
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton
Method

Bugra Can1, Saeed Soori2, Maryam Mehri Dehnavi2, and Mert Gürbüzbalaban1

Abstract— This work proposes a distributed algorithm for
solving empirical risk minimization problems, called L-DQN,
under the master/worker communication model. L-DQN is a
distributed limited-memory quasi-Newton method that supports
asynchronous computations among the worker nodes. Our
method is efficient both in terms of storage and communication
costs, i.e., in every iteration, the master node and workers
communicate vectors of size O(d), where d is the dimension
of the decision variable, and the amount of memory required
on each node is O(md), where m is an adjustable parameter.
To our knowledge, this is the first distributed quasi-Newton
method with provable global linear convergence guarantees
in the asynchronous setting where delays between nodes are
present. Numerical experiments are provided to illustrate the
theory and the practical performance of our method.

I. INTRODUCTION

Due to the rapid increase in the size of datasets in the
last decade, distributed algorithms that can parallelize the
computations to multiple (computational units) nodes con-
nected over a communication network became indispensable
[1], [2]. A common communication model in distributed
machine learning is the master/worker model in which the
master keeps a copy of the global decision variable x and
shares it with the workers. Each worker operates locally on
its own data and then communicates the results to the master
to update the decision variable in a synchronous [3], [4], [5],
[6], [7], [8], [9] or asynchronous fashion [10], [11], [12],
[13], [14], [15], [16]. In the synchronous setting, the master
waits to receive updates from all workers before updating
the decision variable, which can lead to a slow execution if
the nodes and/or the network are heterogeneous [17]. In the
asynchronous setting, coordination amongst workers is not
needed (or is more relaxed) and the master can proceed with
updates without having to wait for slow worker nodes. As a
result, the asynchronous setting can be more efficient than
the synchronous in heterogeneous computing environments
[18].

In this paper, we consider distributed algorithms for
empirical risk minimization, i.e. for solving the finite-sum
problem

x∗ := argmin
x∈Rd

f(x) := argmin
x∈Rd

1

n

n∑
i=1

fi(x) (1)

1 Department of Management Sciences and Information Systems, Rutgers
Business School, Piscataway, NJ-08854, USA.

2 Department of Computer Sciences, University of Toronto, Toronto,
Canada.

*Bugra Can and Mert Gürbüzbalaban acknowledge support from the
Office of Naval Research Award Number N00014-21-1-2244, and the grants
National Science Foundation (NSF) CCF-1814888, NSF DMS-2053485,
NSF DMS-1723085.

where x ∈ Rd and fi : Rd → R is the loss function
of node i ∈ {1, ..., n}. We consider the master/worker
communication model with asynchronous computations. With
today’s distributed computing environments, the cost of
communicating information between nodes is significantly
higher than the cost of local computations and sharing
matrices of size O(d2) across nodes to be prohibitively
expensive in many machine learning applications. Thus,
inspired by prior work [19], [20], [21], [22], [23], [24],
we focus on algorithms that communicate between nodes
only vectors of size (at most) O(d). There are a number of
distributed algorithms for empirical risk minimization that can
support asynchronous computations; the most relevant to our
work are the recently proposed DAve-RPG [25] and DAve-
QN algorithms [26]. DAve-RPG is a delay tolerant proximal
gradient method with linear convergence guarantees that also
handles a non-smooth term in the objective. However, it is
a first-order method that does not estimate the second-order
information of the underlying objective, therefore it can be
slow for ill-conditioned problems. DAve-QN is a distributed
quasi-Newton method with local superlinear convergence
guarantees, however it does not admit global convergence
guarantees. Furthermore, it relies on BFGS updates on
each node, which requires O(d2) memory as well as O(d2)
computations for updating the Hessian estimate at each node.
For large d, this can be slow where DAve-QN looses its
edge over first-order approaches [26]; furthermore its O(d2)
memory requirement can be impractical or prohibitively
expensive when d is large, say when d is on the order of ten
thousands or hundred thousands.

Contributions. On this paper, we propose the L-DQN, a
distributed limited-memory quasi-Newton method, which is
based on limited BFGS-type updates at workers, requiring
less memory and less computational work (per iteration) than
DAve-QN algorithm [26]. More specifically, the per iteration
and per node storage and computation of L-DQN are O(md)
and O(md) respectively, where m is a configurable parameter
and is the number of vectors stored in the memory at every
iteration that contains information about the past gradients
and iterates. Because of the reduced storage and computation
costs, our proposed algorithm scales well for large datasets,
it is communication-efficient as it exchanges vectors of size
O(d) at every communication. When the number of nodes
is large enough, with an appropriate stepsize, L-DQN has
global linear convergence guarantees for strongly convex
objectives, even though the computations are done in an
asynchronous manner, as opposed to the DAve-QN method
which does not provide global convergence guarantees. In

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 2386

20
21

 6
0t

h
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

is
io

n
an

d
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

29
85

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

practice, we have also observed that L-DQN works well even
if the number of nodes n is not large, for example when
n = 2. To our knowledge, L-DQN is the first distributed quasi-
Newton method with provable linear convergence guarantees,
even in the presence of asynchronous computations.

Related work. The proposed method can be viewed as
an asynchronous distributed variant of the traditional quasi-
Newton and limited-memory BFGS methods that have been
extensively studied in the optimization community ([27], [28],
[29], [30]). L-DQN builds on the limited-memory BFGS
method [19]. Prior work have also investigated incremental
gradient ([31], [32]) and incremental aggregated gradient
algorithms ([4], [5], [6], [7], [3], [8], [9], [33], [34]), which
are originally developed for centralized problems. These
methods update the global decision variable by processing
the gradients of the component functions fi in a deterministic
fashion in a specific (e.g. cyclic) order. They are applicable
to our setting in practice, however, these methods do not
provide convergence guarantees in asynchronous settings.
The Lazily Aggregated Gradient (LAG) [35] method, which
has a convergence rate similar to batch gradient descent
in strongly convex, convex, and nonconvex cases as well
as its quantized version [36], is an exception, however,
LAG is a first-order method that does not use second-order
information. For synchronous settings, the distributed quasi-
Newton algorithm proposed by [37] is globally linearly
convergent and can handle non-smooth regularization terms;
convergence analysis for the algorithm does not exist for
asynchronous settings. In this work, we use the star network
topology where the nodes follow a master/worker hierarchy.
However, there is another setting known as the decentralized
setting which does not have a master node and communication
between the nodes is limited to a given fixed arbitrary
network topology ([38], [15]). Amongst algorithms for this
setting, [39] proposes a linearly convergent decentralized
quasi-Newton method and [15] develops an asynchronous
Newton-based approach that has local superlinear convergence
guarantees to a neighborhood of the problem (1). There are
also distributed second-order methods developed for non-
convex objectives. Among these, most relevant to our paper
are [16] which proposes a stochastic asynchronous-parallel
L-BFGS method and the DINGO method ([40]) which admits
linear convergence guarantees to a local minimum for non-
convex objectives that satisfy an invexity property.

Notation. Throughout the paper, we use ‖.‖ to denote the
matrix 2-norm or the (Euclidean norm) L2 norm depending
on the context. The Frobenius norm of a matrix A ∈ Rn×m is
defined as ‖A‖2F :=

∑n
i=1

∑m
j=1A

2
ij . The matrix Id denotes

the d×d identity matrix. A memory with capacity m, denoted
as Mm, is a set of tuples (y, q, α, β) where y, q ∈ Rd and
α, β ∈ R; the size of the memory |Mm| satisfies |Mm| ≤ m.
A function f : Rd → R is called L-smooth and µ strongly
convex if for any vector x, x̂ ∈ Rd, the Hessian satisfies
µ‖x− x̂‖ ≤ ‖∇2f(x)−∇2f(x̂)‖ ≤ L‖x− x̂‖.

II. ALGORITHM

A. Preliminaries

BFGS algorithm. In the following, we provide a brief
summary of the BFGS algorithm, see [41] for more detail.
Given a convex smooth function f : Rd → R, the BFGS algo-
rithm consists of iterations: xt+1 = xt−ηt(Bt+1)−1∇f(xt),
where ηt is a properly chosen stepsize where the matrix
Ht+1 := (Bt+1)−1 is an estimate of the inverse Hessian
matrix at xt and satisfies the secant equation:

Ht+1yt+1 = st+1, (2)

where st+1 := xt−xt−1and yt+1 := ∇f(xt)−∇f(xt−1) are
the differences of the iterates and the gradients respectively.
By Taylor’s theorem, yt+1 = [

∫ 1

0
∇2f(xt−1 + τ(xt −

xt−1))dτ]st+1, therefore for a small enough stepsize ηt any
matrix Ht+1 solving the secant equation can be considered as
an approximation to the inverse of Hessian (∇2f(xt))−1. In
fact, the secant equation (2) has infinitely many solutions and
quasi-Newton methods differ in how they choose a particular
solution. BFGS chooses the matrix Ht+1 according to

Ht+1 =

(
I − st+1(yt+1)>

(yt+1)>st+1

)
Ht

(
I − st+1(yt+1)>

(yt+1)>st+1

)
+
st+1(st+1)>

(yt+1)>st+1
.

The corresponding update for Bt+1 is

Bt+1 = Bt + U t+1 + V t+1,

U t+1 =
yt+1(yt+1)>

(yt+1)>st+1
, V t+1 = −B

tst+1(st+1)>Bt

(st+1)>Btst+1
. (3)

If the function f is strongly convex then (st+1)>yt+1 > 0 so
that the denominator in (3) cannot be zero. Note that U t and
V t are both rank-one therefore these updates require O(d2)
operations. Even though the BFGS algorithm (3) enjoys
local superlinear convergence with an appropriate stepsize,
its O(d2) memory requirement to store the matrix Bt and
O(d2) computations required for the updates (3) may be
impractical or prohibitively expensive for machine learning
problems when d is large.

Limited-memory BFGS (L-BFGS) algorithm. Limited-
memory BFGS (L-BFGS) requires less memory compared
to BFGS algorithm. Instead of storing the whole Bt matrix,
L-BFGS stores up to m pairs {st, yt} in memory and uses
these vectors to approximate the Hessian. The parameter m is
adjustable which results in a memory requirement of O(md).
At the start of iteration t, we have access to {sj , yj} for
j = t −m, t −m + 1, . . . , t − 1. Since the storage is full1,
the oldest pair {st−m, yt−m} is replaced by the latest pair
{st, yt}. The resulting L-BFGS algorithm has the updates:

xt+1 = xt − ηt(B̃t+1)−1∇f(xt),

where the matrices B̃t+1 are computed according to the
following formula

1In the beginning of the iterations, when the total number of gradients
computed is less than m the storage capacity is not full but the details are
omitted for keeping the discussion simpler, see [41] for details.

2387

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Asynchronous communication scheme used by pro-
posed algorithm.

B̃t+1 = γt+1Id +

m∑
j=1

Ũ t+2−j + Ṽ t+2−j ,

Ũ j =
yj+1(yj+1)>

(yj+1)>sj+1
, Ṽ j = − B̃

jsj+1(sj+1)>B̃j

(sj+1)>B̃jsj+1
,

where γt+1 is a scaling factor. We note that L-BFGS requires
O(md) memory which is significantly less compared toO(d2)
for BFGS for a large d.

DAve-QN algorithm. The DAve-QN algorithm [26] is
an asynchronous quasi-Newton method for solving the
optimization problem (1) in master/worker communication
models. Let xt be the variable that is kept at the master at
time t and zti be the local copy that agent i keeps after its
last communication with the master. At time t, an agent it
communicates with the master and updates its local estimate
Btit for the local Hessian ∇2fit(x

t) with a BFGS update:

Bt+1
it

= Btit +
yt+1
it

(yt+1
it

)>

αt+1
it

−
qt+1
it

(qt+1
it

)>

βt+1
it

, (4)

where qt+1
it

:= Btits
t+1
it

, yt+1
it

:= ∇fi(xt) − ∇fi(ztit),
αt+1
it

:= (yt+1
it

)>st+1
it

, and βt+1
it

:=
(
st+1
it

)>
qt+1
it

are
computed using the local copy ztit and the iterate xt. Let
Dt
it

be delay time between information received and send
at agent it at time t, then agent it sends the information
(Btitx

t −Bt−D
t
it

it
z
t−Dt

it
it

), yt+1
it

, qt+1
it

, αt+1
it

and βt+1
it

to the
master after making the update (4). Consequently, the master
updates the global decision variable with:

xt =

(
n∑
i=1

Bti

)−1 [n∑
i=1

Btiz
t
i −∇fi(zti)

]
.

In the next section, we introduce the L-DQN method which is
a limited-memory version of the DAve-QN algorithm. L-DQN
will allow us to improve performance for large dimensional
problems. The basic idea is that each agent stores m-many
tuples {yji , q

j
i , α

j
i , β

j
i } requiring O(md) memory instead of

storing the d × d matrix Bti and carries out L-BFGS-type
updates (4) to compute the Hessian estimate ∇2fi(x

t).

B. A Limited-Memory Distributed Quasi-Newton Method (L-
DQN)

In this section, we introduce the L-DQN algorithm on
a master/worker communication setting that consists of n
workers that are connected to one master with a star topology
(see Figure 1). Let dti be the delay in communication at time

t with the i-th worker and the master and Dt
i denote the

(penultimate) double delay in communication, i.e. the last
exchange between the master and the worker i was at time
t−dti, and before that the communication took place at t−Dt

i

where Dt
i = dti + d

t−dti−1
i + 1. For example, if the node i

communicated with master at times t = 1, t = 5 and t = 7,
we have d4i = 3, d5i = 0, d6i = 1, d7i = 0, d8i = 1 and D6

i = 6,
D7
i = 2 and D8

i = 3.
Let us introduce the historical time Ti(t) = t−dti with the

convention T 0
i (t) = t and Tni (t) = Ti(T

n−1
i (t)). We intro-

duce the notation q̃t+1
it

:= B̃tits
t+1
it

, β̃t+1
it

:=
(
st+1
it

)>
q̃t+1
it

,
and explain the L-DQN updates on worker and master in
detail:

Worker Updates: Each agent i keeps m-many tuples
{yji , q̃

j
i , α

j
i , β̃

j
i } at their local memoryMm(i, t) at time t and

at the end of the m-th iteration, the worker replaces the oldest
tuple {yT

m
i (t)
i , q̃

Tm
i (t)
it

, α
Tm
i (t)
i , β̃

Tm
i (t)
i } with the new one

{yTi(t)
i , q̃

Ti(t)
i , α

Ti(t)
i , β̃

Ti(t)
i }. Suppose master communicates

with worker it at the moment t − dtit and sends the copy
xt−d

t
it ; then upon receiving xt−d

t
it , the worker it computes

B̃t+1
it

xt−d
t
it where B̃t+1

it
is computed according to

B̃t+1
it

= γt+1
it

Id +

m∑
j=1

Ũ
T

j
it

(t+1)

it
+ Ṽ

T
j
it

(t+1)

it
,

Ũ jit =
yjit(y

j
it

)>

(yjit)
>sjit

, Ṽ jit = −
q̃jit
(
q̃jit
)>

(sjit)
>B̃jsjit

, (5)

and the scaling factor is chosen as γt+1
it

=
‖yt+1

it
‖2

(yt+1
it

)>st+1
it

.
A number of choices for γti are proposed in the literature

[41]. γti given above (which is also considered at [20]) is an
estimate for the largest eigenvalue of Hessian ∇2fi(x

t−dti)
and works well in practice, therefore our algorithm analysis
is based on given γti . However, our analysis on the linear
convergence of L-DQN can be extended to different choice
of γti ’s as well. Worker it calls Algorithm 1 to perform

Algorithm 1: Compute u given memory Mm :=
{yi, q̃i, αi, β̃i}mi=1

Function:u=LBFGS(γ,Mm, x)
Set u = γx
for i=1,..,m do

Retract yi, q̃i, αi, β̃i from Mm

Set c1 =
(yi)>x
αi and c2 =

(q̃i)>x
β̃i

u = u+ c1yi − c2q̃i
end
Return u.

the update (5) locally based on its memory Mm(i, t). Then,

the worker sends ∆ut+1
it

:= B̃t+1
it

xt − B̃t−d
t
it

it
z
t−dtit
it

, y
t−dtit
it

,

q̃
t−dtit
it

, α
t−dtit
it

and β̃
t−dtit
it

to the master.
Master Updates: Following its communication with the

worker, the master receives the vectors ∆uit , yit , q̃it , the
scalars αit , β̃it and computes

xt+1 =
(
B̃t
)−1

[
n∑
i=1

B̃tiz
t
i − ηt

n∑
i=1

∇fi(zti)

]
, (6)

where B̃t :=
∑n
i=1 B̃

t
i =

∑n
i=1 B̃

t−dti
i and stepsize ηt

determined by the master. Soori et al. have shown in [26] that

2388

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

the computation of B̃t and (B̃t)−1 can be done at master
locally by using only vectors send by workers. In particular, if
we define ut :=

∑n
i=1 B̃

t
iz
t
i =

∑n
i=1 B̃

t−dti
i z

t−dti
i and gt :=∑n

i=1∇fi(zti) =
∑n
i=1∇fi(z

t−dti
i), then the updates at the

master follow the below rules: B̃t+1 = B̃t + (B̃tit − B̃
t−dti
it

),

ut+1 = ut +

(
B̃t+1
it

xt−d
t
it − B̃t−d

t
it

it
xt−D

t
it

)
, and gt+1 =

gt+
(
∇fit(x

t−dtit)−∇fit(x
t−Dt

it)
)

. Hence the master only

requires B̃t+1
it

and ∇fit(zt+1
it

) = ∇fit(x
t−dtit) to proceed to

t+ 1. Let

U t+1 := (B̃t)−1 −
(B̃t)−1yt+1

it
(yt+1
it

)>(B̃t)−1

(yt+1
it

)>st+1
it

+ (yt+1
it

)>(B̃t)−1yt+1
it

, (7)

then Sherman-Morrison-Woodbury formula implies(
B̃t+1

)−1
=

Ut+1 +
Ut+1(B̃

t−dtit
it

st+1
it

)(B̃
t−dtit
it

st+1
it

)>Ut+1

(st+1
it

)>B̃
t−dtit
it

st+1
it
− (B̃

t−dti
it

st+1
it

)>Ut+1(B̃
t−dti
it

st+1
it

)

.

(8)

Thus, if the master already has (B̃t)−1, then (B̃t+1)−1 is
computed using the vectors yt+1

it
and w̃t+1 := U t+1q̃t+1

it
.

The steps for the master and worker nodes are provided
in Algorithm 2. After receiving xt from the master, worker i
computes its estimate B̃t+1

i using the vector xt−d
t
i received

from the master, then updates its memoryMm(i, t) and sends
the vectors ∆ui, yi, q̃i together with the scalars αi, β̃i back
to the master. Based on (7) and (8), the master computes
xt+1 using the vectors received from worker i. We define the
epochs {Em}m∈N+ recursively as follows: We set E1 = 0 and
define Em+1 = min{t : t−Dt

i ≥ Em for all i = 1, ..., n}. In
other words, Em+1 is the first time t such that each machine
makes at least 2 updates on the interval [Em, t]. Epochs as
defined above satisfy the properties:
• For any t ∈ [Em+1, Em+2) and any i = 1, 2, .., N one

has t−Dt
i ∈ [Em, t)

• If delays are uniformly bounded, i.e. there exists a
constant dti ≤ d for all i and t, then for all m we
have Em+1 − Em ≤ D := 2d+ 1 and Em ≤ Dm.

• If we define average delays as d̄t := 1
N

∑n
i=1 d

t
i, then

d̄t ≥ (n − 1)/2. Moreover, assuming that d̄t ≤ (n −
1)/2 + d̄ for all t, we get Em ≤ 4n(d+ 1)m.

Notice that convergence to optimum x∗ is not possible
without visiting every function fi, so measuring performance
using epochs where every node has communicated with the
master at least once is more convenient than the number of
communications, t, for comparison.

III. CONVERGENCE ANALYSIS

In this section, we study theoretical results for linear
convergence of L-DQN algorithm with a constant stepsize
ηt = η. Firstly, we assumed that the functions fi’s and the
matrices B̃ti ’s satisfy the following conditions:

Assumption 1: The component functions fi are L- smooth
and µ-strongly convex, i.e. there exist positive constants
0 < µ < L such that, for all i and x, x̂ ∈ Rp,

µ‖x− x̂‖2 ≤ (∇fi(x)−∇fi(x̂))>(x− x̂) ≤ L‖x− x̂‖2.

Assumption 2: There exist constants 0 < εd < εu such
that the following bounds are satisfied for all i = 1, ..., n and
x ∈ Rd at any t > 0:

εdId � (B̃ti)
−1/2∇2fi(x

t)(B̃ti)
−1/2 � εuId. (9)

Assumption 2 says that B̃ti approximates the Hessian
∇2fi(x

t) up to a constant factor.For example, if the objective
is a quadratic function of the form fi(x) = 1

2 (x−x∗)>Qi(x−
x∗) and 1

1+cQi � B̃ti � (1 + c)Qi for some constant
c > 0 then we would have εd = 1

1+c , εu = (1 + c) and
the ratio ε = εu/εd satisfies ε = (1 + c)2 ≥ 1. In fact, this
ratio can be thought as a measure of the accuracy of the
Hessian approximation. In the special case when the Hessian
approximations are accurate (when B̃ti = Qi), we have c = 0
and ε = 1. Otherwise, we have ε > 1.

In particular, if the eigenvalues of B̃ti stay in the interval
[λd, λu], then Assumption (2) holds with εd = µ

λu
and εu =

L
λd

. We note that in the literature, there exist estimates for
λu and λd [41], [20]. For example, it is known that if we
choose γti =

‖yti‖
2

(yti)
>sti

then we can take λu = (m+ d)L, and

λd = (µ)m+d

((m+d)L)m+d−1 for memory/storage capacity m (see
[20] for details). A shortcoming of these existing bounds
[42], [43] is that they are not tight, i.e. with an increasing
memory capacity m, the bounds get worse.In our experiments,
we have also observed in real datasets that Assumption 2
holds where we estimated the constants εd and εu (see the
supplementary file for details). These numerical results show
that Assumption 2 is a reasonable assumption to make in
practice for analyzing L-DQN methods.

Before we provide a convergence result for L-DQN, we
observe that the iterates {xt}t∈N+ of L-DQN provided in (6)
satisfy the property
xt+1 − x∗ =(

B̃t
)−1

[
n∑
i=1

B̃ti (z
t
i − x∗)− ηt

n∑
i=1

∇fi(zti)−∇fi(x∗)
]
. (10)

The next theorem uses bounds (9) together with equality
(10) to find the condition on fixed step size η := ηt such
that the L-DQN algorithm is linearly convergent on epochs
[Em, Em+1) for m ∈ N+. The proof can be found in the
appendix.

Theorem 1: Suppose Assumptions 1-2 hold and accuracy
ε := εu/εd satisfies

ε <
1

2

1 +
1

κ
+

√(
1 +

1

κ

)2

+
4

κ

 , (11)

where κ = L
µ is the condition number of f . Let stepsize

η ∈ (1
εd

[1 − 1
εκ], 2

εd+εu
), then for each t ∈ [Em−1, Em),

the iterates xt generated by L-DQN algorithm (2) converge
linearly on epochs [Em, Em+1), i.e. there exists ρ < 1 (with
ρ = O(κ)) such that ‖xt+1 − x∗‖ ≤ ρm‖x0 − x∗‖ for all
t ∈ [Em, Em+1).

Theorem 1 says that if the Hessian approximations are
good enough, then ε is small enough and L-DQN will admit
a linear convergence rate. Even though the condition (11)
seems conservative on the accuracy of the Hessian estimates,
to our knowledge, there exists no other linear convergence

2389

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: L-DQN

Worker i:

Initialize xi = x0,yi = x0 ,B̃i, u−1 = 0 and memory
Mm = {} with capacity m.
while not interrupted by master do

Receive x from master
si = x− zi, yi = ∇fi(x)−∇fi(zi), γi =

y>i yi
s>i yi

Compute q̃i=LBFGS(γi,Mm, si)
αi = y>i si, β̃i = s>i q̃i
if |Mm| < m then

Add {yi, q̃i, αi, β̃i} to Mm

else if |Mm| = m then
Replace the oldest tuple with (yi, q̃i, αi, β̃i) at Mm

Compute u=LBFGS(γi,Mm, x)
∆u = u− u−1

u−1 = u, zi = x
Send ∆u, yi, q̃i, αi, β̃i to the master

Master:

Initialize x, η, B̃i, g =
∑n
i=1∇fi(x), B̃−1 =

(
∑n
i=1 B̃i)

−1, u =
∑n
i=1 B̃ix.

for t = 1, ..., T do
If a worker sends an update
Receive ∆u, y, q̃, α, β̃ from worker
u = u+ ∆u, g = g + y, v = B̃−1y

U = B̃−1 − vv>

α+v>y

w = Uq̃, B̃−1 = U + ww>

β̃−q̃>w
x = B̃−1(u− ηg)
Send x to the worker in return

Interrupt all the workers.
Output xT

result that supports global convergence of asynchronous
distributed second-order methods for distributed empirical
risk minimization. Also, on real datasets, we observe that
L-DQN algorithm performs well even though limited memory
updates fail to satisfy the condition (11) on the accuracy.

IV. NUMERICAL EXPERIMENTS

We tested our algorithm on the multi-class logistic regres-
sion problem with L2 regularization where the objective is

f(x) =
1

n

n∑
i=1

log(1 + exp(−biaTi x)) +
λ

2
‖x‖2. (12)

and λ > 0 is the regularization parameter, ai ∈ Rd is
a feature vector, and bi is the corresponding label. We
worked with five datasets (SVHN, mnist8m, covtype,
cifar10, rcv1) from the LIBSVM repository [44] where
the covtype dataset is expanded based on the approach in
[45] for large-scale experiments.

We compare L-DQN with the following other recent
distributed optimization algorithms:
• DAve-QN [26]: An asynchronous distributed quasi-

Newton method.
• Distributed Average Repeated Proximal Gradient

(DAve-RPG)[46]: A first-order asynchronous method
that performs better compared to incremental aggregated
gradient [3] and synchronous proximal gradient methods.

• Globally Improved Approximate Newton (GI-
ANT)[47]: A synchronous communication-efficient ap-
proximate Newton method, for which the numerical
experiments in [47] demonstrate it outperforms DANE
[48] and the Accelerated Gradient Descent [49].

• Distributed Approximate Newton (DANE)[48]: A
well-known second-order method that requires sychro-
nization step among all workers.

All experiments are conducted on the XSEDE Comet re-
sources [50] with 24 workers (on Intel Xeon E5-2680v3
2.5 GHz architectures) and with 120 GB Random Access
Memory (RAM.) For L-DQN, DAve-RPG, and DAve-QN,
we use 17 processes where one as a master and the 16
processes dedicated as workers. DANE and GIANT do not
have a master, thus, we use 16 processes are workers with
no master. All datasets are normalized to [0,1] and randomly

distributed so the load is roughly balanced among workers.
We use Intel MKL 11.1.2 and MVAPICH2/2.1 for BLAS
(sparse/dense) operations and MPI programming compiled
with mpicc 14.0.2 for optimized communication. We run
gradient descent until norm of gradient is below 10−8 to
compute suboptimality, f(xk) − f(x∗) for the iterations
generated by the algorithms.Each experiment is repeated five
times and the average and standard deviation is reported as
error bars in our results.

Parameters: The recommended parameters for each
method is used. λ is tuned to ensure convergence for all
methods. We use λ = 1 for mnist8m, and λ = 0.1 for
SVHN, cifar10 and covtype. Other choices of λ show
similar performances. For DANE, SVRG [51] is used as a
local solver; parameters are selected based on experiments
in [52]. DANE has two parameters η and µ which are set
to 1 and 3λ respectively based on the recommendation of
the authors in [52]. For DAve-RPG, the number of passes on
local data is set to 5 (p = 5) and its stepsize is selected using
a standard backtracking line algorithm [53]. For L-DQN, the
memory capacity is set as m = 20 for covtype, mnist8m
and cifar10 where stepsize is η = 0.8,η = 0.8 and η = 0.6
respectively. On SVHN, the parameters of L-DQN are chosen
as m = 25 and η = 0.9.

Figure 2 shows the average suboptimality versus time for
the datasets mnist8m, SVHN and covtype. We observe
that L-DQN converges with a similar rate compared to DAve-
QN while it uses less memory. For larger datasets (such as
the rcv1 with d = 47, 000 and n = 697, 000 at Figure 3),
DAve-QN was not able to run due to its memory requirement
whereas the other methods run successfully. DAve-RPG
demonstrates good performance at the beginning for SVHN
compared to other methods due to its cheaper iteration
complexity. However, L-DQN becomes faster eventually and
outperforms DAve-RPG.

The right panel of Figure 3 shows the suboptimality versus
time for the dataset cifar10 where we choose the parameter
λ = 0.1, m = 20 and η = 0.6 for cifar10. DAve-RPG is
the fastest on this dataset whereas L-DQN is competitive with
DAve-QN with less memory requirements. We conclude that

2390

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

0 2000 4000 6000 8000 10000 12000

time(ms)

10
-6

10
-4

10
-2

10
0

s
u

b
o

p
ti
m

a
lit

y
L-DQN

DAve-QN

DANE

DAve-RPG

GIANT

(a) covtype(54,≈ 2.9M)

0 2000 4000 6000 8000 10000 12000 14000

time(ms)

10
-6

10
-4

10
-2

10
0

s
u
b
o
p
ti
m

a
lit

y

L-DQN

DAve-QN

DANE

DAve-RPG

GIANT

(b) SVHN(3072,≈ 73K)

0 5 10 15

time(ms) 10
4

10
-6

10
-4

10
-2

10
0

s
u
b
o
p
ti
m

a
lit

y

L-DQN

DAve-QN

DANE

DAve-RPG

GIANT

(c) mnist8m(784, 8.1M)

Fig. 2: Expected suboptimality versus time. The first and second numbers adjacent to the dataset names are variables d and n respectively.

0 2 4 6 8 10 12

time(ms) 10
5

10
-3

10
-2

10
-1

10
0

10
1

s
u

b
o

p
ti
m

a
lit

y

L-DQN

DANE

DAve-RPG

0 1 2 3 4

time(ms) 10
4

10
-6

10
-4

10
-2

10
0

s
u
b
o
p
ti
m

a
lit

y

L-DQN

DAve-QN

DANE

DAve-RPG

GIANT

Fig. 3: Expected suboptimality versus time on rcv1 (left) and cifar10
(right)

when the underlying optimization problem is ill-conditioned
(such as the case of mnist8m dataset), L-DQN improves
performance with respect to other methods while being
scalable to large datasets. In case of less ill-conditioned
problems (such as SVHN and cifar10), first-order methods
such as DAve-RPG are efficient where second-order methods
may not be necessary.

Fig. 4: Suboptimality comparison without strong convexity assump-
tion on datasets covtype(left) and cifar10(right).

Figure 4 exhibits the suboptimality results of the algorithms
on cifar10 and covtype without regularization parameter
which makes the problems more ill-conditioned. Due to its
less memory requirement, we can see that the performance
of L-DQN algorithm on cifar10 is significantly better
than other distributed algorithms. L-DQN is competitive with
DAve-QN and DANE on covtype as well. We also compare
the strong scaling of the distributed algorithms on different
number of workers for mnist8m and covtype in Figure 5.
In particular, we look at the improvement in time to achieve
the same suboptimality as we increase the number of workers.
We see that L-DQN shows a nearly linear speedup and a
slightly better scaling compared to DAve-QN. DAve-RPG
scales better but considering the total runtime, it is slower

Fig. 5: Scaling comparisons of the algorithms on covtype(left)
and mnist8m(right) datasets

than L-DQN.
In addition to suboptimality and scaling, we also compared

the performance of these algorithms for different sparsity of
the datasets. For the problem of interest (logistic regression),
computing the gradient takes O(nd) for dense and O(n.nnz)
for sparse datasets where nnz is the number of non-zeros
in the dataset. Therefore, L-DQN has O(n.nnz + md)
while DAve-QN has a iteration complexity of O(nd2.nnz).
Similarly, DAve-RPG has a complexity of O(pn.nnz + pd)
where p is number of passes on local data. We observe that
L-DQN has a cheaper iteration complexity compared to DAve-
QN while in case of very sparse datasets, DAve-RPG has
a cheaper iteration complexity compared to L-DQN.This is
illustrated over the dataset rcv1 on the left panel of Figure 3.
The dataset rcv1 is quite sparse with ≈ 1% non-zeros. We
use the parameters λ = 0.01, m = 10, η = 0.95. For this
dataset, DAve-QN fails as it requires more memory than the
resources available. GIANT requires each worker to have
|S| > d where |S| is the number of local data points on a
worker. Hence, GIANT diverges with 16 workers. We observe
that DAve-RPG converges faster than DANE and L-DQN
because of its cheap iteration complexity.

In order to show the effect of sparsity on performance, we
design a synthetic dataset based on a similar approach taken
in [52]. First we generate N i.i.d input samples x ∼ N (0,Σ)
where x ∈ R2000 and the covariance matrix Σ is diagonal
with Σii = i−1.2. Then, we randomly choose some entries
of all samples and make them zero to add sparsity. We set
z = 〈x,w∗〉 + ξ, ξ ∼ N (0, 0.09) and w∗ is the vector of
all ones. Finally, labels y ∈ {0, 1} are generated based on
the probabilities p = S(z) where S(z) = 1/(1 + exp(−z))

2391

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

0% 50% 90% 99%

sparsity

0

1

2

3

4

5

6

7

8

9

n
o

rm
a

liz
e

d
 t

im
e

L-DQN

DAve-QN

DANE

DAve-RPG

GIANT

Fig. 6: The effect of dataset sparsity on the performance of
distributed optimization methods.

is the logistic function. The parameters λ = 0.01 and N =
32000 are chosen for the objective function and for this
experiment we have the following m = 20 and η = 0.9.
Time to the accuracy of 1e− 4 for all methods is measured
and normalized based on L-DQN timing. The results are
shown in Figure 6. DAve-RPG and DANE performs poorly
for fully dense datasets (sparsity = 0%), however, DAve-
RPG and GIANT perform better compared to L-DQN as the
dataset sparsity increases. We observe that when above %90
of the data is sparse, DAve-RPG is the most efficient method;
whereas for denser datasets GIANT and L-DQN are more
efficient on the synthetic data.

V. CONCLUSION

We proposed the L-DQN method which is an asynchronous
limited-memory BFGS method. We showed that under
some assumptions, L-DQN admits linear convergence over
epochs despite asynchronous computations. Our numerical
experiments show that L-DQN can lead to significant perfor-
mance improvements in practice in terms of both memory
requirements and running time.

APPENDIX

VI. PROOF OF THEOREM 1
Recall the definition of the average Hessian Ḡti =∫ 1

0
∇2fi(x

∗+ τ(zti −x∗))dτ satisfies the equality ∇fi(zti)−
∇fi(x∗) = Ḡti(z

t
i − x∗). Hence the equation (10) implies

‖xt − x∗‖2 ≤
n∑
i=1

‖Γt(B̃ti − ηḠti)‖22 max
i=1,..,n

‖zti − x∗‖2 (13)

where Γt = (B̃t)
−1

and ‖·‖2 denotes the 2-norm of a matrix.
Notice that by its definition and from (9), it can be found that
Γt has the bounds 1

nλu
Id � Γt � 1

nλd
Id and hence (Γt)2 is

positive definite. So the function Ψ(A) := A(Γt)2A defined
from the set of symmetric positive-definite matrices Sn to
itself is a matrix convex function [54, see E.7.a], that is for any
A,B ∈ Sn and α ∈ (0, 1) inequality Ψ(αA+ (1− α)B) �
αΨ(A)+(1−α)Ψ(B) holds. In particular, if LA � A � UA
for some positive-definite matrices LA and UA, by matrix
convexity we have

sup
LA�A�UA

Ψ(A) � max(Ψ(LA),Ψ(UA)). (14)

where the maximum on the right-hand side is in the
sense of Loewner ordering, i.e. max{A,B} = A if B �
A and equals to B otherwise. From the bounds (9), we
have

(
1− η L

λd

)
B̃ti � B̃ti − ηḠti �

(
1− η µ

λu

)
B̃ti , for

each i = 1, .., n. On the other hand, [B̃ti (Γ
t)2B̃ti]

−1 =

(
Id+

∑
j 6=i(B̃

t
i)
−1B̃j

)(
Id+

∑
j 6=i B̃j(B̃

t
i)
−1
)

together with

(9) imply that λmin([B̃ti (Γ
t)2B̃ti]

−1) ≥
(

1 + (n− 1) λd

λu

)2
,

where λmin is the smallest eigenvalue. This yields to

λmax([B̃ti (Γ
t)2B̃ti]) ≤

λ2
u

(λu + (n− 1)λd)2
, (15)

where λmax denotes the largest eigenvalue. Applying
matrix convexity property with A = (B̃ti − ηḠti) with
LA =

(
1− η L

λd

)
B̃ti and UA =

(
1− η µ

λu

)
B̃ti and us-

ing (15), we obtain λmax

(
(B̃ti − ηḠti)Γ

2(B̃ti − ηḠti)
)
≤

λ2
u

(λu+(n−1)λd)2
max

{(
1− η L

λd

)2
,
(

1− η µ
λu

)2}
for all i =

1, .., n. Hence,
n∑
i=1

‖Γt(B̃i − ηḠti)‖22

≤
nκ̃2

(κ̃+ n− 1)2
max

{(
1− η

L

λd

)2

,

(
1− η

µ

λd

)2
}
. (16)

Choosing ρ2 = nκ̃2

(κ̃+n−1)2 max

{(
1− η L

λd

)2
,
(

1− η µ
λd

)2}
together with condition on η imply that ‖xt − x∗‖ ≤
ρmaxi=1,..,n ‖zti − x∗‖ where ρ < 1. Next, we will prove
convergence by induction on epoch times Em. Notice
that if t ∈ [Ej , Ej+1), it holds that t − Dt

i ∈ [Ej−1, t)
for any j ≥ 1, therefore the inequality (16) implies
‖xt − x∗‖ ≤ ρmaxi=1,..,n ‖z0i − x∗‖ ≤ ρ‖x0 − x∗‖
for t ∈ [E0, E1). Suppose for all 0 ≤ j ≤ m
the inequality ‖xt − x∗‖ ≤ ρj‖x0 − x∗‖ holds
for t ∈ [Ej , Ej+1), then (13) and (16) imply
‖xt − x∗‖ ≤ ρmaxi=1,..,n ‖z

t−Dt
i

i − x∗‖ ≤ ρm‖x0 − x∗‖.
This completes the proof.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computa-
tion: Numerical methods. Prentice-Hall, Inc., 1989.

[2] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,” in Advances in Neural
Information Processing Systems, 2011, pp. 693–701.

[3] M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo, “On the convergence
rate of incremental aggregated gradient algorithms,” SIAM Journal on
Optimization, vol. 27, no. 2, pp. 1035–1048, 2017.

[4] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient
method with an exponential convergence rate for finite training sets,”
in Advances in Neural Information Processing Systems, 2012, pp.
2663–2671.

[5] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite
objectives,” in Advances in Neural Information Processing Systems,
2014, pp. 1646–1654.

[6] A. Defazio, J. Domke, and T. Caetano, “Finito: A faster, permutable
incremental gradient method for big data problems,” in Proceedings of
the 31st International Conference on Machine Learning (ICML-14),
2014, pp. 1125–1133.

[7] J. Mairal, “Incremental majorization-minimization optimization with
application to large-scale machine learning,” SIAM Journal on Opti-
mization, vol. 25, no. 2, pp. 829–855, 2015.

[8] A. Mokhtari, M. Gürbüzbalaban, and A. Ribeiro, “Surpassing gradient
descent provably: A cyclic incremental method with linear convergence
rate,” SIAM Journal on Optimization, vol. 28, no. 2, pp. 1420–1447,
2018.

[9] N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar, “Global convergence
rate of proximal incremental aggregated gradient methods,” SIAM
Journal on Optimization, vol. 28, no. 2, pp. 1282–1300, 2018.

2392

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

[10] L. Xiao, A. W. Yu, Q. Lin, and W. Chen, “DSCVR: Randomized
primal-dual block coordinate algorithms for asynchronous distributed
optimization,” Journal of Machine Learning Research, vol. 20, no. 43,
pp. 1–58, 2019.

[11] R. Leblond, F. Pedregosa, and S. Lacoste-Julien, “ASAGA:
Asynchronous parallel SAGA,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of
Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54. Fort
Lauderdale, FL, USA: PMLR, 20–22 Apr 2017, pp. 46–54. [Online].
Available: http://proceedings.mlr.press/v54/leblond17a.html

[12] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: An algorithmic
framework for asynchronous parallel coordinate updates,” SIAM
Journal on Scientific Computing, vol. 38, no. 5, pp. A2851–A2879,
2016. [Online]. Available: https://doi.org/10.1137/15M1024950

[13] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent
primal-dual algorithm and application to distributed asynchronous
optimization,” IEEE Transactions on Automatic Control, vol. 61, no. 10,
pp. 2947–2957, 2015.

[14] R. Zhang and J. Kwok, “Asynchronous distributed ADMM for
consensus optimization,” in International Conference on Machine
Learning, 2014, pp. 1701–1709.

[15] F. Mansoori and E. Wei, “Superlinearly convergent asynchronous
distributed network Newton method,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC). IEEE, 2017, pp. 2874–
2879.

[16] U. Şimşekli, Ç. Yıldız, T. H. Nguyen, G. Richard, and A. T.
Cemgil, “Asynchronous stochastic quasi-Newton MCMC for non-
convex optimization,” arXiv preprint arXiv:1806.02617, 2018.

[17] S. Kanrar and M. Siraj, “Performance measurement of the heteroge-
neous network,” arXiv preprint arXiv:1110.3597, 2011.

[18] A. Wongpanich, Y. You, and J. Demmel, “Rethinking the value of
asynchronous solvers for distributed deep learning,” in Proceedings
of the International Conference on High Performance Computing in
Asia-Pacific Region, 2020, pp. 52–60.

[19] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization,” Mathematical Programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[20] A. Mokhtari and A. Ribeiro, “Global convergence of online limited
memory BFGS,” The Journal of Machine Learning Research, vol. 16,
no. 1, pp. 3151–3181, 2015.

[21] S. G. Nash and J. Nocedal, “A numerical study of the limited memory
BFGS method and the truncated-Newton method for large scale
optimization,” SIAM Journal on Optimization, vol. 1, no. 3, pp. 358–
372, 1991.

[22] A. Skajaa, “Limited memory BFGS for nonsmooth optimization,”
Master’s thesis, 2010.

[23] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. M. Shi, and P. T. P.
Tang, “A progressive batching L-BFGS method for machine learning,”
arXiv preprint arXiv:1802.05374, 2018.

[24] A. S. Berahas, M. Jahani, and M. Takáč, “Quasi-Newton methods
for deep learning: Forget the past, just sample,” arXiv preprint
arXiv:1901.09997, 2019.

[25] K. Mishchenko, F. Iutzeler, J. Malick, and M.-R. Amini, “A delay-
tolerant proximal-gradient algorithm for distributed learning,” in
Accepted to the 35th International Conference on Machine Learning,
ICML, Stockhom, Sweden, 2018.

[26] S. Soori, K. Mischenko, A. Mokhtari, M. M. Dehnavi, and
M. Gürbüzbalaban, “DAve-QN: A distributed averaged quasi-Newton
method with local superlinear convergence rate,” arXiv preprint
arXiv:1906.00506, 2019.

[27] D. Goldfarb, “A family of variable-metric methods derived by vari-
ational means,” Mathematics of Computation, vol. 24, no. 109, pp.
23–26, 1970.

[28] C. G. Broyden, J. Dennis Jr, and J. J. Moré, “On the local and
superlinear convergence of quasi-Newton methods,” IMA Journal of
Applied Mathematics, vol. 12, no. 3, pp. 223–245, 1973.

[29] J. E. Dennis and J. J. Moré, “A characterization of superlinear
convergence and its application to quasi-Newton methods,” Mathematics
of Computation, vol. 28, no. 126, pp. 549–560, 1974.

[30] M. J. Powell, “Some global convergence properties of a variable metric
algorithm for minimization without exact line searches,” Nonlinear
Programming, vol. 9, no. 1, pp. 53–72, 1976.

[31] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “Convergence rate of
incremental gradient and incremental Newton methods,” SIAM Journal
on Optimization, vol. 29, no. 4, pp. 2542–2565, 2019.

[32] ——, “A globally convergent incremental Newton method,” Mathemat-
ical Programming, vol. 151, no. 1, pp. 283–313, 2015.

[33] A. Mokhtari, M. Eisen, and A. Ribeiro, “IQN: An incremental quasi-
Newton method with local superlinear convergence rate,” SIAM Journal
on Optimization, vol. 28, no. 2, pp. 1670–1698, 2018.

[34] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gra-
dient method with a constant step size,” SIAM Journal on Optimization,
vol. 18, no. 1, pp. 29–51, 2007.

[35] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Advances
in Neural Information Processing Systems, 2018, pp. 5050–5060.

[36] J. Sun, T. Chen, G. Giannakis, and Z. Yang, “Communication-efficient
distributed learning via lazily aggregated quantized gradients,” in
Advances in Neural Information Processing Systems, 2019, pp. 3365–
3375.

[37] C.-p. Lee, C. H. Lim, and S. J. Wright, “A distributed quasi-
Newton algorithm for empirical risk minimization with nonsmooth
regularization,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 1646–
1655.

[38] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, p. 48, 2009.

[39] M. Eisen, A. Mokhtari, and A. Ribeiro, “Decentralized quasi-Newton
methods,” IEEE Transactions on Signal Processing, vol. 65, no. 10,
pp. 2613–2628, 2017.

[40] R. Crane and F. Roosta, “Dingo: Distributed Newton-type method for
gradient-norm optimization,” arXiv preprint arXiv:1901.05134, 2019.

[41] J. Nocedal and S. Wright, Numerical Optimization. Springer Science
& Business Media, 2006.

[42] J. B. Erway and R. F. Marcia, “On efficiently computing the eigenvalues
of limited-memory quasi-Newton matrices,” SIAM Journal on Matrix
Analysis and Applications, vol. 36, no. 3, pp. 1338–1359, 2015.

[43] M. Apostolopoulou, D. Sotiropoulos, C. Botsaris, and P. Pintelas, “A
practical method for solving large-scale TRS,” Optimization Letters,
vol. 5, no. 2, pp. 207–227, 2011.

[44] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, pp. 1–27, 2011.

[45] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney, “Giant: Globally
improved approximate Newton method for distributed optimization,”
in Advances in Neural Information Processing Systems, 2018, pp.
2332–2342.

[46] K. Mishchenko, F. Iutzeler, J. Malick, and M.-R. Amini, “A delay-
tolerant proximal-gradient algorithm for distributed learning,” in
International Conference on Machine Learning, 2018, pp. 3584–3592.

[47] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “GIANT:
Globally Improved Approximate Newton Method for Distributed
Optimization,” ArXiv e-prints, Sep. 2017.

[48] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient
distributed optimization using an approximate Newton-type method,” in
International Conference on Machine Learning, 2014, pp. 1000–1008.

[49] Y. Nesterov, Introductory Lectures on Convex Optimization: A basic
course. Springer Science & Business Media, 2013, vol. 87.

[50] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson et al., “XSEDE:
Accelerating scientific discovery computing in science & engineering,
16 (5): 62–74, sep 2014,” URL https://doi. org/10.1109/mcse, 2014.

[51] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, 2013, pp. 315–323.

[52] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient
distributed optimization using an approximate Newton-type method,” in
International Conference on Machine Learning, 2014, pp. 1000–1008.

[53] M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and
A. Sarkar, “Non-uniform stochastic average gradient method for training
conditional random fields,” in Artificial Intelligence and Statistics, 2015,
pp. 819–828.

[54] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of
Majorization and Its Applications. Springer, 1979, vol. 143.

2393

Authorized licensed use limited to: Rutgers University. Downloaded on May 16,2022 at 14:55:36 UTC from IEEE Xplore. Restrictions apply.

