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This paper studies the size of the minimal gap between any two consecutive eigenvalues
in the Dirichlet and in the Neumann spectrum of the standard Laplace operator on the
Sierpinski gasket. The main result shows the remarkable fact that this minimal gap is
achieved and coincides with the spectral gap. The Dirichlet case is more challenging and
requires some key observations in the behavior of the dynamical system that describes

the spectrum.

1 Introduction

The standard Laplacian on the Sierpinski gasket (SG) is a non-negative self-adjoint
operator with a pure point spectrum, also called discrete [19, Theorem VII.10], which
consists of countable many non-negative eigenvalues with finite multiplicity and only
accumulation point at infinity. The study of this spectrum goes back to works in
physics by Rammal and Tolouse [18, 20], where it was observed that suitable series
of eigenvalues in the finite level approximations of SG produced an orbit of a particular
dynamical system. This phenomenon was named in [11] spectral decimation. There,
Fukushima and Shima were able to describe the complete spectrum of the Laplacian
on SG by tracing back re-normalized orbits of the quadratic polynomial describing the
aforementioned dynamical system.

Having a complete description of the spectrum led to extensive research, see

for example, [14, 16, 22, 24, 25], dealing with the study of its properties. Some of
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them are in stark contrast to more classical settings: the Weyl ratio does not have a
limit and in particular the eigenvalue counting function N(x) fails Weyl and Berry's
conjecture N(x) ~ cy;HA(SG)x¥? + o(x#?) with d the Hausdorff dimension and #H¢
the d-dimensional Hausdorff measure of SG, see [16] and [24, Example 5.1] for precise
asymptotics. The oscillations that prevent the existence of a Weyl ratio are partly due
to the existence of large gaps in the spectrum, meaning that if 1}, < A4, < ... denote
the eigenvalues of the Laplacian, then lim sup,, A(n+1)/k(n) >1,c.f.[12, 13, 22, 26].

As it turns out, the existence of these gaps in the spectrum of SG is equiv-
alent to the fact that the Julia set describing the spectrum is totally disconnected
[13, Theorem 2], a property shared by certain classes of fractals, see [13, 25] and the
references therein. On the other hand, the presence of exponentially large gaps has some
advantageous consequences: for instance, they are responsible for a “better than usual”
convergence of the Fourier series analogue of a function in L2(SG), see [22, Theorem 1].
Also, they provide a natural candidate for dyadic intervals as described in Section 2.2,
whose properties may be useful in the study of estimates involving eigenfunctions.

Most of the existent work has focused on the structure of large gaps [7, 12,
22, 26], whereas smaller ones have eluded further investigation. The study of small
gaps in the spectrum of the Laplacian can become fairly challenging [3, 5, 9] and the
question addressed in the present paper investigates what happens on SG: is it possible
to provide a uniform lower bound for the small gaps in the spectrum of the Laplacian?

Theorem 3.1 provides a positive and optimal answer: any two consequent
eigenvalues in the Dirichlet or in the Neumann spectrum of the Laplacian on SG
are separated at least by the spectral gap. In other words, the first and the second
eigenvalues are the closest within the whole spectrum. Although the existence of a
lower bound might possibly be derived from an abstract argumentation, proving that
the spectral gap is in fact the smallest spacing between Dirichlet eigenvalues requires
a couple of rather non-trivial observations. These constitute the core of Section 3 and
have been established after a careful analysis of the inverse function describing the
spectrum of the finite level approximations. Note also that the size of the spacings do
not appear in an straightforward increasing order: numerical computations show for
example that the third gap is actually smaller than the second, and the seventh gap is
smaller than the third, c.f. Table 1.

The paper is structured as follows: Section 2 reviews the construction of the
Dirichlet and the Neumann spectrum of the Laplacian along with some facts about
the large gaps that were not available in the literature in this form. The main result,

Theorem 3.1, is presented and proved for both spectra in Section 3. Especially, the proof
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Gap in the Spectrum of the Sierpinski Gasket 3

of the Dirichlet case relies on several key properties of the dynamical system and the
iterative construction of the spectrum. Possible directions for future investigation are

briefly outlined in Section 4.

2 Preliminaries and Useful Facts

For each m > O, let V,, denote the vertex set of the finite n-level approximation of
the Sierpinski gasket (SG in the sequel) as depicted in Figure 1, and let A,, denote the

associated graph Laplacian
Apu(p) =Y (u(q) — u)), (1)
a°p

with either Dirichlet or Neumann boundary conditions.

N h A

Vo 1 2 3

Fig. 1. Graph approximations of the Sierpinski gasket.

The standard Laplacian on SG, denoted by A in throughout the paper, is expressible as

a limit of suitably renormalized graph Laplacians
Au(x) = lim 5™A, u(x),
m—oo

see for example, [16], where the limit converges uniformly in x for a dense set of
continuous functions in the domain of A. Further details concerning the precise
construction and properties can be found in the books [15, 23]. This section reviews
how the Dirichlet and Neumann spectrum of A, describe that of A and records several

useful facts about its structure.

2.1 Eigenvalues

Fukushima and Shima described in [11] all Dirichlet eigenvalues of the Laplacian on
SG by means of a genealogical tree as in Figure 2; a similar one can be made for the

Neumann case. In this way, any eigenvalue A of A is related to a unique sequence of
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4 P. Alonso Ruiz

ancestors { starting at a particular generation j > 1, where 1,, is an eigenvalue of

)‘m}mz]'
A,,. The starting generation j is called the generation of birth of A. First ancestors (who
start a lineage) may only take the values 2, 5, or 6 and to refer to that particular value
one speaks of 1 as being an i-series eigenvalue, where i = 1; € {2, 5, 6}.

A .
S

Ajt1

Fig. 2. Genealogy tree picture for an eigenvalue A born at level j.

Fukushima-Shima’s main result [11, Theorem 5.1] states that all Dirichlet

eigenvalues A of A satisfy

A= lim 5™, (2)

m—o0
and the same is true for the Neumann ones. As Rammal and Toulouse observed in
[20], the genealogy of an eigenvalue arises from the inverse functions of the quadratic

polynomial R(z) = z(5 — z) given by

@, (2) = - (5+ /25 — 42). (3)

1
2
Each generation of an eigenvalue 1 is thus related to the immediate next by

A = Amg1(® = Apy1)- (4)

Once the first ancestor is born, its successor is determined by a choice of one of the
inverse functions ®_ or ¢, and the same for all subsequent generations. The genealogy
of an eigenvalue A with generation of birth j > 1 is thus described through a sequence
{Aj+k}k20 with A= 1€{2,5,6}and

Mg =P, () =D ()=, 0B, 00Dy, (D) (5)

J Wk—1
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Gap in the Spectrum of the Sierpinski Gasket 5

for any k > 1, where w := ... w,w; € {—,+}". Such an eigenvalue is generically called

an i-series. In view of (2) and (5) it also admits the expression
_ I 7. k .
r=5 kli)rgo5 @, (D), (6)

which will play a fundamental role in the proof of Theorem 3.1. Due to the properties of
d_, c.f. Section 3, in order for the limit (6) to exist, there must be a specific generation
¢ > j, called the generation of fixation of A, after which all descendants are obtained

via ®_. In other words, for any m > ¢,
g = @00 =0 Ve (), 7

where " denotes the n-th composition of ®_ with itself and ®,,, = id. Note that

w,_, =+ aslongas £ > 2.

Example 2.1. The lowest 5-series and 6-series Dirichlet eigenvalues have generation
of birth 1, respectively 2, and generation of fixation 2, respectively 4. They admit the

limit representation

. 5 . 6
lim 55t @, (5)=:2y”, and lim 5720, (6) =: A",

k—o0

where in the first case w;, = — for all k > 1 and in the second w; = + and w;, = —
for all other k > 2. The notation used for these eigenvalues follows [7, Section 3] and
depends on the word w in a non-trivial way, which is not discussed here. In view of (6),

the lowest 5-series with generation of birth j > 1 satisfies
. j i1 s k i—1,(5
A= Igingo51+k¢W|k(5) =51 klggo5’<“<b(_)(5) =519,
while the lowest 6-series with generation of birth j > 2 is
: j+k -2 13 k+2 g (k—1) j—2 4 (6)
Azklggow P, (6) =5 Jlim 5 ol Vo (6) =5 %A,

2.2 Large gaps

The existence of large gaps in both the Dirichlet and the Neumann spectrum of the
Laplacian has been extensively studied in the literature, see for example, [13, 22, 26].

This section gives a brief account of that phenomenon in the case of the Dirichlet
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6 P. Alonso Ruiz

spectrum and records some observations of interest that had not appeared in this
form yet.

Recall that A is a non-negative self-adjoint operator with discrete spectrum
whose ordered eigenvalues will be denoted by 0 < A3y < A < A3 < ... including
multiplicity (the notation should not be confused with that of the eigenvalues of a
finite level used in the previous section). Two of the most prominent recurrent gaps
in the spectrum, described in [22, Theorem 1] and [12, Theorem 5.1], occur between the

eigenvalues

AN —Nm1) < 2@ < *Wpt1)r )

where N,, = %(3erl — 3), m > 1, coincides with the size of the spectrum of A,,.
The eigenvalues in (8) correspond to the lowest 5-series, the lowest 6-series, and the
second lowest 5-series with generation of birth j = m computed as in Example 2.1.

More precisely,

NG
= 1(5) ~ 2.425 and —AmT)
AWNp—Npm 1) Bhg AWy

M,y

~ 1.271, 9)

c.f. [12, Theorem 5.1]. There are more fractals for which similar statements hold, see for

example, [10, 13] and the references therein.

2.3 Dyadic intervals

In applications like [22], the largest gaps from (9) can be used to decompose the positive
real line into the analogue of classical “dyadic intervals.” For any m > 2, these may be

defined as

[0, )+ m=2,
m = (NZ) (10)

A @) i) 23,

see Figure 3.

5m71)\(()0) 5mflAg‘))
e D — R — o o ——
0 A(3) A(N3) A(Npm 1) A(Nom)

Fig. 3. Eigenvalues in dyadic intervals are separated by the largest gaps (dotted).
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Gap in the Spectrum of the Sierpinski Gasket 7

As a consequence of (9), the distance between any two intervals increases with
their index; the distance is in fact comparable to the magnitude of the first eigenvalue

in the larger one.

Proposition 2.2. Let B,,, B, be intervals with 2 < m < m’. Then,

) 1
min{[A —A'| : A €B,,,A €B,,} > EA(Nm/_l)'

® ' .
Proof. Letg,:= ;1—85) > 2. By virtue of (9) and since A, = 5™ "4y, by construction,

, 1
_ —lgm—1-m -1 -
MWy_) T A WNm ) = Pty = 9075 ) Z A, A =90 > Frw,

where the last inequality holds because g, > 2. |

The last observation in this paragraph refers to the fact that the gaps are
actually so large that the sum of any two eigenvalues, which may belong to the same

or to different intervals, always remains within the larger interval.

Proposition 2.3. If » € B,,, ' € B, are eigenvalues with 2 <m <m/, then A+ 1 € B,

®)
Proof. Setting again g, := % > 2, it follows from (10) and (9) that
0

/
Ay ) <A TR =AW, Ny ) T A,

m/—l)
—1 -1
=90 (@ T Aav,)) =290 A, < rav,)-

3 Small Gaps

The main result of the present paper establishes another remarkable property of both
the Dirichlet and the Neumann spectrum of A: the minimal spacing between any two
distinct eigenvalues equals the corresponding spectral gap and hence provides an
optimal lower bound for the size of small gaps in the spectrum. The description of the
eigenvalues as limits in (2) already suggests that the proof will rely in a careful analysis

of the corresponding spectrum of the finite Laplacian A,,.
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8 P. Alonso Ruiz

3.1 Minimal eigenvalue spacing

To state the main result precisely, let Aéz)

®)
)‘1

and )»85) denote the lowest 2-series and 5-series
Dirichlet eigenvalue, and the lowest non-zero Neumann eigenvalue of A. As limits

of the form (6) they admit the expression
WP = lim sk1e® (2), 2D = lim skt1o®(5), 1® = lim 5¥2¢% Vo (6) (11)

and also satisfy A(Z) < A(5) < A(B)

, c.f. [12, Theorem 5.1], see also Example 2.1. The
following theorem provides the minimal eigenvalue spacing in both the Dirichlet and

the Neumann spectrum; the Dirichlet case will be significantly more involved.

Theorem 3.1. The spacing between any two distinct eigenvalues in the (Dirichlet, or

Neumann) spectrum of A is bounded below by the corresponding spectral gap. Precisely,
min{|A — A’|: A # A’ Dirichlet eigenvalues of A} = A(()5) - A(()z) (12)

and
min{|A — A'|: A # A Neumann eigenvalues of A} = A(G) (13)

Proof of Theorem 3.1. We prove the result in the Dirichlet case, the Neumann case
follows similarly. Let A, A’ be two distinct Dirichlet eigenvalues with generations of birth
j.J' = 1, respectively, generations of fixation ¢ > j, ¢ > j, and associated sequences
Pjrdr=0 and {&; }x-0. Without loss of generality, we may assume ¢ < ¢ and A, < A},.
By construction, c.f. (7), for any m > ¢/, we have A, A}, € om0 (AD\(6}), where AD

denotes the Dirichlet spectrum of A, . By virtue of Lemma 3.13,

. ¢
5™ ). — 5"k, > 5™ min{|h — 1|1 1,4 € @™ (4D\(6}))

> 5mp™M~(5) _5mepM™m=1(g),

In view of (11), letting m — oo yields (12). For the Neumann case, replace Lemma 3.13
by Lemma 3.15 noticing that ®,(6) = 3, and use the fact that zero is a Neumann

eigenvalue. |
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Gap in the Spectrum of the Sierpinski Gasket 9
3.2 Key properties of the inverse functions

Recall from (3) that the functions &, describing the spectrum of A are given by

@, (2) = - (5+ /25 — 42)

N —

and correspond to the inverse functions of the polynomial R(z) = z(5 — z). Their graphs,

displayed in Figure 4, provide a fairly good insight of the following properties.

5

o, 0.438
’ o 2

-7 25

)

P . -

7”_——"5 /////
z z

0 3 6 0 6

Fig. 4. Inverse functions ®_, &, and ®® Note the rescaled y-axis in the latter.

Proposition 3.2. For any 0 <z <6,
i) 0<®_(2<2,3<P, (2 <5and
® (0)=0, ¢ (6)=2, ¢, (0)=5 and o, (6)=3.

(ii) @, (2) — ®_(2) = /25 — 4z and in particular ®_(z) < ®_(2).

Lemma 3.3. Forany0<x<y <6,

1
O_(Y)-P_ (x)=P,.(x)-D, (y) = E(*/ZF’ — 4x — /25 — 4y).

(2)

A direct computation also shows that both ®_ and the composition ®*’ have
positive first derivative and are thus strictly convex. They also turn to be strongly
convex, although only the former property will be used. The strict convexity of &_
and especially that of o will play a fundamental role in proving the key lemmas in

Section 3.
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10 P. Alonso Ruiz
Lemma 3.4. The functions ®_ and ®? are strictly convex on [0, 6]. In addition, for any
O0<w<x=<y=<z<E6,

i 2 xX)-"Dd_ (w)<d (2)—d_(y)forx—w=<z-y.

(i) & x)—d_(w)<x-—w.

Proof. To prove (i), the mean value theorem yields

P_X)—P_ (W) =P ) x—w)  w=E,,<x

wx —

and the same for y, z instead of w, x. Since &,,, <x <y < §,, and &’ (§) = (25 —4&)"1/%,
we have ®’_(§,,) < & (§,,), hence

D_(x) — P_(w) = P_(§,,)(x —w) < QJ/_(EYZ)(Z —y)=0_(2) —D_(y).
Part (ii) follows because &’ ([0, 6]) C (0, 1). [ ]

Remark 1. All items in the previous lemma hold with strict inequality when 0 < w <

X<y<z<6.

3.3 Small gaps at finite level

This section analyzes the Dirichlet and Neumann spectrum of the finite graph Laplacian
A,,. The types of computations in both cases are of the same nature; however, the
Dirichlet case is strikingly less straightforward and requires a delicate analysis of the
inverse function @ _.

In terms of general notation, Q(im) denotes the m-th concatenation of ¢, ; for

completeness @f) =id.

3.3.1 Dirichlet spectrum
Following [11, Theorem 3.1] and [14, Proposition 5.1], the Dirichlet spectrum of A,, can

be described recursively as

A =0 AP :=1{2,5) AP =@, (4))UI56)

AD = (AP \[6})U(3,5,6}, m>3. (14)

The first step is to determine the difference between the first two eigenvalues

in AD
in A,,.
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Gap in the Spectrum of the Sierpinski Gasket 11

Lemma 3.5. For any m > 1, the first gap in the Dirichlet spectrum of A,, equals
o V() - 0"V (2),
Proof. We prove by induction that
min(A2) =™ V@2  and  min@A2\(®"™ V@) = o™ V(5).

Note that, due to the construction of A?n, the first three cases need to be considered

separately. To ease the notation, we write A,, without superscript in what follows.

e Case m = 1. Clear by direct inspection since CIJ(_O)(Z) = 2 and CID@(S) =05.
e Case m = 2. Again by direct inspection, Proposition 3.2 and Lemma 3.4

allow to describe elements of A, in increasing order as
Ay ={P_(2),®_(5), P, (5), P, (2),5,6}.

e Case m = 3. By construction, A; = ®_(4,\{6}) U & (4,\{6}) U (3,5,6}.

Proposition 3.2 and Lemma 3.4 now yield
min(4;) = min(®_(4,)) = ¢_(minAd,) = ¢_d_(2).

Analogously, the second smallest element is ®_(min(4,\{®_(2)})) = % (5).
e General case m > 3. Using the hypothesis of induction, the same arguments

as before apply so that
min(4,,,;) = min(®_(4,,)) = ®_(min4,,) = ®_o" Y 2) = o"™(2) (15)

and for the second smallest element d>_(min(Am\{<I>(_m_1)(2)})) = o™ (5).
|

An immediate consequence of (15) and the fact that ®, is monotone decreasing
is that @ (min(AD\{5,6})) = max (P (A2 \(5,6})). This provides the largest 2-series
eigenvalue in A? , which will be relevant in the proof of the main Lemma 3.12.

Corollary 3.6. For any m > 2, max(AD \(5,6}) = d>+<I>(_m_2)(2).

Remark 2. The eigenvalue ® +d>(_m72) (2) is the closest to the eigenvalue 5 in A?n.

2202 Aey 91 uo Jasn Aselqi] seousidg [edlpalN AQ 088S9E9/SPZdeUI/UIWI/SE0 L 0 L /I0p/3|o1e-00UuBAPER/UIWI/WOo2 dNo dlwapeae//:sd)jy Wol) PapEOjUMO(]



12 P. Alonso Ruiz

The next two technical observations are fundamental in the quest of finding the
exact minimal gap within a subset of the Dirichlet spectrum of A, that will be relevant
for Theorem 3.1. The first one concerns the ratio between the second smallest eigenvalue

at level m and the spectral gap at level m+ 1: this ratio gets larger as the level increases.

Lemma 3.7. Foranym >1,

o™V (5) o™ (5)
< .
o™ - 0™ @) oV (5) - o (2)

(16)

Proof. Let m > 1. Multiplying and dividing by ®””(5) the left hand side of (16), the

mean value theorem and the strict convexity of ®_ yield

o™V (5) o™ VGE) o™ (5)
m) o < e 2 (PO mtD) o
o™ (B —o™2)  d(5) o™t (5) — ™D (2)
It remains to show that
" Vs
el @™y < 1. (17)
o™ (5)

= "™ V(5) and A = ®™(5), and the explicit

expression of the derivative ®’_, condition (17) is equivalent to

Using the relation (4) with A

m—1

(m)
5—-& 5
B NN 65— 0™pE)? <25-40™(B) o 0™ (5) <6,
/25 — 40 (5)
which is clearly true for any m > 1. ]

The second observation relies on the former and pertains the fact that the ratio
between the smallest eigenvalue at level m and the spectral gap at level m + 2 becomes
larger as the level increases. The reason for comparing between “two-level steps” instead
of consecutive levels is not obvious; this insight was gained after a thorough numerical

analysis, which also hints that the ratio grows slower as the level increases.
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Gap in the Spectrum of the Sierpinski Gasket 13

Lemma 3.8. Foranym > 1,

o™ (2) o™V (2)
> .
M2 (5) _ M2 (2) © oMV (5) _ oD ()

(18)

Proof. Letm > 1. Adding and subtracting d>(_m+l)(5) in the numerator of the left hand

side of (18), applying the mean value theorem and since ¢>£m)(5) > d>£m+l)(5) we obtain

™ (2) _ o™ @) - o) " (5)
d>(_m+2)(5) _ q)(_m+2)(2) (D(_m+2)(5) _ cp(_m+2)(2) d>(_m+2)(5) _ q)(_m+2)(2)

oV (2) - 9" (5) o (5)
> ’
(D(_m+1)(5) _ q>(_m+1)(2) q)(_m+2) (5) _ q)(_m+2) (2)

(19)

where the inequality follows from strict convexity . Reordering terms we may write
(19) as

" V) ( L) e (5) )
q)(_m+1)(5) _ q>(_m+1)(2) d>(_m+2)(5) _ q)(_m+2) (2) q>(_m+1)(5) _ d>(_m+1)(2) '

By virtue of Lemma 3.9, the quantity in brackets is strictly positive, hence (19) implies

o™ (2) o™ V(2)
>

as we wanted to prove. |

The previous observations are crucial to obtain the main lemma used in the
proof of Theorem 3.1; it determines the minimal spacing between any consecutive
eigenvalues in level m + k with generation of fixation £ < m + 1. The reason why it
is enough to focus on those is that, if an eigenvalue 1,, , has a higher level of fixation,
it is always possible to find a suitable level m’ > m, where its successor 1, ;_; will
have generation of fixation £ = m’ + 1.

The complete argument proceeds by a double induction on m and k starting at
level m = 3, k = 2. Starting at k = 2 turns to be key and the proof of this initial case is
rather non-trivial, in particular in view of the following observation that is discussed

at the end of this section.
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14 P. Alonso Ruiz
Remark 3. Taking on account all Dirichlet eigenvalues at level m, that is, k = 0, yields

min{[x — 1'|: 1,2 € AD 1 £ 1) = 0™ D (2),

which is strictly smaller than (20). One can also see that this minimal spacing occurs
between the eigenvalues A = 5 and A’ = d>+<I>(_m72)(2). In the case k = 1, the correspond-
ing minimum is again strictly smaller than (20); there is strong numerical evidence that
it corresponds to the spacing between A = ®_(5) and A’ = <I>7(<D+<I>(_m_2)(2)).

Lemma 3.9. Foranym > 3,
min{|3’ — A: 1,2 € ®? (AD\(6}), A £ 1} = @V (5) — 0V (2). (20)
The minimum is attained for A = <I>(_m+1)(2) and )/ = <I>(_m+1)(5).

Proof. To ease the notation, we write A,, without superscript.

e Case m = 3. We start by describing explicitly the elements of the set A;\{6}

in increasing order
(0% 2), 0% (5),0_0,(5),0_0,(2), d_(5),3,2,(5), 27 (2), 2P (5),

D, d_(5), D, P_(2),5).

The size of the spacing between any two consecutive eigenvalues ¢£2)(A),
@ (/) with A, 1/ € A;\{6} can be explicitly computed and compared to the
size of the Dirichlet spectral gap at level m = 5. By virtue of Lemma 3.6 that
first gapis g; := ®*(5)— ™ (2). Let now denote Gy, -..,9;; the values of the
gaps between consecutive eigenvalues of Ag in @ (A5\{6}). Table 1 shows
the explicit difference (computed here using Python, values approximated
to four digits) between the size of each of these gaps and size of the spectral
(first) gap. All non-trivial differences are strictly positive, hence g; is the

smallest gap.

Table 1 Differences in size between gaps g; and the first gap g;

i 1 2 3 4 5 6 7 8 9 10 11

gi—g1 0 0.0164 0.0061 7.9131 0.0758 0.0303 0.0039 0.0149 0.0395 0.0108 0.0005
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Gap in the Spectrum of the Sierpinski Gasket 15

(m) = (m+1). Let 1,1 € ®P(4,,,,\(6)) with 2 < 1’ and A = &_(u), ¥/
®_(u') for some u < u' in ®_(A4,,,,\{6}). Since by construction A4,, ,\{6} =
®, (4,,) U{3,5}, we have that

1 € @ (4,,\(6) U{®_(3))Ud_d, (4,,\{6}) U{®_(5)).

We analyze the possible situations for the gap A’ — A based on the subsets u

and u’ belong.

(@ If u,u € CDSZ)(Am\{G}), the strict convexity of ®_ and the induction
hypothesis yield

K== @ (1) = O_(1) 2 O (Eqgonen gy gmins) (1 = 1)

(m+1) (m+1) (m+2) (m+2)
> OL(Eqmin g gming) @7 (5) =@ T(2)) =0 TH(5) 9T (2).

(b) Ifu,p € ®_@, (A,\{6}),thenyu=&_&_ (v)andu' = _&_ (V') for some
V" < v belonging to A,,\{6}. In particular, c.f. Lemma 3.4, ®, (v) > ®_(v),
which together with the strict convexity of ®? and Lemma 3.3 yields

¥=r=0%0,0) - 0P, ) = 0P 6y, 1)0,0) (@ 0) = L)
> 0P (g 1) o1 @0 =B, D)) =0P (410w @_ (V) =D_ (V)

—o%0) — 0¥ ).

Since CD(,3)(1/), <I>(,3)(v) € CD(,Z)(Am\{G}), the previous case (a) applies and
hence ' — A > &2 (5) — ™M+ (2)

() If u=®_(3)oru = ®_(3), we show that i/ = d_d, (5) or u = ®?(5),
respectively, whence A, 1" € @ (A5\{6}) and the claim follows from the
induction start m = 3. Indeed, since 3 = ®, (6), its closest eigenvalues
inA,, ,\{6}are ®_(5) and ®_(5).

(d) If W = ®_(5), Corollary 3.7 implies u = <I>_d>+d>(1n_1)(2) so that A =
CD(_2)<I>+<I>(_'"_1)(2) and )/ = q>(_2)(5), Using the strict convexity of o and
the explicit expression of the derivative d>(_2),(z) =@ (O_(2)d_(2), we
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16 P. Alonso Ruiz

obtain

@ (m-1)
N=h= 0T (5, iy 5 (52 @7 (2)

— @ (m)
= 0P (€, o1y 0T (2)
> @ (@, 0™V (2))0™ (2)
= (0_0, 0™ V2)0 (0,0 V(2))e"™ (2)

o™ (2)

J25 - 40_0, 0"V (2) /25 — 40, 0"V (2))

Multiplying and dividing the latter by CD(_m+2)(5) — oMt (2) it follows
that

o™ (2)/(0"*? (5) — @712 (2))

Ve > (dD(_m+2)(5)_q>(_Tn+2)(2))

J25-40_0, 0" V2) /2540, 0" V(2))
(21)

Note now that m > 3, hence ®_@,0" V2) > o_o o?(2) and
o, o™ V2) > o, 0% (2). Together with Lemma 3.10, the right hand
side of (21) is bounded below by

3) ) =y _ (5
2®2)/(0® (5) — 0 (2)) (62(5) — o) ())

J25—20_0,0?2),/25 - 40, 0P (2)
and an explicit computation reveals that

2@ 2)/(0¥(5) - 2©(2))

\/25 - 4<1>7q>+c1>(_2)(2)\/25 — 40, 0P (2) -
whence A’ — A > &2 b) — d>£m+2)(2) as we wanted to prove. [
Lemma 3.10. Foranym >3 and k > 2,
min{[x' — A: 4,2 € ®® (42 \(6})} = o™V (5) — D (9), (22)

The minimum is attained for A = <I>(_m+k_1)(2) and A’ = <I>(_m+k_1)(5).
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Gap in the Spectrum of the Sierpinski Gasket 17

Proof. To ease the notation, we write A,, without superscript. Consider first m = 3

and apply induction on k:

e Casek =2.See Lemma 3.12.
o (k) = (k+1). Let A < )’ belong to ®*™(4,\(6}). Then, » = ®_(x) and
X = & (i) for some p, ' € ®®(A5\(6)) with u < ' and p > %2 (2),
/

u > q>9“+2>(5). Applying the mean value theorem, the strict convexity of ®_,
and the hypothesis of induction yields

V= h= 0L, )W —

>d_(& D@2 (5) — %2 (2)) = %+ (5) — *F¥(2),

%2 (2), 9 **2) (5)

Now we perform induction over the parameter m: assuming that the claim is true for m
and any k > 2, we prove that it also holds for (fixed) m + 1 and any k > 2.

e Case k= 2. See Lemma 3.12.
e (k) = (k+1). Verbatim to the case m = 3 substituting 2 by m. m

As pointed out in Remark 3.11, including all Dirichlet eigenvalues of A,
provides a bound that is strictly lower than (20). Indeed, Corollary 3.7, Proposition 3.2(i),
and Lemma 3.3 yield

5- 0, 0" ?@2) =0, (5 -0, 07?2 =07 (),

which is strictly smaller than CIJ(,m_l)(S) — CD(,m_l)(Z): form = 1 this is clear (2 < 5—2) and
in general, using the fact that @™ (0) = 0 for any m > 1, strict convexity and induction

yield

oM@ ™M@ -0 o V@) -0
o™ @E) - o™@2)  o™@E) -0 @) o™ VE) - o™ V(2

< 1.

3.3.2 Neumann spectrum

From a general point of view, the description of the Neumann spectrum of A, is similar
the Dirichlet one; however, changing from Dirichlet to Neumann makes the question at
hand much easier to tackle. In particular, the absence of 2-series eigenvalues happens

to be especially advantageous. We recall for example, from [14,Proposition 5.5] that the
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18 P. Alonso Ruiz

Neumann spectrum can be described recursively as
AY:=0,6y AY:={0,3,6) AN =0 _(AY \(6hU{3,6) m>2.

Again, note that in this case there are no eigenvalues starting from 2, whereas the

eigenvalue 5 does appear in all AY with m > 2 since ®,(0) =5.
Lemma 3.11. For any m > 1, the Neumann spectral gap of A,, equals o (3,

Proof. By similar arguments as to those in Lemma 3.6 one proves by induction that

minA\{0}) = &V (3).
(]

Obtaining the minimal spacing between Neumann eigenvalues of A, is signifi-

cantly easier than in the Dirichlet case.

Lemma 3.12. Foranym > 1,
; . N (m—1)
min{|x — A'[: A, A € Ay, A # A= (3).
The minimum is attained for A = 0 and ' = ™V (3).

Proof. To ease the notation, we write AY without superscript. The first two cases are

treated separately and induction starts at m = 3:

e Case m = 1. By direct inspection, since A; = {0, 3,6} the minimum is 3.

e Case m = 2. Writing explicitly A, = {0,®_(3),3,®,(3),5,6} and applying
Proposition 3.2 and Lemma 3.3 gives the bounds 3 —®_(3) > 1 > ®_(3)
and 5 — &, (3) = ®_(3). In addition, a direct computation shows @, (3) -3 ~
1.303 > ®_(3) =~ 0.6972.

e Case m = 3. By construction, the elements of A5 in increasing order are

D_(A,\(6)) U {3} U D, (4,\(6}) U(6)}.

Given a pair of consecutive eigenvalues (1,1") with A < A’: if both belong
to ®_(A,\{6}), then there exist u/, u € A,\{6} with ©' — u > ®_(3) from the
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Gap in the Spectrum of the Sierpinski Gasket 19

previous case so that Lemma 3.4(i) yields
Wer=0_(u) -0 _(u) = d_d_(3) =22 @3).

The same is valid for 4,1 € ®_ (A,\{6}) by Lemma 3.3.If A = 3 = ®_ (6), then
» = @, (5) and Lemma 3.3 yields A’ — » = (v/5 — 1)/2 ~ 0.618 > & (3) ~
0.0351. If ' = 3, then A = ®_(5) and Proposition 3.2 yields A’ — A > 1.

e Induction. Writing again A4,,,; = ®_(4,,\{6}) U {3} U ®_(A4,,\{6}) U {6} the
hypothesis of induction yields

"™ V@3)y<u/ —u  forany p < ' in A, \(6).

If the pair of consecutive eigenvalues (A,A’) has both A,1" € ®_(4,,\{6}),
there are u > 0 and ' > d><_m71)(3) such that

Wea=d_(w)—@_ (1) > o o™V (3) =™ (3,

where the inequality follows from Lemma 3.4. The same applies to 4,1 €
@, (A,,\(6}) by virtue of Lemma 3.3. Further, since 3 = ®_(6), its closest
eigenvalues in A,, , are ®_(5) and &, (5). These gaps are included in the
case m = 3, and bounded below by d>(,m)(3) by the strict convexity of ®_.
Finally, we also note that min{6 — z: z € ®_ (4,,\{6})) =6 -5 =1 > o7 (3),

hence the proof is complete. [

4 Conclusion and Final Remarks

Laplace operators on fractals and their spectrum are a recurrent object of study in the
physics literature [1, 6, 8, 17, 20] and in particular play a fundamental role in the study
of Schrédinger and wave equations [2, 4]. The present paper investigates the size of the
smallest possible gap between any two consecutive Dirichlet or Neumann eigenvalues
of the Laplacian on the SG, which turns out to coincide with the corresponding spectral
gap, meaning the distance between the first two eigenvalues; see Theorem 3.1. The proof
relies on the properties of the dynamical system that describes the spectrum and it
opens the possibility that a similar result is true for a class of fractals whose spectrum
enjoys similar properties. One possible starting point would be to consider fractals

whose Laplacian admits spectral decimation such as those described in [21], and to find
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20 P. Alonso Ruiz

general conditions for the associated inverse functions that would produce the desired

outcome.
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