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!BSTRACT
.ONLINEAR FREQUENCY RESPONSE ANALYSIS IS A WIDELY USED METHOD FOR DETERMINING SYSTEM DYNAMICS
IN THE PRESENCE OF NONLINEARITIES� )N DUSTY PLASMAS� THE PLASMAnGRAIN INTERACTION �E�G� GRAIN
CHARGING FLUCTUATIONS	 CAN BE CHARACTERIZED BY A SINGLEPARTICLE NONLINEAR RESPONSE ANALYSIS� WHILE
GRAINnGRAIN NONLINEAR INTERACTIONS CAN BE DETERMINED BY A MULTIPARTICLE NONLINEAR RESPONSE
ANALYSIS� (ERE A MACHINE LEARNINGBASED METHOD TO DETERMINE THE EQUATION OF MOTION IN THE
NONLINEAR RESPONSE ANALYSIS FOR DUST PARTICLES IN PLASMAS IS PRESENTED� 3EARCHING THE PARAMETER
SPACE IN A "AYESIAN MANNER ALLOWS AN EFFICIENT OPTIMIZATION OF THE PARAMETERS NEEDED TO MATCH
SIMULATED NONLINEAR RESPONSE CURVES TO EXPERIMENTALLY MEASURED NONLINEAR RESPONSE CURVES�

�� )NTRODUCTION

-ACHINE LEARNING �OR DEEP LEARNING	 HAS RECENTLY BECOME ONE OF THE HOTTEST ANALYSIS TECHNIQUES IN THE
SCIENTIFIC WORLD AS APPLICATION OF THIS POWERFUL NUMERICAL METHOD HAS PROVEN USEFUL IN SOLVING PROBLEMS
ACROSS A WIDE RANGE OF FIELDS� &OR EXAMPLE� CONVOLUTIONAL NEURAL NETWORKS �,E.ET� !LEX.ET	 ;�� �= NOW FULFILL
OBJECT RECOGNITION TASKS TO A HIGH DEGREE OF ACCURACY� RECURRENT NEURAL NETWORKS �,34-	 ;�= ARE IMPROVING
COMPUTATIONAL UNDERSTANDING OF NATURAL LANGUAGE� REINFORCEMENT LEARNING AGENTS ARE OUTPERFORMING HUMAN
EXPERTS IN STRATEGIC DECISION MAKING �!LPHA'O	 ;�� �=� AND GENERATIVE ADVERSARIAL NETWORKS �'!.S	 ;�= ARE
SHOWING THE ABILITY TO CREATE MUSIC� PAINTINGS AND DIALOGUE IN A HUMAN MANNER� )N ADDITION TO INDUSTRIAL
APPLICATIONS� MACHINE LEARNING TECHNIQUES ARE NOW ALSO BEING APPLIED TO SOLVE PHYSICS PROBLEMS� %XAMPLES
INCLUDE THE PREDICTION OF MOLECULAR ATOMIZATION ENERGIES BY EMPLOYING REGRESSION MODELS ;�=� THE
APPLICATION OF A NEURAL NETWORK TO SOLVE QUANTUM MANYBODY PROBLEMS ;�=� AND CRYSTALLIZATION RECOGNITION
THROUGH THE USE OF A SHALLOW NEURAL NETWORK ;�=�

)N THIS PAPER� A MACHINE LEARNINGBASED METHOD IS APPLIED TO NONLINEAR RESPONSE PROBLEMS IN DUSTY
PLASMAS� $USTY PLASMAS ;��n��= ARE SYSTEMS CONTAINING BOTH WEAKLY IONIZED GAS AND CHARGED MICRONSIZED
DUST PARTICLES� $UE TO THE HIGHER THERMAL VELOCITIES OF ELECTRONS COMPARED TO IONS� DUST PARTICLES IN A DUSTY
PLASMA BECOME NEGATIVELY CHARGED ;��= IN RESPONSE TO THE FREQUENT COLLISIONS BETWEEN THE PLASMA PARTICLES
AND A DUST GRAIN�S SURFACE� $UST PARTICLE BEHAVIOR IN PLASMAS IS DETERMINED BY MANY FACTORS� WITH THE
RESTORING CONFINEMENT CAUSED BY THE BALANCE BETWEEN THE ELECTROSTATIC FORCE AND GRAVITY� THE NEUTRAL GAS DRAG�
AND PARTICLEPARTICLE INTERACTIONS BETWEEN DUST PARTICLES AMONG THE PRIMARY OF THESE� 5NDERSTANDING THE
PHYSICS BEHIND DUST PARTICLE BEHAVIOR �I�E� INVESTIGATING THESE FACTORS	 IS ONE OF THE MOST IMPORTANT TASKS IN
DUSTY PLASMAS� /NE OF THE WAYS IN WHICH THIS CAN BE FULFILLED IS BY STUDYING THE RESPONSE OF THE PARTICLES TO
EXTERNAL EXCITATIONS ;��� ��=� 4HIS IS KNOWN AS THE NONLINEAR FREQUENCY RESPONSE ANALYSIS� WHICH HAS A WIDE
APPLICATION IN MECHANICS� MATERIAL SCIENCE AND NANO SCIENCE ;��n��=�

(ERE� A "AYESIAN OPTIMIZATION FRAMEWORK ;��= IS USED TO RESOLVE A NONLINEAR RESPONSE ANALYSIS ;��n��=
IN A NUMERICAL MANNER IN A DUSTY PLASMA� 4HE UNDETERMINED COEFFICIENTS IN THE EQUATION OF MOTION FOR A
DUST GRAIN ARE DERIVED BY OPTIMIZING THE SIMULATED MOTION TO MATCH THAT OBTAINED FROM EXPERIMENTAL RESULTS�
4HESE ARE COMPARED TO THE ANALYTIC RESULTS FROM A MULTIPLESCALE PERTURBATION METHOD� 4HE NONLINEARITY IS
MEASURED TO THE �TH ORDER IN DISPLACEMENT� WHICH HELPS CORRECTLY CHARACTERIZE THE POTENTIAL ENERGY OF PARTICLE
IN THE PLASMA SHEATH TO AN ACCURACY NOT OBTAINED BEFORE�
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&IGURE �� 3KETCH OF THE MODIFIED '%# 2& REFERENCE CELL�

)T IS IMPORTANT TO NOTE THAT THIS FRAMEWORK IS NOT LIMITED TO NONLINEAR RESPONSE ANALYSIS� BUT CAN ALSO BE
APPLIED TO THE MORE GENERAL CASE OF PHYSICS PROBLEMS WHERE THE EXPERIMENTAL RESULTS CAN BE REPRODUCED BY
SIMULATIONS� )N THESE CASES� UNDETERMINED PHYSICAL QUANTITIES CAN BE REVEALED EFFICIENTLY �ESPECIALLY WHEN THE
SIMULATION IS VERY COMPUTATIONAL EXPENSIVE	 BY OPTIMIZING THE SIMULATIONS TO EXPERIMENTAL RESULTS IN THIS
"AYESIAN MANNER�

�� %XPERIMENT AND "AYESIAN OPTIMIZATION

4HE EXPERIMENT WHICH WILL BE DISCUSSED IN THIS PAPER WAS CONDUCTED IN A MODIFIED 'ASEOUS %LECTRONICS
#ONFERENCE �'%#	 2& REFERENCE CELL �SEE FIGURE �	 FILLED WITH ARGON GAS� ! SINGLE MELAMINE FORMALDEHYDE
�-&	 PARTICLE HAVING A DIAMETER OF ����± ����µM WAS INSERTED INTO A GLASS BOX �HEIGHT� �� MM� LENGTH�
�� MM� WIDTH� �� MM	 PLACED ON THE LOWER ELECTRODE WHICH WAS POWERED AT �����-(Z� 4HE PLASMA POWER
AND PRESSURE WERE FIXED AT ���� 7 AND ��M4ORR� RESPECTIVELY� 4HE -& PARTICLE WAS LEVITATED IN THE PLASMA
SHEATH REGION DUE TO THE BALANCE BETWEEN GRAVITY AND THE ELECTROSTATIC FORCE PRODUCED BY THE NEGATIVELY
CHARGED LOWER ELECTRODE� 4HE DUST PARTICLE WAS ILLUMINATED BY A LASER SHEET �WAVELENGTH OF ��� NM	 WITH THE
RESULTING MOTION RECORDED AT A RATE OF ��� FPS BY A HIGH SPEED CAMERA MOUNTED AT THE SIDE PORT OF THE CELL�

! PRIMARY AMPLITUDEFREQUENCY RESPONSE CURVE WAS MEASURED BY APPLYING A SINUSOIDAL EXCITATION SIGNAL
TO THE LOWER ELECTRODE WITH A FIXED AMPLITUDE AT VARIOUS FREQUENCIES� 0ARTICLE MOTION WAS RECORDED AND THEN
TRANSFORMED INTO THE FREQUENCY DOMAIN �&&4 SPECTRUM	 USING A &OURIER TRANSFORM FOR EACH VALUE OF THE
EXCITATION FREQUENCY� 4HE PEAK HEIGHT OF THE &&4 SPECTRUM AT THE EXCITATION FREQUENCY WAS MEASURED�
PROVIDING THE PRIMARY RESPONSE AT THIS EXCITATION� 4HE SECONDARY �SUPERHARMONIC	 RESPONSE TO THE
EXCITATION �A NONLINEAR RESPONSE	� CAN ALSO BE MEASURED FROM THE PEAK HEIGHT OF THE &&4 SPECTRUM AT TWICE
THE EXCITATION FREQUENCY� �3AMPLE RESPONSE CURVES ARE SHOWN IN FIGURE ��	

4HE MOTION OF A SINGLE SUCH PARTICLE LEVITATING INSIDE THE PLASMA SHEATH UNDER A VERTICAL SINUSOIDAL
EXCITATION CAN BE MODELED AS A FORCED OSCILLATOR ;��=�

Ẍ+µẊ+ω �X+αX� +βX� = & EXP(IΩT)+ C�C�, ��	

WHERE µ IS THE NEUTRAL DRAG COEFFICIENT� ω IS THE RESTORING CONSTANT� α AND β ARE THE SECOND AND THIRD ORDER
DERIVATIVES OF THE RESTORING FIELD� Ω IS THE FREQUENCY OF THE SINUSOIDAL EXCITATION� & IS THE AMPLITUDE OF THE
EXCITATION �IN UNITS OF ACCELERATION	 AND C�C� STANDS FOR THE COMPLEX CONJUGATE� 4HE NEUTRAL DRAG COEFFICIENT
CAN BE THEORETICALLY IDENTIFIED AS ;��=�

µ= δ
�π

�
.MNC̄NR

�
P , ��	

WHERE .�MN� C̄N AND RP ARE THE NEUTRAL GAS NUMBER DENSITY� MASS OF A NEUTRAL GAS ATOM� THE THERMAL SPEED OF
THE GAS AND THE RADIUS OF THE DUST PARTICLE� RESPECTIVELY� 4HE COEFFICIENT δ ACCOUNTS FOR THE TYPE OF REFLECTION OR
ABSORPTION OF THE NEUTRAL GAS PARTICLE� !N ESTIMATE OF THE DRAG COEFFICIENT FOR THE GIVEN EXPERIMENTAL
CONDITIONS YIELDS µ= ����n����� S−� ;��=� WITH δ IN A RANGE FROM ���� TO ���� �WITH UNCERTAINTY CONSIDERED	
;��=� /FTEN� THE EFFECTIVE RESTORING FORCE EXPERIENCED BY THE PARTICLE AT EQUILIBRIUM CAN BE APPROXIMATED AS A
LINEAR FUNCTION IN DISPLACEMENT �I�E�−ω�X WHERE ω IS THE NATURAL RESONANCE FREQUENCY	 UNDER THE
ASSUMPTION THAT THE PARTICLE IS LEVITATING IN A REGION WHERE THE SHEATH CAN BE CONSIDERED TO EXHIBIT A PERFECT
PARABOLIC SHEATH POTENTIAL ;��� ��=� &OR THE GIVEN EXPERIMENTAL CONDITIONS� ω IS ESTIMATED TO BE ����n���� (Z

�
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BY TAKING THE SPECTRAL POWER DENSITY OF THE PARTICLE�S THERMAL MOTION� AS DESCRIBED IN ;��=� 5NFORTUNATELY� THIS
APPROXIMATION BECOMES INVALID IN MOST REALISTIC SITUATIONS� SUCH AS WHERE CHARGE FLUCTUATIONS ARE CONSIDERED
;��� ��=� OR WHEN THE OSCILLATION OF THE DUST PARTICLE IS SO LARGE THAT THE SHEATH POTENTIAL CAN NO LONGER BE
CONSIDERED PARABOLIC� )N THIS CASE� IT IS NECESSARY TO EXTEND THE RESTORING FORCE TO THE NONLINEAR REGIME AS
−ω �X−αX� −βX� WITH TERMS HIGHER THAN /�X�	 IGNORED FOR SIMPLICITY�

"ASED ON EQUATION ��	� THE PARTICLE MOTION AS A FUNCTION OF TIME X�T	 UNDER AN EXCITATION WITH FREQUENCY
Ω CAN BE SIMULATED �OR NUMERICALLY SOLVED	 GIVEN A SET OF KNOWN PARAMETERS θ= [µ�ω�α�β� &]� )N THIS CASE�
THE PARTICLE MOTION WAS SIMULATED EMPLOYING THE VELOCITY 6ERLET ALGORITHM� WHICH UPDATES THE POSITION AND
VELOCITY IN EACH ITERATION AS

X(T+ DT) = X(T)+ V(T)DT+
A(T)

�
(DT)�,

V(T+ DT) = V(T)+
A(T+ DT)+ A(T)

�
DT, ��	

WHERE DT IS THE TIME STEP OF THE SIMULATION� V�T	 IS THE VELOCITY AT TIME T AND A�T	 IS THE ACCELERATION
NORMALIZED BY THE PARTICLE MASS AT TIME T AS DETERMINED BY EQUATION ��	�

A(T) =−µV(T)−ω �X(T)−αX�(T)−βX�(T)+ �&COS(ΩT). ��	

&OLLOWING THE SAME APPROACH DESCRIBED ABOVE FOR THE EXPERIMENT� THE PRIMARY AND SECONDARY
AMPLITUDEFREQUENCY RESPONSE CURVES CAN ALSO BE MEASURED FROM THE SIMULATED PARTICLE MOTION X�T	 BY
VARYING THE EXCITATION FREQUENCY Ω OVER THE RANGE OF EXCITATION FREQUENCIES USED IN THE EXPERIMENT�

4HIS ALLOWS A PARAMETER SET θ∗ = {µ∗,ω ∗,A∗,B∗,&∗} CHARACTERIZING THE PROPERTIES OF THE DUST MOTION
�WHICH DEPEND ON PROPERTIES OF THE NEARBY PLASMA ENVIRONMENT	 TO BE DETERMINED BY SEARCHING THE
PARAMETER SPACE FOR THE OPTIMAL SET OF PARAMETERS THAT GENERATES A SIMULATED AMPLITUDEFREQUENCY RESPONSE
CURVE WHICH MOST CLOSELY MATCHES THE EXPERIMENTALLY MEASURED AMPLITUDEFREQUENCY RESPONSE CURVE� 4HIS
PROCESS CAN BE QUANTIFIED AS

θ∗= ARGMIN
θ

(,(2E,2S(θ))), ��	

WHERE 2E REPRESENTS THE EXPERIMENTALLY MEASURED RESPONSE CURVE AND 2S�θ	 REPRESENTS THE SIMULATED
RESPONSE CURVE FOR A GIVEN SET OF PARAMETERS [µ�ω�α�β� &]� ,(2E,2S) IS A MEASURE OF THE DIFFERENCE BETWEEN
THE EXPERIMENTALLY MEASURED AND SIMULATED RESPONSE CURVES� )N ORDER TO QUANTIFY THIS DIFFERENCE� WE DEFINE ,
AS A FUNCTION , : θ = {µ,ω,α,β,&} "→ R THAT MAPS A SET OF PARAMETERS TO A REAL VALUE WHICH MEASURES THE
@DISTANCE� BETWEEN THE EXPERIMENTALLY MEASURED AND THE SIMULATED RESPONSE CURVE AS

,(θ) =
.∑

I=�

(
RE(ΩI)− RS(ΩI,θ)

RE(ΩI)

)�

, ��	

WHERE RE(ΩI) AND RS(ΩI) ARE THE EXPERIMENTALLY MEASURED AND SIMULATED RESPONSE AMPLITUDES AT THE EXCITATION
FREQUENCY ΩI� RESPECTIVELY� 4HE SUMMATION IS CARRIED OUT OVER THE SPAN OF THE EXCITATION FREQUENCIES
EMPLOYED IN THE EXPERIMENT� 4HE DIFFERENCE ARE SQUARED TO ENSURE THAT ,�θ	 DOES NOT YIELD NEGATIVE VALUES�
WHICH GUARANTEES THE EXISTENCE OF MINIMAL POINTS� )T IS IMPORTANT TO MENTION THAT THIS TYPE OF LOSS FUNCTION
,�θ	 MAY NOT BE WELLDEFINED EVERYWHERE� &OR UNREALISTIC PARAMETERS SETS� I�E� SETS THAT EITHER HAVE NO PHYSICAL
MEANING OR ARE NOT SUITABLE FOR DESCRIBING THE CONDITION OF THE PLASMA SHEATH� THE SIMULATED NONLINEAR
RESPONSE CURVES DIVERGE� RESULTING IN AN UNDEFINED DISTANCE FUNCTION� )N THESE CASES� A LARGE VALUE IS ASSIGNED
TO THE DISTANCE FUNCTION �E�G� ,= ���	 IN ORDER TO ENSURE OPTIMIZATION SUCCESS�

!S CAN BE SEEN FROM EQUATION ��	� CALCULATION OF THE LOSS FUNCTION ,�θ	 FOR EVEN ONE SET OF PARAMETERS
REQUIRES MULTIPLE SIMULATIONS OF THE PARTICLE�S MOTION� I�E� ONE FOR EACH EXCITATION FREQUENCY USED FOR
MEASURING THE RESPONSE CURVE IN THE EXPERIMENT� &OR EXAMPLE� THE RESPONSE CURVE SHOWN IN FIGURE � REQUIRES
�� INDEPENDENT SIMULATIONS TO CALCULATE THE DISTANCE FUNCTION FOR JUST ONE SET OF PARAMETERS� 4HIS IS
COMPUTATIONALLY EXPENSIVE AND� AS SUCH� A MINIMIZATION OF THE DISTANCE FUNCTION ,�θ	 BASED ON A RANDOM
SEARCH OF THE PARAMETER SPACE θ IS INFEASIBLE�

4HEREFORE� THIS LOSS FUNCTION IS MINIMIZED EMPLOYING A "AYESIAN OPTIMIZATION� 4HIS TECHNIQUE HAS SHOWN
GREAT PROMISE IN MACHINE LEARNING� ESPECIALLY FOR THE FINE TUNING OF NEURAL NETWORKS FOR MODEL SELECTION�
)NSTEAD OF RANDOMLY SEARCHING THE PARAMETER SPACE AND THEN CONDUCTING SIMULATIONS FOR EACH SET� ONLY THOSE
PARAMETER SETS SELECTED IN A "AYESIAN MANNER ARE SIMULATED� ! SURROGATE FUNCTION F IS INTRODUCED TO MODEL

�
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!LGORITHM� "AYESIAN OPTIMIZATION �40%	�

$EFINE A LOSS FUNCTION ,�θ	�
)NITIALING A DATA SETD�:T = {θ�:T,,(θ�:T)} BY RANDOMLY SAMPLING PARAMETERS θ��T �
WHILE ./4 CONVERGED DO

#ALCULATE F ∗ AS THE LOWER ��� QUANTILE OF THE LOSS FUNCTIONS FOR THE UPTODATE DATA SETD�:T�
%STIMATE L�θ	 USING DATA WITH LOSS FUNCTION LESS THAN F ∗�
%STIMATE G�θ	 USING DATA WITH LOSS FUNCTION GREATER THAN F ∗�
#ALCULATE θT+ � THAT MAXIMIZES L�θ	�G�θ	�
2UN SIMULATION ON θT+ �� AND UPDATE THE DATA SETD�:T WITH {θT+�,,(θT+�)}�

END

THE DISTRIBUTION OF THE VALUE OF THE LOSS FUNCTION ,�θ	� 4HE POSTERIOR DISTRIBUTION OF THIS SURROGATE FUNCTION AT
THE PARAMETER θ GIVEN THE DATA OBSERVEDD�:T = {θ�:T,,(θ�:T)} CAN BE DERIVED USING "AYES� LAW�

P( F |θ;D�:T) =
P(θ| F ;D�:T)P( F ;D�:T)

P(θ;D�:T)
, ��	

WHERE TREESTRUCTURED 0ARZEN DENSITY ESTIMATORS ;��= �A GENERATIVE MODEL	 ARE USED TO MODEL THE LIKELIHOOD
FUNCTION P(θ| F ;D�:T) DEFINED AS

P(θ| F ;D�:T) =

{
L(θ), IF F< F∗

G(θ), IF F≥ F∗.
��	

)N THIS LIKELIHOOD FUNCTION� L�θ	 AND G�θ	 ARE NONPARAMETRIC 0ARZEN DENSITY ESTIMATORS� 4O ESTIMATE L�θ	 AND
G�θ	� THE DATA SET NEEDS TO BE SPLIT INTO TWO SUBSETSD< ANDD>� WHERED< CONTAINS THE DATA WITH LOSS
FUNCTIONS LESS THAN A THRESHOLD F ∗ �THE LOWER ��� QUANTILE OF THE LOSS FUNCTION	 WHILED> CONTAINS THE REST OF
THE DATA� )N THIS CASE� L�θ	 AND G�θ	 CAN BE EVALUATED AS L(θ) = �

N<

∑
θI∈D<

+(θ,θI) AND

G(θ) = �
N>

∑
θI∈D>

+(θ,θI)� WHERE N<� N> ARE THE SIZE OFD< ANDD> RESPECTIVELY� AND +�θ� θI	 IS A KERNEL
FUNCTION �E�G� 'AUSSIAN KERNEL	� !S SUCH� THE MARGINAL DISTRIBUTION OF THE PARAMETER SET GIVEN THE OBSERVED
DATA SETD�:T �THE DENOMINATOR OF EQUATION ��		 CAN IN TURN BE CALCULATED AS

P(θ;D�:T) =

ˆ ∞

−∞
P(θ| F ;D�:T)P( F ;D�:T)DF

= (L(θ)− G(θ))

ˆ F∗

−∞
P( F ;D�:T)DF+ G(θ). ��	

4HE CRITERIA FOR EXPLORING THE OVERALL PARAMETER SPACE IS TO CHOOSE THE NEXT SET OF SIMULATION PARAMETERS
THAT MAXIMIZES THE EXPECTED IMPROVEMENT E[MAX( F ∗ − F,�)] ;��= AS

θT+� = ARGMAX
θ

ˆ ∞

−∞
MAX( F ∗ − F,�)P( F |θ;D�:T)DF

= ARGMAX
θ

´ F∗

−∞( F ∗ − F)P( F ;D�:T)DF
G(θ)
L(θ) (�−

´ F∗

−∞ P( F ;D�:T)DF)+
´ F∗

−∞ P( F ;D�:T)DF

= ARGMAX
θ

L(θ)

G(θ)
, ���	

WHERE THE LAST EQUATION HOLDS SINCE THE CUMULATIVE DISTRIBUTION
´ F∗

−∞ P( F ;D�:T)DF IS STRICTLY LESS THAN �� AND
THIS RESULT IS NOT AFFECTED BY THE EXACT FORM OF THE PRIOR P( F ;D�:T)� 4HE NEXT PARAMETER SET WHOSE LOSS FUNCTION
WILL BE SIMULATED IS CHOSEN TO MAXIMIZE THE QUOTIENT OF THE 0ARZEN DENSITY ESTIMATORS L�θ	�G�θ	� !S EACH NEW
SIMULATION IS CONDUCTED� THE DATA SETD IS UPDATED WITH THE NEW SIMULATED DATA POINTS� 4HE ALGORITHM IS
GENERALIZED AS THE FOLLOWING�

3INCE SECONDARY RESPONSES �AS NONLINEAR RESPONSES	 ARE VERY SENSITIVE TO NONLINEAR TERMS� I�E� αX� AND
βX�� WHILE THE PRIMARY RESPONSES ARE MORE SENSITIVE TO THE LINEAR TERMS� IT IS NECESSARY TO MINIMIZE THE LOSS
FUNCTIONS FOR BOTH PRIMARY AND SECONDARY RESPONSES SIMULTANEOUSLY� /NE SIMPLE WAY OF ACHIEVING THIS IS
TO MINIMIZE A WEIGHTED SUM OF THESE TWO LOSS FUNCTIONS RATHER THAN MINIMIZING THEM INDIVIDUALLY
�E�G� ,= ,P + �.��,S	�

�
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&IGURE �� 4HE PRIMARY "AYESIAN OPTIMIZED �BASED ON EQUATION ��		 AND EXPERIMENTALLY MEASURED RESPONSE CURVES PLOTTED IN
DASHED RED AND SOLID BLACK� RESPECTIVELY� UNDER �A	 ��� 6 EXCITATION AND �B	 ��� 6 EXCITATION� 4HE CORRESPONDING SECONDARY
�SUPERHARMONIC	 RESPONSE CURVES ARE SHOWN IN THE SUBPLOTS WITH THE SAME COLOR DISTRIBUTION� $ASHED BLUE CURVES ARE THE
"AYESIAN OPTIMIZED RESPONSE CURVES BASED ON EQUATION ���	�

4ABLE �� 4HE PARAMETER SPACE MEASURED FOR -ODEL � �EQUATION ��		 FROM THE "AYESIAN OPTIMIZATION METHOD AND THE MULTIPLESCALE
PERTURBATION METHOD� AND FOR -ODEL � �EQUATION ���		 FROM THE "AYESIAN OPTIMIZATION METHOD� &OR THE "AYESIAN OPTIMIZATION METHOD�
THE MEASUREMENTS ARE AVERAGES OF FIVE INDEPENDENT EXPERIMENTAL TRIALS� WITH THE CORRESPONDING #6 SHOWN IN PARENTHESES�

-ETHODS µ �S−�	 ω �(Z	 |α| �µM−� × S−�	 β �µM−� × S−�	 & �µM−� × S−�	 |γ| �µM−� × S−�	

%XCITATION ��� 6
-ODEL � ���� �����	 ���� �����	 ��� �����	 ���× ��−� �����	 ���× ��� �����	
-ULTIPLESCALE ��� ���� ��� ���× ��−� ���× ���

-ODEL � ��� �����	 ���� �����	 ��� �����	 ����× ��−� �����	 ���× ��� �����	 ���× ��−� �����	
%XCITATION ��� 6

-ODEL � ���� �����	 ���� �����	 ��� �����	 ���× ��−� �����	 ���× ��� �����	
-ULTIPLESCALE ���� ���� ��� ���× ��−� ���× ���

-ODEL � ���� �����	 ���� �����	 ��� �����	 ����× ��−� �����	 ���× ��� �����	 ���× ��−� �����	

�� 2ESULTS

&IGURE � SHOWS THE "AYESIANOPTIMIZED SIMULATED PRIMARY RESPONSE CURVES �DASHED RED CURVES	 OF A SINGLE
DUST PARTICLE LEVITATED IN THE PLASMA SHEATH IN THE '%# 2& REFERENCE CELL AT A PLASMA POWER OF ����7 AND
PRESSURE OF ��M4ORR� 4HE CORRESPONDING SECONDARY RESPONSE CURVES ARE SHOWN IN THE SUBPLOTS� 0ARTICLES
EXCITED UNDER EXCITATION AMPLITUDES OF ��� AND ��� 6 ARE PLOTTED IN FIGURES ��A	 AND �B	� RESPECTIVELY� !S
SHOWN� THE OPTIMIZED RESPONSE CURVES �DASHED RED CURVES SIMULATED ACCORDING TO EQUATION ��		 RESEMBLE THE
EXPERIMENTALLY MEASURED RESPONSES CURVES �SOLID BLACK CURVES	 IN BOTH THE PRIMARY AND SECONDARY REGIONS�
!LSO� NOTE THAT THE SPRING SOFTENING PHENOMENON �I�E� THE NONLINEAR PHENOMENON THAT RESULTS IN THE
PRIMARY RESONANCE PEAK BEING @BENT� IN THE LOW FREQUENCY DIRECTION	 BECOMES MORE OBVIOUS AS THE EXCITATION
AMPLITUDE INCREASES �FIGURE ��A		�

4HE CORRESPONDING OPTIMIZED PARAMETERS OBTAINED FROM MODEL � �EQUATION ��		 ARE CALCULATED AS THE
AVERAGE OVER FIVE INDEPENDENT TRIALS OF THE OPTIMIZING EXPERIMENT AND THEIR VALUES ARE LISTED IN TABLE �
�METHOD @-ODEL ��	� WITH THE CORRESPONDING COEFFICIENT OF VARIATIONS �#6	 SHOWN IN PARENTHESES� .OTICE THAT
THE SIGN OF THE COEFFICIENT OF THE QUADRATIC NONLINEARITY α IS IRRELEVANT IN THIS RESPONSE ANALYSIS SINCE IT ONLY
CHANGES THE DIRECTION OF THE ASYMMETRIC MOTION OF THE DUST PARTICLE� %VEN THOUGH THERE IS A LARGE VARIATION IN
RANDOMNESS IN THIS "AYESIAN SEARCH OF THE PARAMETER SPACE� THE OPTIMIZING EXPERIMENT CONVERGES TO YIELD
CONSISTENT RESULTS AS EVIDENCED BY THE LOW #6� 4HE RELATIVELY HIGH #6 FOR THE PARAMETER β �THE COEFFICIENT OF
THE CUBIC NONLINEARITY	 IS DUE TO THE FACT THAT THE RESPONSE CURVES ARE ROBUST IN RESPONDING TO VARIATION OF
NONLINEARITIES OF HIGHER ORDER� !S SUCH� A SMALL VARIATION IN β WILL NOT SIGNIFICANTLY PERTURB THE ENTIRE
RESPONSE CURVE�

&IGURE � SHOWS THE LOSS �EQUATION ��		 AS A FUNCTION OF THE NUMBER OF ITERATIONS FOR THE DUST PARTICLE
EXCITED AT BOTH ��� 6 �A	 AND ��� 6 �B	� EACH OF WHICH HAS FIVE INDEPENDENT EXPERIMENTAL TRIALS� !S SHOWN� THE
LOSS VALUES DECREASE RAPIDLY AFTER THE FIRST SEVERAL ITERATIONS� REACHING CONVERGENCE AFTER A FEW HUNDRED
ITERATIONS� �4HIS AGAIN INDICATES THE EFFICIENCY OF THE PRESENTED "AYESIAN OPTIMIZATION METHOD IN EXPLOITATION
OF THE PARAMETER SPACE�	 (OWEVER� IN ORDER TO BOOST OVERALL ACCURACY AND ENSURE WIDER EXPLORATION OF THE
PARAMETER SPACE� WE CONDUCTED A LARGE NUMBER OF ITERATIONS� 4HE OBSERVED HIGHER CONVERGENCY LOSS VALUE FOR
THE DUST PARTICLE UNDER ��� 6 EXCITATION �≈���× ��−�	 AS COMPARED TO THAT UNDER ��� 6 EXCITATION

�
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&IGURE �� 4HE LOSS �THE @DISTANCE� BETWEEN THE EXPERIMENTALLY MEASURED AND THE SIMULATED RESPONSE CURVE	 AS A FUNCTION OF THE
NUMBER OF ITERATIONS FOR A DUST PARTICLE EXCITED UNDER AN EXCITATION AMPLITUDE OF �A	 ��� 6 AND �B	 ��� 6� #OLORS DENOTE THE FIVE
INDEPENDENT TRIALS�

�≈���× ��−�	 CAN BE ATTRIBUTED TO THE INCREASED DIFFICULTY OF CAPTURING THE SPRING SOFTENING PHENOMENON AS
THE EXCITATION AMPLITUDE BECOMES LARGER �COMPARE FIGURES ��A	 AND �B		�

�� -ULTIPLESCALE PERTURBATIONMETHOD

4HE PARAMETERS CAN ALSO BE DERIVED ANALYTICALLY BY SOLVING THE EQUATION OF MOTION �EQUATION ��		 EMPLOYING
THE MULTIPLESCALE PERTURBATION METHOD� 4HE DETAILS OF THIS METHOD ARE GIVEN IN ;��� ��=� WITH THE MAIN
RESULTS NEEDED FOR THE ANALYSIS GIVEN BELOW�

!SSUMING AN EXTERNAL EXCITATION AT A FREQUENCY OF APPROXIMATELY HALF THAT OF THE OSCILLATOR RESONANCE
FREQUENCY ω� I�E� Ω≈ �

�ω� THE SOLUTION TO EQUATION ��	� TO FIRST ORDER� YIELDS

X(T) =
&

ω � −Ω�
COS(ΩT)

− α&�

�ω(ω � −Ω�)�
√

µ �

� +(�Ω−ω)�
SIN(�ΩT−φ), ���	

WHERE φ IS THE SHIFTED PHASE WHICH IS DEPENDENT ON THE EXCITATION FREQUENCY AS φ= ARCTAN( �Ω−�ω
µ )� 4HE

PARAMETERS ω� µ AND α ARE DETERMINED USING THE EXPERIMENTALLY MEASURED SECONDARY RESPONSE CURVE FITTED TO

THE STEADY STATE THEORETICAL SECONDARY RESPONSE α&�/�ω(ω � −Ω�)�
√

µ �

� +(�Ω−ω)�� #ONSIDERING AN

EXTERNAL EXCITATION HAVING A FREQUENCY APPROXIMATELY EQUAL TO THE OSCILLATOR RESONANT FREQUENCY� I�E� Ω≈ ω�
THE SOLUTION TO EQUATION ��	� TO FIRST ORDER OF APPROXIMATION YIELDS

X(T) = !(Ω)COS(ΩT−φ ′), ���	

WHERE THE SHIFTED PHASE IS φ ′ = Ω−ω−β� "Y ELIMINATING THE SECULAR TERM APPEARING IN THE EQUATION OF
MOTION TO SECOND ORDER OF APPROXIMATION� THE STEADY STATE THEORETICAL PRIMARY RESPONSE !�Ω	 CAN NOW BE
DERIVED AS

�
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&�

�ω �
=

(
!µ

�

)�

+

[(
�βω � − ��α�

��ω�

)
!� − (Ω−ω)!

]�

. ���	

"Y FITTING THE CORRESPONDING EXPERIMENTALLY MEASURED PRIMARY RESPONSE CURVE TO EQUATION ���	� THE
PARAMETER SPACE FOR THE CUBIC NONLINEARITIES β AND & CAN NOW BE INVESTIGATED� 4HE PARAMETERS OBTAINED IN
THIS WAY ARE SHOWN IN TABLE � �METHOD @-ULTIPLESCALE�	� !S SHOWN� THE PARAMETERS MEASURED FROM THE
"AYESIAN OPTIMIZATION ARE CONSISTENT WITH THOSE MEASURED FROM THE MULTIPLESCALE PERTURBATION� EXCEPT FOR
THE VALUE OF β UNDER ��� 6 EXCITATION �WITH APPROXIMATELY ����� DIFFERENCE	� .OTICE THAT THE MEASUREMENTS
OF THE PARAMETERS FROM THE MULTIPLESCALE PERTURBATION SERVE AS A BENCHMARK AND SHOULD NOT BE CONSIDERED
AS TRUE VALUES SINCE THEY ARE DERIVED AND ARE PRECISE ONLY TO THE FIRST ORDER OF APPROXIMATION�

$UE TO LIMITATIONS OF THE MULTIPLESCALE PERTURBATION METHOD� ANY EXTENSION OF THE MODEL �EQUATION ��		
�E�G� INCLUDING HIGHER ORDER NONLINEARITIES OF EITHER DISPLACEMENT X OR VELOCITY Ẋ	 AND DERIVATION OF THE
CORRESPONDING APPROXIMATE SOLUTIONS WOULD BE TEDIOUSLY COMPLICATED� (OWEVER� THE "AYESIAN OPTIMIZATION
SCHEME DESCRIBED HERE ALLOWS THIS PROCESS TO BE SIMPLIFIED GREATLY� !S AN EXAMPLE� THE MODEL IS EXTENDED TO
INCLUDE AN ADDITIONAL NONLINEARITY OF HIGHER ORDER IN DISPLACEMENT X�

Ẍ+µẊ+ω �X+αX� +βX� + γX� = & EXP(IΩT)+ C�C� ���	

!PPLYING THE "AYESIAN METHOD� THE OPTIMIZED PARAMETERS ARE MEASURED� WITH THE RESULTS SHOWN IN TABLE �
�WITH METHOD @-ODEL ��	 AND THE CORRESPONDING SIMULATED RESPONSE CURVES SHOWN IN FIGURE � �DASHED BLUE
CURVES	� !GAIN� THE CORRESPONDING #6 FOR THE FIVE INDEPENDENT TRIALS ARE SHOWN IN PARENTHESES�

�� $ISCUSSION AND CONCLUSION

"Y CONSIDERING NONLINEARITIES TO FOURTH ORDER� THE PRIMARY RESPONSE CURVES �DASHED BLUE LINE	 IN FIGURE ��A	
MORE CLOSELY RESEMBLE THE SPRING SOFTENING BEHAVIOR THAN DO THOSE CONSIDERING NONLINEARITIES TO THIRD ORDER
�DASHED RED LINE	� !LSO� THE LOSS IS FURTHER REDUCED� REACHING ���× ��−� FOR A ���6 EXCITATION AND ���× ��−�

FOR A ��� 6 EXCITATION� AS COMPARED TO VALUES BASED ON THE MODEL WITH THIRD ORDER NONLINEARITIES
�EQUATION ��		 WHICH RESULTS IN LOSS VALUES OF ���× ��−� AND ���× ��−�� RESPECTIVELY� 4HIS INDICATES A CLOSER
MATCH OF THE SIMULATED RESPONSE CURVES TO THE EXPERIMENTALLY MEASURED ONES� !FTER INTRODUCING
NONLINEARITIES TO THE FOURTH ORDER� THE MEASURED DRAG COEFFICIENT µ� EXCITATION AMPLITUDE &� AND THE
COEFFICIENT OF THE QUADRATIC NONLINEARITY αMORE CLOSELY APPROACH THE VALUES MEASURED FROM THE
MULTIPLESCALE PERTURBATION� (OWEVER� IT IS NOTED THAT THE COEFFICIENT FOR THE CUBIC NONLINEARITIES� β EXHIBITS A
LARGE DEVIATION� #ONSIDERING THE CONDITIONS FOR THE EXISTENCE OF THE SPRING SOFTENING EFFECT �SEEN FROM
EQUATION ���		�

�βω � − ��α� < �, ���	

THE CRITICAL VALUE OF β FOR THE EXISTENCE OF THE SPRING SOFTENING PHENOMENON CAN BE DERIVED AS
β < βC ≈ �.�× ��−� �BY TAKING INTO CONSIDERATION THE FACT THAT THE MEASURED VALUES FOR THE COEFFICIENT OF THE
QUADRATIC NONLINEARITY α ARE CONSISTENT IN BOTH MODELS GIVEN BY EQUATIONS ��	 AND ���		� )N THIS CASE� A LARGE
VALUE OF β AS MEASURED FOR BOTH A ��� 6 EXCITATION AND A ��� 6 EXCITATION� BASED ON THE MODEL REPRESENTED BY
EQUATION ���	� SEEMS TO VIOLATE THE CONDITION OF THE EXISTENCE OF THE SPRING SOFTENING PHENOMENON
�EQUATION ���		� (OWEVER� EQUATION ���	 IS DERIVED FROM ONLY THE FIRST ORDER OF APPROXIMATION IN THE
MULTIPLESCALE PERTURBATION� 4HUS� ALTHOUGH A RESPONSE CURVE SIMULATED WITH A PARAMETER β VIOLATING THE
CONDITION GIVEN BY EQUATION ���	 STILL REVEALS THE SPRING SOFTENING PHENOMENON� THIS INDICATES A LIMITED
ABILITY AND ACCURACY OF THE MULTIPLESCALE PERTURBATION METHOD TO EXPLAIN NONLINEAR RESPONSES SINCE IT
IGNORES HIGHER ORDER NONLINEARITIES� )N ORDER TO ACCURATELY DETERMINE THE COEFFICIENT OF THE CUBIC
NONLINEARITIES β �AN IMPORTANT FACTOR CHARACTERIZING THE NONLINEARITY OF THE PLASMA SHEATH ;��� ��=	� THE
EFFECTS FROM HIGHER ORDER NONLINEARITIES ARE IMPORTANT AND SHOULD NOT BE IGNORED� &IGURE ��A	 SHOWS THE
EFFECTIVE RESTORING POTENTIAL ENERGY Φ OF THE PARTICLE �DIVIDED BY THE PARTICLE MASS	 IN THE VICINITY OF ITS
EQUILIBRIUM POSITION FOR BOTH -ODEL � �RED	 AND -ODEL � �BLUE	� 4HE DIFFERENCE IN RESTORING POTENTIAL ENERGY
IS OBSERVABLE FOR THESE TWO MODELS�

7ITH THE COEFFICIENT FOR THE FOURTH ORDER NONLINEARITY AVAILABLE� THE CHANGE IN THE ELECTRIC FIELD AND THE
GRAIN CHARGE AT VARYING LEVITATION POSITIONS CAN BE FURTHER INVESTIGATED� "Y CONSIDERING AN EXPANSION IN THE
ELECTRIC FIELD % AND GRAIN CHARGE 1�

%= %� + %�X+ %�X
� + %�X

�,

1= 1� +1�X+1�X
� +1�X

�, ���	

�



-ACH� ,EARN�� 3CI� 4ECHNOL� � �����	 ������ : $ING ET AL

&IGURE �� �A	 2ESTORING POTENTIAL ENERGY AROUND THE EQUILIBRIUM LEVITATION POSITION �DIVIDED BY THE MASS OF THE PARTICLE	 FOR -ODEL
� �RED	 AND -ODEL � �BLUE	� 4HE PERFECT PARABOLIC APPROXIMATION IS SHOWN BY THE BLACK LINE AS A BENCHMARK� 4HE REGION OVER
WHICH A PARTICLE OSCILLATES IN THIS EXPERIMENT �WITH MAXIMUM AMPLITUDE OF ��� MM	 IS ALSO INDICATED� 'RAIN CHARGE �B	 AND THE
ELECTRIC FIELD �C	 IN THE VICINITY OF THE EQUILIBRIUM POSITION� 2ED� BLUE AND BLACK SOLID LINES CORRESPOND TO THE THIRD ORDER� SECOND
ORDER AND LINEAR POLYNOMIAL EXPANSION OF THE GRAIN CHARGE WITH A LINEAR ELECTRIC FIELD� RESPECTIVELY� 4HE DASHED LINES CORRESPOND TO
THE SECOND ORDER POLYNOMIAL EXPANSION FOR BOTH GRAIN CHARGE AND THE ELECTRIC FIELD�

THE ELECTROSTATIC FORCE CAN BE WRITTEN AS

&STAT = (%�1�)+ (%�1� + %�1�)X

+(%�1� + %�1� + %�1�)X
�

+(%�1� + %�1�+ %�1� + %�1�)X
�

+(%�1� + %�1� + %�1�)X
�. ���	

4HE COEFFICIENTS OF THE POLYNOMIAL IN THIS EXPANSION ARE RELATED TO THE CORRESPONDING COEFFICIENTS IN
EQUATION ���	� "Y ASSUMING A LINEAR ELECTRIC FIELD �I�E� %� = %� = �	� THE NONLINEARITIES IN CHARGE 1 CAN BE
EXPLORED TO THE THIRD ORDER �1�	 WITH γ PROVIDED BY THE "AYESIAN OPTIMIZATION APPROACH �-ODEL �	� WHILE
WITHOUT γ� THE NONLINEARITIES IN CHARGE CAN ONLY BE EXPLORED UP TO THE SECOND ORDER �1�	� &IGURE ��B	 SHOWS
THE GRAIN CHARGE IN THE VICINITY OF THE EQUILIBRIUM POSITION FOR THE THIRD ORDER POLYNOMIAL
�1= 1� +1�X+1�X� +1�X�	 AND SECOND ORDER POLYNOMIAL �1= 1� +1�X+1�X�	 EXPANSION IN RED AND
BLUE� RESPECTIVELY� !S A REFERENCE� A LINEAR CHARGE MODEL �1= 1� +1�X	 IS ALSO SHOWN IN BLACK� 4HE
CORRESPONDING LINEAR ELECTRIC FIELD �DIVIDED BY THE PARTICLE MASS	 FOR EACH CHARGE EXPANSION ARE SHOWN IN
FIGURE ��C	� 4HE EQUILIBRIUM CHARGE 1� ≈ �.�× ���E WAS ESTIMATED BY USING THE LEVITATION POSITION
COMPARISON METHOD ;��=� )N THIS METHOD� A VERTICALLY ALIGNED TWOPARTICLE PAIR IS FORMED� AND THE DIFFERENCE
IN THE LEVITATION POSITION FOR THE UPSTREAM PARTICLE WITH AND WITHOUT THE PRESENCE OF THE DOWNSTREAM PARTICLE
�WHERE THE DOWNSTREAM PARTICLE IS KNOCKED OUT OF THE SYSTEM USING A LASER PULSE	� IS MEASURED� !S SHOWN� THE
THIRD ORDER POLYNOMIAL CHARGE MODEL PREDICTS A WEAKER CHARGE REDUCTION IN THE DOWNSTREAM REGION� BUT A
STRONGER CHARGE ACCUMULATION IN THE REGION ABOVE THE EQUILIBRIUM POSITION�

"EYOND ASSUMING A LINEAR ELECTRIC FIELD� WE CAN ALSO INVESTIGATE THE NONLINEAR EXPANSIONS FOR THE %FIELD
AND THE GRAIN CHARGE SIMULTANEOUSLY �I�E� %= %� + %�X+ %�X� AND 1= 1� +1�X+1�X�	� (OWEVER� DUE TO A
LACK OF CONSTRAINTS� THIS INVESTIGATION CAN ONLY BE EXPLORED TO THE SECOND ORDER FOR BOTH ELECTRIC FIELD AND

�
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GRAIN CHARGE EVEN WITH γ KNOWN� &IGURE ��B	 AND �C	 SHOW THE RESULT OF THIS CHARGE MODEL AND THE
CORRESPONDING NONLINEAR ELECTRIC FIELD AS DASHED LINES� !S SHOWN� BOTH THE GRAIN CHARGE AND THE ELECTRIC FIELD
CAN BE VERY DIFFERENT FROM THE CASES WHERE THE ELECTRIC FIELD IS ASSUMED TO BE LINEAR IN THE DOWNSTREAM REGION�
4HIS INDICATES A REASONABLE ASSUMPTION OF A LINEAR ELECTRIC FIELD IN THE CLOSE VICINITY OF THE EQUILIBRIUM
POSITION� )T IS INSTRUCTIVE TO COMPARE THESE RESULTS AGAINST THE USUAL LINEAR MODELS FOR BOTH THE PARTICLE CHARGE
AND ELECTRIC FIELD� 7ITH THE ASSUMPTION OF A LINEAR ELECTRIC FIELD� THE CHARGE VARIES CONSIDERABLY FROM THE LINEAR
CHARGE MODEL IN THE UPSTREAM DIRECTION� #ONVERSELY� WITH THE ASSUMPTION OF A QUADRATIC ELECTRIC FIELD� IT IS
SEEN THAT THE CHARGE VARIES SIGNIFICANTLY FROM THE LINEAR CHARGE MODEL IN THE DOWNSTREAM DIRECTION� &UTURE
EXPERIMENTS MAY BE DESIGNED TO DETERMINE WHICH OF THESE MODELS IS CORRECT�

)N CONCLUSION� A NONLINEAR RESPONSE ANALYSIS FOR DUST PARTICLES IN PLASMA WAS PROVIDED EMPLOYING A
MACHINE LEARNING BASED METHOD� !N EFFICIENT TECHNIQUE FOR OPTIMIZING THE COMPARISON BETWEEN NUMERICALLY
SIMULATED AND EXPERIMENTALLY MEASURED RESPONSE CURVES BY SEARCHING THE PARAMETER SPACE IN A "AYESIAN
MANNER WAS DESCRIBED� 5SING THIS APPROACH� THE PHYSICAL PARAMETERS CHARACTERIZING THE PLASMA CONDITIONS
CAN BE DERIVED� 4HE NONLINEARITY OF THE RESPONSE WAS DETERMINED TO THE FOURTH ORDER� WHICH IS NECESSARY IN
ORDER TO ACCURATELY DETERMINE THE COEFFICIENTS FOR LOWERORDER NONLINEARITIES� AS WELL AS TO CORRECTLY
CHARACTERIZE THE POTENTIAL ENERGY OF THE PARTICLE IN THE SHEATH� "EYOND THE FIELD OF DUSTY PLASMAS� THE
PROPOSED FRAMEWORK PROVIDES A GENERAL METHOD FOR MEASURING PHYSICAL QUANTITIES BY OPTIMIZING SIMULATION
PARAMETERS TO MATCH EXPERIMENTAL OBSERVATIONS IN AN EFFICIENT MANNER� ESPECIALLY WHEN THE SIMULATION IS
COMPUTATIONALLY EXPENSIVE�

$ATA AVAILABILITY STATEMENT

4HE DATA THAT SUPPORT THE FINDINGS OF THIS STUDY ARE AVAILABLE FROM THE CORRESPONDING AUTHOR UPON REASONABLE
REQUEST�
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