly, for B > 1 we define the weight wﬁA by

wﬁA(w) =BV 1 ed.
The above weight w? is said to have exponential growth rate of order 3.

We refer to [34, Lemma 5.3] to see that wﬁ and w§ are indeed weights.

The above idea can be extended to a general (possibly non-compact) connected Lie
group G, with a partial success of defining polynomially growing weights. We begin with
some basic facts on the operators OA(X), X € g and ON(A) with A = X7 +--- 4+ X2 for
a given basis {X1,---, X,,} of g. Recall that O\(X) is the infinitesimal generator of the
one-parameter unitary group (A(exp(tX)))ier, i.e. A(exp(tX)) = exp(tOA(X)). We also
have T'(A(exp(tX))) = A(exp(tX)) ® A(exp(tX)), t € R. By comparing the associated
infinitesimal generators on both sides (or taking derivative at t = 0) we get

L(OXNX)) =0NX) @ I+ I @ OANX).

Now on the common invariant subspace D> (\) ® D>°(\) we compute
(3.12) D(OA(A)) = S (OMXe) ® I +1 ® OA(Xy))?
k=1
=OMA) @ T+ T®INA) +2> INXy) @ ONXp).
k=1
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We recall that each operator iOX\(X}) is self-adjoint and affiliated with VN(G) so its
square —O\(X},)? is positive.

Our starting point for the weights is the operator A = I — OA(A) and its powers A™,
m > 1. Note that A is positive, affiliated with V N (G), and bounded below. We require
the following domination result.

Proposition 3.31. ([40, Lemma 6.3]) For any element Y € U(g) with order < 2m (i.e.
elements in the span of the elements X;, - - - X;,, k < 2m) we have a constant C depending
only on m such that

[AAY )R] < CII(I = dA(A))™h|, h € D=(A).
Theorem 3.32. There is a constant Cy, > 0 for which the operator
CnA™ = Cp(I —ONA)™, m>1
is a weight on the dual of G.

Proof. We first check that T'(A™)(A~™ ® A~"™) is densely defined and bounded. By
(B.12), on D := D>*(A) ® D>°(A) we have

[(A™)|p = T(I = OA(A))™[p

- (1 DI —ONA)®T —1®INA) -2 zn: INXy) ® 8)\(Xk)> Ip

k=1

= (1 ®1—dMA) @I —T®d\A) —2)  d\(X;) ® d/\(Xk)> ,
k=1
which is a linear combination of operators of the form dA(S) ® dA(T') where S, T € U(g)
are of order < 2m. Now we observe that A™ (D> (\)) is dense in L?(G). Indeed, we begin
with k& € (A™(D>()\)))*. Then since D> () is a core for A™ ([46, Corollary 10.2.7])
we can easily see that k actually belongs to ran(A™)+ = {0}, since A™ is bounded below.
This observation combined with Proposition[3.31]tells us that dA(S)A~™ and dA(T)A~™
are bounded operators on the common dense subspace A™(D>())), so that (dA(S) ®
d\(T))(A~™ @ A~™) is a bounded operator on A™(D>®(\)) @ A™(D>())), which is
dense in L?(G x ). Consequently, we know that I'(A™)(A™™ @ A~™) is bounded on
the dense subspace A™ (D> (\)) ® A™(D>(A)) with [T(A™)(A™™ @ A~™)|| < Cyp, or
equivalently
ID(CrnA™)(Crt A @ CLtAT™)| < 1.

Since A™ is bounded below, Proposition[3.6] shows that C,,, A™ is a weight on the dual of
G. 0

Definition 3.33. We call the weight W,,, := C,,, A™, m > 1, the polynomial weight on the
dual of G of order 2m.

Remark 3.34. (1) The fact that V1+1 < 1+t < V2VI+1t fort > 0, and
functional calculus show that the operator AY/? = (I — ON(A))'/? is comparable
up to constant with the operator I +/—0X(A). Thus, we may use W) = C! (I+

—IN(A))™ (for some C!, > 0) in place of W,

(2) For G = R, the operator W/, corresponds to a multiple of the weight w : R —
(0,00), given by w(€) = (1 + |£])?™. This justifies our present terminology.

(3) Let G be a compact connected Lie group. For o = 2m the weight wﬁ Jfrom
Definition[3.30 is nothing but the above weight W, with C, = 1.

(4) We were not able to define exponentially growing weights for non-compact Lie
groups with only two exceptions of Euclidean motion group E(2) and its simply
connected cover E(2). See Section8I2 for the details.
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4. COMPACT CONNECTED LIE GROUPS AND THE SPECIAL UNITARY GROUP SU (n)

4.1. More on representations of compact connected Lie groups. In this section we re-
call some representation theory of compact connected Lie groups starting with the highest
weight theory from [49] and [34, Section 5]. We consider the decomposition g = 3 + g1,
where 3 is the center of g and g = [g, g]. Let t be a maximal abelian subalgebra of g;
and 7" = expt. Then there are fundamental weights Ay, --- , A, Ay, -+ ;A € g* with
r = dimj and [ = dimt such that any 7 € G is in one-to-one correspondence with its asso-
ciated highest weight A, = >, ai/\i+2221 bjA; with (a;)j_, € Z" and (b;)}_, € Z!,.
Let x; be the character of G associated to the highest weight A; and 7; be the irreducible
representation associated to the weight A;. Then,

S:{:I:Xi,ﬂ'j:lgigr,lgjgl}
is known to generate G. More precisely, if we denote for every k > 1,
S®k:{ﬂ'€@:7rC01®-~-®ak where o1, - ,O'kESU{l}}

then we have
Js®r=aG.

k>1

Now we define 7 : G — NU {0}, the length function on G associated 1o S, by
4.1 To(m) ==k, if e SO\ §OKk-1),

From the definition, we clearly have

4.2) 15(0) < 75(m) + T9(70)

forany 7,7’ € Gando C 7 @ 7.

We know that any 7 € G uniquely extends to a holomorphic representation ¢ on G,
the universal complexification of G. Moreover, each coefficient function 7;;, 1 < 4,5 <
d, clearly belongs to D2°(\) from the definition of entire vectors.

Now we move our attention to a representative example of compact connected Lie
groups, namely SU (n), the special unitary group of degree n. The associated Lie alge-
bra su(n) is given by

su(n) = {X = —X*eM, Tr(X)= o}
with the regular commutator as the Lie bracket and the exponential map is the usual matrix
exponential. Denoting by E;; the (¢, j)-matrix unit we have that the abelian subalgebra
t=(Xjj = i(Ejj — Epn) :1<j<n—1)
with
exp(t) = H = {D =diag(z1, - ,zn) x| = =lzpl =1, 212, = 1}

which is the canonical maximal torus consisting of diagonal matrices in SU (n).

The unitary dual 57](\11) of SU(n) can be identified with Z'} ", which is in 1-1 corre-
spondence with the index set

To={A= O M) €2 M = de >0 > Ay 2 A = 0]
via the map
a=(ar, ,ap-1) €Z e A=\, \) €T,
given by

AM=a1+ - +ap-1, o =az+ -+ an-1, ", Ap—1 =ap-1, Ay = 0.
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We will denote the corresponding representation in SU(n) by m, or ) according to our

_—

preferences. We have a canonical generating set for SU(n) given by

S = {(1,07... ,0), -+, (0, 7071)} CZ’}fl
which gives us a canonical word length function, denoted by 75, given by
4.3) Ts(my) =a1+ -+ an—1 = A1,

The representation 7, A € Z,, is acting on a vector space V) with a basis {vr},
where T runs through all the semistandard Young tableaux of shape A. Every tableaux
T has a parameter set {t;, : 1 < k < n}, where t; is the number of times k ap-
pears in the tableau T'. Moreover, each vector vy is an eigenvector of the matrix 7 (D),
D = diag(z1,--- ,v,) € H, with the eigenvalue 2}" ...zl (see [13, Problem 6.15]).
From the construction of representations 7y and vz, for which the usual symmetric and
anti-symmetric tensor products are used, we can see that the vectors v are orthogo-
nal with respect to the natural inner product on the representation space V). Let o
be the normalization of vr, then we have an orthonormal basis {07} for V) with the
same eigenvalues. Thus, we can say that 7, (D) is also a diagonal matrix with entries

_ tn1—tn - . .
it gt = g i) with respect to the orthonormal basis we described
above. In other words, we have

(4.4) a(D)op = it . xbe oy

In particular, for any ¢ € R we have a diagonal matrix 7 (exp(¢X;;)) given by
ma(exp(tX;;))or = ettt 5 1< j<n—1.

Thus, dmx (X ;) is also the diagonal matrix given by

(4.5) OmA(X ;)b = it; —tn)ip, 1<j<n—L

The universal complexification of SU(n) is the special linear group SL(n,C) and the
above representation 7 is known to extend to the holomorphic representation ()¢ on
SL(n,C) with the same formula for D = diag(x1, -+ ,x,) € SL(n,C). To avoid
clutter in notation, we denote the holomorphic representation (7 )¢ by 7.

5. WEIGHTS ON THE DUAL OF COMPACT CONNECTED LIE GROUP GG

In this section, we present three types of weights on the dual of a compact connected Lie
group G central weights, weights extended from subgroups, and weights derived from the
Laplacian. Note first that a weight W on the dual of GG can be understood as a collection
of matrices (W(m)) g € [l,cq Ma, with the dense subspace S = @' (Trig(G)) in
Section[3.2.2] We begin with central weights.

Example 5.1. For a > 0 we have dimension weights w,, given by
wo(m) = (ds)*, 7ed.
The sub-multiplicativity comes from the fact that o C © @ 7/, o, m, 7' € G implies that

doe < dpdy.
Fora > 0and 8 > 1, we have weights wg and wg given by

wi (1) == (1 +75(7))°, wg(w) =B red.

(e

Here, T is the word length function on G with respect to the generating set S given in
(4.1). The submultiplicativity this time comes from the subadditivity (£.2)).

In particular, when G = SU(2) we have SU(2) = {m, : n > 0} = Z, withd,, =
n+1,n>0. Thenfor S = {m}, « > 0and B > 1 we have

We () = wg(wn) =(n+1)7, wg(wn) = 3" n>0.
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We already have a general principle of extending weights from subgroups, namely
Proposition and Proposition However, precise description of such weights re-
quires more details on the representation theory of the underlying group. For this reason
we focus on the case of SU(n) here. We begin with the case of an abelian subgroup.

Example 5.2. Let G = SU(n) and H = T"! be the canonical maximal torus. Then
Proposition B23 and (@3 immediately lead us to the following: for a weight function
w: Z" 1 — (0, 00) the extended weight W = 1(M,,) is a direct sum of matrices

W = @xez, W(ms), W(m) € My,
where dy = dimmy. Moreover, each matrix W () is a diagonal one given by
W(mx)or = w(ty —t1, - ,tn —tn_1)0r

where T is a semistandard Young tableaux of shape )\ with parameters t1,--- ,t,. Note
that the resulting weight W is not central unless w is the constant 1 function.

Among many non-abelian subgroups of SU (n) we check the case of SU(n — 1), which
would be one of the easiest such choices.

Example 5.3. Let G = SU(n) and H = SU(n — 1) embedded in G as the left upper

corner. We first consider the embedding x-homomorphism

L VN(H) = VN(G), Aa(f) /H F(@)halg)dg = Brez, /H F(9)ma(9)dg.

Recall that the restriction )| g is clearly a finite dimensional representation of H and its
irreducible decomposition is well-known as follows ([30, Chap. 1X]):

TAlsun-1) = Sumy
where the direct sum is taken over all p € I,,_1 satisfying the interlacing condition
AL > > A2 pe > 2 fin—2 2 Ap—1.

Now we fix a weight Wi = @ ez, Wr (1) on the dual of H, which is central or bounded
below, so that it satisfies one of the conditions in Proposition 323 Then the extended
weight Wg = t(Wg (1)) = ®xez, Wa() is given by

We(X) = 0. Wa(p)

where the direct sum is over all i € T, satisfying the above interlacing condition with
respect to \.

As we have seen in Section[3.3.4 we already have two types of weights derived from the
Laplacian, namely

~

U)A(ﬂ') = (1 +Q(ﬂ'))%, w?(w) = Bm, el

fora > 0and 8 > 1, where Q2 : G — (0, 00) is the function satisfying

—ONA) = &, 5.

Remark 5.4. One canonical way of measuring “growth” is to use length functions, so that
we can define “growth rate” on G for a compact connected Lie group G using the length
function T in @1). Note that the function Q) and the length function Ts are equivalent
(134, (5.3) and (5.5)]), so that the resulting “polynomially growing” weights wﬁ and wg
are equivalent. However, this equivalence does not carry over to “exponentially growing”
weights thanks to the presence of the equivalence constant. Note also that the concept
of length functions on éfor a non-compact Lie group G is not well-understood at this
moment. For this reason we would like to focus on the approach of using Laplacian for
“growth rate on the dual of G”.
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5.1. Description of spectrum of A(G, W) for a compact connected Lie group G and
SU(n). In this section, we describe the spectrum of A(G, W) for a compact connected Lie
group GG, where the weight W is one of the three types described in the previous section.

5.1.1. The case of central weights. We begin with the case of central weights. The gen-
eral strategy goes as follows. We fix a weight function w : G — (0, 00) and recall the
observation SpecA(G, w) C SpecTrig(G) and we pick an element ¢ € SpecTrig(G).

A(G, w) < Trig(Q)

©
PlTrig(a)

C
By the “abstract Lie” theory we know that ¢ actually comes from a point z, € Gc.
To determine whether ¢ belongs to SpecA(G, w), we need to check the norm condition
v € A(G,w)* X VN(G,w™t),ie.

qup @l _

ﬂ'eé w(ﬂ)
which suggests that we need more details of the representation theory of G. For this reason
we focus only on the case of G = SU(n). We recall a part of Littlewood-Richardson rule
[LS, Proposition 15.25 (ii)].

Proposition 5.5. Leta = (a1, -+ ,an—1) € Zi‘l and Ty = T(a, ... a, ) be the associ-
ated representation. We also let mp, = m(g,... 0,1,0,...,0), Where we have I only at the k-th
coordinate. Then we have

T(ar, - an—1) @ Tk = OpTb

where the direct sum is over allb = (by,--- ,b,_1) € Zr_ffl satisfying the following: there
is a subset J C {1,--- ,n} with k elements such that if i ¢ Jand i+ 1 € J then a; > 0,
and

ai—1 ifig¢d i+1leld
bi=<qa;+1 ified i+1¢J.
a; otherwise

Proposition 5.6. Let D = diag(z1,--- ,z,) € SL(n,C). Then, we have
1T (ar - an—))e (D) = [l(m)e (DY - - [[(Fn1)c(D)]|*" "

In particular, for the case that |x1| > |x2| > -+ > |2, | we actually have
(T (ar, e san-n)e(D) = | ]* -y 2 [*
Proof. We will apply Proposition 5.3 with J = {1,--- | k}. Then we can see that
T(ar,,ap+1,,an_,) (increased by 1 only at the k-th coordinate)

appears in the decomposition of 74, ... 4,_,) ® Tk This explains that

(T (ar, - ai+1,an))e (D < [ (Tay e ann))e (D) - [ (mr)c (D)

which gives us the upper bound

(T (ar, o san-)e D) < (@)D - [ (mn—1)e (D) """

For the lower bound we first assume that D is rearranged in the way that |z;| > |z2| >
-+« > |z, |. Note that we do not lose generality from this assumption. When we consider
the representation 75, we are lead to the shape A with \; = --- = A\, =1, Agg1 = -+ =
An = 0. Then, the allowed tableaux 7" can only have one or zero of each numbers between
1 and n, so that from we have

fn| = max Tiy o miy | = |y xg]-

T 1<ii<<ig<n
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On the other hand for the general shape A we pick a specific choice of tableaux T" with &k
filling the whole k-row for 1 < k < n — 1. Then, we have t;, = \y = a + - -+ + an—1,
1<k<n-—1andt, = 0. Thus we have

art-tan—1  an-—1
1

el = o | = e o

|:|x1 ..|x1...xn71

which gives us the lower bound we wanted.

A direct application of the above gives us the following results.

Example 5.7. Let G = SU(n) and wg, B > 1 be the exponentially growing weight

—

Sunction on SU (n) from Example[31] Then we have
(5.1)
SpecA(SU (n), wg)
S {UDV .U,V € SU(n), D = diag(z1,- - ,2n) € SL(n,C)
with |x1| > -+ > |xp_1| and |z1 - x| < Bforall 1<k <n-— 1}.

The above can be shown as follows. We first recall the KAK-decomposition of SL(n,C),
namely for any A € SL(n,C) we have A = UDV for some U,V € SU(n),D =
diag(z1, - ,xn) € SL(n,C). This decomposition can be transferred to the level of
Trig(G)t = Hwe@ M and since our weight is central, the unitary matrices correspond-
ing to the evaluation functional at U and V' do not contribute to the operator norm. Thus,
it is enough to focus on the diagonal part D, for which we get the conclusion directly from
Proposition and the fact that

S ag,,a _
Wa (ﬂ-(al,"',anfl)) = BTS(F( o) = ﬂal-’_ Fano,

In particular, for the case n = 2 we actually recover the following result from 34, Example

45].

1
(52)  SpecA(SU(2),ws) = {U {6’ p?l} ViUV ESUQ), 5 <ps [3} .
Example 5.8. Let G = SU(2) and w? , B > 1 be the exponentially growing weight
Sfunction on Smfrom Definition[3.30 Note that we have (|11}, Proposition 8.3.2])

Qmy) =n(n+2), n>0.

Thus, we have w? () = BY ™Mn+2) 5o that the same argument as in the previous example
leads us to the following.

SpecA(SU(2),w5) = {U {g p?l} VUV e SU?2), % <p< [3} ,

which produces the same spectrum as in (3.2).
It is natural to be interested in the other exponentially growing weight function w? on

—

SU(n), n > 3. However, the computation of Q{7(qa, ... a,_.)) is quite complicated, so that
we do not pursue this direction in this paper.

5.1.2. The case of weights coming from closed subgroups. In this subsection we focus on
the weight W extended from a weight W on the dual of a closed Lie subgroup H of G
(i.e. Wg = «(Wpg)) as in Proposition[3.23] We actually have the following general result.

Theorem 5.9. The spectrum of the Beurling-Fourier algebra A(G, W) is determined as
follows:

SpecA(G, W¢g) = {g cexp(iX) € Ge: g€ G, X €, exp(iX) € SpecA(H, WH)}
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Since SpecA(G,W¢) C SpecTrig(G), we start the proof of the above theorem with
examining an element ¢ € SpecTrig(G). By the Cartan decomposition (2.4) we know that

¢ = Alg) exp(OA(iX)) = (m(g) exp(idm (X)) cq
for uniquely determined ¢ € G and X € g. Now in order to check whether ¢ €
VN(G,Wg") (or equivalently whether exp(OA(iX )W is bounded), we prove that for
every X € g\b, the operator exp(OA(iX))W, ! is actually unbounded under a mild as-
sumption on Wg. This job requires an integral formula associated to a modified exponen-
tial map.

Proposition 5.10. Suppose that G is a unimodular (possibly non-compact) connected Lie
group. Let dimg = n > d = dimb and {X1,---,X,,} be a basis for g such that
{X1, -+ ,Xa} is a basis for b. Then, there is a neighborhood W of the origin of m =
span{Xgi1, -, Xn} = R such that

E:HxW =U, (hwar1, -+ ,%n) = h-exp(zar1Xar1) - - exp(r, Xy)
is a diffeomorphism onto an open set U C G. Moreover, for f € C.(G) supported on

ran E we have
/f d:c_//f (h,v))D(h,v) dv dh

where D is a smooth function with D(e,0) > 0. Here, dx and dh are left Haar measures
on G and H, respectively and dv is the Lebesgue measure on W C m.

Proof. This is a standard procedure. We set m = span{X411,---,X,} C g. Then the
tangent space Tr..(H\G) of H\G at H - e can be identified with m. More precisely, there
is a neighborhood W’ of H - e in H\G such that the map

®:m— H\G, (xg41, s xn) = H - exp(xg1Xas1) - - exp(x, Xy)

is a local diffeomorphism from a neighborhood W of the origin in m onto W’. Moreover,
themap 7 : W’ C H\G — G, defined as

T(H - exp(zgr1Xar1) - exp(xn Xy)) = exp(@ar1Xat1) - - - exp(2n,X5)

is a smooth section map such that g o 7 = idy, where ¢ : G — H\G is the canonical
quotient map. Then, the map

H W’LdH><<I>

is the map E we were looking for, which is a diffeomorphism onto the image of the map.
The integral formula follows directly from the above, and the local form of the pull-back
volume form E*w on H x W for the volume form w on G associated with the left Haar
measure /. Note that pg is also right invariant due to the unimodularity of G and we
need right invariance since we use right cosets. g

HxW' =G, (hywgi1,  ,xn) = h-exp(zgr1Xap1) - exp(x, Xn)

Theorem 5.11. Let G be a compact connected Lie group. Let W be a weight on the dual
of G extended from a bounded below weight Wy, Then for any X € g\b the operator
exp(iON(X))W; " is unbounded, whenever it is densely defined.

Proof. We split the proof into three steps:

[Step 1] We may assume that X = X, in Proposition We can also assume
that the neighborhood W in Proposition [5.10/is of the form J x V for some precompact
neighborhoods J and V' of the origins of R - X411 = R and span{ X442, -, X} =
R"™~4~1 respectively, so that we have the modified exponential map

(5.3) E:HxJxV —ranE CG, (h,t,v) = E(h,t,v).
We choose a small enough € > 0 such that

1 1
exp(sX)E(h,t,v) € ranE forany s € (—e,¢) and (h,t,v) € H §J X §V'
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Note that we used the compactness of H x %J X %V in the open set ranF. Then by
composing the above maps with E~! we can find smooth maps 6, « and 3 from (—¢, €) x
H x $J x £V to H, J and V, respectively such that

(5.4) exp(—sX)E(h,t,v) = E(0(s, h, t,v),a(s, h, t,v), B(s, h,t,v))
forany (s, h,t,v) € (—e,e) x H x £.J x £V This relationship immediately tells us that
(5.5) 0(0,h,t,v) = h, a(0,h,t,v) =t, 5(0,h,t,v) =0
and
a(s,e,0,0) = —

for any s € (—¢,¢). The latter implies d;c(0,¢e,0,0) = —1, so we can find an open
neighborhood U of the origin of h, open subsets J' C %J , VI C %V containing zero such
that

(5.6) 105(0,h,t,v)| = 3, (h,t,v) € exp(U) x J x V'

[Step 2] In this step, we show that OA(X)W ! is an unbounded operator on L?(G).
We pick non-zero real-valued functions ¢ € C°(R) and v € C°(R"~4~1) such that
suppp C J' and supp7y C V’. Now we consider the function ) on G given by

Y(E(h,t,v)) == @(t)y(v)
for (h,t,v) € H x J' x V' and zero elsewhere. By combining (3.4) and (3.3)) we have for
any (h,t,v) € H x J' x V' that
d
ONX)P(E(h,t,v)) = —(exp(=sX)E(h,1,v))]s=0

= LB, b t,0), als, b t,0), B(5, B t, 0))) s

= d—scp(a(s, h,t,0))y(B(s, h,t,v))]s=0

= <P/(t)3sa(07 h,t, ’U)’Y(v) + <P(t)3s(7 © [‘3)(0, h,t, 1))
— A(E(h,t,v)) + B(E(h,1,v)).

To estimate the norm [[OA(X)9||z2(), we consider each of the above terms separately.
Note that both functions A and B are supported in the compact set H x J' x V’'. By
Proposition[3.10/and (3.6) we have,

||A||L2(G) / / / | (£)0s(0, h, t,v)y(v)|*D(h, t,v) dhdtdv

> 3C - pa(U) - 113 - 113,
where C' = inf{|D(h, t,v)| : (h,t,v) € H x J' x V'}. For the function B we have

I1Bll72c) = /// lo(t) 0 8)(0,h,t,v)|* - D(h,t,v) dhdtdv

< |V | HD”C(HXTXW) ) ”‘p”Q [|0s(y o ﬂ)H2C([—a/2,a/2]><H><7><W)’

where |V’| denotes the volume of V.
Now we replace ¢(t) by its dilated version v/ N(Nt) for N > 1 to define

"/’N(E(hv 2 U)) = \/NSD(Nt)’V(U)

for (h,t,v) € H x 1J' x V' and zero elsewhere. Then combining all the above estimates
we get

[OMX) YN L2a) > AN L2 (6) — IBNllL2e) & N
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by a simple change of variables, where OA(X )Yy = An + By as in the above computa-
tion. On the other hand we can similarly check

[¥nllrze) S llellz - (112
which is independent of N.

Finally, we observe that ¢y satisfies W, 11/) ~N = ¢y for some constant ¢ # 0 inde-
pendent of N. Indeed, the operator W' = «(W ') € (VN(H)) C VN(G) is a limit
of operators of the form ¢(Ag (f)), f € L*(H) in the strong operator topology. From the
definition of 1, it is easy to check that A (h)Yy = ¥, forevery h € H. Thus, we have

() = /H SO (hyon)dh = ( /H FR) RN = it ()Lt L)oo

where 1p is the constant function 1 on H. Taking limits of both sides in the strong
operator topology, we conclude that W5y = (Wy'ly, 1y)ny. Now, we let ¢ =
(W5 1, 1), which is nonzero as W' is positive and injective.

[Step 3] We shall now lift the above lower bound for [[OA(X)Yn||z2(¢) to the case of
|| exp(iOA(X))¥N| L2 (c)- Let F'(-) denote the spectral measure of the self-adjoint operator
iOX(X). Suppose on the contrary that exp(iOA(X )W, " is bounded and densely defined.
So dom(exp(iOAN(X))W5') = L%*(G), which implies that W'y is in the domain of
exp(iOA(X)). Now let C' > 0 be a constant such that

/ PAF (@) ) = [OA(X )y > CN?
R

so that we have either /
[0,00)
CN?/2. In the first case we have

| exp(iOACX)) w3 = / 2 d(F(a)n, dn) = / Pd(F(2)in, ) = ON?/2,

[0,00)

22d(F(x)yn,Yn) or / 22 d(F(x)n,n) is at least

(_OO)O]

In the latter case we have
| exp(iOA(X))n |5 = || exp(iOA(X))¥n |3

- /R > d(F(z)Yn, UN)

_ /R 2 d(JF(2) N, )

:/e”d(F(—x)i/JNﬂ/Jm
R

> / 22d(F(x)yn, Yn) > CN?/2,
(—00,0]

where .J denotes the usual complex conjugation on L?(G). Here, we used the fact that
F(B) = JF(—B)J for any Borel set B C R. Indeed, note that A = ), where \ is the
complex conjugate representation of \ givenby A(-) = JA(-).J. This implies that OA(X) =
JOXNX)J and iON(X) = —J(iOX(X))J. We can now conclude that exp(iOX(X))W 5"
is unbounded in either of the cases. O

Remark 5.12. The proof of Theorem 51| actually works without any modification for a
non-compact connected Lie group G as long as the subgroup H is compact.

Now we finish the proof of Theorem[5.9]

Proof of Theorem[2.9 Let us go back to the starting point, namely the Cartan decomposi-
tion for ¢ € SpecA(G, W¢) C SpecTrig(G)

¢ = Ag) exp(9A(iX)) = (7(g) exp(idn (X)) .ca



where g € G and X € g are uniquely determined. We need to check whether the operator
exp(OA(iX))W;" is bounded, and Theorem allows us to eliminate “wrong direc-

tions” X € g\b. Indeed, for the truncated WH = Wpg V 1 obtained by functional calculus
we get W = «(Wgy) = W V 1 by functional calculus again, which makes the operator
WeWg ! contractive. Here, we use the convention a VV b = max{a,b}, a,b € R. We first

need to check that WG is still a weight on the dual of GG. Thanks to the restrictions on W in
Proposition[3.23 we only need to focus on the cases where H is abelian or Wy is central.
For both of the cases the weight W is coming from a weight function w on H , so that WH
is associated with the truncated function w V 1, which can easily be checked to be a weight
function. Note that we are referring to the condition (3.8) when H is non-abelian. This
means that the operator WH is a strong weight on the dual of H, so that WG = L(WH) is
a weight on the dual of G.

Now, for any A € VN(G) we have AWg = (AWngl)Wg, which means that
VN(G, W5 CVN(G, ﬁ//gl) We can even see that SpecA(G, W) C SpecA(G, Wg)
by the density of Trig(G) in Beurling-Fourier algebras. We, then, can appeal to Theorem

since WG is bounded below.
Now we focus on the case X € h. We first observe a further detail on the embedding

L: VN(H) = VN(G), Ag(z) = Ag(z)
whose pre-adjoint map is the restriction map R : A(G) — A(H), f — f|u. Since
G is compact, we actually know that R|peq) @ Trig(G) — Trig(H) is a surjective
homomorphism. This implies that ¢ extends to an injective *-homomorphism
(Rlmvig(c) "+ Trig(H)" — Trig(G)"

which we still denote by ¢ by abuse of notation. Moreover, the quasi-equivalence (3.7)
gives us

(TN ge) = (S cryoenT(®))
Indeed, for f € Trig(G) C L'(H) we have

(T @eq) = [ S (o))
~ /H F@)a (@) dpn (x)

(] f@mH(x)duH(x)) B
(Socrinoen [, F@rtnta)

= (@gcﬂH ger ( ))weé’

which proves the claim. This particular quasi-equivalence tells us that for 7' € Trig(H)T,
the operator T is bounded if and only if ¢(7") is bounded.

Recall that O\g(X) = (0 g (X)), so that exp(OAg (i X)) = t(exp(OAp(iX))) by
functional calculus and consequently

exp(OG (iIX))W5' = t(exp(OMu (iX))Wy').

For the above equality we actually need to recall that we are dealing with 3 scenarios of
(1) H abelian; (2) W central; (3) Wy bounded below. For the first 2 cases we apply
joint functional calculus and for the third we use Proposition 2.1} Now exp(d g (iX)) €
SpecA(H, Wg) implies that exp(OA g (i X )W, is bounded and consequently we get that

exp(9Ag(iX))Wg ! is bounded from the above observation, which completes the proof.
O

ﬂ'eé '

1%

1%
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We close this subsection with examples of the case G = SU (n).

Example 5.13. Let G = SU(n) and H = expt = T"~! be the canonical maximal torus.
Let

Wy s (it s dnma) = B B (G ) €277
for Bi,-++,Bn_1 > 1 as in Example[3.20 and ngm B = L(]f\\/[/wﬂlw anil), the ex-

tended weight. Now we observe that exp (Z;l:_ll z;Xj;) = (et )?;11 € T, Then
directly from Theorem[5.9 we have

SpecA(SU(n),ng_’____ﬂnfl)
= {UD :U € SU(n), D = diag(z1,- -+ ,xn),

1
1wy =1, B—§|xj|§ﬁju 1§j§n—1}.
J

Example 5.14. Let G = SU(n) and H = SU(n — 1) embedded as the left upper corner.
Let W;U(nfl) = (Wg) with Wy = wf;, B > 1 be the exponentially growing weight

—

function on SU (n — 1) from Example[3.1} Then by Theorem[5.9and (5.1) we have
SpecA(SU(n),WﬁsU(nfl))
- {UDV € SL(n,C): U € SU(n),V € SU(n — 1),
D = diag(x1, -+ ,Zpn-1,1) € SL(n,C) with
|z1] > > |zp—2| and |z1 x| < B, 1 SkSH—Q}-
6. THE HEISENBERG GROUP

The Heisenberg group is

H=1{ (y,2,2) = cz,y,z€ R =R xR) xR

[l SR\

with the group law being the matrix multiplication or equivalently
(y,z,2)- (v, 2" 2"y = (y+ v, 2+ 2 +ay,z+ 7).

Here, we use the notation (y, z,x) instead of (x,y, z) in order to keep the semi-direct
product structure of H. The Haar measure of H is given by d(y, z,2) = dx dy dz, where
dz, dy, and dz denote the Lebesgue measure on R.

For any a € R*, we have an irreducible unitary representation given by

(Y, z,@)E(t) = eI (—a + 1), € € LP(R).
Now the left regular representation A is given by the decomposition

@
A2 / 7%|a|da.

*

This quasi-equivalence tells us that
VN(H) = L>®(R*, |a|da; B(L*(R)))
and
A(H) = LY(R*, |a|da; S*(L*(R)))

where R* = R\{0} and SP(H), 1 < p < o0, is the Schatten p-class acting on a Hilbert
space H.

The above isomorphism is given through the inverse Fourier transform, which we de-
scribe now. For f € L!(H), we define the group Fourier transform on H by

FUS) = (FUI) @) aere = ([7(a) aer+ € L¥(R", |alda; B(L*(R)))
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and
ow:Aﬂmﬂ@@.

Note that F( f) takes values in L?(R*, |a|da; So(L?(R))) if f € L*(H) N L?(H), and we
have || f|| L2y = [|F2(f)]l2. So F¥| 112 extends to a unitary isomorphism from L? (H)
onto L2(R*, |a|da; S?(L?(R))), which we again denote by F™(f). A partial inverse for
FH_ which is denote by (F™)~1, is given by the formula

(FH=HF)(2) = / Tr(F(a)7(x)")|a|da, F € L*(R*,|a|da; S*(L*(R))).

The inverse Fourier transform (F™)~! is an isometric Banach space isomorphism from
LY (R*, |a|da; S*(L?(R))) onto A(H). (See [27] for representation theory of the Heisen-
berg group, and [[13]] for its Fourier analysis.)

The Lie algebra of H is heis = (X,Y,Z : [X,Y] = Z,[V,Z] = 0 = [Z, X]) = R?,
which is called the Heisenberg Lie algebra, with the exponential map

1
exp: heis > H, a X +yY 4+ 22— (y,2+ §xy,x)
The complexifications of heis and H are particularly easy to describe, namely heis = C?
with the same basis and
1 =z
1

He = (y,Z,CC): 5%9,26@

— QW

Since H¢ = C? is simply connected, it is straightforward to see that it actually is the
universal complexification with the inclusion H < H¢. Moreover, we clearly have the
following Cartan decomposition

6.1) He 22 H - exp(i heis).
We describe the subgroup structure on H for the convenience of the readers.

Proposition 6.1. The proper closed connected Lie subgroups of H are Hy = {(t,0,0) :
t e R}, Hz ={(0,t,0) : t € R} and Hy z = {(s,t,0) : s,t € R} up to automorphisms
of H.

Proof. From the simple connectivity of H we can only focus on the structure of fheis. It is
straightforward to check that one-dimensional subspaces of heis are RY or RZ up to Lie
algebra automorphisms, which gives us the subgroups Hy and Hz. The two-dimensional
Lie subalgebras of heis are each of the form span{AX + BY,CZ} where (A% + B?)C #
0, since any pair of linearly independent elements of span{X,Y} necessarily generate
all of heis. Then, they are all coming from the Lie subalgebra (Y, Z) via a Lie algebra
automorphism, which gives us the subgroup Hy z = {(y, z,0) : y, z € R}. O

For a € R* we need to understand 07%(X ), On*(Y) and 97%(Z) in a concrete way.
Indeed, we can easily check for £ € C2°(R) that

67Ta(X)§ = _5/7
62) (@m*(Y)E)(t) = —iaté(t),

or(Z)€ = iak.
A characterization of entire vectors for 7@ is given in [20, p.388] as follows. A function
f € L%(R) is an entire vector for 7 if and only if f extends to an entire function on C and

satisfies
sup €'l f(2)] < oo
Imz| <t
for any ¢ > 0. Note that the above condition is independent of the parameter a. For
example, the n-th Hermite function ¢,,, n > 0, is an entire vector for 7 for any a € R*.
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Remark 6.2. We can now present all the weights on the dual of H which are extended
from its closed subgroups. By Propositionl6.1land Theorem[3.2we only need to consider
the subgroup H = Hy, 7 = R% For a weight function w : ny\Z ~ R? — (0,00), we
consider the extended weight W = L(Mw) affiliated with VN (H), or its equivalent form
(W (a))aer- affiliated with L*°(R*, |a|da; B(L2(R))). Recall that M,, is the weight on
the dual of H defined as in Example[33 By (6.2) and Proposition[3.26lwe have

(6.3) W(@)E(t) = wlat, —a)é(t).
for appropriate ¢ € L?(R), which is a multiplication operator with the parameter a € R*.

Remark 6.3. In [32] central weights on the dual of H have been considered. The centrality
forces us to begin with W = (w(a)Ip(r2(r)))acr~ for some functionw : R* — (0, 00) and
it has been shown in |32, Theorem 2.17] that w should satisfy the usual sub-mutiplicativity
on R with additional assumptions that w extends to a continuous function on R and is
bounded below. The above (6.3) shows that this case is included in the case of extended
weights from the 1-dimensional subgroup Hz = {(0,¢,0) : t € R} of H. In [32] Section
2.3] the sequence of projections { E,, = Lcmm) @ 1premy) : m > 1} was considered to
define T'(W). However, it is immediate to see that both of the definitions of T'(W), the one
from [32], Section 2.3] and the one from Section2.1.2) coincide.

6.1. Description of Spec A(H, W). In this section we only consider the weight W ex-
tended from the subgroup H = Hy,z. More precisely, we fix a weight function w :
I?K\Z =~ R? — (0,00) and we set Wy = M, and W = t(Wir) (with the equivalent form
(W(a))aer+) as in Remark[6.2l By Remark 3.2] we can assume, without loss of general-
ity, that our weight function w is locally integrable. Moreover, we assume that all of its
weak derivatives are at most exponentially growing, i.e. for any multi-index «, there are
constants C, D > 0 such that

(6.4) |0%w(z,y)| < CePUzl+uh

for a.e. (x,y) € R% Note that important examples of weights on R? such as polynomial
weights, exponential weights, and sub-exponential weights, satisfy Condition (6.4). This
condition guarantees the existence of a suitable candidate for the subspace S in 3.2.2
namely the subalgebra 53 from Definition which is defined as the Fourier image of
functions whose partial derivatives have a super-exponential decay. We will fix the symbols
w and W throughout this section.

The Heisenberg group H actually has a “background” Euclidean structure @3, whose
Haar measure, namely the Lebesgue measure, is identical with the Haar measures of H.
This motivates us to begin with the space of test functions C°(R?) and its R3-Fourier
transform image as a function algebra .4 on H. We will show that the subalgebra A sits
inside of A(H, W) densely regardless of the choice of W, which is a highly non-trivial
fact. Thus, for any ¢ € SpecA(H, W) we know that the restriction ¢| 4 is multiplicative
with respect to the pointwise multiplication. By composing (27r)%.7’-']Ra we end up with
the map 1 = ¢ o ((27m)3 F®’) : C2°(R3) — C which is multiplicative with respect to
R3-convolution.

(2m) 3 F¥°

A(H, W) A
pad
C Y

This leads us to solving a Cauchy type functional equation on R in distribution sense.
Thus, the problem of understanding elements in Spec A(H, W) reduces to solving a Cauchy
type functional equation, which is the beauty of borrowing the “background” Euclidean
structure of H.

C(R?)
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6.1.1. A dense subalgebra and dense subspaces of A(H, W). Now we define dense subal-
gebras A and B of A(H, W), and a dense subspace D of

FA(A(H)) = LM (R", Jalda; Sy (LA (R))).
This triple (A, B, D) will replace the role of Trig(G) for a compact group G.
Definition 6.4. We define
A= F¥(CP(R3)) C C®°(H) and B:= F* (By) C C(H)
where
By := {f € Li (R3) : et =FWIH=D (92 £) (2, y, 2) € LA(R3), Vt > 0, Vimulti-index o}

where 0% refers to the partial derivative in the weak sense, and L}, .(R®) refers to the space
of locally integrable fucntions on R3. We endow By with natural locally convex topology
given by the family of semi-norms {1 : t > 0, multi-index o}, where

(65) () = e HTEN @ ) (@, y, 2) [ 2 eo)-
We equip B with the topology coming from By. Finally, we define the space D by

D := span{h @ Py : m,n € Z=°, h € C*(R*)} C C=°(R*; S (L*(R)))

where Py, is the rank 1 operator on B(L?(R)) given by Py,n& = (£, 0n)om with respect
to the basis {p }n>0 consisting of Hermite functions. We will fix the symbols A, B, By, D
throughout this section.

Remark 6.5. (1) From the isometric identification
A(H) = (F*)~'LY(R*, |a|da; S*(L*(R)))

it is clear that the space (F)~1D is dense in A(H).

(2) In the above an immediate candidate C2°(H) of a dense subalgebra of A(H, W)
is not enough for our purpose. This claim can be examined even in the simplest
non-compact case of G = R. Indeed, we can check that

(Ns=1A(R, ws)) NG (R) = {0},

where wg(§) = plél ¢ Risa weight function on R. Suppose we have f €
(Ng>1A(R, wg)) N CX(R) with suppf C [-A,A] for some A > 0. Then
the Paley-Wiener theorem says that f extends to an entire function F' on C
with the growth condition |F(z)| < e??| for any = € C. Then, the condition
[ €ng>1AR, wg) & fRe ﬁlg>1L (R wg) and the fact that F® belongs to the
Schwarz class on R imply that f € Np>1L? (]R wg), so that another theorem by
Paley-Wiener (see Proposition[2.4) tells us that f itself should be extendable to an
entire function on C, which forces f = 0.

We collect some basic properties of the above spaces.

Proposition 6.6. (1) The spaces A and B are algebras with respect to the pointwise
multiplication.
(2) The space By is a Fréchet space.
(3) The inclusion C2°(R3) C By is continuous with dense range.

Proof. (1) This is clear from a standard Euclidean theory and the definition of the space 5.
(2) This is a routine procedure.
(3) Continuity of the inclusion is clear. For the density we use the same argument for
the smooth approximation of Sobolev functions ([22, Theorem 3.3] for example). O

Remark 6.7. The space By can be called as the space of functions whose partial deriva-
tives have a “super-exponential” decay. Note that a slightly different version of the space
By has already been introduced in [24] under the name of “hyper-Schwartz space”.
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We have several reasons for the specific choice of 5. First, the super-exponential decay
property allows us to “absorb” the effect of the weight W which is possibly “exponentially
growing”.

Proposition 6.8. For f € By we have
W]-'H(J?RS) = fH(ﬁRS), where g(t,u,s) = w(—t,—u)f(t,u,s), s,t,u € R.
Moreover, g € By and, the map By — By, f — g is continuous.

Proof. We begin with the following detailed understanding of the operator F H(fRS) for
any f € Bp and @ € R*, which is well-known and straightforward to check.

3

FH ) ()e(t) = /RS Jm% (y, 2, 2)e =2 (g 4 t)dydzda

= 27T/ J%R(—at, a,t — x)€(z)dx,
R

where ]??I? is used to denote the Fourier transform of f with respect to the third variable
only. Thus, F H(fRa)(a) is an integral operator with the kernel

(6.6) Ky(t,z) = o7 fR(—at,a,t — x).

From (6.3) and the above formula it is clear that we have WF H(fRS) = FHE(G®) for the
function g given by g(t,u,s) = w(—t, —u)f(¢,u,s). The fact that we have g € By is
directly from the condition (6.4). Moreover, the continuity of the given map is trivial. [J

Remark 6.9. For f, g, and W as in Proposition[6.8 we have
7R3 ~R3
1F5 Nagwy = 197 la-
Moreover; this implies that the space B can be used as the subspace S in[3.2.2]

We need a Fourier algebra norm estimate on the Heisenberg group. Roughly speaking
Fourier transform of functions on the Heisenberg group with enough regularity belongs to
the Fourier algebra. We record a general result for later use.

Lemma 6.10. Let G be a connected Lie group with the real dimension d(G). Form > @
there is a constant C' > 0 such that
1fllae) < CIUI = OMA))™ fll2(q),
forevery f € dom(I — OX(A))™.
Proof. This is direct from [35, Lemma 3.3 and (3.8)]. ]

We continue to collect more properties of the spaces A, B and D.

Proposition 6.11. The spaces A, BB and D satisfy the following.

(1) The space B is continuously embedded in A(H, W).
(2) The space (F®)~1D is a subspace of B which is dense in A(H, W).
(3) The algebra Ais dense in A(H, W).

Proof. (1) As OA(X), OA(Y') and OA(Z) are infinitesimal generators for the one-parameter
subgroups A(exp(tX)), A(exp(tY)), and A(exp(tZ)) respectively, one can easily verify
the formulas

8/\(X)F(ya 2, I) = azF(ya 2, I) ’ (_y) - 8$F(y7 Z,ZC)

ONY)F(y,z,x) = =0, F(y, 2, 2)

ONZ)F(y,z,z) = =0, F(y,z,x)
for any F' € S(R?) as a function on H. Here, S(R?) refers to the Schwartz class on R3.
This implies that I —OA(A) = I—9A(X )2 —0A(Y)?—O\(Z)? is a linear partial differential
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operator with polynomial coefficients on R3, the background Euclidean structure of H.
Now for f € C2°(R3) we have by Lemmal[6.10] that

1% N g < Ol — ONA) X || 2 oy -

Note that we can take m = 1 in Lemma[6.10 since d(H) = 3. By taking the R3-Fourier
inversion we get

(F) (I = oMa) ™) = Df
for some linear partial differential operator D on R? with polynomial coefficients. Then
the Plancherel theorem on R? tells us that for any ¢ > 0 we have

1P s < Co- Y. ()
lal<M

for some constant C; depending only on ¢, where M € N is determined by the order of
D. This explains the continuity of the embedding B C A(H) and consequently of the
embedding B C A(H, W) by Proposition[6.8]

(2) We first show that (F2)~'D C B. For m,n € Z=°, h € C>(R*) we focus on
the value of h ® P,,,, at the parameter a € R*, namely the operator h(a) Py, which is an
integral operator with the kernel

K(t,x) = om(t)pn(x)h(a).
We would like to find a function f € By such that K = K in (6.6), which will imply that
Prn © h = FE(F®). Indeed, it is straightforward to check that

Fl:202) = 5=i"pu()e ™ Z on(~L)hz), 2 £0

satisfies K = K. Concerning the condition f € By we first consider the function
etz HlIF12D) f (2, y, 2) for a fixed t > 0. Then, we have

[
]R3

_ ! 261yl +|2+1a]) Y

T (2n)2 /Rse lon (2)Pm( Z)h(Z)| dydzdx

1

= e /W WD o, (@) om (y) h(2) P|2] dydada < oo,

where we use the fact that 4 is compactly supported on R*. The L2-conditions for the func-
tion et(WI+Iz1+12Dga £ (y 2 x) can be similarly checked. This gives the claim (F™)~'D C
B.

Secondly, we prove that (F)~1D is dense in A(H, W), or equivalently the modified
space

(6.7) D := span{W (h ® Py,) : m,n € ZZ°, h € C=(R*)}

is dense in L'(R*, |a|da; S*(L?(R))) = A(H). Now we follow a standard argument for
the completeness of {©y, }n>0 in L2(R). Note that W (a)P,,, is also a rank 1 operator
& = (& on)l,, where % (t) = w(at,—a)pm,(t). Since we have dependence on the

parameter a, we need to consider the whole family (1/)%),,120##0 altogether. Moreover,
recall that

LY(R*, |a|da; S*(L*(R))) = L' (R*, |a|da; L*(R)) ®., L*(R)
where @, is the projective tensor product of Banach spaces, so that it is enough to check

that the subspace span{h ® ¥2, : m > 0,h € C>°(R*)} is dense in L*(R*, |a|da; L*(R)).
Indeed, for any function F'(a,t) € L™ (R* la|da; L*(R)) such that

/*/Fat Y (t)dt|alda =0



forevery m > 0,h € C°(R*), we have

/*/F“t (ta, —a)e™ 2" P(t)[a|h(a)dtda = 0

for any polynomial P. Let supp,, denote the characteristic function of the support of £,
and set

H(a,t) = F(a, 2t)w(2ta, —a)e™ 2" |a| - supp,, (a) € L= (R*; LA(R))

where we use the fact that w is at most of exponential growth (Propositon [3.21) and A
is compactly supported. Moreover, H € L?(R*;L?(R)) as well, since it has compact

support in R*. We have defined H so that / /H(a t)e” 3t? P(t)h(a)dtda = 0 for

every polynomial P(t) and every h € CC(R*),RWhiﬂfzh implies that H(a,t) = 0 for almost
every (a,t) € R* x R. Here we use the facts that C.(R*) is dense in L*(R), and Hermite
functions form a basis for L?(RR). Thus F'(a,t) = 0 for almost every (a,t) € R* x R. This
explains the density of (F)~1(D) in A(H, W).

(3) From (3) of Proposition[6.6] we know that A is dense in B. Then the expected density
follows easily from a standard argument together with the result in (2). 0

The density of A in A(H, W) is the first link we need for determining SpecA(H, W),
which we could only prove through the additional spaces BB and D. The choice of the space
D also provides us a big enough source of entire functions for the left regular representation
A on G. The need for entire vectors will be clarified later in Section[6.1.3]

Proposition 6.12. We have the inclusion (F*)~1D C Dg(\).

Proof. By a simple modification of the arguments of [20, p. 388] we can check that
(FH=L(h ® Ppn), m,n > 0, h € C>(R*) is an entire vector for A of H. The only dif-
1
ference is that we are not using the modified version 2 given by ¢ (z) = |a|Tp,(|a|2z)
as in [20]. O

Note that (F2)~D N A = {0} whilst (F2)~1D C B. This is another reason that the
subalgebra 4 alone is not sufficient for our purposes, and we do need the bigger subalgebra

B.

6.1.2. Solving Cauchy functional equations on R". In this section we explain how we
solve the Cauchy functional equation on R for distributions, which we denote by (CFERg= ).

(CFEgn) T € C2°(R™)" satisfying (T, f + g) = (T, f)(T, g), f,g,€ C*(R").

We remark that if the distribution 7" is coming from a locally integrable function i) on R",
then the above condition can be easily shown to be equivalent to the usual form

(x4 y) =()Y(y) forae. z,y e R™.

Theorem 6.13. Ler T € C°(R™)* be a solution of (CFERn), then there are uniquely
determined c1, - - - , ¢, € C such that

<T7 f) — f(xh . ,.I'n)e_i(clwl"_""’_c"w”)dxl coday, f € CEO(R").
Rn

In other words, the distribution T' is actually a function of exponential type

e~ 1zt tenzn)

Proof. This must be standard, but we include the proof for the convenience of the readers.
Indeed, we will repeat the same steps of the solution later in a much more involved form
for the case of E(2) and E(2).
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(The case of n = 1) Let D : C°(R) — C°(R), f +— f’ be the usual differentiation
and D* : C°(R)* — C2°(R)* be the adjoint map. Note that we are purposely using D*,
which is actually the negative sign of the usual convention of differentiation in distribution
theory. The proof splits into three steps.

[Step 11 If T € C'°(R)* is a solution of (CFEg~), then T satisfies a first order linear
differential equation, namely

D*T =T
for some ¢ € C. Indeed, for any f,g € C°(R) we have (T, (Df) * g) = (T, f = (Dg));
by multiplicativity of T, we have (D*T, f}{(T,g) = (T, Df}{T,qg) = (T, f){T, Dg).
Assuming T' # 0 and taking ¢ such that (T', g) # 0, we have
" (T, Dg)
D*T, f) = (T, f).
(DT 1) = S ()

[Step 21 If T € C°(R)* satisfies D*T = ¢T for some ¢ € C, then D*(T - “*) = 0.
Note that this is a direct consequence of Leibniz’s rule. Here we are using the easy fact that
the test function space C2°(R) is closed under multiplying exponential functions.

[Step 3]1If S € C°(R)* satisfies D*S = 0, then S is actually a constant function. Here
is a standard argument excerpted from [6}, Theorem 4.3]. We choose a function h € C2°(R)
with [, h(z) dz = 1 and define the operator I : C°(R) — C°(R) by

:/_ gb(t)dt—(/ é(z)d) (/_m h(t)dt).

Note that we have D(I — ([ ¢(x)dx)h, so that (S, ¢) — ([ #(z)dz)(S,h) =
(S, D(1(¢))) = (D"5, ( )> = 0 Thus, we get

(8.6) = ( / o(2)d) (S, )

which implies that S is actually a constant function with value (S, h). Now we just need to
observe that the original condition (CFEg~ ) forces the constant value of S = T - e“* to be
equal to 1.

(The case of n > 2) For simplicity we focus on the case n = 2. Higher dimensional
cases are similar. Let 0,, and 9, be the partial derivatives on R?.

[Step 1] With a similar arguments we get 9:7 = ¢, T and 8; T = coT for some ¢y, co €
C.

[Step 2] By Leibniz’s rule we get 9 (T - e“1*°2¥) = 95(T - e“1*+2¥) = 0.

[Step 3] Suppose that S € C2°(R?)* satisfies 055 = 0;5 = 0. We define partial
integrations F,, B, : C>°(R?) — C°(R) by

= [ s, B0 = [ sy
R R

We use the chosen function h € C2°(R) again, and define the operator [ : C2°(R?) —

O (R?) by
10w = [ st ([ noa).

Note that we have 0, (I(¢))(x,y) = ¢(z,y) — Ex(¢p)(y)h(z), so that we have

(5,0) = (S, W(@) Ex () (y)) = (5,0:(1(9))) = (9;.5,1(¢)) = 0

This tells us that (S, ¢) = (S, h x E,(¢)). By applying the same argument on the second
variable we get

(S,8) = (S, 1 x Eo(6)) = (S,h x h) - /R ol y)ddy
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which implies that S is a constant function. Finally, by setting S = T - e©1%t¢2¥ we
can easily conclude that the constant value must be 1 by recalling the original condition
(CFEgn). O

6.1.3. The final step for the Heisenberg group. We begin with a realization of the spectrum
SpecA(H, W) in He.

Proposition 6.14. Every character ¢ € SpecA(H, W) is uniquely determined by a point
(y,2,z) € He =2 C3, which is nothing but the evaluation at the point (y, z, ) on B (and
consequently on A).

Proof. Letp € SpecA(H, W) and consider a continuous composition ¢y = o((27)3 F RS)
as in the following diagram.

AH, W) ~—B ~A < C077 googs)
l ©la
©
P
C

Since ¢ is multiplicative with respect to pointwise multiplication, the functional v is
multiplicative with respect to R3-convolution. Now by Theorem or equivalently by
solving the Cauchy functional equation for 1) we know that there is (y, z,2) € C3 such
that for f € C2°(R?) we have

(M) EFEY = [ F(t,u, )e W= i s,

R3
By the density of C2°(R?) in By and the continuity of the above two functionals f

o((2m)% B ) and f — Jas f(t,u, s)e” 1 WH2u+29) dtduds on By we can see that the above
equality is actually true for all f € By. Thus, by Proposition[2.4 we have

(6.8) p(F) = Fc(y, z, @)
for any F' € B, where Ft is the analytic continuation of F'. Finally, the density of B in
A(H, W) finishes the proof. O

Secondly, we will show that the above realization of SpecA(H, W) in H¢ respects the
Cartan decomposition (6.1).

Proposition 6.15. We have SpecA(H, W) C H - exp(i heis) in the sense that for any
¢ € SpecA(H, W) there are uniquely determined g € H and X' € beis such that
Ac(exp(iX'))W =t is bounded on a dense subspace of L?(H) and

¢ = Mg)Ac(exp(iX'))W—1W.

Proof. We first recall that for X’ € heise we have
T (o o0
Ac(exp(X')) ~ (g (exp(X")))acr- on DZ(A).

-H
The decomposition W = fﬂgi W (a)|a|da tells us that W= "~ (W~1(a))scp~ on ranWV,
so that by composition we get

H ~
6.9)  Ac(exp(X)W ™ (ré(exp(X)W ! (a))acre on (FF)7L(D),
where the space D = WD is the one introduced in (6.7). Note that we can show that Dis
also dense in L2(R*, |a|da; S?(L?(R))) by repeating the same argument for the density of
Din L*(R*, |a|da; S*(L*(R))) in the proof of Proposition 6.1
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Now we consider ¢ € SpecA(H, W) a character associated with the point (y, z,z) =
exp(—X') € He, X’ € heisc. For F € (FH)~1D we have by (2) of Theorem 23] (6.8)
and Proposition[6.12] that

(6.10) sD(F)=F(c(yazaw)=/ Tr(ne((y. z,2) " )F™ () lalda

— [ lreexn(x) F¥ @) jalda
— [ Tl exp (X)W (@)W (@) (@) alda

Since [o(F)| < [[ellvyew - 1Fla@w) = llellvn w1 [IWF| a@), the density of
D in L'(R*, |a|da; S'(L*(R))) tells us that 7&(exp(X’))W ~!(a) is uniformly bounded
with respect to a € R*. From condition (6.9) we now know that \c(exp(X’))W 1! is
bounded and we get the conclusion

0 = A (exp(X))W—IW € VN(H, W1,
Indeed, for F' € (F1)~1D we have
(Ac(exp(X")W=IW, F) (v N @,w 1), A(,W))
= (Ac(exp(X")W =1, WF) (v Nm),am)

— [ OO @W (@) F @) alda = (P,

where we use (6.10) for the last equality. The density of (F2)~'D in A(H, W) gives us
the desired conclusion.
Finally we recall the Cartan decomposition (6.1) and the fact that 7¢ is a (local) rep-

resentation on D°(A). Then in combination with the above observations we get that
SpecA(H, W) is contained in

{A(g)AC(exp(z'X'))W—lW - X' € beis, Ac(exp(iX'))W ! bounded}.

O

Remark 6.16. It is tempting to claim the equality o = A(g)Ac(exp(i X)), but we stick to
the equality o = A\(g)Ac(exp(i X)W —1W reflecting the precise structure of the weighted
space VN (H, W).

We continue to determine the Gelfand spectrum of A(H, 1¥) as follows.

Theorem 6.17. Let h) be the Lie subalgebra of g corresponding to the subgroup H = Hy z
of H. Suppose that Wy is a weight on the dual of H and W = (Wy) is the extended
weight on the dual of G as in Section[3.3.3l Then we have

SpecA(H, W) = {g cexp(iX'): g € H, X' € b, exp(iX') € SpecA(H, WH)}.

The proof for the above theorem begins with excluding elements X € heis\h. This
requires an analogue of Theorem 5111 We will establish a more general result for the
possible future extension of the theory to the case of nilpotent Lie groups.

Theorem 6.18. Let G be a connected and simply connected nilpotent Lie group and H =
exp b be a closed connected abelian Lie subgroup of G. Suppose that W is a bounded
below weight on the dual of H and W = (W) is the extended weight on the dual of G
as in Section3.3.3) Then for any X € g\b the operator exp(iOXN(X))W;" is unbounded,
whenever it is densely defined.

Step 1. We first assume that our basis { X1, - - - , X, } of g is a weak Malcev basis of g satis-

fying that (1) { X1, -, X4} is abasis of h and (2) X = X441. Recall that { X7, -, X,,}

being a weak Malcev basis of g means that h; = span{Xy,--- , X} is a Lie subalgebra
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of gforall 1 <k < n. Itis well known that such a basis with condition (1) exists for a con-
nected and simply connected nilpotent Lie group G by [4, Theorem 1.1.13]. The condition
(2) is not true in general, but we will handle that case later.

We will basically follow the proof of Theorem The modification begins at the
second step there. Moreover, we assume that H = R"™ for simplicity. The case H =
R~ x T* can be done similarly.

[Step 2] We pick the functions ¢ € C°(R) and v € C°(R"~9~1) as before. We
further pick a non-zero function 6 € S(H), which does not have to be real-valued this
time and will be specified later. Here, S(H) refers to the Schwarz class on H = R™. We
similarly define the function i) on G by

P(E(h, t,0)) = 6(h)e(t)(v)
for (h,t,v) € H x J' x V' and zero elsewhere. Then, for (h,t,v) € H x J' x V' we have
ONX)Y(E(h,t,v))
= 04(600)(0, h,t,0)p(t)y(v) + 6(h)¢' (t)0scx(0, h, T, v)y(v)
+0(h)p(t)0s(v © B)(0, b, £, v)
= A(E(h,t,v)) + B(E(h,t,v)) + C(E(h,t,v)).

The estimates for B is the same as before and we have

||BH%2(E(HXJ'xV')) 2 H‘P/HS

For the estimate of A and C' we use the fact that the functions 6 and /5 are “polynomials”.
Recall that a map f : E — F between two finite dimensional vector spaces is called
polynomial if it is a polynomial with respect to some (and for any) pair of bases. We use
the fact that the exponential map is a global diffeomorphism between g and G to transfer
the concept of polynomial maps to the level of G. We say that amap f : G — G is
a polynomial if the corresponding map exp 'of oexp : g — g is a polynomial. This
definition can be easily extended to the case of amap f : G x G — G and for example,
it is known that the group multiplication G x G — G, (g1, g2) — g1g2 is a polynomial
by [14, Theorem 6.13]. We know from [4, Proposition 1.2.8] that we can choose J = R
and V' = R" "1 in the definition of the modified exponential map E in (5.3), and F
and E~! both are polynomials. Then, the map 6 and 3 from (3.4) are obtained by the
composition of group multiplication, E~! and the corresponding projection, so that they
also are polynomials.
Thus, we can see that

05(6 0 6)(0, h,t,v) = 9d(h) - P(h,t,v); and Js(y o B)(0, h,t,v)) = dy(v) - Q(h,t,v)
for some polynomials P and (). From the choice of § and v we know that
||A||2L2(E(Hfoxvf)) < llell2 and ”CH%Q(E(HXJ’XV’)) S llell2-
Now we replace ¢(t) by its dilated version v/ N(Nt) for N > 1 to define
Un(E(h,t,v)) == §(h)VN@(Nt)y(v)

for (h,t,v) € H x %J " x V' and zero elsewhere. Then combining all the above estimates
we get

[ONX)YN L2y 2 N and [[¥N]L2) S 1
as before.

Finally, we observe that W'y (E(h,t,v)) = W;'6(h)VNp(Nt)y(v). Indeed,
thanks to the boundedness of W' = «(Wy') € «VN(H)) C VN(G), it is enough
to check A\g (k)Y (E(h,t,v)) = Ag(k)d(h)VNo(Nt)y(v), k € H which is clear from
the definition of ¢ .
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[Step 3] For this part we repeat the same argument for 1;7\/ =Ws Ly to get
[OAMX)YN] L2y 2 N-

If we choose a non-zero real-valued § = Wy 1§ € S(H), then we have the same estimate
and we have

| exp(iOAMX))Wg w13 = || exp(iON(X))wnll3 2 N2.

This leads us to the conclusion that exp(idA(X))W ' is unbounded provided that § €
dom(Wpg). Now recall that Wy = (]—"H)_1~o M, o FH, so that a Gaussian function on

H = R" would be an appropriate choice for §, since w is at most exponentially growing.

Now we consider the case that our chosen vector X is not the (d+1)-th element X441 in
the given weak Malcev basis. Fortunately, we may choose our Malcev basis { X7, --- , X,,}
such that (1) {Xq,--- , X4} isabasisof h and 2) X = X forsomed +1 < j < n.
Indeed, the existence of a weak Malcev basis { X1, --- , X, } with condition (1) is already
guarranteed by [4, Theorem 1.1.13]. Now we write X = z1X3 + -+ + 2, X}, and let
1 < j < n be the largest index so that z; # 0. Then, we know that X; = aX +
Y,a# 0andY € h;_q, so that h; = span{Xi,---,X;_1,X}. Thus, we know that
span{ X1, -+, X;-1,X, Xj41,--- ,Xn} is another weak Malcev basis. Moreover, we
should have j > d since X € g\ b, which explains the claim. Now we consider a slightly
changed version of the modified exponential map in Proposition[5.10]as follows.

E:HxJxV=U, (ht,xge1, - &5, y2n) = (h,t,0) = E(h,t,v)

where E(h,t,v) = h - exp(zq+1Xa+1) - - - exp(tX;) - - - exp(x,X,,) and the notation Z;
means that we are skipping j-th variable in the expression. Then, all the results in Proposi-
tion[5.10 are still valid and all the above arguments works as before. O

Proof of Theorem[6.171 As in the proof of Theorem we may suppose that X’ € b
by Theorem and a similar truncation argument. Now we claim that the operator
(Mmr)c(exp(iX'))W ;' is bounded if and only if Ac(exp(iX’))W ! is bounded. Un-
der the assumption that W, ! is bounded, this claim follows directly from Proposition
However, we can also prove the claim without using this assumption. Indeed, for
X' = (y,2,0) € b, we can readily check that
FHo (A)c(exp(iX')) o (FH)™' = Mg, and F" oWy ' o (FH)™! = Mg,

where ®1(a,b) = €¥*"*" and @2 (b, a) = ;- Thus, 7 o (A\pr)c(exp(iX")) o (F7)~
and F o Wy Lo (FH)~1 are strongly commuting, so we can use joint functional calculus
to see that

Ac(exp(iX )W = o((Arr)e(exp(iX")) Wy ).

On the other hand, we observe that

(6.11) FH o (Ag)clexp(iX )Wyt o (FT)™! = Mg
where ®(a,b) = fuygz; Note that the exponential map restricted to h is nothing but

the identity map. We now use (6.2) and Proposition to obtain the exact formula for
((Ma)e(exp(iX)W5') = {Y(a)}er~. Indeed, we have

Y(a)§(t) = @(at, —a){(t).

for appropriate ¢ € L?(R), which is a multiplication operator with the parameter a €
R*. Clearly, t((Amr)c(exp(iX'))W;;') is bounded precisely when @ is bounded, which is
equivalent to the boundedness of (\zr)c(exp(iX’))W ;. O

Remark 6.19. The same arguments can be applied to H = Hy and H = Hy to get the
statement of Theorem[6. 12 with those subgroups instead of H = Hy, .
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Example 6.20. For X' = (y',2',0) € b the condition exp(iX') € SpecA(H,Wy) is
equivalent to the existence of a constant C > 0 such that

e e < Cw(a,b), for almost all (a,b) € R?

by @110). In particular, for specific choices of the weight function w, we have the following,
by Theorem

(1) When w(a,b) = B'{l'ﬁ‘zbl, (a,b) € R? for some 31, B2 > 1, we have
SpecA(H, W) =2 {g- (iy/,i2’,0) e He = C*: g € H, ¢/, 2’ € R,
ly'| < log B1,|2'| < log B2}
Especially, when B3 = 1 we have
SpecA(H, W) = {(y,z,z) € He = C* : [Imy| < log B1, [Imz| = [Imz| = 0}.
(2) When w(a,b) = pYa*+b? (a,b) € R? for some 3 > 1, we have
SpecA(H, W) = {g - (iy/,i2’,0) e Hc 2 C3: g € H, o/, 2’ € R,
(¥")? + (') < (log B)*}.

We end this section with a description of the symmetry given by automorphisms on H
more precise than Theorem[3.271

Theorem 6.21. Let o : H — H be a Lie group automorphism. We recall the notations
ay N and ac stated before Theorem[3.27] Then we have

SpecA(H, ayn(W)) =2 ac(SpecA(H, W)) C He.
Proof. By Theorem[6.17|for any ¢ € SpecA(H, W) we have

¢ = Mg)Ac(exp(iX))W—1W

for some g € H and X € h. Now Theorem [3.27) tell us that the associated element in
SpecA(H, ayn(W)) is

ay N (A(g)Ac(exp(iX))W N ay n (W) = avn (Ag))avn (Ac(exp(iX))W 1) ay n (W).
Since ary v is an inner automorphism via a unitary conjugation we have
avn(Ac(exp(iX))W 1) = avy(Ac(exp(iX)))ayn (W),

Now we know that ay ; (A(g)) = Ma(g)) and ay y (Ac(exp(iX))) = Ac(ac(exp(iX))).
Indeed, the automorphism « can be lifted to the Lie algebra level oy : § — b such that
ac(exp(X + 1Y) = exp(ay(X) + ia(Y)), X, Y € bh. Recall that IN(X) is the in-
finitesimal generator of the one-parameter group A(exp(tX)), t € R, so that we have
ay N (OA(X)) is the infinitesimal generator of the one-parameter group

avn (Mexp(tX))) = Aexp(tay (X)), € R,
which means that ay § (ON(X)) = OA(ap(X)). Thus, we have

avn(Ac(exp(iX))) = avn(exp(OA(iX))) = exp(avn (OA(iX)))
= exp(OA(iag (X))) = Ac(exp(iay(X)))
= Ac(ac(exp(iX))).

This justifies our claim. g
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7. THE REDUCED HEISENBERG GROUP

The reduced Heisenberg group H, is
H,=RxT)xR
with the group law
(y,z,2)- (. 2, 2) = (y + o, 22/ x + ).
The order of variables (y, z, ) is again from the semi-direct product structure of H,.. Using
Mackey machinery, we can completely describe the unitary dual of H,. as follows:

H, = {xrs : (r,s) e R} U{n"™ : n € Z\{0}},
where for every n € Z\{0}, the irreducible unitary representation 7" is defined on the
Hilbert space L?(R), whereas Yy s is a one-dimensional representation for every (r, s) €
R2. The precise formulas of these representations are given as
Xr,s (yv 2, x) = ei(rersac)’
(Y, z,2)8(t) = 2"eT"VE(-w +1), £ € LX(R).
For f € L*(H.,), we define the group Fourier transform on H,. by

F(f) = (FH () e = () e
where H, = L?(R) when 7 = 7", and H,, = C otherwise, and

- / f(g)n(g)dg
H,

We sometimes identify H, with R? L Z\ {0}, where LI denotes the disjoint union of sets.
Unlike the Heisenberg group, the Plancherel measure of H, takes the one-dimensional
representations into account, as shown in the following lemma.

Lemma 7.1. The Plancherel measure i of H,. is given by % when it is restricted to R?,
and it is given by p({7"}) = W on Z\{0}.

Proof. Since H, is a second countable unimodular Type I group, it admits a unique mea-
sure, called the Plancherel measure, which satisfies the Parseval identity for the map f €
L2(H,) (]?(71'))7r cir-- S0, we only need to check the Parseval identity for the above
measure. Let f € (L' N L?)(H,.). Forn € Z\{0} and ¢ € L*(R), we have

(7.1 A (mMet) = ///fy,z:v e M E(—x + t)dadydz

= /Kf(t,x)ﬁ(:v)d:v
R
where

K/ (t,z) = / / fly, z,t —x)2"e "™Ydydz = 27TﬂR)2XT(nt, —n,t —x), (t,r) € R%
TJR

Here, ﬂ%QXT denotes the R x T-Fourier transform in the first two variables. Clearly, fHT (™)
is a Hilbert-Schmidt integral operator with norm given by

Call ||Kf|\%=2w / / T2t =t )Pl

= —n, z)|2dydz,

where f;ﬂ' denotes the T-Fourier transform in the second variable. Let [E be the orthogonal
projection on L?(H,.) defined as

Ef(y, z,x) :zAf(y,u,x)du
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Clearly, h € L'(H,.) NKer(E) precisely when h¥(y, 0, z) = 0 for every z,y € R. For any
h € L'(H,) N Ker(E), we have

= ¥ [ Bnolad = 5SS g
nez\{0} " nez{o}

On the other hand, it is easy to see thatif g € (L' N L?)(H,.) is constant when restricted to
T, then g (7™) = 0 for every n € Z\{0}. So for such an element g, we have

2
/ /|g(y,z,:v)|2dydzdx=/ ‘gth(y,:C)‘ dydz
Rz JT R2

—R? 2 1 ) 2
/ glrz  (r, s)’ drds = —/ gy, 2)e "V dyde| drds
R2 R2
1
(2m)? /]R?

Now consider an arbitrary f € (L' N L?)(H,.), and note that f can be orthogonally de-
composed into f = E(f) + (f — E(f)), with the property that E(f)|r is constant and
f—E(f) € Ker(E). Thus, we have

g3

2
drds.

§HT (XT,S)

I3 = HE a2+ 1f - IE( )3
n —— H,
- (2n)? / ‘ "(Xrs) drds—l—% Z If—E(f) (=3
nez\{0}
= (27T) ) frir (er) deS+ |27T|' Z ||]\HT(7Tn)||§

nezZ\{0}
O

The Plancherel measure gives us the quasi-equivalent decomposition of the left regular
representation A as follows:

@ drds |n|
v [P o @ Il
R2 (2m)2 neé‘\iO} 27

When R? and Z\{0} are equipped with the corresponding restrictions of the Plancherel
measure on H,., the Fourier transform on H,. gives us the following decomposition.

) =5 drds
(7.2) F AW, - LR, ¥ ))@1L1(Z\{0} nai S'(L2(R)))
Fo (T 00) e © B T7
n€Z\{0}

where we denote the restriction of  to Z\{0} by pg. The formula for fH-(x"), f €
L'(H,) has been given in Equation (ZI). The case of one-dimensional representations

goes as follows. We define f := E(f)|gz2, then we have

~R?
P (rs) = 20f (=7, =s).
Taking the dual of the above decomposition, we have
oo (5 drds o
VN = 12 (B, 55 ) o L (2\(0), ot BL(R))).

For the rest of this section, we use X" (n) and FH- (r, s) to denote FH- (7™) and FH- (Xrs)
respectively. The Fourier transform in (Z2) forms an isometry, i.e. for f € A(H,) N
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L'(H,), we have
1 H 1 H
- "(r, 8)|drds + — 7 ()1
s = g5z [, 17 o) riot 5 3 bl Il

To avoid clutter, we use a reducible representation 70 of H, to encode all the one-dimen-
sional representations - s. Indeed, we define 7° to be the left regular representation of H,.
on L?(R?), that is

(7.3) ™ (y, 2,) = Apa(y, 2) € B(L*(R)).
It is easy to see that for F € L2(R2) and f € L'(H,) we have
Fon(f) o (FF) T F)(r.s) = F* (=r,=s)F(r.s),
1

om
ie. & o70(f) o (F®)~! is a multiplication operator, which is affiliated with the von

PN

Neumann algebra L>°(R?) = V N (R?). Moreover

17 ()l aeey = 175 Izl gy

This allows us to define a modified version of the Fourier transform as below, which is
again an isometry.

(7.4) FH L AH,) — (271)2,4(1&2) ®; L* (Z\{O},ud;Sl (LQ(R)))
fefoe @ ),

neZ\{0}

where we have used the convention fHr(0) := 7(f). Note that L2(R) and L2(R?) are
equipped with their Lebesgue measures.

The corresponding Lie algebra for H, is heis, the Heisenberg Lie algebra, with the
exponential map

exp: heis —» H,, 2 X +yY + 27 — (y,exp(iz + %xy),x)

We fix a complexification of H,. given by (C x C*) x C with the same group law, which
we will denote by (H,)c. Here we use the symbol C* = C\{0}. Note that (H,)c =
C x C* x C, which is not simply connected. However, by considering the canonical
covering maps H — H,. and H¢e — (H,.)c we can easily check that (H, )¢ together with
the inclusion H, < (H,.)c is the universal complexification. Moreover, we clearly have
the following Cartan decomposition

(1.5) (H, )¢ 2 H, - exp(i heis).

Proposition 7.2. The proper closed Lie subgroups of H,. are Hy = {(¢,0,0) : t € R},
Hz ={(0,2,0): z € T} and Hy,z = {(t,2,0) : t € R, z € T} up to automorphisms.

Proof. This is direct from the description of one or two dimensional subalgebras of heis
in the proof of Proposition We only need to observe that the resulting subgroups are

closed in H,.. O
Forn # 0 and £ € C2°(R) we have that
671’”(X)§ = _§I7
(7.6) (Om"(Y)E)(t) = —intE(t),

o™ (Z)¢ = iné.
For n = 0 and y € C°(R?) we have

(1.7) oY)



Entire vectors for 7", n # 0 are the same as in the case of Heisenberg group; that is,
f € L?(R) is an entire vector for 7", 0 # n € Z if and only if f extends to an entire
function on C and satisfies

sup e'l?l|f(2)| <
Imz| <t

for any ¢ > 0. For n = 0 we recall that 7° is the left regular representation on R?, so that
by [21} Proposition 4.1] and the argument in the beginning of Section 5 of [21]] we have
F € L2(R?) is an entire vector for 7° if and only if e!(I+1v) FE* (3 ) € L2(R?) for any
t > 0. Recall that Proposition [2.4] characterizes the latter condition, from which we can
easily see that the functions ¢ ® ¢, k,I > 0, are entire vectors for 70, where 1S the
k-th Hermite function.

7.1. Description of SpecA(H,., W). In this section, we only consider the weight W ex-
tended from the subgroup H = Hy z = R x T according to Proposition[Z.2l and Theorem

3271 More precisely, we fix a weight function w : I?;-/\Z ~ R x Z — (0,00) and we set
Wy = My, and W = o(Wy) = (W(n))nez. Precisely speaking we have

(7.8) W(n)E(t) = w(nt,—n)é(t), 0#neZ
by Proposition[3.26] and
(7.9) (F* oW (0) o (F¥') 1) F(b,a) = w(b,0)F(b, a)

for appropriate £ € L?(R) and F € L?(R?).

Remark 7.3. The above shows that the weights extended from the subgroup Hy 7 = Rx T

with the weight function w : Ij)-/\z ~ R x Z — (0,00) satisfying the condition that the
value w(t,n), (t,n) € R x Z, depends only on n € Z are all central weights. In this case
we actually get a weight function w|z on Z, which means that we could say that the weights
extended from the 1-dimensional subgroup Hz = {(0, z,0) : z € T} of H, are all central
weights.

It turns out that this covers all the central weights on the dual of H., up to “equivalence”.
More precisely, let W be a central weight on the dual of H,, which means we have a
measurable function w : R2UZ\{0} — (0, 00), where L denotes the disjoint union of sets,
satisfying W = wlgz & @,,cz\ {0y w(n)I12(r). Now we establish the following “fusion
rule” for I/E\]IT.

o T @™ Xt ™ nom e Z\{0}, n £ —m;
rer " =qY ne Z\{0};
T Q@ Xrs 27", n € Z\{0}, 1, s €R;
Xr,s ® XT/,S’ = XrJrr’,ers/; r,s, 7J7 S/ S R,
where 70 is the representation from (I.3). Indeed, the first quasi-equivalence and the third
equivalence are directly from the Stone-von Neumann theorem ([12, (6.49)]) after combin-
ing the canonical quotient map from the usual Heisenberg group. The fourth identity is from
the usual character formula on R?. The second unitary equivalence requires some elabora-
tion as follows. We first consider the following unitary map U : L*(R?) — L*(R?), n —
Un, where Un(s,t) = n(s,t + s), s,t € R forn € L*(R?). Then it is straightforward to
check the following relation.

U(w” @7 "(y, z,x)) U*n(s,t) = e™¥n(s —x,t), s,t € R,necZ\{0}.

Thus, by taking conjugation with respect to the R-Fourier transform on the second variable
we get the unitary equivalence we wanted.
The above fusion rule tells us the following corresponding formula for the co-multipli-

cation, namely for A € L™ (H/@, (dz’;,d)sz) Boo L™ (Z\{O}, pa; B(L? (R))) we have

o I'(A)(n,m) = A(n+m), n,m € Z\{0}, n # —m;
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®
e I'(A)(n,—n) = /R A(r, s)drds, n € Z\{0};

o I'(A)(n,(r,s)) = A(n), n € Z\{0}, r,s € R;

o T'(A)((r,s),(r', ) 2 A(r+7r',s+§), r,s,r',s" €R.

Now the condition T(W)(W =1 @ W) being a contraction becomes

w(n +m) < wn)w(m), n,m € Z\{0}, n # —m;
SUP, ez W, 5) < w(n)w(—n), n € Z\{0};

w(n) <w(r,s)w(n), n € Z\{0}, r,s € R;

w(r+r, s+ ") <w(rs)w(r',s), rsr, s eR

If we extend w to w : R2 UZ — (0,00) by assigning w(0) = sup,. seg W(r, 8), then
we can see that the extended weight w consists of two independent parts w|z and w|g.,
both sub-multiplicative on each domain and satisfying the only additional condition 1 <
w|g2 (1, 8) < wlz(0). The last condition means that w!g., is a bounded and bounded below

weight function on @2, so that it is equivalent to the constant 1 weight function. This
Jjustifies the claim that all the central weights on the dual of H,. are exactly the weights
extended from the 1-dimensional subgroup Hz = {(0, z,0) : z € T} up to “equivalence”.

In general we can apply the same strategy as in the case of the Heisenberg group H with
less technicalities. By Remark [3.2] again, we can assume, without loss of generality, that
our weight function w = (wy, )nez is consisting of locally integrable w,,, n € Z. Moreover,
we assume for technical reasons that all of their weak derivatives are at most exponentially
growing, i.e. for any k& > 0, there are constants C,,, D,, > 0, n € Z such that

(7.10) [(wn) P ()] < CpePrl!
fora.e. x € R and for all n € Z. We will fix the symbols w and W throughout this section.

7.1.1. A dense subalgebra and dense subspaces of A(H,.,W). We define dense subalge-
bras A and B and a dense subspace D of A(H,,W). By analogy with the case of H
it is natural to begin with the test function space on R x Z x R, which we denote by
C®(R x Z x R). This space is given by

{f = (fn)nez : fn = 0 except for finitely many n € Z, f,, € O (Rz)}.
Here, we use the convention f,,(y, z) = f(y,n,z) forn € Z, (y,z) € R
Definition 7.4. We define
A= FRHAEER(C®(R x Z x R)) C C®(H,) and B := F**2*R(By) C C*(H,)
where
By = {f = (fn)nez C Li(R?) = f,, = 0 except for finitely many n € Z,
WD @2 1) (y, ) € LA(R?),
Vt > 0, Vmulti-index a}.

We endow a natural locally convex topology on By given by the family of semi-norms
{4, : t > 0,n € Z, multi-index o}, where

(7.11) Vi (F) = 1D £) (y, ) | L2 z2).
Finally, we define the space D C L* (H/@, %) &y Lt (Z\{O}, pa; ST(L? (R))) by

D= span{F @ Pl m,neZ2 FeL'(RY),
e WD (9 (F™))(y, z) € LX(R?),
Vt > 0, Vmulti-index a},
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where P. € L' (Z\{O}, pa; ST(L? (R))) attains Pp,,, at the l-th coordinate, and is 0

everywhere else. Recall that P,,,, is the rank 1 operator on B(L?(R)) as in Definition|6.4}
We will fix the symbols A, B, By and D throughout this section.

The basic properties of the spaces A, B, By and D are obtained in a similar way as in
the case of H, so that we omit the proof.

Proposition 7.5. The spaces A, B and By satisfy the following.

(1) The spaces A and B are algebras with respect to the pointwise multiplication.
(2) The space By is a Fréchet space.
(3) The inclusion C°(R x Z x R) C By is continuous with dense range.

More properties are coming in the same order as in the case of H.

Proposition 7.6. For f € By we have

W FHr (FRXEXR) _ FHr (GRXEXR) yopore g(t,n,s) = If(—tv —n)f(t,n,s), n#0
g(tv Oa S) = ﬁw(_t’ O)f(tv Oa S)a n=0.

Moreover, g € By and, the map By — By, f — g is continuous.
Proof. Letn € Z\{0} and f € By. Then we have

]—-HT(]/CRXZXR)(TL)g(t) — // }RXZXR(y7Z7x)Zne—inty§(_$ + t)dxdydz
T JR2
=V 27T/ fg@(—nt,n, t —x)é(x)dz,
R

where f§ implies that we take Fourier transform with respect to the third variable only.
Thus, FHr (fRXZXR) (n) is an integral operator with the kernel

Kin(t,z) =+ 27Tf§(—nt, n,t —x).

For the case of n = 0 we have

P (FRX2R) (0 (s, 1) = / / FXBR(y 2 2yn(s — gt — o)dedydz
T JR2
= /Rz fﬁz(y,O,x)n(S —y,t —x)dxdy

2
= /Rz FE5(s — 4,0t — 2)n(y, x)dydz,

so that

(7.12) F® o Fir (FRXZXR) () o (FR) 1 F (b, a) = 20 f(—b,0, —a)F(b, a)

for ' € L?(R?). From this point on we can repeat the same argument as in the case of H
for the conclusion. O

We remark that the space B can be used as the subspace S in[3.2.2] thanks to the above
proposition.
Proposition 7.7. The space A, B and D satisfy the following.
(1) The space B is continuously embedded in A(H,., W).
(2) The space (F2)~1D is a subspace of B which is dense in A(H,., W).
(3) The algebra Ais dense in A(H,., W).
Proof. (1) As OXN(X), OA(Y) and OA(Z) are infinitesimal generators for one-parameter
subgroups A(exp(tX)), A(exp(tY)), and A(exp(tZ)) respectively, one can easily verify
the formulas
ONMX)F(y, 2, @) = D:F(y,z,2) - (—y) — 0 F(y, 2, 2)
ONY)F(y,z,x) = —=0,F(y,z,x)
ONZ)F(y,z,z) = =D, F(y, z,x)
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forany ' € S(R x T x R) as a function on H,, which is straightforward to check.
Here, the operator D, is the derivative with respect to the complex variable z given by
D,(2™) = inz", n € Z. In other words, D, is nothing but the differentiation % for the
functions of z = ¢%. Moreover, we have (FZ)~1 o D, o FZ is the multiplication operator
(an)nez — (—inay)nez. From this point we can follow the proof of (1) of Proposition

6.11)

(2) From the decomposition

%) o1 L ({0}, s " (L(R))

it is clear that (F)~1D is dense in A(H,). We first claim that (F+)~'D C B. For
I € Z\{0} we focus on the operator 0 @ P! .. We have that P!, is an integral operator
with the kernel

FE (A(H,)) = L' (R2,

K(t,2) = om(t)pn(2).
We would like to find a function f € By such that K¢, = 6;,,K, m € Z\{0}, which

will imply that 0 @ P. = FH-(fRxZxR) Indeed, it is straightforward to check that for
l£0€Z

1 st t
ft,k,s) = %&C)l(—i)"cpn(s)e_chpm(—i), keZ,s,teR
satisfies K = Ky. For [ = 0 there is nothing to check. This explains the claim that
(Fi-)=1D C B.

Secondly, we show that (F)~1D is also dense in A(H,., W). This is equivalent to the
modified space

D= span{(F* o W(0) o (F) )F &0 @ WP,
lez\{0}

myn € 229, F € LMRE), WD (90 F2) (y, 2) € L2(R?),
Vt > 0, Vmulti-index a},

being dense in FIr (A(H,.)). Indeed, for [ = 0, we know that the functions of the form
w(b, 0)F (b, a) are dense in L' (R?). Moreover, for [ € Z\{0} we note that the linear span
of {w(lt, —1)pm(t) : m € Z} can be shown to be dense in L?(IR) as in the proof of (2) of
Proposition

(3) The same as in the case of H.

Proposition 7.8. We have the inclusion (F»)~1D C D (\).

Proof. If the supportof f € L?(H.,) is finite and lies in the discrete part of H-/]I\T, then we only
need to check the condition of ¥+ (n) being an entire vector of 7" for each n € Z\{0},
which is the case for every element in D. If the support of f € L?(H,.) lies in the contin-
uous portion of IE/]I\T, then f belongs to the first summand in the direct sum decomposition
of D, ie. f € L'(R2) with et(¥/+12) (92 F®*)(y, z) € L2(R?). By Proposition[Z4] such
an f is an entire function for the left regular representation of R2. Combining these facts
finishes the proof. 0

7.1.2. Solving Cauchy functional equations on R X Z x R and the final step.
(CFERxzxr) T € C°(R x Z x R)* satisfying
(T, fxg)=(T,f|T.g), f,g € CZ(R X Z xR).
In the above, * refers to the convolution on the group R x Z x R. We omit the proof of

the following theorem, which is an obvious modification of the case of (CFEgn).
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Theorem 7.9. Let T € C°(R x Z x R)* be a solution of (CFERrxzxR), then there are
uniquely determined ¢y, co € C and c3 € C* such that

(T, f) = / > f(tn,s)e e dtds, f € C°(R x Z x R).
RxR nez

In other words, the distribution T' is actually a function of exponential type
T(t,n,s) = e Hertteas)oon,

We continue to a realization of SpecA(H,., W) in (H., )¢, whose proof is similar to the
case of H.

Proposition 7.10. Every character ¢ € SpecA(H,., W) is uniquely determined by a point
(y,z,z) € (H,)c = (CxC*)xC, which is nothing but the evaluation at the point (y, z, x)
on B (and consequently on A).

Here comes our final result.

Theorem 7.11. Let by be the Lie subalgebra corresponding to the subgroup H = Hy, 7z of
H,.. Suppose W is a weight on the dual of H, which is extended from a weight Wg on
Hy 7. Then we have

SpecA(H,, W) = {g cexp(iX'): g € Hy, X' €, exp(iX’) € SpecA(H, WH)}.

Proof. In general we have a similar but easier proof with a different pattern of the case
I = 0. Note that we need Theorem[Z.12] below as a replacement for Theorem[6.18] O

Theorem 7.12. Suppose W is a weight on the dual of H,, which is extended from a bounded
below weight on Hy z. For any X' € heis\h the operator exp(iON(X'))W = is un-
bounded, whenever it is densely defined.

Proof. Since H,. is not simply connected, we cannot apply Theorem[6.18] Instead, we can
describe the maps 6 and « precisely in this case. We first write X' = aX + bY + ¢Z
for some a,b,c € R with a # 0. Indeed, we have E : Hy z x R — H, given by
E((y,2,0),t) = (y, 2 0)e!™’, from which we get

B((y,2,0),t) = (y + bt, 2" +2%) at) y t eR,z €T

with the inverse
b e / /
E_l(y',z',:v') _ ((y/ . _x/’zle—z(;m +22(x )2)70), CL‘_)7 (y’,z’,x’) cH,.
a a

Note that E is a global diffeomorphism with E and E~! being polynomial, so that the
maps 6 and « are also polynomial. 0

Remark 7.13. The statements of Theorem[Z12l and Theorem[Z11l hold true for H = Hy
and H = Hyz in place of Hy z, by applying similar arguments.
Example 7.14. For X' = (y',2',0) € b the condition exp(iX') € SpecA(H, W) is
equivalent to the existence of a constant C > 0 such that
e e < Cw(a,b), for almost all (a,n) € R x Z
by an immediate analogue of (€I1). In particular, for specific choices of the weight func-
tion w, we have the following, by Theorem[ZI1l When w(a,n) = ﬂllalﬁgnl, (a,n) e RXZ
for some (1, B2 > 1, we have
SpecA(H,, W) = {g- (i, ¥ ,0) € (H,)c 2 C x C* x C
HEVAS HT? y/vz/ € Rv |y/| < logﬁla |Z/| < 1Ogﬂ2}
Especially, when B2 = 1 we have

SpecA(H,, W) = {(y, z,2) € (H,)c =2 CxC*xC : [Imy| < log f1, |z] = 1, |Imz| = 0}.
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We end this section with the symmetry given by automorphisms on H,., whose proof is
the same as in the case of H.

Theorem 7.15. Let o : H,, — H, be a Lie group automorphism. Then we have
SpecA(H,, ay Ny (W)) = ac(SpecA(H,, W)) C (H,)c.

8. THE EUCLIDEAN MOTION GROUP ON R?

The Euclidean motion group on R? is

0 1
with the group law by the matrix multiplication or equivalently
(ZC, Y, Z) ! (I/a y/a Z/) = ((ZC, y)T + p(Z)(:C/, y/)Tv ZZ/)

Rez —Imz
Imz Rez

E(2) = {(%%2): [Z x+1y] :x,yER,ze’H‘} =RZxT

where p(z) = { ] and (z',y')7 refers to the transposed column vector. Here,

we use the notations (x,y, z) = ( {

x

)= @t
The unitary dual L'/T(?) of E(2) can be described as follows. For any » > 0 we define an

irreducible unitary representation 7" acting on L?[0, 27] by

8.1)  w"(x,y,2)F(0) = em@eosttysinO pg 4y F e L2[0,2n],z = €.

Here, we are using the identification [0, 27] = T via t — e’
The representations (7" ),~¢ are all of the irreducible unitary representations appearing
in the Plancherel picture, and we have

®
A= / " rdr.
R+
This quasi-equivalence tells us that
VN(E(2)) = L™(R",rdr; B(L?[0, 27]))
and
A(E(2)) = LYRY, rdr; S*(L?[0, 27])).
For f € L'(E(2)) we define the group Fourier transform on E(2) by
FEO(f) = (FPO(1)(1)rs0 = (PP (r))>0 € L®(RT, rdr; B(L*[0, 27])
and

Fow= [ tom@ds= [ [ fa e z)dadz.
E(2) T JR?
The Lie algebra of E(2) ise(2) = (S, X,Y : [S,X] =Y, [5,Y]=-X,[X, Y] =0) =
R3 with the exponential map
exp :e(2) — E(2)
given by
(8.2) exp(sS+zX +yY)

= (L(sins)z + L(coss — 1)y, 2(1 — cos s)z + L(sin s)y, e’),

where the value at s = 0 is defined by taking the limit s — 0, i.e.
exp(0S + 2 X +yY) = (z,y,1).

We can see that ¢(2)c = C? and we consider a complexification of E(2) given by C? x C*

with the same group law, which we denote by F(2)¢. Note that we may use the identifica-

tion {s € C:0 < Res < 27} = C* via s — €'*. We can actually check that E(2)c with
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the canonical inclusion E(2) < F(2)c is the universal complexification. See Remark[9.3]
below. Moreover, we clearly have the following Cartan decomposition

(8.3) EQ2)c = E(2) - exp(i¢(2)).

For r > 0 we need to understand 97" (S), 7" (X) and 97" (Y") in a concrete way.
Indeed, we can easily check for F € C>°(T) that

on"(S)F = —F/,
(0" (X)F)(0) = ircosf - F(0),
(0" (Y)F)(0) = irsind - F(6).

Identifying L?(T) with £2(Z) via the Plancherel transform, we get the following operators
on (%(Z):

on"(S)e, = —iney,
(3.4) or"(X)e, = %(en,1 +ent1),

or"(Yen = 5(eny1 — €n-1),

where {e, : n € Z} is the canonical orthonormal basis of ¢*(Z). Moreover, it is also
straightforward to check that

(8.5) on"(—Aen, = (n* +1e,, n € Z.

Finally, we record that any trigonometric polynomial is clearly an entire vector for 7",
7> 0.

8.1. Weights on the dual of F(2).

8.1.1. Weights from subgroups. As in the previous cases, we first identify all closed Lie
subgroups of F(2).

Proposition 8.1. The proper closed Lie subgroups of E(2) are Hs = {(0,0,2) : z €
T} =T Hy = {(0,y,1) : y € R} 2R, H, = {(z,7r2,1) : * € R} = R for every
r € R2% and Hx y = {(z,y,1) : x,y € R} 2 R? up to automorphism.

Proof. We begin with the description of Aut(e(2)). By examining the Lie bracket relations
of the basis {5, X, Y} we can easily conclude that any automorphism « : ¢(2) — ¢(2) is
of the form
a(S)=aS+bX +cY, a(X)=dX and a(Y) = adY

for some b, ¢,d € R with a = +1 and d # 0. Now, we observe that any one-dimensional
subspace of ¢(2) is of the form R(S + v1 X + v2Y) for v = (vy,v2) € R? or R(u1 X +
ugY') for u = (uy,u2) € R? with |u|s = 1. The classification up to automorphisms are
straightforward from the description of Aut(e(2)). Indeed, the first one gives us the one
parameter subgroup Hg up to automorphism, while the second one gives us a family of
subgroups, up to automorphism, indexed by r € R=? defined as H, = {(x,rz,1) : 2 €
R}, or the subgroup Hy = {(0,y,1) : y € R}.

It is an easy exercise in linear algebra to see that if X; and X5 are linearly independent
in ¢(2) that either X1, X» € ¢(2)’, and hence we get (X7, X3) = ¢(2)’ (derived ideal), or
we find that (X7, X2) = ¢(2). This gives us the result for the two dimensional subgroups.

O

By Proposition [8.1] and Theorem [3.27] we only need to consider the weights extended

~ ~

from the subgroups Hg = T and Hx y = R2. For a weight function w : Hg =2 Z —

(0,00) or w : ﬁ; =~ R? — (0,00) we consider the extended weight W = (M,,) =
(W (r))r>0, which is given as follows.

(The case of Hg)

(8.6) (FroW(r) o (FH) Ve, = w(n)e,, n € Z.
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In other words, W (r) is a Fourier multiplier on L?(T) with respect to the symbol w, which
is independent of the parameter r.

(The case of Hx y)
W(r)F(0) = w(—rcos,—rsin0)F(0), F e C*(T)
or equivalently
(8.7) W(r)F(z) =w(—rz)F(z), z€T,
with the identification z = . When w is a radial function, the operator W () is a multiple

of identity operator with the constant depending on the parameter r.

Remark 8.2. The above shows that the weights extended from the 2-dimensional subgroup
Hx y of E(2) using the radial weight function on the dual of Hx y are central. Moreover,
we can actually prove that all the central weights on the dual of FE(2) are of the above
Sform. Indeed, the centrality of a weight W on the dual of E(2) forces us to begin with
W = (w(r)Ip(r2(1)))r>0 for some measurable function w : Ry — (0, 00). Now we recall
the following fusion rule of E(2)

@
(8.8) o = / 7 da,
|[r—s|<a<r+s

where we have a quasi-equivalence. For the convenience of the reader we provide a proof
for the above fusion rule below. We first note that the formula 81) for the irreducible
representation " can be rewritten as follows.

7" (z,y,2)F(2) = ei<w’”/>F(2z/), FeIL*T), 2 €T,

where w = x + iy and (w, z') = Rew - Rez’ + Imw - Imz2’, i.e. the “dot” product when
C is identified with R2. In the above representation we may replace the parameter v > 0
with a € C\{0} ro get an irreducible unitary representation =® and it is straightforward to
check that for any a,b € C\{0} we have a unitary equivalence

(8.9) xat o e = b,

where the intertwining map is given by \p(z) for z € T such that za = b. Now we set a
unitary map U : L*>(T x T) — L?(T x T) given by

UG(Zl,ZQ) = G(21,2122), G e LQ(T X T), 21,29 €T
so that we have U*G(z1, z2) = G(21, Z122). Then, forr,s > 0 we have
U(ﬂ'r ® 7 (x,y, z)) U*G(z1,22) =" @ m°(x,y, 2)U"G(z1, 2122)
_ €i<w7Tzl+Szlzz>)U*G(521, 22122)
= /W r+s22)2) Q32 25).
Since L*(T?) = L2*(T;L*(T)) = f;a L3(T), dy, where L*(T), refers to the copy of
L?(T), we have
5]
U(WT Q@7 (z,y, z)) U* = / 7Y dy
T
and then apply (89) to obtain the following quasi-equivalence .
2] )
Q= / wlr+syl gy o / 7 da.
T [

r—s|,r+s]

Now we move to the consequences of (88), which implies that for any A = (A(7))r>0 €
L (R, rdr; B(L?[0, 27])) we have

D
T'(A)(r,s) = / A(a) da.
[r—s|<a<r+s
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By applying functional calculus, we can readily check that the above quasi-equivalence
and the condition T(W)(W = @ W 1) being a contraction imply the following inequality.
(8.10) sup w(a) < w(r)w(s), r,s>0.
[r—s|<a<r+s, a>0

Ifweputr = s = a > 0, then we have w(r) < w(r)?, so that w(r) > 1 for any r > 0.
Now we assign w(0) = 1, then w(re'?) := w(r), r > 0,0 € [0,27], actually becomes a
weight function on R?. Moreover, it is rather straightforward to check that the condition
(B10Q) is equivalent to the sub-multiplicativity of the radial weight function v on R

8.1.2. Exponentially growing weights on the dual of E(2) using Laplacian. Given the ex-
amples of exponentially growing weights on the dual of compact Lie groups using Lapla-
cian presented in it is natural to expect to obtain exponential weights on the dual of
non-compact Lie groups using Laplacian as in the compact case. However, we only un-
derstand the situations of F(2) and its simply connected cover E(2) at the time of this
writing.

We consider the case of E(2) in this subsection. From (§4) we can easily see that for
r,s > 0 and m,n € Z we have

8(7TT XWS)(S®S+X®X+Y®Y)emn
rs

= —Mmneémmn — Z(em—l,n—l + €m—1,n+1 + Em+1,n—1 + em+1,n+l)
s
+ I(em—l,n—l - em—l,n-{-l - em-l—l,n—l + em+1,n+l)

s
= —Mmneémmn — E(em—l,n-i-l + em-l—l,n—l)u

where e, = em ® ep, € 2 (Z x Z). Here, the symbol 7 x p for representations 7 : G —
B(Hr)and p: H — B(H,) refers to the direct product representation on G' x H given by
(m x p)(g,h) :==7(g) @ p(h) € BH~ @ H,), g, € G,h € H.
Now we consider the operator I'(OA(A)) = (T'(OA(A))(r, $))r,s>0. Since we have
L(OMA)) =1 ® OAN(A) + OMA) @ I +2(OA(S) ® OA(S)
+OMX) @ ONX) + OA(Y) @ OA(Y)),
we get from (8:4) and (8.3 that
T(OAN=A))(r, 8)emn = (M +n)? + 12+ 5B emn +75(em—1.n41 + €mt1n—1)
= Ar,s(em,n) + Br,s(em,n)

for r, s > 0 and m,n € Z. This decomposition I'(OA(—A))(r, s) = A, s + By s consists
of a positive multiplication operator A, ; and a bounded self-adjoint operator B, ; with
B, s < 2rsl. Moreover, we can easily see that A, ; and B, ; are strongly commuting. We

define the operator
C(r,s) :=\/Ars+2rsl
or equivalently C'(r, s) is given by
C(ry8)emm =V (m+n)2+ (1 + 5)2em.n.
Note that C(r, s) is strongly commuting with T'(OA(—A))(r, s), so that functional calculus
leads us to the conclusion that T'(exp(t\/OA(—A))) exp(—tC) is a contraction, where
C = (C(r, s))r,s>0- Now we compare C and I @ \/OA(—A) + \/ON—A) ® I, where the
latter is given by
(I & OAN=A) + V/OAN=A) @ I)(r,5)(emn) = (VM2 +12 + /12 + 82)em n.

Since both of the operators are multiplication operators, they are strongly commuting.
Moreover, we can easily check that

Vm+n)2+ (r+ )2 < V/m?+12+/n? + s
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so that the operator
exp(tC) (exp(—t(I @ \/ON—A) + /ON-A) @ 1))
is a contraction again by functional calculus. By composition we can conclude that
T(exp(ty/OA(—A))) (exp(—t/IN—A)) @ exp(—t/IA(—A))) =
[ (exp(ty/ON—A))) exp(—tC) - exp(tC) exp(—t(I @ \/ON—A) + /ON—A) @ I))

is a contraction. One might be worried about the domain problem for the composition, but
for the latter three operators, exp(—tC), exp(tC) and exp(—t(I ®v/—A++v/—A®I)), the
space of finitely supported sequences on Z? plays the role of common invariant dense sub-
space in £%(Z?) for each parameter (7, s). Moreover, we can easily check that e, , is an an-
alytic vector of I'(1/OA(—A))(r, s), and hence in the domain of I'(exp(¢4/IA(—A)))(r, $).
Indeed, it is straightforward to check that for T = T'(OA(—A))(r, s) we have

”Tkem,nH < (Cm,n)% (2k)!

for some constant Cy, ,, > 0. (See [45] 46] for the details.)
Note that the 2-cocycle condition for exp(t4/90A(—A)) is automatic since it is bound-

edly invertible. Thus, we have proved that the operator exp(t1/9A(—A)), t > 0is a weight
on the dual of E(2).

Definition 8.3. The weight exp(t\/OA(—A)) is called the exponential weight on the dual
of E(2) of order t > 0.

8.2. Description of the spectrum of the Euclidean motion group E£(2). In this section,
we present a full characterization of the spectrum of Beurling-Fourier algebras of F(2)
associated with two important types of weights: the weights extended from the subgroups
H = Hg or Hx y, and the exponential weights coming from Laplacian of F(2). We start
this section by introducing appropriate dense subalgebras and subspaces of the Beurling-
Fourier algebra, which we will use in analysis of both cases.

8.2.1. A dense subalgebra of A(E(2), W) and its companions. We will follow the same
philosophy as in the cases of H and H.,., namely finding a dense subalgebra of A(E(2), W)
which will substitute the algebra Trig(() in the case of compact groups. As before this
subalgebra alone cannot finish the job till the end, so we need two more companion spaces
as well.

Definition 8.4. We define the space
Ap = {f € C(R?) : f, =0,|n| > N for some N € N}

where f,, n € Z, is the function given by

fu(r) == /Tf(reie)efmedﬁ, r>0

and
Ago = {f €Ay frn € CX(0,00) foralln € N}.
We also define
By = {f € CZ(R?) : |0°f||,, < 00,Yp > 0, multi-index a}
where || - || ,, p > 0, is the norm given by

1l =3 ¢ / o ) rdr).

neZ

Finally, we define A := fRzXZ(Ao ® coo(Z)) and B := ]-'R2XZ(B’O ® coo(Z)), which are
the images of the algebraic tensor product Ay ®coo(Z) and Bo®coo(Z), respectively, under
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the Fourier transform on R? x Z. We will fix the symbols A, B, Ao, Bo, Ao throughout
this section.

Remark 8.5. (1) We clearly have the inclusion Ayy € Ag C By.

(2) The space Aqo is nothing but the algebraic tensor product coo(Z) @ C°(0, 00),
which is equipped with a canonical locally convex topology as follows. We say that
f(m) = f asm — ocoin Agy if there is a finite set I C 7 with suppf(m) :=
{neZ: f(m), #0}C I, Vm > 1and

f(m)y = fn inCZ(0,00) as m — oo, Vn € Z
where we consider the usual locally convex topology on C°(0, 00). The topology
on Ay is defined in an identical manner, and the topology on A is induced from
that of Ay.

(3) The space By is equipped with a canonical locally convex topology as follows. We
say that f(m) — f asm —ooin By if there is a K-ball, Bx C R? with
suppf(m) C Bk, Ym > 1 and

[l0%(f(m) — H)ll, = 0 as m — oo, Vp > 0, Vmulti-index c.
The topology on B is induced from that of By.

Before we proceed to important properties of the above spaces A, B, Ay, By and Agg
we need some preparations. We begin with a detailed understanding of group Fourier
transforms on F(2), which is actually an integral operator with precise description of kernel
function at each parameter.

Proposition 8.6. For h € C2°(R?) and g € Trig(T) = F%(coo(Z)) we have
(8.11) FEOMRE @ g)(r)F(0) = 27 / h(re®®)g(0 — t)F(t)dt, F € L*(T).
T

In other words, the operator fE(z)(ﬁRz ® g)(r), 7 > 0 is the integral operator on L*(T)
with the kernel K (0,t) = 2rh(re?)g(0 — t).

Proof. This can be obtained by a straightforward calculation. 0

We also need a trace class norm estimate of integral operators acting on finite intervals.
Basically, we get trace class operators when the kernels are smooth enough.

Lemma 8.7. ([18, p.120-121])
Let A be the integral operator acting on L*([a, b)) with the kernel function K, i.e.

/Kts

Then there is a universal constant C > 0 such that
I Allst(z2ae)) < CUK | L2(ja,52) + 10s Kl L2([a,0)2))-
We begin with the properties of the spaces Ago, Ao and By defined on R? x Z.

Proposition 8.8. The spaces Ay, Ago and By satisfy the following.

(1) The space Ay is an algebra with respect to convolution on R2.
(2) The space Ay is continuously and densely embedded in By.

Proof. (1) It is clear that every element of Ay is a linear combination of functions of the
form f(re?) = g(r)e'™®, n € Z with g € C,.[0,00). For such f we recall the following
well-known formula.
(8.12) TR (Re) = € / ( / em"e*zRNOS"dG)g(r)rdr = G(R)e™.

27T Ry T

This implies that fRz is of the same form, namely the variables in polar coordinates are sep-
—R?

arated. Thus, we can conclude that for f1, fo € Ap, we know that the function f1 x fo =
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~R? O AR? oo .. . . .
2rf1 - fo is afinite linear combination of the functions whose variables in polar coor-
dinates are separated. Recall that C2°(IR?) is closed under R?-convolution, so that we can
now conclude that 4 is also closed under R2-convolution.

(2) Let f € By with suppf C Bg. We fix p > 0 and a multi-index a.. We first pick N
such that

S o [ 1ol <
In|>N Ry
Next we pick 6 > 0 such that

S /5
A [ (0% ) lrdr < e.
In|<N 0

We record here a useful formula for f € C2°(R?) and r € (0, 00), which comes directly

from the identity 9, = cos@ - 9, — g(%, 0y =sinf - 0, + Cofeag, which is true on
R2\{(0,0)}.
@13) (0:0)a) = (st~ 1y g+ 2 )

Oy )ar) = 2 oa )+ 0 01y g1 )+ 21D )

for » > 0. By applying the above formula repeatedly we can see that (0 f),(r), r > 0
and [n| < N, is a linear combinations of the functions
k
fz( )(7’)
Tm

, 0<k<lal, l| <N +laf, 0<m < |al

which is a finite collection. Finally, we choose fn € C(0,00), |n| < N such that
suppfn C [0, K] and

K ~
A /5 PO F)n(r) — (8% Fa(r)|rdr < ¢

In|<N
where f(rei?) = YN Fu(r)e™ in Agg and |0*f — 8 f||, < 3. This explain the
density we wanted, and the continuity of the embedding is also immediate. 0

Now we move to the spaces A and B defined on R2x Z=R? x T.

Proposition 8.9. The spaces A and B satisfy the following.
(1) The space B is continuously and densely embedded in A(E(2),W).
(2) The space A is an algebra with respect to pointwise multiplication, i.e. it is a
subalgebra of A(E(2)).
Proof. (1) (When W is extended from the subgroup Hx y) Let w : H/X\y ~R? — (0,00)

be the associated weight function. Consider an element @ g of B with h € By and
g € Trig(T). Combining (87) and (811 we get

W(r)]:E(z) (?LR2 ®g)(r)F(8) = /w(—rew)h(rew)gw —t)F(t)dt
T

which is an integral operator with the kernel K (6,t) = w(—re®)h(re??)g(6 — t). By
Lemmal[8.7] we have

~m2
W () FEDRE @ g)(r)| 51 (p2my) < CUK | p2crzy + [|0:K || 2 r2))-
By translation invariance we have

1K1 L2 (r2) = llgll 2Ty - (/T jw(=re™)h(re’)|*do)
63

1/2



We have a similar expression for ||0: K ||2, so that we get
A2
@14 7" @ gllame.w)

2
= [ IWOFFOE  0)0) | sruacoprn

. . 1/2
< C(llgllz2ery + Hg'llm(m)/ (/ |w(—rew)h(rew)|2d9) rdr.
R+ NJT

The sub-multiplicativity of w implies that [w(—7r€®)| < p", r > 0 for some p > 0 by
Proposition[3.211 so that we have
1

(8.15) /|w —re)2|h(re’) |2d9 < |h re 2

= p’“(z [ (7)) 2

nez

<" M)

nez

[\3»—'

N

Consequently, we have

2
816) % @ glam@mw) < Cllgll s + 192 / (3 () Jrdr,
nez

which shows that B C A(E(2), W).
For the density, we choose g(0) = e'?, h(re?) = hy(r)e™™?, hy € C(0,00), I, m €
Z. Then we have

FEQ R @ g)(r)F(8) = 21hi (r)e™® (g % F)(6)
so that we have
(W) FED (R @ g)(r)en](8) = 2mw(—re Vi (1) (en, e1)erm (6)

where e, () = ¢™. Since our choices of hy € C2°(0,00) and I, m € Z are arbitrary, we
can easily see the density when w is radial. For general w we note that

LY(R*,rdr; S'(L*(T))) = L' (R™, rdr; L*(T)) @ L*(T)

where ®, is the projective tensor product of Banach spaces. Thus, it is enough to check
{w(re®)hi(r)e,(0) : hy € C°(0,00),n € Z} is dense in L*(R*, rdr; L?(T)). Indeed,
we consider F' € L (R*, rdr; L*(T)) such that

/R+ / r,0)w(—re’ Yhy(r)en () rdfdr = 0

forany hy € C2°(0,00),n € Z. Clearly F(r,§)w(—re?) = 0 and consequently F'(r, ) =
0 for almost every (r, #). This proves the density.

(When W is extended from the subgroup Hg) Let w : }/Eg >~ 7Z — (0,00) be the
associated weight function. Let F' € Trig(T). From (8.6) and (8.11) we get
W (r)FE® (0™ @ g)(r)F(6)

=2r [ ([ S wme e g(5 - 0)d5) Pla)do.

nez
which is an integral operator with the kernel

K(0,0) = 27r/ > w(n)e™ " Dn(re?)g(8 — a)dp

neZ

:2#/ Z w(n)e™ =P h(re®)gT (m)e™ P~ dp,



where we use g(6) = Y=, ., " (m)e"™?, a finite sum. We use Lemma[8.7] again, so that
we need to estimate || K[| 1272 as follows.

2
K 17202y = (2) / / Z e OB p(reP )Gt (m)et™ ﬁ’a)dﬁ‘ dad

‘]1'2
~ 2
— 7-(2 wln 'ﬂ'n_mATmeineefima o
®17) = [ mz (AT — )" (m) dads
= (2m)* Y wm)’[hr(n—m)*[3" (m)?
m,n€”Z
= (2n)* Y wln+m)?[h](n)*[5" (m)?
m,n€”Z
< @n)* Y wm)’|g" (m)]* - w(n)?[hy (n)?
meZ neZ
= (2m)° Y wm)*[g7(m)* - Y w(n)?|ha(r)?
meZ nez
< (2m)? <Z w(m)|§T(m)|> ' (Z w(n)|hn(7°)|>
meZ neZ
where hT = [ph(re’?)e=™0df = h,(r), the n-th frequency radial part and h,.(f) =

h(rei?), and we used submultiplicativity of w in the first inequality. We have a similar
estimate for ||0q K[| 212y involving ¢' instead of g, so that we get

[R® ®9HA(E(2) w) < 20C (gl acrw) + 19"l AcT,0)) </ Z (7")|7"d7">
R+ nez
(8.18) < 27C(|gll acrw) + 19”1l T ) (Z P / )|7°dr> :
neZ

where we use the fact that [w(n)| < pI”!, n € Z for some p > 0 by sub-multiplicativity of
w. This implies the inclusion B C A(E(2), W).
The density can be similarly explained by the following formula.

W(r)]:E(Q) (ﬁw ® g)(r)e, = 2nw(m + Dhi(r){(en, €m)eitm

for g(0) = €% and h(re?®) = hy(r)e™?, hy € C(0,00), 1, m € Z.

(When W; = exp(t4/OA(—A)) is an exponential weight as in Definition [83]) Recall
from (8.3) that W (r)e,, = etvnir? en, N € 7, so that we can follow similar calculations
as in the case of weights coming from the subgroup H g with the weight function w : Z —
(0, 00) replaced with w,. : Z — (0, 00) given by w,.(n) = eV"*+7°, Observe that w, is
also submultiplicative and w,-(n) < etwe”, n € Z. Now the estimate (8.17) becomes

1K llpeey < 2m( 3 wem)lg™om)l) - (3 welm)ln (7))

meZ nez

(Zef\mlmT ) (Zef‘"wh )

mEeEZ nez
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We have a similar estimate for ||0q K[| 12(12) involving ¢’ instead of g, so that we get
2
1A% @ gllagme),m

< 27 (lgllacr.ay + 19" acr.a)) - / 2 3™ etlnl (1)
Ry nez

= 2n(lgllacean + 19l aa) - S e [ e lhn (o] rar
nez Ry

where u is the weight function on Z given by u(n) = eIl n € 7Z. This implies the
inclusion B C A(E(2), W). For the density we could simply repeat the same argument as
in the case of weights coming from the subgroup Hg.

(2) This is trivial from Proposition[8.8|and part (1). O
Remark 8.10. The estimates 8.16) and (8.18) are the reasons for the choice of the spaces

Ao and By. Generally speaking, we need super-exponential decay of ET(n) with respect
to both of r > 0 and n € Z. The reason why we need both of the spaces Ay and By will be
clarified in the next section. Note also that the proof of the above proposition tells us that
the space B can be used as the subspace S in

Proposition 8.11. Every element of A is an entire vector for \.
Proof. We assume that g(0) = €%, h(re?) = hy(r)e?™?, hy € C,[0,00), ,m € Z with
h € C2°(R?). Then we have

FEO (W @ g)(r)F(0) = hy(r)e™ FT(1)e'™.

Now we take (z,y,z = ¢%) € C? x C* from the complexification. We know that the
analytic extension 7g, of 7" has the same formula, so that we have

2
(., 2) FPA (™ @ g)(r)F(0)
_ hl(r)eir(mCos@-l—ysinG)ﬁ'ﬂ’(l)ei(l-l—m)ee—i(l-i-m)s'

Thus, the operator 7% (z, y, 2) FE® (W @ g)(r) is a rank 1 operator so that we have
~p2
I (2, y, 2) FFO (0% @ g)(r)|13

— B ()220 Hm)ms / o—2r(Imz cos 6-+Imy sin 0) g
T
— |h,1 (7’) |2€2(l+m)lms 627" (Imz)2+(Imy)? cos Gde
T
Since h; is compactly supported it is clear that the integral

/ sup || (x, y, 2) FPO (B @ ) (r)|I3 rdr
RF |z],|yl,|z| <M

is finite. Now we just need to observe that (z, y, z) € ; implies |x|, |y|, |z| < M for some
M > 0 from (8.2). This proves the conclusion we wanted by (1) of Theorem[2.3

8.2.2. Solving Cauchy functional equation for E(2). Unlike in the Euclidean cases, the
Cauchy functional equation for F(2) is far more involved. We divide it into several pieces
and tackle them one by one.

We begin with the case of the Cauchy functional equation on Ay.

(CFE4,) T € Al suchthat (T, f + g) = (T, ) - (T, g), ¥f, g € Ao.

Here f * g denotes the convolution in R? and Proposition [8.8] ensures that f * g € Ay.
We would like to follow the steps in the proof of Theorem|6.13l For [step 1] we need the
algebra A to be closed under partial derivatives.

66



Proposition 8.12. The algebra Ay is invariant under partial derivatives 9, and 9, of R>.
Proof. The formula (813) immediately tells us that for f € Ay with f, =0, |n| > N € N,

we have (03 f)n(r) = (Oyf)n(r) = 0,7 € (0,00) for |n| > N + 1. The point r = 0 is
trivial by looking at the integral form, i.e. for example,

(@500 = [ 0.1 "ds =0, 0 2 0.
T
The case for 9, is the same. O

Now we could perform [step 1] of Theorem[6.13]for (CFE 4,,).

Proposition 8.13. Let T ¢ Ag be a solution of (CFE 4, ). Then we have
T =T, T =T

for some c1,co € C. Here, Ag and O], refer to the algebraic dual space and adjoint map
respectively.

Proof. For f,g € Ay we have

(T, (02f) x g) = (T, 0u(f * 9)) = (T’ f * (0z9))-

Let T be a nonzero solution of (CFE 4, ). Then,

(T,0:£)(T, 9) = (T, F )T, Org)-

If we choose g so that (T, g) # 0, then we get the conclusion with ¢; = (T, 0,9)/(T, g).
The argument for the case of 0, is identical. O

In order to carry out [step 2] of Theorem[6.13] the space we are working on needs to be
closed under multiplication by exponential functions like

exp(c1z + coy) = exp(%(cl —ica)z + %(cl +ico)Z)

where z = x + iy and c;, c2 € C. Clearly, the space Ay is not closed under the multiplica-
tion by exponential functions, and that is why we need a bigger space B.

Proposition 8.14. (1) The partial derivatives 9, and 0, of R* are continuous maps
on By.
(2) The maps f +— e f(z,y) and f — €e“*f(x,y) are continuous on By for any
c € C, where we denote z = x + iy.

Proof. (1) This is automatic from the definition.

(2) We only consider the case of e* since other cases can be done similarly. We de-
note ®(f)(z,y) = e*f(x,y). Since the sum e* = ™"’ = > k0 "¢ s absolutely
convergent uniformly on 6, we can easily conclude that

Tk
(I)(f)n(r) = Z Efn—k(r)'
k>0
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Thus we have

rk
2l = X [ 1Y e

nez R+ k>0

<o [ o sl

k>0 nez

1 n r
=SSO [ gl

k>0 nez

k 1ok
SIS WY WATACIE

k>0 " nez
= exp(pK)||fl,,
where suppf C By For the derivatives of ®(f) we recall the Leibniz rule to get

9(®(f)) = (f) + 2(0af)-

We have a similar identity for 9, (®(f)). These identities tell us that for any multi-index
a we have [[0°Q(f)[l, < Ca,x (325/<|a| 107 £]|,,) for suppf C By, which explains the
continuity of the map ® on By. 0

Now we move to the Cauchy functional equation on By.

(CFEg,) S € Bj such that S|4, is a solution of (CFE 4,).

Remark 8.15. Note that it is not clear whether By is also an algebra with respect to the
R2-convolution.

Proposition 8.16. Let S € B} be a solution of (CFEg,). Then S is actually an exponential
Sunction of the form exp(—c1x — ca2y), c1, ca € C. In other words, for any f € By we have

(5.0) = [ expl-cra = cap) (o) dady

Proof. Let S € B be a solution of (CFEg, ). Then, clearly T' = S|4, € Ag is a solution
of (CFE 4, ), so that by Proposition[8.13] we have
OIT = 1T, OIT = o7

for some c;,co € C. We introduce two operations on 3, namely the adjoint of partial
derivatives and the multiplication with respect to exponential functions. More precisely,
we define 9.5 by

0,8 : =500,
and similarly for 0} S. The element e“'*+2¥ S € By is defined by

(1S, f) 1= (S, ), f € By

where we use continuity of the multiplication with respect to exponential functions. Since
Ay is dense in By, we can conclude that 975 = ¢1.5 and 0,5 = c2S. By applying Leibniz
rule for the smooth functions we can easily obtain that

a; (601I+02ys) — a’yk (601I+02y5’) =0.

We now focus on the element S = e“1*+¢24S € B, whose both partial derivatives are
vanishing. We will get the conclusion by restricting down to the subspace Agg. We first
consider the continuous embedding

Jn 0 C2°(0,00) < By, h— f(re?) = Me*me, nez
r

which allows us the decomposition

Ao = span( Upez J,,(C(0,00))).
68



Thus, all the information on §| Ago 1s encoded in the sequence
(S’ o Jn)nGZ g 050(07 OO)*

Note that it is straightforward to check that the adjoint map of J,,, J;; : B§ — C2°(0, 00)*
extends the map f € C2°(R?) — f,, € C.[0,00).
For g € C¢°(0, 00) we have

0=(0:5, g(r) cosB) = (S,,(g(r) cosB)) = (S, ¢'(r) cos? 0 + @ sin? 6),

0= (('“);5’, g(r)sin@) = (S,8,(g(r)sin0)) = (S, ¢'(r)sin 6 + 9(r) cos? 6).

r

By summing them we get

0=(5.9'0)+ 20y = (S o s r' (1) + 1)

where ((-,-)) is the usual (C$°(0,00)*, C2°(0, 00)) duality bracket. Now this is the mo-
ment we summon the usual distribution theory. By integration by parts we have

0= ((SoJo,rg'(r) +g(r))) = —({DrS 0 Jo,rg(r)))

where D, is the derivative with respect to the r-variable. Since rg(r) covers all functions
in C2°(0, 00), we know that S o Jj is a constant function. This takes care of radial part of
S.

For higher frequencies we consider
0= (9;5, g(r)k(0) sin 0) = (0;5, g(r)k(6) cos 0)
forany g € C°(0,00) and k € Trig(T), which eventually tells us that

0= (3, @k'w».

Since k'(6) covers all Trig(T) except constant functions, we know that S o .J,, = 0 for any
n # 0. Recalling that Aoy = span(UpezJ, (C2°(0,00))), we can conclude that S acts on
Ao as a constant function, and by the density we can actually conclude that S is a constant
function on By, which leads us to the fact that S'is actually an exponential function of the
form exp(—c1z — cay) as a distribution acting on By. O

Finally we consider the Cauchy functional equation on By ® coo(Z), where we endow a
canonical locally convex topology in the same way as in (2) of Remark[8.3]

(CFEg()) v € (Bo ® coo(Z))" satisfies
(v, (an ® 0n) * (Z Gm @ 0m)) = <Uvan ® 0n) - (v, Z Gm @ Om)

nez meZ nez meZ
for fn, gm € Ao, n,m € Z.

Here * implies the convolution in R2 x Z, so that we have
(f®5n)*(g®6m) =f*9®0nim
for fv g€ AO~

Proposition 8.17. Let v € (By @ coo(Z))* be a solution of (CFEg ) ). Then v is actually
an exponential function of the form exp(cn + c1x + c2y), ¢, ¢1, ca € C. In other words, for
any f € By we have

<1}, f> = Z/ f(I, Y, n)eclz+c2y+cnd$dy
R2

nez
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Proof. Instead of differential operators we need the difference operator
D : By @ coo(Z) = Bo @ coo(Z), > fn @ 0n > > (fn— F1)
ne”z nez
It is straightforward to check that
ne”z mEZ nez mEeEZ

Note that (Bo ® coo(Z))* = [],,cz Bp» so that v € (By ® coo(Z))* can be written v =
(Un)nez With vy, € B, n € Z. The duality ((Bo ® coo(Z))*, By ® coo(Z)) is given by

(W, D fa®8a) =D (vns fa).

newz neZ

Then it is also straightforward to check
(8.20) (D*v)y, = vy — Upg1, N € Z.

Now suppose that v is a solution for (CFEg2)). We repeat the 3 steps in Theorem [6.13
Then, (8:19) tells us

nez <v ZmEZ gm & 5 nez

which means that
D*v =dv
for some constant d € C. Now (8.20) immediately implies that
=(1—-d)"vy, neZ.
We note that (f ® dp) * (¢ ® d9) = (f * g) ® do, f,9 € A so that

<Uo,f*g> v, f* g ® do)
v, (f ® do) * (9 ® do))
v, f ®dg) - (v,9 ® dp)
Uo,f> (0, 9),
for any f, g € Ag. In other words, vy € B is a solution of (CFEg, ), so that v is actually
an exponential function by Proposition[8.16] i.e. there are ¢;, co € C such that

/\/\/\/\

vo(f) = g [z, y)er T2V dady.

Finally, we get
DOSLLIESWINAEDY [ faaess=rerienasy
nez ne

where e®® = 1 — d. Note that the possibility of d = 1 can be easily excluded. Indeed, if
d = 1, then we have v,, = 0, n # 0 and we have

(vo, fxg) = (v, (f ®d1) * (g ®6-1)) = (v1, f)(v-1,9) =0

for any f * g € By, which means that vy = 0.
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8.2.3. Realization of SpecA(E(2),W) in E(2)c. We now give a realization of the spec-
trum SpecA(E(2), W) in the complexification F(2)c.

Proposition 8.18. Every character ¢ € SpecA(E(2), W) is uniquely determined by a
point (z,y,2) € E(2)c = C? x C*, which is nothing but the evaluation at the point
(z,y, z) on B (and consequently on A).

Proof. Let € SpecA(E(2), W). Consider a continuous composition ) = o (2rFE *T)
as follows.

or FROXZ

A(E(2), W) °B ’A Ao @ coo(Z)
l ©la
%)
¢ "

Then Proposition [B.17] tells us that there are c1,ce,c3 € C such that for h € By C
C°(R?) and a = (ay,) € coo(Z) we have

e(h® ©g) = 9o F¥*%(h )

1
= — E nes” h(s,t)ersTe2tdsdt
27T< e >(/1R2 (5, D)e ’ )

= g(2)h"™ (icy, ica),

where g is the trigonometric polynomial g = F%(a), and we set e = z, ¢; = —ix

and co = —ty. Note that the factor % in the second equality appears as a result of our

choice for the Fourier transform on R™. Indeed, only the scaled operator ¢ o (27.F R® xZ)
is multiplicative with respect to convolution. In the last equality we used the Paley-Wiener
theorem saying that the Fourier transform of h € C2°(R?) extends holomorphically to
C? and the fact that g is a trigonometric polynomial, so that it extends holomorphically to
C. O

As in the case of H and H,., the above embedding respects the Cartan decomposition
(8.3) as follows.

Proposition 8.19. We have SpecA(E(2), W) C E(2) exp(ie(2)) in the sense that for any
¢ € SpecA(E(2), W) there are uniquely determined g € E(2) and X' € ¢(2) such that

© = Ag)Ac(exp(i X)) W—1W.

Proof. Let ¢ € SpecA(FE(2), W) be the character associated to the point (v, 21, 22) €
E(2)c. For f € A we have by (2) of Theorem [2.3] and Proposition[8.18] that

o(f) = felon 21, 22) = / Te(ats (@, 21, 22) 1) FPO) (1)) rdr

R+
where fc is the analytic continuation of f. Now we repeat the same argument of Proposi-

tion[6.13 For X’ € g¢c we have

Melexp(X )W TR (wh(exp(X )WL),

on WD, where the space D (which is different from the one introduced in the proof of
Proposition|6.11]) is given by

D= span{h ® Py h € C(RY),m,n € Z}

and P,,, is the rank 1 operator P, = e, ® e,. Note that the density of WD in
L?(R*, rdr; S?(L?(T))) can be done in a similar way as in the proof of Proposition [8.9

Now we have Ac(exp(X’))W ™" is bounded if and only if (7¢.(exp(X))W~1(r)) _ is
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bounded, i.e. 7% (exp(X’))W ~!(r) is uniformly bounded with respect to r > 0. This leads
us to the conclusion that if we choose X' € ¢(2)c to satisfy exp(—X') = («, 21, 22), then

0 = Ac(exp(XN)W-IW € VN(E(2), W™ 1).

Finally we recall the Cartan decomposition (8.3) and the fact that ¢ is a (local) representa-
tion on D (A), which clearly contains the space D. Combining these facts with the above
observations we get

SpecA(E(2), W) C
{)\(g)/\c(exp(iX’))W*1W g€ B(2), X' €¢(2), Ac(exp(i X)WL is bounded}

as claimed. 0
8.2.4. Description of SpecA(FE(2), W) when W is extended from subgroups.

Theorem 8.20. Let Yy be the Lie subalgebra of ¢(2) corresponding to the subgroups H =
Hg or Hxy. Suppose that Wy is a weight on the dual of H and W = (W) is the
extended weight on the dual of E(2). Then, we have

SpecA(E(2), W) = {g cexp(iX') : g € E(2), X' € b, exp(iX') € SpecA(H, WH)}.

Proof. We can basically follow the same arguments as in the proof of Theorem[6.17} Note
that we use Theorem[8.21] below as a replacement for Theorem[6. 18]
O

Theorem 8.21. Let Yy be the Lie subalgebra of ¢(2) corresponding to the subgroups H =
Hg or Hx y. Suppose that Wy is a bounded below weight on the dual of H and W =
(W) is the extended weight on the dual of E(2). Then for any X' € ¢(2)\b the operator
exp(iON(X"))W ~L is unbounded whenever it is densely defined.

Proof. We can basically repeat the proof of Theorem Note that we only need to
check the case H = Hy,y, as Theorem [5.11] and Remark take care of the case of
the compact subgroup Hg. The only additional point is that we actually have a concrete
description of the maps 6 and « as follows. Let X’ = aS + bX + ¢Y, a,b,c € R with
a # 0. Then for s, z,y € R we can readily check that

exp(sX')(z,y,1) = (zcosas — ysinas, rsinas + ycosas, 1) exp(sX’)
so that taking E((z,y,1),t) = (z,y,1) exp(tX’) we get
0(s, (z,y),t) = (x cosas + ysinas, —zsinas + y cos as).

The above shows us that 6 has polynomial growth in (x, y)-variables independent of s and
t. The case of the map « is easier, namely (s, (z,y),t) = —s + t. O

Remark 8.22. The statements of Theorem[8.21l and Theorem 820 hold true for H = Hy
and H = H,, r € R=Y, in place of Hxy, by applying similar arguments.

Example 8.23. For W extended from the subgroup H = Hx y and X' = ¢/ X +y'Y €,
',y € R, the condition exp(iX') € SpecA(H, W) is equivalent to the existence of a
constant C > 0 such that

e e < Cwl(a,b), for almost all (a,b) € R?

by (6.11), where w : ﬁx\y =~ R? — (0,00) is the weight function. In particular, for the
specific weight function w(re’) = 7, (r,0) € Ry x T for some 3 > 1 we have

SpecA(E(2), W)
o {g (ia,iy', 1) € EQ2)c 1 g € B(2), ',y € R, (2/)* + (y)? < (logB)Q}

= {(@,y.2) € B2)c : (Ima)? + (Imy)? < (log B)?, |2] = 1},
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For W extended from the subgroup H = Hg and X' = §'S € b the condition exp(iX') €
SpecA(H, W) is equivalent to the existence of a constant C' > 0 such that

e < Cw(n), n € Z,
where w : I/{\S >~ 7 — (0, 00) is the weight function. In particular, for the specific weight
Sunction w(n) = BI"l n e Z for some 5 > 1 we have

SpecA(E(2), W)
= {g (0,0,e¥) e EQ)c:ge E?2), s €R, || < logﬁ}

= {(z.0.2) € B@)c : Tmz = Tmy = 0, % <lel <8}

8.2.5. Description of SpecA(E(2), W) for exponentially growing weights coming from the
Laplacian. In this subsection we consider the case of exponentially growing weights com-
ing from Laplacian of E(2) whose proof depends on the detailed structure of the weights
and the group Fourier transforms.

Theorem 8.24. For the exponential weight Wy = exp(ty/ON(—A)), t > 0 from Definition
B3lwe have

SpecA(E(2), W) = {(I,y,z) € E@2)c : (Ima)? + (Tmy)? + (log|2])? < t?}.

Proof. By Proposition [8.18] and Proposition the spectrum of A(E(2), W;) can be
embedded in FE(2)¢ so that the embedding respects the Cartan decomposition. In that
case, the spectrum will exactly be the collection of those elements of (x,y, z) € E(2)¢ so
that A (, y, 2) W, ! is bounded. Thus, we need to check the uniform boundedness of the
family (7% (z,y, 2) (W (r))~1)r>0. Note that from (83) we have

Wi(r)en, = w(n,r)e,, w(n,r) =exp(tv/n? +1r2), n € Z,r > 0.
For F() =", a,e™ we have
ﬂ—(E(xayuz)(Wt(T))_lF(e)

_ eir(m cos 0+ysin ) E anw(n, T)—lein(G—s)
n

_ ezr(Rem cos 6+Rey sin G)erA cos(0—0) § anw(n, ,,,)—1 e—znsezne

3

where z = ¢, A = /(Imz)2 + (Imy)? and 3 € [0, 27) is the constant determined by
—lmg 2. Thus, we have the decomposition

cosfB==3%,sinf3 =
W(E(x,y,z)(Wt(r))_l =SoT

where
Ten, =w(n,r) te e, nel

and
SF(Q) — eir(Remcos@-i—Reysim0)erA(:():9(9—6)1_7(6.)7 Fe LZ(T)

We can easily determine the norms of 7" and S, namely

IT|| = sup exp(nIms — t\/n? +r2), ||S|| = exp(rA).
neL

Thus we get

sup || 7¢(z, v, z)(Wt(r))_l | < sup exp(nlms+rA—tyvn?2+1?) <oo
r>0 nez,r>0

when (Ims)? + A% = (Ims)? + (Imz)? + (Imy)? < 2, since we have

nlms +rA < t\/n? + r2.
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For the converse direction we take F' = ¢,,, then we have
W(E (x7 v, Z) (Wt (T))ilF(o) — eir(Rex cos 6+Rey sin 9)67"14 cos(Gfﬁ)w(n, T)flefinseinel

Since we assume that (7% (z, y, 2) (Wi (r)) ~!),>0 is uniformly bounded, we have

1
2
exp(tv/n? +r2 — nlms) > (/ exp(2rAcos(6 — ﬁ))d@)
T

1
_ (/ eZTACOSGd9> 2
T

Now we need to handle the integral. Let 0 < ¢ < 1 and K. = {6 € [0,27] : cosf > 1—¢}.
Then for any A > 0 we have

2
/ e2rA cos 9d9 > / e2rA(l—a)d9 + / e2rA cos 9d9 > 0562“4(1_5),
0 . [0,27]\ K

where C. = m(K.), the Lebesgue measure of K. Thus, we have
exp(tv/n? +r2 —nlms) > D, exp(rA(1 —e))

for another constant D. > 0 depending only on . As this holds forany » > 0 andn € Z
we get easily that

exp(tv/n? 4+ r2 — nlms) > Dﬁ exp(rA(l —e))
for any m € Z and hence letting m — oo, we get
exp(tv/n? 4+ r2 —nlms) > exp(rA(1 —¢))
for any 0 < € < 1. Thus, we have
tvn?2+1r2 >nlms+rA
for any n € Z and r > 0. This implies that
(Ims)? + X2 < ¢?

which is the conclusion we wanted since log |z| = —Ims. O

9. THE SIMPLY CONNECTED COVER E(2) OF THE EUCLIDEAN MOTION GROUP

The simply connected cover E (2) of the Euclidean motion group E(2) on R? is
E@2)=R?>xR
with the group law

(@, y,t) - (', 0/ ) = ((x,9)" + pt)(, y)" t+ 1)
cost —sint

where p(t) = Lint cost

} and we use the notation (z,y,t) = ([ﬂ ) = ((z,9)T,1).

The representation theory of E (2) can be described as follows. Forany r > Oand z € T
we consider the Hilbert space

H,.={F c L} (R): F(0 +2r) = 2F(0) for almost every f € R}

with the inner product
27

(F.GY = % (0)G(0)do

0
where L2 (R) refers to the space of locally square integrable functions. We define an

irreducible unitary representation 7"* acting on H,. , given by
7" (@, ) F(0) = e reos bty pg _t) F e H, ..
Note that we have a canonical isometry H,.. — L*([0, 2], 5=df), F + F|( 25, but the

’ 2
main difference between those two spaces are coming from the periodic behaviors.
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For f € L'(E(2)) we define the group Fourier transform on E(2) by
FEO(f) = (FFO()(r,2)r0zet
= (FE@(r,2))50,01 € L¥(RF x T,dzrdr; B(H,..))

and

FE2) = [ S0 (o) = [ fay, 007 9,0 dady

We note here that the Haar measure is dg = dzdydt, the Lebesgue measure on R?.
The representations (77%),~0 et is the whole family of irreducible unitary representa-
tions appearing in the Plancherel picture.

Proposition 9.1. For f € L'(E(2)) N L2(E(2)) we have
el = [ [ 17O ) e rar
0 T
Proof. For f € L"N L2 F € H, , and s € [0, 27] we have
PP 2P () = [ (o) F() dody
:/ /f(a:,y,t)eir(zcoserySins)F(s — t)dtdzdy
R2 JR

= 271'/ fia(rcoss,rsins, s —t)F(t)dt

2
9.1 = 27T/ Zflg rcoss,rsins, s —t — 2mn)z" F(t)dt,

nez

where flg means we take R2-inverse Fourier transform for the first and the second vari-
ables. Thus, we have an integral operator, so that

IFEO (r, 2) 31

27 2
9.2) (2) / /

By applying the Plancherel theorem on Z we get
2m 2
/||fE2)Tz)||HSdz— (2m) / / Z|f12 rcoss,rsins, s —t — 2mn)|[>dsdt

neZ

2
= (27r)2/ / |fia(rcos s, rsins, s — t)|*dtds
o JR

2
f12 rcoss,rsins, s —t —2mn)z"| dsdt.

2m
9.3) = (2#)2/ / | fi2(r cos s, rsin s, t)|*dtds.
o Jr
Thus, we have

/O / 1FE® () |3z rdr = (202 £ 2

Now we have the quasi-equivalence

/GB -, rdrdz
\ & ' 5
R+ XT (2m)

telling us that

rdrdz
'B(HT,Z))

VN(E(?2)) = L®(R* x T, ortk

75



and B drd
AE(2)) = LYR* x T, %; SY(H2)).

Here we record another incarnation of the above Plancherel theorem for later use.

Proposition 9.2. We have an onto isometry
®: L*(E(2)) — L2 (RT x T x [0,27] x [0, 2], rdrdzdsdt)

satisfying
O(f)(r,z,s,t) = Z flg(r coss,rsins, s —t — 2wn)z"
ne

for f € S(R3) regarded as a function on E(Q) We also have an onto isometry
(9.4) U : L*(RT x[0,27] xR, RAR df dx) — L*(RT x T x [0, 27] x [0, 27], rdrdzdsdt)
satisfying
U(hy ® ha ® g)(r, 2,8, t) = hi(r)ha(s) Z g(s —t —2mn)z"
nez
for hy € C°((0,00)), hy € Trig(T), g € F*(C(R)).
Proof. The first isometry ® comes directly from ([©@.2) and (9.3). For the second isometry
¥ we only need to observe that for f = h® ® g, h € C=(R?), g € FR(C>(R)) with
h(Re®) = hi(R)ha(6), R > 0,0 € [0, 2] we have
fra(rcoss, rsins,y) = h(re®)g(y) = hi(r)ha(s)g(y)
forr > 0,s € [0,27],y € R.

The Lie algebra of E(2) is ¢(2) with the exponential map
exp : e(2) = E(2)
given by
9.5) exp(sS + X +yY)
= (L(sins)z + L(coss — 1)y, 1(1 — cos s)z + L(sins)y, s),
where we take the limit s — 0 for s = 0.
We consider a congplexiﬁcation of E(2) given by C? x C with the same group law,

which we denote by F(2)c. Due to the simple connectivity it is easy to check that E(2)¢

with the inclusion E(2) B (2)c is the universal complexification. Moreover, we clearly
have the following Cartan decomposition

(9.6) E@2)c = E(2) - exp(i e(2)).

Remark 9.3. The complexification E(2)c with the canonical inclusion is actually the uni-
versal complexification of E(2). Indeed, we can easily check the universal property using

the covering maps E(2) — E(2) and E(2)c — E(2)c.
Forr >0,z € Tand F € H,, = L?(T) we can easily check that
on"™*(S)F = —F',
(On™*(X)F)(0) = ircosf - F(0),
(On™*(Y)F)(0) = irsind - F(0).
When we write them as operators on ¢2(Z) we get
on"(S)e, = —iney,
9.7) Ot (X)en = L(en—1 + eny1),
67TT(Y)en = %(en-i-l - en—l)7
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where {e,, : n € Z} is the canonical orthonormal basis of £2(Z).
It is clear to see that trigonometric polynomials in L2(T) are entire vectors for 7">* for
anyr >0,z € T.

9.1. Weights on the dual of E(2). Let us first identify all closed Lie subgroups of E(2).

Proposition 9.4. The proper closed Lie subgroups of E’(2) are Hg = {(0,0,2) : z €
R} 2 R, Hy = {(0,4,0) : y € R} 2R, H, = {(z,72,0) : = € R} = R for every
r € R2% and Hx y = {(z,v,0) : 2,y € R} = R? up to automorphism.

Proof. The description of Aut(e(2)) and the classification (up to isomorphism) of all one
and two dimensional subspaces of ¢(2) have been given in Proposition Since E(2)
is simply connected, this gives us the classification for all the one and two dimensional
subgroups up to automorphism. 0

By Proposition[0.4 and Theorem[3.27] we only need to consider the weight W extended
from the subgroups H = Hg = R or Hx y = R?. More precisely for a weight function
w: Hs 2R — (0,00) or w : ﬁx\y =~ R? — (0,00), we consider the extended weight
W = L(Mw) = (W(r, 2))r>0,zeT, Which is given as follows.

(The case of Hg)
(9.8) (FroW(r,z) o (F)) e, = w(n)e,, n € Z.

In other words, W (r, z) is a Fourier multiplier on H,. ., = L?(T) = ¢?(7Z) with respect to
the symbol w|z, which is independent of the parameters r and z.

(The case of Hx y)
9.9) W(r,z)F(0) = w(—rcosf, —rsinb)F(0), F e H, ,.

We get central weights if the above weight function w is radial as in the case of E(2).

Finally, we present exponentially growing weights on the dual of E(Q) using Laplacian.
We observe that the operator d7"*(S) (respectively dn"*(X), dx"*(Y')) for E(2) is the
same as 071" (S) (respectively On" (X)), On" (Y")) for E(2), which is independent of z € T.
Thus, we can define exponentially growing weights on the dual of 5(2) with exactly the
same argument as in[8.1.21 The weight exp(t,/OA(—A)) is called the exponential weight
on the dual of E(2) of order ¢ > 0.

9.2. Description of SpecA(E(2), W). In this section, we present a full characterization of
the spectrum of Beurling-Fourier algebras of E(2) associated with the weight W extended
from the subgroup Hx y with the weight function w : ﬁx\y =~ R? — (0,00). As in the
case of the Euclidean motion group, we start this section by introducing appropriate dense
subalgebras and subspaces of the Beurling-Fourier algebra, which we will use in analysis
of both cases.

Remark 9.5. For the case of the weights extended from the subgroup Hg and the exponen-
tially growing weights using Laplacian, we were not able to find appropriate subalgebras,
so that we were unable to determine the associated spectrum of A(E(2),W). More pre-
cisely, for these weights, we were not able to prove that the subalgebra B, given in Defini-
tion[0.0) lies inside A(E(2),W). Specifically, for the case of the weights extended from the
subgroup Hg, we believe that the main difficulty for getting good enough norm estimates
lies in the formula below, where we have to put additional factors w(n) in front of
2™, The other case has a similar problem.
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9.2.1. A dense subalgebra of A(E(2), W) and its companions. We basically follow the
same strategy as in the case of F(2). Fortunately, we could re-use most of the companion
spaces.

Definition 9.6. We recall the spaces Ay, Aoo and By from Definition The spaces A
and B are modified as follows.

A= FER(Ay @ C°(R)) and B:= F¥ *B(By @ C=(R)).
We define an extra subspace A of A as follows.
A= F5 (A © O (R)).
We now examine the spaces A, B and A defined on RTX\R ~R? x R.

Proposition 9.7. The spaces A, B and A satisfy the following.

(1) The space A is an algebra with respect to pointwise multiplication on A(E(2))
(2) The space A is closed under E(2)-convolution.
(3) The space B is continuously and densely embedded in A(E(2), W).

Proof. (1) This is clear.

2) We pick any kq1,ke € C°(0,00), g1,92 € FX(C>®(R)) and n,m € Z and set
1 _h ®gj,]—1 2 with

hi(re™) = ki(r)e™, ho(re®) = ka(r)e™*, r >0, s € [0, 27].

Note from (8.12) that ?L]FQ is of the same form as h1, namely the variables in polar coordi-
nates are separated with the same frequency, so that we have

P o
hy (p(0)(z,y)") = e™hy (2,y), .y € R?, 6 € [0,2q].

Similarly, we also have ﬁﬂfz (p(0)(z,y)T) = eimeﬁﬂy( y). Then, for (z,7,1) € E(2) w
have

fl *E(Z) fg(i’ t)

/ Fr(@ ) fol @y, ), G, B) deedydt
/ Fr( 0 fop(—)(E — 2.5 — 4)T T — t)dudyd
= [ (LB @ (001G = - )y ) 01 - 0
= (W% g2 BB (2, 9) / e~ gy (t)go (£ — t)dt,
R

so that we have f1 *5,) f2 = [?L]f{z kg2 Elgz] ® [(e—mg1) *r go]. This leads us to the
conclusion we wanted.

(3) Combining (8.7) and (9.1) we know that the operator W (r, z)}'E(Q) (h®* & g)(r, 2)
is an integral operator on [0, 27] with the kernel

(9.10) K" (s,t) = 2mw(—re"*)h(re') - (Z gls—t— 27Tn)z"> .

neZ

Note that the Poisson summation formula says that

1 9 .
(9.11) Y gls—t—2mn)e" = ——= 3" (o= — k)eiTDGEEP),
neZ



where z = €. The latter sum is actually a finite sum since g is compactly supported, so
that differentiation with respect to ¢ is well-understood. Now we need to estimate || K"?||2
and ||, K" ||2 in view of Lemmal[8.7] For || K"™*||2 we have

VK andz = 2m [ [ [Joo e Sato -2 or|faz 22 &
. LZ(TQ) Z = 4T w re gS ™)z 227T27T

27 2
ds dt
=2 h)(re)? > —t—2mn)[?
7r/ / (- h)(re®)|? - lg(s )| 5 om

nez
27
=/ |(@ - h)(re! |2/|g th—
0
= Hg||L2(]R)H( ) )THL2(']1‘)’

where w(r,y) = w(—z,—y) and (@ - h).(s) = w(—re’*)h(re’*). We have a similar
expression for ||0; K"™?||2, so that Lemma[8.7]tells us that

A~ 2
©.12) 1% @ gll 4 B2).w)
dz rdr

= [ [1we PP o gl
R (2m)?
T,z dz rdr
<C/ / K72 || 2er2y + 10K || 12 Tz))( 37
- rd

= C/R+ (lgll 2 + 119l 2@y) 1 (@ - )2l 2y

(27)2
/2 pdr

< O(llgllL2y + H9'||L2(1R))/]R+ (/T |w(—7”€is)h(7”€is)|2d5) 22

3

~—

As before we appeal to the sub-multiplicativity of w saying that |w(—re®®)| < p", r > 0,
for some p > 1 so that from the estimate (8.13) we have

~p2
1% &0l gy < O lgllaogey + 19 laoey) [ 073 Il
nez

which shows that B C A(E(2), W).
For the density we note that the density of B in A(£(2), W) is the same as the density
of the space W FF(2)(B) in FER)(A(F(2))). The result of the above (2) tells us that

FEO(NFEO (L) = FEO (Axg,, A) € FFO(A) C FFO(B),

which means that it is enough to show that both of the spaces F E@2) (A) and W F E(2) (A)
are dense in F¥()(L2(E(2))) = L*(R* x T, ’f;;;ﬁ ; S?(H.,.)), which is immediate from
the isometry (9.4) and the description of kernel function ( of the associated integral
operator. 0

Note also that the proof of the above proposition tells us that the space 13 can be used as
the subspace S in[3.2.21

Proposition 9.8. Every element of A is an entire vector for \.

Proof. We assume that h(re®®) = hq(r)e™™*, hy € C.[0,00), m € Z, with h € C°(R?)

and g € FR(C>(R)). We will show that f = hE ® g is an entire vector for A. By [42, Cor

L5, Cor L.6] it is enough to see that s — (A(exp(sT))f, f) extends to an entire function on
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CforeachT =5, XY € e(2). For T' = S we have exp(sS) = (0, 0, s), so that
(Mexp(s9)) [, f) = (A0,0,5)f, f)
/ £((0,0,)™ (o, 1) (o . Dy

5 f(p(—s)(x,y) b= s)f(x,y, t)dxdydt

= / B (p(—5) (2, ) TR (2, y)g (¢ — s)g(t)dwdydt
R3
TR? —ims = =

= |BE(I2 - e - Gxg g(s),

where §(t) = g(—t), t € R. Note that F*(§ *g g) € C°(R), so that the Paley-Wiener
theorem tells us that g g extends to an entire function on C, which gives us the conclusion
we wanted.

For T = X we have exp(sX) = (s,0,0), so that

(AMexp(sX))f, f) = (A(5,0,0)f, f)

. F((5,0,0)7 (2, y, 1) f (2, y, t)dudydt

f(l' -5, yvt)f(xvyu t)dl'dydt
R3

~2 =~ .
_ /R (e — 5, y) B (@, y)dady - g3

— B g B2 (s, 0) - || g3

Since h € C2°(R?), we get the desired conclusion again by the Paley-Wiener theorem.

. o . TR?2 . .
The case T' = Y is similar, so that we have now that f = h®" ® g is an entire vector for ).
0

9.2.2. Solving Cauchy functional equation for 5(2) and the final step. We consider the
Cauchy functional equation on By ® C2°(R), where we endow a canonical locally convex
topology in the same way as in (2) of Remark[8.3]

(CFEg () v e (Bo®C(R))" satisfies
(v, fxg)=(v,f)(v,g) forany f,g € Ay @ C(R).
Here * implies the convolution in R? x R.

Proposition 9.9. Let v € (By @ C°(R))* be a solution of(CFEE(Q)) Then v is actually

an exponential function of the form exp(c1y + caz + c3x), ¢1,ca, c3 € C. In other words,
forany f € By ® C°(R) we have

(,/) = [ [y z2)e 2" " dzdydz.
R3
Proof. The same proof as in the R™ case still works. Note that [Step 1] can be done on the
level of Ay ® CS°(R) whilst [Step 2] can be done on the level of By @ C°(R). O

We continue to the realization of SpecA(E(2), W) in E(2)¢, whose proof is similar to
the case of E(2).

Proposition 9.10. Every character ¢ € SpecA(E(2),W) is uniquely determined by a
point (z,y,t) € E(2)c = C3, which is nothing but the evaluation at the point (z,y,t) on
B (and consequently on A).
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A(E(2),W) B CA Ay ® CX(R)
l ela
©
P
C

Here comes our final result.

Theorem 9.11. Let by be the Lie subalgebra associated to the subgroup H = Hx y of
E(2), then we have

SpecA(E(2), W) = {g cexp(iX): g € B(2), X € b, exp(iX) € SpecA(H, WH)}.

Proof. A similar proof as in the case of F(2) still works with Theorem[0.12] below as the
replacement of Theorem O

Note that the proof for the following is the same as the case of F(2).

Theorem 9.12. Suppose that W is a bounded below weight on the dual of H and W =
1(Wir) is the extended weight on the dual of E(2). Then for any X' € ¢(2)\b the operator
exp(iOXN(X"))W Y is unbounded whenever it is densely defined.

Remark 9.13. The statements of Theorem[912| and Theorem[911 hold true for H = Hy
and H = H,, r € R=%, in place of Hx y, by applying similar arguments.

10. THE SPECTRUM UNDER POLYNOMIAL WEIGHTS AND REGULARITY OF
BEURLING-FOURIER ALGEBRAS

In this section we will demonstrate that a “polynomially growing” weight W does not
change the spectrum, i.e. SpecA(G, W) 2 G and prove regularity of the associated algebra
A(G,W). Recall that a subalgebra A of Cp(%) for a locally compact Hausdorff space ¥ is
called regular on ¥ if for each proper, closed subset E of X and each « € X\ E there exists
f € Awith f(z) = 1and f = 0 on E. A commutative Banach algebra A is regular if
its algebra of Gelfand transforms is regular on Spec.A. When the weight is “polynomially
growing”, we may have a much simpler substitute of Trig(G) for the case of compact
G, namely the usual test function space C'°(G). We will show that C2°(G) is sitting in
A(G, W) densely in each case. Then, the problem of determining SpecA(G, W) leads us
to the problem of understanding Spec C°(G).

A(G, W) =—=2Cx(G)

©
vlege(a)

C

The following result takes no extra effort to prove abstractly, and admits an easy standard
proof. We say that a subalgebra A of Cy(X) is nowhere vanishing on ¥ if for each z € ¥
there is f € A with f(z) # 0; A is said to separate points of X if whenever x # y in X
then there is f € A such that f(z) # f(y).

Proposition 10.1. Let 3 be a locally compact Hausdorff space and A be a conjugate-
closed, point separating and nowhere vanishing subalgebra of Cy(X) which satisfies for

any [ in A:
(10.1) ifA € C\ f(X) then (f —X\1)"' € A+ Cl1.

Then Spec(A) = ¥ via evaluation maps.
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Proof. Let A= A+ Cland ¥ be X itself if 3 is compact, and the one-point compactifi-
cation ¥, if ¥ is not compact.

We first assume that ¥ is compact and show that 1 € A, which implies A=A In fact,
as A vanishes nowhere on 3, for any 2 € ¥ there exists f, € A for which f,(x) # 0.
Then the family of sets {f, 1(C \ {0})} is an open cover of 3, and hence admits a finite
subcover. Thus there are fy = f, in A, k =1,...,n, forwhich f = > 7_ |fx]? € A
and f(z) > 0 for x € . Therefore 0 € C\ f(X) = C\ TE) and by the hypothesis
fte A+Cl,givingl=ff1teA

Let us go back to the general case and let Z be an ideal in A. Suppose that for any z
in 3, there exists f= in Z for which f,(z) # 0. The above arguments applied to Z and v
give a function f € T such that f(x) > O forall z € OB (IR compact we obtain as
above that f -1e VZ = A and hence Z = A. In the case that ¥ is not compact, write each
fx = gk + A1, where each g;, € A, and it is clear that f = g+ (3 ;_; [Ae|?) 1, where
g € A, as Ais an ideal in A. We have that A := — S A2 e C\ g(X) =C\g®@)
since (%) = g(X) U {0} = g(2). The hypothesis provides f~* = (g — A1) € A,
which means that Z = A. Thus a proper ideal of A, must admit a vanishing point in 3.

Now suppose ¢ € Spec(.A), and let 1 denote its canonical extension to a multiplicative
character on A. Then ker is a proper ideal of A, and hence there is x in % for which
f(x) = 0 for every f in ker<). In particular [f — ¢ (f)1](z) = 0 so ¥(f) = f(z). In
the case that 3 is not compact, we observe that x # oo, where oo is the point in ¥,
corresponding to the character f + A1 — A. Indeed, since ¥ # 0, there is f in A for which
O(f) # 0,50 f —(f)1 € kerdp with [f — ¢(f)1](00) = —(f) # 0. Since A is point
separating, the point z implementing v is unique. Hence Spec.A sits homeomorphically in
3 via evaluation maps. To see that Spec. A ~ ¥ it is enough to note that, as A is nowhere
vanishing on ¥, each ¢, x € %, given by ¥,.(f) = f(x), f € A, is a character. O

Corollary 10.2. We have Spec(C°(G)) = G via evaluation functionals for any Lie group
G.

Proof. Given fin C2°(G) and A € C\ f(G), itis evident that (f — A1)~ € C*°(G) with

(f = A1)~ L+ %1 € Cx(@).

Further, C°(G) is conjugate-closed, point separating and nowhere vanishing on G. g

Here comes the main result.

Theorem 10.3. Let G be a connected Lie group and W is either (a) W, the polynomial
weight of order 2m, m € Z from Definition[3.33|or (b) L(Mw), the weight extended from
a closed connected abelian Lie subgroup H with the weight function w : H - (0, 00)
which is polynomially growing and w™" is bounded. Then we have

(1) Spec(A(G,W)) = G via evaluation functionals, and
(2) the algebra A(G,W) is regular on G.

Proof. First, we note that C2°(G) is dense in L?(G). Indeed, C.(G) is dense in L*(G),
and any element of C..(G) can be uniformly approximated by a sequence of elements from
C2°(@), all supported on a common compact subset, thanks to the Stone-Weierstrass the-
orem. Secondly, we recall that C°(G) C A(G), thanks to either [10, (3.26)] or [35] (3.8)
& Lemma 3.3].

(The case W = W,,) Let us recall the action of V N(G) on A(G) used in Proposition
For Tin VN(G) andu = f * h = (A(-)h, f) in A(G), where f,h € L?*(G) and
h(g) = h(g~") fora.e. g € G, we have

(10.2) Tu=T[f*h] = (A-)Th, f) = f* (Th)".
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Notice that if h € C2°(G) C D*°(A), then we may extend the above notation as follows
(10.3) W(f*h] = f*(Wh)V.

To help avoid confusion in remainder of the proof, for any subset £ of C2°(G), let W(€)
denote the image of £ C L?(G) under the operator W; and we let W[E] and W ~1[€]
denote the images of & C A(G) under the action indicated in (10.3), provided it makes
sense.

Now we wish to see that C2°(G) is contained in A(G, W). We will need to study the
action (I0.2) from a different perspective. Notice for g, ¢’ in G, and v in A(G) that

(104) Ag)ulg’) = ulg'g).

Now we let L2(G) be the Hilbert space with respect to the right Haar measure, normalised
soU : L*(G) — L2(G), Uf = f is a unitary. We then let p = UX(-)U*, so p(9)f(g") =
f(g'g) for fin L?(G), all g and a.e. ¢'. It follows that

Tu = p(T)u foru € A(G) N L2(G).
Thus, for u in C°(G) C A(G) N L(G) we have
w= (1= 9p(A)) (I — Dp(A))™u = W [Co (I — Dp(A))™ ]

Since (I — dp(A))™C*(G) C CX(G) C A(G), the remark following Proposition 3.13]
shows that C2°(G) C A(G, W), as desired.

We now wish to see that W (C°(G)) is dense in L?(G). Indeed, we first observe that
Ce(G) is a core for W by [46, Theorem 10.1.14]. Then for 7" := W|co () we know that
T = W, so that kerT* = kerW* = kerW = {0} ([45, Theorem 1.8. (ii)]) since W is
bounded below. This implies that ran(7T")+ = {0} by [45] Proposition 1.6. (ii)], which is
the conclusion we wanted.

We can now show that C'°(G) is dense in A(G, W). We use (10.3) and the result of the
last paragraph to see that

WICE(G) * CZ(G)'] = C(G) » (W(CZ(@))”
is dense in A(G). Again, using the remark following Proposition[3.13] we deduce that
C(G)* CZ(G)Y =W CE(G) = (W(CE(G)))Y]

is dense in A(G, W). This set is clearly contained in C2°(G), and thus C'°(G) is dense in
A(G,W).

Now let ¢ € Spec(A(G, W, )). Then ¢, being continuous, is determined by its restric-
tion to C'°(G), which we again denote ). Corollary [[0.2] shows that 1) is evaluation at a
point in G. Conversely, we note that W,,,! is bounded, so that A(G, W,,,) embeds in A(G)
continuously. Thus, any evaluation functional at a point in G is bounded on A(G, W,,).
For the regularity we only need to recall that C2°(G) is a regular algebra on G, which can
be obtained by a smooth Urysohn’s Lemma. Hence so too is A(G, Wp,).

(The case W = L(Mw)) For simplicity we assume that H =~ RF. Since w is polynomi-
ally growing there is a constant C' > 0 and m € N such that

w(xy, - ,xk)gC(l—I—gc%—i—---—i—xi)m, (1, - ,:vk)ERk.

This implies that ¢(M,,)(1 — ON(Ag))~™ is a bounded operator, where Ay = X7 +
cee 4 X,f is the sublaplacian for a fixed basis { X1, -, X} of b, the Lie subalgebra of
g corresponding to . From this point on we can basically follow the same argument as
above. 0

We end this section with some examples of non-regular Beurling-Fourier algebras.

Theorem 10.4. Let G and W be one of the groups and weights in Section[d Section[6.1)
Section Section and Section Suppose that W is boundedly invertible and
G C SpecA(G, W), then A(G, W) is not regular.
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Proof. Let A be the subalgebra of A(G, W) used in each section. Note that we have the
realization SpecA(G, W) C G, so that for any ¢ € SpecA(G, W) we can associate a
point € Gc such that p(f) = fc(x) for any f € A, where fc is the unique analytic
extension of f to G¢. From the decomposition G¢ 2 G - exp(ig) we know that the
assumption G C SpecA(G, W) implies that there is ¢ € G \{e}. Now we observe that
©° € SpecA(G, W) forall 0 < s < 1. Indeed, let E,(-) be the spectral measure for ¢. It
is known that

dmﬂwﬂ:{seL%G>3/x%ﬂﬂxmasw<my

As 2?% < 2% + 1 for any = € [0, +00) we have

‘/ﬁamum@s/fﬂmum@+MW<m

for any ¢ € dom(p). As oW ! is bounded and densely defined, W1 L?(G) C dom(y)
(see Proposition 2.1) and hence W ~1L?(G) is in the domain of ©*, giving that ©*W !
is bounded by the closed graph theorem. Thus, we know that A(g)¢*W ~! is bounded for
any g € G and 0 < s < 1. In particular, for X € g such that ¢ = exp(iX) we have
©® = exp(iRez - X) exp(—Imz - X), so that

©*(f) = felexp(iRez - X) exp(—Imz - X))

forany f € A. Since z — exp(iRez- X ) exp(—Imz - X) is clearly analytic we get a scalar
analyticmap {z € C: 0 < Rez < 1} = C: z — ¢*(f) forany f € A.

Now we recall the norm density of A in A(G, W), so that for a f € A(G,W) we can
choose f, € A — f with || fullace,w) < IIfllae,w)- Then, we know that o*(f,,) —
©*(f) uniformly on compacta with respect to z, so that the map

{zeC:0<Rez <1} = C, 2z ¢*(f)

is also analytic for any f € A(G,W).

Finally, we observe that any compact subset K C {z € C: 0 < Rez < 1} givesrise to
a compact set K := {exp(iRez - X)exp(—Imz - X) : z € K} C Gc. Thus, if there is a
f € A(G,W) such that f|z = 0, then we have ¢*(f) = 0 for all z € K. By analyticity
we can conclude that p*(f) = 0on {z € C: 0 < Rez < 1}. This means that we can not
separate K and any point in

{exp(iRez - X) exp(—Imz - X) : 0 < Rez < 1}\ K
using functions in A(G, W), i.e. A(G, W) is not regular. O
Example 10.5. Let w : Z™ — (0, 00) be a weight function and consider the corresponding

Beurling Fourier algebra A(T™, W) with W = Mw. By [34, Example 4.3], the Gelfand
spectrum of A(T™, W) is

’H‘Z:{ZE(C”: §|z“|§pw(u)forallu€Z”}
pw(_:u)
where p,, (1) = klim w(kp)Y* and 2 = 28 .. 2B for 2 = (z1,...,2,) € C" and
—00
(1, -+, pn) € Z™. If n = 1 we obtain the annulus of convergence with inner radius

=) and outer radius p,,(1). Hence if p,,(1)py(—1) # 1, the algebra A(T™, W) is not
Pw{—
regular. In the case n > 1 and w(p) = M with A = (Aq,...,\,) € (RZH)" and \; > 1
forsome 1 < j < n, we getT!! # T and hence the corresponding Beurling-Fourier algebra
A(T™, W) is not regular.

Remark 10.6. Let G be a locally compact abelian group and let w : G — (0,00) be a
weight on G such that w(z) > 1,z € G. Then A(G, W) ~ LY(G,w) for W = M,,. The
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regularity of the latter algebra was studied by Domar in [5] (see also [25]]). In particular, he
proved that L (G, w) is regular iff w is non-quasianalytic, i.e.

log w(nx)
(10.5) Z ——— <0, z€G.
nez 1+n

It is easy to see that if w is non-quasianalytic on Z, then p,,(1) = p,,(—1) = 1 and by the
above example the spectrum of A(T, W) is T.

Example 10.7. Let G be either a compact connected Lie group, or the (reduced) Heisen-
berg group, or the Euclidean motion group on R? or its simply connected cover. Then, we
can obtain a weight W on the dual of G for which Spec A(G,W) = G, but A(G,W) is
not regular on G. Note that G has a closed subgroup H, isomorphic to one of R or T. We
consider the weight w(z) = elzl/los(etl2) oy H =~ R or Z. This weight is quasianalytic,
in the sense that the series test indicated in (I0.3) fails, i.e. the series diverges. However, it
satisfies the Shilov property that

: 1/n _

We let Wy = Fu M, FF be the weight on the dual of H. This combination of properties
implies that Spec A(H, Wy ) = Spec LY(H,w) = H for H isomorphic R or T, but that
A(H,Wyp) is not regular on H.

We let W = 1(Wy), where Wy is the Shilov but quasianalytic weight, given above.
Then, we have Spec A(G,W) = G thanks to Theorem Remark[6. 19 Remark[713]
Remark [822] and Remark 9131 Indeed, for X € b\ {0}, exp(iX) ¢ H. However,
Proposition3.2%informs us that A(G, W) is not regular on G.

11. QUESTIONS

In this final section we collect relevant questions that we were not able to answer at the
time of this writing.

11.1. Constructing exponentially growing weights on the dual of GG using Laplacian.
As is mentioned in Section 3.3.4] we hope to construct “exponentially growing” weights
on the dual of G using Laplacian, since Laplacian is one natural candidate to “measure”
growth rate covering all the directions. For non-compact Lie groups the task was successful
only for the Euclidean motion group E(2) and its simply connected cover E(Q)

Question 11.1. Can we construct “exponentially growing” weights on the dual of con-
nected Lie groups? Can we do it, at least, for the case of the (reduced) Heisenberg group?

11.2. Finding an appropriate dense subalgebra A of A(G,W). For a non-compact Lie
group G finding an appropriate dense subalgebra A of A(G, W) depends heavily on each
example of group G.

Question 11.2. Is there any unified way of finding an appropriate subalgebra A of A(G, W)
for a suitable choice of a weight W on the dual of G?

We have a more specific question left behind in Section[9l

Question 11.3. Can we find an appropriate dense subalgebra A of A(E (2), W) for the
extended weight W = 1(M,,) on the dual of E(2), where w : Hg = R — (0,00) is an
exponentially growing weight function?

11.3. Groups not admitting entire vectors for the left regular representation. There
are several classes of groups not covered in this paper. The first class we can check would
be non-unimodular type I groups and the ax + b-group is arguably one of the simplest
examples of such groups. Recall that the az 4 b-group is R x R with the group law

(a,b)(a, V)= (a+d, e “b+V), a,a’,b,b €R.
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The az+b-group is a typical example of a non-unimodular group with the left Haar measure
dadb, the Lebesgue measure on R? and the modular function

Ap(a,b) =e"?, (a,b) € F.

The second class we can check would be connected semisimple Lie groups such as S Lo (R),
which are automatically unimodular, but quite far away from the class of solvable Lie
groups.

Recall that the density of entire vectors for the left regular representation in Beurling-
Fourier algebras played a significant role in the final step of determining SpecA(G, W).
See the proofs of Proposition [6.13] and Proposition for example. Unfortunately, it is
already known that the ax + b-group and connected semisimple Lie groups do not adimit
entire vectors for the left regular epresentation, which gives us an immediate obstacle. In-
deed, the left regular representation of the ax + b-group has two irreducible components
7, which does not allow any entire vector by [21, Theorem 7.2]. Moreover, [21, Theo-
rem 8.1] explains the non-existence of entire vectors for the left regular representation of
connected semisimple Lie groups. Thus, we have the following question.

Question 11.4. Can we determine SpecA(G, W) for the group G = F, the ax + b-group,
or G = SLy(R), or in general a connected semisimple Lie group?

11.4. Classifying central weights on the dual of Lie groups. We were able to provide
complete lists of central weights on the dual of G for the case of G = H, H, and E(2),
which leads us to the following question.

Question 11.5. Can we determine all central weights on the dual of a Lie group G?

11.5. Characterizing weights on the dual of Lie groups whose Beurling-Fourier alge-
bras are regular. We were able to prove that “polynomially growing weights” on the dual
of connected Lie groups provide regular Beurling-Fourier algebras and some ‘“exponen-
tially growing weights” on the dual of connected Lie groups provide irregular Beurling-
Fourier algebras. Moreover, Example[10.7] shows that regularity of Beurling-Fourier alge-
bras are somewhere in the middle, which leads us to the following question.

Question 11.6. Can we characterize all the weights on the dual of Lie groups whose
Beurling-Fourier algebras are regular as in the abelian case (Example[[0.3)?
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