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This paper studies the size of the minimal gap between any two consecutive eigenvalues

in the Dirichlet and in the Neumann spectrum of the standard Laplace operator on the

Sierpiński gasket. The main result shows the remarkable fact that this minimal gap is

achieved and coincides with the spectral gap. The Dirichlet case is more challenging and

requires some key observations in the behavior of the dynamical system that describes

the spectrum.

1 Introduction

The standard Laplacian on the Sierpiński gasket (SG) is a non-negative self-adjoint

operator with a pure point spectrum, also called discrete [19, Theorem VII.10], which

consists of countable many non-negative eigenvalues with finite multiplicity and only

accumulation point at infinity. The study of this spectrum goes back to works in

physics by Rammal and Tolouse [18, 20], where it was observed that suitable series

of eigenvalues in the finite level approximations of SG produced an orbit of a particular

dynamical system. This phenomenon was named in [11] spectral decimation. There,

Fukushima and Shima were able to describe the complete spectrum of the Laplacian

on SG by tracing back re-normalized orbits of the quadratic polynomial describing the

aforementioned dynamical system.

Having a complete description of the spectrum led to extensive research, see

for example, [14, 16, 22, 24, 25], dealing with the study of its properties. Some of
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2 P. Alonso Ruiz

them are in stark contrast to more classical settings: the Weyl ratio does not have a

limit and in particular the eigenvalue counting function N(x) fails Weyl and Berry’s

conjecture N(x) ∼ cdHd(SG)xd/2 + o(xd/2) with d the Hausdorff dimension and Hd

the d-dimensional Hausdorff measure of SG, see [16] and [24, Example 5.1] for precise

asymptotics. The oscillations that prevent the existence of a Weyl ratio are partly due

to the existence of large gaps in the spectrum, meaning that if λ(1) ≤ λ(2) ≤ . . . denote

the eigenvalues of the Laplacian, then lim supn λ(n+1)/λ(n) > 1, c.f. [12, 13, 22, 26].

As it turns out, the existence of these gaps in the spectrum of SG is equiv-

alent to the fact that the Julia set describing the spectrum is totally disconnected

[13, Theorem 2], a property shared by certain classes of fractals, see [13, 25] and the

references therein. On the other hand, the presence of exponentially large gaps has some

advantageous consequences: for instance, they are responsible for a “better than usual”

convergence of the Fourier series analogue of a function in L2(SG), see [22, Theorem 1].

Also, they provide a natural candidate for dyadic intervals as described in Section 2.2,

whose properties may be useful in the study of estimates involving eigenfunctions.

Most of the existent work has focused on the structure of large gaps [7, 12,

22, 26], whereas smaller ones have eluded further investigation. The study of small

gaps in the spectrum of the Laplacian can become fairly challenging [3, 5, 9] and the

question addressed in the present paper investigates what happens on SG: is it possible

to provide a uniform lower bound for the small gaps in the spectrum of the Laplacian?

Theorem 3.1 provides a positive and optimal answer: any two consequent

eigenvalues in the Dirichlet or in the Neumann spectrum of the Laplacian on SG

are separated at least by the spectral gap. In other words, the first and the second

eigenvalues are the closest within the whole spectrum. Although the existence of a

lower bound might possibly be derived from an abstract argumentation, proving that

the spectral gap is in fact the smallest spacing between Dirichlet eigenvalues requires

a couple of rather non-trivial observations. These constitute the core of Section 3 and

have been established after a careful analysis of the inverse function describing the

spectrum of the finite level approximations. Note also that the size of the spacings do

not appear in an straightforward increasing order: numerical computations show for

example that the third gap is actually smaller than the second, and the seventh gap is

smaller than the third, c.f. Table 1.

The paper is structured as follows: Section 2 reviews the construction of the

Dirichlet and the Neumann spectrum of the Laplacian along with some facts about

the large gaps that were not available in the literature in this form. The main result,

Theorem 3.1, is presented and proved for both spectra in Section 3. Especially, the proof
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Gap in the Spectrum of the Sierpiński Gasket 3

of the Dirichlet case relies on several key properties of the dynamical system and the

iterative construction of the spectrum. Possible directions for future investigation are

briefly outlined in Section 4.

2 Preliminaries and Useful Facts

For each m ≥ 0, let Vm denote the vertex set of the finite n-level approximation of

the Sierpiński gasket (SG in the sequel) as depicted in Figure 1, and let m denote the

associated graph Laplacian

mu(p) :=

q

m∼p

(u(q) − u(p)), (1)

with either Dirichlet or Neumann boundary conditions.

Fig. 1. Graph approximations of the Sierpiński gasket.

The standard Laplacian on SG, denoted by  in throughout the paper, is expressible as

a limit of suitably renormalized graph Laplacians

u(x) = lim
m→∞ 5mmu(x),

see for example, [16], where the limit converges uniformly in x for a dense set of

continuous functions in the domain of . Further details concerning the precise

construction and properties can be found in the books [15, 23]. This section reviews

how the Dirichlet and Neumann spectrum of m describe that of  and records several

useful facts about its structure.

2.1 Eigenvalues

Fukushima and Shima described in [11] all Dirichlet eigenvalues of the Laplacian on

SG by means of a genealogical tree as in Figure 2; a similar one can be made for the

Neumann case. In this way, any eigenvalue λ of  is related to a unique sequence of
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4 P. Alonso Ruiz

ancestors {λm}m≥j starting at a particular generation j ≥ 1, where λm is an eigenvalue of

m. The starting generation j is called the generation of birth of λ. First ancestors (who

start a lineage) may only take the values 2, 5, or 6 and to refer to that particular value

one speaks of λ as being an i-series eigenvalue, where i = λj ∈ {2, 5, 6}.

Fig. 2. Genealogy tree picture for an eigenvalue λ born at level j.

Fukushima–Shima’s main result [11, Theorem 5.1] states that all Dirichlet

eigenvalues λ of  satisfy

λ = lim
m→∞ 5mλm (2)

and the same is true for the Neumann ones. As Rammal and Toulouse observed in

[20], the genealogy of an eigenvalue arises from the inverse functions of the quadratic

polynomial R(z) = z(5 − z) given by

±(z) = 1

2


5 ± √

25 − 4z

. (3)

Each generation of an eigenvalue λ is thus related to the immediate next by

λm = λm+1(5 − λm+1). (4)

Once the first ancestor is born, its successor is determined by a choice of one of the

inverse functions − or + and the same for all subsequent generations. The genealogy

of an eigenvalue λ with generation of birth j ≥ 1 is thus described through a sequence

{λj+k}k≥0 with λj := i ∈ {2, 5, 6} and

λj+k = w|k(λj) = w|k(i) := wk
◦ wk−1

◦ · · · ◦ w1
(i) (5)
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Gap in the Spectrum of the Sierpiński Gasket 5

for any k ≥ 1, where w := . . . w2w1 ∈ {−, +}N. Such an eigenvalue is generically called

an i-series. In view of (2) and (5) it also admits the expression

λ = 5j lim
k→∞

5kw|k(i), (6)

which will play a fundamental role in the proof of Theorem 3.1. Due to the properties of

±, c.f. Section 3, in order for the limit (6) to exist, there must be a specific generation

 ≥ j, called the generation of fixation of λ, after which all descendants are obtained

via −. In other words, for any m ≥ ,

λm = 
(m−)
− (λ) = 

(m−)
− w|−1

(i), (7)

where 
(n)
− denotes the n-th composition of − with itself and w|0 = id. Note that

w−1 = + as long as  ≥ 2.

Example 2.1. The lowest 5-series and 6-series Dirichlet eigenvalues have generation

of birth 1, respectively 2, and generation of fixation 2, respectively 4. They admit the

limit representation

lim
k→∞

5k+1w|k(5) =: λ
(5)
0 , and lim

k→∞
5k+2w|k(6) =: λ

(6)
1 ,

where in the first case wk = − for all k ≥ 1 and in the second w1 = + and wk = −
for all other k ≥ 2. The notation used for these eigenvalues follows [7, Section 3] and

depends on the word w in a non-trivial way, which is not discussed here. In view of (6),

the lowest 5-series with generation of birth j ≥ 1 satisfies

λ = lim
k→∞

5j+kw|k(5) = 5j−1 lim
k→∞

5k+1
(k)
− (5) = 5j−1λ

(5)
0 ,

while the lowest 6-series with generation of birth j ≥ 2 is

λ = lim
k→∞

5j+kw|k(6) = 5j−2 lim
k→∞

5k+2
(k−1)
− +(6) = 5j−2λ

(6)
1 .

2.2 Large gaps

The existence of large gaps in both the Dirichlet and the Neumann spectrum of the

Laplacian has been extensively studied in the literature, see for example, [13, 22, 26].

This section gives a brief account of that phenomenon in the case of the Dirichlet
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6 P. Alonso Ruiz

spectrum and records some observations of interest that had not appeared in this

form yet.

Recall that  is a non-negative self-adjoint operator with discrete spectrum

whose ordered eigenvalues will be denoted by 0 ≤ λ(1) ≤ λ(2) ≤ λ(3) ≤ . . . including

multiplicity (the notation should not be confused with that of the eigenvalues of a

finite level used in the previous section). Two of the most prominent recurrent gaps

in the spectrum, described in [22, Theorem 1] and [12, Theorem 5.1], occur between the

eigenvalues

λ(Nm−Nm−1) < λ(Nm) < λ(Nm+1), (8)

where Nm = 1
2 (3m+1 − 3), m ≥ 1, coincides with the size of the spectrum of m.

The eigenvalues in (8) correspond to the lowest 5-series, the lowest 6-series, and the

second lowest 5-series with generation of birth j = m computed as in Example 2.1.

More precisely,

λ(Nm)

λ(Nm−Nm−1)

= λ
(6)
1

5λ
(5)
0

≈ 2.425 and
λ(Nm+1)

λ(Nm)

= 5λ
(5)
1

λ
(6)
1

≈ 1.271, (9)

c.f. [12, Theorem 5.1]. There are more fractals for which similar statements hold, see for

example, [10, 13] and the references therein.

2.3 Dyadic intervals

In applications like [22], the largest gaps from (9) can be used to decompose the positive

real line into the analogue of classical “dyadic intervals.” For any m ≥ 2, these may be

defined as

Bm :=
⎧⎨
⎩

[0, λ(N2)), m = 2,

[λ(Nm−1), λ(Nm)), m ≥ 3,
(10)

see Figure 3.

Fig. 3. Eigenvalues in dyadic intervals are separated by the largest gaps (dotted).
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Gap in the Spectrum of the Sierpiński Gasket 7

As a consequence of (9), the distance between any two intervals increases with

their index; the distance is in fact comparable to the magnitude of the first eigenvalue

in the larger one.

Proposition 2.2. Let Bm, Bm be intervals with 2 ≤ m < m. Then,

min{|λ − λ| : λ ∈ Bm, λ ∈ Bm } >
1

2
λ(Nm−1).

Proof. Let g0 := λ
(6)
1

5λ
(5)
0

> 2. By virtue of (9) and since λ(Nm ) = 5m−mλ(Nm) by construction,

λ(Nm−1) − λ(Nm−Nm−1) = λ(Nm−1)(1 − g−1
0 5m−1−m

) ≥ λ(Nm−1)(1 − g−1
0 ) >

1

2
λ(Nm−1),

where the last inequality holds because g0 > 2. 

The last observation in this paragraph refers to the fact that the gaps are

actually so large that the sum of any two eigenvalues, which may belong to the same

or to different intervals, always remains within the larger interval.

Proposition 2.3. If λ ∈ Bm, λ ∈ Bm are eigenvalues with 2 ≤ m ≤ m, then λ + λ ∈ Bm .

Proof. Setting again g0 := λ
(6)
1

5λ
(5)
0

> 2, it follows from (10) and (9) that

λ(Nm−1) < λ + λ ≤ λ(Nm−Nm−1) + λ(Nm−Nm−1)

= g−1
0 (λ(Nm) + λ(N

m)) ≤ 2g−1
0 λ(Nm ) < λ(Nm ).



3 Small Gaps

The main result of the present paper establishes another remarkable property of both

the Dirichlet and the Neumann spectrum of : the minimal spacing between any two

distinct eigenvalues equals the corresponding spectral gap and hence provides an

optimal lower bound for the size of small gaps in the spectrum. The description of the

eigenvalues as limits in (2) already suggests that the proof will rely in a careful analysis

of the corresponding spectrum of the finite Laplacian m.
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8 P. Alonso Ruiz

3.1 Minimal eigenvalue spacing

To state the main result precisely, let λ
(2)
0 and λ

(5)
0 denote the lowest 2-series and 5-series

Dirichlet eigenvalue, and λ
(6)
1 the lowest non-zero Neumann eigenvalue of . As limits

of the form (6) they admit the expression

λ
(2)
0 = lim

k→∞
5k+1

(k)
− (2), λ

(5)
0 = lim

k→∞
5k+1

(k)
− (5), λ

(6)
1 = lim

k→∞
5k+2

(k−1)
− +(6) (11)

and also satisfy λ
(2)
0 < λ

(5)
0 < λ

(6)
1 , c.f. [12, Theorem 5.1], see also Example 2.1. The

following theorem provides the minimal eigenvalue spacing in both the Dirichlet and

the Neumann spectrum; the Dirichlet case will be significantly more involved.

Theorem 3.1. The spacing between any two distinct eigenvalues in the (Dirichlet, or

Neumann) spectrum of  is bounded below by the corresponding spectral gap. Precisely,

min{|λ − λ| : λ = λ Dirichlet eigenvalues of } = λ
(5)
0 − λ

(2)
0 (12)

and

min{|λ − λ| : λ = λ Neumann eigenvalues of } = λ
(6)
1 . (13)

Proof of Theorem 3.1. We prove the result in the Dirichlet case, the Neumann case

follows similarly. Let λ, λ be two distinct Dirichlet eigenvalues with generations of birth

j, j ≥ 1, respectively, generations of fixation  ≥ j,  ≥ j, and associated sequences

{λj+k}k≥0 and {λ
j+k}k≥0. Without loss of generality, we may assume  ≤  and λ ≤ λ

 .

By construction, c.f. (7), for any m ≥ , we have λm, λ
m ∈ 

(m−)
− (AD

 \{6}), where AD


denotes the Dirichlet spectrum of  . By virtue of Lemma 3.13,

5mλm − 5mλ
m ≥ 5m min{|λ − λ| : λ, λ ∈ 

(m−)
− (AD

 \{6})}
≥ 5m

(m−1)
− (5) − 5m

(m−1)
− (2).

In view of (11), letting m → ∞ yields (12). For the Neumann case, replace Lemma 3.13

by Lemma 3.15 noticing that +(6) = 3, and use the fact that zero is a Neumann

eigenvalue. 
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Gap in the Spectrum of the Sierpiński Gasket 9

3.2 Key properties of the inverse functions

Recall from (3) that the functions ± describing the spectrum of  are given by

±(z) = 1

2


5 ± √

25 − 4z


and correspond to the inverse functions of the polynomial R(z) = z(5 − z). Their graphs,

displayed in Figure 4, provide a fairly good insight of the following properties.

Fig. 4. Inverse functions −, +, and 
(2)
− . Note the rescaled y-axis in the latter.

Proposition 3.2. For any 0 ≤ z ≤ 6,

(i) 0 ≤ −(z) ≤ 2, 3 ≤ +(z) ≤ 5 and

−(0) = 0, −(6) = 2, +(0) = 5 and +(6) = 3.

(ii) +(z) − −(z) = √
25 − 4z and in particular −(z) < +(z).

Lemma 3.3. For any 0 ≤ x ≤ y ≤ 6,

−(y) − −(x) = +(x) − +(y) = 1

2
(
√

25 − 4x − 
25 − 4y).

A direct computation also shows that both − and the composition 
(2)
− have

positive first derivative and are thus strictly convex. They also turn to be strongly

convex, although only the former property will be used. The strict convexity of −
and especially that of 

(2)
− will play a fundamental role in proving the key lemmas in

Section 3.
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10 P. Alonso Ruiz

Lemma 3.4. The functions − and 
(2)
− are strictly convex on [0, 6]. In addition, for any

0 ≤ w ≤ x ≤ y ≤ z ≤ 6,

(i) −(x) − −(w) ≤ −(z) − −(y) for x − w ≤ z − y.

(ii) −(x) − −(w) ≤ x − w.

Proof. To prove (i), the mean value theorem yields

−(x) − −(w) = −(ξwx)(x − w) w ≤ ξwx ≤ x

and the same for y, z instead of w, x. Since ξwx ≤ x ≤ y ≤ ξyz and −(ξ) = (25 − 4ξ)−1/2,

we have −(ξwx) ≤ −(ξyz), hence

−(x) − −(w) = −(ξwx)(x − w) ≤ −(ξyz)(z − y) = −(z) − −(y).

Part (ii) follows because −([0, 6]) ⊂ (0, 1). 

Remark 1. All items in the previous lemma hold with strict inequality when 0 ≤ w <

x < y < z ≤ 6.

3.3 Small gaps at finite level

This section analyzes the Dirichlet and Neumann spectrum of the finite graph Laplacian

m. The types of computations in both cases are of the same nature; however, the

Dirichlet case is strikingly less straightforward and requires a delicate analysis of the

inverse function −.

In terms of general notation, 
(m)
± denotes the m-th concatenation of ±; for

completeness 
(0)
± := id.

3.3.1 Dirichlet spectrum

Following [11, Theorem 3.1] and [14, Proposition 5.1], the Dirichlet spectrum of m can

be described recursively as

AD
0 := ∅ AD

1 := {2, 5} AD
2 := ±(A1) ∪ {5, 6}

AD
m := ±(AD

m−1\{6}) ∪ {3, 5, 6}, m ≥ 3. (14)

The first step is to determine the difference between the first two eigenvalues

in AD
m.
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Gap in the Spectrum of the Sierpiński Gasket 11

Lemma 3.5. For any m ≥ 1, the first gap in the Dirichlet spectrum of m equals


(m−1)
− (5) − 

(m−1)
− (2).

Proof. We prove by induction that

min(AD
m) = 

(m−1)
− (2) and min(AD

m\{(m−1)
− (2)}) = 

(m−1)
− (5).

Note that, due to the construction of AD
m, the first three cases need to be considered

separately. To ease the notation, we write Am without superscript in what follows.

• Case m = 1. Clear by direct inspection since 
(0)
− (2) = 2 and 

(0)
− (5) = 5.

• Case m = 2. Again by direct inspection, Proposition 3.2 and Lemma 3.4

allow to describe elements of A2 in increasing order as

A2 = {−(2), −(5), +(5), +(2), 5, 6}.

• Case m = 3. By construction, A3 = −(A2\{6}) ∪ +(A1\{6}) ∪ {3, 5, 6}.
Proposition 3.2 and Lemma 3.4 now yield

min(A3) = min(−(A2)) = −(min A2) = −−(2).

Analogously, the second smallest element is −


min(A2\{−(2)}) = 
(2)
− (5).

• General case m > 3. Using the hypothesis of induction, the same arguments

as before apply so that

min(Am+1) = min(−(Am)) = −(min Am) = −
(m−1)
− (2) = 

(m)
− (2) (15)

and for the second smallest element −


min(Am\{(m−1)
− (2)}) = 

(m)
− (5).



An immediate consequence of (15) and the fact that + is monotone decreasing

is that +


min(AD
m\{5, 6}) = max


+(AD

m\{5, 6}). This provides the largest 2-series

eigenvalue in AD
m, which will be relevant in the proof of the main Lemma 3.12.

Corollary 3.6. For any m ≥ 2, max(AD
m\{5, 6}) = +

(m−2)
− (2).

Remark 2. The eigenvalue +
(m−2)
− (2) is the closest to the eigenvalue 5 in AD

m.
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12 P. Alonso Ruiz

The next two technical observations are fundamental in the quest of finding the

exact minimal gap within a subset of the Dirichlet spectrum of m that will be relevant

for Theorem 3.1. The first one concerns the ratio between the second smallest eigenvalue

at level m and the spectral gap at level m+1: this ratio gets larger as the level increases.

Lemma 3.7. For any m ≥ 1,


(m−1)
− (5)


(m)
− (5) − 

(m)
− (2)

<


(m)
− (5)


(m+1)
− (5) − 

(m+1)
− (2)

. (16)

Proof. Let m ≥ 1. Multiplying and dividing by 
(m)
− (5) the left hand side of (16), the

mean value theorem and the strict convexity of − yield


(m−1)
− (5)


(m)
− (5) − 

(m)
− (2)

<


(m−1)
− (5)


(m)
− (5)

−(
(m)
− (5))


(m)
− (5)


(m+1)
− (5) − 

(m+1)
− (2)

.

It remains to show that


(m−1)
− (5)


(m)
− (5)

−(
(m)
− (5)) < 1. (17)

Using the relation (4) with λm−1 = 
(m−1)
− (5) and λm = 

(m)
− (5), and the explicit

expression of the derivative −, condition (17) is equivalent to

5 − 
(m)
− (5)

25 − 4
(m)
− (5)

< 1 ⇔ (5 − 
(m)
− (5))2 < 25 − 4

(m)
− (5) ⇔ 

(m)
− (5) < 6,

which is clearly true for any m ≥ 1. 

The second observation relies on the former and pertains the fact that the ratio

between the smallest eigenvalue at level m and the spectral gap at level m + 2 becomes

larger as the level increases. The reason for comparing between “two-level steps” instead

of consecutive levels is not obvious; this insight was gained after a thorough numerical

analysis, which also hints that the ratio grows slower as the level increases.
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Lemma 3.8. For any m ≥ 1,


(m)
− (2)


(m+2)
− (5) − 

(m+2)
− (2)

>


(m−1)
− (2)


(m+1)
− (5) − 

(m+1)
− (2)

. (18)

Proof. Let m ≥ 1. Adding and subtracting 
(m+1)
− (5) in the numerator of the left hand

side of (18), applying the mean value theorem and since 
(m)
− (5) > 

(m+1)
− (5) we obtain


(m)
− (2)


(m+2)
− (5) − 

(m+2)
− (2)

= 
(m)
− (2) − 

(m+1)
− (5)


(m+2)
− (5) − 

(m+2)
− (2)

+ 
(m+1)
− (5)


(m+2)
− (5) − 

(m+2)
− (2)

>


(m−1)
− (2) − 

(m)
− (5)


(m+1)
− (5) − 

(m+1)
− (2)

+ 
(m+1)
− (5)


(m+2)
− (5) − 

(m+2)
− (2)

, (19)

where the inequality follows from strict convexity . Reordering terms we may write

(19) as


(m−1)
− (2)


(m+1)
− (5) − 

(m+1)
− (2)

+



(m+1)
− (5)


(m+2)
− (5) − 

(m+2)
− (2)

− 
(m)
− (5)


(m+1)
− (5) − 

(m+1)
− (2)


.

By virtue of Lemma 3.9, the quantity in brackets is strictly positive, hence (19) implies


(m)
− (2)


(m+2)
− (5) − 

(m+2)
− (2)

>


(m−1)
− (2)


(m+1)
− (5) − 

(m+1)
− (2)

as we wanted to prove. 

The previous observations are crucial to obtain the main lemma used in the

proof of Theorem 3.1; it determines the minimal spacing between any consecutive

eigenvalues in level m + k with generation of fixation  ≤ m + 1. The reason why it

is enough to focus on those is that, if an eigenvalue λm+k has a higher level of fixation,

it is always possible to find a suitable level m > m, where its successor λm+k−1 will

have generation of fixation  = m + 1.

The complete argument proceeds by a double induction on m and k starting at

level m = 3, k = 2. Starting at k = 2 turns to be key and the proof of this initial case is

rather non-trivial, in particular in view of the following observation that is discussed

at the end of this section.
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14 P. Alonso Ruiz

Remark 3. Taking on account all Dirichlet eigenvalues at level m, that is, k = 0, yields

min{|λ − λ| : λ, λ ∈ AD
m, λ = λ} = 

(m−1)
− (2),

which is strictly smaller than (20). One can also see that this minimal spacing occurs

between the eigenvalues λ = 5 and λ = +
(m−2)
− (2). In the case k = 1, the correspond-

ing minimum is again strictly smaller than (20); there is strong numerical evidence that

it corresponds to the spacing between λ = −(5) and λ = −

+

(m−2)
− (2)


.

Lemma 3.9. For any m ≥ 3,

min{|λ − λ| : λ, λ ∈ 
(2)
−


AD

m\{6}, λ = λ} = 
(m+1)
− (5) − 

(m+1)
− (2). (20)

The minimum is attained for λ = 
(m+1)
− (2) and λ = 

(m+1)
− (5).

Proof. To ease the notation, we write Am without superscript.

• Case m = 3. We start by describing explicitly the elements of the set A3\{6}
in increasing order

{(2)
− (2), (2)

− (5), −+(5), −+(2), −(5), 3, +(5), (2)
+ (2), (2)

+ (5),

+−(5), +−(2), 5}.

The size of the spacing between any two consecutive eigenvalues 
(2)
− (λ),


(2)
− (λ) with λ, λ ∈ A3\{6} can be explicitly computed and compared to the

size of the Dirichlet spectral gap at level m = 5. By virtue of Lemma 3.6 that

first gap is g1 := 
(4)
− (5)−

(4)
− (2). Let now denote g2, . . . , g11 the values of the

gaps between consecutive eigenvalues of 5 in 
(2)
−


A3\{6}. Table 1 shows

the explicit difference (computed here using Python, values approximated

to four digits) between the size of each of these gaps and size of the spectral

(first) gap. All non-trivial differences are strictly positive, hence g1 is the

smallest gap.

Table 1 Differences in size between gaps gi and the first gap g1

i 1 2 3 4 5 6 7 8 9 10 11

gi − g1 0 0.0164 0.0061 7.9131 0.0758 0.0303 0.0039 0.0149 0.0395 0.0108 0.0005
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Gap in the Spectrum of the Sierpiński Gasket 15

• (m) ⇒ (m + 1). Let λ, λ ∈ 
(2)
− (Am+1\{6}) with λ < λ and λ = −(μ), λ =

−(μ) for some μ < μ in −(Am+1\{6}). Since by construction Am+1\{6} =
±(Am) ∪ {3, 5}, we have that

μ, μ ∈ 
(2)
− (Am\{6}) ∪ {−(3)} ∪ −+(Am\{6}) ∪ {−(5)}.

We analyze the possible situations for the gap λ − λ based on the subsets μ

and μ belong.

(a) If μ, μ ∈ 
(2)
− (Am\{6}), the strict convexity of − and the induction

hypothesis yield

λ − λ = −(μ) − −(μ) ≥ −(ξ


(m+1)
− (2),(m+1)

− (5)
)(μ − μ)

≥ −(ξ


(m+1)
− (2),(m+1)

− (5)
)



(m+1)
− (5)−

(m+1)
− (2)

=
(m+2)
− (5)−

(m+2)
− (2).

(b) If μ, μ ∈ −+(Am\{6}), then μ = −+(ν) and μ = −+(ν) for some

ν < ν belonging to Am\{6}. In particular, c.f. Lemma 3.4, +(ν) > −(ν),

which together with the strict convexity of 
(2)
− and Lemma 3.3 yields

λ − λ = 
(2)
− +(ν) − 

(2)
− +(ν) = 

(2)
− (ξ+(ν),+(ν))(+(ν) − +(ν))

>
(2)
− (ξ−(ν),−(ν))(+(ν)−+(ν))=

(2)
− (ξ−(ν),−(ν))(−(ν)−−(ν))

=
(3)
− (ν) − 

(3)
− (ν).

Since 
(3)
− (ν), (3)

− (ν) ∈ 
(2)
− (Am\{6}), the previous case (a) applies and

hence λ − λ > 
(m+2)
− (5) − 

(m+2)
− (2).

(c) If μ = −(3) or μ = −(3), we show that μ = −+(5) or μ = 
(2)
− (5),

respectively, whence λ, λ ∈ 
(2)
− (A3\{6}) and the claim follows from the

induction start m = 3. Indeed, since 3 = +(6), its closest eigenvalues

in Am+1\{6} are +(5) and −(5).

(d) If μ = −(5), Corollary 3.7 implies μ = −+
(m−1)
− (2) so that λ =


(2)
− +

(m−1)
− (2) and λ = 

(2)
− (5). Using the strict convexity of 

(2)
− and

the explicit expression of the derivative 
(2)
− (z) = −(−(z))−(z), we
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16 P. Alonso Ruiz

obtain

λ − λ = 
(2)
− (ξ

+
(m−1)
− (2),5

)

5 − +

(m−1)
− (2)



= 
(2)
− (ξ

+
(m−1)
− (2),5

)
(m)
− (2)

> 
(2)
− (+

(m−1)
− (2))

(m)
− (2)

= −(−+
(m−1)
− (2))−(+

(m−1)
− (2)))

(m)
− (2)

= 
(m)
− (2)

25 − 4−+
(m−1)
− (2)


25 − 4+

(m−1)
− (2))

.

Multiplying and dividing the latter by 
(m+2)
− (5) − 

(m+2)
− (2) it follows

that

λ−λ >


(m)
− (2)/




(m+2)
− (5) − 

(m+2)
− (2)




25−4−+
(m−1)
− (2)


25−4+

(m−1)
− (2))




(m+2)
− (5)−

(m+2)
− (2)


.

(21)

Note now that m > 3, hence −+
(m−1)
− (2) > −+

(2)
− (2) and

+
(m−1)
− (2) > +

(2)
− (2). Together with Lemma 3.10, the right hand

side of (21) is bounded below by


(3)
− (2)/




(5)
− (5) − 

(5)
− (2)




25 − 4−+
(2)
− (2)


25 − 4+

(2)
− (2)




(m+2)
− (5) − 

(m+2)
− (2)



and an explicit computation reveals that


(3)
− (2)/




(5)
− (5) − 

(5)
− (2)




25 − 4−+
(2)
− (2)


25 − 4+

(2)
− (2)

> 1

whence λ − λ > 
(m+2)
− (5) − 

(m+2)
− (2) as we wanted to prove. 

Lemma 3.10. For any m ≥ 3 and k ≥ 2,

min{|λ − λ| : λ, λ ∈ 
(k)
−


AD

m\{6}} = 
(m+k−1)
− (5) − 

(m+k−1)
− (2). (22)

The minimum is attained for λ = 
(m+k−1)
− (2) and λ = 

(m+k−1)
− (5).
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Gap in the Spectrum of the Sierpiński Gasket 17

Proof. To ease the notation, we write Am without superscript. Consider first m = 3

and apply induction on k:

• Case k = 2. See Lemma 3.12.

• (k) ⇒ (k + 1). Let λ < λ belong to 
(k+1)
− (A3\{6}). Then, λ = −(μ) and

λ = −(μ) for some μ, μ ∈ 
(k)
− (A3\{6}) with μ < μ and μ ≥ 

(k+2)
− (2),

μ ≥ 
(k+2)
− (5). Applying the mean value theorem, the strict convexity of −,

and the hypothesis of induction yields

λ − λ = −(ξμ,μ))(μ − μ)

≥ −(ξ


(k+2)
− (2),(k+2)

− (5)
))(

(k+2)
− (5) − 

(k+2)
− (2)) = 

(k+3)
− (5) − 

(k+3)
− (2).

Now we perform induction over the parameter m: assuming that the claim is true for m

and any k ≥ 2, we prove that it also holds for (fixed) m + 1 and any k ≥ 2.

• Case k = 2. See Lemma 3.12.

• (k) ⇒ (k + 1). Verbatim to the case m = 3 substituting 2 by m. 

As pointed out in Remark 3.11, including all Dirichlet eigenvalues of m

provides a bound that is strictly lower than (20). Indeed, Corollary 3.7, Proposition 3.2(i),

and Lemma 3.3 yield

5 − +
(m−2)
− (2) = +(5) − +

(m−2)
− (2) = 

(m−1)
− (2),

which is strictly smaller than 
(m−1)
− (5)−

(m−1)
− (2): for m = 1 this is clear (2 < 5−2) and

in general, using the fact that 
(m)
− (0) = 0 for any m ≥ 1, strict convexity and induction

yield


(m)
− (2)


(m)
− (5) − 

(m)
− (2)

= 
(m)
− (2) − 

(m)
− (0)


(m)
− (5) − 

(m)
− (2)

<


(m−1)
− (2) − 

(m−1)
− (0)


(m−1)
− (5) − 

(m−1)
− (2)

< 1.

3.3.2 Neumann spectrum

From a general point of view, the description of the Neumann spectrum of m is similar

the Dirichlet one; however, changing from Dirichlet to Neumann makes the question at

hand much easier to tackle. In particular, the absence of 2-series eigenvalues happens

to be especially advantageous. We recall for example, from [14,Proposition 5.5] that the
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18 P. Alonso Ruiz

Neumann spectrum can be described recursively as

AN
0 := {0, 6} AN

1 := {0, 3, 6} AN
m := ±(AN

m−1\{6}) ∪ {3, 6} m ≥ 2.

Again, note that in this case there are no eigenvalues starting from 2, whereas the

eigenvalue 5 does appear in all AN
m with m ≥ 2 since +(0) = 5.

Lemma 3.11. For any m ≥ 1, the Neumann spectral gap of m equals 
(m−1)
− (3).

Proof. By similar arguments as to those in Lemma 3.6 one proves by induction that

min(AN
m\{0}) = 

(m−1)
− (3).



Obtaining the minimal spacing between Neumann eigenvalues of m is signifi-

cantly easier than in the Dirichlet case.

Lemma 3.12. For any m ≥ 1,

min{|λ − λ| : λ, λ ∈ AN
m, λ = λ} = 

(m−1)
− (3).

The minimum is attained for λ = 0 and λ = 
(m−1)
− (3).

Proof. To ease the notation, we write AN
m without superscript. The first two cases are

treated separately and induction starts at m = 3:

• Case m = 1. By direct inspection, since A1 = {0, 3, 6} the minimum is 3.

• Case m = 2. Writing explicitly A2 = {0, −(3), 3, +(3), 5, 6} and applying

Proposition 3.2 and Lemma 3.3 gives the bounds 3 − −(3) > 1 > −(3)

and 5 − +(3) = −(3). In addition, a direct computation shows +(3) − 3 ≈
1.303 > −(3) ≈ 0.6972.

• Case m = 3. By construction, the elements of A3 in increasing order are

−

A2\{6} ∪ {3} ∪ +


A2\{6} ∪ {6}.

Given a pair of consecutive eigenvalues (λ, λ) with λ < λ: if both belong

to −(A2\{6}), then there exist μ, μ ∈ A2\{6} with μ − μ ≥ −(3) from the
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Gap in the Spectrum of the Sierpiński Gasket 19

previous case so that Lemma 3.4(i) yields

λ − λ = −(μ) − −(μ) ≥ −−(3) = 
(2)
− (3).

The same is valid for λ, λ ∈ +(A2\{6}) by Lemma 3.3. If λ = 3 = +(6), then

λ = +(5) and Lemma 3.3 yields λ − λ = (
√

5 − 1)/2 ≈ 0.618 > 
(2)
− (3) ≈

0.0351. If λ = 3, then λ = −(5) and Proposition 3.2 yields λ − λ > 1.

• Induction. Writing again Am+1 = −(Am\{6}) ∪ {3} ∪ +(Am\{6}) ∪ {6} the

hypothesis of induction yields


(m−1)
− (3) ≤ μ − μ for any μ < μ in Am\{6}.

If the pair of consecutive eigenvalues (λ, λ) has both λ, λ ∈ −(Am\{6}),
there are μ ≥ 0 and μ ≥ 

(m−1)
− (3) such that

λ − λ = −(μ) − −(μ) ≥ −
(m−1)
− (3) = 

(m)
− (3),

where the inequality follows from Lemma 3.4. The same applies to λ, λ ∈
+(Am\{6}) by virtue of Lemma 3.3. Further, since 3 = +(6), its closest

eigenvalues in Am+1 are −(5) and +(5). These gaps are included in the

case m = 3, and bounded below by 
(m)
− (3) by the strict convexity of −.

Finally, we also note that min{6 − z : z ∈ +(Am\{6})} = 6 − 5 = 1 > 
(m)
− (3),

hence the proof is complete. 

4 Conclusion and Final Remarks

Laplace operators on fractals and their spectrum are a recurrent object of study in the

physics literature [1, 6, 8, 17, 20] and in particular play a fundamental role in the study

of Schrödinger and wave equations [2, 4]. The present paper investigates the size of the

smallest possible gap between any two consecutive Dirichlet or Neumann eigenvalues

of the Laplacian on the SG, which turns out to coincide with the corresponding spectral

gap, meaning the distance between the first two eigenvalues; see Theorem 3.1. The proof

relies on the properties of the dynamical system that describes the spectrum and it

opens the possibility that a similar result is true for a class of fractals whose spectrum

enjoys similar properties. One possible starting point would be to consider fractals

whose Laplacian admits spectral decimation such as those described in [21], and to find
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general conditions for the associated inverse functions that would produce the desired

outcome.
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